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Abstract

The flow response to a bump topography in a two-layer non-linear quasi-geostrophic fluid
on the β-plane, has been studied using numerical simulations looking at both linear and
turbulent runs. The system was initialized with a baroclinically unstable surface trapped
wave above a resting lower layer and topographic effects with regards to deep energy
transfer and consequently lower layer spin-up, was examined. In particular, the response
was diagnosed for parameters such as topographic height, wavenumber, i.e. both the
vertical and horizontal scale of the bumps, and friction. In order to study a vast range
of parameters, a simulation framework was developed permitting automated systematic
large scale parameter variation through parallel execution of independent simulations on
an improvised computational cluster consisting of a set of desktop workstations. To de-
termine the degree of deep energy transfer in all these simulations, the fraction of total
energy at the end of the simulations to the initial total energy, was used as a measure of
dissipation and thus deep energy transfer (friction only in lower layer). Dissipation depen-
dence on a large range of parameters was determined. Once interesting parameter trends
were identified, closer inspection of the associated flow fields was conducted. Among
the results were that the deep transfer depends non-monotonically on bump height for
small friction in both the linear and non-linear system, i.e. moderate dissipation at small
heights, a blocking effect at large heights and a dissipation maximum for intermediate
values strongly dependent on the closing of qs contours facilitating bump flow as seen in
earlier studies. Thus bump height exhibit similar behaviour to friction as described in
earlier studies (and this one). The main contributor of linear deep transfer was when the
horizontal topography scale resembles the wave x-scale combined with closed qs contours.
Large and many bumps were found to decouple the layers and (in the non-linear system)
stabilise the baroclinically unstable surface wave for a significant amount of time, but the
flow still eventually went turbulent giving deep transfer, only later and weaker.
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Chapter 1

Introduction

1.1 Background

Geophysical fluid dynamics applied to the oceans has been studied for a long time period,
however, relatively speaking, not all that much attention has been given to the impact of
bottom topography on the flow. And while a flat-bottom approximation may be analyt-
ically useful, the ocean floors are most definitely not flat. The bottom is scattered with
topographic features such as continental slopes, seamounts, ridges and trenches, bumps
and depressions as well as other irregularities much like the topography on land. Known
examples include the Mariana Trench, the Mid-Atlantic Ridge and the Lofoten Basin by
the coast of Norway. Global topographic slopes in figure 1.1(a) calculated by de La Lama
et al. [2016] from ETOPO1 data, give a realistic view of the bathymetry of the oceans.1

Rarely are the slopes flat and the ocean floors varies essentially everywhere. Topographic
effects caused by uneven bottoms such as those described above, are of great importance
to many oceanic flows and therefore worth studying. See figure 1.1(b) for an example.
Note here the strong flow along the continental margin as well as the clockwise flow in
the center of the basin. In both these cases the fluid appears to move nearly parallel
to the isobaths (contours of constant depth) and it is evident that the overall motion is
significantly affected by bathymetry.

Much ocean theory in the past, though, has ignored bathymetry, treating the bottom
as a smooth, flat surface. The general thinking was that deep motion is weak, so the
topographic influence is probably also weak. For example, the models of Stommel [1948],
Munk [1950], Stommel and Arons [1960], Anderson and Gill [1975] and Fofonoff [1954] all
assumed a flat bottom. However, recent work (e.g. de La Lama et al. [2016] and LaCasce
[2017]) suggests topography influences the ocean response throughout the water column
further and significantly the vertical structure of the flow. The more recent findings have
motivated further study of topographic effects in order to help uncover the physics at
work. The present study attempts to contribute to this area.

A study of particular of interest for this work is LaCasce and Pedlosky [2004]. The
ocean responds to changes in atmospheric forcing via the planetary (Rossby) waves, which
propagate westward across the basin [Anderson and Gill, 1975]. These have scales of

1The terminology ”topography” and ”bathymetry” both refer to the ocean floor in the contex of this
study. The former will predominantly be used going forward.
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(a) Topographic slope from ETOPO1 data, calcu-
lated at the product resolution 0.0167◦. The axis
are latitude and longitude.

(b) Mean velocities estimated from surface
drifters in the Lofoten Basin west of Norway.
The color contours indicate the water depth and
the axis are latitude and longitude.

Figure 1.1: (a) from de La Lama et al. [2016] and (b) from Koszalka et al. [2011]
with caption from LaCasce [2018, sec. 4.2]

hundreds to thousands of kilometers and are clearly observed in satellite measurements
of sea surface height (SSH) [Chelton and Schlax, 1996]. LaCasce and Pedlosky [2004]
suggested these waves are unstable, breaking into smaller, deeper eddies. This would
have an enormous impact on oceanic adjustment, making it much more turbulent. But
the authors employed a flat bottom in their study. This leads to the study of this thesis.

1.2 Description of this study

We have, in part, revisited the study by LaCasce and Pedlosky [2004], using the same
numerical model, solving the two-layer quasi-geostrophic equations, but implementing a
non-uniform bottom. We have examined to what extent the introduced topography alters
the stability, and how the wave propagation is affected as well as the general vertical
structure of the flow. Our hypothesis regarding this is that surface-trapped waves will be
stabilized, and successfully cross the basin.

However, our study is not purely focused on the above, but also concerns generally adding
to the knowledge of topographically affected flows and comparing with results obtained
by others. This requires elaboration: We have employed a two-dimensional bump-like
topography in our studies. In particular, we focused on the topographies

hB(x, y) = h0 cos(ktx) cos(lty) (1.1)

hB(x, y) = h0 sin(ktx) sin(lty) (1.2)

where hB(x, y) denotes the topographic height above the resting depth of the fluid, h0
the maximum/minimum amplitude and kt and lt the topographic wavenumbers in the x-
and y-direction. We were interested in the flow response as a function of h0 and kt, lt (we
always used kt = lt), i.e. how the flow reacts to both the horizontal and vertical scale of
the bumps. We examine the transfer of energy to the lower layer and subsequent spin-up
as a function of the mentioned parameters (we also examined friction). This is our main
topic of investigation.
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We conducted our investigation using numerical simulations to examine the flow in a
two-layer quasi-geostrophic system using a model written by J. H. LaCasce (used in
LaCasce and Pedlosky [2004]). Especially important to us is the two-layer structure of
the system; this is the simplest configuration that yields a baroclinic structure. As one of
our main aspirations is to study the vertical structure of the system’s time-evolution, this
is an essential feature of the simplified system. We initialized the upper layer flow with
a baroclinically unstable wave similar to that by LaCasce and Pedlosky and the lower
layer from rest. Even though the two-layer quasi-geostrophic system is quite idealized
compared to the real oceans, it has been popular in many earlier studies and is believed
to still provide useful insights into the dynamics at work.

A somewhat unique (at least as far as the author is aware) aspect of study is the approach
taken to diagnose the system. In order to get a broad view of the two-layer response, we
wanted to test a wide range of values for the relevant parameters. In particular, simulate
the flow for a vast set of h0 and kt, lt values and combinations of these, preferably several
hundreds or even thousands. This means performing a massive number of model runs
which is both tedious and in fact physically impossible manually (the model itself is not
parallel meaning large runtimes overall). This motivated the necessary development of a
simulation framework for both automating parameter variation and enabling executing
independent model runs in parallel on a set desktop computers available at the author’s
university. This greatly enhanced our abilities to examine the topographic response and
had a fundamental impact on the results we were able to produce.

The thesis is divided into four further chapters. Chapter 2 concerns the numerical model
we have updated, extended and used. Therein, we derive the equations of motion, discuss
the performed update and extension, present our model setup (parameters and initial
conditions) and conduct an analysis for choice of grid resolution. Chapter 3 discusses the
ideas behind, and development of, the simulation framework that we used in conjunction
with the Fortran model to execute our numerical computations. Chapter 4 presents the
results generated from application of said model and framework. Here we show and discuss
both the linear and non-linear simulations. Finally, chapter 5 summarizes the work done
and the results produced while offering some further discussion and conclusions as well as
suggestions for what could be done in the future if one were to extend upon the work in
this thesis. At the very end is an appendix containing some mathematics done for some
derivations in Chapter 2.



Chapter 2

The model

We utilised numerical simulations to study the effect of the bottom topography. In partic-
ular, a model solving the non-dimensional two-layer quasi-geostrophic potential vorticity
(QGPV) equations was employed. This model was written in Fortran 77 by J. H. LaCasce
and has been used in some of his earlier work, e.g. LaCasce and Pedlosky [2004] were
they examined the instability of Rossby waves as they propagate across basins.

The model solves the full non-linear equations in a square π× π (non-dimensional) basin
domain (see figure 2.1) for the upper and lower layer streamfunctions ψ1 and ψ2 using
no-normal-flow boundary conditions, i.e.

u1(0, y, t) = u1(π, y, t) = u2(0, y, t) = u2(π, y, t) = 0 (2.1)

v1(x, 0, t) = v1(x, π, t) = v2(x, 0, t) = v2(x, π, t) = 0 (2.2)

where u1(x, y, t) = (u1, v1) and u2(x, y, t) = (u2, v2) are the 2D fluid flow fields in the
upper and lower layer, respectively. The model solves the QGPV equations in terms of
the barotropic ψB and baroclinic ψT modes defined by

ψB = δ1ψ1 + δ2ψ2 (2.3)

ψT = ψ1 − ψ2 (2.4)

where

δ1 =
H1

H0

, δ2 =
H2

H0

(2.5)

are the layer thickness ratios with H1 and H2 being the upper and lower layer resting
depth, respectively, and H0 = H1 + H2. By rearrangement and substitution, (2.3) and
(2.4) quivalently states

ψ1 = ψB + δ2ψT (2.6)

ψ2 = ψB − δ1ψT (2.7)

which is useful to have in mind for later.

The boundary models boundary condition is invoked on the surface elevation by requiring
ψB = 0 along all four boundaries on the interface through the integral condition

∂

∂t

∫ L

0

∫ L

0

ψT dxdy = 0 (2.8)

4
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which ensures mass conservation by allowing the interface to move up and down as a
function of time, but have the same value along all boundaries at any given time (see e.g.
LaCasce [2000, sec. 4] for details).

LaCasce [2002] used a single-layer version of this model and as noted there, the model
uses finite differences for the spatial derivatives and Fourier transformations to obtain the
streamfunctions from the time-stepped vorticity. A third-order Adams-Bashfort scheme
is used for time-stepping. For advection, the model employs the Quadratic Upstream In-
terpolation for Convective Kinematics (QUICK) scheme. In particular, a two-dimensional
version of that in Leonard [1979] (also discussed in Ferziger and Peric [1999, sec. 4.4]).
This third-order scheme has fairly good accuracy, but some dissipation at small scales
causing energy loss. The effects of this is discussed in more detail in section 2.5.

Figure 2.1: Sketch of a cross-section in the (x, z)-plane in the two-layer domain.
The y-axis points inwards.

Furthermore, the model assumes a flat ocean floor and thus there is no support for bottom
topography. Therefore, modifying the model to include topography became an important
part of the work in this project and section 2.3 is dedicated to describing this process.
However, before we could implement topography, we needed to see how the equations of
motion were altered by the inclusion of topography We start by showing this. We end
the chapter by discussing our parameter setup (including initial condition) and various
considerations made related to the models spatial grid resolution.

2.1 Deriving the equations of motion

The model does not solve the the two-layer QGPV equations directly, but for mathemat-
ical and numerical reasons, formulated in terms of the barotropic and baroclinic modes
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instead. We now derive the two-layer equations with bottom topography, then the corre-
sponding barotropic and baroclinic equations together with their non-dimensional versions
which are the ones solved by the model.

2.1.1 Layer equations

To obtain the two-layer quasi-geostrophic equations, we start at the shallow water poten-
tial vorticity equation [Vallis, 2006]. We have

Dq

Dt
=

(
∂

∂t
+ u · ∇

)
q = F (2.9)

where F(x, y, t) is some forcing (from wind stress and/or friction) and the potential vor-
ticity q is defined as

q =
ζ + f

H
=
ζ + f0 + βy

H0 − h
(2.10)

with f = f0 + βy as the coriolis parameter using the standard β-plane approximation,
H is the total depth of the fluid, h is the height deviation from the total depth (e.g.
due to surface elevation, bottom topography and/or layer interface as we shall see below)
and ζ = ∂v/∂x − ∂u/∂y is the relative vorticity. As is common and appropriate for the
ocean interior, we assume the bottom topography (or interface height) to be very small
compared to the total depth of the fluid, i.e. h � H0. Given this we note that the
following approximation

1

1− h/H0

≈ 1 +
h

H0

can be made using the geometric Taylor series expansion. Knowing this, we may write
(2.10) as

q =
f0
H0

1 + ζ/f0 + βy/f0
1− h/H0

≈ f0
H0

(
1 +

ζ

f0
+
βy

f0

)(
1 +

h

H0

)
=

f0
H0

+
f0h

H2
0

+
ζ

H0

+
ζh

H2
0

+
βy

H0

+
βhy

H2
0

≈ f0
H0

+
f0h

H2
0

+
ζ

H0

+
βy

H0

where, in the final step, the two terms that were product of two small terms have been
dropped. This is possible due to the standard quasi-geostrophic assumption of assuming
a small Rossby number and that βy � f0. Substituting this expression for q back into
(2.9) as well as multiplying through by H0 gives(

∂

∂t
+ u · ∇

)(
ζ + βy +

f0
H0

h

)
= F (2.11)

which is the QGPV equation we will use onwards. The following derivation is a simpli-
fied two-layer specific version of the general multi-layer consideration in Pedlosky [1987,
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sec. 6.16]. We now move to apply (2.11) separately for both layers in figure 2.1. Express-
ing the potential vorticity content of right parenthesis in (2.11) in each layer for each layer
yields the PV’s (really PV multiplied by H1, H2 depending on the layer)

q1 = ζ1 + βy − f0
H1

(η − hi) (2.12)

q2 = ζ2 + βy − f0
H2

(hi − hB) (2.13)

where η(x, y, t) is the surface elevation, hi(x, y, t) the interface height, hB(x, y) the bottom
topography height and H1, H2 are the two layer equilibrium thicknesses. Considering the
horizontal velocities are approximately non-divergent as shown formally in [Pedlosky,
1987, sec. 3.12], we may introduce streamfunctions ψ1 and ψ2 for the flow in each layer as

u1 = k× g

f0
∇η = k×∇ψ1 (2.14)

u2 = k×∇
(
g

f0
η − g′

f0
hi

)
= k×∇ψ2 (2.15)

with

ψ1 =
g

f0
η and ψ2 =

g

f0
η +

g′

f0
hi (2.16)

while u1(x, y, t) and u2(x, y, t) is the 2D velocity field in the upper and lower layer,
respectively, and g′ is the reduced gravity. We may rewrite (2.16)

η =
f0
g
ψ1 and hi =

f0
g′

(ψ2 − ψ1)

and further substitution into (2.12) and (2.13) yields

q1 = ∇2ψ1 + βy + F1(ψ2 − ψ1)−Gψ1 (2.17)

q2 = ∇2ψ2 + βy + F2(ψ1 − ψ2) +
f0
H2

hB (2.18)

where we have used the connection to relative vorticity

ζi =
∂vi
∂x
− ∂ui
∂y

=
∂2ψi

∂x2
+
∂2ψi

∂y2
= ∇2ψi (2.19)

and that

ui = −∂ψi

∂y
, vi =

∂ψi

∂x
(2.20)

for i ∈ {1, 2} and also defined the constants

F1 =
f 2
0

g′H1

, F2 =
f 2
0

g′H2

, G =
f 2
0

gH1

. (2.21)

Next we apply the rigid lid assumption; in (2.17), we observe that the term F1(ψ2−ψ1)�
Gψ1 due to g � g′ and the layer interface height hi being much larger than the surface
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elevation η, and thus drop the Gψ1 term. Inserting the PV (2.17) and (2.18) for each
layer in turn into (2.11) gives the two equations(

∂

∂t
+ u1 · ∇

)[
∇2ψ1 + βy + F1(ψ2 − ψ1)

]
= F1 (2.22)(

∂

∂t
+ u2 · ∇

)[
∇2ψ2 + βy + F2(ψ1 − ψ2) +

f0
H2

hB

]
= −r∇2ψ2 (2.23)

where we have specified the forcing function in the lower layer as a Rayleigh friction on
the lower layer vorticity, i.e. F2(x, y, t)− r∇2ψ2, and left the upper layer forcing as some
general wind forcing function F1(x, y, t). We may rewrite (2.22) and (2.23) equivalently
in terms of Jacobian operators as

∂

∂t

[
∇2ψ1 + F1(ψ2 − ψ1)

]
+ J (ψ1,∇2ψ1) + J (ψ1, F1ψ2) + β

∂ψ1

∂x
= F1 (2.24)

∂

∂t

[
∇2ψ2 + F1(ψ1 − ψ2)

]
+ J (ψ2,∇2ψ2) + J (ψ2, F2ψ1)

+ β
∂ψ2

∂x
+ J

(
ψ2,

f0
H2

hB

)
= −r∇2ψ2 (2.25)

where we have isolated the β-term while the self-advection vanishes in each layer and the
Jacobian operator is defined as

J (f, g) =
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
. (2.26)

Equations (2.24) and (2.25) (or (2.22) and (2.23)) constitute the layer equations governing
the two-layer flow and are the dimensional versions of (6.16.34a,b) in [Pedlosky, 1987,
p. 423] . These are prognostic non-linear third-order partial differential equations for
the upper and lower layer streamfunctions ψ1 and ψ2, respectively. We observe that the
time evolution of the streamfunctions is impacted by interfacial motion, self advection
of relative vorticity, advection by the other layer flow as well as the planetary vorticity
gradient. Additionally, the lower layer flow feels the topography and bottom friction while
the upper layer may be subjected to a wind forcing of some kind.

2.1.2 Barotropic and baroclinic equations

Now that we have the layer equations, we are ready to construct the barotropic and
baroclinic equations that are solved for in the model. Recall the baroptropic and baroclinic
streamfunctions in (2.3) and (2.4). In order to get a prognostic equation for ψB we multiply
(2.24) by δ1 and (2.25) by δ2 and then add them together. This process requires quite a bit
of calculations and was done, but the details are left in appendix A.1. These calculations
result in the barotropic equation

∂qB
∂t

+ J (ψB, qB) + δ1δ2J (ψT , qT ) + β
∂ψB

∂x

+ δ2J
(
ψB − δ1ψT ,

f0
H2

hB

)
= δ1F1 − δ2r∇2(ψB − δ1ψT ) (2.27)
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where

qB = ∇2ψB (2.28)

qT = ∇2ψT − FψT (2.29)

is the barotropic and baroclinic potential vorticity, respectively, and

F = F1 + F2 =
f 2
0

g′H1

+
f 2
0

g′H2

=
f 2
0 (H2 +H1)

g′H1H2

(2.30)

is the combined interface constant (Burger number).

We constructed the baroclinic equation analogously; we subtract (2.25) from (2.25) and
do a similar term-by-term procedure with the details again left in appendix A.2. Going
though these calculations yields the baroclinic equation

∂qT
∂t

+ J (ψB, qT ) + J (ψT , qB) + (δ2 − δ1)J (ψT , qT )

+ β
∂ψT

∂x
− J

(
ψB − δ1ψT ,

f0
H2

hB

)
= F1 + r∇2(ψB − δ1ψT ) (2.31)

2.1.3 The non-dimensional equations

Having found how topography modifies the layer and barotropic/baroclinic equations, we
now use the results from above to formulate the non-dimensional versions of the equations
needed for the actual implementation in the model. We scale the variables by

x′ =
x

L
⇒ x = Lx′ (2.32)

y′ =
y

L
⇒ y = Ly′ (2.33)

t′ = t
U

L
⇒ t =

L

U
t′ (2.34)

ψ′B =
ψB

UL
⇒ ψB = ULψ′B (2.35)

ψ′T =
ψT

UL
⇒ ψT = ULψ′T (2.36)

h′B = hB
f0L

UH2

⇒ hB =
UH2

f0L
h′B (2.37)

where the prime denote non-dimensional variables. The constant L is the width/length
of the square basin and U is a typical flow velocity scale (their particular values are
mentioned in section 2.4). We insert the scaled variables into the dimensional equations
(2.27) and (2.31) and perform necessary algebra (and dividing through by U2/L2 from
the time-derivative term) to get the non-dimensional barotropic and baroclinic equations:

∂q′B
∂t′

+ J ′(ψ′B, q′B) + δ1δ2J ′(ψ′T , q′T ) + β′
∂ψ′B
∂x′
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+ δ2J ′ (ψ′B − δ1ψ′T , h′B) = δ1F ′1 − δ2r′∇′2(ψ′B − δ1ψ′T ) (2.38)

∂q′T
∂t′

+ J ′(ψ′B, q′T ) + J ′(ψ′T , q′B) + (δ2 − δ1)J ′(ψ′T , q′T )

+ β′
∂ψ′T
∂x′
− J ′ (ψ′B − δ1ψ′T , h′B) = F ′1 + r′∇′2(ψ′B − δ1ψ′T ). (2.39)

where F1 is the non-dimensional upper layer forcing and the non-dimensional barotropic
and baroclinic potential vorticities are defined by

q′B = ∇′2ψB (2.40)

q′T = ∇′2ψT − F ′ψT (2.41)

and the non-dimensional altered physical constants through

β′ = β
L2

U
, r′ = r

L

U
, F ′ = FL2, (2.42)

as well as the non-dimensional Laplace operator ∇′2 and Jacobian operator J ′ as

∇′2 =
∂2

∂x′2
+

∂2

∂y′2
and J ′(f, g) =

∂f

∂x′
∂g

∂y′
− ∂g

∂x′
∂f

∂y′
.

Equations (2.38) and (2.39) (together with (2.40) and (2.41)) are the ones we solved
using the numerical model and are therefore essential in this project. Finally, note that
they correspond exactly with the equations of motion in LaCasce and Pedlosky [2004] (as
noted earlier they also used this model) with the exception of the forcing and topography
terms being absent there. As seen, they describe a time-evolving system, and as such, the
equations in question require initial conditions as well. We discuss these in section 2.4.2.
From here onwards we will work with the non-dimensional equations and variables, but
drop the primes for simplicity.

2.2 Updating the model

Since we were in need of extending the model to include the additional physics, we pre-
ferred to have a flexible baseline for the code such that the extensions in question did not
become cumbersome and clutter the codebase. We wanted to be able to add to the code
without compromising the models original intentions, in particular let usage of the model
with and without topography be easily interchangeable by ”turning a switch”. Addition-
ally, we aimed at making the model more user accessible in terms of specifying parameters.
The combination of theses desires prompted a restructure of the model codebase before
we went about implementing the topography. Below are stages of this update process
elaborated upon in chronological order of implementation.

Fortran 77 to Fortran 2003: In order to achieve the above mention flexibility, we
found it helpful and necessary to rewrite the model in a modern version of For-
tran. The main reasoning behind this was founded in modern Fortran’s support of
a modular object oriented programming style (see next paragraph). The process
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of extending the code from the base Fortran 77 version, while definitely possible,
would have been far more cumbersome and yielded less flexible as well as harder-
to-read code. We chose Fortran 2003 for the updated version and the first step was
to update all syntax to be consistent with the modern style. At first we attempted
to use various existing tools for automated conversion of Fortran code, but these
were found to be insufficient for our purposes and was abandoned. We then turned
to the manual approach. In practice this meant rewriting all variable declarations,
if, do, while, goto, etc. control structures as well as other syntactic details, to the
new standard. After this was completed, the code was compliant with a modern
gfortran compiler Gfortran. Version 4.8 was used for all subsequent compilation
of the code.

Object orientation: With the modern syntax, we were able to utilise the modular pro-
gramming style supported in the newer Fortran versions. The code was restructured
in terms of module files, types/classes and member subroutines all together consti-
tuting an object oriented version of the code. This step was very helpful when later
adding new features to the model.

Dynamic memory allocation: As with almost all numerical models, there is a need
for using array structures to store data in random access memory (RAM) during
simulations. This model was originally written using static memory allocation for
such arrays. In our attempt to add flexibility, we instead implemented dynamic
memory allocation and introduced a new parameter file; a simple namelist that
allowed users to specify all model input parameters in a text file which was then
read by the model at runtime and further allocating the necessary memory.

After having completed the above described stages as well several other minor fixes, we
had a functioning modern version of the model producing the exact same results as the
original Fortran 77 version. Completing the update without introducing bugs that would
tamper with the functionality of the model, was a major concern. During the update, a
lot of time was spent on testing and verification in order to ensure the model had not
been compromised in any way. This testing was done through designing various test
cases (simulations) and quantitatively checking output values as well as frequent visual
inspection of the time evolution of the energy and streamfunctions. We also used version
control software (git) as another safety measure for avoiding bugs.

2.3 Implementing topography

With the updated model in place, we moved forward with implementation of topography.
Specifically, we extended the model to support the topography terms in (2.38) and (2.39).
We now show how we applied the work from section 2.1 to achieve this.

2.3.1 Theory

In section 2.1 we found the topography enters as advection by the lower layer flow u2 =
(u2, v2). Recall the topography term enter in both the non-dimensional barotropic and
baroclinic equation as

J (ψB − δ1ψT , hB) = J (ψ2, hB) (2.43)
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where (2.7) has been applied. This term can further be written as

J (ψ2, hB) =
∂ψ2

∂x

∂hB
∂y
− ∂hB

∂x

∂ψ2

∂y
= u2 · ∇hB = u2

∂hB
∂x

+ v2
∂hB
∂y

(2.44)

using the definition (2.20) of the streamfunction. The latter part of (2.44) is the term we
implemented in the model. We chose to formulate the term via the layer flow instead of
the barotropic/baroclinic flow as the layer flows are required for the energy computations
anyway, and so it made the code more readable. Although, since the model is built around
the barotropic and baroclinic equations, u2 and v2 were unavailable at this point in the
code. Therefore we needed a way to compute these.

The barotropic and baroclinic streamfunctions ψB and ψT were readily available in the
code. Taking the spatial partial derivatives of (2.7) yields

∂ψ2

∂x
=
∂ψB

∂x
− δ1

∂ψT

∂x
⇒ v2 = vB − δ1vT (2.45)

∂ψ2

∂y
=
∂ψB

∂y
− δ1

∂ψT

∂y
⇒ u2 = uB − δ1uT (2.46)

where

vB =
∂ψB

∂x
, vT =

∂ψT

∂x
, uB = −∂ψB

∂y
and uT = −∂ψT

∂y
(2.47)

This tells us that we have a way of computing u2 and v2 through computing the spatial
derivatives of ψB and ψT and then invoking the latter parts of (2.45) and (2.46).

2.3.2 Numerics

Before we look at the numerics used for the implementation, it is useful to briefly mention
what part of the code we extended. A section of the code deals with collecting all linear
terms of the equation and this is where we added the topography term. Our job was then
to evaluate (2.44) at every spatial grid point each time step. Additionally, we had to keep
in mind the models use of a staggered grid with potential vorticity defined at the cell
centers while the streamfunctions are defined at the southwest corner of the grid cells.

The finite difference approximations (and their related truncation errors) we mention in
this section are as described in Røed [2016, sec. 2.7]. The numerical schemes that make
up the model dictate a use of forward differences when computing the derivatives of the
streamfunctions (it is actually more complicated than this since the model employs a
numerically staggered grid). In line with this, we used

vBi,j =
∂ψB

∂x

∣∣∣
i,j
'
ψB
i+1,j − ψB

i,j

∆x
, i = 1, 2, . . . , N − 1, j = 1, 2, . . . , N (2.48)

vTi,j =
∂ψT

∂x

∣∣∣
i,j
'
ψT
i+1,j − ψT

i,j

∆x
, i = 1, 2, . . . , N − 1, j = 1, 2, . . . , N (2.49)

uBi.j = −∂ψB

∂y

∣∣∣
i,j
'
ψB
i,j+1 − ψB

i,j

∆y
, i = 1, 2, . . . , N, j = 1, 2, . . . , N − 1 (2.50)
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uTi,j = −∂ψT

∂y

∣∣∣
i,j
'
ψT
i,j+1 − ψT

i,j

∆y
, i = 1, 2, . . . , N, j = 1, 2, . . . , N − 1. (2.51)

where i, j ∈ [1, N ] ∈ N represent the indices of the grid points in the x- and y-direction,
respectively, while N is the number of grid points in each direction. These forward
differences are first order accurate in space meaning they have an associated truncation
error of O(∆x) or O(∆y) depending on the term. Equations (2.48)-(2.51) gives the
BT/BC flow. However, a feature of the staggered grid in this model is that ψB

i,j and ψT
i,j

are defined at the southwest corner of each grid cell and causes uBi,j and uTi,j to be defined
at the center of the western edge of grid cell (i, j) while vBi,j and vTi,j are defined at the
center of the southern edge. As required in the model, each term in the equation must be
centered in the grid cells when collecting all terms. This also applies to the topography
term and thus we found the centered BT/BC flows by an ordinary two-point interpolation
on neighbouring cell edge values, that is

uB∗i,j =
uBi+1,j + uBi,j

2
, uT∗i,j =

uTi+1,j + uTi,j
2

(2.52)

vB∗i,j =
vBi,j+1 + vBi,j

2
, vT∗i,j =

vTi,j + vTi,j
2

(2.53)

where the stars indicate the cell centered versions of the velocities. From (2.45) and (2.46)
we then computed the (cell centered) lower layer flow u2.

We also needed the partial derivatives of the topography hB as seen in (2.44). We employed
a centered-in-space scheme in the interior of the domain, i.e.

∂hB
∂x

∣∣∣
i,j
'
hBi+1,j − hBi−1,j

2∆x
, i = 2, 3, . . . , N − 1, j = 1, 2, . . . , N (2.54)

∂hB
∂y

∣∣∣
i,j
'
hBi,j+1 − hBi,j−1

2∆y
, i = 1, 2, . . . , N, j = 2, 3, . . . , N − 1. (2.55)

The centered differences have truncation errors O(∆x2) and O(∆y2), respectively, and
are thus good quite good for accuracy. Along the boundaries we had to resort to other
means as the centered differences would require points outside the domain. We instead
used one-sided forward and backward differences. In particular, forward differences along
the two boundaries represented by i = 1 and j = 1 and similarly backward differences on
the two boundaries i = N and j = N :

∂hB
∂x

∣∣∣
i,j
'
hBi+1,j − hBi,j

∆x
, i = 1, j = 1, 2, . . . , N (2.56)

∂hB
∂x

∣∣∣
i,j
'
hBi,j − hBi−1,j

∆x
, i = N, j = 1, 2, . . . , N (2.57)

∂hB
∂y

∣∣∣
i,j
'
hBi,j+1 − hBi,j

∆y
, i = 1, 2, . . . , N, j = 1 (2.58)

∂hB
∂y

∣∣∣
i,j
'
hBi,j − hBi,j−1

∆y
, i = 1, 2, . . . , N, j = N. (2.59)
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Since the topography is stationary, i.e. ∂hB/∂t = 0, the spatial partial derivatives remain
constant throughout and thus we only computed them once before simulating the system.
We have now gone through the necessary steps for evaluating (2.44) in the model. In
short, we used (2.48)-(2.53) and then (2.45)-(2.46) to get u2 and combined this with the
topography partial derivatives (2.54)-(2.59). Algorithm 2.1 summarizes the method.

Algorithm 2.1 Topography implementation

procedure add topography terms(ψB, ψT , hB)

- Compute topography partial derivatives ∂hB/∂x, ∂hB/∂y

for every time step do
for every grid point in x-direction do

for every grid point in y-direction do
- Compute uB, uT , vB, vT from ψB, ψT

- Center uB, uT , vB, vT in the grid cells
- Compute u2, v2 from uB, uT , vB, vT
- Compute topography terms using u2, v2 and ∂hB/∂x, ∂hB/∂y
- Add topography terms to both BT and BC equation

2.4 Model configuration and initial condition

Our intentions with this section are to specify the physical and numerical constants as
well as the initial condition(s) we used for the two-layer system. We do this both to give
a clearer picture of the simulations we have done for chapter 4, but also to add to the
reproducibility of the study.

2.4.1 Parameters

As the model deals with the non-dimensional equations (2.38) and (2.39), the dimensional
physical constants β, r and F that enter equations (2.27) and (2.31) were modified to their
non-dimensional versions β′, r′ and F ′ given by (2.42). The dimensional values are also
relevant if one wishes to scale the model output back to dimensional space. Table 2.1
lists the physical constants we used. Key features from the table include a basin of
synoptic scale, an upper layer that has a resting depth 1/4 of the thickness to that of
the lower layer, coriolis parameter based on a latitude of 45◦ and farily weak bottom
friction. However, friction and topographic height valuea are merely examples as we
varied them substantially between runs. Of the physical constants in table 2.1, L, U ,
β, r and F (and thus implicitly H1 and H2) enter the non-dimensional parameters in
(2.42). In addition physical (non-dimensional) constants, the model also takes in a set of
numerical constants. The latter may either be parameters like the number of grid points
or for enabling/disabling certain features. In table 2.2 we list all model input parameters
(except parameters related to wind forcing as this was never used) that are taken as input
and that we used in our runs. Some of them, however, were varied between simulations
and this is mentioned in chapter 4 when relevant. Otherwise, the values in the table were
used.
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Constant Value Description

U 0.1 m/s typical zonal and meridional flow

L 106 m basin length/width

H1 1000 m depth of upper layer

H2 4000 m depth of lower layer

F 10−9 m−2 related to layer density difference (Burger number)

f0 10−4 s−1 constant part of Coriolis parameter

β 10−13 s−1 meridional Coriolis gradient

r 10−8 s−1 Rayleigh friction coefficient

h0 10 m typical topographic height

Table 2.1: List of physical constants used for the two-layer system.

2.4.2 Initial condition

We use initial conditions comparable to those of LaCasce and Pedlosky [2004] and Dukow-
icz and Greatbatch [1999] with a baroclinically unstable upper layer wave. Ideally, we
specify the initial conditions in terms of the upper and lower layer streamfunctions ψ1

and ψ2. However, since the model is initialized with barotropic and baroclinic potential
vorticity qB and qT , we needed to derive these from our chosen layer streamfunctions.
Assuming known ψ1(x, y, 0) = ψ0

1 and ψ2(x, y, 0) = ψ0
2 we have through (2.3) and (2.4)

that

ψ0
B = δ1ψ

0
1 + δ2ψ

0
2 (2.60)

ψ0
T = ψ0

1 − ψ0
2 (2.61)

which combined with (2.40) and (2.41) gives

q0B = ∇2ψ0
B = ∇2(δ1ψ

0
1 + δ2ψ

0
2) =

(
∂2

∂x2
+

∂2

∂y2

)
(δ1ψ

0
1 + δ2ψ

0
2) (2.62)

q0T = ∇2ψT − FψT = ∇2(ψ0
1 − ψ0

2)− F (ψ0
1 − ψ0

2) =

(
∂2

∂x2
+

∂2

∂y2
− F

)
(ψ0

1 − ψ0
2) (2.63)

where q0B and q0T are the corresponding initial conditions for the barotropic and baroclinic
potential vorticity. We used (2.62) and (2.63) to initiate the model based on our chosen
initial conditions ψ0

1 and ψ0
2.

As note earlier, since we were interested in studying the lower layer spin-up as a function
of topography, we used an initial upper layer flow and while a lower layer starting from
rest. An initial surface trapped wave in the east-west direction was used. This means a
wave-like upper layer streamfunction with a lower layer at rest. In particular,

ψ1(x, y, 0) = A sin(kx) sin(ly) and ψ2(x, y, 0) = 0. (2.64)
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Parameter Symbol Value Description

fortype 0 forcing: =0 (off), =1 (wavelike), =2 (random)

nonlin 1 non-linearity: =0 (off), =1 (on)

rvd 1 relative vorticity damping: =0 (off), =1 (on)

topo 1 topography: =0 (off), =1 (on)

topofile 1 topo from file: =0 (off), = 1 (on)

ginit 0 init. con. from file: =0 (off), =1 (on)

mbc 2 num. ghost cells outside domain

N N 256 num. grid points in each direction

ntot Nt 106 total number of time steps

Nener Nen 103 energy output interval

Nwrite Nwrite 104 streamfunction output interval

Navg Navg 1010 mean streamfunction ouptut interval

L L′ π non-dim length of domain

delt ∆t 10−4 non-dim time step

h1oh2 δ1/δ2 0.25 layer depth ratio H1/H2

rayl r′ 0.04 non-dim friction coefficient

beta β′ 1 non-dim coriolis gradient

F0 F ′ 103 non-dim ”interface” constant

Table 2.2: List of model parameters present in the configuration file together with
some typical values. The non-dimensional β′, r′ and F ′ were calculated using (2.42)
and the physical values in table 2.1.

Here A is some constant amplitude and k is the wavenumber in the x-direction and from
scaling implies a reasonable value of A = 0.25 which we used throughout. The sin(ly)
factor was included only to satisfy the north-south no-normal-flow boundary conditions
and l = 1 throughout. We let k = n with n ∈ N (recall domain x, y ∈ [0, π]) to satisfy the
western and eastern boundary conditions, while simultaneously allowing for zero-crossings
between x = 0 and x = π to get the wave structure. Through (2.20) there is an upper
layer initial velocity field

u1 = −∂ψ1

∂y
= −lA sin(kx) cos(ly) (2.65)

v1 =
∂ψ1

∂x
= kA cos(kx) sin(ly) (2.66)

associated with this initial condition while the lower layer flow u2 = 0. Using (2.64) in
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(2.60) and (2.61) and applying (2.62) then (2.63) yields the barotropic/baroclinic potential
vorticity initial conditions

q0B = −(k2 + l2)δ1A sin(kx) sin(ly) (2.67)

q0T = −(k2 + l2 + F )A sin(kx) sin(ly) (2.68)

while further inserting with k = 4 and l = 1, gives

q0B = −17δ1A sin(4x) sin(y) (2.69)

q0T = −(F + 17)A sin(4x) sin(y) (2.70)

which were the initial conditions we used for all simulations in chapter 4 unless otherwise
specified.

2.5 Grid resolution analysis

When done updating and extending the model we were almost ready to run it for our
purposes. However, some more preparation serves well in the long run and, in particular,
this section involves a discussion on the impact of the models spatial grid resolution on the
accuracy of the numerical solutions. We found it useful to get a grasp on this such that
more informed choices could be made when setting up the model for producing results in
chapter 4. Additionally, it provided some insight into the potential shortcomings of the
model output.

As noted earlier, the QUICK scheme used for advection is inherently dissipative at small
scales and hence some loss of energy is expected and especially coarser grid resolutions
where this effect is magnified. Such energy loss is not ideal and could potentially in-
crease the difficulty in interpretation of the physical features present in the simulations.
Therefore we sought to minimize this effect. At first thought, one might suggest simply
increasing the resolution of the model, that is to use more grid points N × N to limit
the small scale dissipation to even smaller scales. This cannot, however, be done without
concern. For example, doubling the number of grid points N in each direction, quadru-
ples the total number of grid points meaning that, for each time step, each internal loop
iterating over both the x- and y direction (which are most of them) uses four times the
amount of time. This ultimately results in the runtime to increase by a factor of about
four. Additionally, since the numerical stability condition depends directly on the spacing
dx and dy between grid points, increasing N puts a stricter constraint on the time step
for the solution to remain numerically stable and not grow without bounds. With this in
mind, increasing the resolution should be done with care and with consideration that a
finite amount of time is available for running the model.

We now attempt to solidify this discussion with some actual data from the model. Figure
2.2 shows the time evolution of energy in the flat-bottom two-layer system for various grid
resolutions N×N (N is chosen as power of 2 for numerical optimizations related to Fourier
transformations) in the linear case. A typical surface layer wave ψ1 = A sin(4x) sin(y)
and ψ2 = 0 was used as initial conditions. There is no wind forcing or bottom friction
enabled in any of these runs, and thus there is no physical source or sink of energy
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Figure 2.2: From upper left panel to lower right: Time evolution of upper layer
kinetic, lower layer kinetic, potential and total energy, respectively, for four different
spatial resolutions N . Linear runs with flat bottom and no friction. Initial wave in
the upper layer while lower layer starts at rest.

meaning the total energy should be conserved throughout. It is visible that this is the
case in the linear simulations. The total energy stays constant for all runs, however
there is a slight difference in the starting value for the potential, and thus also the total
energy, between the four grid resolutions. This likely comes from the model using the
standard rectangle/column summation as an approximation to the spatial integral (see
e.g. 1D version in Mørken [2017, p. 300]) that give the potential energy. This standard
method underestimates functions that are concave down (and overestimate function that
are concave up) and more so for coarser resolutions. Since our initial condition (2.64) for
ψ1 is mostly concave down (and ψ0

T = ψ0
1 − ψ0

2, ψ
0
2 = 0), this seems to be the cause. The

difference, though, is quite small and stays constant throughout these typical runs.

A similar plot for the non-linear system can be seen in figure 2.3. A key difference with
these runs compared to the linear ones, is the instabilities that occur and cause the flow
to turn turbulent. This transition can be seen at roughly time t = 5 manifested as the
sudden decrease in potential energy and corresponding increase in the kinetic energies. It
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Figure 2.3: From upper left panel to lower right: Time evolution of upper layer
kinetic, lower layer kinetic, potential and total energy, respectively, for four different
spatial resolutions N . Non-linear runs with flat bottom and no friction using an
initial wave in the upper layer while lower layer starts at rest.

is at this time the differences due to grid resolution really become apparent; even though
there is a clear loss of total energy present for all grid resolutions, the loss is greater for
the smaller resolutions and decreases with increasing N as expected. This indicates that,
regardless of N , the loss of energy is predominantly in the form of kinetic energy (in both
layers) considering the evolution of the potential energy is very similar for all N . In light
of the above, this is something we expected from the small scale dissipation present in
the QUICK scheme. When the field goes turbulent, motion generated at smaller scales
facilitates the leak of energy. Finally, note that the loss of energy even for N = 512 is
quite significant and that the N = 256 runs are largely similar making the latter not much
worse of a choice especially bearing in mind the vastly larger computational time needed
when using N = 512.

In conclusion, the usage of N = 128 was deemed fully acceptable in the linear system (with
the exception of cases discussed in the next paragraph), but not desirable in the non-linear
case. That being said, using N = 512 would significantly increase the overall runtime to
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a point where completing the necessary runs would become an issue. Consequently, we
found N = 256 to be a decent and necessary compromise between accuracy and time
usage. The latter is very important also considering the sheer number of simulations we
ran in this project.

There is one more impact of grid resolution that is worth considering. One of the parame-
ters, whose effect we examine in chapter 4, is the wavenumber of the bottom topography.
If we define a rapidly varying topography, care should be taken to ensure the topogra-
phy is well resolved on the grid. Otherwise the observed response of the system could
be misleading in the sense that the flow reacted to an unresolved topography, which in
practice simply corresponds to a different topography. In order to visualize this more
clearly, consider the example in figure 2.4 from Røed [2016]. The black dots indicate what
values of the topography hB that is stored on a grid of distance ∆x between grid points
(although we are only considering one dimension here, the argument is the same in the
y-direction as well). As Røed notes, we see that the more rapidly varying topography is
indistinguishable from the longer wavelength topography. Both these topographies would
be represented the exact way on this grid and the system would respond equally to both.
The shorter wavelength topography is mapped onto the longer, i.e. to the shortest wave-
length that can be represented on the grid, and is thus not present in the simulation as
intended. With this pitfall in mind, we chose the topography wavenumber and the grid
resolution carefully when producing the results for chapter 4.

Figure 2.4: Figure from Røed [2016, p. 169]. Illustration of two sinusoidal topogra-
phies (in the x direction) with wavelength 4∆x (solid curve) and 4∆x/3 (dashed
curve) on a grid with distance ∆x between grid points.



Chapter 3

Simulation framework

We developed a method that significantly changed how we produced results in the project.
As noted, one aim was to explore dependences in the model over a wide range of parame-
ters, for example, of the topographic height or the bottom friction coefficient. This would
normally entail re-running the model manually many times, a tedious process (and in
fact impossible for the several thousands runs we did). This chapter focuses on how we
automated this process both which enhanced the models ”ease of use” and permitted sys-
tematic parameter variation through parallel execution of independent simulations. The
parallelization was made possible by utilizing a set of desktop computers as a computa-
tional cluster. We start by discussing parallelism and derive the parallel algorithm used
to oversee the model runs for every result produced in chapter 5. Then we discuss the
actual implementation of the framework.

3.1 Parallel computation

The Fortran model employed in this project is in itself not parallelized and thus its in-
structions are executed sequentially on a single central processing unit (CPU) core by
default. We considered the task of parallelizing the model, and while definitely possible
through the use of a distributed memory message passing library (e.g. MPI) or a shared
memory approach (e.g. OpenMP), this was abandoned as it was deemed too time con-
suming and hence potentially having a negative impact on other parts of the project.
Another reason is that the nature of the project did not imply a strong requirement for
one single simulation to execute very fast, but rather have a set of simulations execute in
a short amount time. This leads to the parallel approach that was implemented for this
project.

In general, when running the same numerical model several times while changing the
value of an input parameter between each run, it follows that each single run is totally
independent of every other run. In other words, there is no need for any exchange of
information between the runs and they execute without knowledge of eachother. It then
emerges that these independent runs can be performed simultaneously. This was indeed
the case for the model used here and we exploited this fact by designing a method for
running separate simulations in parallel. The method applies generally, but was also
customized for the particular model in this project. Given a set of N simulations (each
simulation characterized by an altered value of some input parameter) to be performed,

21
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we explored two approaches for running them in parallel. The following two sections
elaborate on these approaches and are inspired by parallel theory described in [Grama
et al., 2003, chap. 3].

3.1.1 Local parallelism

After starting to explore the possibilities of reducing the total computational time for all
simulations, we initially intended to use one single computer to run all N simulations.
Assume this computer had p available CPU cores for processing. This meant that, at any
time, p simulations could be executed in parallel if we utilised all p CPUs. This gave rise
to an idea about how we could distribute the work in a sequence of ”parallel sessions”. 1

A general discussion of this follows.

In general, N is not an integer multiple of p, or in other words, N/p is not an integer.
This means that the N simulations cannot be distributed perfectly in an integer num-
ber of parallel sessions where each session performs p simulations simultaneously. The
work can instead be distributed as evenly as possible by structuring the workload into
bN/pc parallel sessions, where b·c denotes the floor operator, with each session doing p
simulations concurrently using all p CPUs. This amounts to a total of bN/pcp executed
simulations. The number of remaining simulations that are not yet run is given by the
remainder N mod p. A work distribution can then be formulated in terms of rewriting N
as

N =

⌊
N

p

⌋
p+N mod p. (3.1)

This equation holds for any a, b ∈ N and can be seen as a decomposition of the integer
N . In this context, equation (3.1) provides and algorithm for executing N simulations
as efficiently as possible: Perform bN/pc parallel sessions with each session executing p
simulations in parallel and after the final session is done, the remaining N mod p simula-
tions are executed using N mod p of the total p CPUs (recall that N mod p < p, so the
remainder amounts to one parallel session, but without using all p CPUs. This leads to a
total of bN/pc+ 1 parallel sessions if N mod p 6= 0). It is worth noting that in the special
case of N/p actually being an integer, the the work distribution becomes optimal and we
utilise all CPUs throughout all N/p parallel sessions. Observe also that (3.1) holds for
the case in which N < p; then the first term is zero and get one parallel session using
N mod p CPUs.

In terms of performance gains, the obtained speed-up S is defined similarly to [Grama
et al., 2003, sec. 5.3.2] as the ratio of the total serial execution time Ts to the total parallel
execution time Tp, that is

S =
Ts
Tp
. (3.2)

Assume now N is not a multiple of p such that N mod p 6= 0. The total execution time
is directly proportional to the number of simulations that are run, so

Ts = kN and Tp = k

(⌊
N

p

⌋
p

p
+
N mod p

N mod p

)
= k

(⌊
N

p

⌋
+ 1

)
1From here onwards, let ”parallel session” be defined as the event where one or more CPUs execute

separate simulations simultaneously.



CHAPTER 3. SIMULATION FRAMEWORK 23

where k ∈ R is some proportionality constant (which is the same for both times) and
the workload in the parallel case has been divided p and N mod p for the two terms,
respectively, to account for the work being done in parallel. Using (3.2), the speed-up
becomes

S =
N

bN/pc+ 1
≈ N

bN/pc
≈ p (3.3)

where the approximations comes from assuming N � p (as is often the case). The local
parallelism described in this section provides a speed-up of roughly factor p compared
to simply running all N simulations sequentially one after another on a single CPU. It
is intuitively reasonable that, for completely independent simulations, using p times as
many CPUs leads to completing all the simulations in a factor 1/p of the time, but here
it is shown that this is approximately the case also when one doesn’t obtain the optimal
work distribution, i.e. when N mod p 6= 0. The perfect speedup of S = p is achieved
in the aforementioned special case where N mod p = 0. While the parallelism described
in this section is useful in itself and was employed when doing some of the runs for this
project, its main purpose is to serve as a vital building block for the next section.

3.1.2 Cluster parallelism

The local parallelism described in section 3.1.1 significantly sped up the process of running
a set of several simulations, but was still found too slow to be able to fully explore the
desired range of parameters. As discussed more detailed in section 3.2, we had a small
machine cluster available for use by this project and so our attention turned to deriving a
method for optimally distributing the work amongst the multiple machines to fully utilise
the cluster.

Suppose still a total number of N simulations are to be executed and that the cluster
consists of M machines, each with p CPUs (assume same number of CPUs per machine
for simplicity, although algorithmically, allowing different CPU counts would not make
a big difference). Using similar logic to that of the previous section we may divide the
N simulations among the M machines as evenly as possible by giving every machine
bN/Mc simulations and then distributing the remaining simulations N mod M among a
subset N mod M of the M machines in the cluster (meaning these particular machines
is assigned one additional simulation each). Similar to that of equation (3.1), this work
division can be expressed mathematically as

N =

⌊
N

M

⌋
M +N mod N. (3.4)

However, since the number of simulations assigned to each machine, that is either bN/Mc
or bN/Mc+ 1, generally may exceed the number of CPUs p on each machine, additional
work distribution must be done locally on each machine. Here the work is divided exactly
as described in section 3.1.1 with the only difference the input of total simulations for
each machine being bN/Mc or bN/Mc+ 1 instead of N , meaning (3.1) then gives⌊

N

M

⌋
=

⌊
bN/Mc

p

⌋
p+

⌊
N

M

⌋
mod p (3.5)
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or ⌊
N

M

⌋
+ 1 =

⌊
bN/Mc+ 1

p

⌋
p+

(⌊
N

M

⌋
+ 1

)
mod p (3.6)

depending respectively on whether the machine in question was one that was given only
the default amount of simulations or one that was also assigned one extra simulation from
the remainder pool.

See algorithm 3.1 which summarizes the method described above and outlines the appli-
cation of equations (3.4), (3.5) and (3.6). Note however that the algorithm is a set of
instructions for generating a work distribution and does not directly include the actual
running of the simulations (although this is quite accessible once the work distribution has
been achieved). Also worth noting is that the special cases of M > N and/or p > bN/Mc
are covered by the algorithm through then only handing out work to machines and CPUs
via the remainder if-statements. The special case of zero remainder terms is also taken
care of by the if-statements. Details regarding implementation of algorithm 3.1 are dis-
cussed in section 3.2.

Algorithm 3.1 Cluster work distribution

procedure cluster dist(N , M , p)

// N [int]: Total number of tasks
// m [int]: Number of machines in cluster
// p [int]: Number of CPUs per machine in cluster

- Assign bN/Mc tasks to each of the M machines in the cluster

if N mod M 6= 0 then
- Assign 1 additional task to the ”first” N mod M machines in the cluster

for each machine in cluster do
- Define n to be the number of tasks assigned to current machine

(could be either bN/Mc or bN/Mc+ 1 depending on the machine)
- Set up bn/pc parallel sessions
- Have each parallel session assign 1 task to each of the p CPUs

if n mod p 6= 0 then
- Set up a final parallel session executing the remaining n mod p tasks

using n mod p of the CPUs

As with the purely local parallelism, it is useful to briefly look quantitatively at the gains
in performance using the cluster approach. The total time taken for the cluster to finish
all simulations is directly proportional to the number of parallel sessions on the machine(s)
that performs the largest number of parallel sessions. Thus equation (3.6) is used for the
general (both remainders non-zero) performance analysis. By dividing the terms by the
number of simulations executed in parallel in each of the sessions, we get the parallel
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computation time Tp given by

Tp = k

{⌊
bN/Mc+ 1

p

⌋
p

p
+

(⌊
N
M

⌋
+ 1
)

mod p(⌊
N
M

⌋
+ 1
)

mod p

}
= k

(⌊
bN/Mc+ 1

p

⌋
+ 1

)
(3.7)

where k ∈ R again is some proportionality constant. The speed-up is given by (3.2) as

S =
Ts
Tp

=
N

b(bN/Mc+ 1)/pc+ 1
. (3.8)

This provides the speed-up factor in the general case, but sometimes bN/Mc � p such
that S ≈ pM . More utilised in this project though, was the special case N mod M = 0
and (N/M) mod p = 0. Using (3.5), this gives

S =
N

(N/M)/p
= pM (3.9)

which is the ideal performance gain for this approach.

In summary, the work distribution in this section generally leads to executing a total of N
simulations by using M computers each executing either bN/Mc or bN/Mc+1 simulations
in the space of bbN/Mc/pc + 1 or b(bN/Mc+ 1)/pc + 1 parallel sessions, respectively,
assuming non-zero remainders (if the remainders are zero, the ”+1’s” disappear). One
consequence of this is that, depending on the sizes of N , M and p, some machines in the
cluster may end up having to do one additional parallel session compared to the others.
From the perspective of the individual using algorithm 3.1, it may then be wise to choose
N such that this is not the case and that all machines perform an equal number of parallel
sessions. This is especially important if a single run of the model requires a large amount
of time as can often be the case if a small time step increment is used.

To illustrate the above with an example, consider having N = 61, M = 15 and p = 4.
Algorithm 3.1 yields 14 machines to get 4 simulations while 1 machine gets 5. When this
is distributed locally on each machine, 14 of the machines perform 1 parallel session (using
all 4 CPUs) while 1 of the machines must perform 2 parallel sessions (the first session
using all 4 CPUs and the second using only 1 of the CPUs). Equation (3.8) confirms this
by giving a speed-up of S = 30, and hence the total time taken for all simulations to finish
is the double of that if the user had chosen to do only one fewer simulation (N = 60). The
latter choice would eliminate the second parallel session on one of the machines and (3.9)
would give a speed-up of S = 60. It is then evident that when using a parallel approach
like the one described in this section, choosing N with care may save a lot of time without
necessarily making a significant compromise on the data amount of collected.

We finalize this section by generalizing some of the pitfalls alluded to in the example
above. One solution to the problem of avoiding close to redundant parallel sessions is to
chooseN < pM such that all simulations are executed simultaneously in one single parallel
session on all machines. However, there is often a need to run more simulations than this,
and a general rule of thumb is then to try to make sure that the total number of simulations
is close to (at least not slightly larger than) a multiple of the total number of CPUs in
the cluster. This means we let N . npM where n = 1, 2, 3, . . . which implies optimal
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usage of the cluster. This is knowledge that proved very useful when we ran simulations
for chapter 4. In fact, similar to that shown in the above example, large amounts of time
were saved by avoiding values of N that would have resulted in time being spent on a
few ”leftover” simulations on one or two machines while all other machines/CPUs were
idle. Consequently, as a result of detailed investigation of the method in this section, we
did nearly all of the simulations presented in chapter 4 with the ideal speed-up S = pM
given by (3.9).

3.2 Implementation

A large part of the work when developing software is setting a clear plan for the purpose
and general workings of the program. An immediate extension of this is possessing ideas
and algorithms that enables one to accomplish the aforementioned purpose. In our case,
some of these ideas have been described in the previous sections, and while such ideas
can be interesting in itself, they are often of little use in a project like this if they are not
applied in the code. We devote this final section of the chapter to the implementation
of the simulation framework. In line with the introduction to the chapter, the developed
code performs a variety of tasks related to the process of running the two-layer quasi
geostrophic Fortran model from chapter 2, with the parallel computation in section 3.1
being one of the main features. The framework was implemented as a class hierarchy
using the Python programming language and was run in a Linux Red Hat and Ubuntu
environment throughout. For now we still refer to the machine cluster in general, but will
expand expand upon the actual cluster that was used at the end of the chapter.

As has been mentioned before, the main purpose of the code is to automate the process of
running a set of simulations where one parameter is varied between each simulation. The
idea is to give the user ease of access by only needing to specify the parameter to vary and
the corresponding range of values for that parameter to vary over. Additionally, the user
should perform a couple of function calls to the codebase and then the rest is taken care
of behind the scenes. While these function calls could be hidden in a wrapper, required
user interaction was chosen due to the functions arguments adding further flexibility for
the user. The main operations we handle behind the scenes are elaborated on below in
order of execution.

Directory generation: When the user has chosen a root directory in which to store all
output data and supplied the parameter name as well as the range of values for the
parameter, the code applies this input to generate a set of directories (within the
chosen root) each with a unique name corresponding to the values of the parameter.
Suppose a is the parameter in question; the generated directory naming is such that
simulation i with input parameter value ai is scheduled for outputting data to the
directory with name that includes ai.

File logistics: This section of the code deals with compiling the user specified model
and copying user requested files to all the generated output directories. This may
be files such as the executable generated by the compilation or other needed input
files (e.g. parameter file) for the model.
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Cluster network query: When the cluster is used, a few logistical matters need taken
care of. In particular, the clusters connectivity to the network is checked. This
means using the network protocol Secure Shell (SSH) in order to remotely log in to
every computer in the cluster. This process filters out the computers disconnected
from the network and returns a set of connected machine names. Additionally, a
similar remote login process is used to retrieve the number of CPUs on each of the
connected machines. This CPU informations is later used when computing the work
distribution.

Work distribution: The code ”thinks” of work (tasks/simulations) in terms of directo-
ries. There is support for three main approaches to distributing these directories:
All directories are set to run sequentially on a single computer, all directories run in
parallel locally on one computer utilising all CPUs or all directories run in parallel
on all computers, and their respective CPUs, in the available cluster. Algorithm 3.1
is implemented for the latter case while simplified versions apply for the two former.
In terms of data structures, the work distribution is stored as a Python dictionary
such that one elements key is equal to the machine name and value equal to a two
dimensional list with the directory names (tasks) that are to be executed by that
machine. The inner sequence of lists corresponds to the earlier mentioned parallel
sessions.

Run model: After all output directories are generated, the necessary files are moved to
the intended directories and the work distribution has been computed, running the
simulations may initiate. The work distribution determines the architecture (serial,
local parallel or cluster) on which the runs will occur. Using the cluster approach,
every machine is remotely logged into and each CPU on each machine will run
the executable in each of the designated directories for each machine. Once every
simulation is finished, some clean-up is performed and a report of the successfulness
of all runs is generated through the use of logging.

We implemented the above operations in terms of various functions working as methods
for a main class Simulation and is what is referred to as the ”simulation framework”. In
general, a software framework is collection of code providing general functionality which
can be extended upon by user written code. In the spirit of this, we wrote the Simulation
class as an abstract class to act as a foundation to extend upon for a particular model.
It was written as general as possible in an attempt to add to the usability of the code
outside this particular project. In fact, the code should work, perhaps only with minor
modifications or extensions, on any other numerical model that is run by executing an
executable and with an arbitrary number of input files located in the same directory as
the executable. With the above functionality in place, the attention moved to creating an
instantiation of the framework. In practice, this meant writing subclasses of the abstract
framework class utilising and extending its functionality as well as customising its specific
behaviour to the required needs. For this project, there were mainly written two such
subclasses in order to interface with the Fortran model. Their functionality is outlined
below.

Parameter set-up: A subclass ParamSim which inherits from Simulation acts by gen-
erating new model input parameter files based on the values this parameter is re-
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quested to vary over. Stores the generated parameter files in their respective output
directory to be used as input for the model in each of those directories.

Topography set-up: A subclass TopoSim similar to ParamSim, but which instead of
generating parameter files, generates a set of topography data files as requested by
the user through wanting to vary a parameter related to the topography. Then
outputs the generated topographies to the output directories ready to be used as
model input.

Figure 3.1: Flowchart illustrating the workings of the Python framework for running
simulations in parallel on the MetOs cluster at the University of Oslo. It is important
to note that the master node and all cluster nodes are connected to the same network
storage where all source code and data is stored.

Almost all results we present in chapter 4 were produced using the Fortran model together
with the above described Python framework and its two extension subclasses. Addition-
ally, we used the cluster approach in nearly all cases. The referenced cluster was in the
form of a set of 20 desktop computers each with 4 CPUs and connected to the same net-
work storage, all located in the masters office of the author. These computers are intended
for ordinary work by all master students, but often resources were available to run simu-
lations for this project. Thus the networking query described above involved, in practice,
testing the connectivity to the machines in this cluster as well as remotely logging in to
all machines and running bash commands initiating every simulation, all automated by
the Python code of course. See figure 3.1 for an overview of the process. We did consider
making the framework work on the proper supercomputing cluster [Abel cluster, UiO] at
the University of Oslo in order to access even more CPUs than available in the ”MetOs”
cluster. This was, however, abandoned due to a combination of logistical issues as well as
judging the ”MetOs” clusters CPU count to be sufficient for our purposes. After every
simulation was done, depending on the particular case, a large set of data was generated
in terms of several directories with output files. The data includes time evolution of the
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upper and lower layer streamfunctions and kinetic energies as well as time evolution of
the potential energy of the system. Additional code was then written to gather, combine,
process and visualize the data in a meaningful way, leading to the figures in chapter 4.



Chapter 4

Results & discussion

4.1 Introduction

Now we present results we produced by applying the methods described in chapter 2 and
3. We studied the effects of three main (non-dimensional) parameters on the two-layer
flow; the bottom friction coefficient r, the topographic amplitude h0 and the topographic
wavenumber(s) kt, lt. In other words, the strength of friction as well as both the vertical
and horizontal scale of the topography. The dimensional bottom topography is a 2D
time-independent function specifying the height hB(x, y) above the resting depth H2 in
the lower layer. In line with the model, our topography is required to be non-dimensional
and it is scaled through (2.37). We reiterate from the introduction the topographies

hB(x, y) = h0 cos(ktx) cos(lty) (4.1)

hB(x, y) = h0 sin(ktx) sin(lty). (4.2)

Initially we used (4.1), but later also ran simulations with (4.2), the reasons for which
shall become apparent below. As the non-dimensional domain is defined on x, y ∈ [0, π],
these topographies consist of kt and lt (we always used kt = lt) bumps in the x- and y-
direction, respectively, and with a maximum/minimum amplitude of ±h0 (we always let
h0 > 0). Throughout this chapter we have used the initial condition described in section
2.4.2, i.e.

ψ1(x, y, 0) =
1

4
sin(kwx) sin(y) (4.3)

and ψ2 = 0 to initialize the system with a surface layer wave field flow above deep layer
at rest. In section 4.3.2 we examined variants of (4.3), but everywhere else kw = 4 was
used.

We used an upper non-dimensional simulation time of t = 100. Experimentation showed
this to be a decent compromise between giving the lower layer enough time properly
spin-up (to avoid diagnosing the system with a lower layer still in a spin-up phase) and
computational runtime. Furthermore, we defined the value of the total energy TE at
t = 100 as a fraction of the initial (t = 0) energy, i.e.

W =
TE(t = 100)

TE(t = 0)
(4.4)

30
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as a metric for examining the system. One could define similar metrics to (4.4) with e.g.
potential energy PE, upper kinetic energy KE1 or lower kinetic energy KE2. Since we
employed the initial condition (4.3) in nearly all our simulations, the initial energy was
always TE(t = 0) ' 1.27 [non-dim]. Depending on the particular set of simulations, W
is a function of the three varied parameters, that is W = W (r, h0, kt = lt).

The idea with the above metric is that there is a link between the amount of energy left
in the system at t = 100 and the lower layer flow during the time evolution of the system.
As the system’s only energy sink (friction) is present purely in the lower layer, the loss of
energy throughout the simulation acts as a measure of the energy transfer to the lower
layer (friction cannot act to remove energy without some non-zero flow in the lower layer),
and through W we hope to gain knowledge of how the lower layer is spun up as a function
of the mentioned parameters. This statement is, in the non-linear case, neglecting the
inevitable numerical loss of energy discussed in section 2.5 (figure 2.3). This loss is a
potential source of error as the non-linear runs dissipate more energy than dictated by
the dynamics. Additionally, amongst the non-linear runs; the ones with the most small
scale flow will experience the largest numerical energy loss. However, as the effect occurs
on all non-linear runs, we believe our simulations still provide a useful view onto physics
at work.

Below we have looked W (h0, r), W (h0, kt = lt) as well as time evolutions of the energetics
in addition the actual flow fields for several simulations varying topographic amplitude,
wavenumber and friction. We applied (4.4) to explore the systems response to a wide
parameter range both to learn about the parameters effects itself, but also as a tool to
”zoom” in on more specific parameter values to which we examined the flow and energetics
in more detail. We will first discuss some frictional effects, then look at the linear response
before discussing the non-linear system. The chapter ends with a discussion in the large
topography regime on the bumps ability to limit transfer to the lower layer and stabilize
the surface flow.

4.2 Frictional effects

It is useful to first briefly look at some frictional effects both to compare and distinguish
between the topographic effects we observe later. Inspired by the appendix from LaCasce
and Brink [2000], we ran simulations for six different bottom friction coefficients r all
with a flat bottom. The time evolution of KE2 and TE is seen in figure 4.1. Without
any friction (r = 0) there is no energy dissipation (except for the numerical loss in the
non-linear case). Very small friction dissipates some energy while increasing r shows
a suppression effect on the lower layer both in the linear and non-linear system. In
particular, for very large damping (r = 50) the TE remains constant throughout while
the KE2 is trapped at zero. Very large friction acts to almost completely block the lower
layer from spinning up, and in the non-linear system the upper layer is also stabilised
just as in the referenced article. In particular, PE and KE1 remain roughly constant
throughout (although not shown here) indicating the upper layer baroclinically unstable
wave field never turns turbulent. For such large damping the two-layer system (both
linear an non-linear) appears to approach the 1.5 layer system, i.e. a non-zero upper layer
flow above a lower layer at rest.
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Figure 4.1: Time evolution of total energy and lower layer kinetic energy for 6
different values of bottom friction coefficient r. Linear and non-linear runs done
with 128 × 128 and 256 × 256 grid resolution, respectively, and corresponding time
steps ∆t = 5 · 10−4 and ∆t = 2.5 · 10−4.

The intermediate values of r strikes a balance between the above both in the linear and
non-linear case. The red lines show that r = 0.1 is optimal for energy dissipation in the
linear system by removing energy in the lower layer at just the right rate through balancing
allowance of deep spin-up and subsequent dissipation. In the non-linear system, the violent
turbulent flow results in r = 1 being the optimal. For weaker or stronger friction in either
systems, the dissipation is less.

Observing the linear plots, we note the tendency for all (except the friction-less run)
KE2 evolutions to approach a steady state (most visible for r = 0.1). The motion of the
interface gives some rise in KE2, then it oscillates before remaining at a constant value.
TE is decreasing over the same time and so is PE (not shown here) indicating a balance
between conversion of PE to KE2 and removal of KE2 by friction. The steady state
value depend on r, and with larger r this value gets smaller before, at massive friction
(r = 50), just remaining at zero from the very start.

Overall, the above discussion seem to be related to a similar dual role played by friction
mentioned by LaCasce and Brink; very small friction, while allowing lower layer spin-up,
is not large enough to dissipate that much energy. Conversely, very large friction blocks
the lower layer spin-up and there is never any energy there to dissipate.
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4.3 Topography: Linear simulations

We start by looking at numerical solutions to the linear versions of the layer equations
(2.24) and (2.25) (remember the model actually solves (2.38) and (2.39)), i.e. neglecting
the non-linear terms. Since ψ2 = 0 initially, the linear layer equations tell that the lower
layer flow is forced and spun-up by the motion of the interface hi. In this section we look
at how spin-up of the lower layer is affected by topographic amplitude and wavenumber as
well as friction. These parameters modify the latter two terms in the lower layer equation
2.25 and might thus have significant impacts the time evolution of ψ2. All model runs in
this chapter were performed with a time step ∆t = 5 · 10−4 and a resolution of 128× 128.

4.3.1 Response to topographic amplitude

Figure 4.2: Left panel displays total energy in the linear system at (t = 100) as a
fraction of the initial (t = 0) total energy plotted for a set of 60 different friction
coefficients r ∈ [0.005, 5] and topography 60 amplitudes h0 ∈ [0, 7.5]. Right panel
shows a similar set of simulations, but zoomed in on the lower left region of the left
panel obtaining a higher resolution for this area.

We looked at the linear response with kt = lt = 6 cosine topography (4.1) for several
bump amplitudes h0 and friction coefficients r. Using our simulation framework we found
numerical solutions for 60 values of h0 ∈ [0, 7.5] and for each h0 value, 60 values of
r ∈ [0.005], a total of 3600 model runs. We extracted the total energy at t = 100 from
each of those runs and the left panel in figure 4.2 shows the metric W (h0, r), that is how
much energy is left in the system (”inverse” of the dissipation) as a function of h0 and
r. The range for h0 was chosen to examine the region of ”smaller” topographies and the
friction range was motivated by the previous section. The right panel shows another 3600
simulations for on a large (h0, r) resolution in the lower left corner of the left panel.

As expected based on the previous section, very small friction and a flat bottom (lower
left corner of the figure 4.2) result in very little dissipation seen by W ≈ 1 here. Then
we note the trend along the r-axis shows the same as the r-dependence seen in figure
4.1, i.e. small dissipation at small r, maximum dissipation with W ≈ 0.9 at intermediate
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values (however dependent on h0) and a blocking effect for large r. Interestingly, it
appears topography h0 exhibits similar behaviour to friction. For larger friction (r > 0.1)
there is generally more energy is left in the system with increasing h0. There is here
a monotonically increasing dependence on h0. In this regime, the suppression effect of
friction coexists with the apparent suppression effect of the bumps and the upper right
corner of the figure shows almost no dissipation at all.

For r < 0.1 the dependence on h0 is more complex. For very small r, W is monotonically
decreasing with h0, but moving up towards r = 0.1, non-monotonic dependence on h0 is
seen; energy left is large to about h0 ≈ 0.25 before rapidly decreasing reaching a minimum
then allowing significant energy loss across values of h0, before slightly increasing (hard
to see) for larger h0.

The simulations in figure 4.2 seem to have covered most of the variation with the two
parameters except for the large h0-dependence at small r. So a question we are left with
is whether the bumps can show a proper lower layer suppression effect for small friction
as well, i.e. without the need for strong friction. To investigate this, we perform large h0
simulations at small friction in section 4.5.

Motivated by a desire to further study the topographic response, we took a more detailed
look at some select simulations in figure the small friction regime. Using small r means
we will be able to study the impact of the bumps without the blocking effect of friction.
We used r = 0.01 and re-ran the model for h0 ∈ {0, 0.01, 0.05, 0.25, 1, 5} with output
of streamfunction and energy time evolution (these runs corresponds to points along a
horizontal line at r = 0.01 in figure 4.2).

The time evolution of energy can be seen in figure 4.3. The kinetic energies cycle sinu-
soidally due to the wave propagation on the surface and interface. Looking at all energies
it is evident that h0 ∈ {0, 0.01, 0.05} have little to no impact on the response while the
three larger values h0 ∈ {0.25, 1, 5} show quite modified behaviour. For the former three
topographies, h0 = 0.01 and h0 = 0.05 are seen to be approximately equal to the flat bot-
tom solution and KE2 oscillates and decreases in amplitude slowly due to friction (similar
to r = 0.01 in 4.1) for all three topographies. Whereas for the three larger amplitudes
there are significant energy transfer to the lower layer facilitating the larger energy loss
seen in TE.

There is a clear jump in response between h0 = 0.05 and h0 = 0.25 and this appear related
to an important event between these values; the closing of stationary potential vorticity
qs contours. The stationary PV in the lower layer is given by the time-independent part
of the lower layer PV given in (2.18), i.e. (in non-dimensional variables (dropping primes)
through use of the scalings in section 2.1.3)

qs(x, y) = βy + hB(x, y) (4.5)

with hB given by (4.1) and non-dimensional β = 1 (used in the model) through (2.42).
The contours of (4.5) closes if there is a local maximum (or minimum) in qs. Insert for
hB and look for maximum when the y-derivative vanishes through

∂qs
∂y

= β +
∂hB
∂y

= β − lth0 cos(ktx) sin(ltx) = 0. (4.6)
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Figure 4.3: Time evolution of kinetic, potential and total energy of the linear system
for flat bottom and 5 other values of h0. A small friction coefficient of r = 0.01 was
used.

The maximum value of cos(ktx) sin(ltx) is 1 and the critical value for closed contours
becomes

h0 = β/lt (4.7)

meaning that if h0 < β/lt there is no maximum and no closed contours. Inserting for
lt = 6 gives h0 > 0.167 to achieve closed contours. Figure 4.4 shows the qs contours and
gives a visual perspective by considering h0 = 0.1 and h0 = 0.3. Notice that they close for
the latter. Also note that h0 = 0.05 < 0.167 < 0.25 implying the contours are closed for
the three larger h0 runs (in figure 4.3), but not for the three smaller. In Welander [1968]
(also e.g. Nøst and Isachsen [2003] or LaCasce et al. [2008]) it is discussed that closing qs
contours significantly modify the lower layer flow around the bumps making the spin-up
more prominent and producing ”topographic gyres” as part of the solution. It appears
the same is happening in our case and is looked more at below.

To gain further knowledge of the dynamics at work, we extracted the lower layer stream-
function ψ2 from all six simulations in 4.3 to examine the flow field in each of these cases.
To look for prevalent topographic effects in ψ2, we computed the time mean over the
latter half of the simulation, i.e. from t = 50 to t = 100, through

ψ2(xi, yj) =
1

q − p+ 1

q∑
n=p

ψ2(xi, yj, tn) (4.8)
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Figure 4.4: Stationary PV contours qs = βy + hB for hB = h0 cos(6x) cos(6y) with
h0 = 0.1 (left) and h0 = 0.3 (right). Darker grey corresponds with larger qs values.

where i, j are indices for the grid cells and n for the time step while p is a time step index
such that tp = 50 and q such that tq = 100. In words, (4.8) implies computing the average
field by, for each grid cell, summing up all ψ2 values between t = 50 and t = 100 and then
dividing by the number of time steps in said interval. The reasoning for using the time
mean field was to see if there are consistent flow features associated with the topography.
Also, the latter half mean was used to diagnose the field after the main spin-up phase was
completed.

Figure 4.5: Time mean of ψ2 over the latter half (from t = 50 to t = 100) of the
linear simulation for 6 different values of h0. A small friction coefficient of r = 0.01
was used and the color range is the exact same for all panels. All 6 fields are overlaid
their respective topography altered qs contours.

Figure 4.5 shows ψ2(x, y) for the six values of h0 overlaid their respective topography
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altered qs contours. All panels are with the same color range making not just the colorbar
values, but also the colors itself, directly comparable. In all simulations we have westward
propagating Rossby waves. In correspondence with the energy evolutions in 4.3, we
observe the mean flow for h0 = 0.01 and h0 = 0.05 to be largely similar, both in form and
magnitude, to the flat bottom (h0 = 0) mean flow. However, the three larger bump cases
show significantly modified mean flow both in terms of magnitude (being about three
times stronger in amplitude) and appearance. The altered appearance is in the form flow
spinning around the bumps super-positioned on the westward propagating Rossby waves
with the bump trapped flow most visible in the h0 = 5 case. This corresponds well with
the above discussed closing of the qs contours between the h0 = 0.05 and h0 = 0.25 run.
This is a significant factor in the flow response around the bumps. While smaller bumps
cause distortions to the wave field, proper bumps flow is not observed until they close,
i.e. for h0 > 0.25 amongst these runs. Based on this, it appears the larger dissipation
for larger h0 seen in figure 4.3 and figure 4.2 (for small r), is a result of the larger bumps
supporting more lower layer spin-up through this bump flow.

4.3.2 Response to topographic wavenumber

We also investigated the linear response to topographic amplitude h0 together with topo-
graphic wavenumber kt = lt for a similar small friction coefficient r = 0.01. In particular,
we looked at W (h0, kt = lt) for two different initial upper layer flows while ψ2(x, y, 0) = 0
as usual, and performed 600 model runs in (h0, kt = lt) space using the simulation frame-
work. The metric (4.4) is plotted in figure 4.6 for initial condition (4.3) with kw = 4 (left)
and kw = 6 (right).

Figure 4.6: Total energy in the linear system at (t = 100) as a fraction of the
initial (t = 0) total energy plotted for a set of 20 topographic wavenumbers kt = lt ∈
[1, 20] ∈ N and 30 amplitudes h0 ∈ [0, 5]. Done for two different x-wavenumbers in
the initial wave and with r = 0.01 for all runs.

Again, we see the non-monotonic dependence on h0 (from figure 4.2 with small r) for nearly
all kt, lt; small dissipation at small h0, the rapidly increasing at intermediate values (in
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line with qs closing), but too large h0 actually suppresses the energy loss. Also note that
that the dependence on h0 is stronger for larger kt, lt.

The by far most prominent feature is the massive dissipation maximum for kt, lt = 4
and kt, lt = 6 together with kw = 4 and kw = 6, respectively. In other words, there is
large energy loss when the topographic wavenumber is equal to the x-wavenumber of the
initial (and sustaining because of linearity) wave, i.e. when kt, lt = kw. In these valleys,
there are around 75% energy left in the system indicating large frictional damping further
suggestion a large energy transfer to the lower layer. In figure 4.2, the smallest amount
of energy left was 90%, a significantly larger number, indicating that the effects seen here
are the main source of energy transfer to the lower layer.

Dynamically, the dissipation is preferential at a topographic scale resembling the wave
scale as this is seen to be the optimal way to force the flow over the closed qs contours.
In this case, the layer interface is displaced over the entirety of each bump rather than
only parts of it, enhancing the bump trapped flow. This will also, to some extent, be
the case when kt generally is close to kw as reflected by the visibly enhanced loss for
such configurations. In particular, there is a secondary dissipation maximum when the
topographic wavenumbers are half of that to the initial condition, i.e. at kt, lt = 2 for
kw = 4 and kt, lt = 3 for kw = 6.

4.4 Topography: Non-linear simulations

Having discussed the linear system, we now move onto looking at numerical solutions to
the full non-linear equations (2.38) and (2.39). We performed similar simulations to those
in the linear case, that is we looked at topographic effects both in terms of amplitude
h0 and wavenumber kt = lt for comparable ranges as before. The non-linear runs are
inherently different due to the initial instability causing subsequent turbulent flow and
it is interesting to see if we spot similar features (and/or different) to that of the linear
simulations. As before, we used the initial condition (4.3) with kw = 4 and the cosine
bump topography (4.1) throughout this section. A resolution of 256 × 256 and a time
step of ∆t = 5 · 10−4 was used for all runs in this section except for figure 4.8 and 4.9
where ∆t = 2.5 · 10−4 was used.

Figure 4.7 is the non-linear analogue to 4.7 and shows a section of the full data set
W (h0, r) generated from running the model for 45 values of r ∈ [0.005, 0.4] and 45 values
of h0 ∈ [0, 3]. The reason for not including the full friction range is simply that the black
section seen in the plot extends all the way to the upper value r = 0.4. About 20% of the
initial total energy is left at the smallest frictions while larger r dissipates away almost
all energy. Had we also here ran for very large friction, up to about e.g. r = 50, we would
have observed the lower layer blocking effect seen in figure 4.1 with nearly 100% total
energy left (or T (t = 100) ≈ 1.27 [non-dim]). In contrast to figure 4.2, there is almost no
dependence on h0 in this range suggesting that the topography term in (2.38) and (2.39)
is too small to compete with the larger non-linear terms.

As in the linear case, we examined the flow response for h0 ∈ {0, 0.01, 0.05, 0.25, 1, 5}
further and the energetics are shown in figure 4.8. This confirms the observations in the
previous paragraph; there are only minor differences between the different values of h0
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Figure 4.7: Total energy in the non-linear system at (t = 100) as a fraction of the
initial (t = 0) total energy for a set of 5 different friction coefficients r ∈ [0.005, 0.06]
and 45 topographic amplitudes h0 ∈ [0, 3].

with h0 = 5 providing the largest energy loss, but they are all are close to the flat bottom
evolution. The fact that h0 = 5 is the most dissipative also in the non-linear system is
interesting and suggesting that the lower layer spin-up effect we saw in the linear system
also has some impact here, albeit much smaller relatively speaking due to the turbulent
transfer also happening.

In figure 4.9 are the corresponding latter half time averaged ψ2 fields. The different
topographies give quite similar response in ψ2, all quite close to the flat bottom simulation
even though the qs contours have for h0 > 0.25. That being said, h0 = 5 provides slight
distortions indicative of the above mentioned topographic spin-up having an impact on
the mean field. The other values for h0 does not show any visible evidence of the bumps.
We shall see in section 4.5.1, that larger bumps have much more drastic impacts on the
non-linear flow field than seen here.

The flow we observe in all panels are Fofonoff-like gyres (originally described in Fofonoff
[1954]), emerging by a non-linear transfer to larger scales though an inverse energy cascade.
They are similar to the mean field gyres from the single-layer quasigeostrophic turbulence
simulations in Dukowicz and Greatbatch [1999] and LaCasce [2002], the former to which
we, as noted earlier, used a similar initial condition.

We also examined the non-linear analogue to figure 4.6 to see if the non-linear system
also gave more dissipation for kt = lt ≈ kw. Figure 4.10 shows W (h0, kt = lt) for 600
simulations with h0 reaching about ten times as large as in previous sections. The larger
h0 values was motivated by the lack of topographic effects as seen so far for the non-linear
response in this section (the reason why we did not simply use larger topography for all
the earlier presented results is a numerical issue discussed in section 4.5). Based on the
figure, the there is no visible larger dissipation for kt, lt = 4 (corresponding with the initial
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Figure 4.8: Time evolution of kinetic, potential and total energy of the non-linear
system for 6 different values of h0. A small friction coefficient of r = 0.01 was used.

condition wave scale) and, as opposed to the linear response, this effect does not appear
to be important here compared to the turbulent transfer to the lower layer. Note that
the energy left in the system is very small compared to the minimum of 75%+ in the
linear system indicating the instabilities in the non-linear system is a far more violent and
effective source of deep energy transfer than any effect we saw in the linear system.

Finally, we note that there generally more energy left in the system (although still only
about 5% − 7%) as we move towards the larger values of h0, especially at the smaller
kt, lt. This smaller dissipation seem to suggest the topography somehow limit the energy
transfer to the lower layer. This sparked an interest to investigate even larger h0 and
closer study the associated flow fields which is the focus of the next section. On the way
to larger h0 in figure 4.10, there are signs of a non-monotonic dependence on h0 for all
kt, lt; an energy minimum at intermediate values before increasing for larger h0. This
effect is reminiscent of similar behaviour by friction in sections 4.2 and 4.3.1 as well as
linear response to topography in figure 4.2 and is something we will see more of.

4.5 Large topography runs

Motivated by the end of the previous section, we sought after numerical solutions in the
regime of large values of the topographic amplitude h0 for some different topographic
wavenumbers kt = lt, still using the standard initial condition (4.3) with kw = 4.

The large h0 values we employ in this section correspond roughly to a dimensional values
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Figure 4.9: Time mean of ψ2 (non-dim) over the latter half (from t = 50 to t = 100)
of the non-linear simulation for 6 different values of h0. A small friction coefficient
of r = 0.01 was used. The color range is the exact same for all panels.

Figure 4.10: Total energy in the non-linear system at t = 100 as a fraction of
the initial (t = 0) total energy plotted for a set of 20 topographic wavenumbers
kt, lt ∈ [1, 20] ∈ N and 30 amplitudes h0 ∈ [0, 40]. Small friction r = 0.04 was used.

of up to 500 meters, so still within quasi-geostrophic assumptions considering H2 = 4000
meters.

As before, we used a small friction coefficient, now r = 0.04. The reason for investigating
these larger bumps separately from the smaller ones, was mainly due to numerical stability
in the model. In particular, h0 and kt = lt modifies the numerical stability condition for
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the schemes used to solve (2.38) and (2.39) resulting in a much stricter requirement on the
time step. This was discovered through experimentation, and likely due to topography
supporting topographic waves propagating at large speeds violating the CFL criterion
that would otherwise be satisfied without the presence of topography. This turned out
to be a problem especially in the linear case; we were unable to run the model for large
h0 and kt, lt as even decreasing the time step dramatically still resulted in numerically
unstable solutions (these are mentioned below). We were surprised the instability issue
first and foremost occurred in the linear case, contrary to the more typical cases where
stable non-linear solutions are a lot tougher to achieve. In our runs, it would seem the
non-linear triad interaction transferred energy to other wavelengths causing these fast
topographic waves to be lost making the linear runs more exposed to violation of the
stability criterion.

Through experimentation we decreased the time step by a factor of 50 to ∆t = 10−5 to
achieve numerical stability (for most runs). This further implied the need for 50 times as
many time steps in order to reach t = 100 meaning 50 times as large runtime. Therefore,
some of the results below contain fewer simulations than that of sections 4.3 and 4.4.
Additionally, a resolution of 256× 256 was used for all runs, even the linear ones we did
for this section. The reason for the latter is found in the final paragraph of section 2.5;
amongst other, we used kt, lt = 30 meaning 30 bumps in either direction of the domain.
This is barely resolved on a 128 × 128 grid and hence a 256 × 256 grid is preferential
for such rapidly varying bumps. For section we have used the sine bump topography
(4.2) (except in figure 4.11) as the cosine bumps are +h0 in magnitude in the domain
corners which gave some strong corner flow making the streamfunction elsewhere hard
to interpret. However, all sine bump runs were also done for the cosine bumps and the
response was very similar meaning either topography would yield the same discussion.

Figure 4.11 shows the metric (4.4) applied for upper kinetic, lower kinetic, potential
and total energy in the non-linear system for 45 simulations ranging from flat bottom
to h0 = 100 performed for 3 topographic wavenumbers. We also wanted to produce
a similar figure in the linear system, but numerical stability was too hard to achieve
for kt, lt ∈ {18, 30}. The small uneven oscillations reflect run-to-run variations, typical
of turbulent systems. Also, as all these energy values are normalized with their initial
values, disregard the massive KE2 values; initially the lower layer is at rest so the values
emerge from dividing by a value very close to zero. That being said, the KE2 graphs are
still valid in terms of shape.

An interesting aspect is that TE decreases slightly to a minimum at around h0 ≈ 15, for
all wavenumbers, before increasing significantly up to h0 = 100 reaching e.g. 30%+ energy
left in the system for kt, lt = 18. Thus we see a dissipation maximum for intermediate
values h0 (while quite similar for small h0 values) and some blocking/stabilising effect for
large values of h0. This non-monotonic dependence is the same as in figure 4.10 and similar
to the linear observation in figure 4.2. In addition it reminds us of similar behaviour by
friction in figure 4.1 and 4.2.
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Figure 4.11: Upper kinetic, lower kinetic, potential and total energy in the non-linear
system at t = 100 as a fraction of their respective initial (t = 0) values. plotted
for a set of 3 topographic wavenumbers kt = lt ∈ {6, 18, 30} and 45 amplitudes
h0 ∈ [0, 100]. Each run used r = 0.04.

4.5.1 Flow response

Motivated by the previous paragraph, we further examined the flow response for select
parameters. We focused on kt, lt = 6 and kt, lt = 30 and, for each of those, ran the model
with h0 ∈ {0.1, 5, 60, 100, 150} to compare both small/large kt = lt and small/large h0. We
ran both linear and non-linear simulations for these parameters and the latter half time
mean deep flow overlaid qs contours corresponding to their respective topographies can be
seen in figure 4.12 (we left out the h0 = 150 runs for readability, but their response were
similar to the h0 = 100 cases and are discussed in section 4.5.2). The linear kt, lt = 30,
h0 ≥ 60 runs developed numerical instabilities and are therefore excluded in the figure. To
prepare for the below discussion we also mention that figure 4.13 shows the corresponding
non-linear upper layer flow at t = 35 (using the time mean in the upper layer made
less sense as the prevalent bump flows are predominantly features of the lower layer and
averaging captures a lot of bypassing flow cluttering the mean field (although we shall
below see that there exists quite barotropic flows for which the upper layer mean flow
would be informative)).

The linear ψ2 fields for kt, lt = 6 are similar to what we saw in figure 4.5 in h0 = 0.1
and h0 = 5, i.e. is some bump trapped flow super-positioned on the westward moving
wave field. The two parameters differ in response as before though; distorted wave-like
flow for open qs contours (h0 = 0.1) and bump flows for closed qs contours (h0 = 5). For
h0 ≥ 60 the response is very similar to h0 = 5, but the amplitude is slightly smaller. The
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Figure 4.12: Latter half time mean ψ2 for kt = lt ∈ {6, 30} and h0 ∈
{0.1, 5, 60, 100, 150}. The top 6 panels are linear solutions while the bottom 8 are
non-linear. All runs done with r = 0.04. All panels have x- and y-axis ranging from
0 to π. The linear kt, lt = 30, h0 ≥ 60 runs are excluded as they went numerically
unstable.

kt, lt = 30 (recall that topographic wavenumber also affects the closing of the qs contours,
in partiuclar making them close at smaller h0) case show smaller impact on the overall
flow field, albeit with visible topographic distortions to the wave. The magnitudes of
the streamfunctions are even smaller for this many-bump case and especially for h0 = 5.
In all these runs, the spin-up of the lower layer happens through interfacial motion and
spin-up around topography, but to different degrees as seen in e.g. figure 4.2. To keep the
plot count reasonable, linear ψ1 plots have been omitted, but seen in those are an upper
layer of largely similar wave structure as the initial condition, but slightly distorted and
more so for kt, lt = 6 than kt, lt = 30, that is the bump flow has less penetration to the
upper layer when there are more bumps though the qs contours are more closed). Like
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topographic waves, the vertical scale of the flow trapped over the bumps increases with
the bump horizontal scale as in (e.g. LaCasce [1998]).

Figure 4.13: Snapshot of non-linear ψ1(t = 35) for kt, lt ∈ {6, 30} and h0 ∈
{0.1, 5, 60, 100, 150}. All panels have x- and y-axis ranging from 0 to π.

We move onto the non-linear solutions. With h0 = 0.1, the evolution is nearly the same
as over a flat bottom for both kt, lt = 6 and kt, lt = 30, i.e. the inverse cascade produces
Fofonoff gyres in ψ2 (as also seen in figure 4.9), in the north and south, without visible
bump features. The ψ1(t = 35) field show the gyres with vortices superimposed. Note
the anti-cyclonic (red) vortices are in the north and the cyclonic (blue) in the south.

For h0 = 5 the qs contours are closed and the situation it is more complex; with kt, lt = 6,
the gyres are still evident in ψ2, but are concentrated on the bumps. So we observe
a hybrid flow between bump features and the Fofonoff gyres. The bump flows are of
the same sign as the gyre in which they are contained, i.e. anti-cyclonic bump flows in
anti-cyclonic northern gyre while cyclonic bump flows are in the cyclonic southern gyre,
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indicating the bump flows are driven by the surface flow. With kt, lt = 30 though), the
gyres still dominate and bump flow is barely visible. This is counter-intuitive as the qs
contours are even more closed for kt, lt = 30, but evidently it is harder to drive the bump
flows when there is a large discrepancy between the scales of the bottom topography
and the surface flow. This is something we also saw in the linear runs (see linear ψ2 or
figure 4.6) and it appears the effect is of significance in the non-linear system as well.
The corresponding ψ1(t = 35) fields are like those with h0 = 0.1, just with slightly more
evidence of the bumps, most notably for kt, lt = 6.

With h0 ≥ 60 and kt, lt = 6, there are no longer Fofonoff gyres visible in ψ2. Rather
the mean flow is in fact dominated by the bumps and with anti-cyclonic flow around
seamounts and cyclonic flow around depressions (grey qs contours represent seamounts
and white depressions) as predicted by LaCasce and Nycander [2004] and Bretherton and
Haidvogel [2004]. In the upper layer, ψ1(t = 35) also shows evidence of the bumps and no
gyres, suggesting the energy has transferred into bump circulations. Although, not shown
here, we did examine ψ2(t = 35) as well and the bump dominated flow is nearly barotropic
(because the associated topographic waves with kt, lt = 6 are nearly barotropic), that is
the ψ1(t = 35) anti-cyclones and cyclones are aligned with those in ψ2(t = 35).

Finally, for kt, lt = 30 (h0 ≥ 60 still), the response in ψ2 is mostly bump dominated
as well. Also here there is anti-cyclonic flow over the seamounts and cyclonic flow over
depressions. In the corresponding ψ1(t = 35), especially for h0 = 100 and h0 = 150, we
observe something very interesting (why we chose t = 35); an upper layer flow that shows
evidence of the wave-like structure that are about to break up. Note the zonally generated
”wiggles” on the wave resembling those in the breaking waves in LaCasce and Pedlosky
[2004]. It is evident the waves remain intact for longer as h0 and kt, lt increases. This
suggests a slower (but still non-zero) energy transfer to the lower layer in these cases. A
similar result was found in LaCasce and Brink [2000] for a sloping bottom. During the
phase up to about t = 35, the h0 = 150 response has a lower layer decoupled from the
upper layer. The upper layer is wave-like while the lower layer flow is weak. In this phase,
the system acts more like Rossby waves in a 1.5 layer system. We examine this more in
the next section.

4.5.2 Topographic suppression of deep turbulent transfer

The ψ1(t = 35), kt, lt = 30, h0 ≥ 60 fields suggest the upper layer wave is somewhat
stabilised and survive longer. The energy time evolutions in figure 4.14 (corresponding
to the runs in figures 4.12 and 4.13) gives an additional perspective on this effect. For
these parameters, the potential energy remain roughly constant quite some time before
suddenly decreasing when the instability grows and the upper layer becomes turbulent. A
sudden increase in KE1 and KE2 can be seen at the same times. KE2 increases roughly at
the same time as a direct consequence of the the turbulent upper layer; turbulent transfer
of energy occurs through the non-linear terms of equations (2.24) and (2.25). As a further
consequence, the total energy is roughly conserved until the instability happens before
dropping due to removal of energy by friction in the recently activated lower layer. The
observed instability delay seems to be related to modifying the growth rate for baroclinic
instability studied in LaCasce and Pedlosky [2004]. They employed a flat bottom, but it
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appears reasonable that their Rossby waves would survive longer and consequently have
an easier time crossing the basin if using large and many bumps in their simulations.

Figure 4.14: Time evolution of kinetic, potential and total energy of the non-
linear system for kt, lt ∈ {6, 30} and h0 ∈ {0.1, 5, 60, 100}. The topography
hB = h0 sin(ktx) sin(lty) and a small friction coefficient of r = 0.04 was used for all
runs.

Note that larger h0 (and especially h0 = 150) not only delays the instability even more,
but also weakens it, i.e. the extrema of KE1 and KE2 are smaller resulting in less overall
dissipation as seen in TE. In terms of the weakening of the instability, the large and
many bumps appear to exhibit a similar effect to that of friction in section 4.2; bumps
and friction may both dampen the instability and limit subsequent energy loss. Very large
friction, however, completely shut off the lower layer, something which we have not seen
with the bumps; there is still lower layer transfer, only later and weaker. This still heavily
modifies the flow field evolution though.

The kt, lt = 6 with h0 ≥ 60 runs also show signs of weakening (but not as much as above)
the instability by observing the earlier flattening-out in PE and the corresponding smaller
peak KE1 and KE2 compared to the small h0 runs. However, the longer stable period
before the turbulent break-up seen for kt, lt = 30, is not present here suggesting implying
the flow is significantly more barotropic throughout and that the stabilising effect depends
on there being enough (and tall) to decouple the lower from the upper layer.

For both kt, lt = 6 and kt, lt = 30, the smaller h0 = 0.1 and h0 = 5 behave quite similarly
in terms of energy. This is not all that surprising considering the corresponding stream-
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functions in figures 4.12 and 4.13 were quite similar to the flat bottom flow (especially
for kt, lt = 30) and can also be seen in figure 4.11 along the initial fairly flat section in all
panels. That being said though, we note that kt, lt = 6 and h0 = 5 provides the largest
peak KE2 and the largest dissipation indicating that this is the run giving the largest
transfer of energy to the lower layer. This is in line with what we have seen earlier this
chapter in terms of intermediate values of h0 enabling enhanced lower layer spin-up and
also seem related to the nearly barotropic flow for these parameters.

Figure 4.15: Time evolution of kinetic, potential and total energy of the lin-
ear system for kt, lt ∈ {6, 30} and h0 ∈ {0.1, 5, 60, 100}. The topography hB =
h0 sin(ktx) sin(lty) and a small friction coefficient of r = 0.04 was used for all runs.

Finally, for comparison, we look at the linear analogue in figure 4.15. These energy plots
are from the same runs as the upper 8 streamfunctions in figure 4.12. Immediately evident
is what finished the non-linear discussion; the kt, lt = 6, h0 = 5 run has the largest loss of
PE and largest increase in KE2 and thus having the most efficient transfer to the lower
layer which is consistent with it being easier to force the near barotropic flow. Else, all
h0 ≥ 60 runs all follow almost the exact same lines indicating very weak dependence on
h0. This fits well with the ψ2 fields in the upper right two panels in figure 4.12 having the
same structure and magnitude. In this context it is also worth mentioning the observed
lower horizontal band in figure 4.2 where we saw weak dependence on h0 (above the
smallest h0) for small friction (we only ran for h0 ≤ 5 there though).

For kt, lt = 30 we only have the small h0 runs as mentioned earlier. Recall topographic
wave phase speed cx, cy ∝ ∂hB/∂x, ∂hB/∂y (see e.g. LaCasce [2018, sec. 5.7]) implying
kt, lt = 30 vs. kt, lt = 6 yields a five-multiple increase in phase speeds which is more prone
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to violate the numerical stability condition (and so it did even for tiny time steps ∆t).
As already seen for the streamfunction, the h0 = 0.1 behaves very similarly to the flat
bottom case and the h0 = 5 run has the least dissipation consistent with small magnitude
in figure 4.12 as well as the upper right region of the left panel in figure 4.6 (although we
stopped at kt, lt = 20 there).



Chapter 5

Summary & Conclusions

We have studied fluid flow in a two-layer ocean above a bump topography and examined
the response as a function of both the horizontal and vertical scale of the bumps as well
as friction. We conducted this study using numerical simulations with a two-layer quasi-
geostrophic model. First, we derived the equations used by LaCasce and Pedlosky [2004].
Then we wrote an update of the model porting it over to a modern version of Fortran,
but altered to include topography to facilitate use by the author for this project, but also
for others who may employ the model at later times. Then we implemented the topog-
raphy terms into the model and showed our model setup. Before running simulations,
we developed a Python framework for model run automation and parallel execution of
independent model runs, enabling the wide parameter seen in chapter 4 and saving large
amounts of time when exploring parameter space. Finally, we presented and discussed the
results from our numerical simulations. The following summarizes some of results that
were found:

• In our method regarding the metric (4.4) for examining deep spin-up we need fric-
tion. Otherwise we would see no dissipation, comma making it hard to determine
how much the lower layer was spun up over several 1000 simulations.

• Generally, the linear mean field evolves as bump flows superimposed on westward
moving Rossby waves. The non-linear field is more complex, but often exhibit
bump-trapped flows and Fofonoff gyres.

• With weak friction, the lower layer spins up quickly. At large friction, there is a
blocking effect preventing the lower layer from spinning up. Maximum dissipation
consequently occurs at intermediate values, both linearly and non-linearly, as friction
continually rain the lower layer energy, facilitating even greater transfer to that layer.

• Both the linear and non-linear system exhibit (for small friction) similar dependence
on h0 as on r, i.e. moderate dissipation for small h0, maximum dissipation for
intermediate h0 (due to closed qs contours) and a blocking effect for large h0.

• At larger r in the linear system, the combined effect of friction and h0 seem to make
the blocking happen more prominently and the dependence on both h0 and r is
more pronounced.
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• The main contributor of linear deep transfer is when the horizontal topography
scale resembles the wave x-scale, and the qs contours are closed. This allows for
the interface to be displaced coherently above the entirety of the bumps enabling
optimal spin-up around the closed qs contours. For such cases, the linear vertical
structure is heavily modified with strong topographic influence.

• The non-linear fields are not significantly altered with h0 ≤ 5 (even with closed qs
contours) and largely approximate the flat-bottom case indicating the instability
overpowers the topographic effects. The emerging mean flow is Fofonoff gyres, as is
found in turbulent barotropic flows.

• If the bumps are tall enough (closed qs contours for linear case and h0 ≥ 60), the
flow response is nearly barotropic and thus easier to drive with surface flows, both
linearly and non-linearly. For bumps smaller than the deformation radius, the bump
flow is more bottom-trapped and the layers more decoupled leaving less evidence of
the bumps in the upper layer.

• If the topography (both horizontally and vertically) gets large enough, it exhibits a
stabilising effect on the upper layer wave field and prohibits wave instability, and
thereby severely limits energy transfer to the lower layer. However, the stabilising
effect only delay (albeit with quite much) the field from going turbulent. The field
eventually breaks up anyway, but the peak kinetic energies are also smaller in these
cases, so the overall dissipation is less.

• The topographic stabilization of the upper layer means the lower layer remains at
rest for longer and the solution for these times are more like Rossby waves in the
upper layer over a stationary lower layer, that is a 1.5-layer-like situation.

• Both the topographic height h0 and wavenumber kt, lt are important in the resulting
flow response.

The main conclusion is: The 2-D bumps show (for small friction) the ability both to
enhance deep spin-up at for intermediate values of topographic height and the ability to
suppress deep transfer at large topographic heights and small bump wavelength. In the
non-linear system, the surface wave survives significantly longer for large h0 and kt, lt; the
bumps both delay and weaken the instability. But instability occurs eventually indicating
the deep transfer is still present, only later and weaker.

5.1 Future work

Due to time constraints there will always be interesting aspects of a project that one does
not have the time to explore, and this project is no different in that regard. In this section
we offer some thoughts and discussion on areas that could be explored in more detail or
extended in the future to gain further insights.

With more time, it would have been interesting to investigate the stabilising effect of the
surface wave in more detail, in terms of altering growth rates for baroclinic instability,
seen in LaCasce and Pedlosky [2004]. One may then be in a better position to suggest
modifications to those results by the findings here.
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An immediate extension is to investigate even larger topographic amplitudes (while still
keeping within quasi-geostrophic assumptions) and wavenumbers. The observed non-
linear upper layer stabilization from section 4.5.2 should be even stronger for such cases,
maybe even throughout the entire simulation time we used. This would, however, require
a finer grid resolution and even smaller time steps, both due to the stricter numerical
stability condition, but also to resolve the proposed large bump count, further resulting
in massive runtimes. With the numerical schemes used in this model, it is doubtful the
linear runs would even be feasible given the trouble we already had with the amplitudes
and wavenumbers we used.

Related to the above, it would be interesting to also include completely different topogra-
phies, i.e. other hB(x, y) than those of (4.1) and (4.2). Examples of such topographies
include a sloping bottom as used in LaCasce and Brink [2000], a random field (inherently
containing a wide range of wavenumbers), a Gaussian ridge in the x-direction (same as ini-
tial wave) or a single Gaussian in both x- and y-direction similar to those used in LaCasce
and Nycander [2004] as a seamountain to study vortex dynamics. All these topographies
have associated parameters whose impact on the two-layer system can be explored. Par-
ticularly interesting would be to look at their ability to stabilize the upper layer non-linear
flow to see if this effect is a general one and not specific to the bump topography used in
this work. If true, one would expect the mentioned alternative topographies to achieve
a stabilising effect and a lower layer suppression (which was seen in LaCasce and Brink
[2000] for the sloping bottom, but with β = 0) at large topographic heights in line with
what found here.

The parameter F is also relevant for transfer to the lower layer. It is related to the density
difference between the layers and determines to what degree the interface is allowed to
move up and down. For instance, a smaller F implies a larger reduced gravity g′ which
corresponds to a larger density difference between the layers. This makes it more difficult
for the interface to move up and down, and to have independent flow in the layers. The
parameter thus has an impact on the lower layer spin-up, and it would be useful to study
this impact by investigating different values of F0 = 1000 (which we used throughout) in
the model.

In addition to looking at different topographies, the effect of using a different upper layer
initial flow could be investigated. Although we did use a different a initial condition in
section 4.3.2 (and speculated on more), it was quite similar still and so appeared the
response. One might ask if the lower layer spin-up would be significantly altered by very
different initial conditions. Worth noting is that we performed a few sample runs with
more zero-crossings in y as well (as used in Dukowicz and Greatbatch [1999]), and the
response appeared similar.

Another interesting extension is the inclusion of wind forcing F(x, y, t) on the upper layer.
All our simulations were done without any external forcing besides lower layer friction,
but as seen in section 2.1.1 in equation (2.24), the upper layer can be exposed to a spatial-
and time-dependent forcing from the e.g. the winds. The altered response would be of
interest partly because this is closer the real oceans. Depending on the specified forcing,
its strength might overpower the topographic effects seen here making the bumps less
important than in our runs. As seen in the model-implemented equations (2.38) and
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(2.39), the model supports this feature making study of its impact readily available.

Even though t = 100 as an upper simulation time appeared reasonable and captured the
system after the initial lower layer spin-up phase (see e.g. linear KE2(t) flattening out
in figure 4.15 as well as non-linear KE2(t) flattening out in figure 4.14 for large t), one
might suggest using an even larger upper time limit to allow for more of a steady-state.
Additionally, one might suggest a resolution of 512×512 for the turbulent runs to achieve
higher accuracy, but wary of the significant increase in computational runtime increase.

For the sake of quantifying the upper layer stabilization seen in figure 4.14 to a larger
degree, one might consider performing a set of simulations for a wide range of topographic
amplitudes h0 and wavenumbers kt, lt to look for the dependence of the time Tt when flow
goes turbulent. To achieve this, one could for instance develop a method for approximating
when upper layer wave-like flow transitions to turbulent flow, e.g. using the extrema of
KE1(t), and then apply this to each simulation to construct the Tt(h0, kt = lt) function.

Finally, we note that the two-layer quasi-geostrophic approach used in this study, while
definitely very useful for gaining insights on the dynamics, has its limitations in terms
of accurately portraying the real oceans. Therefore, another possible future endeavour
includes employing a primitive equation model for a similar study, that is one with con-
tinuous stratification and other features neglected by the our approach. Such a model
could be used to conduct similar numerical simulations with a focus on flow response to
topography and its defining parameters.



Appendix A

Additional mathematics

A.1 Layer equations to barotropic equation

In order to get a prognostic equation for ψB we multiply (2.24) by δ1 and (2.25) by δ2
and then add them together. We look at each of the terms in (2.24) and (2.25) and how
they combine in turn. Starting with the time-derivative term, we have

δ1
∂

∂t

[
∇2ψ1 + F1(ψ2 − ψ1)

]
+ δ2

∂

∂t

[
∇2ψ2 + F2(ψ1 − ψ2)

]
=

∂

∂t
∇2ψB (A.1)

where we have used (2.3), 2.4 and that

δ1F1 =
H1

H0

f 2
0

g′H1

=
f 2
0

g′H0

=
H2

H0

f 2
0

g′H2

= δ2F2 (A.2)

such that the second term inside the bracket-parenthesis vanish. Moving on to the first
of the two non-linear jacobian terms. Using (2.6) and (2.7) these combine as

δ1J (ψ1,∇2ψ1) + δ2J (ψ1,∇2ψ1)

= δ1J (ψB + δ2ψT ,∇2(ψB + δ2ψT )) + δ2J (ψB − δ1ψT ,∇2(ψB − δ1ψT ))

= δ1
[
J (ψB,∇2ψB) + δ2J (ψB,∇2ψT ) + δ2J (ψT ,∇2ψB) + δ22J (ψT ,∇2ψT )

]
(A.3)

+ δ2
[
J (ψB,∇2ψB)− δ1J (ψB,∇2ψT )− δ1J (ψT ,∇2ψB) + δ21J (ψT ,∇2ψT )

]
= J (ψB,∇2ψB) + δ1δ2J (ψT ,∇2ψT )

where we have used that δ1 + δ2 = 1 (see (2.5)). Next up is the second jacobian term.
Here the combination vanishes as follows.

δ1J (ψ1, F1ψ2) + δ2J (ψ2, F2ψ1) = δ1F1J (ψ1, ψ2)− δ2F2J (ψ1, ψ2)

= (δ1F1 − δ2F2)J (ψ1, ψ2) = 0 (A.4)

where we again used (A.2) in the final equality. Moving on to the β-term, we have

δ1β
∂ψ1

∂x
+ δ2β

∂ψ2

∂x
= β

∂

∂x
(δ1ψ1 + δ2ψ2) = β

∂ψB

∂x
(A.5)
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through invoking (2.3) and 2.4 again. the last term on the left hand side is the topographic
term (only present in the lower layer equation). This becomes:

δ2J
(
ψ2,

f0
H2

hB

)
= δ2J

(
ψB − δ1ψT ,

f0
H2

hB

)
. (A.6)

Finally we have the forcing/dissipation terms on the right hand side:

δ1F − δ2r∇2ψ2 = δ1F − δ2r∇2(ψB − δ1ψT ) (A.7)

Now that all terms are taken care of, we collect all terms (A.1), (A.3), (A.4), (A.5), (A.6)
and (A.7) to get the barotropic equation

∂qB
∂t

+ J (ψB, qB) + δ1δ2J (ψT , qT ) + β
∂ψB

∂x

+ δ2J
(
ψB − δ1ψT ,

f0
H2

hB

)
= δ1F − δ2r∇2(ψB − δ1ψT ). (A.8)

where

qB = ∇2ψB (A.9)

qT = ∇2ψT − FψT (A.10)

is the barotropic and baroclinic potential vorticity, respectively.

A.2 Layer equations to baroclinic equation

Finding a prognostic equation for ψT can be done by subtracting (2.25) from (2.24). We
do a term-by-term procedure starting with the time-derivative term:

∂

∂t

[
∇2ψ1 + F1(ψ2 − ψ1)

]
− ∂

∂t

[
∇2ψ2 + F2(ψ1 − ψ2)

]
=

∂

∂t

[
∇2(ψ1 − ψ2)− (F1 + F2)(ψ1 − ψ2)

]
=

∂

∂t

[
∇2ψT − FψT

]
(A.11)

where we have defined

F = F1 + F2 =
f 2
0

g′H1

+
f 2
0

g′H2

=
f 2
0 (H2 +H1)

g′H1H2

. (A.12)

The first jacobian terms combine as

J (ψ1,∇2ψ1)− J (ψ1,∇2ψ1)

= J (ψB + δ2ψT ,∇2(ψB + δ2ψT ))− J (ψB − δ1ψT ,∇2(ψB − δ1ψT ))

= J (ψB,∇2ψB) + δ2J (ψB,∇2ψT ) + δ2J (ψT ,∇2ψB) + δ22J (ψT ,∇2ψT ) (A.13)

− J (ψB,∇2ψB) + δ1J (ψB,∇2ψT ) + δ1J (ψT ,∇2ψB)− δ21J (ψT ,∇2ψT )

= J (ψB,∇2ψT ) + J (ψT ,∇2ψB) + (δ2 − δ1)J (ψT ,∇2ψT )
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where we have used that

δ22 − δ21 = (δ2 − δ1)(δ2 + δ1) = δ2 − δ1

and again that δ1 + δ2 = 1. Next up is the second jacobian term. Here the combination
vanishes as follows

J (ψ1, F1ψ2)− J (ψ2, F2ψ1) = F1J (ψ1, ψ2) + F2J (ψ1, ψ2) = FJ (ψ1, ψ2)

= FJ (ψB + δ2ψT , ψB − δ1ψT ) = −δ1FJ (ψB, ψT ) + δ2FJ (ψT , ψB) = J (ψB,−FψT )
(A.14)

and the β-term becomes

β
∂ψ1

∂x
− β∂ψ2

∂x
= β

∂

∂x
(ψ1 − ψ2) = β

∂ψT

∂x
(A.15)

while the topographic term remains largely unchanged

− J
(
ψ2,

f0
H2

hB

)
= −J

(
ψB − δ1ψT ,

f0
H2

hB

)
(A.16)

and finally the forcing/dissipation terms on the right hand side combine to

F + r∇2ψ2 = F + r∇2(ψB − δ1ψT ). (A.17)

At last we can combine all terms (A.11), (A.13), (A.14), (A.15), (A.16) and (A.17) to get
the baroclinic equation.

∂qT
∂t

+ J (ψB, qT ) + J (ψT , qB) + (δ2 − δ1)J (ψT , qT )

+ β
∂ψT

∂x
− J

(
ψB − δ1ψT ,

f0
H2

hB

)
= F + r∇2(ψB − δ1ψT ). (A.18)
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