
Wind-Driven Clouds

Utilizing wind energy in data centers

Idun Osnes

Thesis submitted for the degree of
Master in Materials Science and Nanotechnology

60 credits

Department of Physics
Department of Technology Systems

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2018

Wind-Driven Clouds

Utilizing wind energy in data centers

Idun Osnes

c© 2018 Idun Osnes

Wind-Driven Clouds

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Summary

This thesis is written as part of the project INTEGRARE (Intelligent prediction

and integration of renewable energy sources into the Norwegian electricity grid),

which addresses the need of transforming the future energy systems based on

renewable energy sources. This project is a collaboration between several depart-

ments at UiO (the Department of Technology systems, the Department of Informat-

ics, and the Department of Physics), as well as the Department of System Design

Engineering at Keio University in Tokyo, and the Department of Energy Informatics

at Technical University of Munich. This thesis aim to establish how power hungry

data centers can be integrated within a smarter energy grid, considering that data

centers have a good profile for using excess energy from renewable energy sources

that would otherwise be wasted.

This thesis presents a method for reducing the environmental footprint of the data

center industry, by creating an algorithm that reduces the overall energy consump-

tion of a small-scale data center, co-located with a wind energy source. The algo-

rithm also increases the fraction of energy that comes from the wind and decreases

the energy consumption during times of low renewable availability.

The lower energy consumption of the data center is achieved by increasing the

load on individual machines in the data center so that the overall efficiency of

computations increase. The algorithm reduces the energy usage further in times

of low renewable energy production, by separating the workload of the data center

into different categories based on latency sensitivity, and postponing some or all of

the lower latency sensitive computations to a time when more renewable energy

is available.

1

Acknowledgements

First of all, I would like to express my gratitude to my supervisors, Associate Pro-

fessor Sabrina Sartori at the Department of Technology Systems, and Professor

Frank Eliassen at the Department of Informatics, and also to Prof. Dr. Arno Jacob-

sen from the Technical University of Munich. Thank you all for letting me follow

my interests and take on this challenge, and for helping me through the process.

Special thanks to my main supervisor Sabrina for her guidance and support to

navigate the process of writing this thesis, it has been so valuable. Thank you for

motivating me and pushing me further.

A big thanks to Associate Professor Anis Yazidi at OsloMet for being there with a

smile to answer my questions and helping me set the course of my work, and for

his valuable comments and input during this process.

I would also like to give a special thanks to Professor Toru Namerikawa and his

students at the Department of System Design Engineering at Keio University for

their hospitality, and for giving me the opportunity to visit and work in their lab

in Tokyo.

I would also like to acknowledge how lucky I am to live in a country where ed-

ucation is free and available to all, and to mention my fellow students of the

MENA-program, who have made the last five years of studying so pleasant, by cre-

ating a community for learning, discussions and good times. I am grateful to have

gotten to know all of them.

Last but not least I want to thank my family. My parents for always supporting me

and encouraging me to be curious and to figure things out on my own. My sister

for her support, comfort, and understanding in the more challenging times, and a

very special thanks to my girlfriend for her patience, and for everything that she

has done for me during this process. Thank you so much for always having my

back, rooting me on and giving me confidence. Also a shout out to my dogs for

always being ready to cuddle.

2

Contents

1 Introduction 5

1.1 Motivation . 6

1.2 Problem Statement . 6

1.3 Contributions . 8

1.4 Organization . 8

2 Background and state-of-the-art 10

2.1 Background . 10

2.1.1 Data centers . 10

2.1.2 Workloads . 12

2.2 State-of-the-art . 13

2.2.1 Power sources . 14

2.2.2 Approaches to process different workloads with RES 16

2.2.3 Approaches to optimize scheduling software 18

2.2.4 Approaches for power and workload prediction 21

2.3 Methods . 25

2.3.1 Neural networks . 25

3 Design of experiments 30

3.1 Design choices . 30

3.1.1 Workload trace . 30

3.1.2 Assumptions and simplifications 32

3.1.3 SVM regression for wind power prediction 34

3.2 Data description . 34

3.2.1 Google cluster-usage traces 34

3.2.2 Data selection and preprocessing 35

3.2.3 Workload statistics . 36

3.2.4 Wind data from a Norwegian wind farm 38

3.3 Description of the proposed algorithm 39

3

3.3.1 Baseline algorithm, assuming clairvoyance 40

3.3.2 Baseline algorithm with power, assuming clairvoyance . . . 41

3.3.3 Non clairvoyant algorithm with task usage prediction 44

3.4 Neural network for task usage prediction 45

3.4.1 Data preparation and inputs 45

3.4.2 Network structure . 46

4 Results and discussion 49

4.1 Original data . 49

4.2 Results from baseline algorithm . 52

4.2.1 Unaltered trace . 52

4.2.2 Custom trace . 55

4.3 Results from power-aware algorithm 57

4.3.1 Unaltered trace . 57

4.3.2 Custom trace . 59

4.4 Results from algorithm with predicted CPU usage and duration . . 61

4.5 Comparing the results . 65

4.6 Task prediction results . 67

4.6.1 Prediction for low latency sensitive tasks 67

4.6.2 Prediction for medium latency sensitive tasks 69

4.6.3 Prediction for high latency sensitive tasks 70

5 Conclusions and further work 73

5.1 Conclusion . 73

5.2 Further work . 75

4

Chapter 1

Introduction

We live in a world that is more and more dependent on information technology

(IT). The global interconnectedness and mass accumulation of data is a growing

business, and growing fast. There are few areas of our life in today’s world that

are not touched in some way by technology. This technology is getting smarter

and more interconnected each day, by collecting, processing and analyzing vast

amounts of data. Computers control much of our infrastructure. The energy-grid,

water supply, financial institutions and most other critical systems now run on

some form of a connected system. These systems are dependent on a growing

number of computers and servers, located around the world. A majority of the

population of the world also use the internet, connecting to the world with their

phones, tablets, and laptops. As a result of this, there is an increase in demand for

reliable, secure data centers, to process and store all this data.

Data centers use a lot of power for processing information. The processing gener-

ates a lot of heat, which means the data centers also use almost the same amount

of power for cooling. In 2010, it was estimated that data centers used 1.5% of the

worlds total electricity consumption, and this is a continuously growing number

[1].

All this contributes to the huge energy consumption of the IT-industry. In 2016, a

report from Greenpeace estimated that the combined IT-sector stood for about 7%

of the worlds total electricity demand in 2012, and projected that this could grow

by 7% each year through 2030 [2]. It is not an easy task to estimate exactly what

fraction of this energy is consumed by the data centers themselves [1]. This is due

to a set of different factors, one being the rapid advancement in technology and

software, another being the secrecy many of these companies have around their

5

business.

A thorough study of previous research done on communications technology elec-

tricity consumption estimates that in 2012, data centers alone consumed 281 TWh

[3]. According to the International Energy Agency, the worlds total electricity con-

sumption in 2012 was 20919 TWh, which gives the data centers a total of 1,34%

of the worlds total electricity consumption in 2012 [4]. This is quite significant,

and there is no sign that this number will decrease over the next decades. The

same study projected that in 2016, data centers would consume 474 TWh, while

according to Enerdata [5], the world consumed 21191 TWh, which gives 2,2% of

the world total electricity consumption.

1.1 Motivation

To handle all this demand, there is a need for sustainable, smart solutions on

both how to get the power needed, and also to efficiently handle the increasing

workload these data centers manage every day. Renewable energy sources (RES)

are making their way into the energy market at a rapid pace. While this is good

news with regards to CO2-emissions and sustainability, there are challenges with

integrating these highly fluctuating power sources into the energy grid. Peak pro-

duction of renewable power, does not necessarily match up with peak electricity

demand, and even if it does, traditional power plants running on non-renewable

fuel, cannot be shut down and powered up quickly or cheaply. As a consequence

of this, some of the produced renewable power ends up going to waste.

This challenge poses an opportunity for data centers. If the stranded power could

be utilized in the power-hungry data centers, this would benefit both the power

utility companies, and the data centers. In addition to this, it could help stabilize

the power grid, and will help reduce CO2-emissions [6].

1.2 Problem Statement

This thesis attempts to identify approaches that would allow cloud data centers

with diverse workloads to leverage access to wind energy, and reduce their power

costs.

Globally, the power system today is largely based on brown energy, that is energy

6

produced from oil, coal, and gas (and to some degree nuclear energy). This energy

production is stable, adjustable and predictable, which is essential in current data

center operations, where continuous operation is demanded, and where a power

outage could be disastrous.

On the other hand, renewable energy resources are much more fluctuating and

less predictable. Solar energy is only available when the sun shines, and wind

only when the air is moving. To be able to utilize this unstable and unpredictable

energy in data centers, either a huge amount of energy storage needs to be acces-

sible, or the methods of how workloads are handled in the data center need to be

addressed. The latter is what this thesis is focused on.

If we could handle fluctuating energy, by predicting both available power and es-

timated workload, and schedule this accordingly, there is a chance that the data

center industry could grow with a more sustainable profile. Previous research on

workload optimization in data centers with renewable energy have mainly focused

on one of the following aspects:

• Utilizing excess energy by starting up servers when energy is available, by

having clusters of servers that handle non time-sensitive workloads, that can

be paused [6].

• Processing batch workloads in environments with solar power, combined

with batteries and net-metering, to achieve a net-zero consumption of brown

energy [7].

• Using green energy by having geographically separated data centers, using

virtualization to migrate workloads between them, based on available energy

at each site [8]

Previous research has mainly identified approaches to utilize green, unpredictable

energy in data centers that handle a more stable demand. In this thesis, a com-

bined workload representing a variable demand is analyzed and tested for opti-

mization with use of wind energy. The goal of the thesis is to identify methods for

data centers handling a variety of workloads to utilize unpredictable wind energy

sources. We aim to reduce the overall electricity consumption of the data cen-

ter and try to shape the workload in the data center to follow the production of

available renewable energy.

7

1.3 Contributions

This thesis proposes to create a workload scheduling system for a data center,

co-located with a wind-energy source. The system takes into account available

(predicted) wind-energy and predicted workload and the goal is to optimize the

allocation of tasks on the machines in the data center, to reduce brown energy

consumption, by reducing the number of servers running, and being aware of

renewable energy availability. This while still making sure that the demands from

the customers are met. To achieve this, the model combines methods from several

other scheduling systems found in the literature. For example, it takes inspiration

from a queuing system that splits the task into separate queues before placement

[6].

This work proposes a workload scheduler applied to a simple, small computer

cluster. The computer cluster handles a combined workload with a goal of utiliz-

ing as much wind energy as achievable and reducing the load to as few machines

as possible. The scheduler performs this by separating the workload tasks into dif-

ferent priorities and placing them on a number of machines based on available

energy. First, it estimates the energy needs of the incoming tasks and determines

the latency sensitivity of the individual tasks. Then, estimations on duration and

CPU resource usage for the individual tasks are predicted with a neural network.

Based on the current workload on the machines, and the estimated available en-

ergy, the scheduler places the tasks in different queues. The higher priority tasks

are put on some machines, while the ”free” priorities are scheduled according to

time sensitivity and energy availability. Some machines are shut down when there

is a lack of energy available, but there are always machines running, to keep the

high-latency sensitive tasks running at all times. Evaluation results show that the

proposed scheduler can reduce the number of running machines at times of low

wind energy availability up to 79% of the time. We also see a reduction in total en-

ergy consumption and a slight increase in the fraction of total energy consumption

that comes from the wind.

1.4 Organization

The thesis is structured as follows: Chapter 2 presents background information

about data centers, workload and energy profiles, related literature and introduces

the methods used for workload prediction. Chapter 3 discusses the experimental

8

work, and gives detailed descriptions of the design choices and implementation

of the developed algorithms. In chapter 4 the results are presented and discussed.

Finally, chapter 5 summarizes the conclusions from this work and presents an

outlook for further work.

9

Chapter 2

Background and state-of-the-art

This chapter provides background information about data centers and workloads,

beneficial to understand the problem and solution proposed in the following chap-

ters. State-of-the-art research on the subject of utilizing different renewable energy

sources in data centers is also presented. At last, some of the central methods used

in this work is described.

2.1 Background

2.1.1 Data centers

“Data center” is a term that can apply to many different types of computing clus-

ters. In general, the term is used to describe any room or housing of servers

and communication systems. Most companies have their own data centers, used

to store and process their data and communications. With the growth of web-

services, there is also a growth in data centers that rent out servers and data rooms,

so that businesses no longer need to maintain all these servers themselves.

Cloud data centers

With the enormous growth of the internet and web services in the last decade,

many companies have specialized in data handling. Google, Amazon, Facebook,

and Microsoft are some examples of such companies. These companies have huge

data centers, consisting of tens of thousands of machines, that handles and pro-

10

cesses a lot of different types of data or workloads, such as web-search, email

services, financial computations, streaming of video and so on.

The data centers handling all this data are necessarily huge and complex. They

also consume a vast amount of electricity. Not only the processing itself consumes

energy, the infrastructure to run such a huge amount of servers is also energy

costly [9].

Power usage of data centers

The enormous energy consumption of data centers is related to their servers run-

ning at all times. However, this is not the only thing in a data center that consumes

power. Storage and memory usage, networking and cooling also use a whole lot

of energy [9]. The energy efficiency of a data center is hard to measure, because

of the difference in workload and applications in different data centers, and also

because of the different hardware [9]. One common way to measure the energy

efficiency is by calculating how much of the total power is consumed by the actual

computations, the Power Usage Effectiveness (PUE) 2.1.

PUE =
Facility power

IT equipment power
(2.1)

This measurement is widely used in the business, to compare the efficiency of

different data centers. A survey from the Uptime Institute found that the average

PUE of the participating data centers in 2017 was 1.7 [10]. It is worth to note that

the PUE is not an optimal assessment of the actual energy efficiency since many

results are based on optimal running conditions and best performance values [9].

The PUE has decreased in the previous years because of more efficient hardware,

and also because there has been a lot of advancement in cooling technology in the

data centers.

One of the issues with processing is that the server uses a lot of power, even when

running at low utilization [11]. Many of the hardware upgrades are focused on

reducing the idle power draw of the servers. Another way to improve on the issue

would be to utilize more of the server capacity, thereby running fewer servers with

higher utilization to increase efficiency. Combined with a secondary low-power

state with a low idle power draw, the efficiency could improve even further.

The software that runs the data centers have not kept up with the hardware up-

grades, and there is a lot of potential to increase efficiency using better strategies

for workload planning and scheduling.

11

2.1.2 Workloads

In this thesis, the workload profiles of the data centers are a central part. There

is no convention in classifying workloads in the literature since they are so di-

verse, but as a rough division, we define three groups: High-Performance Com-

puting (HPC), batch, and interactive workloads. What separates the three, is the

frequency of incoming requests, duration/computational demand and the latency

sensitivity of the tasks. Traditionally, there has been a separation between these

different workloads, because servers have been designed to handle the different

types.

Recently, it is getting more and more common that businesses rent servers with

companies that provide the hardware and infrastructure, in so-called cloud data

centers. This opens up for a higher average utilization of each server, where batch

jobs can run when the computational resource demand for the other services are

low, such as in the middle of the night, or on holidays and weekends.

High Performance Computing (HPC) Workloads

HPC workloads demand a lot of processing power and usually have a good profile

for parallelization, meaning that they can be spread over many cores, and can be

paused and started again without losing progress. These tasks often solve com-

putationally and data-intensive problems, like simulations, scientific calculations

and so on. They allow a long response time, which, along with the parallelization,

opens the possibility to postpone some or all of the calculations, and therefore

have a good profile for using power from intermittent renewable resources.

Batch workloads

The batch workload is less computationally demanding than the HPC, but still

needs a lot of processing power, and is usually done by parallel processing of

different tasks within the jobs. The batch load jobs have a run-time from tens

of minutes to several hours, and often have a deadline of 24 hours or less after

delivery. These jobs can, for instance, be calculations on the number of sales from

a retailer, updating account balances from a bank and so on.

12

Interactive workloads

The interactive workloads are the loads that require the lowest response time.

Typically these are requests from web services, that have a varying amount of

requests through the day, and each task requires a response time in the order of

less than a second to tens of seconds. The number of tasks from these workloads

follow a repetitive pattern during the day and week (see figure 2.1), with a peak

mid-day, valley in the early hours and lower overall demand in the weekends [12],

but can be unpredictable in smaller time periods.

Figure 2.1: Interactive workload profile over a week.

2.2 State-of-the-art

In 2010, the energy consumption of data centers was estimated to be about 1.5%

of the worlds total energy consumption. Even though there have been advances in

the efficiency of the data centers, this number has increased and will most likely

continue to do so [1]. Figure 2.2 illustrates the growth in network traffic from

2011 to 2016. About 70% of total traffic is within or between data centers.

This growth, along with the growing awareness of how fossil fuels impact our en-

vironment, makes for good incentives to exploit renewable energy in data centers.

The topic has been the subject of several publications.

In this section, different approaches from the literature are presented, on how to

utilize power from renewable resources to process different types of workloads.

13

The presented literature was chosen to show different approaches to solve the

problem of using renewable energy sources in data centers.

Figure 2.2: Growth in core network traffic, including traffic within data centers.

Adapted from [1].

2.2.1 Power sources

Traditionally, data centers are connected to the grid, which is mainly (at least

in many areas) driven by fossil fuels. The power grid is stable and predictable,

and so are the prices that follow the demand. Figure 2.3 illustrates an example

of the fluctuating power output from wind and solar generation over a week.

Solar power has a more predictable daily pattern of power generation, while wind

power does not show any obvious pattern. If the excess power that is produced at

some times could be utilized, for example by co-locating the power source with a

power demanding data center, both the power source and the data center could

benefit. To utilize an unreliable power supply, there is a need to adapt the power

consumption to these intermittent sources. One way to do this is by creating so-

called energy agile workloads, that adapt to a variable supply of energy [7].

Aside from the aforementioned challenges, there are several advantages to using

renewable power. Even though the initial cost is high, the price of the renewable

energy after installation is low and predictable [13]. Another advantage is the

modularity of renewable sources: It is simple to add more power generation if the

demand for power increases. This, in combination with the data centers option to

increase servers and computing power, makes for a flexible system.

14

Figure 2.3: Renewable generation over a week, wind data from a single wind

turbine in Norway, solar data from Belgium [14].

Solar power and data centers

The majority of research on renewable energy sources combined with data centers

is done on systems using solar power as the renewable source. There are several

reasons why this is the case. One is that solar power is an established renew-

able resource, projectively reducing its cost [15]. The generation of solar power

is also more or less predictable, compared to other renewables like wind power

(illustrated in figure 2.3). Another important point is that the solar production

pattern matches the typical interactive workload demand pattern as can be seen

by comparing figure 2.1, which illustrates the demand for processing power for an

interactive service, and figure 2.3 which illustrates renewable power generation.

With this said, there is also an obvious challenge with solar power. Data centers

use a lot of energy for cooling, as the servers produce a lot of heat when processing

[9]. Cooling is cheaper when it is cold outside, typically at night when there is no

solar energy production.

Íñigo Goiri et al. [7], proposed a system applied to an actual small-scale data

center powered by solar panels, with the option to store excess power in batteries,

or sell it back to the grid by doing net metering1. The goal was to achieve a net-

zero exploitation of non-renewable power sources. The use of batteries for storage

of excess power might not be the most efficient, though. A research comparing the

1Net metering is a system where excess renewable power is transferred into the grid, and the

consumer is compensated. In this way, the consumer only pays for the net energy consumption

from the grid.

15

use of battery storage and the use of energy agile loads estimated that 200 tons

of lead-acid batteries would be needed to achieve the same renewable utilization

[16].

Wind power and data centers

Wind power is more unpredictable than solar power. There is no clear pattern in

its fluctuation, as there is with the daily variation of solar power, as can be seen

in figure 2.3. This poses a challenge for both predicting the supply and also for

adapt the workloads to a fluctuating power supply. One possible solution is to

use geographically different wind parks co-located with data centers and connect

them using virtual machines [8]. Another way is to use excess energy, like stranded

power used to compute HPC workloads [6], or to have two different computing

clusters in the data center, connected to different power sources [17].

Other renewable energy sources

To my knowledge there is a lack of literature discussing the exploitation of other

fluctuating renewable power sources than solar and wind in combination with

data centers.

There are other ways to get the energy from renewable sources, for instance by

purchasing clean power certificates from power companies, doing net-metering

or by using batteries to store excess energy. Among other goals, one optimization

goal is to achieve net-zero consumption. This is done by doing net-metering when

the excess power is not consumed by the data center at the time of production in

combination with batteries on site. A combination of these two gives good results

on lowering the non-renewable energy consumption [7].

2.2.2 Approaches to process different workloads with RES

There are a wide variety of different computing tasks that are handled by data

centers. Most data centers process many of these tasks in parallel and therefore

need to be able to handle different workloads simultaneously. In the literature

there are many different classifications of workloads, here they will be loosely

categorized, as the definition of the different loads overlaps in many ways. The

16

three categories of workloads that are presented are the same as we introduced in

section 2.1.2; high-performance computing, batch and interactive.

High-Performance Computing (HPC) workloads

Different optimization goals are attempted in different approaches. The studies

presented here tries to leverage access to renewable energy, but the cost function

differs. It could be the price of electricity (often cheaper when renewable energy

is available) [7], or there could be value in using as much renewable as possible

[6], or to reduce the use of brown energy [17]. One goal is to minimize the use

of brown energy. To achieve this, HPC jobs could be handled by increasing paral-

lelization, thereby speeding up the tasks by using more processors to compute the

job, as in the work of Md E. Haque et al [18]. When excess renewable power is

available, the HPC workload is spread over more cores, so that the job can com-

plete faster. This builds some slack for the task to finish on fewer processors if the

renewable supply should drop.

Fan Yang and Andrew A. Chien presented a method using stranded power2 to pro-

cess HPC tasks [6]. Here, the servers that compute the tasks, are only turned on

when stranded power is available. The clusters of servers that handle the HPC

tasks are connected to wind turbines. They are also connected to a central data

center, which in turn is connected to and powered by the normal electricity grid.

The study showed good results for exploiting the excess energy (with an availabil-

ity of stranded wind power up to 80% of the time).

Batch workloads

In many studies, a combination of batch and interactive workloads are tested [7,

12, 19, 16]. The batch workloads often have deadlines in order of hours, so they

are possible to defer to times when energy is expected to be cheaper or more

renewable energy is available [7, 19], or to shift the computations to night-time,

when the required power for cooling is reduced [12].

2Stranded power is excess produced energy that for some reason cannot be put into the energy

grid, and otherwise would be wasted.

17

Interactive workloads

Methods for efficiently handling interactive workloads are proposed only in a few

papers [7, 16]. An interactive workload (explained in section 2.1.2) could for ex-

ample be a trace from Facebook [7], or a trace from Wikipedia [16]. Different

methods are used to handle the interactive workload, a scheduling of battery and

net-metering is used to minimize grid power (the interactive requests are handled

as normal) [7], or a degradation of performance of the interactive workload, by

applying some of the same strategies that are used when handling flash crowds

(an unexpected spike in site traffic) [16]. The quality degradation includes using

cached sites, not fully loading page elements and so on. In other works, the in-

teractive workloads with low response time are prioritized, and no deferring or

quality decrease is performed on them [6, 12, 19].

2.2.3 Approaches to optimize scheduling software

There is obviously a huge demand for good methods to reduce the energy con-

sumption in data centers. When over 1.5% of worldwide electricity is used for

computing [1], a value expected to increase, it is essential to lower the electricity

consumption, both for cost reduction and for lowering the environmental footprint

of the industry. A lot of research is done with the aim of improving the hardware

in the servers, and the cooling infrastructure in the centers. Instead, in this thesis,

the focus is on how to optimize the software that handles the workload, so that it

can better exploit green energy. There are different approaches possible, some are

discussed below.

1) Workload migration

Workload migration within a single data center consists of having several com-

puter clusters, some connected to the grid, others are connected to a renewable

power source, for instance, a wind-power source, as illustrated in figure 2.4 [17].

The system uses virtual machines to migrate the workload between the server

clusters. All the transitions are recorded and taken into account when producing

a utilization schedule so that the servers capacity to do work is not disturbed by

rapid transitions.

18

Figure 2.4: The majority of the servers could be connected to the energy grid,

while smaller clusters are powered by wind turbines [6].

2) Performance degradation

To lower the energy cost of a task, one method is to opt for lower quality of the

result [16]. There are different types of quality decrease for different types of

workload. For batch workloads, an example of quality reduction is postponing the

execution of tasks. Figure 2.5 shows how the processing of the load is scheduled

at a time with either low cost of brown energy or when there is an excess of power

from the renewable resources.

Figure 2.5: In batch workloads, the peak demand can be shifted to match the peak

energy production.

19

In the interactive workloads, the quality reduction will differ depending on the

type of trace. For web-services, there is already a way to reduce the quality, by

using the same methods as when the servers handle flash crowds.3 Strategies for

handling flash crowds could be to use cached sites or partially load page elements

(for example reducing the quality of images) [20]. The same methods could be

used to produce a reduced quality of response in the event of a scarce renewable

power supply. The cluster manager has as a goal to maintain a stable energy cost. It

does this by calculating what fraction of the incoming loads that should be marked

as degraded, and then the cluster manager marks that fraction of incoming request

with a marker to be degraded. The fraction, fd is determined from how much

energy would be saved by degrading the load:

fd = (1− L̂)/(1− Ed) (2.2)

where L̂ is the desired load as a fraction of the old load, and Ed is the work

required to process a degraded request (as a fraction of normal request).

3) Other

One way to exploit the option to defer the batch tasks, while keeping the interac-

tive tasks unaffected [19] is to put the batch and interactive tasks are in different

queues. In this way, the interactive workload is not disturbed by the batch comput-

ing, thus managing to keep the strict response-time of the interactive load.

Another approach that is worth mentioning, is geographically distributed data cen-

ters. The idea is that several different data centers can migrate workloads using

virtual machines, quite similar to the approach mentioned above. With each data

center (or server cluster) co-located with different renewable resources, the sup-

ply of power could be more or less stable and predictable when combined. For

instance, two solar-powered data centers in different time-zones could cover more

of the day with a high output of power, or as in figure 2.6 below, the data centers

could be connected to different renewable energy sources. The challenges then lie

in optimizing the migration strategies [8].

3A flash crowd occurs when a lot of people try to access the same server at the same time. An

example could be when a small website is linked to from a website with a much larger audience,

causing an unexpected spike in traffic to the smaller site.

20

Figure 2.6: Workload migration in geographically distributed data centers.

2.2.4 Approaches for power and workload prediction

There are a lot of different approaches to power and workload prediction. Some

studies attempt to schedule and predict batch and interactive workloads, some

only schedule the batch load, while others refrain from predictions or schedules at

all, and only have a reactive response to the renewable power supply. The meth-

ods used in the assessed papers are described below. These articles were chosen

because they represent different approaches to solving the problem of utilizing

renewable energy in data centers. They have a varying complexity of prediction

methods both for power and workloads.

Power prediction methods

The prediction of renewable power production is a difficult task, and it is out of

the scope of this thesis. The methods used for power prediction in the discussed

articles will be presented regardless, for completion.

In the work of Zhenhua Liu et. al. [12], the power prediction used is similar to

Support Vector Machines (SVM) with an RBF kernel. A k nearest neighbor based

algorithm is used, with a 1-hour granularity of the forecast. It works by finding the

most similar days from recent past, and then use the generation from these days

to estimate the power output for the desired prediction interval. The prediction is

quite good, with an error of 5-20%.

Simple methods for power prediction are also effective [7]. As long as the schedul-

21

ing is performed regularly with short intervals, there is no need for complicated

methods. Íñigo Goiri et al calculated the solar output with a simple equation (2.3).

Here, B(t) is the amount of energy generated on the day with the highest gener-

ation the previous month, and CloudCover is the forecasted percentage of cloud

cover (this is gathered from the weather forecast).

Ep(t) = B(t)(1− CloudCover) (2.3)

The system also makes a prediction for CloudCover based on the power genera-

tion in the previous epoch, and then chooses the most accurate one for the next

prediction interval.

A weather-conditioned moving average (WCMA) can also be used to predict solar

power production [19]. As discussed above, simpler models with lower complex-

ity and shorter time horizons are preferred also here. The WCMA algorithm per-

formed well, with a mean error of 9.6% for the predictions [19].

For the wind power, wind speed and direction are used to predict the power out-

put. Weighted nearest neighbor tables are used to generate wind power curves.

The table is updated using the current information:

Pnew(v, d) = α ∗ Pobs(v, d, t) + (1− α) ∗ Pold(v, d) (2.4)

where Pnew is the new power curve table entry for given wind speed v and direc-

tion d. Pold is the existing value for the same direction and velocity, and Pobs is the

observed value at time t. The authors of the study have used α = 0.75, to favor the

currently observed data. The prediction of the future interval is then calculated

through the following:

Ppred(v, d, t+ k) = P
(
v(t+ k), d(t+ k)

)
(2.5)

This simple model performs well for the short intervals considered (mean error

17.2%) [19].

Another method is to closely monitor the price/availability of power and then

adapt the received workloads to the available energy, by using the slack mentioned

in section 2.2.3 [16]. A fraction of the incoming requests are marked as degraded,

and these tasks get a simplified response. Instead of predicting the wind power,

the characteristic Rayleigh distribution equation (2.7) for wind power is divided

into three regions [17], as shown in figure 2.7.

f(v) =
(2
c

)(v
c

)
e−(

v
c
)2 , v ∈ [0,∞) (2.6)

22

In equation (2.6), c is the scale parameter, v is wind speed and f is frequency.

Figure 2.7: Rayleigh distribution of wind split into three regions. Adapted from

[17].

Region I have no power output, while region II and III has a fluctuating output, so

when the power supply is in this region, the power is tracked by lazy tracking (only

the relatively stable power output is monitored). Every 15 minutes, a schedule for

what servers should be powered by renewable sources are calculated and put to

use. A renewable utilization of 94% is achieved with this configuration [17].

In the work of Fan Yang and Andrew A. Chien [6], there is only a reactive re-

sponse to the power output and no real power prediction. The computing cluster

connected to the wind park is fully switched on and completing tasks when there

is stranded power available, and fully off otherwise.

Workload prediction methods

There are many different ways to perform workload prediction. As in the predic-

tion of power, some don’t predict the workload at all, but only react in a given

way depending on what power is available at the arrival time [6, 17], while oth-

ers have detailed prediction models for both batch and interactive workloads [7,

16].

One method for predicting workloads is pattern matching. To predict the resource

demand for interactive computation, an analysis of the historical data can be used

to find long and short-term patterns [12]. Fast Fourier Transform (FFT) is used

to find the periodogram. A daily pattern is found from the periodogram, and the

pattern is captured by using an auto-regressive model. The demand w at the time

23

t in day d is calculated from previous demand from N days, as seen in equation

(2.7) below.

w(d, t) =
N∑
i=1

ai ∗ w(d− i, t) + c (2.7)

Here, ai is the IT capacity for an interactive workload i. The parameters are cali-

brated using historical data. The batch workload is predicted using historical data

to find a ballpark approximation.

As mentioned, not all proposed methods predict workloads. An example is in the

ZCCloud system [6], where the system is only fully on or off, using stranded power.

Another method is to not predict the workloads, but separate the different jobs at

arrival [19]. Here, the batch jobs are assigned to some servers, and have one

queue, while the interactive requests are immediately handled, and distributed to

the server with the least amount of batch processes running, to make sure every-

thing functions optimally.

Systems can use workload prediction to determine how much power is needed in

the coming time, to prevent the system from having latency if the rate of requests

should increase [16]. An accurate prediction can bring up systems before needed,

and take them down when not. Amongst other prediction methods, last arrival,

moving window average and exponentially weighted average have been tested

[16]. The exponentially weighted average with α = 0.95 performed best, with

less than a 4% mean error.

The GreenSwitch system also uses an exponentially weighted moving average to

calculate average power consumed in the past and uses this to predict the next

interval [7]. It could be beneficial to use more sophisticated methods for the pre-

diction, but this gives another challenge with the computation of complex models

that takes both time and computational resources.

In the iSwitch system [17], the average load utilization is computed and recorded

in each interval, and then used to predict the load in the next period.

The GreenPar system is tested with different information about future events (jobs

and their speed up profile, energy availability and so on) [18]. There is no real

workload predictor described in the paper. In only one of the four optimization

strategies is there an implementation to include new jobs. The method is used

just to re-solve the optimization periodically, to include new arrived jobs (24-hour

scheduling horizon).

To my knowledge, none of the related works presented in here did any prediction

24

on individual task usage. In the work of this thesis, a neural network is used to

predict CPU-utilization and duration of individual tasks, instead of predicting the

total predicted workload. A neural network was chosen due to the ability of a

neural network to solve regression problems [21]. The main goal of the thesis is

not to determine the best prediction method for CPU usage and duration of a task,

but rather to identify how a non-clairvoyant scheduler best could place tasks on

machines to reduce non-renewable energy consumption.

2.3 Methods

2.3.1 Neural networks

A neural network is a machine learning method used to predict a desired out-

come based on an input vector with features. It learns by training on labeled data,

which means that it is a supervised learning method. Neural networks can be used

to predict a class if classification is the target, or it can be used for solving regres-

sion problems. According to the universal approximation theorem, a feed-forward

neural network with one hidden layer having a finite number of nodes can approx-

imate any continuous function [21].

Figure 2.8: An illustration of a simple neural network with one hidden layer. x is

the input to the network, wn is the weight of the connections from layer n to layer

n+1.

In this work, a neural network is used to approximate the function determining

25

the mean CPU usage of a task, given input parameters gathered from the request

of the task.

The network consists of layers of nodes, all connected with weights, w, as shown

in figure 2.8. The first layer is the input layer, where the features of the training

data are inserted. The last layer is the output layer, which gives the predicted

value.

The workings of a neural network

The network learns to approximate the function, by adjusting the weights in the

connections between layers. This is done using backward propagation. The weights

are initialized from a normal distribution with mean 0 and standard deviation

0.05.

The prediction of a value happens by propagating the features forward through

the network. First, the features in the form of a vector x, is given to the input layer

of the neural network. Then, the features are multiplied by the weights connecting

the nodes to the next layer and summed, according to equation (2.8),

zLj =
n∑

i=1

wL−1
i,j ∗ xi (2.8)

where, n is the total number of nodes in the previous layer, L is the layer, xi is the

input from node i in the previous layer, and j is the receiving node.

After the inputs are summed, an activation function determines the value of the

node. The activation function can be expressed by a range of equations. In the

network implemented in this thesis, the rectified linear unit function (ReLU) is

used in all layers, as in equation (2.9).

f(x) =

x, if x ≥ 0

0, otherwise
(2.9)

The value node j in layer L is then given by equation (2.10)

aLj = f(zLj) (2.10)

where z is calculated by equation (2.8).

26

As the values propagate forward through the network, the activation function de-

termines the relative importance of each node.

The value from each node is then sent forward through the network, and multi-

plied by the weights in the next layer, following 2.8.

This continues until we reach the output layer. The activation function in the out-

put layer is a normal ReLU. This is to avoid negative values.

After the samples have been propagated forwards through the network as de-

scribed above, the error of the prediction is calculated by a loss function. As with

the activation function, the loss function can be represented by a variety of differ-

ent functions, depending on the nature of the problem. For regression problems,

the mean squared error and the mean absolute error are common loss functions.

Equation (2.11) presents the mean absolute error function.

MAE =
1

n

n∑
i=1

|ypred,i − yi| (2.11)

Here, n is the number of samples, ypred,i is the predicted value, and yi is the true

value for sample i. This is the function used in this work.

To learn, the neural network needs to update the weights between the layers,

to reflect their individual contribution to the error. This is done with a method

called backpropagation, where the gradient of the loss function with respect to

each weight, is used to update the weight.

Adaptive moment estimation optimizer (Adam)

How the weight updates are calculated depends on the optimizer. The goal is

to reduce the loss function as much as possible, or in other words, to get the

prediction error as low as it can be. The Adam optimizer has been shown to be a

good optimizer for a variety of different neural networks and problems [22].

The weights are updated by taking the gradient of the loss function, in respect to

the weights. This gives an estimate of how much each weight contributes to the

overall prediction error.

The weights are updated by first calculating the gradient of the loss function,

E =MAE, with respect to each weight, as in equation (2.12):

gt,i =
δE

δwt,i

(2.12)

27

where t is the current ”timestep” or iteration.

To find the contribution of error from the different layers and nodes (and thereby

the weights), an error function is needed. In the output layer, the error is given by

equation (2.13).

δLj =
δE

δaLj
f ′(zLj) (2.13)

In general, the error for each layer, l is given by equation (2.14):

δl = ((wl+1)T δl+1) ◦ f ′(zl) (2.14)

where dl is a vector of errors for each node in layer l.

The derivative of the loss function is given by equation (2.15), and the derivative

of the activation function is expressed by equation (2.16).

δMAE

δypred,i
=

+1, if ypred,i > yi

−1, otherwise
(2.15)

δf

δzl
=

1, if zl ≥ 0

0, otherwise
(2.16)

With the Adam optimizer, two terms are used to update the weights. The algorithm

calculates the moving average for both the gradient and the squared gradient of

the loss function with respect to each weight. The parameters β1 and β2 control

the decay rate of the moving averages. These are set to a default value of 0.9 and

0.999 respectively.

The momentum, mt is then found by equation (2.17), and the variance of the

gradient by (2.18).

mt = β1mt−1 + (1− β1)gt (2.17)

vt = β2vt−1 + (1− β2)g2t (2.18)

These are biased towards zero, and are corrected in equations (2.19) and (2.20)

28

m̂t =
mt

1− βt
1

(2.19)

v̂t =
vt

1− βt
2

(2.20)

The weights are then updated by equation (2.21)

wt+1 = wt −
µ√
v̂ + ε

m̂t (2.21)

where ε is added in the denominator to avoid division by zero, ε is initialized to

10−8, µ is the learning rate, and is set to the default value of 0.001.

This process is repeated for each batch until the whole set of training data has

passed through the network. It is beneficial to run several iterations over the train-

ing data, and shuffling the data for each iteration.

The network is tested on a validation set for each iteration, to indicate how well

the network is trained. Training is stopped when the loss function converges to

a minimum value, and before the validation loss starts to increase due to overfit-

ting4.

4Overfitting occurs when a neural network adapts too well to the training data, thereby losing

the ability to generalize.

29

Chapter 3

Design of experiments

In this chapter, the proposed algorithm to solve the problem of using intermittent

renewable energy sources in data centers is presented. The assumptions, simpli-

fications, and choices made while developing this algorithm are discussed. The

data used for the experiments is also presented and explained, and a description

of the data selection and preprocessing done for each part of the experiment is

presented.

3.1 Design choices

3.1.1 Workload trace

The data trace used in the experiments performed in this thesis is from a cluster

of 12 000 machines at one of Googles data centers in Georgia, USA [23].

This workload trace was chosen because it was one of the few detailed workload

traces available for research. Other workloads used in relevant literature, either

are not available, or they only consist of one type of load and are also sampled

over a shorter period than the Google trace. Other traces found online were not

chosen due to their creation dates, which in many cases were before the year 2000.

Since there has been a lot of development both in hardware and software since

then, it was decided to focus on a more recent workload trace.

Although the trace is highly obscured and there is no way to know what the in-

dividual jobs and tasks consist of, the trace includes information about latency

sensitivity and priority, which can be used to divide the workload into separate

30

categories. This is essential for the work in this thesis.

The chosen trace contains information about the machines, jobs and tasks for a

one month period in May 2011. These are organized in different tables:

A Machine events (added / removed / updated)

B Machine attributes

C Job events

D Task events (submitted / scheduled / finished / ++)

E Task constraints

F Task usage

For the purpose of this work, the relevant tables are A, D, and F. A is used to choose

a set of 100 machines, D is used to get the individual tasks for the workload trace,

and F is used to gather the run data from these tasks. None of the other tables

are used in this work. The machine events table (A) describes the events for the

machines in the trace. The possible events are added, removed, and updated. Ma-

chines are added when they are made available to do work, removed for instance

for maintenance or taken offline for other reasons, and updated if the available

resources on the machines changed. The majority of the machines only have a

single entry: added. The usage sample is taken from machines that only have this

entry.

The tasks life cycle is described in the task events table (D). There are 9 different

event types as seen in figure 3.1.

Figure 3.1: Trace state transitions, adapted from [24]. The red path is the optimal

task life cycle.

31

The most interesting for this work, are the tasks that have run optimally. These

tasks have entries in the task events table consisting of submitted (0), scheduled

(1) and finished (4), illustrated with the red path in figure 3.1. For task selection,

update events (7, 8) are also allowed.

Information about the tasks resource usage can be found in the task usage table

(F). When a task is scheduled on a machine, information about memory and CPU

usage is logged in 5-minute intervals for the duration of the task. For each interval,

mean usage, maximum usage, and sampled usage is present. The sampled usage is

an average from a random second of the interval. Even though the trace provides

information about memory usage as well as CPU usage, in this work, CPU usage is

the only usage trace that is considered.

3.1.2 Assumptions and simplifications

The algorithms presented in this work, are based on a very simplified version of

reality. For instance, only 100 machines are taken into consideration when current

data centers often have clusters of many thousands. The choice to narrow the data

down to 100 machines was made to make the amount of data feasible to handle,

and although this could impact the validity of the results, it should be enough to

get a proof of concept. The assumptions made are presented in this section.

Power calculations

The power calculations are based solely on CPU usage and do not take memory

usage, network connections or other factors into account. This is due to the power

consumption of a server being complex, but for simplicity, it can be represented as

a linear relationship of CPU utilization [25].

The machine hardware is not available from the data content. Everything in the

trace is normalized based on the highest value in the whole trace. This means 0.5

CPU capacity on a machine is half of the machine in the cluster with most CPU

capacity.

In this work, it is assumed that the power consumption, P, of the servers can be

estimated from CPU utilization by equation 3.1 [25],

Pserver = Pidle + u · (Pfull − Pidle) (3.1)

where u represents CPU utilization of the server.

32

Due to the limited information about the machines used to get the trace data, in

the simulations, we assume that all the 100 machines have the same hardware,

and set the maximum CPU utilization of all machines to 1 (to match the maximum

of the normalized values in the data trace). To calculate the power, Pidle is set to

300 watts, and Pfull to 500 watts. These estimates assume that the servers are of

the mid-range type.

The estimate is based on Koomeys survey from 2007 where he found the mid-

range server with the highest market share in 2005 had a typical power of 495 W

[26]. The typical draw is then divided by 0.66 to get a maximum power draw of

750 W [26]. To adjust for the efficiency increase in hardware from 2005 to 2011,

the maximum power draw is set to an educated guess of 500 W.

Idle servers consume a lot of power, even if they are not doing anything [11]. The

power consumption of idle machines is then set to 60% of the maximum power

draw [11], at 300 watts.

Based on information about Power Usage Effectiveness (PUE) (see equation (2.1)

in section 2.1.1) from Google’s annual and quarterly reports [27], the power con-

sumption of the center is calculated from equation 3.2

PTOT = PIT · PUE (3.2)

where PIT =
∑N

i=1 Pserver,i is the total consumed power for all N machines, and

the PUEis 2.

To deal with the high power consumption of idle machines, a secondary low power

state is introduced, that will give the servers running no tasks the option to ”shut

down,” while still being available. This is a secondary idle state, where the server

is mostly shut down, but can wake up quickly if new processing tasks arrive [11].

In the ”nap”-state, the servers consume 10W [11].

Placement of tasks on machines

The high latency sensitive tasks represent the interactive workload, while the

lower latency sensitive tasks represent the batch and HPC workloads.

The high latency sensitive tasks are guaranteed to be placed at any time. These

are never deferred, except if all 100 machines should be running at max capacity

(this never happens in any of the simulations). We assume all machines have a

maximum capacity of 1 and limit the placement of tasks to machines that will not

33

exceed the capacity at any time of the task duration. It might be beneficial to set

the maximum value slightly lower, at about 0.8, to avoid exceeding the capacity

at any time, for a workload scheduler that is not clairvoyant1. In the experiments

with predicted CPU usage and duration, the lower maximum limit is set.

In this work, no other considerations than CPU usage are taken into account when

placing a task on a machine, this is done for simplicity, and because the power

calculations are based solely on CPU usage. In reality, memory usage and hardware

or software dependencies might influence the placement of a task. The advanced

workings of placing tasks on machines based on different dependencies are out of

the scope of this thesis.

3.1.3 SVM regression for wind power prediction

Developing methods for wind power prediction is out of the scope of this thesis,

but it is included for completeness.

The wind power predictions are made using Support Vector Machine (SVM) for

regression (SVR). SVR is a supervised machine learning method. The input fea-

tures to the regression model are current wind speed and power output, and the

SVR is trained on data from 11 months back in time.

From this, power predictions for 10 minutes to 3 hours ahead is made, in 10-

minute intervals.

The SVR takes current power production and observed wind energy and uses this

to estimate the prediction ahead in time. Separate models are used for different

time steps ahead.

Data was provided by the master thesis work of Rune Skogstø Bryne, as a part of

the collaborative project INTEGRARE.

3.2 Data description

3.2.1 Google cluster-usage traces

In this work, two different usage traces are examined. One is from a set of 100

machines, picked at random from the set of machines that only had one entry in
1A clairvoyant scheduler knows a tasks usage and duration in advance before it places the task

34

the machine events table (see section 3.1.1). This trace is named the unaltered

trace.

The second trace is based on the number of scheduled tasks in the unaltered trace.

The same number of unique tasks were selected, but none of them were killed,

failed or lost at any time. We call this trace the custom trace.

The trace consists of several data files, split into information about the machine

resources, incoming job requests, and task requests, as described in section 3.1.1.

Each job consists of one or more tasks, where each task represents a process run

on a machine. For each task, there is information about requested resources and

sampled resource usage for each 5-minute interval. The jobs have a given priority

and scheduling class. The priority ranges from 0 to 11, where higher numbers

represent higher priority. The scheduling class (0 to 3) describes the job-latency

sensitivity. Higher numbers represent higher latency sensitivity.

In the experiments, these numbers are used to split the workload into three differ-

ent classes (as described in section 2.1.2), based on latency sensitivity, and sorted

by priority.

3.2.2 Data selection and preprocessing

To get the unaltered trace, all machines that were not up and running for the

entire duration of the trace were removed from the selection. Then a random set

of 100 machine IDs were chosen from the remaining machines.

Information about on which machine a task was placed on can be found both in

the task events (D), and task usage tables (F). The trace was selected by getting

the tasks placed on machines found in the set of 100.

The trace data contain a lot of information about the workload. Both requested

and actual CPU utilization of each task is logged, as shown in tables 3.1 and 3.2.

On arrival, each task is logged in the task events table (D), as submitted. The tasks

also have an entry in the task events table for when it is scheduled on a machine

(1), and when it finished (4). There is also a possibility that the task is evicted (2),

failed (3), killed (5), lost (6), or updated (7/8) during the trace period.

35

Table 3.1: A sample of the task events table (D)

Timestamp Job ID Machine ID Task index Scheduling class Priority Event type

2011-05-01 18:50:00 4765556460 1.303661e+06 1265 3 9 1

2011-05-01 18:50:00 4665896876 1.429144e+09 315 3 9 1

2011-05-01 18:50:00 4665896876 7.716048e+06 392 3 9 1

Table 3.2: A sample of the task usage table (F)

Start time End time Job ID Machine ID Task index Mean CPU usage rate

2011-05-01 19:00:00 2011-05-01 19:05:00 6590386 711355 1 0.000332

2011-05-01 19:00:00 2011-05-01 19:05:00 6221861800 4469181033 14132 0.000202

2011-05-01 19:00:00 2011-05-01 19:05:00 6221861800 257498534 14365 0.000206

In the simulations, the mean utilization is used (table 3.2), and it was assumed

that the task have this utilization for the whole 5-minute period.

To get the custom trace, all tasks with an entry in the task events table other than

submit (0), scheduled (1), finished (4) or updated (7/8), were not considered.

From those, a subset of the same number of tasks as in the unaltered trace was

chosen at random.

3.2.3 Workload statistics

In table 3.3, a description of task duration for different scheduling classes are

presented. We see that they have the same extreme values, but the mean and

the median differs. For the most latency sensitive task, the mean duration is the

greatest, but the median is much lower, which indicates that a lot of the tasks

have a very low duration. This is supported by the 25% percentile being low as

well. This group represents the interactive workload, although it has some tasks

running for a longer period. These tasks could be critical systems for web services

to work at all times, but since there is no information in the trace about the details

of the tasks, this can only be speculation. The only metric to go by is the latency

sensitivity. Of the long-running tasks in the high latency sensitive group, the higher

priorities are the ones with the longest duration. The tasks with a priority less than

nine, all have a mean duration of less than a day, while priorities 9, 10 and 11 have

a mean duration of 21, 23 and 28 days respectively. These tasks represent about

15% of the total tasks in the scheduling class. This pattern is also true for the

36

other scheduling classes, but with an even lower percentage of higher priorities,

respectively 0.23% and 1.37% for scheduling class 0 and 1.

Table 3.3: Duration of tasks of different scheduling classes, statistics gathered from

150 000 random samples of each group.

Scheduling class 2/3 Scheduling class 1 Scheduling class 0

Mean 3 days 09:34:00 01:27:22 00:26:45

STD 8 days 21:54:13 18:40:11 02:55:28

Min 00:00:01 00:00:01 00:00:01

25% 00:01:39 00:02:44 00:02:55

50% 00:05:21 00:09:57 00:06:55

75% 00:39:14 00:27:22 00:19:32

Max 28 days 23:53:00 28 days 23:51:15 28 days 23:41:33

In this workload, scheduling class 1 is also handled as a latency sensitive group

and will be guaranteed to run at all times. This is the group that represents the

batch workload.

Scheduling class 0 represents our HPC workload. Even though it consists of many

tasks with a low duration, it fits the usage pattern of this load, since HPC work-

loads consist of jobs with many smaller tasks that can run in parallel, and are not

dependent of each other. Because the jobs can be paused and started, the latency

sensitivity of these jobs is low.

In the custom trace, there are 294036 unique tasks in scheduling class 0. This is

the majority of the tasks. There are 56232 unique tasks in scheduling class 1, and

4016 unique tasks in scheduling class 2 and 3 combined.

Since these tasks were selected randomly from all tasks that ran non-disturbed,

they reflect the whole population of non-disturbed tasks, this can be seen from

table 3.4.

37

Table 3.4: Distributions of tasks in different scheduling classes.

Scheduling class All tasks All non-disturbed tasks Custom tasks

0 83.79% 82.91% 82.99%

1 13.50% 15.90% 15.87%

2+3 2.71% 1.12% 1.13%

3.2.4 Wind data from a Norwegian wind farm

The wind data used in this thesis is sampled in 10-minute intervals, from a wind

farm in Norway. Only one wind turbine is used for the trace because this is more

than sufficient to run the 100 machines. The wind power production for the du-

ration of one month can be seen in figure 3.2. The data presented in this figure

is originally from May 2016, but to fit the workload data, it has been shifted to

2011.

Figure 3.2: Power production for the duration of the trace.

Renewable machine availability

The power prediction is given in 10-minute intervals, as described in section 3.1.3.

From the predicted power, an estimation on how many machines can run on this

38

power is calculated by dividing the total predicted power by the maximum ma-

chine power consumption, as in equation (3.3) below. PUE and Pserver is calcu-

lated according to equations (2.1) and (3.1).

Machinesrenewable =
Pavailable

max(Pserver) · PUE
(3.3)

Figure 3.3 shows the resulting number of renewable machines, capped at 100.

Figure 3.3: Available machines for the duration of the trace (capped at 100).

Some wind energy is available 86% of the time for the duration of the trace. 66%

of the time there is enough wind energy to fully power all 100 machines at full

utilization. 75% of the time there is enough wind energy to fully power half of the

machines.

3.3 Description of the proposed algorithm

The goal of the model is to use as much renewable energy as possible, while still

satisfying the needs of the customers. This means that the tasks marked with a

high latency sensitivity always will run on arrival, while the tasks that are less

time-sensitive, are free to be deferred to a later time.

39

3.3.1 Baseline algorithm, assuming clairvoyance

The baseline algorithm (algorithm 1) is simple. Two tables are used. First, the

task events table containing the request information for each task, including the

time, is split into 5-minute intervals. Figure 3.4 illustrates the process: In step 1,

all the task requests are sorted into groups of different latency sensitivity. High

scheduling class is linked to high latency sensitivity.

The tasks are split into three groups, high (2 and 3), medium (1) and low (0),

and sorted based on priority (0-11). The priority is not directly linked to latency

sensitivity, and the range of priorities is the same for all scheduling classes. The

lower priorities are so-called free priorities, meaning that these tasks might not

generate any revenue, and so in the original trace from Google, they can be evicted

to release resources for higher priority tasks. This relationship is kept by sorting

the tasks based on priority so that the higher priority tasks are placed first.

Figure 3.4: Baseline algorithm illustration. The tasks are placed on machines based

on latency sensitivity.

The group of high latency sensitive tasks is placed ”first” on the machines (step

2). The tasks are placed using a first-fit bin-packing algorithm [28]. From the task

events table, the information about job ID and task index is used to extract each

tasks run-trace from the task usage table. The run-trace is then tested against

the first machine, as in figure 3.5a, to make sure there is room for the task on

the machine, for all 5-minute intervals of the task run. If the machine capacity is

exceeded at any time, the algorithm will try to place this task on the next machine.

If the task does not fit on any machine, the task is deferred to a later period as in

figure 3.5b.

In this algorithm clairvoyance is assumed, i.e. the model already know exactly how

much resources a task will use at all intervals before it is placed on a machine.

40

Figure 3.5: If the task (blue) does not fit at a machine (a), it either placed on

another machine, or it is postponed to the next interval (b).

Obviously, this is not the case in reality. This algorithm only looks at CPU capacity.

Memory resource usage and requests are ignored. This could also be something

that will change the placement of tasks in real life applications.

After the placement of the high latency-sensitive tasks, it is the turn of medium

tasks (step 2), and at last, the low tasks. The algorithm first attempts to place

the tasks on machines that are already running other tasks (step 3). If there is no

room for the task on those machines, the task is placed on a new machine (step

4). If there are no machines available with the capacity to run the task at the given

interval, the task is postponed to the next time interval.

In the baseline algorithm, no power consideration is taken into account.

3.3.2 Baseline algorithm with power, assuming clairvoyance

This algorithm is similar to the baseline algorithm in the above section, the only

difference is that the maximum number of machines for the low scheduling class

tasks is determined based on predicted available energy. If there are fewer ma-

chines available than the previous time period, all the low tasks will be deferred,

with no attempt to place any of the low latency-sensitive tasks. If the same or more

machines are available, an attempt to place the tasks will be made.

2max machines is 100 for the baseline without power consideration for all tasks. When power

is taken into account, max machines for the placement of low priority tasks is determined by the

availability of machines (maximum of the number of machines running high tasks, and the number

of machines that can run on predicted renewable energy 3 hours ahead). For the high priority tasks,

max machines is always 100.

41

Algorithm 1: Baseline algorithm
Data: Task events table, task usage table, empty machine utilization table

Result: machine utilization table after placed tasks

1 create empty task tables to store deferred tasks;

2 start time = start of measurement period;

3 end time = end of measurement period;

4 while not at end time do

5 time = start time;

6 tasks = take 5 minutes of task events table;

7 sort tasks into high, med, low using sorting tasks;

8 append sorted tasks to previously deferred tasks;

9 for task in high do

10 place task on machine using place task;

11 end

12 for task in med do

13 place task on machine using place task;

14 end

15 for task in low do

16 place task on machine using place task;

17 end

18 time += 5 minutes

19 end

Algorithm 2: Sorting tasks
Data: Task events table

Result: Three tables with sorted tasks

1 high = tasks events with scheduling class 3 or 2;

2 med = tasks events with scheduling class 1;

3 low = tasks events with scheduling class 0;

4 sort high, med and low based on priority;

5 return high, med low

42

Algorithm 3: Place task
Data: Task events table, task usage table, machine utilization table,

previously deferred tasks

Result: machine utilization table with task placed, list of deferred tasks

1 usage = get task CPU utilization from usage table;

2 if usage duration is not none then

3 while machine <= max machines2 do

4 machine status = machine utilization for duration of task usage;

5 if machine status + task usage > 1 for any intervals then

6 if machine = max machine then

7 defer task;

8 end

9 else

10 place task on this machine;

11 end

12 end

13 end

When placing individual tasks, power considerations are also taken into account.

To make sure there is enough capacity to run the whole task, the algorithm checks

the predicted available machines for all intervals of the task run. If there are not

enough machines at some point of the duration of the task, the individual task is

deferred to the next timeslot.

Since the machines that run the higher latency sensitive tasks are guaranteed to

run at any time, lower latency sensitive tasks have the option to be placed on these

machines.

In the baseline algorithm considering power, the algorithm is clairvoyant with re-

spect to task usage, but not energy production. The available renewable power

is given by prediction 3 hour ahead. To get the number of available machines,

the algorithm picks the highest number of the minimum number of predicted ma-

chines 3 hours ahead and the minimum number of available machines running

high latency sensitive tasks for the duration of the task. As mentioned earlier, the

clairvoyant model is not a feasible approach in reality, due to the task usage not

being known in advance.

43

3.3.3 Non clairvoyant algorithm with task usage prediction

To deal with the clairvoyance, a neural network is used to predict the tasks mean

CPU usage and duration. The non-clairvoyant algorithm bases the placement of

tasks on the predicted CPU value and duration of the task, and the predicted power

production three hours ahead. Other than this change, the algorithm works in the

same way as algorithm 1. The placement of tasks based on predicted values is

described in algorithm 4.

Algorithm 4: Place task (based on predicted usage)
Data: Task event, machine utilization table, predicted machine utilization

table

Result: machine utilization tables with task placed, list of deferred tasks

1 task ID = get task ID;

2 usage = get task CPU utilization from usage table;

3 predicted = predict task CPU usage and duration;

4 if predicted duration is not none then

5 while machine <= max machinesa do

6 predicted machine status = predicted machine utilization for

predicted duration;

7 current machine status = current usage of machine;

8 if predicted machine status + predicted task usage > 1 for any intervals

or current machine status + predicted task usage > 0.8 then

9 if machine = max machine then

10 defer taskb;

11 end

12 else

13 place task on this machine;

14 end

15 end

16 end

amax machines is the greater value of the minimum number of machines running high latency

sensitive tasks for the duration of the task, or the minimum number of renewable machines avail-

able for the duration of the task. If the duration is more than three hourss, only the first three are

taken into consideration due to the prediction only being three hours ahead.
bFor high priority tasks, the task will be placed on the machine with the lowest current utiliza-

tion instead of being deferred.

When placing individual tasks on a machine, it is made sure that the tasks will

44

not exceed the capacity of the machine. Since the placement now is based on

the predicted mean CPU usage, there is a check to make sure that the predicted

usage of the previously placed tasks on the machine, plus the tasks predicted CPU

usage will exceed the machine capacity at any time of the predicted duration. An

additional check is made, to see if the current real usage on the machine plus the

tasks predicted CPU usage will exceed 80% of the machine capacity. This lower

bound is to account for the lack of variation in the prediction, since the predicted

task usage is constant, and does not take into account the varying CPU usage of a

task.

3.4 Neural network for task usage prediction

In the clairvoyant algorithm, the usage profile of the task is given in advance. This

is obviously not the case in real-world applications.

To place the tasks on machines the most efficient way, there is a need to know in

advance how much CPU a given task would use, and how long the task will take

to finish.

When a task is submitted, a lot of information is made available (see table 3.1).

For example the requested CPU, the scheduling class, the priority and the event

type. There is also information about the user ID and job ID, which might give

some information about how the task will run.

Neural networks are good at solving regression problems and are able to replicate

any function, therefore, a solution to remove the clairvoyance of the scheduler

is proposed, by using a neural network to estimate a tasks CPU usage and du-

ration. The functions and details of the neural network are described in section

2.3.1.

3.4.1 Data preparation and inputs

Two networks are developed for each scheduling class. One for the prediction of

mean CPU usage rate, and one for prediction of duration.

The inputs to the network are gathered from the task events table, and consist of

several values:

1. Resource request CPU

45

2. Priority

3. Event type

4. Scheduling class 3

5. User ID

6. Time of day

7. Day of week

8. Job ID

The User ID is mapped from the hashed values in the original data to individual

integer values.

Before the inputs are sent through the network, they are normalized. Each feature

(input) is scaled to a range from 0 to 1. This is to avoid weighing one feature more

than another since they differ in scale.

The transformation is done by equation 3.4, for each feature:

Xscaled =
X −Xmin

Xmax −Xmin

(3.4)

where X is the original input feature, Xmin and Xmax is respectively the minimum

and maximum instance of all values for this feature.

To gather the training data, a selection of 150 000 tasks are chosen for each task

group (low, medium, high latency sensitive) from all the task events that ran nor-

mally. The target values are gathered by finding the actual usage trace for each

task from the task events table. The target CPU values for each task is calculated

by taking the average of the mean CPU utilization for all 5-minute intervals of the

duration of the task, and the target duration is the sum of 5-minute intervals of a

task.

3.4.2 Network structure

To get the best results, separate networks are used for the different task groups.

There are two networks for each group, one for prediction of duration, and one for

3Only in use for the high latency sensitive tasks, as there are fewer of these and they are

scheduled together.

46

prediction of CPU usage. The networks are similar for all groups. The differences

are stated below.

For task CPU usage prediction, a network with four hidden layers is used, as illus-

trated in figure 3.6. The layers have 7, 250, 150, 100, 50 and 1 nodes, in order

from input to output, where the output is the predicted CPU usage. The number

of nodes was chosen based on trial and error, with this setup giving the lowest

prediction error. Each layer uses the ReLU activation function.

The input vectors xi, consist of the scaled values from the list in the previous

section.

These values are sent through the network as described in section 2.3.1.

Figure 3.6: A simplified illustation of the neural network used. All networks have

six layers, consisting of an input layer (top) and an output layer (bottom), and

four hidden layers with 250, 150, 100 and 50 nodes from top to bottom. All nodes

in the previous layer is connected to all nodes in the next.

The networks have the same structure for both CPU prediction and duration. The

difference is the output value. For the duration prediction the output is the pre-

dicted number of 5-minute intervals a task will run, while for the CPU usage, the

prediction is the total mean CPU usage of the task.

This prediction does not take into account that a task usually does not have the

same utilization for the whole duration, and therefore is not able to reflect the

variation of CPU utilization for a task.

The networks performances are evaluated by comparing the prediction error with

the error of guessing at the mean of the samples and by the fit of the regression

47

line from the predicted and real values. The mean of the predicted errors and the

median are good indicators of the performance of the network.

The R2 value is also used for evaluating the performance of the prediction model,

as in equation (3.8). The R2 value is calculated from the sum of the residual

squares of the prediction 3.7, and the total sum of squares 3.5. The total sum

of squares is the sum of all the observations squared distance from the overall

mean.

SStot =
∑
i

(yi − ŷ)2 (3.5)

Where yi is the real value for sample i, and ŷ is the mean of all real values, as in

equation (3.6):

ŷ =
1

n

n∑
i=1

yi (3.6)

The residual sum of squares 3.7 is the sum of the squared difference between the

predicted and the actual values for all the observations.

SSres =
∑
i

(yi − ypred,i)2 (3.7)

The R2 value is then calculated from the residual and total sum of squares:

R2 = 1− SSres

SStot

(3.8)

A good fit gives a R2 value close to 1.

48

Chapter 4

Results and discussion

In this chapter, the results from the previously described experiments are pre-

sented. To start with, data from the unaltered original trace from the original 100

machines is shown.

Baseline results for comparison are presented, for both the unaltered and the cus-

tom trace. The baseline is the clairvoyant algorithm that places tasks as it is, with-

out power consideration, see section 3.3.1.

Then, the results from the power-aware algorithm (section 3.3.2) are presented

and discussed in comparison to the baseline results. The results from the non-

clairvoyant algorithm with task usage prediction (section 3.3.3) is evaluated and

compared to the baseline and to the power-aware algorithm. We look at the power

consumption both in total and with respect to percentage renewable, CPU uti-

lization and the number of deferred tasks, and estimate how well the algorithm

performs compared to the baseline and the power-aware algorithms. The reduc-

tion of machines in use during the periods of low power availability gives a good

indication of how well the algorithm adapts to power availability.

At last, the results from the neural networks are presented and evaluated.

4.1 Original data

On the original machines from the unaltered trace, the mean CPU utilization for

each 5-minute interval on the individual machines range from 0.055 to 0.488 as

shown in figure 4.1, but on some machines, the maximum CPU utilization exceeds

1 at certain points. Since the mean CPU usage of each task is only given in 5-

49

minute intervals, there is some uncertainty linked to these numbers. Even so, if

the capacity is exceeded at some points, this is not critical. The low utilization is

typical for data centers, and it leads to a lower efficiency than if fewer servers were

in use, with higher utilization.

Figure 4.1: The mean CPU utilization on the running machines (in this case all

100 for most of the time). The utilization is lower than 0.3 most of the time.

We tested two different power configurations, one where all machines are turned

on at any time, and another where the machines have a low power state when the

machines are not doing any processing, that consumes much less power (10W)

[11]. The first configuration is shown in figure 4.2. The total power consumption

for the month-long trace period is 23866 kWh.

50

Figure 4.2: Power usage for the original 100 machines, for the month of May 2011.

Total energy: 23866 kWh. The dotted line is the mean machines in use.

If we assume all machines are in a low power state until needed, we can start

them up on demand, and use less power when the machines are not doing any

processing. We assume the server consumes about 10W in a low power state [11].

In figure 4.3 it can be seen that the power consumption is slightly lower when

the low power state is implemented, with a total power consumption of 23863

kWh.

Figure 4.3: Power usage for the original 100 machines, for the month of May

2011. Here with idle machines in a low power state. Total energy: 23863 kWh.

The dotted line is the mean machines in use.

51

The original trace does not consume significantly less power when having a low

power state for the machines. This is not surprising since almost all of the ma-

chines run at any time: the mean number of active machines is 99.98. The fraction

of renewable energy used is the same for both configurations, at 81% of the total

power consumption.

To reduce the number of machines running at low capacity (which means low

efficiency), it would be beneficial to fill up as many machines as possible, without

exceeding the processing capacity of the machines. This is what the developed

algorithm attempts to do.

4.2 Results from baseline algorithm

The baseline results presented in the following paragraphs are run without taking

any power availability into account. The tasks are placed on machines as they

arrive, regardless of available wind energy. The consumed power is calculated

based on CPU utilization of each machine, with idle usage set to 300 watts, and

full usage to 500 watts.

The traces are created from the baseline algorithm with clairvoyance, described in

section 3.3.1, so the task profile (duration and CPU usage) is known at the time of

placement.

The CPU utilization of the running machines is higher than for the original trace

load since the baseline algorithm is clairvoyant and therefore can place a task on

a machine with a certainty of never exceeding the machine capacity.

4.2.1 Unaltered trace

In the baseline results with the clairvoyant algorithm, we never have 100 machines

in use at the same time. The average number of machines in use is 29, and the

maximum number of running machines is 43, as seen in figure 4.4. This means

that 57 machines are never used to process any tasks from this setup. The low

power-state would be much more efficient at saving energy for this setup.

52

Figure 4.4: Baseline results for the unaltered trace taken from 100 machines. Total

energy used: 23787 kWh. The dotted line is the mean machines in use.

In figure 4.5, the results from the same algorithm, but with a low power state

introduces are shown. Comparing figure 4.4 and 4.5, there is less energy used

in the low-power state configuration, with a reduction from 23787 kWh to 9457

kWh. There are many machines that are not utilized at any given time.

The renewable utilization is 84% of the total energy consumption with the low

power states and 81% without. With the low power state, this is an improvement

from the original trace. The overall power consumption is also lower than for the

original trace, both for the configuration with and without low power state. This

is as expected since many of the machines are in the low-power state at any given

time.

53

Figure 4.5: Baseline results for the unaltered trace taken from 100 machines. Ma-

chines with no tasks are in low-power state. Total energy used: 9457 kWh. The

dotted line is the mean machines in use.

Figure 4.6 shows that the average utilization of the running machines is much

higher than for the original trace (figure 4.1), giving us a higher processing effi-

ciency. This efficiency increase can also be seen from the lower total energy con-

sumption being reduced by 60%.

Figure 4.6: The mean CPU utilization on the running machines (ranging from 20

to 43).

54

4.2.2 Custom trace

In the case of the custom trace (section 3.1.1), the average number of machines

used is 33, and the maximum number is 60, as shown in 4.7. This trace has a

higher overall energy consumption of 24023, which is higher than the original

trace loads 23787 kWh since we only place a task once. In the trace from the 100

machines, some tasks are stopped and started multiple times, so when taking the

same number of scheduled tasks the number of total tasks is higher.

Figure 4.7: Baseline results for the custom trace. Total energy: 24023 kWh. The

dotted line is the mean machines in use.

As with the unaltered trace, the energy consumption of the configuration with a

low power state consumes less power than the one without, as seen in figure 4.8.

The fraction of power from wind energy for the trace is 83% for the low power

configuration, and 81% for the regular configuration.

55

Figure 4.8: Baseline results for the custom trace. Machines with no tasks are in

low-power state. Total energy used: 10413 kWh.

Similar to the results from the unaltered trace, the CPU utilization on the running

machines is higher than the original. Figure 4.9 shows that the mean CPU utiliza-

tion of the running machines is 0.74, a huge increase from the original mean of

0.22. We also see that the mean capacity never exceeds 1.

Figure 4.9: The mean CPU utilization on the running machines.

For the baseline algorithm, no tasks are deferred, since all tasks are placed at the

time they arrive.

56

4.3 Results from power-aware algorithm

The power-aware algorithm (described in section 3.3.2), takes available renew-

able power into account when placing a task. The algorithm is clairvoyant in re-

spect to the task duration and CPU usage, but not to wind power availability. It uses

the predicted power availability 3 hours ahead to determine renewable machine

availability. For this section, we only look at the configuration with the low-power

state of machines. The pattern is the same as with the baseline algorithm, with the

low power state using less overall power.

4.3.1 Unaltered trace

As in the previous results, the overall energy consumption goes down for the

power-aware algorithm from 23787 kWh to 8902 kWh. In this case, the fraction of

renewable power is at 85%, which is slightly better than the baseline algorithms

84%.

Figure 4.10: Results from the power-aware scheduler for the unaltered trace. Ma-

chines with no tasks are in low-power state. Total energy used: 8902 kWh.

The mean number of running machines is 27, and the maximum number of ma-

chines in use at any time is 42.

For 21% of the time, there is less power available than needed to run the machines.

The power-aware algorithm manages to reduce the number of machines in the

57

periods of low renewable availability 95% of the time. On average, there are 2.12

fewer machines running in these intervals than with the baseline algorithm. The

maximum reduction for any interval is 8 machines.

The mean CPU utilization of the running machines of 0.75, figure 4.11, is slightly

higher than the baseline algorithm at 0.74.

Figure 4.11: The mean CPU utilization on the running machines.

With power-awareness, a total of 524 tasks were deferred at least one interval, all

of these were low priority tasks. The pattern of the deferred tasks is shown in figure

4.12. The pattern matches up with the periods of low wind power production, as

we can see from figure 3.3.

58

Figure 4.12: Number of deferred tasks each interval. A total of 524 tasks.

The tasks were not deferred by a lot of time, with a maximum deferral time of 35

minutes, and a mean of 8.8 minutes.

4.3.2 Custom trace

For the custom trace, chosen from the tasks that ran normally (see section 3.1.1),

figure 4.13 shows that the power-aware algorithm has fewer machines running

overall, and less total energy is consumed compared to the baseline algorithm,

with a reduction from 10413 kWh to 10001 kWh.

The mean number of machines is 32 and the maximum number is 59.

59

Figure 4.13: Results from the power-aware algorithm for the custom trace. Ma-

chines with no tasks are in low-power state. Total energy used: 10001 kWh.

From the total energy consumption, 84% is from wind energy, compared to the

83% in the baseline algorithm.

For 21% of the time, there was not enough renewable energy to power the running

machines. For these intervals, the number of machines running compared to the

baseline algorithm was reduced 55% of the time. There was a mean of 4.8 fewer

machines running in these intervals compared to the baseline results, and the

maximum reduction was 17 machines.

Figure 4.14: The mean CPU utilization on the running machines.

60

With power-awareness, a total of 4601 tasks were deferred for at least one interval,

all of these were low priority tasks. As with the unaltered trace, the pattern of

deferred tasks follows the renewable machine availability.

Figure 4.15: Number of deferred tasks each interval.

The mean task deferral time is 12.5 minutes, and the maximum deferral time 60

minutes.

4.4 Results from algorithm with predicted CPU us-

age and duration

The case of the algorithm using task CPU usage and duration prediction shows very

similar results to the clairvoyant algorithm. One major difference is the number

of deferred tasks. In figures 4.18 and 4.19, we compare the predicted and actual

energy usage of the trace. The predicted usage of 10810 kWh is greater than the

actual usage of 9738 kWh. As will be shown in section 4.6, this can be explained

by the prediction errors. Either the duration of tasks can be overestimated, or the

CPU usage of tasks that in reality is 0 for some or most intervals could be predicted

to be much higher.

Overall, the algorithm with prediction uses less power than both the baseline re-

sults and the clairvoyant power-aware algorithm. The results are compared in

table 4.2 in the next section.

61

In figure 4.16 and 4.17, the predicted and real CPU utilization on the running

machines is presented. The mean predicted CPU utilization of 0.73 is smaller than

the mean of the real utilization at 0.75, and the real utilization exceeds 1 in some

intervals. This is not critical but would reduce the performance of the overloaded

machine and lead to slower processing. This is not taken into account in these re-

sults, due to the complexity of calculating the impacts, and due to the simplicity of

these experiments. The mean CPU utilization exceeds 1 for 3.9% of the time.

Figure 4.16: The predicted mean CPU utilization on the running machines.

This never happens in the clairvoyant algorithm, and it illustrates the need to

predict a tasks usage not only as a static mean but as a variation over the trace

runtime. These results would not be acceptable in a real data center and under-

line the importance of leaving some extra room on the machines for unexpected

traffic.

62

Figure 4.17: The real mean CPU utilization on the running machines.

In figure 4.18 the predicted power consumption of the machines are shown, and

in figure 4.19 is the real power usage and machines running.

The results give 81% renewable energy for the predicted results, while for the real

results the machines are run on 84% renewable energy.

We can see that the real energy consumption of 9738 kWh is lower than the pre-

dicted energy consumption of 10810 kWh. The predicted maximum number of

machines running is 67 machines, and the mean number is 34 machines. In the

real results, there is a maximum of 62 machines running and a mean of 30. This

is lower than for the predicted.

63

Figure 4.18: Predicted results for the custom trace with the prediction based algo-

rithm. Machines with no tasks are in low-power state. Total energy used: 10810

kWh.

Figure 4.19: Real results for the custom trace with the prediction based algorithm.

Machines with no tasks are in low-power state. Total energy used: 9738 kWh.

As with the previously seen results, there was enough power to run the machines

21% of the time. For 79% of this time, the number of running machines was

reduced compared to the baseline algorithm for the same trace. This is a better

result than for the power-aware algorithm but can be explained by the machines

running on higher capacity. There was a mean of 5.6 fewer machines running, and

64

the maximum number of reduced machines was 23.

Figure 4.20 shows the number of deferred tasks for each interval. The total number

of deferred tasks is much higher than for the clairvoyant algorithm, with a total of

23230 tasks being deferred.

Figure 4.20: Number of deferred tasks each interval.

The pattern is the same as in the power-aware algorithm, with the deferred tasks

matching up with renewable availability. The delay is greater than for the other re-

sults. The maximum deferral time is 393 minutes and the mean 76 minutes.

4.5 Comparing the results

Overall, the prediction algorithm outperforms the clairvoyant power-aware algo-

rithm in regards to power consumption and does much better than the original

trace. It does though, overload some of the machines capacities for a large frac-

tion of the time, which means that the quality of the processing would decrease

significantly. To deal with this, a larger overhead would be needed, or a more

sophisticated method for prediction of task usage.

Of the 62 machines running at some point of the duration of the trace, 60 of them

are oversubscribed (running over their capacity) at some time when the predicted

values are used to place the tasks. Of these, the maximum time a single machine

is running above its capacity is 47% of the time. The ”earlier” machines (0,1,2...)

65

are the ones that are spending the most time being oversubscribed. The mean

is oversubscription 12% of the time and the median 6%. Of the oversubscribed

machines, 75% of them are oversubscribed less than 14% of the time.

The number of oversubscribed machines can be reduced by increasing the over-

head (lowering maximum capacity of machines when placing the tasks), with the

risk of tasks being deferred even when there is enough power available, or by

developing a more sophisticated model for predicting task usage over time.

The power-aware algorithm acts as expected, and reduces the number of running

machines in the periods of low power availability, and also reduces the overall

electricity consumption. For the unaltered trace, the number of running machines

in these intervals was reduced 96% of the time, and for the custom trace 56% of

the time with the power-aware algorithm. With prediction, for 79% of the time,

there was a reduction in machines running in these intervals.

Compared to the power-aware algorithm, the prediction algorithm defers more

tasks overall, and it defers them for a longer time than the clairvoyant algorithm.

Still, the deferral is within acceptable bounds for the scheduling class, and none

are deferred for more than 7 hours. An overview of the results from the different

algorithms are presented in table 4.1 for the unaltered and the original trace, and

in 4.2 for the custom trace.

Table 4.1: Overview of results with low power state (unaltered trace)

Original Baseline power-aware

Total energy consumption (kWh) 23863 9467 8902

Renewable energy (kWh) 19329 7976 7529

Renewable energy (%) 81 84 85

Mean active CPU utilization 0.22 0.74 0.75

Mean active machines 100 29 27

Max active machines 100 43 42

Total tasks deferred - 0 524

Mean task deferral time (minutes) - - 8.77

Max task deferral time (minutes) - - 35

66

Table 4.2: Overview of results with low power state (custom trace)

Baseline power-aware Prediction algorithm (real results)

Total energy consumption (kWh) 10413 10001 9738

Renewable energy (kWh) 8662 8396 8199

Renewable energy (%) 83 84 84

Mean active CPU utilization 0.72 0.70 0.75

Mean active machines 33 32 30

Max active machines 60 59 62

Total tasks deferred 0 4601 23230

Mean task deferral time (minutes) - 12.5 76

Max task deferral time (minutes) - 60 393

4.6 Task prediction results

4.6.1 Prediction for low latency sensitive tasks

Prediction of mean CPU usage

The low latency sensitive network is trained with a batch size of 1000 samples,

and iterates over the entire training set 200 times. In the training, a sample of the

custom trace was used as validation data. The training loss on the training and

validation data can be seen from figure 4.21(left). We see that the training loss on

the validation set stabilizes after about 175 epochs, with an average loss of a little

over 0.0045 for the last iterations.

Figure 4.21: The learning curve (left) and the results of the prediction (right). In

the learning curve, the blue line is the loss on the training data, and the green line

is the loss on the validation set.

The mean prediction error of the trained network was on the test set was 0.0048

67

+/- 0.0076, and the median error 0.0022.

Compared to guessing at the mean value of the whole sample, this gives a much

lower prediction error. Guessing at the sample mean would give a mean prediction

error of 0.01.

The R2 value of the fitted line from predicted and real values is 0.67, this is a

satisfactory fit, although as seen in figure 4.21(right), there is quite a variance of

error. This fit is the worst of all the neural networks, which is explained by this

being the group with the most variance. This is also reflected in the real values,

as the group of tasks with the lowest scheduling class also has a large variance of

CPU usage.

Prediction of total duration

The network used for prediction of duration was trained with a batch size of 500

and iterated over the training set 300 times. Figure 4.22 (left) shows the training

loss on the training set (blue) and on the validation set (green) during training.

We see that the training loss is decreasing for most of the iterations but stabilize

around 6 at 250 epochs. Figure 4.22 (right) shows the scatter plot of the real and

the predicted values.

Figure 4.22: The learning curve (left) and the results of the prediction (right). In

the learning curve, the blue line is the loss on the training data, and the green line

is the loss on the validation set.

The mean prediction error on the test set was 5.34 +/- 65.30 (5 minute intervals),

with a median error of 1 interval. The R2 value of the fitted line from predicted

and real values is 0.85. A median prediction error of 1 period is quite good, but as

we can see from the plot of real and predicted values, most of the outliers are 0

when they should be higher.

68

The mean error of guessing at the mean of the samples are 24.2 intervals.

4.6.2 Prediction for medium latency sensitive tasks

Prediction of CPU usage

In this case, the fit results improved from the lower scheduling class, as can be seen

from figure 4.23. Figure 4.23 (left) shows the learning error. Figure 4.23 (right)

shows a scatter plot of the real and predicted values of mean CPU usage. The R2

value of the line fitted to the points is 0.9. The best possible value of R2 would

be 1, so a fitted line with 0.9 is an acceptable fit, and it tells us that the points

are centered around the regression line. The points have some variance, but the

variance is centered. We can observe a steep decrease in the first epochs, which

then flattens out around 0.003. This network was, as the low latency sensitive

network, trained for 200 epochs with a batch size of 1000.

Figure 4.23: The learning curve (left) and the results of the prediction (right). In

the learning curve, the blue line is the loss on the training data, and the green line

is the loss on the validation set.

The mean prediction error of the network is 0.0034 +/- 0.0067, and the median

error 0.0010. The mean error by guessing at the sample mean would be 0.016.

Both the mean and median error is lower than guessing at the sample mean by a

factor of 10.

Prediction of total duration

The best results for the medium latency sensitive duration prediction were ob-

tained by having a batch size of 500 and this network was also trained by iterating

69

over the training set 300 times. The learning curve in figure 4.24 (left) shows the

loss on the training and validation data for each training iteration. The valida-

tion loss is higher than the training loss, which is as expected. After 200 iterations

(or epochs), the validation loss is varying around 6, and seem to have stopped

decreasing.

Figure 4.24: The learning curve (left) and the results of the prediction (right). In

the learning curve, the blue line is the loss on the training data, and the green line

is the loss on the validation set.

The mean prediction error for the network on the test sample was 6.05 +/- 72.14,

with a median error of 1. In the prediction results in figure 4.24 (right), the R2

score of the line fitted to the real and the predicted scatter plot is 0.86. We see

that there are some outliers, and many of them are centered around 0.

If the predictions were made by guessing at the mean of the sample, the mean

error would be 26.56 intervals, which is about 4 times worse than the prediction

mean error.

4.6.3 Prediction for high latency sensitive tasks

Prediction of CPU usage

The prediction results, in this case, give an R2 value of 0.89, as seen in figure 4.25

(right). The best possible value of R2 would be 1, so a fitted line with 0.89 is a

good fit. Figure 4.25 (left) shows the learning error. We see a steep decrease in the

first epochs, and then it flattens out around 0.002. This network was trained with

a batch size of 1000 and iterated over the training data 80 times.

The mean prediction error was 0.0021 +/- 0.0063, with a median error of 0.0005.

The R2 score of the regression line for the predicted data was 0.89, indicating

70

Figure 4.25: The learning curve (left) and the results of the prediction (right). In

the learning curve, the blue line is the loss on the training data, and the green line

is the loss on the validation set.

a good fit. This can also be seen from the lower spread of points far from the

regression line.

Making predictions by guessing at the mean of the sample would yield a mean

error of 0.012.

Prediction of total duration

The prediction of high latency sensitive duration was done with a batch size of 500

and the training data was iterated over 300 times during training. From figure 4.26

(left), we observe that the learning curve has a steep decrease in the first epochs,

and then converging towards a final validation loss of 19.49 for the rest of the

iterations.

Figure 4.26: The learning curve (left) and the results of the prediction (right). In

the learning curve, the blue line is the loss on the training data, and the green line

is the loss on the validation set.

71

The mean prediction error of the network was 19.49+/- 274.98, with a median

error of 1 interval. In figure 4.26 (right), a scatter plot of the real and predicted

values for the test data is presented. The R2 score of the fitted line was 0.98, cor-

responding to a very good fit. Most of the points in the scatter plot are centered

around the regression line, and there are fewer outliers than for the former mod-

els.

Guessing at the mean would yield a mean error of 1248 intervals, much higher

than the mean of the prediction error.

72

Chapter 5

Conclusions and further work

This chapter will summarize the content of this thesis, present the main findings

and their impact, and will propose interesting avenues for further work on the

subject.

5.1 Conclusion

In this thesis we have looked at how data centers can benefit from being co-located

with a renewable energy source, and seen demonstrations on how a small scale

data center co-located with a wind power source can adapt its workload to the

variable power supply, and reduce its overall power consumption, to reduce its

energy cost and environmental footprint.

Previous research has mainly focused on HPC workloads, often combined with so-

lar power sources, and no individual task usage prediction. We have seen different

approaches for both workload and power prediction, from none at all, to detailed

prediction methods for the overall workload. This thesis contributes by looking at

a combined workload with variable demand, using a neural network for individual

task usage prediction, to optimally place tasks on the fewest machines possible in

order to reduce energy consumption.

We presented a prediction algorithm that improves the data centers efficiency by

using workload prediction on an individual task basis. This was done to avoid

overloading machine capacity when placing tasks, thereby being able to run the

machines at a higher capacity more of the time. This lead to a reduction of the total

number of machines running at any time and to an overall reduction in energy

73

consumption.

The algorithm also reduced the number of machines doing work in periods of low

wind power production up to 79% of the time, by postponing tasks with a low

latency sensitivity to a later time. It also reduced the overall power consumption

from 23863 kWh for the original trace load to 9738 kWh with the prediction

algorithm, by setting fully idle machines to a low-power state.

The prediction algorithm was compared to baseline results from a fully clairvoyant

algorithm with respect to task usage and duration, both with and without taking

power production into account. It was also compared to the original trace load

from 100 machines.

The neural network used for prediction of the duration of the mean of the CPU

usage of a task, and the duration of a task, shows good results. The predictions

on higher scheduling classes show better results than the other groups, with an

R2 value of 0.89 and 0.98 for CPU usage and duration respectively. The medium

latency sensitive tasks have R2-values of 0.90 for CPU usage and 0.86 for duration,

but the residual plot shows a large variation. The lowest latency sensitive tasks

have R2-values of 0.67 for CPU usage and 0.85 for duration.

The prediction method may not be suited for this problem in the real world sce-

nario, deduced by the resulting oversubscription on machines for periods of time.

The results indicate that the prediction algorithm reduces overall energy consump-

tion, and increases the fraction of renewable energy used, compared to both the

original trace load and to the baseline algorithms. The prediction algorithm has

an 84% renewable energy consumption, while the original has 81% renewable

consumption and the baseline has 83%. This increase comes at a cost of some

machines running over their capacity for some time during the run periods.

The proposed algorithm also reduces the number of machines running in periods

with low power availability up to 79% of the time.

Power calculations and task resource usage are based simply on mean CPU usage

over 5 minute periods. Tasks real CPU usage fluctuates much quicker than this.

In reality, there are also many more factors impacting the power usage of a data

center, and the memory usage and other constraints of a task would also influence

the placement of tasks on machines.

Despite the assumptions and simplifications considered in this work compared to

the real world scenario, the results obtained can be seen as a proof of concept.

74

We proved that data centers would be a good candidate for utilizing excess wind

energy. We demonstrated that data centers could also reduce their energy con-

sumption by loading individual servers more on average, and this could be done

by predicting individual task usage over time before placement.

5.2 Further work

To further validate the results found in this thesis, it would be interesting to test the

algorithms on newer workload traces from other data centers. In October 2017,

Microsoft released a workload trace from Microsoft Azure [29]. The trace is from

2016 and is from a data center running with virtual machines. A comparison of

results from this thesis and the same methods applied to this newer workload

would be an interesting next step, to establish if the methods still hold with a

newer and more up-to-date workload trace.

It would also be beneficial to introduce more parameters into the algorithm for

placing a task. Details on machine type, processing units, and other hardware

details could make the algorithm closer to reality. It would also be interesting to

include more parameters for power calculations, to better reflect the real-world

scenario.

A better prediction algorithm, that takes CPU usage fluctuation into account, would

be another interesting avenue for further work. The fraction of oversubscribed ma-

chines would likely be reduced with a more sophisticated prediction method for

task CPU usage over time, where these fluctuations are better reflected in the pre-

diction.

The number of machines running at times with low renewable energy availability

could be reduced further by implementing a way to stop already running low

latency sensitive tasks for these intervals, to make room for the higher latency-

sensitive tasks, and put the stopped tasks back into the queue to be placed at a

later time.

Since the results are based on a very small sample compared to the huge and

complex structure of machines and connections a data center consists of, to verify

the scalability of the method further testing with more parameters on a larger

sample would be needed.

75

Bibliography

[1] Peter Corcoran and Anders Andrae. Emerging trends in electricity consump-

tion for consumer ICT (Technical Report). 2013.

[2] Gary Cook et al. Clicking Clean: Who is winning the race to build a Green

Internet? (Report). 2017, pp. 5, 15.

[3] Anders SG Andrae and Tomas Edler. “On global electricity usage of com-

munication technology: trends to 2030.” In: Challenges vol. 6, no. 1 (2015),

pp. 117–157.

[4] IEA statistics, World: Indicators for 2012. URL: http : / / www . iea . org /

statistics/statisticssearch/report/?year=2012&country=WORLD&

product=Indicators.

[5] Electricity domestic consumption. URL: https://yearbook.enerdata.net/

electricity/electricity-domestic-consumption-data.html.

[6] F. Yang and A. A. Chien. “ZCCloud: Exploring Wasted Green Power for

High-Performance Computing.” In: 2016 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS). May 2016, pp. 1051–1060.

[7] Íñigo Goiri et al. “Parasol and greenswitch: Managing datacenters powered

by renewable energy.” In: ACM SIGARCH Computer Architecture News (Pro-

ceedings). Vol. 41. 1. ACM. 2013, pp. 51–64.

[8] Yanwei Zhang; Yefu Wang, and Xiaorui Wang. “GreenWare: Greening Cloud-

scale Data Centers to Maximize the Use of Renewable Energy.” In: Proceed-

ings of the 12th International Middleware Conference. Middleware ’11. Inter-

national Federation for Information Processing, 2011, pp. 140–159.

[9] Luiz Andre Barroso; Jimmy Clidaras, and Urs Holzle. The Datacenter as a

Computer. An Inroduction to the Design of Warehouse-Scale Machines. Second

Edition. Morgan & Claypool Publishers, 2013, pp. 67–89.

[10] Matt Stansberry. Uptime Institute’s 2017 Data Center Industry Survey Results.

URL: https : / / uptimeinstitute . com / webinars / 2017 _ data - center _

industry_survey_results.

76

[11] David Meisner; Brian T Gold, and Thomas F Wenisch. “PowerNap: elimi-

nating server idle power.” In: ACM Sigplan Notices (Proceedings). Vol. 44. 3.

ACM. 2009, pp. 205–216.

[12] Zhenhua Liu et al. “Renewable and Cooling Aware Workload Management

for Sustainable Data Centers.” In: SIGMETRICS Perform. Eval. Rev. Vol. 40,

no. 1 (June 2012), pp. 175–186.

[13] Annette Evans; Vladimir Strezov, and Tim J Evans. “Assessment of sustain-

ability indicators for renewable energy technologies.” In: Renewable and

Sustainable Energy Reviews vol. 13, no. 5 (2009), pp. 1082–1088.

[14] Solar-PV power generation data. URL: http://www.elia.be/en/grid-

data/power-generation/solar-power-generation-data/graph.

[15] Nathan S. Lewis. “Toward Cost-Effective Solar Energy Use.” In: Science vol. 315,

no. 5813 (2007), pp. 798–801.

[16] Andrew Krioukov et al. Design and Evaluation of an Energy Agile Computing

Cluster (Technical Report). UCB/EECS-2012-13. EECS Department, Univer-

sity of California, Berkeley, Jan. 2012. URL: http://www2.eecs.berkeley.

edu/Pubs/TechRpts/2012/EECS-2012-13.html.

[17] C. Li; A. Qouneh, and T. Li. “iSwitch: Coordinating and optimizing renew-

able energy powered server clusters.” In: 2012 39th Annual International

Symposium on Computer Architecture (ISCA) (Proceedings). June 2012, pp. 512–

523.

[18] Md E. Haque et al. “GreenPar: Scheduling Parallel High Performance Appli-

cations in Green Datacenters.” In: Proceedings of the 29th ACM on Interna-

tional Conference on Supercomputing. ICS ’15. ACM, 2015, pp. 217–227.

[19] Baris Aksanli et al. “Utilizing Green Energy Prediction to Schedule Mixed

Batch and Service Jobs in Data Centers.” In: ACM SIGOPS Operating Systems

Review vol. 45.3 (2012), pp. 53–57.

[20] Jaeyeon Jung; Balachander Krishnamurthy, and Michael Rabinovich. “Flash

crowds and denial of service attacks: Characterization and implications for

CDNs and web sites.” In: Proceedings of the 11th international conference on

World Wide Web. ACM. 2002, pp. 293–304.

[21] Kurt Hornik. “Approximation capabilities of multilayer feedforward net-

works.” In: Neural networks vol. 4, no. 2 (1991), pp. 251–257.

[22] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization.” In: CoRR vol. abs/1412.6980 (2014). arXiv: 1412.6980.

[23] Google cluster data. URL: https://github.com/google/cluster-data/

blob/master/ClusterData2011_2.md.

77

[24] Google cluster-usage traces: format+schema. URL: https://drive.google.

com/file/d/0B5g07T_gRDg9Z0lsSTEtTWtpOW8/view.

[25] Daniel Gmach et al. “Capacity planning and power management to exploit

sustainable energy.” In: Proceedings of the 2010 International Conference on

Network and Service Management (CNSM). IEEE. 2010, pp. 96–103.

[26] Jonathan G. Koomey. Estimating total power consumption by servers in the

US and the world (Report). 2007. URL: https : / / www . greenbiz . com /

research/report/2007/09/12/estimating-total-power-consumption-

servers-us-and-world.

[27] Efficiency: How we do it. URL: https://www.google.com/about/datacenters/

efficiency/internal/#tab0=25.

[28] Vijay V Vazirani. Approximation algorithms. Springer Science & Business

Media, 2013, p. 74.

[29] Microsoft open source. Microsoft Azure VM trace. URL: https://github.

com/Azure/AzurePublicDataset.

78

