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Abstract

We have implemented two different quantum many-body method: Hartree-Fock and Variational

Monte Carlo. The system studies were closed-shell quantum dot systems with the single-well

harmonic oscillator potential and the double-well potential. The basis used consisted of har-

monic oscillator functions and calculations were performed in cartesian coordinates. The theory

is presented in detail including the calculation of the two-body elements in the Hartree-Fock

method. The resulting basis from the Hartree-Fock method was then used as function in the

Slater determinant for the variational Monte Carlo method. The Hartree-Fock limit was reached

for 30 particles in two dimensions and 20 in three for the single-well. Said limit was reached for 2

up to 12 particles for the two dimensional double-well and for 2 up to 14 for the three dimensional

double-well.
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Symbols List

Symbol Meaning
ψ Spin-orbital
φ Spacial part of spin-orbital
χ Basis functions used in basis-expansion
Ψ Trial wavefunction
Φ Slater determinant
g Hermite-Gaussian
G Gaussian-Type-Orbital (GTO)
Ω Overlap Distribution
ξ Recurrence relation for Coulomb integral
x Bold lower case symbol is a vector.
X Bold upper case symbol is a matrix.

X i j Element (i , j ) of matrix X .
x i j Vector difference x i −x j .
xi j Length of vector difference x i j .
∇x Gradient with derivatives of components in x
∇2

x Laplacian with second derivatives of components in x
H Caligraphed symbol is an operator.

{X }Nk=0 A set with elements X0, . . . , XN

Table 1: List of symbols used with explaination.
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1
INTRODUCTION

At present time we live in an era of flourishing technological advances and groundbreaking

scientific discoveries. A time in which discoveries are made across fields with large cooperative

work. With the scale of the problems, so to does the demand for computations in science grow.

The modern computer was introduced to the world somewhere in the middle of the last

century and has become a staple tool in scientific work ever since. Within all big breakthroughs

in science in the modern days, some kind of computer simulations were made, a numerical

experiment was made prior to the actual physical experiments. The reason for this lies in the heart

of quantum mechanics, the Schrödinger equation. The time dependent version if this equation is

iħh
∂

∂ t
Ψ (r , t ) =H Ψ (r , t ) , (1.1)

with initial conditions which can be stationary states. These are then solved by the time-

independent Schrödinger equation

H Ψ (r ) = EΨ (r ) (1.2)

Analytical solutions to this equation does exist. However in the case the number of particles

increases, meaning the number of parameters within r increases, analytical solutions become

hard or even impossible to find and the good-old pen-and-paper approach dwindles in usefulness.

The only possibility is then to resort to numerical solutions and the modern computer, although a

beast to be tamed, is the best candidate tool.

11



1.1 1

1.1 Many-Body Methods

In order to tackle the numerical problem that is solving the many-body Schrödinger equation,

some of these are the first-order methods Hartree-Fock theory and Density Functional Theory,

hierarchical methods such as Configuration Interaction and Coupled Cluster theory and statistical

methods like Variational Monte Carlo and Diffusion Monte Carlo.

In case with Hartree-Fock and Density Functional Theory, the accuracy is not desirably high,

however they are efficient and are most useful as inputs to the more accurate hierarchical methods1

or the variational method.

For the configuration interaction methods one either truncates the defined hierarchical struc-

ture2 or uses all contributions in which case the method is known as Full Configuration Interaction.

These methods suffer from exponential scaling and are therefore much heavier in computational

strain than the less accurate methods mentioned. The truncated version however is not size-

consistent. The truncated Coupled-Cluster method does not have any size-inconsistencies and

achieves polynomial scaling making the Coupled-Cluster method a standard method for when

high accuracy is in question.

The statistical methods mentioned employes a different approach by utilizing the statistical

nature of the wavefunction in the Schrödinger equation and modeling the entire problem as a

stochastic diffusion process. Although the accuracy is on par with the hierarchical methods, the

strenuous effort involved in the minimization within the variational method can utterly obliterate

ones spirit.

One great property which statistical methods is that they readily, without much effort, gives

the beasts known as density-matrices or N -body densities3. These can give some insight into

desirable physics of the system. It is also worth to mention that the variational method is in many

approaches an input to the more accurate diffusion method since the latter requires a good initial

starting point.

A certain system which techniques from many-body quantum theory can be used is with

the artificial atoms known as quantum dots. Quantum dots were first proposed in the 50’s and

have since played a big part in some big breakthroughs in science and technology. They are

essentially really small semiconductor systems and they have played a central role in nanophysics

because of their nice electrical and optical properties. They tend to exist in solid state meaning

they can be more easily cooled. The result is that experiments have been conducted with lasers,

LEDS, the new generation of transistors in the modern computer and as the ultimate goal; to

use quantum dots in logic gates in quantum computers. With this quantum-dots have become a

1They are hierarchical in the sense that increasingly accurate approximations can be systematically constructed.
2In which case it is actually known as Configurations Interaction.
3Technically possible to obtain from the hierarchical methods as well, but it is harder.

12



1.2 1

popular and interesting quantum system to study and a possible route of tackling the problem is

with a computational approach. The quantity of interest in the calculations is the ground-state

energy which the lowest possible eigenvalue of the Hamiltonian.

1.2 Structure and Goals

In this thesis we go into details with the popular Hartree-Fock method and the Variational Monte-

Carlo method with the artificial atoms known as quantum dots by using single- and double-well

potentials as primary systems of study with this chapter being a brief introduction to the structure

and goals of the thesis.

The main goal was to make a code-base for large-scale quantum many-body calculations

from scratch. Of course there exists many such code-bases and competing with those in terms

of scalability and computational efficiency is beyond the scope of this thesis, the choice for a

from-scratch approach was made in order to gain some insight into the methods and a better

understanding of the programming aspects which would follow. With this in mind, we did however

get much inspiration from previous theses and implementations from other sources as well.

The main goals for the thesis were

1. Make a general C++ code for the Hartree-Fock method and the Variational Monte Carlo

method which could take any basis into play with minimal effort.

2. Use the C++ code on different quantum mechanical many-body systems and use this as

validation of the code and benchmark the code.

3. Build an optimal one-body basis with the Hartree-Fock method and make improvements

on this basis with the variational Monte-Carlo method with a Slater-Jastrow wavefunction.

With this in mind a general open-source code for the restricted Hartree-Fock method was devel-

oped and is open for use in https://github.com/Oo1Insane1oO/HartreeFock. The variational

Monte-Carlo method is also open-source and for use in https://github.com/Oo1Insane1oO/VMC.

Both repositories each have a directory with tests implemented, see section 5.6 for more informa-

tion on these tests.

Extending the code to other systems is made easier with python scripts given in the mentioned

repositories. A better description of these are given in the repositories themselves and involve

auto-generation of abstract wavefunction classes which only need to be filled in with analytical

expressions and are otherwise already integrated with the existing code.

The thesis itself is built in four parts

• Quantum Theory: Theory for the implementation.

13
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• Choice of Basis: The form of the wavefunction.

• Implementation: The code with optimizations.

• Results: The resulting data from the simulations.

We basically start of with the background in quantum many-body theory, make a specialization

into a set of basis functions, implement these in a general C++ -code with auto-generation of

expressions and template classes in Python and present the results from the simulations run with

the implementation.

14
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2
MANY-BODY QUANTUM THEORY

We cannot make any implementations without a solid foundation in theory and as such we will

in this chapter reviews the theory regarding basics of many-body quantum theory and further

deepen into the Hartree-Fock method and the Variational Monte Carlo method.

The reader is referred to [19] for an introductory text on quantum mechanics(for single particles)

and also the so-called Dirac-notation used throughout the entire chapter. We also write all

equations with atomic units, see section A.1 for detail.

The material presented is based on lecture notes [26, 27]written by Morten Hjort-Jensen for

the course FYS4411/9411.

2.1 The Hamiltonian and the Born-Oppenheimer

Approximation

The task at hand is a given solve the many-body system described by Schrödinger’s equation

H |Ψi 〉= Ei |Ψi 〉 , (2.1)

for some state |Ψi 〉with energy Ei . Usually, the desired state is the ground-state energy E0 of the

system, meaning we are primarily interested in the ground-state |Ψ0〉.
With the goal determined we can define the system to consist of N identical particles1 with

positions {r i }N−1
i=0 and A nuclei with positions {R k}A−1

k=0. The Hamiltonian H is then

H =−
1

2

∑

i

∇2
i +

∑

i< j

f
�

r j , r j

�

−
1

2

∑

k

∇2
k

Mk
+
∑

k<l

g (R k , R l ) +V (R , r ) . (2.2)

1These are in both atomic physics and in the quantum dot case always fermions or bosons.

15



2.1 2

The first and second terms represent the kinetic- and inter-particle interaction terms2 for the N

identical particles while the latter three represent kinetic- and interaction terms for the nuclei(with

the last one being the nuclei-particle interaction). The constant Mk is the mass of nucleon k and

Zk is the corresponding atomic number.

We assume the nuclei to be much heavier than the identical particles, meaning they move

much slower than the electrons, at which the system can be viewed as electrons moving around

the vicinity of stationary nuclei. Meaning the kinetic term for the nuclei vanish and the nuclei-

nuclei interaction becomes a constant3. The approximation we end up with is the so-called

Born-Oppenheimer approximation and the Hamiltonian is now

H =H0+HI , (2.3)

where we have split the Hamiltonian in a one-body part and a two-body or interaction parts defined

as

H0 ≡−
1

2

∑

i

∇2
i +V (R , r ) (2.4)

and

HI ≡
∑

i< j

f
�

r i , r j

�

. (2.5)

2.1.1 Quantum Dot System

For the quantum-dot system we, along with the Born-Oppenheimer approximation, replace the

nuclei-particle interaction(also known as a confinement potential) by a different confinement

potential such as a harmonic oscillator or a double-well potential. This neat change to the existing

atomic Hamiltonian is the reason for why quantum-dots are called artificial atoms.

Confinement Potential

The idea is to first take the parabolic-dot which is to use the classical Hamiltonian of a charged

electron in an electromagnetic field [30]

H =
1

2m

�

p − e A
�2
+ eφ, (2.6)

and add the confinement potential and the inter-particle interaction with the Born-Oppenheimer

approximation still in effect. Using the derivations in the theses of Patrick Merlot [40] and Yang

Min Wang [58] the added energy introduced by the magnetic moment is a constant factor in the

inter-particle interaction term which can in effect be ignored in the calculations.

2This is usually the well-known Coulomb interaction.
3Adding a constant to an operator does not alter the eigenvector, only the eigenvalues by the constant factor[35].
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Taking our inspiration from the theses of Merlot and Ming and an article by Simen Kvaal[34],

one model for the confinement potential is the harmonic oscillator potential, a so-called parabolic

dot.(see figures 2.1a and 2.1b)

V (R , r ) =
1

2
m r 2. (2.7)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

10

20

30

40

50

1 2m
x2

(a) One-dimensional harmonic oscillator
(b) Two-dimensional harmonic oscillator

Figure 2.1: Visualization of the harmonic oscillator potential.

A second approach is to use a double-dot which is basically just two displaced harmonic

oscillators [51, 58]. For simplicity we shift it in x -direction giving the same form used in [28, 40, 58]

and [8].(see figures 2.2a and 2.2b)

V (R , r ) =
1

2
mω2

�

r 2−δR |x |+R 2
�

. (2.8)

4 2 0 2 4
x

0

1

2

3

4

1 2m
(x

2
2|

x|
+

R
2

(a) One-dimensional double-well
(b) Two-dimensional double-well

Figure 2.2: Visualization of the double-well potential.
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Inter-particle Interaction Potential

For the inter-particle interaction potentialHI many approaches exists. For pure bosonic systems

for instance a so-called hard-sphere potential has been studied[31]. For fermionic systems however

the most popular one is the Coulomb repulsion

f (r i , r j ) =
1

�

�r i − r j

�

�

, (2.9)

which is the one used here.

2.2 Slater Determinant and Permanent

Throughout section 2.1 we only referred to the wavefunction Ψ as a state, a function closely con-

nected to the probabilistic nature of the quantum particles. However, we have not given it a form.

One possible solution is the Hartree product ΨH defined as

ΨH =
∏

i

ψi (r i ). (2.10)

With {ψ}Ni=0 being the orbitals which solve the single-particle Schrödinger equation for H0. The

Hartree product is unfortunately a poor choice since it does not solve the HI part meaning it

is not a physically valid solution. This comes from the fact that the product does not take into

account the fact that the particles in question are identical and indistinguishable particles. Since

the particles are identical, switching the labels on the particles shouldn’t change the expectation

value of some observable. If we run this remark through we end up with the conclusion that the

state |Ψ〉must be either symmetric or antisymmetric with the symmetric part being the bosonic

state and antisymmetric being the fermionic state. The connection between antisymmetric states

and fermions is called the Pauli exclusion principle.

The problem with the Hartree product is, with the above sentiment, that it is not symmetric

nor antisymmetric. However we can transform it with an operator

B ≡
1

N !

∑

P

σbP (2.11)

whereσb is defined as

σb ≡







1 b represents bosonic system

(−1)p b represents fermionic system
(2.12)

P is a permutation operator that switches the labels on particles 4 and p is the parity of permuta-

tions. The operatorB has the following properties

• ApplyingB to itself doesn’t change the operator meaningB2 =B .
4Pi jΨ(r 1, . . . , r i , . . . , r j , ,̇r N ) =Ψ(r 1, . . . , r j , . . . , r i , ,̇r N ) [56].
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• The HamiltonianH andB commute, that is [B ,H ] = [H ,B ] = 0.

• B is unitary, which meansB†B =I .

The solution ΨT to the Schrödinger equation can now be written as

ΨT (r ) =
p

N !BΨH (r ) . (2.13)

The antisymmetric case ofB results in a Slater determinant

ΨAS
T =

1
p

N !

∑

P

(−1)pPP

∏

i

ψi , (2.14)

while the symmetric case gives the so-called permanent5.

ΨS
T =

√

√

√

√

N
∏

i=1
ni !

N !

∑

P

PP

∏

i

ψi . (2.15)

The extra factor in the symmetric case is to preserve the normalization due to number of particles,

the ni factor is determined by the quantum number for state i .

2.3 Variational Principle

One important remark is that the Slater determinant and the permanent do not solve the interac-

tion part, but only serves as a so-called ansatz or guess on the true ground-state wavefunction.

This is quite useful due to the variational principle.

The Variational principle states that for any normalized function Ψ in Hilbert Space [19] with

a Hermitian operatorH the minimum eigenvalue E0 for H has an upper-bound given by the

expectation value ofH in the function Ψ. That is

E0 ≤ 〈H 〉=
〈Ψ |H |Ψ〉
〈Ψ |Ψ〉

. (2.16)

See [19] for details.

The mentioned ansatz is thereby guaranteed to give energies larger than or equal the true

ground state energy meaning a minimization method is sufficient in order to get closer to this

minimum.

5The permanent is basically just a determinant with all the negative signs replaced by positive ones.
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2.4 Energy Functional

We can find a more convenient expression for this energy by using equation (2.13) and equation

(2.16). This gives us

E [Ψ] =N ! 〈ΨH|H B |ΨH〉 , (2.17)

where the hermitian and unitary property ofB as well as the fact thatB and H commute have

been used. This energy functional. Applying theB operator to the Hartree-product, pulling the

sum out of the integrals and relabeling with the definitions




p
�

�h
�

�q
�

≡



ψp (r )
�

�h (r )
�

�ψq (r )
�

=

∫

ψ∗p (x )h (r )ψq (r )dr,




p q
�

� f |r s 〉 ≡



ψp (r 1)ψq (r 2)
�

� f (r 1, r 2)
�

�ψr (r 1)ψs (r 2)
�

,

=

∫

ψp (r 1)ψq (r 2) f (r 1, r 2)ψr (r 1)ψs (r 2)dr,

yields in6

E [Ψ] =



p
�

�H0

�

�p
�

+
1

2

∑

p ,q

�


p q
�

� f12

�

�p q
�

±



p q
�

� f12

�

�q p
��

. (2.18)

The first part is written with the assumption that the single-particle wave functions {ψ} are

orthogonal and the 1/2 factor in front of the so-called direct and exchange terms7 is due to the fact

that we count the permutations twice in the sum when applying theB operator. The sign in the

interaction term are chosen as positive for bosonic systems and negative for fermionic systems.

The expression given in equation (2.18) is the functional form we will use to derive the Hartree-

fock equations in the following section.

2.5 Hartree-Fock Theory

The Hartree-Fock method is a many-body method for approximating the wavefunction of a

stationary many-body quantum state and thereby also obtain an estimate for the energy in this

state.

The main idea is to represent the system as a closed-shell system and then variationally optimize

the Slater determinant [55] and then iteratively solve the arising non-linear eigenvalue problem.

This approach is not generally feasable as the size of the system increases, however for a

closed-shell system in the quantum dot case it should be enough to build a basis, which is the

6Notice also that f12 is to imply integrals over two labels r1 and r2.
7The direct term is just due to inherent behaviour of the charge of the particles (known as the Coulomb repulsion).

The exchange term is a direct consequence of the probabilistic nature of the identical particles.
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goal here. For more details around the motivation and usages of the Hartree-Fock method. See [55].

In this section we will derive the Hartree-Fock equations, following closely literature [56].

2.5.5 Assumptions

The Hartree-Fock method makes the following assumptions of the system

• The Born-Oppenheimer approximation holds.

• All relativistic effects are negligible.

• The wavefunction can be described by a single Slater determinant.

• The Mean Field Approximation holds.

With these inherent approximations the last one is the most important to take into account as it

can cause large deviations from test solutions (analytic solutions, experimental data etc.) since

the electron correlations are in reality, for many cases, not negligible. There exists many methods

that try to fix this problem, but the Variational Monte Carlo (or VMC) is the method for deeper

explorations in this Thesis, see section 2.9 for more details.

2.5.5 TheJ andK Operators

Before we begin with the Hartree-Fock equations it is desirable to rewrite the energy function

obtained in section 2.4 (form given in equation (2.18)) with two operatorsJ andK defined as

J ≡
∑

k




ψ∗k
�

� f12

�

�ψk

�

=

∫

ψ∗k (r ) f12ψk (r )dr, (2.19)

and

K ≡
∑

k




ψ∗k
�

� f12

�

�ψ
�

=

∫

ψ∗k (r ) f12ψ(r )dr. (2.20)

TheJ operator just gives the simple interaction-term while theK operator gives the exchange

term with the arbitrary (notice no index)ψ(r ). The energy functional is thus rewritten to

E [Ψ] =
∑

i

­

ψi

�

�

�

�

h +
1

2
(J ±K )

�

�

�

�

ψi

·

, (2.21)

where the one-body Hamiltonian is split into a sum of single particle functions as H0 =
∑

i
h (r i ).
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2.5.5 Hartree-Fock Equations

As a reminder. The wavefunctions {ψ} in equation (2.21) are spin-orbitals with both a spacial part

and a spin part. In order to obtain the Hartree-Fock equations we try to minimize the energy

functional which in turn gives the ground-state energy for a many-body system. This is done by a

variational method.

The first observation to notice is the fact that variations in the spin-orbitals {ψ} need to respect

the spin-orthogonality relation



ψi

�

�ψ j

�

=δi j , (2.22)

with δi j being the well-known Kronecker-delta. This property is essentially a constraint to the

minimization problem and the method to be used is the Lagrange multiplier method [35], with

the Lagrangian

L =δE [Ψ]−
∑

i j

Λi j

�


ψi

�

�ψ j

�

−δi j

�

. (2.23)

We know then that the minimum is reached when a displacement on the spin-orbitals ψi →
ψi +δψi results in an energy variation of zero meaning δE [Ψ] = 0 in the minimum. Which gives

the variational problem

∑

i




δψi

�

�h +J ±K
�

�ψi

�

−
∑

i j

Λi j




δψi

�

�ψ j

�

+ c.c= 0, (2.24)

where c.c is a notation for the complex conjugate of the inner-products on its left-hand side.

The shift in the spin orbitals {δψ} is arbitrary and the constraints are symmetric8 meaning we

can with the Fock-operator

F ≡ h +J ±K , (2.25)

define the following eigenvalue problem

Fψi =
∑

j

Λi jψ j . (2.26)

Choosing the Lagrange parameter Λi j such that {ψ}Nk=1 forms an orthonormal set for F with

eigenvalues {ε}Nk=1. This reduces the eigenvalue equation to

F
�

�ψ
�

= ε
�

�ψ
�

(2.27)

with ε = (ε0, . . . ,εN ) being the set of eigenvalues of F meaning we have N + 1 equations to be

solved.

8



ψi

�

�ψ j

�

=



ψ j

�

�ψi

�∗⇒Λi j =Λ∗j i
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If we only take the N lowest eigenfunctions into the Slater the corresponding eigenenergy

is referred to as the Hartree-Fock energy and is the estimated ground-state energy which the

Hartree-Fock method gives. We can rewrite the energy functional with the eigenenergies to

E [Ψ] =
∑

i

­

ψi

�

�

�

�

εi −
1

2
(J ±K )

�

�

�

�

ψi

·

. (2.28)

In the derivation of the Hartree-Fock equations we only worked with spin-orbital functions {ψ}.
However it is much more convenient to rewrite these in terms of spatial orbitals {φ} and integrate

the spin-dependent part out. There are two ways of doing this and the two different approaches

give the so-called restricted Hartree-Fock and unrestricted Hartree-Fock methods.

2.6 Restricted Hartree-Fock and Roothan-Hall-Equations

The restricted spin-orbitals are paired as9

{ψ2l−1,ψ2l }= {φl (r )α(s ),φl (r )β (s )} (2.29)

with α(s ) and β (s ) being different spin-states (up and down). This pairing of spin-states with the

same and same spin orbitals means we can pull the spin degrees of freedom out from theJ and

K operators, reduce the sum to only run over half the states and multiply the entire sum by 2.

The result is that the restricted energy-functional reads

E [Ψ] =
N
∑

i=1

εi −
N
2
∑

i=1

〈i |2J ±K | i 〉 . (2.30)

Notice that theK operators sum only runs up to half the number of states.

As the title suggests we are going to end up with a set of equations referred to as the Roothan-

Hall-equations. We start by first expanding the spacial part {φ} of the spin orbitals {ψ} in some

known orthonormal basis {χ}L
i=1

φi (r ) =
L
∑

p=1

Cp iχp (r ), (2.31)

and introduce the Fock-matrix F (associated with the Fock-operator) with elements

Fp q = hp q +
∑

p q

ρp q

�

2Dp r q s ±Dp r s q

�

. (2.32)

We have here introduced a one-body matrix defined as

hp q ≡



p
�

�h
�

�q
�

, (2.33)

9This is specialised for a two-spin system. For a system with more spin-states one needs to either choose different
spacial-orbitals or add more such orbitals which effectively changes the energy-levels.
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a density matrix defined as10

ρp q ≡
N
2
∑

i=1

Cp i C ∗q i , (2.35)

and an interaction-matrix D with elements

Dp q r s ≡



p q
�

� f12

�

� r s
�

(2.36)

for convenience. The implicit relabeling of χp (r )→ p is also present in the above expression for

the Fock-matrix. The Hartree-Fock equations (equation (2.27)) are then for the restricted case

written as

F C i = εS C i (2.37)

with S being the overlap matrix with elements

Sp q ≡



p
�

�q
�

. (2.38)

This concludes the essential parts of the derivations of the Hartree-Fock equations. We also

present the unrestricted case in section 2.7.

2.7 Unrestricted Hartree-Fock and Poople-Nesbet-Equations

Here we delve into equations for the unrestricted case. The equations are in this case called

the Poople-Nesbet equations. The derivations are exactly the same as for the restricted case, but

without the spin-pairing in equation (2.29). We get two equations, one for the spin-up states and

one for the spin-down [56]. The equations are11

F +C + = εS C +

F −C − = ε−S C −
(2.39)

The elements of the Fock-matrices for spin-up and spin-down are

F ±p q = hp q +
∑

k±

∑

r s

C ±†
r k±

C ±†
s k±

�

Dp r q s −Dp r s q

�

+
∑

k∓

∑

r s

C ∓†
r k∓

C ∓†
s k∓

Dp r q s . (2.40)

The Hartree-Fock algorithm thus involves two eigenvalue problems at each iteration. Notice also

that the summation index k± runs over the spin-up or spin-down states respectively and r and s

run over all the spacial basis functions.

10This is just the matrix formed by
∑

i

�

�φi

�


ψi

�

� (2.34)

which is in quantum mechanics defined as the so-called density matrix.
11These are just two Roothan-Hall equations.
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2.8 Convergence, Mixing and the Hartree-Fock Limit

The Hartree-Fock equations themselves are what we call a system of non-linear equations meaning

that they need to be solved iteratively12. A simple brute-force way of setting a convergence

threshold is to say
�

�εHF
new− ε

HF
old

�

�< threshold. (2.41)

The factors determining the achievement of correct convergence to a ground-state is the basis set

of choice, but even with a good set the divergence can occur. There are two methods in particular

which are made to account for this. The first one is a simple mixing [56] of the current density

matrix and the one obtained at the previous iteration

ρnew =αρnew+ (1−α)ρold, 0<α≤ 1. (2.42)

This method stems from the observation that for some systems the Hartree-Fock energies start to

oscillate and the above mixing seems to be quite efficient at reducing the oscillations.

2.8.8 DIIS Procedure

The more popular approach to avoid oscillations and achieve(possibly faster) convergence is the

DIIS procedure, also known as Pulay mixing [48, 49]. The idea is to define an extrapolated error

term dependent on the previous M iterations

Y =
M
∑

m=1

cm y i . (2.43)

This extrapolated error is then minimized in a least-squares sense under the constraint that

M
∑

m=1

cm = 1, (2.44)

with the Lagrange multiplier method. This then ends up with the following m +1 system of linear

equations to be solved for c m
i and the Lagrange multiplier λ













B11 . . . B1m −1
...

...
...

...

Bm1 . . . Bmm −1

−1 . . . −1 0













.













c1
...

cm

λ













=













0
...

0

−1













(2.45)

The elements of matrix B are

Bi j = e i · e j . (2.46)

12and pray for convergence...
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Following directly the calculations of articles [48, 49] by Pulay, P, the error term can be defined by

the Fock matrix as

e i = F iρ i S − Sρ i F i , (2.47)

where the density matrix ρ i and Fock-matrix F i are calculated without any mixing in the given

iteration i . The Fock matrix is then calculated as usual in every iteration and then the last m error

terms are used to mix an extrapolated Fock-matrix as

F mix =
M
∑

m=1

ci F i . (2.48)

Here is a figure which describes the algorithm.

Pre-build two-body matrix Dp q r s

Pre-build one-body matrix hp q

Pre-build overlap matrix Sp q

Initialize C

Set Fock-matrix F

Perform mixing of F
(Optional)

equation (2.48)

Use equation (2.32) if RHF

Use equation (2.40) if UHF

Solve generalized
eigenvalue problem.

F C = εS C

Set density matrix ρ. equation (2.35)

Perform mixing of ρ.
(Optional)

equation (2.42)

Check convergence. equation (2.41)

�

�εHF
new
− εHF

old

�

�≥ ε

Save energy eigenvalues and
density matrix(mixed).

εHF
old
= εHF

new

ρ
old
=ρ

new

�

�εHF
new
− εHF

old

�

�<ε

Output energy 2.28 and 2.18

Figure 2.3: Hartree-Fock Algorithm.
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2.8.8 Hartree-Fock Limit

From the form of the Hartree-Fock equations and the basis expansion used at the beginning, we

see that adding more basis functions gives a better estimate for the ground-state energy. However

from chapter 6 we can see that the convergence seems to reach a limit (since the energies with the

variational method is lower). This limit is known as the Hartree-Fock limit [22] and is the lowest

possible energy that can be obtained with a single-determinant wavefunction. At this limit we

have the following names for the different quantities involved

• Hartree-Fock energy: Obtained energy

• Hartree-Fock orbitals: Basisfunction, equation (2.31)

• Hartree-Fock wavefunction: Slater determinant of the orbitals

This particular limit is of interest because when it is reached we can be confident that the obtained

basis from the Hartree-Fock iteration is the best possible one and further desirable optimizations

requires different methods like Coupled-Cluster or Variational Monte Carlo as mentioned.

2.9 Quantum Monte Carlo

Quantum Monte Carlo, or QMC is a method for solving Schrödinger’s equation by a statistical

approach using so-called Markov Chain simulations (also called random walk). The nature of

the wave function at hand is fundamentally a statistical model defined on a large configuration

space with small areas of non-zero values. The Monte Carlo methods are perfect for solving such a

system because of the non-homogeneous distributions of calculation across the space. A standard

approach with equal distributions of calculation would then be a waste of computation time.

We will in this chapter address the Metropolis algorithm which is used to create a Markov

chain and derive the equations used in the variational method.

The chapter will use Dirac Notation [19] and all equations stated assume atomic units [2]

(ħh =me = e = 4πε0), see section A.1.

2.9.9 The Variational Principle and Expectation Value of Energy

Given a Hamiltonian Ĥ and a trial wave function ΨT (R ;α), the variational principle [19, 43] states

that the expectation value of Ĥ

E [ψT ] =



Ĥ
�

=




ψT

�

�Ĥ
�

�ψT

�

〈ΨT |ΨT 〉
, (2.49)
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is an upper bound to the ground state energy

E0 ≤



Ĥ
�

. (2.50)

Now we can define our probability distribution as(see section 2.9.9 for a more detailed reasoning)

P (R )≡

�

�ψT

�

�

2

〈ΨT |ΨT 〉
, (2.51)

and with a new quantity

EL (R ;α)≡
1

ΨT (R ;α)
ĤΨT (R ;α), (2.52)

the so-called local energy, we can rewrite equation (2.49) as

E [ΨT (R ;α)] = 〈EL 〉 . (2.53)

The idea now is to find the lowest possible energy by varying a set of parameters α. This is done

by numerical minimization(see chapter 5). We essentially minimize the expectation value of the

energy, see section 2.9.9.

An important property of the local energy is when we differentiate it with respect to one of

the variational parameters {α}within the context of an expectation value. The result in this case

would be zero. This is easily seen by direct calculation in equation (2.54).

­

∂ EL

∂ α

·

=

∫

�

�ψ
�

�

2 ∂
∂ α

�

1
ψHψ

�

∫ �

�ψ
�

�

2
dr

dr

=

∫

�

�ψ
�

�

2ψ∗ ∂∂ α (Hψ)−(Hψ
∗) ∂ ψ∂ α

|ψ|2
∫ �

�ψ
�

�

2
dr

dr

=

∫

ψ∗H ∂ ψ
∂ α −ψ∗H

∂ ψ
∂ α

∫ �

�ψ
�

�

2
dr

dr

= 0 (2.54)

We have used the fact that H is not dependent on any variational parameter and used the hermitian

properties [19] of H .

This neat result presented in equation (2.54) will show its usefulness in the minimization when

derivatives of the expectation value come into play since finding the derivative of the local energy

would be much more of a hassle.

And for reference we write

∂ 〈E 〉
∂ α

= 2
�­

EL

ψ

∂ ψ

∂ α

·

−〈E 〉
­

1

ψ

∂ ψ

∂ α

·�

, (2.55)

the derivative with respect to a variational parameters α of the expectation value 〈E 〉. We have

also applied equation (2.54) here.
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2.9.9 Metropolis-Hastings Algorithm

The Metropolis algorithm bases itself on moves (also called transitions) as given in a Markov

process[14, 43]. This process is given by

wi (t + ε) =
∑

j

wi→ j w j (t ) (2.56)

where w ( j → i ) is just a transition from state j to state i . For the transition chain to reach a desired

convergence while reversibility is kept, the well known condition for detailed balance must be

fulfilled [52]. If detailed balance is true, then the following relation is true

wi Ti→ j Ai→ j =w j Tj→i A j→i ⇒
wi

w j
=

Tj→i A j→i

Ti→ j Ai→ j
. (2.57)

We have here introduced two scenarios, the transition from configuration i to configuration j

and the reverse process j to i . Solving the acceptance A for the two cases where the ratio in 2.57

is either 1(in which case the proposed state j is accepted and transitions is made) and when

the ratio is less then 1. The Metropolis algorithm would in this case not automatically reject the

latter case, but rather reject it with a proposed uniform probability. Introducing now a probability

distribution function(PDF) P the acceptance A can be expressed as

Ai→ j =min

�

Pi→ j

Pj→i

Ti→ j

Tj→i
, 1

�

. (2.58)

The so-called selection probability T is defined specifically for each problem. For our case the PDF

in question is the absolute square of the wave function and the selection T is a Green’s function

derived in section 2.9.9. The algorithm itself is described in figure 2.4.

Pick initial state i at random.

Pick proposed state at random in accordance to Tj→i .

Accept state according to A j→i .

Accepted
j = i

Rejected
i = j

Number of states satis�ed?

Yes

No

End.

Figure 2.4: Metropolis algorithm.
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2.9.9 Diffusion Theory and the PDF

The motivation for the use of diffusion theory is described very well in the Masters thesis of Jørgen

Høgberget[28]. The essential results were a Green’s function propagator arising from the short time

approximation and the observation of interest here which has to do with the statistics describing

the expectation value, it states that any distribution may be applied in calculation, however if we

take a close look at the local energy(equation (2.52)) we see that the local energy is not defined at

the zeros of ΨT (R ;α) for all distributions. This means that an arbitrary PDF does not guarantee

generation of points which makesψT = 0. This can be overcome by introducing the square of the

wave function to be defined as the distribution function as given in equation (2.51). This basically

means that when using Quantum Monte Carlo methods, the incorporation of the fact that when

an energy is more undefined(meaningψT → 0) the less probable that point is actually means the

generation of states in whichψT is removed. In the next chapter we will derive the method which

includes this observation into play, the so-called importance sampling.

2.9.9 Importance Sampling

Using the selection probability mentioned in section 2.9.9, the Metropolis-Hastings algorithm is

called an Importance sampling because it essentially makes the sampling more concentrated

around areas where the PDF has large values.

Because of the intrinsic statistical property of the wave function, quantum mechanical systems

can be modelled as a diffusion process, or more specifically, an Isotropic Diffusion Process which

is essentially just a random walk model. Such a process is described by the Langevin equation

with the corresponding Fokker-Planck equation describing the motion of the walkers(particles).

See [27, 47, 56] for details. The full derivations presented here follows closely the descriptions in

[27, 56]. Let us start off with the Langevin equation

∂ r

∂ t
=D F (r (t ))+η (2.59)

and apply Euler’s method and obtain the new positions

r new = r old+D F old∆t +ξ, (2.60)

with the r ’s being the new and old positions in the Markov chain respectively and F old = F (r old).

The quantity D is a diffusion therm equal to 1/2 due to the kinetic energy(remind of natural units)

and ξ is a Gaussian distributed random number with 0 mean and
p
∆t variance.

As mentioned a particle is described by the Fokker-Planck equation

∂ P

∂ t
=
∑

i

D
∂

∂ xi

�

∂

∂ xi
−Fi

�

P. (2.61)
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With P being the PDF(in current case the selection probability) and F being the drift therm. In

order to achieve convergence, that is a stationary probability density, we need the left hand side

to be zero in equation (2.61) giving the following equation

∂ 2P

∂ xi
2
= P

∂ Fi

∂ xi
+Fi

∂ P

∂ xi
. (2.62)

It is apparent that the drift term must be on form

F = g (x )
∂ P

∂ x
. (2.63)

Which finally gives

F =
2

ψT
∇ψT . (2.64)

This is the so-called quantum force responsible for pushing the walkers towards regions where

the wave function is large.

The missing part now is to model the selection probability in equation (2.58). Inserting the

quantum force into the Focker-Planck equation(equation (2.61)), the following diffusion equation

appears
∂ P

∂ t
=−D∇2P. (2.65)

Applying the Fourier Transform to spatial coordinate r in equation (2.65), the equation is trans-

formed to
∂ P (s , t )
∂ t

=−D s 2P (s , t ), (2.66)

with solution

P (s ,∆t ) = P (s , 0)eD s 2∆t . (2.67)

Now we need to find the constant P (s ,0), and as is apparent with t = 0, we will make use of an

initial condition. The initial positions are spread out from origin, that is D∆t F j . We can express

this with a Dirac-delta function[4, 19] giving

P (s , 0) =δ
�

r i −D∆t F j

�

. (2.68)

Inserting this into equation (2.67) and making the inverse Fourier transform yields the following

Green’s function as solution

P (a , b ,∆t ) =
1

p
4πD∆t

exp

�

−
(r a − r b −D∆t F b )

2

4D∆t

�

. (2.69)

This expression is precisely the selection probability T , Notice also that the indices a and b label a

state transition a → b and not particle indices. The full transition probability needs to be summed

over for all particles since we only solved the Focker-Planck equation for 1 particle(since the other

solutions are found in the exact same manner). For clarity the full selection probability ratio is

T (b , a ,∆t )
T (a , b ,∆t )

=
∑

i

exp

 

−

�

r (b )i − r (a )i −D∆t F (a )i

�2

4D∆t
+

�

r (a )i − r (b )i −D∆t F (b )i

�2

4D∆t

!

. (2.70)
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2.9.9 The Trial Wavefunction: One-Body

The trial wave function is generally an arbitrary choice specific for the problem at hand, however

it is in most cases favorable to expand the wave function in the eigenbasis (eigenstates) of the

Hamiltonian since they form a complete set. This can be expressed as

ΨT (R ;α) =
∑

k

Ciψk (R ;α), (2.71)

where the ψi ’s are the eigenstates of the Hamiltonian. The coefficients can be found by any

method preferable and is the usual procedure is to use a set of basis functions and then minimize

to find the coefficients {C }L
k=1. We use the Hartree-Fock method to minimize in this thesis. The

trial wavefunction is also generally expressed as a Slater determinant for the fermionic case and

a general product for bosonic systems[11, 14, 19, 43]We will explain the fermionic case shortly

since it is the main focus here and since the bosonic wavefunction is simple to express. The Slater

determinant is expressed as

ΦT (R ;α) = det(Φ(R ;α))ξ(s ) (2.72)

where the Slater matrix Φ has elements

Φi j =φn j
(r i ;α) (2.73)

such that each row is evaluated for particle i and each column is for a quantum number n j

dependent on the basis used. The ξ(s ) is the spin-dependent part. Notice also that we switched

the labeling from ΨT to ΦT . This is to make a distinction between one-body and correlation terms.

The latter will be introduced in section 2.9.9. In this case the single-particle functions φ j (r ) are

expanded in some basis(in most cases a Hartree-Fock basis).

2.9.9 The Trial Wavefunction: Splitting the Slater Determinant

An important part of the trial-wavefunction presented here is that the one-body term is indepen-

dent of spin, meaning the Hamiltonian is not explicitly dependent on the spin degrees of freedom.

For the case of a Hamiltonian with an inherent spin part, the following splitting of the Slater

determinant is not valid. In that case the expectation value(presented in the variational principal

in equation (2.16)) would be a product of the expectation value over the spin-independent part of

the Hamiltonian and the expectation value over the remaining spin-dependent parts[46]. The

results presented here is however for systems of spin-independent systems, and in those cases

the spin-part is essentially just another label which can be integrated out(similar to the procedure

with the restricted Hartree-Fock method). For the splitting with a spin-dependent Hamiltonian

see [42] and [26].
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The procedure is simply to arrange the basis functions in the following Slater determinant

1

N !







φ1(r 1)ξ↑ . . . φN /2(r 1)ξ↑ φ1(r 1)ξ↓ . . . φN /2(r 1)ξ↓
...

...
...

...
...

...

φ1(r N )ξ↑ . . . φN /2(r N )ξ↑ φ1(r N )ξ↓ . . . φN /2(r N )ξ↓






. (2.74)

This restructuring of the single-particle states implies that

det(Φ)∝ det
�

Φ↑
�

det
�

Φ↓
�

, (2.75)

where we have defined

Φ↑ =







φ1(r 1) . . . φN /2(r 1)
...

...
...

φ1(r N /2) . . . φN /2(r N /2)






(2.76)

and

Φ↓ =







φ1(r N /2+1) . . . φN /2(r N /2+1)
...

...
...

φ1(r N ) . . . φN (r N )






. (2.77)

This essentially says that we put the first N /2 particle labels in spin-up configurations and the

remaining in spin-down configurations and use the same single-particle functions. On a technical

note, this rewriting is an approximation. However it can be shown(see [42]) that the expectation

value is still the same. The Slater determinant term is now rewritten as

det(Φ)≈ det
�

Φ↑
�

det
�

Φ↓
�

. (2.78)

2.9.9 The Trial Wavefunction: Jastrow Factor

As mentioned, we model the wavefunction as a product of the one-body Slater determinant and a

correlation part known as a Jastrow factor. The Jastrow can have many forms, but is build to exert

some key features. It should [31].

• Be dependent on the inter-particle distances.

• Approach unity at large distances.

• Vanish when particles are close to one another.

In this thesis we explore two forms, the popular Padé-function and a more recent one built with a

specific neural network known as a Boltzmann Machine.
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Cusp Condition

The derivations for the cusp conditions is described well in the master thesis of Lars Eivind Lervåg

[37]. We will here present the result of his for both two and three dimensions. Assuming the Jastrow

factor J has the form

J =
∏

i< j

e f (ri j ), (2.79)

and considering the local energy as two particles i and j approach, the final resulting conditions

are known as the cusp conditions. The conditions are given in equation (2.80)

∂ f

∂ ri j

�

�

�

�

ri j=0

=
1

D −1
, anti-parallel spin

∂ f

∂ ri j

�

�

�

�

ri j=0

=
1

D +1
, parallel spin.

(2.80)

Padé Function

A popular form of a Jastrow function is the Padé, function13 it is defined as [21, 26]

JPadé = exp





∑

i< j

∑

l
a (l )i j r l

i j

1+
∑

l
βl r l

i j



 ., (2.81)

with the βl ’s as variational parameters. This function follows the key features mentioned above

for a correlation factor and the restrictions are

a 2D
i j =







1

3
, parallel spin

1, anti-parallel spin
(2.82)

and

a 3D
i j =











1

4
, parallel spin

1

2
, anti-parallel spin

(2.83)

on the factor a along with the fact that a (l )k j = 0 for l > 1, means we may relabel a (l )i j → ai j and

βl →β and reduce the Padé-Jastrow factor to

JPadé = exp

 

∑

i< j

ai j ri j

1+β ri j

!

. (2.84)

For expressions concerning the gradient and Laplacian, see Appendix B.

13In which case it is know as the Padé-Jastrow function.
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Simple Exponential

With the desirable features for a correlation function in mind, the simplest form for a correlation

factor is a scaled exponential evaluated with the inter-particle distance, 14

J = exp

 

∑

i< j

ai j ri j

!

. (2.85)

The factor ai j is defined the same way as in Padé function. In itself this function is fairly useless as

it doesn’t model correlations very well for different systems or even the same system with different

parameters. However we will present a new type of function in the next section which does not

give raise to any cusp conditions, however it has a more flexible form and may in connection with

this simple exponential give us all the necessary properties desired in a correlation function.

The Trial Wavefunction: NQS Wavefunction

A more recent and completely different approach is to model the wavefunction with a neural

network as presented by Carleo and Troyer[7]. The approach used here is based on the Restricted

Boltzmann Machine as described by Hinton[25]. The form is

JNQS = exp

�

−
N
∑

i=1

(r i −a i )
2

2σ2

�

M
∏

j

�

1+exp

�

b j +
N
∑

i=1

D
∑

d=1

x (d )i wi+d , j

σ2

��

. (2.86)

The derivatives of this are given in Appendix B.

2.9.9 Connect the Jastrows

In the previous section we presented four functions that can be used to model correlations in

quantum systems, however they all had some limitations as well as advantageous properties. The

question then remains, can we create a function which exhibits all the nice properties mentioned

and none of the limitations? The answer is a bit ambivalent. We don’t really know for sure, but a

good start is to multiply the functions having the cusp conditions(Padé and exponential) with the

NQS wavefunction and use this product as the new jastrow. The motivations for this is simple, we

want the cusp conditions introduced by the old popular functions, but also want a more flexible

type of function which can take care of other(possible) correlations in the system. How well this

actually performes is unfortunately not presented in this thesis.

J = exp

 

∑

i< j

ai j ri j

!

exp

�

−
N
∑

i=1

(r i −a i )
2

2σ2

�

M
∏

j

�

1+exp

�

b j +
N
∑

i=1

D
∑

d=1

x (d )i wi+d , j

σ2

��

. (2.87)

14The a ’s can also be variational parameters.
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and

J = exp

 

∑

i< j

ai j ri j

1+β ri j

!

exp

�

−
N
∑

i=1

(r i −a i )
2

2σ2

�

M
∏

j

�

1+exp

�

b j +
N
∑

i=1

D
∑

d=1

x (d )i wi+d , j

σ2

��

. (2.88)

2.10 Statistics and Blocking

Since we are dealing with physical systems of probabilistic origin, there is an inherent variance

which is dependent on the covariance within the calculated expectation values. Calculating these

for all the sample values is out of question as it would take too much time to compute, however

the error-estimation given by the variance is not really necessary for the sampling itself15. This

gives us the possibility of estimating the error post-simulation(as long as the individual sample

values are stored).

A nice and quite intuitive method is the resampling method known as blocking. The details

are explained with article [16] by Flyvbjerg and Petersen. Te idea is to take a set of M samples

{X }Mk=1(from i.e a Monte-Carlo simulation) and then dividing that data-set into n blocks such that

we have M /n sub-samples. We denote the mean of block n by µn and then calculate the variance

in each block

Ω2
n =

1

nb

2n
∑

k=n

(Xk −µn )
2, (2.89)

which gives a set {Ω2}M /ni=1 . The estimate for the total variance of the entire sample is then approxi-

mated by

σ2[X ]≈
1

n

∑

i

(Ωi −ν)2, (2.90)

where ν is the mean of the set Ω2.

The observation is then that as we increase the block-size the variance estimate should converge

towards the true variance of the system(which includes the covariance). The exact size of the block

is undetermined and the simplest approach is to just experiment with the size until convergence

is reached.

However in a script by Marius Jonsson [27] the block-size is estimated with a neat algorithm which

we also use.

2.11 Density Matrices

The Slater determinant presented is quite complicated and the solution-space for the Schrödinger

equation with said Slater is too large to extract any useful physical properties directly. Luckily we
15It is a nice indicator for the quality of the sample, but one can get away by calculating the simple variance

σ2[X ] =



X 2
�

−〈X 〉2.
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have one part of the physical system we may extract from a variational calculation, the so-called

one-body density. From quantum mechanics the one-body density for a normalized wavefunction

is defined as

Λ(r , r ′) =N

∫

ψ∗(r , r 2, . . . , r N )ψ(r
′, r 2, . . . , r N )dr 2, . . . , dr N . (2.91)

This is just to integrate the wavefunction over all spacial coordinates except r and r ′. The question

now is what exactly does this mean, what information does this integral give us? The one-body

density tells us that the element

N

∫

ψ∗(r )ψ(r )dr 2, . . . , dr N =N ×P
�

Finding a particle within volume dr around point r
�

,

(2.92)

with P denoting a probability. This might not give any direction at first when it comes to extraction

of physical properties of the system, however one has to keep in mind that the actual configuration

of particles within the spacial solution-grid gives a direct insight into the actual physics of the

system. A good example of this is the distribution [39]

N

∫

ψ∗(r 1)ψ(r 1)dr 12 = 0. (2.93)

This integral is a two-body density and essentially what we have asked ourselves now is, what is

the probability of finding two particles in the same exact state? The answer is apparently zero and

we see that the all-time famous Pauli-exclusion principle practically appears straight out of the

density definition.

With this result as motivation in mind, it is not unreasonable to question if density-matrices might

possess more information about the physical nature of the system in question.

Before we tackle the procedure of calculating the densities with the Metropolis algorithm, let us

express the full N -body density. The expressions are directly copied from this insightful article by

Per-Olov Löwdin [39]. The density matrix of order p is defined as

Λ(p )
�

r ′1, . . . , r ′p |r 1, . . . , r p

�

=

�

N

p

�∫

ψ∗(1′, 2′, . . . , p ′, . . . , N )ψ(1, 2, . . . , p , . . . , N )dr ′12, . . . , dr ′p . (2.94)

The integrals are over all permutations of r ′12.

In order to actually find this density with the Metropolis algorithm we need to rewrite it in the

same manner as with the local energy, which is to introduce
�

�ψ
�

�

2
. For the fermionic case this

rewriting gives us the following matrix elements

Λi j =N

∫

φ∗i (r 1)φ j (r
′)
ψ(r ′, r 2, . . . , r N )
ψ(r 1, . . . , r N )

�

�ψ(r 1, . . . , r N )
�

�

2
dr ′dr 1 . . . dr N , (2.95)

where theφ’s are the single-particle basis functions within the Slater determinantψ.

The elements of the Λmatrix can then be calculated by simple counting. The basic premise is to
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essentially create a histogram of particle counts with the bins being various radial distances up to

some cutoff rmax. Then at every Metropolis step (after the test) we increment each value in the

bins array with the number of particles currently within each respective bin. The array is then

normalized by the usual total sum (sum of all values in the bins array), but also the radial distance

to the power D to the right-most edge of each bin. The reason for this additional normalization

is to account for the radial contributions to the configurations, a larger radial distance means

that the sparsity of the particle-density increases. We are however only interested in the non-

dimensional count within each vicinity meaning we need to divide away the dimensional volume

element of each bin. The element for a bin n is found to be16

V (D )
n = r D

n+1− r D
n = (rn +∆r )D − r D

n . (2.96)

To keep this stable we also notice that if the number of bins is satisfyingly large, higher orders of

∆r vanish and only the terms with linear factors of∆r give a significant contribution. Notice also

that the highest order r D
n gets canceled out. All this together gives

V (D )
n =D r D−1

n ∆r. (2.97)

The factor D in front can be dropped as the histogram normalization cancels it anyways.

The resulting one-body densities are presented visually in chapter 6.

16Constant proportional factors are dropped due to them being canceled in the histogram normalization(division
of the sum of whole bin array).
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3
BASIS FUNCTIONS

Basis sets, the fundamental objects used in describing pretty much everything, anything from

a coordinate system to an abstract vector-space or function-space are all part of the same set

which we refer to as a basis. It is a set of objects applied to systems in order to essentially change

our view of them, to extract desirable properties and to describe them in a rigorous way. In

quantum mechanics the abstract vector-space models are used and the functions in mind are the

wavefunctions thrown into the Schrödinger equation and the space at hand is the Hilbert Space.

These functions are the central part of the particle-description in quantum theory, therefore

the choice of a basis is of monumental importance when solving quantum mechanical systems.

Often1 the choice of basis functions determine the efficiency and degree of usefulness that a

specific method actually holds. This is usually to such degree that a poor choice of basis renders

the method in question less useful.

The choice of basis is most definitely true for both the Hartree-Fock and the Variational Monte

Carlo methods, and great care has to be taken when introducing such choices. For the variational

method, the basis is taken directly from the Hartree-Fock method meaning much of the physical

properties desired within the trial wavefunction are within this basis. In which case all except

electron-electron correlations2 are modeled quite well. For the basis in Hartree-Fock the choice

needs to be in correspondence with the system of interest.

We will in this chapter mention some popular basis sets used in atomic physics and deepen

into a particular set of functions called Gaussian Type orbitals and use them with the well known

Hermite functions and make a detailed calculation of the integral elements used in the Hartree-

1Read always
2Technically also nucleon-electron correlation as well, but quantum-dot systems do not have any atomic cores

present.
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Fock method. These integrals have been calculated in polar coordinates directly before[1], the

motivation for calculating the integrals elements in Cartesian is due to the double-well potential.

Because of the higher order monomials in which the double-well potentials can be defined by the

symmetry in polar coordinates is broken making the polar approach less desirable. The procedure

in building the basis for the double-well system is also explained in detail. A second motivation for

taking the Cartesian route is due to the complex part introduced in the spherical-harmonic part

of the polar wavefunction. This complex part has to be evaluated in the Monte-Carlo sampling

introducing a whole new level of undesired computational complexity.

3.1 Hermite Functions

The Hermite functions are

φa
n (r )≡

∏

d

Nd Hnd
(
p

a xd )exp
�

−
a

2
x 2

d

�

(3.1)

with r =
∑

d
ed xd and the sum over d being the sum over the number of dimensions and Hn is the

Hermite polynomial of order n . The integer nd is the order of the function3 while the parameter a

is a scaling factor and Nd is a normalization factor. These functions show up as eigenfunctions for

the quantum harmonic oscillator system [19]with the scaling parameter a equal to the oscillator

frequency (ω) of the system.

The Hermite functions are orthogonal and give a good ansatz for the VMC method, see sec-

tion 2.9, with the scaling parameter transformed with an additional variational parameter. The

problem with these are however that the matrix-elements introduced in the Hartree-Fock method

(section 2.5) are not solvable directly with the Hermite functions as basis functions. However, we

can write the Hermite functions in terms of Hermite-Gaussians. See section 3.2.2.

3.2 Gaussian Type Orbitals

Gaussian Type Orbitals or GTO’s are functions of the form [55]

Gn (α; r , A)≡
∏

d

(xd −Ad )
nd e−αd (xd−Ad )2 . (3.2)

We call α for the scaling parameter and i for the order of the GTO. The variable A is where the

function is centered. These are the literature referred to as primitive Gaussians and they alone

make a poor approximation to the true wave function.

3In quantum mechanics the number n is referred to as the principal quantum number and is associated with the
energy of a given orbital(energy-level) of the system.
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In atomic physics these functions are used directly as a linear combination referred to as

contracted Gaussian functions. These are written as

Gk (x , A)≡
P
∑

ak=0

Cak
Gak
(αak

; x , A) (3.3)

and are fitted4 to Slater-type orbitals, which are functions with decaying properties, or found by

some variational method before hand.

These functions are unfortunately not orthogonal, but they behave nicely in integrals and

actually give an analytic expression for the interaction-elements mentioned in section 2.5. For this

reason we will go forth and use the Gaussian contracted functions and write the Hermite-functions

in terms of them, since Hermite-Functions are essentially just a polynomial expansion with the

constituents in the expansion being Gaussian functions.

3.2.2 Hermite-Gaussian Functions

The GTO’s described can be explicitly expressed in terms of so-called Hermite-Gaussian functions5

defined as

gn (α; r , A) =
∏

d

�

∂

∂ Ad

�nd

e−αd (xd−Ad )2 . (3.4)

This means also that

Gn (α; r , A) =
∏

d

(2αd )
−nd

�

∂

∂ Ad

�nd

e−αd (xd−Ad )2 . (3.5)

Some properties of the one-dimensional Hermite-Gaussians are given in equation (3.6).

∂ g t

∂ Ax
= g t+1

g t+1 =
�

∂

∂ Ax

�t ∂ g0

∂ Ax
= 2α(x −Ax )

�

∂

∂ Ax

�t

g0

g t+1 = 2α((x −Ax )g t − t g t−1)

(x −Ax )g t =
1

2α
g t+1+ t g t−1

(3.6)

The mentioned rewriting of the Hermite functions in terms of the Hermite-Gaussians is

φa
n (r ) =

∏

d

Nd

nd
∑

l=0

Cnd l g l

�α

2
, r , A

�

(3.7)

4Meaning we find the parameters Cak
. and αak

5The reason for the name is that the polynomial factors generated by the differentiation are precisely the Hermite
polynomials.
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with Cnd l being the l ′t h Hermite-coefficient for the Hermite polynomial of order nd . This means

that the matrix-elements in Hartree-Fock theory is just a linear combination over integrals over

Hermite-Gaussians. The following section will tackle this in detail for the two-dimensional case.

The three-dimensional case is given by [24], see also [23].

3.3 Integral Elements

In the Hartree-Fock scheme we need to calculate the integrals which define the different matrix

elements. The integrals to be evaluated are




i
�

� j
�

=

∞
∫

−∞

g i (αi ; r, A)g j (α j ; r, B )dr ,




i
�

� x k
d

�

� j
�

=

∞
∫

−∞

g i (αi ; r, A)r k g j (α j ; r, B )dr ,




i
�

�∇2
�

� j
�

=

∞
∫

−∞

g i (αi ; r, A)∇2g j (α j ; r, B )dr ,

­

i j

�

�

�

�

1

r

�

�

�

�

k l
·

=

∞
∫

−∞

∞
∫

−∞

g i (αi ; r1, A)g j (α j ; r2, B )
1

r12
gk (αk ; r1, C )g l (αl ; r2, D )dr 1dr 2.

(3.8)

where dr means integration over all dimensions and with the g ’s being the usual Hermite-

Gaussians defined as

gn (α; r , A) =
∏

d

(xd −Ad )
nd e−α(xd−Ad )2 . (3.9)

We will in this chapter limit ourselves to work with isotropic Gaussians (meaning αd is the

same for all dimensions) as this will yield a simpler closed-form solution to the integrals. For a

calculation of integral elements using non-isotropic Gaussian functions see [8]. This article gives

a detailed explanation of the calculations of integrals over s-type non-isotropic gaussians. The

extension to general Gauss-Hermites can be done in a similar way as presented here, however the

proportionality factors involved in the recursive relation are different.

Before we calculate the integrals, let us first express the Hermite-Gaussians in a more conve-

nient way(again see [24] and [23]),

gn (α; r , A) =
∏

d

�

∂

∂ Axd

�nd

e−α(xd−Ad )2 =
∏

d

�

∂

∂ Axd

�nd

g0(α; r , A). (3.10)
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Since the derivatives are with respect to the center variables we may pull them out of the integration

meaning the integrals will only be over s-type Gaussians,

g0(α; r , A) =
∏

d

e−αd (xd−Ad )2 , (3.11)

greatly simplifying the calculations. With the mentioned simplification in mind, the problem is to

find a closed-form expression for the integrals over s-type Gaussians.

We also introduce the Gaussian product rule6 which basically states that the product of two

Gaussian functions is just a third Gaussian centered between the center of the two. The expressions

are

g0(α; r , A)g0(β ; r , B ) = KAB exp
�

−(α+β )r 2
s

�

, (3.12)

with

KAB ≡ exp
�

−
αβ

α+β
R 2

AB

�

,

RAB = |A−B |,

rs = r − P ,

P =
αA+βB

α+β
.

(3.13)

The vector r S is just somewhere between A and B (We will see that rS disappears when the

integration is done). The Gaussian product rule greatly simplifies the integral over two Gaussian

functions since we can just pull KAB out of the integration since it is a constant.

3.3.3 Overlap Distribution

An overlap distribution is defined as the product between two Hermite-Gaussian functions,

Ωi j =
∏

d

g id
(xd ,α, Ad )g jd

(xd ,β , Bd ) = KAd Bd
x id

A x jd
B e−(α+β )x

2
P , (3.14)

with the Gaussian product rule. This is just another Gaussian function centered in P , but with the

extra monomial factors in r − A and r −B . These factors are troublesome when integrating, but

with the motivation that Hermite-Gaussians make life simpler, we expand the overlap distribution

in a Hermite-Gaussian basis. Following Helgaker [24] and working in one dimension(since Hermite-

Gaussians can be split in each respective dimension) we have7

Ωi j (α,β , r , A, B ) =
i+ j
∑

t=0

E i j
t g t (α,β , r , P ). (3.15)

6Still in the isotropic case.
7The indices i and j are now in 1 dimension!
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We stress again that the indices in equation (3.15) and the calculations further are in 1 dimension.

Explicit expressions for the coefficients E i j
t are difficult to derive, however a set of recurrence

relations are possible to find using the properties of the Hermite-Gaussian functions. Consider

firstly the incremented distribution in equation (3.16).

Ωi+1, j =
i+1+ j
∑

t=0

E i+1, j
t g t

=
�

xP −
β

α+β
(Ax −Bx )

�

Ωi j

=
i+ j
∑

t=0

E i j
t

�

xP −
β

α+β
(Ax −Bx )

�

g t

=
i+ j
∑

t=0

E i j
t

��

t g t−1+
1

2(α+β )
g t+1

�

−
β

α+β
(Ax −Bx )g t

�

=
i+ j
∑

t=0

�

(t +1)E i j
t+1+

1

2(α+β )
E i j

j−1−
β

α+β
(Ax −Bx )

�

g t , (3.16)

where we used the properties listed in equation (3.6) (mainly the recurrence) and the expansion in

equation (3.15). The incrementation of j follows the exact same derivation and starting coefficient

is

E 00
0 = KAB . (3.17)

This is found by inserting in i = j = 0 into equation (3.16), realizing the exponental is the same for

all i and j and using the orthogonality between the Hermite-Gaussians8. The recurrent coupled

relations for the E ’s given in here

E i+1, j
t =

1

2(α+β )
E i j

t−1−
β

α+β
(Ax −Bx )E

i j
t + (t +1)E i j

t+1

E i , j+1
t =

1

2(α+β )
E i j

t−1−
α

α+β
(Ax −Bx )E

i j
t + (t +1)E i j

t+1.
(3.18)

The overlap distribution can with this be expanded in Hermite-Gaussian functions.

As mentioned, the whole point of using Hermite-Gaussian functions is because of the inherent

definition with the derivative with respect to the center-point. This means that for attaining the

final expression we must in the end differentiate the expansion coefficients. We state in equation

8Another way of expressing this statement is to say that each index t in the sum corresponds to an equation for
E i j

t .
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(3.19) the coefficients differentiated with respect to the difference variable Qx = Ax −Bx

E 00;n+1
0 =−

2αβ

α+β

�

Qx E 00;n
0 +n E 00;n−1

0

�

E i+1, j ;n
t =

1

2(α+β )
E i j ;n

t−1 −
β

α+β

�

Qx E i j ;n
t +n E i j ;n−1

t

�

+ (t +1)E i j ;n
t+1

E i , j+1;n
t =

1

2(α+β )
E i j ;n

t−1 −
α

α+β

�

Qx E i j ;n
t +n E i j ;n−1

t

�

+ (t +1)E i j ;n
t+1

E i j ;n
t ≡

∂ n E i j
t

∂Q n
x

(3.19)

3.3.3 Overlap Integral

With the simplification to s-types and the product rule, the integration may begin. Starting with

the overlap integral and using equation (3.15)9, the results are presented in equation (3.20) below.




i
�

� j
�

=

∞
∫

−∞

Ωi j (αp ,βp , r , A, B )dr

=
i+ j
∑

p

E i j
p

∞
∫

−∞

gp (α,β , r , P )dr

=
i+ j
∑

p

E i j
p

∞
∫

−∞

(r − P )p e−(αp+βp )(r−P )2 dr

=
i+ j
∑

p

E i j
p

�

((−1)p −1)Γ
�p+1

2

�

2(αp +βp )
p+1

2

�d

. (3.20)

The power d in equation (3.20) comes from splitting the integral into the d dimensions. We are

also using the multi-index notation10(section A.3) and expanding

E a b
n =

∏

d

E ad bd
nd

, (3.21)

such that the coefficients are all just products over coefficients in each dimension. A substitution

in each dimension(i.e u = x −Px ) is also used. Notice in addition that the scaling factors α and β

are specific for each p because of the overlap expansion.

9Also using the following integral
∞
∫

−∞
e−λx 2

=
Æ

π
λ , λ> 0. See [32].

10The power d also means that with the multi-index notation the entire expression in the paranthesis are to be
calculated for each dimension in p and then multiplied together.
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3.3.3 Potential Integral

The second integral with the x k
d part shows up in the external potential part of the Hamiltonian

and the expression is(again with the Gaussian product rule) given here.




i
�

� x k
d

�

� j
�

=

∞
∫

−∞

x k
d Ωi j (αp ,βp , r , A, B )dr

=
i+ j
∑

p

E i j
p

∞
∫

−∞

x k
d (r − P )p e−(αp+βp )(r−P p )2 dr

=
i+ j
∑

p

E i j
p

�

((−1)p −1)Γ
�p+1

2

�

2(αp +βp )
p+1

2

�D−1 ∞
∫

−∞

(u +Pd )
k exp

�

−(αp +βp )u
2
�

du

=
i+ j
∑

p

E i j
p

�

((−1)p −1)Γ
�p+1

2

�

2(αp +βp )
p+1

2

�D−1 k
∑

l=0

�

k

l

�

P k−l
d

∞
∫

−∞

u l exp
�

−(αp +βp )u
2
�

du

=
i+ j
∑

p

E i j
p

�

((−1)p −1)Γ
�p+1

2

�

2(αp +βp )
p+1

2

�D−1 k
∑

l=0

�

k

l

�

P k−l
d

2(αp +βp )
l
2

�

(−1)l +1
�

Γ

�

l +1

2

�

. (3.22)

The integrals are split in each dimension and the dimensions not equal to d (in x k
d ) are pulled out

and the approach in equation (3.20) is applied. The integral over dimension d is then substituted

with u = xd +Pd . In line four (u +Pd )k is rewritten with the binomial expansion11.

3.3.3 Laplacian Integral

The third integral with the Laplacian operator arises in the kinetic part of the Hamiltonian. This

integral can be expressed in terms of equation (3.20), the overlap integral. However the Laplacian

11The integral
∞
∫

−∞
x n e−a x 2

dx = 1
2 a−

n
2 Γ
�

k+1
2

�

, n >−1, n even, see [32].
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applied to a Hermite-Gaussian has to be calculated first. This is done here

∇2g i (α; r , A) =
∑

d

∂ 2

∂ xd
2

�

∏

d ′

(x −Ad ′)
id ′
d ′ exp

�

−α (xd ′ −Ad ′)
2
�

�

=
∑

d

∏

d ′ 6=d

g i ,d ′
∂ 2

∂ xd
2

�

(xd −Ad )
id exp

�

−α (xd −Ad )
2
��

=
∑

d

∏

d ′ 6=d

g i ,d ′g i ,d

�

4α2 (xd −Ad )
id+2−2α (2id +1) (xd −Ad )

id

+ id (id −1) (xd −Ad )
id−2

�

= g i

∑

d

�

4α2 (xd −Ad )
id+2−2α (2id +1) (xd −Ad )

id

+ id (id −1) (xd −Ad )
id−2

�

. (3.23)

Now for the integral we have




i
�

�∇2
�

� j
�

=

∞
∫

−∞

g i (α; r , A)∇2g j (β ; r , B )dr

=
∑

d

∏

d ′ 6=d




id ′

�

�σd ′(Sd (β ; x −Bd ))
�

� jd ′
�

, (3.24)

with

Sd (α; xd −Ad )≡
�

4α2 (xd −Ad )
id+2−2α (2id +1) (xd −Ad )

id + id (id −1) (xd −Ad )
id−2

�

σd (Sd )≡

¨

1, d ′ 6= d

Sd , d ′ = d

(3.25)

meaning the Laplacian integral can be expressed in terms of the overlap integrals



i
�

� j +2
�

,



i
�

� j
�

and 〈i | i −2〉12.

3.3.3 Coulomb Potential Integral

Lastly, the troublesome Coulomb integral needs to be calculated. Due to the 1/r term we cannot

split the integral in each respective dimension as previously. Before we approach the full Coulomb

integral, let us calculate a simpler integral over a so-called Coulomb Potential distribution

∞
∫

−∞

e−α(r−A)2 1

|r −B |
dr . (3.26)

12Since x g i = g i+1 and g i
x = g i−1.
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The calculation of this integral will be beneficial for the calculation of the Coulomb integral as we

can reuse most of the tricks applied to it. With equation (3.12), the Gaussian product rule, in mind.

We rewrite the inverse term with
∞
∫

−∞

er 2
B t 2

dt =
p
π

rB
⇒

1

rB
=

1
p
π

∞
∫

−∞

er 2
B t 2

dt . (3.27)

The Coulomb potential integral is thus, with equation (3.12)(again the product rule)
∞
∫

−∞

∞
∫

−∞

e−α(r−A)2 1

|r −B |
dr =

1
p
π

∞
∫

−∞

e−α(r−A)2 et 2(r−B )2 dr dt

=
1
p
π

∞
∫

−∞

∞
∫

−∞

e−
αt 2

α+t 2 (A−B )2 e−(α+t 2)r 2
S dr dt

=
1
p
π

∞
∫

−∞

� π

α+ t 2

�
d
2

e−
αt 2

α+t 2 (A−B )2 dt . (3.28)

The integral over t has to be addressed separately for two- and three dimensions. For the three-

dimensional case the reader is referred to [24]. Here we will derive a closed-form expression for

the two-dimensional case. First let us use the substitution presented in equation (3.29).

u =
t

p
α+ t 2

t = u

s

α

1−u 2

du

dt
=

α

(α+ t 2)
3
2

lim
t→−∞

u (t ) =−1

lim
t→∞

u (t ) = 1
(3.29)

The integrand (ignoring the exponential part) is then

dt

α+ t 2
=

1

α+ t 2

(α+ t 2)
3
2

α
du

=
p
α+ t 2

α
du

=
t

αu
du

=
1

αu
u

s

α

1−u 2
du

=
1
p
α

√

√ 1

1−u 2
du , (3.30)

giving

I2D =
s

π

α

1
∫

−1

1
p

1−u 2
e−αu 2|A−B |2 du . (3.31)
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For the three-dimensional case we have a simpler form(easily seen with the same substitution)

I3D =π

1
∫

−1

e−αu 2|A−B |2 du . (3.32)

These integrals must be solved numerically using Chebyshev-Gauss Quadrature[59]. One can

also rewrite the 2D-integral in terms of the Modified Bessel function of the first kind by using

u 2 = 1/2(1− cos(θ )[60]. A take on this resulted nowhere as the closed form expanded itself in an

ever-increasing order of polynomial factors with the first and second order of the modified Bessel

function of first kind. The 3D-integral can be rewritten with an incomplete Gamma function

From equation (3.10), the integrals have to be differentiated in order to get the final expression, see

section 3.3.3.

3.3.3 Coulomb Interaction Integral

In the previous section an expression for the integral over the Coulomb potential was derived.

Before we embark into handling the full Coulomb interaction integral, another exercise with a

simpler interaction integral is worthwhile. The integral to study is

I ′ =

∞
∫

−∞

∞
∫

−∞

e−α(r
′−A)2 e−β (r−B )2 1

|r ′− r |
dr dr ′. (3.33)

This is an interaction between two distributions. Firstly, notice that we can rewrite the distribution

centered in A and the Coulomb interaction with the previously calculated Coulomb potential

integral given in equation (3.28). Using I as a general label for equation (3.31) and equation (3.32) we

have

I ′ =

∞
∫

−∞

∞
∫

−∞

e−α(r
′−A)2 e−β (r−B )2 1

|r ′− r |
dr dr ′

=

∞
∫

−∞

ID (α; |r − A|)e−β (r−B )2 dr . (3.34)

Inserting in the definition for u(the substitution in equation (3.29)) and using the extremely useful

Gaussian product rule for the product between the distribution centered in B and the exponential

factor in I (which is labelled the same for both the two- and three dimensional case) is

e−αu 2(r−A)2 e−β (r−B )2 = e−(αu 2+β )r S
2
e−

αu2β
αu2+β

(A−B )2 . (3.35)

Inserting this into equation (3.34) with equation (3.36)

υ≡

¨
Æ

π
α

q

1
1−u 2 , 2D

π, 3D
(3.36)

49



3.3 3

we have

I ′ =

∞
∫

−∞

1
∫

−1

υe−(αu 2+β )r S
2
e−

αu2β
αu2+β

(A−B )2 dr du

=

1
∫

−1

υ

�

π

αu 2+β

�
d
2

e−
αu2β
αu2+β

(A−B )2 du . (3.37)

Specializing to the two-dimensional case and using the substitution in equation (3.38),

v = u

√

√ α+β
αu 2+β

dv

du
=
β
p

α+β
(αu 2+β )3/2

u = v

√

√ β

α+β −αv 2

v (−1) =−1

v (1) = 1

(3.38)

the integrand is

1
p

1−u 2

1

αu 2+β
du =

1
p

1−u 2

1

αu 2+β
(αu 2+β )3/2

β
p

α+β
dv

=
1

p
1−u 2

u

βv
dv

=

√

√ α+β −αv 2

(α+β )(1− v 2)
1

βv
v

√

√ β

α+β −αv 2
dv

=
1

p

β (α+β )

1
p

1− v 2
dv. (3.39)

Meaning we finally have

I ′2D =
π

3
2

p

αβ (α+β )

1
∫

−1

1
p

1− v 2
e−

αβ
(α+β ) v

2(A−B )2 dv. (3.40)

This expression will be of great use when calculating the final full interaction integral over the

Coulomb distribution. The next section will derive the mentioned recurrence relation before the

full Coulomb integral is calculated
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3.3.3 Recurrence Relation

Following directly from [24], we proceed with finding a similar recurrence relation for the deriva-

tives. We define a function containing the integral which needs to be solved numerically, namely

ζn (x )≡

1
∫

−1

u 2n

p
1−u 2

e−u 2 x du . (3.41)

This function also has the relation
∂ ζn

∂ x
=−ζn+1. (3.42)

The Coulomb potential integral is then, in terms of ζn (x ) as

I2D =
s

π

α
ζ0

�

αR 2
AB

�

(3.43)

and the first derivative with respect to Ax is

∂ I2D

∂ Ax
=
s

π

α

∂

∂ Ax
ζ0

�

αR 2
AB

�

=−2
p
απXABζ1

�

αR 2
AB

�

. (3.44)

With this we define an auxiliary function given in equation (3.45)

ξn
t u =

�

∂

∂ Ax

�t � ∂

∂ A y

�u

ξn
00

ξn
00 = (−2)nαn− 1

2ζn

�

αR 2
AB

�

(3.45)

and take a look at the incrementation of t

ξn
t+1,u =

�

∂

∂ Ax

�t � ∂

∂ A y

�u
∂ ξn

00

∂ Ax

=
�

∂

∂ Ax

�t

XABξ
n+1
0u . (3.46)

Using the commutator between ∂ t
Ax

13

∂ t

∂ Ax
t XAB =

�

∂ t

∂ Ax
t , XAB

�

+XAB

∂ t

∂ Ax
t

= t
∂ t−1

∂ Ax
t−1 +XAB

∂ t

∂ Ax
t , (3.47)

the final form of equation (3.46) is14 given in equation (3.48).

ξn
t+1,u = t ξn+1

t−1,u +XABξ
n+1
t ,u

ξn
t ,u+1 = uξn+1

t ,u−1+YABξ
n+1
t ,u

(3.48)

13∂ t
x =

∂ t

∂ x t

14The incrementation of u is derived in the same way as we did with t .
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With this all Hermite integrals of order t + u ≤N can be calculated from ζ of order n ≤N , the

only difference being XAB and YAB . The Coulomb interaction integral (equation (3.40)) follows this

exact recurrence relation, but with a different proportionality factor αβ/(α+β ). We will write it

out in equation (3.49) for the sake of clarity.

∂ I ′2D

∂ Ax
=−

2αβ

α+β
XABζ1

�

αβ

α+β
R 2

AB

�

ξn
00 =

�−2αβ

α+β

�n

ζn

�

αβ

α+β
R 2

AB

�

.

(3.49)

Notice that the only difference between the obtained recurrence relations and the ones obtained

by Helgaker[23] is in equation (3.45) and equation (3.49). Other than this the increment of ζn gives

the same XAB (and similar for the other directions) as with the incomplete gamma function.

3.3.3 Coulomb Distribution Integral

With the derived expressions for the Coulomb potential integral the full two-body distribution

can be treated. The expression with the simplification in equation (3.10) gives

­

i j

�

�

�

�

1

r12

�

�

�

�

k l
·

=

∞
∫

−∞

∞
∫

−∞

Ωi k (α,γ, r1, A, C )
1

|r1− r2|
Ω j l (β ,δ, r2, B , D )dr1dr2

=
i+k , j+l
∑

p q

E i k
p E j l

q

∞
∫

−∞

∞
∫

−∞

gp (α+γ, r1, P )gq (β +δ, r2,Q )

|r1− r2|
dr1dr2

=
a

p

(α+γ+β +δ)

i+k , j+l
∑

p q

E i k
p E j l

q (−1)qξp+q

� (α+γ)(β +δ)
α+γ+β +δ

, R S1 S2

�

, (3.50)

where we have used the multi-index15 notation for p , q , i , k , j , and l equation (3.21) and used

equation (3.40) to arrive at the final step. An additional simplification due to the fact that ζn is only

dependent on the relative distance of the centers is also used, for the x-coordinate it is stated as
�

∂

∂ Px

�px
�

∂

∂Qx

�qx

= (−1)px+qx

�

∂

∂ Px

�px+qx

(3.51)

and the same for the other directions. The factor a is given in equation (3.52).

a ≡



















π
3
2

p

(α+γ)(β +δ)
, 2D

π
5
2

(α+γ)(β +δ)
, 3D

(3.52)

15Essentially just expanding an index in each dimension, for instance i = (ix , i y , iz ) with corresponding p =
(px , py , pz )with each index inside the tuple running to each respective index, meaning for instance px = 0 to ix and
so on.
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3.4 Double-Well Functions

This section will explain the building of a basis for the double-well potential. We will expand

them in a linear combination of harmonic oscillator functions and find the coefficients of this

expansion by solving the arising eigenvalue-problem. Let us first express the potential as

U DW(r ) =V HO(r ) +V DW
n (r ). (3.53)

A double well potential is essentially just a perturbation of the usual harmonic oscillator potential

(which is a single-well). The V DW
n part is assumed to be a polynomial of even degree n . This means

that the integral over such a potential can be calculated using equation (3.22). Notice also that

the n degree polynomial only needs to be symmetric meaning |x | is also a valid polynomial to

integrate over with equation (3.22).

3.4.4 The Eigenvalue problem

The mentioned eigenvalue problem comes from the basis expansion of the spacial part and from

the trick of projecting with a single function from the left. We will explain this briefly. Firstly let us

write out the expansion
�

�

�ψDW
p

¶

=
∑

l

C DW
l p

�

�ψHO
l

�

(3.54)

and then project from left the bra state



ψHO
k

�

� in the inner-product space of h DW

¬

ψHO
k

�

�

�h DW
�

�

�ψDW
p

¶

=
∑

l

Cp l




ψHO
k

�

�h DW
�

�ψHO
l

�

=
∑

l

Cp l ε
DW
l . (3.55)

This gives us an eigenvalue equation

H DWC DW = εDWC DW (3.56)

with

H DW
i j =

¬

ψHO
i

�

�

�h DW
�

�

�ψHO
j

¶

. (3.57)

Using equation (3.53) we can write Hi j as

H DW
i j = ε

HO
i δi j +

¬

ψHO
i

�

�

�V DW
n

�

�

�ψHO
j

¶

, (3.58)

by using the solution to Schrödinger’s equation for the harmonic oscillator system.

We are now in a position to build a basis for the double-well system by reusing all the results

and expressions concerning the single-well system. The only difference is the extra integral over

V DW
n where n would be larger than 2.
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For clarity let us also write out the expression for the resulting Hartree-Fock basis to be used

with the Variational Monte-Carlo method. The expression is simply

ψHF
p =

∑

k l

C HF
p k C DW

k l ψ
HO
l . (3.59)

The procedure of diagonalizing Hi j also gives an additional set of energies we can use. The

full form of the integral-elements involved in Hartree-Fock are written in equation (3.60).
¬

ψDW
p

�

�

�ψDW
q

¶

=δp qε
DW
p δp q

¬

ψDW
p

�

�

�h DW
�

�

�ψDW
q

¶

= εDW
p δp q

­

ψDW
p ψDW

q

�

�

�

�

1

r12

�

�

�

�

ψDW
r ψDW

s

·

=
i j k l
∑

t u v w

C DW
t p C DW

uq C DW
v r C DW

w s

­

ψHO
t ψ

HO
u

�

�

�

�

1

r12

�

�

�

�

ψHO
v ψ

HO
w

·

(3.60)

The two-body elements over the harmonic oscillator functions can be calculated by expansion in

s-type Gaussian constituents and then using equation (3.50).

With this eigenvalue problem in mind, one might ask why go through the trouble? The reason

lies in the form of the double-well potential. Since it is a simple shift of the single-well(harmonic

oscillator) it is reasonable to assume that the energies(the eigenvalues εDW) are only shifted slightly

off from the single-well energies. It is then also reasonable to believe that a basis set expansion

in the single-well functions(harmonic oscillator functions) gives a nice set of basis-functions for

building the double-well basis.

3.4.4 Choosing the Basis Functions

In order to actually solve the eigenvalue equation we use Python and the NumPy package, however

we still need to choose theψHO’s first. This will be experimented with and we will choose enough

basis functions to reach to Hartree-Fock limit. The choice will also follow the harmonic oscillator

levels in terms of degeneracy(see figure 5.3b and figure 5.3a). This means for instance that if we

choose to only use 1 spacial function we only need the ground-state function, but there is no

reason to believe that the electron-configuration would prefer any of the functions in the second

level over one another. This means that we choose the basis functions according to the magic

numbers of the harmonic oscillator system basis.

For the actual Hartree-Fock calculations it is worthwhile to mentioned that the expansion sum

in equation (3.54) has to be truncated. The hope is that as we add more and more HO-functions

to the eigenvalue problem (with the magic-number in mind), equation (3.58), the eignvalues will

converge. We would then let the index l run up to the number of eigenvalues presented, but

truncate the number of columns used at the number of eigenvalues which have converged. For

an illustration of the eigenvalues for R = 2.0 andω= 1.0 in two dimensions see table 1. See also

section 6.2.2 for details on the specific implementation.
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3.4.4 Degeneracy

When we tackled the single-well problem the energy-levels were degenerate and followed the

magic numbers. For the double-well only the degeneracy due to spin is present in two-dimensions.

This is due to the breaking of symmetry by the displacement. For the three-dimensional case a

similar break occurs, but since the displacement is only in the x -direction the two-dimensional

harmonic oscillator symmetry is still present for the y - and z -directions. This means that the

states which are directly dependent on the nx quantum number have lower energy(since the

double-well has lower energy than the harmonic oscillator) and we have new levels.

Since we are limiting ourselves to full-shell systems, this degeneracy has to be respected in the

calculations. More details are given in chapter 5.

3.5 Summary

This chapter tackled the one- and two-body integrals over s-type Gaussian functions in two

dimensions. We will here rewrite the expressions found and write out the full expression for

integrals over harmonic oscillator functions.

Firstly the integrals over Hermite-Gaussians (monomials multiplied by exponential). The

Hermite-Gaussian was expressed as

gn (α; r , A) =
∏

d

�

∂

∂ Ad

�nd

e−αd (xd−Ad )2 . (3.61)

An expansion of these in terms of Hermite-polynomials was then made to arrive at an overlap

distribution, with the Gaussian product rule for the product of two Hermite-Gaussians, with a

recursive relation for the expansion coefficients, see equation (3.63) below.

Ωi j (α,β , r , A, B ) =
i+ j
∑

t=0

E i j
t g t (α,β , r , P )

E i+1, j
t =

1

2(α+β )
E i j

t−1−
β

α+β
(Ax −Bx )E

i j
t + (t +1)E i j

t+1

E i , j+1
t =

1

2(α+β )
E i j

t−1−
α

α+β
(Ax −Bx )E

i j
t + (t +1)E i j

t+1

E 00
0 = KAB

(3.62)

The overlap integral was then found to be




g i (α; r , A)
�

�g j (β ; r , B )
�

=
i+ j
∑

p

E i j
p

�

((−1)p −1)Γ
�p+1

2

�

2(αp +βp )
p+1

2

�d

. (3.63)
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The integral over a potential x k
d was found with the binomial expansion to be




g i (α; r , A)
�

� x k
d

�

�g j (β ; r , B )
�

=
i+ j
∑
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p

�

Γ
�p+1

2

�
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×

k
∑

l=0
even

�

k

l

�

P k−l
d

2(αp +βp )
l
2

Γ

�

l +1

2

�

.

(3.64)

The integral with the Laplacian was



g i (α; r , A)
�

�∇2
�

�g j (β ; r , B )
�

=
∑

d

∏

d ′ 6=d




g id ′
(αd ′ ; xd ′ , Ad ′)

�

�σd ′(Sd (β ; xd −Bd ))
�

�g jd ′
(βd ′ ; xd ′ , Bd ′)

�

, (3.65)

with

Sd (α; xd −Ad )≡
�

4α2 (xd −Ad )
id+2−2α (2id +1) (xd −Ad )

id + id (id −1) (xd −Ad )
id−2

�

σd (Sd )≡

¨

1, d ′ 6= d

Sd , d ′ = d

(3.66)

Finally the integral over the Coulomb interactions was calculated using a recursive relation for

the one-dimensional integral it was defined by. The expressions are

­

g αi Ag βj B

�
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�

�

1

r12

�

�

�

�

g δk C g γl D

·

=
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p q

E i k
p E j l

q (-1)qξp+q

� (α+γ)(β +δ)
α+γ+β +δ

, R S1 S2
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. (3.67)

with

a ≡


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(3.68)

And the recursive relation in two dimensions(left) and three dimensions (right)

ξn
t+1,u = t ξn+1

t−1,u +XABξ
n+1
t ,u
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t ,u+1 = uξn+1

t ,u−1+YABξ
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(3.69)

We also give a reminder again that these expressions are only valid for isotropic Gaussian func-

tions, Gaussians whose scaling factor(i.e α) is the same in all dimensions. For the non-isotropic
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case the see [8].

And as promised, here are the full expressions for the integral elements with harmonic oscillator

functions using equation (3.67) and the orthogonality of the harmonic oscillator functions

¬
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�ψHO
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¶

=Niδi j (3.70)
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with the notations
Ni j k l = X i X j Xk X l

i j k l
∑

t u v w

=
t
∑

p

u
∑

q

v
∑

r

w
∑

s

t+v,u+w
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p q

=
t+v
∑

p

u+w
∑

q

H i j k l
t u v w =Hi ,t H j ,u Hk ,v Hl ,w

E t v
p = Ep ,t+v

(3.74)

And using the multi-index notation for the dimensions in p and q indices. The H are the Hermite

coefficients.

3.6 Further Work

This concludes this chapter on basis functions. We have found an expression for the integral

elements involving Hermite-Gaussians and used these to express the integral over harmonic

oscillator functions which in turn gave an expression for the integrals over double-well functions

as they were just expanded in harmonic oscillator functions. The next chapter will present

optimizations methods used in the variational method and the implementations of these integrals

are presented in chapter 6.

As a note for further work the expressions found here are for isotropic gaussians only. For

certain systems, like the one presented in article [8], more flexibility in the Gaussian functions can
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be desired, such as finding an expression for the integrals of Gaussian functions with higher order

monomial factors and extending the existing code to calculate those can be useful.

Experimentation with different centered gaussians for the double-well case can be interesting

since it is not unreasonable to believe that functions centered on the nodes of the double-well

might be a better model for the system. In which case the number of basis functions needed

might be reduced and the computational strain would more relaxing.
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4
NUMERICAL OPTIMIZATION

In the Variational Monte Carlo method in section 2.9 the essential point was to vary a set of

variational parameters in order to reach an eigenbasis which gives the ground-state energy of the

Hamiltonian in question. There are many ways one could approach this. One way could be to

wildly guess random parameters and hope for the best. Obviously this is a poor approach. The

more sound approach would be to optimize(minimization in the VMC case) the wavefunction

using methods from (as the title suggests) numerical optimization. The methods used in this

thesis are the Conjugate Gradient method, a version of the Adaptive Stochastic Gradient Descent,

the well known BFGS method and a more recent Stochastic-Adaptive-BFGS and also Simulated

Annealing. The description of the approaches for numerical optimization is only made briefly.

For a better mathematical explanation see the various references in the text.

4.1 The Optimization Problem

We will explain the general approach for minimizing a multi-variate function and set the

terminology in this section.

The problem in question is the following. Given a continuously differentiable function f :

Rn →R, for what set of parameters {x }nk=1 is

∇x f = 0 (4.1)

fulfilled1. This means we seek a point x m in real space were the variation of the value of f is zero.

1∇x =
∑

k
e k

∂
∂ xk

with e k ∈Rn a unit vector along direction k .
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In reality the condition in equation (4.1) is only approximate, that is we terminate the search for a

minimum if we reached a point where the absolute value of f is within a threshold ε

�

�∇x f
�

�≤ ε. (4.2)

One might at this point ask the question, wouldn’t the condition presented in equation (4.2) (and

equation (4.1) be valid for a maximum as well? The answer is yes, it would. The simple fix to this is

to define the search direction, more precisely the sign of the search direction. The next section

explains this in better detail.

4.2 Gradient Descent

We defined the optimization problem and defined a simple condition for the extremal and men-

tioned a search direction in the previous section. A search direction in our context is a direction

p ∈Rn which points towards x m . To find p we use the well known second derivative test to de-

termine the curvature of f . This, mentioned qualitatively, means that the gradient of f at any

point x i points towards an extremal and that the negative gradient(negative sign) points towards

the minimum and the positive gradient points towards the maximum. This observation gives

a simple rule for finding x m . Start out with blindly guessing a point x 0 and keep updating the

parameters according to the recursive rule

x n = x n−1−γ∇x f (4.3)

and terminate the search when equation (4.2) is fulfilled2 [44]. An algorithmic view is seen in

figure 4.1.

2Change the negative sign in front of the gradient if a maximum is desired.
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Initialize x 0 and �nd ∇x f (x 0)
Set γ and n = 1.

Find x n = x n−1−γ∇x f (x n )

Check if equation (4.2) holds
Increment index n+=1

�

�∇x f
�

�>ε

�

�∇x f
�

�≤ ε

Output x m = x n

Figure 4.1: Gradient Descent algorithm.

This method of finding the minimum is known as the method of Gradient Descent and its

power lies in its simplicity. The problem however is stability, the termination condition is firstly not

optimal and the step-size γ is a constant which can give a lot of oscillations around the minimum

as the algorithm might get close to the minimum and then over-shoot and go past the minimum

point, turn around (because the sign changes) and over-shoot again and then keep going. Many

methods have been devised to account for these problems and other. We will contain ourselves

with the methods we presented in the introduction of this chapter.

As an illustration of the method here are a couple of figures of the method applied to two

test-functions(figures 4.2 and 4.3). The first function is sphere-function

f (x ) =
D
∑

d=1

x 2
d , (4.4)

and the second is the so-called Rosenbrock function

f (x ) =
D−1
∑

d=1

100
�

xd+1− x 2
d

�2
+ (xd −1)2 . (4.5)
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Sphere Function

Figure 4.2: Illustration of sphere function[54]with minimum x m = (0, 0)with value f (x m ) = 0.

Rosenbrock Function

Figure 4.3: Illustration of Rosenbrock function[54]with minimum x m = (1, 1)with value f (x m ) = 0.
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As for the convergence we give a table with number of iterations.

Table 1: Table showing convergence of the gradient descent method with the spherical function.
x 0 is the initial starting point, γ is the step-size, x m is the minimum after the given iterations and
f (x m ) is the function value at said minimum point.

x 0 γ Iterations x m f (x m )

(5, 5) 0.9 20 (−0.072,−0.072) 0.010
(5, 5) 0.9 50 (−8.920×10−5,−8.920×10−5) 1.591×10−8

(5, 5) 0.9 100 (−1.273×10−9,−1.273×10−9) 3.242×10−18

(5, 5) 0.5 20 (0.0, 0.0) 0.0
(5, 5) 0.5 50 (0.0, 0.0) 0.0
(5, 5) 0.5 100 (0.0, 0.0) 0.0
(5, 5) 0.1 20 (0.072, 0.072) 0.010
(5, 5) 0.1 50 (8.920×10−5, 8.920×10−5) 1.591×10−8

(5, 5) 0.1 100 (1.273×10−9, 1.273×10−9) 3.242×10−18

Table 2: Table showing convergence of the gradient descent method with the Rosenbrock function.
x 0 is the initial starting point, γ is the step-size, x m is the minimum after the given iterations and
f (x m ) is the function value at said minimum point.

x 0 γ Iterations x m f (x m )

(0, 0.5) 0.001 100 (0.181, 0.030) 0.034
(0, 0.5) 0.001 500 (0.512, 0.258) 0.327
(0, 0.5) 0.001 1000 (0.675, 0.454) 0.106
(0, 0.5) 0.001 100000 (1.000, 1.000) 0.0
(0, 0.5) 0.0001 100 (0.027, 0.068) 1.399
(0, 0.5) 0.0001 500 (0.105, 0.009) 0.801
(0, 0.5) 0.0001 1000 (0.184, 0.031) 0.666
(0, 0.5) 0.0001 100000 (0.994, 0.989) 3.131×10−5

From tables 1 and 2 it is apparent that with the gradient descent method the step-size is of great

importance. With the spherical function one needs a sweet-spot value to reach the minimum

while for the more complex Rosenbrock function the number of iterations needed is very high

and with a lower step-size the minimum was actually not even reached with 100000 iterations. In

conclusion, the gradient descent method is great for its simplicity, but it does not incorporate

the curvature of the function when minimizing meaning the choice for the step-size greatly

determines the outcome of the minimization, and for functions where the minimium lies in a

fairly flat valley, as with the Rosenbrock function, the computational cost increases since the

number of iterations needed for convergence is high.
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4.3 Adaptive Stochastic Gradient Descent

Along with the limitations of the method of gradient descent, the Adaptive Stochastic Gradient

Descent tries to account for those, but also takes into account the variance introduced by

the stochastic nature of the probability distribution. As such, many variations of the method

have been proven to be popular among problems in which the function to be minimized is an

expectation value. The method used in this thesis is the one described in [57]. We will give a

summary of the method here, for a more detailed outline and description see [57].

Like the gradient descent method the adaptive stochastic gradient descent method updates

the parameters in the same manner as in equation (4.3), the difference however is that the step γ is

changed for each iteration as follows

γn+1 =
a

tn+1+A

tn+1 =max(tn + g (Xn ), 0)

Xn =−∇ fn ·∇ fn+1

g (x ) = gmin+
gmax− gmin

1− gmax
gmin

e−
x
ω

(4.6)

The whole idea of the method is that the form of g and the accumulative combination of gradient

estimations for each step, the total error would tend quickly to zero, meaning the central element

(namely the gradient) in the minimization is well behaving.

The main concern with the method is convergence, although the error in the gradient estima-

tions tend towards zero, the step-sizes themselves will also be quite small after some iterations.

For this reason we use the adaptive method with a quasi-Newton method. This means that we

start with a random guess at the parameters and keep iterating with the quasi-Newton method

until the norm of the gradient is below some threshold, at which the adaptive method is applied

from that point and onward till convergence is reached.

4.4 Newtons-Method and Quasi-Newton Methods

We will here explain briefly Newton’s method and Quasi-Newton methods as the ideas presented

will be used in the next section.

Newton’s method [35] (or Newton-Raphson method) is originally a method for finding the

zeros of a function. The rule states that given a real-valued function f :R→R and an initial guess
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x ∈R for the zero-point, recursively find better approximations for the zero by setting

xn+1 = xn −
f (xn )
f ′(xn )

. (4.7)

This method would then within a number iterations find the zero that is closest to x0.

For the optimization problem the condition for a point to be an extremal is equation (4.1)

meaning, again, that one needs to find the zero of the derivative. Newton’s method in this case

would be

xn+1 = xn −
f ′(xn )
f ′′(xn )

, n ≥ 0. (4.8)

Of course in the real world one might work with multi-variate function, not to worry as Newton’s

method for optimization problems in the multi-variate case with f :Rn →R (still real-valued) is

x n+1 = x n −
�

�H f (x n )
�

�

−1∇̇ f (x n ), n ≥ 0, (4.9)

where H is the Hessian matrix. One might also introduce a step-length multiplied to the Hessian

part in order to induce conditions [44]which ensure some stability of the method.

Newton’s method, in most cases, converges faster(less iterations) towards the minimum than

gradient descent making it favorable, however the full Hessian has to be known. This matrix(or its

inverse) is in many cases too expensive to compute or difficult to express in closed-form. In these

cases the class of methods knows as Quasi-Newton methods can be utilized.

Quasi-Newton methods give an estimate of the inverse Hessian by using the first derivatives.

Introduce the Taylor approximation of f around an iteration point x n

f (x k + s )≈ f (x k ) +
�

∇ f (x k )
�T

s +
1

2
s T H s , (4.10)

differentiate with respect to the change s

∇s f (x k + s )≈∇ f (x k ) +H s (4.11)

and introduce the condition in equation (4.1) and set this gradient to zero to find the change s

s =−H −1∇ f (x k ). (4.12)

Another way to determine this particular form for s is to say that the approximation to the Hessian

must satisfy the secant equation which is equation (4.11). The updating rule for x n is then given by

x n+1 = x n −γk H −1
n ∇ f (x n ). (4.13)

The factor γk is again introduced to give some stability conditions. The important part of this

equation is the index on the inverse Hessian. This is essentially just a relabeling at the change s
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is technically applied for each iterate x n . Note also that s takes the role of the search direction

in this case. The algorithm is then to make an initial guess on the Hessian(usually just the

identity matrix) and then use a type of updating formula that finds a new approximation for the

Hessian at each step n . There are a number of these updating formulas, just to mention some we

have DFP, SR1, McCormick, Broyden, BFGS and more. The one we will mention in more detail

is the BFGS method, but a main formula that shows up in all of the updating methods is the

Sherman-Morrison formula for the inverse. This basically means that the need for calculation of

the inverse matrix is completely removed.

With the mentioned expression we can devise an algorithm similar to Newton’s method for

finding the minimum x m . Starting with an initial guess for the inverse Hessian H −1
0 and minimum

x 0 with the condition that H −1
0 is positive-definite (identity matrix is a nice start if nothing else is

known) proceed with the algorithm outlined in figure 4.4.

Initialize x 0 and �nd ∇ f (x 0)
Set H −1

0 and n = 1.

Perform linesearch giving γn .

Find x n = x n−1−γn H −1
n−1∇ f (x n−1)

Check if equation (4.2) holds

�

�∇x f
�

�>ε

Use ∇ f (x n ) and f (x n−1) in an
updating formula of choice to �nd H −1

n
Increment index n+=1

�

�∇x f
�

�≤ ε

Output x m = x n

Figure 4.4: Quasi-Newton algorithm.

To illustrate the power of the method we again apply it to the sphere function and the Rosen-

brock function using the BFGS scheme as the updating method and the Moré-Thuente line search

method to find the step-size. The table of convergence is as follows

66



4.5 4

Table 3: Table showing convergence of a Quasi-Newton method with BFGS method with the
spherical function. x 0 is the initial starting point, x m is the minimum after the given iterations
and f (x m ) is the function value at said minimum point.

x 0 Iterations x m f (x m )

(1, 1) 1 (−0.071,−0.071) 1.000
(−1, 2) 1 (0.447,−0.894) 1.000
(1, 1) 2 (0.000, 0.000) 0.000
(−1, 2) 2 (0.000, 0.000) 0.000
(10, 10) 1 (−0.071,−0.071) 1.000
(10, 10) 2 (0.000, 0.000) 0.000
(100, 100) 1 (−0.071,−0.071) 1.000
(100, 100) 2 (0.000, 0.000) 0.000

Table 4: Table showing convergence of a Quasi-Newton method with BFGS method with the
Rosenbrock function. x 0 is the initial starting point, x m is the minimum after the given iterations
and f (x m ) is the function value at said minimum point.

x 0 Iterations x m f (x m )

(−0.5, 2.0) 1 (−0.706, 0.708) 7.280
(−0.5, 2.0) 2 (−0.780, 0.649) 3.342
(−0.5, 2.0) 10 (0.238, 0.051) 0.584
(−0.5, 2.0) 30 (1.000, 1, 000) 0.000
(5.5,−10.0) 1 (−0.996, 0.091) 85.214
(5.5,−10.0) 2 (−0.908, 1.087) 10.549
(5.5,−10.0) 10 (0.027, 0.012) 0.9613
(5.5,−10.0) 30 (1.000, 1, 000) 0.000

Comparing tables 3 and 4 with tables 1 and 3 we can see that the BFGS scheme outperforms

the gradient descent method by a stupendous and almost comical amount with the number

of iterations in mind. However one still has to keep in mind that each iterations of the BFGS

method is far more computationally extensive meaning the gradient descent method can be more

favorable in the case where the function to be minimized is expensive to compute.

For our case, the latter sentiment is true. The expectation value to the energy still has a large

complexity, however with the optimizations mentioned in sections 5.3.3 and 5.3.3 the time it takes

to calculate the expectation value is not too large and the BFGS scheme can still be used.

4.5 BFGS Method

In the previous section(also mentioned in figure 4.4) we gave an outline for Newton’s method and

the class known as Quasi-Newton methods. The latter used an approximation for the inverse of
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the Hessian matrix, which was updated at each step in the algorithm. For the sake of brevity only

conditions employed to arrive at the expression for the updating formula and the formula itself is

given here, for more see [5, 15, 17, 44, 53]. The conditions enforced is

• Secant condition: H n+1s n =∇ f (x n+1)−∇ f (x n )

• Strong curvature: s T
k · ( f (x n+1)−∇ f (x n ))> 0

and the resulting formula states with y k = f (x n+1)−∇ f (x n )

H n+1 =H n +
y n y T

n

y T
n s n

−
H n s n s T

n H n

s T
n H k s n

. (4.14)

With the Sherman-Morrison formula[50] the inverse is updated with

H −1
n+1 =H −1

n +

�

s T
n y n + y T

n H −1
n y n

� �

s n s T
n

�

�

s T
n y n

�2 −
H −1

n y n s T
n + s n y T

n H −1
n

s T
n y n

. (4.15)

4.6 Line Search methods

In the optimization methods described in section 4.4 there was one important part neglected,

namely how to find the step-length γn introduced in the updating formula. As it is, one can

choose it in any manner desired, however a class of one-dimensional minimization methods

knows as lineasearch methods are often used to get an (usually rough) estimate for the step length

at each iteration in the optimization. These methods all have some conditions for stability and

convergence as an innate property, meaning the validity of the step length is better3. Some popular

line search methods are backtracking line search, Hager-Zhang method, Strong Wolfe conditions

and the More-Thuente line search method. The one used here is the latter. For an exact derivation

and explanation of line search methods in general see [44]. See also the article by Jorge J. Moré

and David J. Thuente [41].

The basic idea of line search methods is to solve a one-dimensional problem of minimizing

φ(α) = f (αp k +x k ), (4.16)

with f :Rn →R and p k is a search direction as described with the quasi-Newton methods and x k

is the current iterate(point) in the minimization. Notice also that

∂ φ

∂ α
= p k ·∇ f (αp k +x k ) (4.17)

by the chain-rule and the gradient on the right hand side is over the parameters x k . One usually

perform this line search loosely since the search direction is not necessarily directly pointing
3It’s actually present...
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towards the minimum, meaning we only search for a step length that gives a sufficient decrease in

the function value f . The basic procedure is then to use one of these line search methods to find

γn at each iteration in the minimization and then use the step-length outputted by the line search

algorithm to update the parameters.

4.7 Stochastic-Adaptive-BFGS

In section 4.5 we mentioned the popular BFGS method for updating the Hessian matrix and its

inverse. A more resent method which uses that method with the stochastic nature of a functional

expectation value is a method called SABFGS [18] described by Zhou C., Gao W. and Goldfarb

D. This method uses the BFGS update for the Hessian, but uses an adaptive step instead of the

deterministic line search for the step-size.

There one problem however, the method itself is only valid for self-concordant functions. The

energy-functional is by-far not within this criteria. This problem can be accounted for by using

the Wolfe conditions. That is to check that the step-size satisfies the Wolfe conditions at each

iteration before actually making an update. The algorithm presented takes this into account as

well.

Algorithm 1 SA-BFGS

Input: x 0, H 0, G 0, β < 1
for k = 0 to Mmax do

g k =∇Fk (x k ) . Gradient in current step
d k =−H k g k . Search direction

δk =
q

d T
k G k (x k )d k

αk =
g T

k H k g k

δ2
k

tk =
αk

1+αkδk
. Step size

g k+1 =∇Fk (x k + tk d k ) . Propose new set of parameters
if g T

k+1d k <β g T
k d k then .Wolfe-Conditions

Set d k =−g k

Recompute δk , αk and tk

Set H k+1 =H k and G k+1 =G k

else
Set H k+1 with BFGS inverse update . equation (4.15)
Set G k+1 with BFGS update . equation (4.14)

end if
x k+1 = x k + tk d k .Update parameters

end for
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4.8 Simulated Annealing

A huge problem with the mentioned methods is the fact that they only converge towards a local

minimum which is not necessarily the global minimum which of desire. Many methods already

exists to account for this, the one used in this thesis and to be described in this section is the

method known as simulated annealing. Simulated annealing follows a simple algorithm, see

algorithm 2.

Algorithm 2 Simulated Annealing

Initialize a solution s = s0. . I.e a set of parameters {α}Nk=1
for j = 1 to Mmax do

Set temperature T with specific function for j
Mmax

Pick a new state snew within some neighbour of s
if P ( f (s ), f (snew), T )≥ ξ then .Metropolis-Test.

s = snew

end if
end for

The idea is to start with searching a large part of the solution space, since a high temperature

increases the search-range, and hope that as j reaches Mmax the probability function P is such

that the solution is trapped within the down-hill of the global minimum.

The specific form of P, T and how to choose a neighbour is specific from problem to problem

however an effective and simple way to define these is by using the Metropolis-algorithm with

P = exp
�

−
f (snew)− f (s )

T

�

, (4.18)

and define the temperature as

Tj =
Tmax

j
. (4.19)

And Tmax is the initial temperature. One then chooses new neighbours within some min/max

range from the current s [29]. After the annealing is done a Quasi-Newton method is used and then

one of the adaptive methods is used to converge to the minimum. In order to test this scheme we

apply it to more complex functions with many local minima. Two such functions are the Ackley

function [54] defined as

f (x ) =−a exp

 

−b

√

√

√ 1

D

D
∑

d=1

x 2
d

!

−exp

�

−
1

D

D
∑

d=1

cos(c xd )

�

+a +exp(1) (4.20)

and the Rastrigin function [54]

f (x ) = 10D +
D
∑

d=1

�

x 2
d −10cos(2πxi )

�

. (4.21)
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Where D is the number of parameters and a , b and c being parameters to be tweaked. Figures

are shown below in figures 4.5 and 4.6

Ackley Function

Figure 4.5: Illustration of Ackley function [54]with global minimum x m = (0, 0) of value f (x m ) = 0.

Rastrigin Function

Figure 4.6: Illustration of Rastrigin function [54]with global minimum x m = (0, 0)of value f (x m ) = 0.
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As for convergence, we again employ the same procedure as with the spherical and Rosenbrock

functions as previously, but with the Ackelyn and Rastrigin functions and present the tables here.

Table 5: Table showing convergence of the simulated annealing method with the Ackelyn function.
x 0 is the initial starting point, Tmax is the initial temperature, x m is the minimum after the given
iterations and f (x m ) is the function value at said minimum point. The neighbouring function
used is a simple gaussian applied to all parameters with mean being the current value of the
parameter and variance 1.0.

x 0 Tmax Iterations x m f (x m )
(−10.0, 0.40) 100.0 102 (0.130, 0.096) 1.046
(−10.0, 0.40) 100.0 103 (0.007,−0.026) 0.097
(−10.0, 0.40) 100.0 104 (0.002,−0.004) 0.011
(−10.0, 0.40) 100.0 105 (−0.003,−0.003) 0.013
(−0.01, 0.01) 100.0 102 (−0.101, 0.036) 0.584
(−0.01, 0.01) 100.0 103 (−0.012,−0.006) 0.044
(−0.01, 0.01) 100.0 104 (−0.004, 0.001) 0.013
(−0.01, 0.01) 100.0 105 (−0.001,−0.001) 0.003
(−10.0, 0.40) 50.0 102 (0.012,−0.122) 0.702
(−10.0, 0.40) 50.0 103 (−0.021, 0.023) 0.113
(−10.0, 0.40) 50.0 104 (0.008,−0.016) 0.061
(−10.0, 0.40) 50.0 105 (0.002,−0.003) 0.009
(−0.01, 0.01) 50.0 102 (0.141, 0.059) 0.959
(−0.01, 0.01) 50.0 103 (−0.007,−0.041) 0.162
(−0.01, 0.01) 50.0 104 (−0.013, 0.003) 0.043
(−0.01, 0.01) 50.0 105 (0.001, 0.002) 0.005

Table 6: Table showing convergence of the simulated annealing method with the Rastrigin function.
x 0 is the initial starting point, Tmax is the initial temperature, x m is the minimum after the given
iterations and f (x m ) is the function value at said minimum point. The neighbouring function
used is a simple gaussian applied to all parameters with mean being the current value of the
parameter and variance 1.0.

x 0 Tmax Iterations x m f (x m )
(−5.0, 1.0) 100.0 102 (−0.988, 0.967) 2.152
(−5.0, 1.0) 100.0 103 (0.045,−0.038) 0.684
(−5.0, 1.0) 100.0 104 (0.007,−0.002) 0.009
(−5.0, 1.0) 100.0 105 (0.001,−0.002) 0.001
(−0.01, 0.001) 100.0 102 (−0.873, 0.016) 3.844
(−0.01, 0.001) 100.0 103 (−0.011,−0.010) 0.043
(−0.01, 0.001) 100.0 104 (0.001, 0.010) 0.021
(−0.01, 0.001) 100.0 105 (−0.002,−0.002) 0.001
(−5.0, 1.0) 50.0 102 (−0.936,−0.016) 1.731
(−5.0, 1.0) 50.0 103 (0.063, 0.020) 0.864
(−5.0, 1.0) 50.0 104 (0.014,−0.004) 0.045
(−5.0, 1.0) 50.0 105 (0.002, 0.000) 0.001
(−0.01, 0.001) 50.0 102 (0.977,−0.024) 1.168
(−0.01, 0.001) 50.0 103 (−0.012,−0.017) 0.085
(−0.01, 0.001) 50.0 104 (0.002, 0.004) 0.004
(−0.01, 0.001) 50.0 105 (−0.001,−0.003) 0.001
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We can see from tables 5 and 6 that the simulated annealing method does get close to the actual

minimum, however a great number of iterations is needed and even as we reach 105 iterations

the method still doesn’t converge towards the minimum. This seems quite dissappointing, but

one has to remember that the method is to be used as a way to reach an area were deterministic

methods such as gradient descent method or the BFGS scheme is guaranteed to converge towards

the minimum. As long as we control the temperature properly such a point can be found with

simulated annealing.
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5
IMPLEMENTATION

With almost every expression given in chapter 3 being some kind of sum it is not hard to imagine

that solving them by hand would be quite the challenge and most likely impossible, but with

the modern computer at our disposal they can be tackled numerically. However in order to get

the data from the numerical simulations the actual implementation, the code, has to be written,

tested, verified and run.

This chapter will explain the code used in the thesis in detail. The main code base is given in

https://github.com/Oo1Insane1oO/HartreeFock and https://github.com/Oo1Insane1oO/VMC.

General information of the usage of packages are given in appendix » REF APPENDIX « while

the structure and workflow of the code is given here. We will first present a workflow-chart of

the two main code-bases used, namely the Hartree-Fock implementation and the Variational

Monte-Carlo implementation.
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5.0 5

Main
run make with �ag

make BASIS=SYSTEM
Compilation

Choose system �agHARMONICOSCILLATOR

DOUBLEWELL

⇐=

Read YAML �le
Initialize Integral Object

Iterate

Integral ∗ HFS = new Integral(D, L, N);

string message = HFS→initializeParameters(...);

Integral is one of

HarmonicOscillator DoubleWell

Calculate integral elements assemble();

Calculate



p
�

�h
�

�q
�

(only for root)
Using function oneBodyElement

in Integral

Calculate



p q
�

�h
�

� r s
�

(in parallel)
Using function coulombElement

in Integral

Run Hartree-Fock Algorithm

while i <maxiteration
Set Fock-Matrix with equation (2.32)

Solve eigenvalue equation (2.37)

Set density matrix with equation (2.35)

Break if converged Output E0

free HFS object
Finalize MPI

Figure 5.1: Flow chart of Hartree-Fock implementation.
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Compilation Choose SYSTEM �ag

HARMONICOSCILLATOR
HARTREEFOCK
DOUBLEWELL

Choose JASTROW �ag

PADEJASTROW
RBMJASTROW

EXPNQS

run make with �ags
WAVEFUNCTION=SYSTEM

JASTROW=JASTROW

optional �ag
TESTS=ON/OFF

optional �ag
DEBUG=ON/OFF

w

w

�

Main

Create wavefunction object
Create sampler object

Read YAML �le.

T∗ wf = new T(D, N, P);

wf→initializeParameters (...);

wf→initializeMatrices ();

SlaterJastrow

Slater

T

ImportanceSampling

BruteForce

T∗ vmc = new T(wf, ∆t , P, M);

TChoose one Choose one

Find optimal set of parameters.

Find initial parameters.

Gaussian random if
NQS parameters.

Uniform random for
other parameters.Minimizer<T>∗ m = new Minimizer<T>

(vmc, S, I , eps, M);

m→minimize();

S: Method
- SA-BFGS
- BFGS (MTLS)
- ASGD
- SD
- CG (MTLS)

Run �nal sampling with
optimal parameters.

vmc→sampler();

Output E0

free Wavefunction object (wf)
free Sampler object (vmc)
free Minimizer object (m)

Figure 5.2: Flow chart of Variational Monte-Carlo implementation.
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5.1 Cartesian Basis

In chapter 4 we mentioned the use of basis functions the different Many-Body methods. These can

be pre-built using nifty intuition. One such observation is in the way harmonic oscillator functions

station themselves on energy-levels(in the full-shell case). The following image1 describes this for

the first few levels

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(a) 2D with (nx , ny )

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,1,0) (0,1,1) (0,0,2)

(b) 3D with (nx , ny , nz )

Figure 5.3: Harmonic Oscillator Levels

This specific arrangement of basis-functions is implemented in class Cartesian and is used

in both the Hartree-Fock and VMC implementations. It essentially builds a matrix of states with

the rows being the specific state and the columns containing the quantum numbers(in cartesian),

the spin-value(as an integer), magic number and energy(in natural units proportional to the

oscillator frequency). The essential form is

�

nx ny s ms E M
� �

nx ny nz s ms E M
�

(5.1)

with the n ’s being the principal numbers, s the spin value ms the spin projection(up or down in

our case), E the energy and M the magic number. All the numbers above are integers, meaning

the actual energy E need to be converted if the actual energy of the state is desired, the same

is applied to the spin projection(which is to multiply by 1/2). The Cartesian class builds the

states with alternating spin (the spacial parts are doubled with spin), but also has a function for

restructuring by setting the states with spin down in acending order first and the same states with

spin up after.

5.2 Hartree-Fock

Only the restricted case is implemented and is present as the class HartreeFockSolver.

The matrix-elements(integrals) are implemented in HermiteIntegrals class. This class

1As the old idiom goes; "A picture is worth a thousand words"
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also uses an auto-generated header for the Hermite-coefficients, see section 5.5 below. The

HartreeFockSolver is implemented in a general way such that an abstract class for the integral

elements is all that is needed. The HartreeFockSolver can then be inherited and used. An

example of how to create a solver object with the Double-Well system called HFS with number of

dimensions D , number of basis functions L and number of particles N .

DoubleWell∗ HFS = new DoubleWell (D, L , N) ;

s t r i n g message = HFS−> i n i t i a l i z e P a r a m e t e r s ( . . . ) ;

With the (. . . )meaning one initializes it with however manner the function was made. The initial-

ization function must also return a message determined by the success of the initialization. If it

succeeds it returns an empty message while if not it returns a pre-defined message.

Here is a simple example code-snippet which initializes and runs the Hartree-Fock algorithm

DoubleWell∗ HFS = new DoubleWell (D, L , N) ;

s t r i n g message = HFS−> i n i t i a l i z e P a r a m e t e r s ( . . . ) ;

i f ( message . compare ( " " ) ) {

i f (myRank == 0) {

std : : cout << message << std : : endl ;

}

d e l e t e HFS ;

f i n a l i z e ( ) ;

}

double E = HFS−> i t e r a t e (M, 1e−8 , true ) ;

The iterate function takes in M as the maximum number of iterations, the convergence tol-

erance (when to break the iteration) and a boolean for showing progress or not. It calculates

the integral-elements and runs the Hartree-Fock algorithm and returns the estimation of the

ground-state energy.

5.2.2 Recurrence Relation and Coefficients

The one-dimensional integrals ξ(recurrence relation in equation (3.49))

∂ I ′2D

∂ Ax
=−

2αβ

α+β
XABζ1

�

αβ

α+β
R 2

AB

�

ξn
00 =

�−2αβ

α+β

�n

ζn

�

αβ

α+β
R 2

AB

�
(5.2)
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involved in the two-body elements and the coefficients equation (3.18)

E i+1, j
t =

1

2(α+β )
E i j

t−1−
β

α+β
(Ax −Bx )E

i j
t + (t +1)E i j

t+1

E i , j+1
t =

1

2(α+β )
E i j

t−1−
α

α+β
(Ax −Bx )E

i j
t + (t +1)E i j

t+1

(5.3)

involved in the overlap-distributions in the Hartree-Fock calculations are calculated using the class

Hexpander. The coefficients can be calculated and tabulated once with the setCoefficients

function. It is preferable to set all the needed coefficients once before calculating the elements2.

The Integral classes all set these in the initializeParameters function based on the num-

ber of basis-functions used. For recurrence ξwe implemented a modified version of the three-

dimensional version by Dragly[12]while the ζ integrals are calculated using Gauss-Chebyshev-

quadrature[59]. These elements can also be tabulated in the same manner as with the coefficients

using the function setAuxiliary2D and setAuxiliary3D respectively for two- and three di-

mensions.

Both the coefficients and integral elements can be obtained with the functions coeff and

auxiliary2D and auxiliary3D.

In our setup the Hexpander class itself is inherited from the GaussianIntegrals class and

used within.

5.2.2 Parallelization of Two-Body Matrix

The most time-consuming part of the Hartree-Fock procedure is the calculation of the two-body

matrix-elements giving the interaction terms. This is parallelized in the assemble function in

HartreeFockSolver. The basic premise is to represent the N 4 elements in



p q
�

� r −1
�

� r s
�

as a

one-dimensional array with the mapping

(p , q , r, s )→ p +N (q +N (r +N s )). (5.4)

Which is to say that the element (p , q , r, s ) is stored in position (p +N (q +N (r +N s )) in the

one-dimensional array. The symmetry

(p , q , r, s ) = (q , p , r, s ) (5.5)

reduces the number of elements down to N (N +1)/2. Notice also that the number of (r, s ) elements

each process needs to calculate is also this same size meaning the total size is actually

totalsize=
N 2(N +1)2

4
. (5.6)

2Such that precious computation hours are not wasted.
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All the symmetries imply that the following elements are the same

(p , q , r, s )

(r, q , p , s )

(r, s , p , q )

(p , s , r, q )

(q , p , s , r )

(s , p , q , r )

(s , r, q , p )

(q , r, s , p )

(5.7)

A matrix pqMap of size N (N +1)/2×2 is then created with elements

pqMapp q = (p , q ). (5.8)

This is essentially just a matrix with each row being a tuple with p and q value.

The rows are then distributed evenly among P processes according to this equation (5.9),

rowsp =















� N
2 (N +1)

P

�

rank<
�

N

2
(N +1) mod P

�

� N
2 (N +1)

P

�

else

(5.9)

The problem now however is that processes of higher and higher ranks my end up with calculating

more since larger indices involve computationally more heavy functions to be evaluated. We

can account for this by weighting the number of rows each process gets by the product3 of the

principal quantum numbers for the state which the indices represent, that is

Si =
Pi
∑

j=0

∏

d

(n jd
+1). (5.10)

The sum with index j runs over the sub-chunk for process i where the size of each chunk is

defined by equation (5.9). The algorithm is given in algorithm 3.

3The product is used since the loops are nested and run up to the given quantum number.
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Algorithm 3 Even Weighting
Make an array sizes of size P with the number of elements for each process.
Make an array displ of size P with the displacement (index).
Make array S of size P with elements as sepcified in equation (5.10).
Set elements of sizes array to zero.
O = Floor(Mean(S ))
p = 0 . Index for process
jS = 0 . Total sum for each p
k = 0 . Index for displacement in sizes array
Vmax =O +3n 2

max . nmax is the largest n-quantum number in the system.

for l = 0 to l < N (N+1)
2 do . Iterate over rows in pqMap

jS = jS +
∏

d
(n (l )pd

+1)(n (l )qd
+1)

k+= 1
if jS ≥Vmax then .Make sure not to overshoot

sizes[p ] = k −1 .Discard the last element
l = l −1 . Re-evaluate for next p
k = 0
jS = 0
p+= 1

else if jS >O then . Chunk for process p is good.
sizes[p ] = k . update sizes
k = 0
jS = 0
p+= 1

else if l = N (N+1)
2 −1 and jS ≤O then . Throw remaining rows at last

sizes[p ] = k
end if

end for

Each process then gets its respective chunk ofpqMap array such that the each process calculates

its own chunk according to the size set. Each process then calculates the two-body elements with

the (p , q ) elements received. The total size for each process also needs to take the (r, s ) elements

into account as they are also of size N (N + 1)/2. Each sub-chunk is then sent to root process

and concatenated to a large one-dimensional array and the actual two-body matrix of size N 4 is

assembled and antisymmetrized. The Hartree-Fock algorithm is then run only on one process.

5.2.2 Tabulation of Two-Body Matrix

The HartreeFockSolver class uses an input file for the two-body matrix if given and calculates

and writes one out if not given. As of now this is done in a brute-force fashion, that is the entire

matrix, including all zero-values, are written to file. This entire structure can be improved upon

by introducing a Sparse-Matrix structure, which is a matrix in which only the non-zero elements
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are stored and a displacement array for the given indices of the non-zero elements is created. This

would decrease the every-increasing memory usage and reduce the calculation time as look-up

time in the array.

The most promising road for implementing a Sparse structure is to use the SparseMatrix module

in Eigen since the entire code-base already builds heavily upon Eigen from before.

5.3 Variational Monte Carlo

The Variational Monte-Carlo implementation is mainly in three classes, namely VMC, BruteForce

and ImportanceSampling. The structure is set with BruteForce and ImportanceSampling

both inheriting from VMC. This structure essentially gives room for splitting specific parts of the

Brute-Force algorithm from the Metropolis-Hastings algorithm, but still using the same code for

minimization. We will explain the minimization parts in the next section.

The main input which VMC needs is a wavefunction. An abstract class-template is implemented

and can be generated using a python script. The template is built in such a way that one only needs

to fill in specific analytic expressions for the gradient, Laplacian and gradient for the variational

parameters. The latter part is optional.

The wavefunction itself is built using the Slater or SlaterJastrow class. However, in order

to use the SlaterJastrow one has to specify which Jastrow function to use at compile time. A

simple example illustrates this better

S l a t e r J a s t r o w ∗ wf = new S l a t e r J a s t r o w ( dim , numParticles , parameters ) ;

wf−> i n i t i a l i z e P a r a m e t e r s ( omega ) ;

wf−> i n i t i a l i z e M a t r i c e s ( ) ;

ImportanceSampling<S l a t e r J a s t r o w>∗ vmc = new

ImportanceSampling<S l a t e r J a s t r o w >(wf , stepmc , parameters ,

maxIterations , rank , numProcs ) ;

double E = vmc−>sampler ( ) ;

d e l e t e vmc ;

d e l e t e wf ;

The first chunk initializes the SlaterJastrow class with the pre-specified system which needs to

be given at compile time as a flag i.e WAVEFUNCTION=HARMONICOSCILLATOR. The second

part sets the sampling to use Metropolis-Hastings algorithm. The parameters variable must be

an Eigen[20] vector or array and contain the variational parameters. The representation of each

element in this vector(or array) is specific to each system. This is just an example of how to build
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a simple run, however we have also built a run file which uses YAML[10]. The basic template is as

follows

omega: 1 . 0

numparticles: 6

maxitermc: 100000

stepmc: 0 .01

parameters: [0 . 9 9 , 0 . 4 7 ] #optional

numparameters: 2

jastrow : t rue #optional

importance: t rue #optional

This is a template used for the HarmonicOscillator with the Padé-function as Jastrow factor. If

the NQS-function is used an additional parameter ’numhiddenbias’ giving the number of hidden

biases used, is needed.

This form of input makes it fairly simple to actually run the code for different systems with ease.

One needs to compile with the specific flag for the system(wavefunction and Jastrow) and then

supply an YAML input file at runtime.

5.3.3 Statistics

Due to the statistical procedure of using a stochastic diffusion process as our model there is

an inherent variance introduced int the Metropolis sampling. In order to get a good estimate

for this variance we used the method of blocking[16]. The implementation is within the class

Resampler in which we have two methods, one called blocking which effectively reduced the

block-sizes and saves the variance for each block-size and autoblocking which estimates the

optimal block-size. The latter is taken from the thesis of Marius Jonsson[33] and rewritten in

C++ using the Eigen library.

5.3.3 Thermalisation

When running the sampling the initial distribution of positions is not necessarily a good configu-

ration and might corrupt the sample and give an unreasonably high variance. To avoid this we

thermalize the system before calculating the local energies and the other local quantities. The

procedure is as simple as to run the sampling, but not calculate the local energy or any other

quantity until a certain number of iterations has been exhausted. This gives the particles enough

movement to find a good configuration from which a nice sample can be obtained.
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5.3.3 Slater Optimizations

In the Metropolis sampling we need access to the ratio of two determinants, namely the Slater

wavefunction at the current state and the one at previous state. These are quite expensive to

calculate4. This can be overcome by using the fact that moving only one particle at each iteration

also constitutes to a state-transition. Following [27] and given row i as the index for the row that is

changed, the following expressions are valid

Ψ

eΨ
=
∑

j

ψi j
eψ−1

j i

∇iΨ

Ψ
=
∑

j

ψi j∇iψ
−1
j i

∇2
iΨ

Ψ
=
∑

j

ψi j∇2
iψ
−1
j i

(5.11)

with eΨ being the wavefunction at previous state. The derivatives all use the wavefunction at

current state. One might ask now, but isn’t this just worse? We have gone from needing two

determinants to needing two inverses5. Fret not, the Sherman-Morrison formula[50] for updating

an inverse matrix if only one row has changed in the original matrix comes to the rescue. The

elements of the inverse can by this be expressed as(with i being the row that changed)

ψ−1
k j =



















eψ−1
k j −

Ψ

eΨ
eψ−1

k i

N
∑

l=1

ψi l
eψ−1

l j , j 6= i

Ψ

eΨ
eψ−1

k i
eψ−1

k i

N
∑

l=1

eψi l
eψ−1

l j , j = i

(5.12)

This means that the inverses and the determinant ratios can be calculated fully once before the

sampling and then updated using the above formulas. This procedure is implemented in the

Slater class.

5.3.3 Jastrow Optimizations

The Jastrow factors presented in section 2.9.9, section 2.9.9 and section 2.9.9 also give rise to opti-

mizations in the case of moving only one particle at a time. In particular, the Padé function and

the simple exponential can both be represented by a matrix of size N ×D like this

J =
�

J (r 1) . . . J (r N ).
�

(5.13)

4Actual complexity of a determinant is O (n ×n ), with n being the size of the Slater matrix.
5!?.
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Moving one particle at a time means only one column in J is changed meaning only that column

needs to be updated. Additionally, the J matrix doesn’t actually need to be present in the code

since we are only interested in ratios J / eJ . If only one index i changes we have

J
eJ
= exp

 

∑

i< j

�

fi j − efi j

�

!

= exp

 

∑

i 6= j

fi j

!

. (5.14)

Notice that i is fixed in the last step.

The gradient of J can be represented as an N ×N ×D matrix

∇J =













0 ∇J (r 1,2) . . . ∇J (r 1,N−1)

∇J (r 2,1) 0 . . . ∇J (r 2,N−1)
...

...
...

...

∇J (r N ,1) . . . . . . 0













(5.15)

When only one particle is moved at a time only one row and column changes in this matrix. In

addition the matrix is symmetric the exception of a sign flip

∇J (r i j ) =−∇J (r j i ). (5.16)

Both of these optimizations are implemented in the PadeJastrow and ExpNQS classes.

For the NQS-Jastrow we notice that the sum in the exponential involving the weights can be

represented as a matrix W of size N ×H with H being the number of hidden biases with elements

Wi , j =
∑

d

x (d )i wi+d , j

σ2
. (5.17)

The entire exponential with the hidden biases is represented as a vector B of size H with elements

B j = exp

�

b j +
∑

i

Wi , j

�

. (5.18)

So for each iteration only one row in W is updated and then the entire B vector is recalculated

and reused.

The part involving only the visible biases can be optimized in the same manner as with the Padé

function and simple exponential, meaning one only needs to calculate

Ja

J ′a
= exp

�

(ri −ai )
2

σ2

�

. (5.19)

Again with i being the index of the moved particle. These optimizations are implemented in the

RBMJastrow class.
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5.3.3 Optimization For Tabulation

The Slater class checks on compile time the specific wavefunction class for the functions

• set: Called during initialization (before each sampling)

• reSetAll: Sets all matrices to zero (used in testing)

• initializeMatrices: Allocate memory

• update: Update positions and wavefunction

• reset: Revert to previous positions and wavefunction

• resetGradient: Revert to previous gradient

• acceptState: Update previous positions and wavefunction to current

• acceptGradient: Update previous gradient to current one

If these functions are implemented in the wavefunction class they will be called in by the VMC

class during the Metropolis sampling. The whole purpose for this is so that calculations can be

tabulated and then only the parts which are changed be updated. Detailed explanation of what

the functions can, and need to, do is given in the GitHub repository.

5.3.3 Tabulating Hermite Polynomials

In the HarmonicOscillator and HartreeFock classes used by VMC we calculate the Hermite

polynomials

Hn (
p
ωr ) =

∏

d

Hnd

�p
ωxd

�

Hn (
p
ωr ) =

∏

d

Hnd−1

�p
ωxd

�

Hn (
p
ωr ) =

∏

d

Hnd−2

�p
ωxd

�

(5.20)

for n = 0, . . . L where L is the number of basis functions in the Hartree-Fock basis forHartreeFock

and highest order of single-particle function for HarmonicOscillator. These are tabulated in a

matrix of size N ×D × L with N being the number of particles and D . The mapping goes by

H i j k =Hn (d )j

�p
ωx (d )i

�

. (5.21)

For each iteration in the Metropolis sampling, if we only move one particle at a time, only

one row changes in H i j k . This update is reflected in the functions mentioned in section 5.3.3.

initializeMatrices firstly allocates space for two matrices which represent the current and
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old versions of H i j k , the set function set calculates H i j k using the auto-generated header ex-

plained in section 5.5, update then updates the row which has changed and then acceptState

or reset is called depending on the Metropolis-Test.

5.4 Minimization

The central part of the Variational Monte-Carlo method is the actual variation of parameters.

This is, as explained in chapter 3, a minimization problem. We will in this chapter explain the

implementation of the methods presented in chapter 5 and also show some examples of how to

use Minimizer class, in which the mentioned methods are implemented.

The main class for minimizations is the Minimizer and is built as a friend class. This is a

C++ declaration6 which goes into the header of the class who is to befriended (in our case VMC)

with the class who is to be the friend (Minimizer). In this way Minimizer has full access to all

the variables and functions defined inside VMC even if said variables and functions are declared as

private7. The reason for this choice is just to split the whole minimization part of the variational

method from the actual sampling.

The method are implemented within the following functions

• minimizeSD Gradient Descent.

• minimizeBFGS Quasi-Newton with BFGS and Moré-Thuente linesearch.

• minimizeCG Quasi-Newton with Polak-Ribière and Moré-Thuente linesearch.

• minimizeASGD Stochastic-Adaptive-Gradient-Descent

• minimizeSABFGS Stochastic-Adaptive method with BFGS.

• minimizeSIAN Simulated Annealing.

The specific function is called based on the initial string given to Minimizer and the means to to

make a Minimizer object is to initialize it as

Minimizer<T>∗ m = new Minimizer<T>(vmc , "method" , numIterations , eps ) ;

m→minimize ( ) ;

6A C++ declaration is a phrase which goes in front of variables, functions and other objects and is a pure compiler
specific rule.

7On an equal note, this is truly not a good idea in general and great care, inner reflection and utmost scepticism
must be within the procedural motion of ones thought process before even the idea of running forth with such
a choice is grasped. It is up for discussion if mentioned procedures were completed before the calamity that is
Minimizer was implemented.
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where T is a sampler type (either BruteForce or ImportanceSampling) and vmc is the object

with said type initializes. The minimize function is the function which actually does the mini-

mization and follows the procedure given in figure 5.4.

Setup
Initialize vectors for derivatives

Run Sampler

Save energy given by Sampler

Start loop for m = 0 to numIterations

call updater
Switch to input method

if exhausted.

�

�∇ f
�

�≤ ε

False

True

Save current energy and
derivatives and

execute given method

End

Figure 5.4: Flow chart of procedure done by minimize function.

The energy after the last cycle (or after threshold is met) is the energy currently saved within

the VMC object.

5.5 Auto-Generation

5.5.5 Calculation of Hermite Polynomials

The analytic expressions involved in the quantum-dot systems are dependent on Hermite poly-

nomials and their coefficients. These are calculated symbolically using the recurrence relation

for Hermites with the SymPy package in python. These expressions are then written to C++ code

and written to a C++ -header file. The script can be found in https://github.com/Oo1Insane1oO/
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Hermite. The generated header file is then included in the integral class in HartreeFockSolver

and in the wavefunction classes(namely HartreeFock and HarmonicOscillator) in VMC.

5.5.5 Double-Well Basis

The basis built by the procedure described in section 3.4 is done in python using the eigenvalue

solver in the SciPy package. The script itself can be found in https://github.com/Oo1Insane1oO/

doubleWellFit, but is also included in the Hartree-Fock repository.

The script only builds(calculates the elements of) the H matrix

Hi j = ε
HO
i δi j +

¬

ψHO
i

�

�

�V DW
n

�

�

�ψHO
j

¶

, (5.22)

from equation (3.58) and then finds its eigenvalues and eigenvectors. These are then written to a

C++ header file8 as a class with a static function9 to get coefficients and eigenvalues. This file is

then included in the DoubleWell integral class and inherited from.

5.6 Verification

In order to be confident in the results presented for the double-well potential we, along with

unit-tests, benchmarked our results with the harmonic oscillator potential. The tests are set-up

with the UnitTest++ [9] library and one only needs to pass a flag T E ST S =O N at compile time to

enable them. The benchmark results are given in tables 1, 2, 5, 6, 7, 8, 9 and 10.

5.6.6 Hartree-Fock

The first of the test for the Hartree-Fock method was to see if it reproduced the exact energies in

the case of no interaction(neglect Coulomb-term in Hamiltonian). These tests are given in tests

directory in the GitHub repository.

The benchmarks using the Hartree-Fock method with harmonic oscillator potential is given

in table 1. These results are directly compared with the master’s thesis [38] and article [45].

For the double-well system the only benchmark was the result from master’s thesis of Høg-

berget[28]with 2 particles. However it is expected that the energies lie somewhere between the

single-well results and the non-interaction case due to the potential itself being a perturbation of

the single-well system. The results are given in tables 3, 4, 11, 13, 12 and 14.

8Hard-coding the smart way
9Static means the function does not need an object of the container class to be called.
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5.6.6 Variational Monte-Carlo

The first tests here were also to find the exact energies, which are also given as tests in a similar

fashion as with the Hartree-Fock. The second benchmark was to check if the energies were

comparable with the results of [28] using basis functions of form

φ j (r ) =ψ
HO
n j

�p
αωr

�

, (5.23)

with the Padé function given in equation (2.84).

For the real deal with the Hartree-Fock basis we checked that the VMC method could reproduce

the Hartree-Fock energies when no Jastrow factor was used, that is only a single-particle Slater-

determinant with no variational parameters as the wavefunction ansatz. The expression is

φHF
i j =

∑

l

C j lψ
HO
nl

�p
ωri

�

. (5.24)

These results are also implemented as a bunch of tests.

For the benchmarks, we compared our energies again with the thesis of Høgberget[28].

For the double-well system we only used a Hartree-Fock basis and checked that the Hartree-

Fock energies were reproduced (in case with no Jastrow). The only benchmark was again the

system with two particles.
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6
RESULTS

No amount of physics theory will ever be interesting if it was not backed up by some proof or at

least some results.

In this chapter we present the results from the simulations of the quantum dot system in the

harmonic oscillator system and the double-well system. The harmonic oscillator was used mainly

as a benchmark for verification for which is performed well. We also present some results regarding

the minimization scheme in the variational method. All the simulations with the variational

method was done with importance sampling as well.

6.1 Tweaks and Experimentation

With the minimization methods clarified and the function to be minimized outlined the actual

minimization could start1.

Within the minimization methods presented there are quite the number of constant parameters

which needed to be set pre-hand. Often one finds these some-what manually with a close eye

on the function to be minimized. This approach is the one we used in the VMC method, with

the most memorable one being the parameters set in the simulated annealing method and the

notorious step-size in the Metropolis sampling.

1With the methods at disposal the real challenge was yet to come...
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6.1.1 Hartree-Fock

With the Hartree-Fock method the only part tweaked was the number of previous quantities to

use in the DIIS procedure. Essentially just changing M in (equation (2.43))

Y =
M
∑

m=1

cm y i . (6.1)

The exact number was changed to get convergence, however somewhere between M = 2 to M = 8

gave good results.

6.1.1 Variational Monte-Carlo

For the VMC runs the only parameter to be tweaked was the step-size∆t which had to be tweaked

depending onω and the number of particles. The general rule was to increase∆t whenωwas

lowered, this has to do with the form of the potential, see figure 2.1a. For N , the number of particles,

the step had to be slightly increased as N increased, this is due to the repulsion part being stronger

with more particles.

We also mention that the only criteria for convergence was the absolute value of the derivative

|∇α 〈E [α; R ]〉|<ε (6.2)

With ε ∈ (0.1,0.001) depending on the size of the system. The general idea was to look for sign

oscillations of the gradient with respect to the variational parameters. If it started to oscillate the

maximum step-size in the quasi-newton scheme was reduced(the maximum allowed in the case

with the Moré-Thuente linesearch) and looked to see if any improvement was made.

Simulated Annealing

With the simulated annealing the idea was to use it as a sort of "thermalization", that is to run it

initially in hope that it finds the valley within the function-mesh in which the global minima lies.

The approach was to run a great number of iterations starting with a temperature of 100. In order

to finish those runs in time they were run in parallel and the parameters that gave the lower energy

and lowest where then used as a starting point for the quasi-newton method which was then run

with a close eye on the energies and variance2.

RBM

For the RBM-Jastrow we did not tweak as much manually, but we initialized the parameters in the

RBM-wavefunction with a Gaussian distribution with mean 0 and variance between 0.01−1.0 and

2Coined as the VBS method, VMC-babysitting.
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settled with a value that gave a fairly good acceptance rate and variance in the sampling without

the energies being way off the results with the Padé-function.

6.2 Hartree-Fock

6.2.2 Harmonic Oscillator

Table 1: RHF with the 2D HO-system. L is the number of spacial orbitals used and N is the number

of particles. The "−" indicates that the system cannot be run with such few basis functions.

N

ω L 2 6 12 20 30 42 56

0.10

1 0.596333 − − − − − −
3 0.596333 4.864244 − − − − −
6 0.526903 4.435740 17.272337 − − − −

10 0.526903 4.019787 15.358377 43.303270 − − −
15 0.525666 3.963148 14.098239 38.031297 89.280189 − −
21 0.525666 3.870617 13.700447 35.572157 78.990503 162.260603 −
28 0.525635 3.863135 13.270861 34.076983 71.159148 144.850714 269.962677

36 0.525635 3.852880 13.151070 32.907610 70.171143 135.399113 242.763519

45 0.525635 3.852591 13.000151 32.379047 67.961359 128.642142 227.093062

55 0.525635 3.852393 12.969872 31.823087 66.272349 124.116636 216.406591

66 0.525635 3.852391 12.933578 31.606556 65.024272 120.477371 207.859610

78 0.525635 3.852382 12.929215 31.359747 64.244714 92.494105 162.039924

91 0.525635 3.852381 12.924947 31.280274 63.531909 90.361587 153.361100

105 0.525635 3.852381 12.924756 31.190173 63.167691 89.034638 148.084050

120 0.525635 3.852381 12.924659 26.316806 62.778269 88.267263 144.999311

0.28

1 1.223192 − − − − − −
3 1.223192 9.266117 − − − − −
6 1.141775 8.725018 32.056852 − − − −

10 1.141775 8.139719 29.582103 79.220310 − − −
15 1.141741 8.095876 27.596111 72.011644 161.787811 − −
21 1.141741 8.021956 27.194900 67.907357 146.805026 292.019496 −
28 1.141717 8.020571 26.722532 66.336613 139.073038 265.770363 483.281000

36 1.141717 8.019625 26.651149 64.754792 134.380347 252.164864 441.883026

45 1.141713 8.019611 26.559697 64.309088 131.153627 242.160894 418.703745
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55 1.141713 8.019571 26.554432 63.805612 129.589656 236.417148 402.296590

66 1.141712 8.019571 26.550045 63.695333 128.063933 231.961536 391.319694

78 1.141712 8.019570 26.550035 63.567267 127.516181 229.033490 383.057251

91 1.141712 8.019570 26.550031 63.552773 126.918914 227.252510 377.466395

105 1.141712 8.019569 26.550027 63.539438 126.748572 225.641452 373.080210

120 1.141712 8.019569 26.550025 63.539007 126.559672 224.937324 303.460780

0.50

1 1.886227 − − − − − −
3 1.886227 13.640713 − − − − −
6 1.799856 13.051620 46.361130 − − − −

10 1.799856 12.357471 43.663267 113.412648 − − −
15 1.799748 12.325128 41.108851 105.288766 230.039825 − −
21 1.799748 12.271499 40.750512 99.754600 212.145519 413.129302 −
28 1.799745 12.271375 40.302719 98.193478 202.100349 380.824889 681.044994

36 1.799745 12.271361 40.263752 96.553216 197.568022 363.766695 631.885017

45 1.799743 12.271337 40.216688 96.223206 193.554142 352.630536 601.088912

55 1.799743 12.271326 40.216252 95.833317 192.225626 345.721160 581.182893

66 1.799742 12.271324 40.216195 95.785792 190.810227 341.838273 568.944986

78 1.799742 12.271320 40.216165 95.734582 190.462448 338.512355 559.966285

91 1.799742 12.271320 40.216144 95.733305 190.069482 337.206237 554.039857

105 1.799742 12.271320 40.216143 95.732781 190.007169 335.822963 550.259738

120 1.799742 12.271320 40.216139 95.732764 189.942874 335.425547 547.164438

1.00

1 3.253314 − − − − − −
3 3.253314 22.219813 − − − − −
6 3.162691 21.593198 73.765549 − − − −

10 3.162691 20.766919 70.673849 177.963297 − − −
15 3.161921 20.748402 67.569930 167.899811 357.543694 − −
21 3.161921 20.720257 67.296869 161.339721 336.270048 637.559628 −
28 3.161909 20.720132 66.934745 159.958722 322.684662 597.572501 1045.153168

36 3.161909 20.719248 66.923094 158.400172 318.435444 574.794727 979.581293

45 3.161909 20.719248 66.912244 158.226030 314.080027 563.971458 943.145991

55 3.161909 20.719217 66.912035 158.017667 313.170733 555.393205 920.685095

66 3.161909 20.719215 66.911365 158.010276 312.139011 552.472493 906.165846

78 3.161909 20.719215 66.911364 158.004951 312.010418 549.388384 898.709307

91 3.161908 20.719215 66.911323 158.004757 311.869364 548.688114 892.082465

105 3.161908 20.719215 66.911322 158.004317 311.863887 547.907494 889.765470

120 3.161908 20.719215 66.911321 158.004315 311.860399 547.801022 887.301998
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Table 2: RHF with the 3D HO-system. L is the number of spacial orbitals used and N is the number
of particles. The "−" indicates that the system cannot be run with such few basis functions.

N
ω L 2 8 20 40

0.10

1 0.552355 − − −
4 0.552355 7.035821 − −

10 0.529067 6.630816 37.165887 −
20 0.694713 6.005329 33.059287 130.747321
35 0.529066 5.960234 30.287665 112.917323
56 0.529066 5.872465 27.977530 104.463835
84 0.529065 5.868615 28.424272 92.416262

120 0.529065 5.862549 28.165123 85.209104

0.28

1 1.262270 − − −
4 1.262270 13.801205 − −

10 1.237384 13.307332 68.950504 −
20 1.237384 12.483549 63.643967 235.682314
35 1.237229 12.455162 59.237015 210.630043
56 1.237229 12.399375 58.417453 197.754907
84 1.237225 12.398982 57.328784 190.564893

120 1.237225 12.398687 57.201823 186.064771

0.50

1 2.064282 − − −
4 2.064282 20.707652 − −

10 2.038858 20.174413 99.689043 −
20 2.038858 19.243279 93.747893 333.818879
35 2.038523 19.225643 88.237201 304.701805
56 2.038523 19.191660 87.541531 287.355799
84 2.038509 19.191654 86.506890 280.356812

120 2.038509 19.191626 86.439181 274.994258

1.00

1 3.798016 − − −
4 3.798016 34.557120 − −

10 3.772173 33.996867 158.555190 −
20 3.772173 32.945301 152.252978 516.025169
35 3.771606 32.937947 145.038663 481.710199
56 3.771606 32.925002 144.518526 458.308755
84 3.771574 32.924935 143.704615 452.880282

120 3.771574 32.924628 143.684577 446.315149
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6.2.2 Double-Well

For the double-well we used the larges basis-set from the Hartree-Fock calculations, which was

120 spacial functions. Meaning the sum over l in (equation (3.54))
�

�

�ψDW
p

¶

=
∑

l

C DW
l p

�

�ψHO
l

�

, (6.3)

runs up to 120 while the number of basisfunctions used is chosen just as usual3. Keep in mind

that the degeneration is lifted in the double-well system. The resulting energies for are given in

tables 3 and 4.

Table 3: Energies for the 2D double-well system with R = 2.0 and 120 spacial HO-functions.

N
ω L 2 4 6 8 10 12

1.00

2 2.614045 − − − − −
4 2.572112 8.449791 − − − −
6 2.572112 8.343256 17.448309 − − −
8 2.551560 8.266869 17.255396 29.038820 − −

10 2.550609 8.186828 17.123528 28.460691 42.176859 −
12 2.550609 8.186828 16.953490 28.160636 41.610074 58.282067
14 2.550565 8.185889 16.948999 28.073802 41.188306 57.685346
16 2.550565 8.176024 16.906547 28.009987 41.065445 56.993033
18 2.550282 8.175819 16.902102 27.988350 41.032690 56.876960
20 2.550147 8.175781 16.898007 27.922423 40.909824 56.692874
22 2.550147 8.175730 16.897306 27.919717 40.863587 56.603646
24 2.550127 8.175667 16.897284 27.910955 40.836082 56.547895
26 2.550127 8.175135 16.895412 27.901747 40.813443 56.374309
28 2.550126 8.175118 16.895407 27.900143 40.807591 56.366349
30 2.550126 8.175034 16.895385 27.900003 40.790316 56.316550
32 2.550126 8.175026 16.895354 27.899753 40.788743 56.311534
34 2.550107 8.175015 16.895257 27.898457 40.784378 56.298971
36 2.550107 8.175015 16.895217 27.898456 40.783153 56.297067
38 2.550102 8.175015 16.895162 27.898368 40.782215 56.291868
40 2.550101 8.175015 16.895156 27.898343 40.781392 56.289293
42 2.550101 8.174999 16.895150 27.898275 40.781311 56.279636
44 2.550101 8.174999 16.894978 27.898136 40.781241 56.279533
46 2.550101 8.174994 16.894976 27.898086 40.781199 56.277412
48 2.550101 8.174994 16.894971 27.898061 40.781090 56.277407
50 2.550101 8.174989 16.894969 27.897886 40.780997 56.277117
52 2.550101 8.174989 16.894967 27.897871 40.780950 56.277028
54 2.550101 8.174988 16.894966 27.897828 40.780876 56.276991
56 2.550100 8.174987 16.894963 27.897827 40.780821 56.276945

3Keep increasing until Hatree-Fock limit is reached.
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Table 4: Energies for the 3D double-well system with R = 2.0 and 120 spacial HO-functions.

N
ω L 2 4 8 10 14

1.00

2 3.298116 − − − −
4 3.298116 9.398891 − − −
5 3.285820 9.331379 − − −
7 3.285820 9.331379 − − −
8 3.285820 9.289217 29.378674 − −

11 3.276743 9.252427 29.211193 42.323259 −
13 3.276743 9.252427 29.040386 42.097755 −
16 3.276743 9.219465 28.922935 41.928041 73.165457
17 3.276685 9.217823 28.905024 41.605395 72.629768
19 3.276685 9.217823 28.905024 41.605395 72.226197
23 3.276685 9.217823 28.593576 41.113311 71.455889
26 3.276609 9.217740 28.589614 41.023458 71.271105
30 3.276609 9.217740 28.589614 41.023458 70.646966

6.3 VMC

Here are the results for the quantum-dot simulations with the variational method both with

and without a Hartre-Fock basis. We only used a basis as large as the one needed to reach the

Hartree-Fock limit4 or up to the largest one run in case the limit was not reached. The exact

numbers are seen in tables 1 and 2. The first test of the code was to reproduce the results of [28, 45]

using

ΨT = det(Φ)JPadé (6.4)

as the trial wavefunction where

Φi j =
∏

d

Hn j d

�p
αωxi d

�

exp
�

−
αω

2
x 2

i d

�

(6.5)

and

JPadé = exp

 

∑

i< j

ai j ri j

1+β ri j

!

. (6.6)

Results are presented in table 5

4See section 2.8.8
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6.3.3 Two-Dimensional Harmonic Oscillator

Table 5: Energies of VMC calculation of two dimensional harmonic oscillator using equation (6.4)
as the trial wavefunction. Number of Monte-Carlo samples used is 220 = 1048576. Refs. F. Pederiva
[45].

ω[a.u] N
2 6 12 20

0.1 0.4407(4) 3.5650(4) 12.3164(4) 30.0480(4)
0.28 1.0020(4) 7.6198(4) 25.5948(3) 61.8090(3)
0.5 1.6650(4) 11.8017(4) 39.3166(3) 93.9240(2)
1.0 3.0000(5) 20.2863(3) 68.1465(3) 156.2778(2)

Table 6: Energies of two dimensional harmonic oscillator using basis built with Hartree-Fock.
Number of Monte-Carlo samples used is 220 = 1048576. The numbers inside the curly brackets
indicate the number at which the basis expansion was truncated(the Hartree-Fock limit).

ω[a.u] N
2 6 12 20

0.1 0.46552(5){15} 3.70137(4){36} 12.64342(4){91} -
0.28 1.04939(4){6} 7.89627(4){36} 26.21301(4){66} 62.93503(5){120}
0.5 1.70130(4){6} 12.02776(4){21} 39.76442(3){45} 95.21976(3){91}
1.0 3.05625(4){6} 20.45876(3){36} 66.37115(3){45} 157.41119(3){78}

The energies are consistently higher than with the wavefunction in equation (6.4). This only shows

that the single-particle wavefunctions constructed from Hartre-Fock are actually not as good of a

guess on the trial-wavefunction. Introducing a similar α parameter in the Hartree-Fock basis as

ψHF
p

�p
αωr

�

=
∑

l

Cl pψ
HO
l

�p
αωr

�

(6.7)

reduces the energies further. The results are presented in table 7. This is basically taking the

constructed basis from the Hartree-Fock simulations and evaluation the function with a variational

parameter inspired from the same approach as with the results in table 5.
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Table 7: Energies of two dimensional harmonic oscillator using basis built with Hartree-Fock
along with variational parameter α as in equation (6.7). Number of Monte-Carlo samples used
is 220 = 1048576. The numbers inside the curly brackets indicate the number at which the basis
expansion was truncated(the Hartree-Fock limit).

ω[a.u] N
2 6 12 20

0.10 0.44473(5){15} 3.63897(4){36} 12.46408(4){91} −
0.28 1.04978(4){6} 7.72929(4){36} 25.96595(4){66} 62.65652(3){120}
0.50 1.66418(4){6} 11.97781(4){21} 39.57182(3){45} 94.76303(3){91}
1.00 3.00624(4){6} 20.38811(3){36} 66.28996(3){45} 157.46167(3){78}

As mentioned, the energies are consistently lower, however they are not as low as with the

results with equation (6.4)(table 5). This again means that for the harmonic oscillator case the

optimal trial wavefunction is indeed not the Hartree-Fock basis, but the harmonic oscillator

functions. The energies are however very close giving a good foundation for believing the code

works properly as intended.

6.3.3 Three-Dimensional Harmonic Oscillator

Here are the same results for the three-dimensional case.

Table 8: Energies of VMC calculation of three dimensional harmonic oscillator using equation (6.4)
as the trial wavefunction. Number of Monte-Carlo samples used is 220 = 1048576.

ω[a.u] N
2 8

0.1 0.50006(5) 5.80479(4)
0.28 1.20156(5) 12.48178(4)
0.5 2.00027(5) 19.33356(4)
1.0 3.72985(5) 33.30958(4)

Table 9: Energies of three dimensional harmonic oscillator using basis built with Hartree-Fock.
Number of Monte-Carlo samples used is 220 = 1048576. The numbers inside the curly brackets
indicate the number at which the basis expansion was truncated(the Hartree-Fock limit).

ω N
2 8

0.1 0.51122(5){70} 5.87372(4){120}
0.28 1.21844(5){70} 12.36177(4){168}
0.5 2.02030(4){20} 19.15006(4){112}
1.0 3.72918(5){20} 33.58046(4){168}

101



6.3 6

Table 10: Energies of three dimensional harmonic oscillator using basis built with Hartree-Fock
along with variational parameter α as in equation (6.7). Number of Monte-Carlo samples used
is 220 = 1048576. The numbers inside the curly brackets indicate the number at which the basis
expansion was truncated(the Hartree-Fock limit).

ω N
2 8

0.1 0.50751(5){70} 5.84082(4){240}
0.28 1.20320(5){20} 12.37435(4){168}
0.5 2.01439(4){20} 19.09917(4){112}
1.0 3.72959(5){70} 33.04162(4){168}

Again the energies are higher than with equation (6.4), meaning the same conclusion for the

optimal wavefunction as with the two-dimensional case is still the case for the three-dimensional

case as well.

6.3.3 Two-Dimensional Double-Well

Table 11: Energies for the 2D double-well system with a Hartree-Fock basis and R = 2.0 using
120 basis function in the eigenvalue problem and the Padé Jastrow as correlation function. The
numbers inside the curly braces indicate the number of shells used in the Hartree-Fock. Number
of Monte-Carlo samples used was 220 = 1048576.

ω N
2 4 6 8

1.0 2.42238(4){10} 7.95247(4){42} 16.61419(4){44} 27.54453(3){50}

Table 12: Energies for the 2D double-well system with a Hartree-Fock basis and R = 2.0 using 120
basisfunctions in the eigenvalue problem and anα and Padé-function as correlation. The numbers
inside the curly brackets indicat ethe number at which the basis expansion was truncated(the
Hartree-Fock limit). Number of Monte-Carlo samples used is 220 = 1048576.

ω N
2 4 6 8

1.0 2.36618(4){10} 7.90232(4){42} 16.55609(4){44} 27.58524(4){50}
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6.3.3 Three-Dimensional Double-Well

Table 13: Energies for the 3D double-well system with a Hartree-Fock basis and R = 2.0 using
120 basis function in the eigenvalue problem and the Padé Jastrow as correlation function. The
numbers inside the curly braces indicate the number of shells used in the Hartree-Fock. Number
of Monte-Carlo samples used was 220 = 1048576.

ω N
2 4 8

1.0 3.25118(4){11} 9.17489(4){17} 28.49671(4){26}

Table 14: Energies for the 3D double-well system with a Hartree-Fock basis and R = 2.0 using
120 basis function in the eigenvalue problem and and α parameter and the Padé Jastrow as
correlation function. The numbers inside the curly braces indicate the number of shells used in
the Hartree-Fock. Number of Monte-Carlo samples used was 220 = 1048576.

ω N
2 4 8

1.0 3.22226(4){11} 9.17013(4){17} 28.62826(4){26}

6.3.3 Densities

The resulting one-body radial densities described in section 2.11 are presented here.
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Harmonic Oscillator
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Figure 6.1: One-Body density for the two dimensional harmonic oscillator potential using a
Hartree-Fock basis with Padé function and α parameter.
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(b) N = 20,ω= 1.0.

Figure 6.2: One-Body density for the two dimensional harmonic oscillator potential using a
Hartree-Fock basis with Padé function and α parameter.
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Figure 6.3: One-Body density for the three dimensional harmonic oscillator potential using a
Hartree-Fock basis with Padé function and α parameter.
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Figure 6.4: One-Body density for the three dimensional harmonic oscillator potential using a
Hartree-Fock basis with Padé function and α parameter.
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Double-Well
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Figure 6.5: One-Body density for the two dimensional double-well potential using a Hartree-Fock
basis with Padé function and α parameter.
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Figure 6.6: One-Body density for the two dimensional double-well potential using a Hartree-Fock
basis with Padé function and α parameter.
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Figure 6.7: One-Body density for the three dimensional double-well potential using a Hartree-Fock
basis with Padé function and α parameter.
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CONCLUSION

The aim of the thesis was to build a basis for closed-shell harmonic oscillator and double-well po-

tentials in both two- and three dimensions and make a general code for simulating said potentials

using the Hartree-Fock method and the Variational Monte Carlo method. In order to simulate the

double-well potential we had to build the basis ourselves. This was made using the harmonic

oscillator functions as basis functions. To run the Hartree-Fock simulation for the double-well a

set of integral elements had to be calculated. This was successfully done in Cartesian coordinates

from scratch.

The implementation of the Hartree-Fock method and the variational method were both

made in C++ and can be extended with little effort to other systems. With the extension being

all the simpler for systems with basis functions that are Hermite-functions or Gauss-Hermite

functions. The implementation was also tested and verified with the harmonic oscillator system

and the tests perform very well indicating that the machinery is working well. The Hartree-Fock

implementation reproduces the Hartree-Fock limit energies compared with literature for up to

30 particles in the two dimensional case and 20 particles in three dimensions. The energies for

larger number of particles converge towards the limit indicating that we only need to run with

more shells in order to reach it. We also experimented with different Jastrow factors with the

variational method and managed to reproduce the energies from the literature for those as as

well and managed to get a lower energy than with the Hartree-Fock method as expected.

The double-well simulation also seem good. The energies are lower than the corresponding

energy with the single-well and the variational method manages to lower the energies further from

the Hartree-Fock limit. The double-well was also run for more than 2 particles. The Hartree-Fock

limit was reached for all the cases with the double-well.
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We made an effort in automation of the numerical minimization in the variational method.

This was fairly successful as long as the Simulated Annealing scheme was run for a long time. Still

the minimization had to be tweaked and monitored in order to get a good result. The methods

themselves were however successful within their own limitations and worked as a great tools for

finding the ground-state energy.

In general the project was a success. The methods of interest performed well for the systems

to be studied and the resulting code from the implementations ended up general and extendable.

We limited ourselves to isotropic gaussian functions (the constituents of Hermite-functions),

however it is reasonable to imagine that non-isotropic gaussians could give an equally good

or even better basis for the double-well system. As it is now the computational time is not too

long, however it could be reduced since one might need far less basis functions when using

non-isotropic gaussians. Experimentations with the centering of the gaussians is also a part left

out in this thesis. The two-body elements in Hartre-Fock are setup in the simplest way by writing

out all the elements. This matrix is known to be very sparse meaning an implementation using

sparse matrices would give a better performance.
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A.1 Atomic Unit

The units used in the calculations are known as atomic units. The premise is to write the natural

length unit in terms of the Bohr radius[19]

a0 =
4πε0ħh 2

me e 2
= 0.529Å, (A.1)

giving the energy unit known as a Hartree and has the value

EHartree =me

�

4πε0

ħhe

�2

= 27.211eV, (A.2)

and the electronmass me , elementary charge e , reduced Plancks constant ħh and free-space

permittivity ε0 are all equal to unity,

me = e = ħh = 4πε0 = 1. (A.3)

The kinetic operator can then be rewritten to

K =−
1

2

∑

i

∇2
i , (A.4)

and the Coulomb interaction is simply

VI

∑

i< j

1

ri j
, (A.5)

with ri j also rescaled in terms of the Bohr radius.
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A.3 A

A.2 Interaction-Term in Fock-Operator

Introducing the so-called permutation operator P which interchanges the labels of particles

meaning we can define

A ≡
1

N !

∑

p

(−1)p P, (A.6)

the so-called antisymmetrization operator. This operator has the following traits:

• The Hamiltonian H and A commute since the Hamiltonian is invariant under permutation.

• A applied on itself (that is A2) is equal to itself since permuting a permuted state reproduces

the state.

We can now express our Slater ΨT in terms of A as

ΨT =
p

N !A
∏

i , j

ψi j , (A.7)

where ψi j = ψ j (r i ) is element i , j of the Slater matrix (the matrix associated with the Slater

determinant ΨT ).

The interaction part of H is then

〈ΨT |HI |ΨT 〉=N !
∏

i , j




ψi j

�

�AHI A
�

�ψi j

�

. (A.8)

The interaction HI and A commute since A commutes with H giving

AHI A
�

�ψi j

�

=
1

N !2

∑

i< j

∑

p

(−1)2p fi j P
�

�ψi j

�

(A.9)

=
1

N !2

∑

i< j

fi j (1−Pi j )
�

�ψi j

�

. (A.10)

The factor 1−Pi j comes from the fact that contributions with i 6= j vanishes due to orthogonality

when P is applied. The final expression for the interaction term is thus

〈ΨT |HI |ΨT 〉=
∑

i< j

∏

k ,l

�


ψk l

�

� fi j

�

�ψk l

�

−



ψk l

�

� fi j

�

�ψl k

��

. (A.11)

Writing out the product and realizing the double summation over pairs of states we end up with

〈ΨT |HI |ΨT 〉=
1

2

∑

i , j

�


ψi jψ j i

�

� fi j

�

�ψi jψ j i

�

−



ψi jψ j i

�

� fi j

�

�ψ j iψi j

��

. (A.12)

More comprehensive details and derivations are given in [26, 56].
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A.3 Multi-Index Notation

This section will give a brief overlook of a notation which compresses indices running in similar

fashion, the so-called multi-index notation[61]. We will make use of this to reduce indices in each

dimension down to one.

The rules are stated as, given a n-tuple (x1, . . . xn ) over any field F (real, complex, etc.), a multi

index is defined to be

i = (i1, . . . in ) ∈Zn
+. (A.13)

with expansions;

|i |= |i1|+ · · ·+ |in |

i != i1! . . . in !

x i = x i1
1 . . . x in

n ∈F[x ]

i ± j = (i1± j1, . . . , in + jn ) ∈Z

(A.14)

In essence the notation just wraps the notion of element-wise operations into one single index

variable.
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B.1 Derivatives of Hermite Functions

The gradient of Hermite functions on the form

ψn (r ) =
∏

d

ψnd
(xd ) =

∏

d

Hnd
(
p
ωxd )e

−ω2 x 2
d , (B.1)

is

∇ψn (r ) =
∑

d

ê
∏

d ′ 6=d

ψnd ′

∂ ψnd

∂ xd

=
∑

d

ê
∏

d ′ 6=d

ψnd ′
ψnd

p
ω

�

∂ Hnd

∂ u

1

Hnd

− xd

�

=ψn

p
ω
∑

d

ê

�

2nd

Hnd−1(
p
ωxd )

Hnd
(
p
ωxd )

− xd

�

, (B.2)

and the Laplacian follows

∇2ψn (r ) =
∑

d

∏

d ′ 6=d

ψnd ′

∂ 2ψnd

∂ xd
2

=ψnω
∑

d

��

4nd (nd −1)Hnd−2(
p
ωxd )−

p
ωxd Hnd−1(

p
ωxd )

�

Hnd
(
p
ωxd )

+ωx 2
d −1

�

. (B.3)
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The derivative with respect to the variational parameter α is

∂ ψn

∂ α
=
∂

∂ α

∏

d

Hnd
(
p
ωxd )e

−ω2 x 2
d

=
∑

d

∏

d ′ 6=d

ψnd ′
(xd ′)

∂ ψnd
(xd )

∂ α

=ψn (r )
∑

d

ωxd

�

ndp
αω

Hnd−1

�p
αωxd

�

Hnd

�p
αωxd

� −
ωx 2

d

2

�

=ψn (r )

�

s

ω

α

∑

d

xd nd

Hnd−1

�p
αωxd

�

Hnd

�p
αωxd

� −
ω

2
r 2

�

. (B.4)

B.2 Derivatives of Padé-Jastrow Function

Given the Padé-Jastrow function

J = exp

 

∑

i< j

fi j

!

, fi j =
ai j ri j

1+β ri j
. (B.5)

The general expression for the gradient and Laplacian with respect to particle position k is

∇k J = J
∑

j 6=k

r k j

rk j

∂ fk j

∂ rk j

∇2
k J =

(∇k J )2

J
+ J

∑

j 6=k

�

∂ fk j

∂ rk j

D −1

rk j
+
∂ 2 fk j

∂ rk j
2

�

.

(B.6)

Notice that the sum with j 6= k is only a sum over j with k fixed. The derivatives of f are

∂ fk j

∂ rk j
=

ak j
�

1+β rk j

�2

∂ 2 fk j

∂ rk j
2
=−

2ak jβ
�

1+β rk j

�3

. (B.7)

And the derivative with respect to the variational parameter β

∂ fk j

∂ β
=−

ak j r 2
k j

�

1+β rk j

�2 (B.8)

B.3 Derivatives of NQS-Wavefunction

Given the NQS-Wavefunction

J = exp

�

−
N
∑

i=1

(r i −a i )
2

2σ2

�

M
∏

j

�

1+E j

�

. (B.9)
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The gradient is

∇k J

J
=∇k ln(J )

=−
r k −a k

σ2
+

M
∑

j=0

D
∑

d=1

ê d

wk+d , j

σ2
�

1+ 1
E j

� (B.10)

and the Laplacian

∇2
k J

J
=∇2

k ln(J )

=
�∇k J

J

�2

−
D

σ2
+

M ,D
∑

j=1,d=1

w 2
k+d , j E j

σ4
�

1+E j

�2 , (B.11)

with

Wj ≡
N
∑

i=1

D
∑

d=1

x (d )i wi+d , j

σ2

E j ≡ exp
�

b j +Wj

�

. (B.12)

The derivative with respect to the visible bias is

1

J

∂ J

∂ al
=

xl −al

σ2
, (B.13)

and the hidden bias

1

J

∂ J

∂ bl
=
∂

∂ bl
ln(J )

=
1

1+ 1
E j

, (B.14)

and the weights

1

J

∂

∂ wk l
=

∂

∂ wk l
ln(J )

=
xk

σ2
�

1+ 1
E j

� . (B.15)

Notice that the indices k and l are here indiscriminate towards the dimensional component in

relation to x . This means that xl or xk represents just a particle position in a dimension.
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Table 1: Eigenvalues for double-well functions in 2D with R = 2.0 andω= 1.0

L 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

1 0.93581 0.93581 0.81130 0.81130 0.80989 0.80989 0.80959 0.80959 0.80954 0.80954 0.80951 0.80951 0.80950 0.80950 0.80949

2 - 1.37162 1.37162 1.23653 1.23653 1.23441 1.23441 1.23426 1.23426 1.23425 1.23425 1.23424 1.23424 1.23424 1.23424

3 - 1.93581 1.93581 1.81130 1.81130 1.80989 1.80989 1.80959 1.80959 1.80954 1.80954 1.80951 1.80951 1.80950 1.80950

4 - - 2.21404 2.21404 2.00420 2.00420 2.00055 2.00055 2.00013 2.00013 2.00008 2.00008 2.00005 2.00005 2.00004

5 - - 2.37162 2.37162 2.23653 2.23653 2.23441 2.23441 2.23426 2.23426 2.23425 2.23425 2.23424 2.23424 2.23424

6 - - 2.93581 2.93581 2.81130 2.70373 2.70373 2.69787 2.69787 2.69751 2.69751 2.69749 2.69749 2.69748 2.69748

7 - - - 2.94252 2.94252 2.81130 2.80989 2.80989 2.80959 2.80959 2.80954 2.80954 2.80951 2.80951 2.80950

8 - - - 3.21404 3.21404 3.00420 3.00420 3.00055 3.00055 3.00013 3.00013 3.00008 3.00008 3.00005 3.00005

9 - - - 3.37162 3.37162 3.23653 3.23653 3.23441 3.23441 3.23426 3.23426 3.23425 3.23425 3.23424 3.23424

10 - - - 3.93581 3.80710 3.80710 3.50765 3.50765 3.49933 3.49933 3.49871 3.49871 3.49867 3.49867 3.49865

11 - - - - 3.93581 3.81130 3.70373 3.70373 3.69787 3.69787 3.69751 3.69751 3.69749 3.69749 3.69748

12 - - - - 3.94252 3.94252 3.81130 3.80989 3.80989 3.80959 3.80959 3.80954 3.80954 3.80951 3.80951

13 - - - - 4.21404 4.21404 4.00420 4.00420 4.00055 4.00055 4.00013 4.00013 4.00008 4.00008 4.00005

14 - - - - 4.37162 4.37162 4.23653 4.23653 4.23441 4.23441 4.23426 4.23426 4.23425 4.23425 4.23424

15 - - - - 4.93581 4.62520 4.62520 4.29240 4.29240 4.28089 4.28089 4.28024 4.28024 4.28023 4.28023

16 - - - - - 4.80710 4.80710 4.50765 4.50765 4.49933 4.49933 4.49871 4.49871 4.49867 4.49867

17 - - - - - 4.93581 4.81130 4.70373 4.70373 4.69787 4.69787 4.69751 4.69751 4.69749 4.69749

18 - - - - - 4.94252 4.94252 4.81130 4.80989 4.80989 4.80959 4.80959 4.80954 4.80954 4.80951

19 - - - - - 5.21404 5.21404 5.00420 5.00420 5.00055 5.00055 5.00013 5.00013 5.00008 5.00008

20 - - - - - 5.37162 5.37162 5.23653 5.12518 5.12518 5.11027 5.11027 5.10933 5.10933 5.10930

21 - - - - - 5.93581 5.51138 5.51138 5.23653 5.23441 5.23441 5.23426 5.23426 5.23425 5.23425

22 - - - - - - 5.62520 5.62520 5.29240 5.29240 5.28089 5.28089 5.28024 5.28024 5.28023

23 - - - - - - 5.80710 5.80710 5.50765 5.50765 5.49933 5.49933 5.49871 5.49871 5.49867

24 - - - - - - 5.93581 5.81130 5.70373 5.70373 5.69787 5.69787 5.69751 5.69751 5.69749

25 - - - - - - 5.94252 5.94252 5.81130 5.80989 5.80989 5.80959 5.80959 5.80954 5.80954

26 - - - - - - 6.21404 6.21404 6.00420 5.94989 5.94989 5.93092 5.93092 5.92987 5.92987

27 - - - - - - 6.37162 6.37048 6.23653 6.00420 6.00055 6.00055 6.00013 6.00013 6.00008

28 - - - - - - 6.93581 6.37162 6.37048 6.12518 6.12518 6.11027 6.11027 6.10933 6.10933

29 - - - - - - - 6.51138 6.51138 6.23653 6.23441 6.23441 6.23426 6.23426 6.23425
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30 - - - - - - - 6.62520 6.62520 6.29240 6.29240 6.28089 6.28089 6.28024 6.28024

31 - - - - - - - 6.80710 6.80710 6.50765 6.50765 6.49933 6.49933 6.49871 6.49871

32 - - - - - - - 6.93581 6.81130 6.70373 6.70373 6.69787 6.69787 6.69751 6.69751

33 - - - - - - - 6.94252 6.94252 6.81130 6.80315 6.80315 6.77991 6.77991 6.77851

34 - - - - - - - 7.21404 7.21404 7.00420 6.80989 6.80989 6.80959 6.80959 6.80954

35 - - - - - - - 7.37162 7.27239 7.23653 6.94989 6.94989 6.93092 6.93092 6.92987

36 - - - - - - - 7.93581 7.37048 7.27239 7.00420 7.00055 7.00055 7.00013 7.00013

37 - - - - - - - - 7.37162 7.37048 7.12518 7.12518 7.11027 7.11027 7.10933

38 - - - - - - - - 7.51138 7.51138 7.23653 7.23441 7.23441 7.23426 7.23426

39 - - - - - - - - 7.62520 7.62520 7.29240 7.29240 7.28089 7.28089 7.28024

40 - - - - - - - - 7.80710 7.80710 7.50765 7.50765 7.49933 7.49933 7.49871

41 - - - - - - - - 7.93581 7.81130 7.70373 7.65216 7.65216 7.62410 7.62410

42 - - - - - - - - 7.94252 7.94252 7.81130 7.70373 7.69787 7.69787 7.69751

43 - - - - - - - - 8.21404 8.15560 8.00420 7.80315 7.80315 7.77991 7.77991

44 - - - - - - - - 8.37162 8.21404 8.15560 7.80989 7.80989 7.80959 7.80959

45 - - - - - - - - 8.93581 8.27239 8.23653 7.94989 7.94989 7.93092 7.93092

46 - - - - - - - - - 8.37048 8.27239 8.00420 8.00055 8.00055 8.00013

47 - - - - - - - - - 8.37162 8.37048 8.12518 8.12518 8.11027 8.11027

48 - - - - - - - - - 8.51138 8.51138 8.23653 8.23441 8.23441 8.23426

49 - - - - - - - - - 8.62520 8.62520 8.29240 8.29240 8.28089 8.28089

50 - - - - - - - - - 8.80710 8.80710 8.50765 8.50765 8.49933 8.48750

51 - - - - - - - - - 8.93581 8.81130 8.70373 8.52060 8.52060 8.49933

52 - - - - - - - - - 8.94252 8.94252 8.81130 8.65216 8.65216 8.62410

53 - - - - - - - - - 9.21404 9.06914 9.00420 8.70373 8.69787 8.69787

54 - - - - - - - - - 9.37162 9.15560 9.06914 8.80315 8.80315 8.77991

55 - - - - - - - - - 9.93581 9.21404 9.15560 8.80989 8.80989 8.80959

56 - - - - - - - - - - 9.27239 9.23653 8.94989 8.94989 8.93092

57 - - - - - - - - - - 9.37048 9.27239 9.00420 9.00055 9.00055

58 - - - - - - - - - - 9.37162 9.37048 9.12518 9.12518 9.11027

59 - - - - - - - - - - 9.51138 9.51138 9.23653 9.23441 9.23441

60 - - - - - - - - - - 9.62520 9.62520 9.29240 9.29240 9.28089

61 - - - - - - - - - - 9.80710 9.80710 9.50765 9.38649 9.38649

62 - - - - - - - - - - 9.93581 9.81130 9.70373 9.50765 9.49933

63 - - - - - - - - - - 9.94252 9.94252 9.81130 9.52060 9.52060

64 - - - - - - - - - - 10.21404 9.96852 9.96852 9.65216 9.65216

65 - - - - - - - - - - 10.37162 10.06914 10.00420 9.70373 9.69787

66 - - - - - - - - - - 10.93581 10.15560 10.06914 9.80315 9.80315

67 - - - - - - - - - - - 10.21404 10.15560 9.80989 9.80989

68 - - - - - - - - - - - 10.27239 10.23653 9.94989 9.94989

69 - - - - - - - - - - - 10.37048 10.27239 10.00420 10.00055

70 - - - - - - - - - - - 10.37162 10.37048 10.12518 10.12518

71 - - - - - - - - - - - 10.51138 10.51138 10.23653 10.23441

72 - - - - - - - - - - - 10.62520 10.62520 10.29240 10.26669

73 - - - - - - - - - - - 10.80710 10.80710 10.50765 10.29240

74 - - - - - - - - - - - 10.93581 10.81130 10.70373 10.38649

75 - - - - - - - - - - - 10.94252 10.89097 10.81130 10.50765

76 - - - - - - - - - - - 11.21404 10.94252 10.89097 10.52060

77 - - - - - - - - - - - 11.37162 10.96852 10.96852 10.65216

78 - - - - - - - - - - - 11.93581 11.06914 11.00420 10.70373

79 - - - - - - - - - - - - 11.15560 11.06914 10.80315

80 - - - - - - - - - - - - 11.21404 11.15560 10.80989

81 - - - - - - - - - - - - 11.27239 11.23653 10.94989

82 - - - - - - - - - - - - 11.37048 11.27239 11.00420

83 - - - - - - - - - - - - 11.37162 11.37048 11.12518

84 - - - - - - - - - - - - 11.51138 11.51138 11.23653
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85 - - - - - - - - - - - - 11.62520 11.62520 11.29240

86 - - - - - - - - - - - - 11.80710 11.80208 11.50765

87 - - - - - - - - - - - - 11.93581 11.80710 11.70373

88 - - - - - - - - - - - - 11.94252 11.81130 11.80208

89 - - - - - - - - - - - - 12.21404 11.89097 11.81130

90 - - - - - - - - - - - - 12.37162 11.94252 11.89097

91 - - - - - - - - - - - - 12.93581 11.96852 11.96852

92 - - - - - - - - - - - - - 12.06914 12.00420

93 - - - - - - - - - - - - - 12.15560 12.06914

94 - - - - - - - - - - - - - 12.21404 12.15560

95 - - - - - - - - - - - - - 12.27239 12.23653

96 - - - - - - - - - - - - - 12.37048 12.27239

97 - - - - - - - - - - - - - 12.37162 12.37048

98 - - - - - - - - - - - - - 12.51138 12.51138

99 - - - - - - - - - - - - - 12.62520 12.62520

100 - - - - - - - - - - - - - 12.80710 12.73158

101 - - - - - - - - - - - - - 12.93581 12.80208

102 - - - - - - - - - - - - - 12.94252 12.80710

103 - - - - - - - - - - - - - 13.21404 12.81130

104 - - - - - - - - - - - - - 13.37162 12.89097

105 - - - - - - - - - - - - - 13.93581 12.94252

106 - - - - - - - - - - - - - - 12.96852

107 - - - - - - - - - - - - - - 13.06914

108 - - - - - - - - - - - - - - 13.15560

109 - - - - - - - - - - - - - - 13.21404

110 - - - - - - - - - - - - - - 13.27239

111 - - - - - - - - - - - - - - 13.37048

112 - - - - - - - - - - - - - - 13.37162

113 - - - - - - - - - - - - - - 13.51138

114 - - - - - - - - - - - - - - 13.62520

115 - - - - - - - - - - - - - - 13.80710

116 - - - - - - - - - - - - - - 13.93581

117 - - - - - - - - - - - - - - 13.94252

118 - - - - - - - - - - - - - - 14.21404

119 - - - - - - - - - - - - - - 14.37162

120 - - - - - - - - - - - - - - 14.93581
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