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Abstract  
Purpose: The purpose and aim of this project was to investigate immune contexture according 

to tumour molecular subtype, and ER status. To find the interrelationship between serum 

cytokine levels and specific tumour cell infiltration levels.  

 

Material and methods: A newly released deconvolution tool called xCell, uses gene 

expression data to identify 64 different cell types present in the bulk tissue assessed for gene 

expression. We first validated the method by comparing xCell´s output with immune cell 

infiltration assessed by immunohistochemistry staining. The xCell profiles were then compared 

between the breast cancer molecular subtypes and ER status, to identify differences in the 

microenvironment. 26 immune cell profiles were compared to serum cytokine levels to find 

potential correlation between cell type levels and cytokine levels.  

 

Results: The findings suggest clear differences of levels of immune cells in the different 

subtypes and ER status. ER negative samples have higher immune infiltration compared to ER 

positive samples. Luminal A have higher level of epithelial cells and stroma cell when 

compared to the other subtypes. The Luminal B has higher immune infiltration of helper T 

cells and higher immune infiltration when compared to Luminal A and Normal-like. The 

Normal-like subtype has higher levels of stem cell like cells. Her2-enriched and the Basal-like 

subtype have the largest amount of immune infiltration compared to the other subtypes. When 

correlating immune cell levels to cytokine levels, we found that levels of PDGF-bb corelate to 

higher levels of B cells which may reflect lymphangiogenesis.  

  

Conclusion: These findings suggest that there are differences in the microenvironment of 

breast cancer subtypes. The method used to identify these findings should be better validated, 

as it only validates a small fraction of the cell types. In the future, a large validation using more 

markers, should be used. By further analysing the cell levels and infiltration profiles for 

individual subtypes, we could better understand the differences in the environment within a 

subtype. PDGF cytokine may be a good candidate for immunotherapy. These findings could 

potentially have prognostic and/or predictive value to deliver more targeted treatments. 
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Sammendrag  
Formål: Formålet med denne oppgaven er å identifisere sammenhenger mellom ulike nivåer 

celletyper, ER status og subtyper i brystkreft. I tillegg til å identifisere en potensiell 

sammenheng mellom serum cytokin nivåer, og immune celle nivåer.  

 

Materiale og metoder: For å identifisere ulike celle typer brukte vi “deconvolution” 

programmet xCell. Dette programmet utnytter det unike genuttrykket til en celle til å spesifikt 

identifisere en type celle. xCell kan ut fra genuttrykk data identifisere 64 celletyper. Dette gir 

unike muligheter til å se hvilke celler som er tilstede i en tumor. Ved å få tilgang til 15 datasett 

med genuttrykk data, brukte vi dette programmet til å lage celleprofiler. Vi brukte 

celleprofilene og statistiske analyser til å identifisere celletyper som er tilstede i større grad i 

de ulike typene bryst kreft. Vi validerte celleprofilene fra xCell ved å sammenligne 

“immunohistochemistry staining” med celleprofilene.  

 

Resultater: Det var klar sammenheng mellom ulike celletyper og Brystkreft subtypene. I 

sammenligningen mellom ER status var det høyere infiltrasjon av immunceller i ER negative 

pasient prøver sammenlignet med ER positive prøver. Luminal A subtypen hadde høyere 

nivåer av epitelceller sammenlignet med de andre subtypene. Luminal B hadde noe immuncelle 

infiltrasjon spesielt av T-hjelpecellene. Normal-like hadde en større andel stamceller 

sammenlignet med de andre. De Basal-like og Normal-like subtypene hadde høyere 

immuncelle infiltrasjon sammenlignet med de andre subtypene. Her2-enriched hadde andel 

medfødte immunceller sammenlignet med den Basal-like subtypen. Vi fant også en 

sammenheng mellom cytokin PDGF nivåer og B celle nivåer. B celler og PDGF er involvert i 

dannelsen av nye lymfevener, og høyere nivåer PDGF kan ha en sammenheng med dette.   

 

Konklusjon: Våre funn viser klare forskjeller mellom mikromiljøet i tumoren, og en 

sammenheng mellom nivåer cytokin PDGF og B celler. For å validere metoden sammenlignet 

vi xCell profilene med “immunohistochemistry staining”, denne valideringen var noe 

mangelfull da den kun validerte en liten mengde av celletypene som ble benyttet. Ved å benytte 

en større valideringsett med flere markører ville det validert flere av celletypene som xCell 

benytter. Ved å sammenligne celleprofiler innad i subtypene samt sammenhengen mellom flere 

cytokin nivåer, kan vi potensielt finne prognostiske og prediktive markører. 
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1 List of abbreviations  
aDC  Activated dendritic cell 

APC   Antigen Presenting cell  

BCR   B cell receptor  

cDC  Conventical dendritic cells 

CLP  Common lymphoid progenitor  

CTL   Cytotoxic killer T cells 

DC   Dendritic cell 

DCIS   Ductal carcinoma in situ  

DNA  Deoxyribonucleic acid  

EMT  Epithelial-mesenchymal transition 

ER  Oestrogen receptor  

GMP   Common myeloid progenitor  

HER2  Human epidermal growth factor receptor 2 

HSC   Hematopoietic Stem Cell 

IDC  Invasive ductal carcinoma  

iDC   Immature dendritic cells 

IHC   Immunohistochemistry 

ILC  Invasive lobular carcinoma  

LCIS   Lobular carcinoma in situ 

MEP   Myeloid progenitor 

MHC   Major Histocompatibility Complex 

NCI   National cancer institute  

NK cells  Natural killer cells  

NLR   NOD- like receptors 

PR   Progesterone receptor  

PRR   Pattern Recognition Receptors 

RNA   Ribonucleic acid  

TCGA   The Cancer Genome Atlas  

TCM   Central memory T cell   

TCR   T cell Receptor  

TD  T cell Dependent  

TEM  Effector memory T cell  



 1 

Tgd cell Gamma delta T cell  

Th   Helper T cells  

TI  T cell Independent  

TME   Tumour Microenvironment 

TNBC  Triple-negative breast cancer   

Treg   Regulatory T cells  
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2 Introduction  
 

2.1 Cancer  
Tumours arise when a cell grows abnormally and uncontrollably by bypassing the normal rules 

of cell division. The development of cancer is a multistep process. Accumulations of several 

genetic aberrations are required for the tumour to become malignant (1). The process of tumour 

development can be divided into stages (1).  

- The first stage is the initiation phase, in which genetic alterations occur within the cells 

genetic material. These alterations can occur spontaneously or be induced by 

carcinogens.  

- During the promotion stage, cells gains the ability to proliferate uncontrollably. 

Carcinogen promoters allow this process, during which accumulation of more 

mutations occur.   

- In the last stage, called the progression phase, the tumour gains the ability to invade 

other tissues, it then becomes metastatic.  

Normal cells are constantly subjected to signals controlling cell division. Cancer cells 

develop a degree of autonomy and avoid these signals resulting in uncontrolled cell division 

and proliferation. 
 

2.1.1 Hallmarks of cancer  
In 2000, Hanahan and Weinberg proposed a concept called the hallmarks of cancer (2). This 

concept summarises the biological specification and alterations in cancer. In 2011, the 

hallmarks were updated and extended, as illustrated below in Figure 1 (3). The concept of the 

hallmarks of cancer explains the processes a cell must undergo, and the challenges it overcomes 

to become cancerous (3). 
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Figure 1. The 10 hallmarks of cancer proposed by Hanahan and Weinberg in 2011. Printed 
with permittion form “Hallmarks of cancer: The Next generation” (3). 

 
In order for a cancer cell to grow and divide uncontrollably the cell needs to sustain 

proliferative signalling and evade growth suppressors (2). While normal cells respond to 

growth promoting or repressing signals, cancer cells continually proliferate. Usually, if 

problems are detected during cell cycle or in the environment, the cell is brought into cell cycle 

arrest or is forced to undergo apoptosis: programmed cell death. Cancer cells adopt the ability 

to avoid programmed cell death (2). Genome instability and mutations are thought to be 

an onset in some types of cancers (3). Normal cells have restrictions on how many times they 

can divide, cancer cells have enabled replicative immortality as they may divide infinitely 

(2). The immune system detects pathogens and may also detect and destroy cells with altered 

DNA. Cancer cells express or suppress specific molecules at their surface in order to avoid 

immune recognition and evade immune detection (3). Tumour- promoting inflammation is 

used by the cancer cells to supply growth factors, survival and promote angiogenesis (3). In 

tumorous cancer cells there is an increased need of nutrition and oxygen. To sustain the 

exponential growth and get the needed nutrients, cancer cells induce angiogenesis; the 

recruitment of blood vessels (2). Cancer cells also have altered metabolic pathways, 

deregulating cellular energetics (3).  Finally, cancer cells have invading and metastatic 

potential allowing them to leave the tissue of origin and invade other tissues in the body (2).  
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2.1.2 Cancer genomics 
Genetic alterations are a critical step in carcinogenesis. There are four main types of genetic 

alterations associated with cancers (4).  

- Mutations: a permanent change to the DNA sequence. Mutations can be 

subcategorised into; deletions, insertions or substitutions. Mutations can be hereditary, 

or somatic: acquired through a person’s lifetime (5).  

- Aneuploidy is the process of loss or gain of chromosomes (6).  

- Chromosome translocation is the fusion of two chromosomes, which may alter the 

function or expression of one or several genes (6).  

In addition, amplification/deletion may play a critical role in cancers. When a gene is amplified 

the copy number increases resulting in high gene expression, and overexpression of that gene. 

Overexpression or amplification of certain genes that regulate the cell cycle or stimulate growth 

may cause cancer (6).  

Genetic alterations can be passenger mutations and do not directly cause cancer. However, if 

mutations alter important high-risk genes, involved in crucial steps of DNA repair, apoptosis 

or cell proliferation, these alterations may be carcinogenic. When genetic alterations affect 

oncogenes or tumour suppressor genes, they may become functional and drive the carcinogenic 

process (7). 

Oncogenes are genes with the ability to promote cancer. Before they become oncogenes, they 

are proto-oncogenes and are involved in proliferation and stimulating cell growth. Genetic 

alterations of a proto-oncogene which lead to a gain of function usually drive oncogenesis (7). 

Oncogenes often mutated in breast cancer are ESR1, Pik3CA, GATA3 and MAP3Ki (8).  

Tumour-suppressor genes (TSG) are genes inhibiting overproliferation and uncontrolled cell 

division. The TSG are often involved in DNA repair, suppressing growth and promoting 

apoptosis. Mutations in the TSG usually lead to loss of function (7). TSG often mutated in 

breast cancer are TP53, CDH1, PTEN, and BRCA1/2 (9). 

 

2.2 Breast Cancer 
2.2.1  Breast anatomy  
The breast is composed of fatty tissue or adipose tissue, and glandular milk-producing tissues 

or lobules see Figure 2 (10). The main function of the female breast is to produce milk to infants 

during breastfeeding. The mammary glands are exocrine glands consisting of 1-12 milk 

producing lobes, from the mammary glands lactiferous milk ducts branch out bringing the milk 
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to the nipple. In addition, to the granular tissue and the adipose tissue the breast is composed 

of structural tissues such as muscles and fibrous tissue, and ligaments. The breast also contains 

lymph nodes and blood vessels, supplying the breast with nutrients and protecting it from 

infections (10). 

 

 
Figure 2. Anatomy of the human breast. The mammary gland consists of ducts and 
lobules, surrounded by adipose tissue. The breast is held in place by ligaments and muscle 
cells. Lymph nodes and blood vessels infiltrate the tissue. Picture modified from Memorial 
Solan Kettering cancer centre (11).    

 
The ratio of adipose and glandular tissue varies from person to person (10). The breast 

development occurs after childhood and undergoes several changes throughout a lifetime (12). 

Hormonal stimuli during puberty induces changes to the female breast. The adolescent breast 

consist of only rudimentary glandular structures which develop into primary ducts emanating 

from the nipple. During menopause, levels of oestrogen decreases and the breast composition 

changes: an increase in fatty tissue and decrease of granular tissues is observed (12). 
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2.2.2 Epidemiology 
Breast cancer is the second most frequent type of cancer worldwide. In 2012, 1.67 million new 

cancer cases were reported (13).  Global incidence rates vary, and higher incidence occurs in 

developed countries (13) (Figure 3). Studies show that migrants with an initial low incidence 

of developing breast cancer have an increased incidence within a few generations after moving 

from a country with low to higher incidence rates. This suggests that environmental factors and  

lifestyle are important aspects in development of the disease (14).

 
Figure 3. Estimate breast cancer incidence rates world-wide. Figure from GLOBOCAN. 
Printed with permission from IARC and WHO (13). 

 
In Norway breast cancer is the most common cancer among women. In 2016, 3636 women 

were diagnosed with breast cancer. One in every twelve women will develop breast cancer 

before they are 75 years old, in Norway (15).  The incidence of breast cancer has been 

increasing rapidly the last decades. From 1957-1961, there was an average of 941 new cases 

per year, while between 2012-2016, 3254 new cases were reported per year. However, as the 

incidence rate increases, the mortality rates decrease, and about 90% of women diagnosed with 

breast cancer will still be alive 5 years after diagnosis which was not the case 40 years ago 

(15). The decrease in mortality rates is due to early detection through the mammographic 

screening programs, and better awareness among women. As technology and science have 

progressed, the hospitals and doctors are able to deliver better treatments which participate in 

the decrease in mortality by breast cancer (15) (16). 
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2.2.3 Tumour development and progression in breast cancer 
Checkpoints during the cell cycle ensure that cells undergoing division are healthy and normal.  

However, some cells gain the ability to avoid these checkpoints, and therefore divide frequently 

and abnormally. The abnormal proliferation creates a mass referred to as a neoplasm (17). 

Breast cancers develop in the ducts; ductal carcinoma, or in the lobules; lobular carcinomas. 

Tumours can be in situ or invasive; in situ tumours are confined within the tissue they derived 

from, while invasive tumour have started to invade surrounding tissues. The conversion from 

normal epithelial tissue to an invasive carcinoma is thought to be through the progression of 

stages described in Figure 4. The progression starts as ductal or lobular hyperplasia and atypical 

hyperplasia where there is a small amount of abnormal growth. Further it progresses into ductal 

carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS), the cancer is still confined to the 

duct or lobule (18). The last stage of progression is invasive carcinoma in which the tumour 

evades the lobes or the ducts. The development and progression of breast cancer is genetically 

and histologically diverse and differs from person to person.  

 
Figure 4. Developmental stages in breast cancer. Picture modified from RnCeus (19). 
 

2.2.4 Prognostic and predictive markers of breast cancer 
Prognostic markers are to predict clinical outcome. A predictive marker is a factor that gives 

information about how a patient may responds to a specific treatment. Predictive markers help 

clinicians provide the right treatment to the right patient, avoiding overtreatment and sparing 

non-responding patients from side effects. Treatment decision is especially based on the 

morphology, histological grade, hormonal markers such as ER status, tumour size, and the 

proliferation and lymph vascular invasion status (20). 
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Histologic grade 
Histological grade reflects how differentiated the cancer cells are compared to the normal tissue 

(21). The grading is based on three morphological features: (i) The degree of tubule or gland 

formation or the percentage that is still displaying normal structure. (ii) Nuclear pleomorphic 

or size and shape. (iii) Mitotic count, the number of dividing cells. The overall grade is decided 

from the overall score of the individual features. Histological grade is an independent 

prognostic factor (22).  

Stage 
Invasive breast cancers are classified by stage using the international TNM system. The stage 

is decided by three factors, the tumour size (T), the spread to the lymph nodes (N), and the 

spread or metastasis to other body parts (M) (23). 

Molecular markers 
Immunohistochemical (IHC) staining is used to account for protein expression of ER, PgR,  

Ki-67, and Her2. These proteins serve as prognostic and predictive markers and are important 

when considering treatment (24). 

Hormone receptor 

Oestrogen is a steroid hormone important in the reproductive cycle in women. Oestrogen binds 

to the oestrogen receptor on effector cells. Oestrogen receptor functions as a transcription factor 

and can regulate target gene expression. 70% of breast cancer are ER positive in which the 

oestrogen receptor is overexpressed (25). Progesterone is a steroid hormone produced by the 

ovaries and is important in the development of breast, and during the production of milk. Like 

ER the progesterone receptor (PgR) is a transcription factor. PgR is expressed by a large 

number of epithelial cells in the breast tumour (26). 

Human epidermal growth factor Receptor (Her2)  

The Her2 is a transmembrane protein that is involved in signalling proliferation, and 

differentiation. Her2 overexpression leads to an over activation of the cellular proliferation. 

About 25-30% of breast cancer cases have overexpression and amplification of the Her2 

(ERBB2 gene), which is associated with poor prognosis (27).  

Ki-67  

The Ki-67 is a protein expressed during the stages of the cell cycle except in the G0 phase. An 

elevated level of this protein, is an indication of proliferation. Ki-67 levels are used to assess 

whether patients may receive chemotherapy (28). 
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PAM50 subtyping  
During the last decades, major advances in high-throughput technologies have allowed to 

phenotype tumours at the molecular level. In 2000, Perou and Sørlie et al. proposed a molecular 

classification of breast cancers (29). This classification subdivides breast cancer in five groups: 

Luminal A, Luminal B, basal-like, Her2-enriched and Normal-like. The Luminal groups are 

usually ER positive (Table 1). When comparing patients with Luminal A and Luminal B 

subtypes, the Luminal B patients have a worse outcome and a higher degree of proliferation 

than the Luminal A patients. The Her2-enriched tumours are dominated by samples with an 

increased Her2 signalling pathway. Patients with Her2-enriched tumours have a worse 

prognosis. However, since 2000 targeted treatment for Her2-enriched breast cancer have been 

developed resulting in a better outcome for these patients. Basal-like tumours are usually triple 

negative; ER, PgR and Her2 negative. Basal-like tumours have the worst prognosis and are 

highly proliferative. The Normal-like group is not as well defined but consists of invasive 

adenocarcinomas with a gene expression profile similar to normal breast tissue (29).  

By using statistical tools, 50 genes were prioritised to subtype breast cancers: the PAM50 

panel. The PAM50 classification is recently used in clinical setting to identify subtype, to 

assess patients risk of recurrence, and to guide treatment decisions (29). 

 

Table 1. Subtypes with ICH according to the St Gallen guidelines in 2016 (24). 

Molecular 

subtype  

Surrogate subtype  ER PgR Her2 PI (Ki-67) 

Luminal A  Luminal A- like  + >20% - <20% 

Luminal B Luminal B like (HER2-negative)  

Luminal B like (HER2- positive)  

+ 

+ 

<20% 

Any 

- 

+ 

>20% 

Any 

Her2 – 

enriched  

HER2 positive  - - + Any 

Basal-like  Triple negative  - - - Any 

ER: oestrogen receptor; PgR progesterone receptor; Her2 Human epidermal growth 

factor receptor 2; PI proliferation index; + : positive; negative: -   
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2.3 Immunology  
The immune system protects the body from pathogens, through various lines of defences. 

Pathogens are microorganisms that can cause damages and diseases. There are four broad 

categories of pathogens; fungi, viruses, bacteria/archaea, and parasites. Not all microbes are 

pathogens, these are called commensal microorganisms and usually have a symbiotic 

relationship with the host. Three strategies are used to defend against microbes; avoidance, 

resistance and tolerance. The skin and mucosal surfaces protect the inner body from the 

pathogenic microbes, when these barriers are breached the pathogens can invade. When a 

pathogen starts to damage the body´s resistance, a response to destroy or reduce the pathogen 

population is initiated. The last defence is tolerance, where the cells capability to resist the 

pathogens is mounted.  The immune system is divided into: the innate and the adaptive 

immune system (Figure 5) (30). 

 

 
Figure 5. The different cell types found in the Innate and the Adaptive immune system. 
Picture modified from Nature Reviews (31). 
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2.3.1 Innate immune system  
The innate immune system is the first line of defence when a pathogenic microorganism 

breaches the immunogenic barriers. Sensor cells, like macrophages, dendritic cells and 

neutrophils detect inflammatory inducers on the pathogen surface. The inflammatory inducers 

are pathogen specific, for instance lipopolysaccharides are found on the surface of bacteria. 

Inflammatory receptors binds to unique characteristics of the pathogen, activating the innate 

immune system creating an inflammatory response to destroy microbes and activate other 

immune cells.  The innate immune response is mounted quickly (32). The common myeloid 

progenitor (CMP) is the precursor of the macrophages, granulocytes, mast cells and dendritic 

cells, all of which are involved in the innate immune response (33). The cells of the innate 

immune system do not have specific antigen receptors, instead they express a limited number 

of invariant innate recognition receptors (34). The innate receptors are transcribed by specific 

invariable genes.  

These receptors are also known as pattern recognition receptors (PRR) because they recognise 

pathogen specific molecules or patterns from a molecular structure (35). PRR can be divided 

into two groups; 

- The toll like receptors (TLR), detecting structures on the extracellular surface of 

bacteria or the bacteria engulfed by vesicles (36).  

- The NOD- like receptors (NLR) that sense intracellular invasion (37). Such cytoplasmic 

receptor can detect foreign RNA and DNA from viruses or other organisms. 

The activation of a PRR for instance, on macrophages or neutrophils activates their phagocytic 

functions. PRR also amplify the innate immune system reaction through inflammatory 

mediators. Such inflammatory mediators, are chemokines and cytokines.  Cytokines are 

secreted proteins relaying a signal between different immune cells therefore allowing them to 

“communicate”. Cytokine´s signal can travel through the bloodstream or be local signals (38). 

Figure 6 shows a summary of the cells found in the innate immune system. 
 

Macrophages  

Macrophages monitor the environment seeking for pathogens which will activate them through 

the binding of an inducer to their receptors. Macrophages may reside in the tissue for years 

while being developed during embryonic development. Other types of macrophages develop 

later and are derived from circulating monocytes. Circulating monocytes migrate to the tissue 

where they are needed and differentiate into macrophages. Macrophages have many different 

functions both in the innate and the adaptive immune response. One of the main functions of 
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the macrophage is to engulf and destroy pathogens. The destruction of pathogens triggers the 

inflammatory response, which is important for both the innate and the adaptive immune system 

(39). There are different types of macrophages, M1 macrophages are more involved in 

destroying pathogens. M2 macrophages are more involved in the clean-up process, removing 

debree from the infected area. 
 

Granulocytes  

Granulocytes, are defined by having granules in the cytoplasm. There are three types of 

granulocytes: neutrophils, eosinophils and basophils. Granulocytes derive from the bone 

marrow and are relatively short lived. During an infection, the production of granulocytes 

increases, and they migrate to the site of infection. Neutrophils have phagocytotic properties, 

engulfing large amounts of microbes, destroying them through encapsulation in vesicles 

containing digesting enzymes. Eosinophils and basophils do not have phagocytic properties, 

however, they secrete vesicles containing toxins to destroy pathogens. Eosinophils and 

basophiles are efficient in destroying parasites, as these pathogens are usually too large to be 

engulfed (40). 
 

Mast cells  

Mast cells are derived from the bone marrow and migrate to the tissue where they further 

develop and mature. Mast cells contain large numbers of granules containing histamine and 

other inflammatory mediators. The mast cells are thought to be a line of defence directed 

toward parasitic invasion. Mast cells are also involved in allergic response and in cancer (41). 
 

Dendritic cells  

Dendritic cells also have phagocytic properties, but unlike the macrophages and neutrophils 

the dendritic cells also take up a large amount of extracellular fluid, by a process called 

micropinocytosis. Dendritic cells have a large membrane and after processing the matter they 

have engulfed they present antigens on their membranes. The main function of dendritic cells 

is therefore to present antigens to other immune cells in lymph nodes where they activate the 

adaptive immune system (42). 
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Natural killer Cells  

Natural killer cells or NK cells, are large lymphocyte like cells. NK cells are derived from the 

common lymphoid progenitor (CLP). Like the other cells of the innate immune system the NK 

do not have antigen specific receptors but instead have receptors that are more general. (43).  

 
 

Figure 6. Cells in the Innate immune system and their functions. Picture modified from basis 
of disease 8 edition (44). 
 

2.3.2 Adaptive immune system   
Lymphocytes are the effector cells of the adaptive immune system, they are able to produce 

specific and targeted antigen receptors. These receptors are produced through a highly 

regulated process during which different genes are recombined to produce a high diversity of 

receptors. Over one billion lymphocytes with unique receptors are patrolling the body seeking 

for a fitting antigen. When a lymphocyte with a specific receptor is activated, the information 

will be saved (immunological memory). Further exposition to a pathogen carrying the same 

antigen immunological memory will be used to mount a rapid and efficient defence. Vaccines 

use immunological memory to introduce the body to a modified harmless version of a 

pathogen. When the real pathogen invades the body, there will already be an antigen specific 

response. There are two major types of lymphocytes the B and the T lymphocytes (45). Figure 

7 shows some of the cells found in the adaptive immune system. 
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T Lymphocytes 

T cells develop in the thymus and migrate to lymph nodes where they further differentiate.   T 

cells have unique cells surface receptors known as T cell receptors (TCR). The T cell receptor 

does not bind directly to antigens. Instead the TCR recognises antigens through major 

histocompatibility complex (MHC). The human MHC is called human leukocyte antigen 

complex (HLA). The MHC are transmembrane glycoproteins that presents antigen to the TCR. 

Non-activated T cells are known as naïve T cells, and patrol the body seeking for antigens 

(46). Binding to the MHC and co-stimulation activates the naïve T cells (47), they begin to 

proliferate and differentiate. The activated T cell gains the ability to perform specialised 

functions and becomes an effector T cells.  
 

Effector T cells have the subset of various T cell types, and can differentiate to helper, killer 

or regulatory T cells. The Effector T cells can also be distinguished according to the type of 

receptor they express: the CD4 positive and the CD8 positive T cells (47). 
 

T cells carrying the CD8 become cytotoxic killer T cells (CTL). The CD8 receptor binds to 

antigen presented on the MHC class I molecule, expressed by all nucleated cells. Cytotoxic T 

cells are especially important in the defence against intracellular pathogens such as viruses. 

Infected cells present peptide fragments of the pathogen on the MHC class I (48).  
 

The CD4 receptor binds to antigens found on the MHC class II molecules. The MHC class II 

protein is found on the antigen presenting cells (APC) including macrophages, dendritic cells 

and B cells (48). 

-  Helper T cells (Th) have a CD4 receptor, when activated Th cells secrete specific 

cytokines to modulate the immune response. There are different subtypes of helper T 

cells and they have different functions according to which cytokines they produce. The 

main subclasses are Th1, Th2, Th17 and Tfh (48).  

- Regulatory T cells (Treg) are CD4 positive and regulate the T cells-mediated 

response. Treg may halt the immune reaction, by secreting immunosuppressive 

cytokines. Another function is to suppress autoreactive T cells that have avoided the 

process of negative selection in the thymus, to avoid autoimmune disease (49).   
 

Memory T cells are long lived and have the ability to expand effector T cell populations 

quickly when they are reactivated by the cognate antigen and co-stimuli. The Memory T cells 

can be both CD4 or CD8 positive (50).  
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B Lymphocytes 

B cells mature in the bone marrow and migrate to secondary lymphoid tissues such as the 

spleen and lymph nodes where they can be activated. B cells recognise antigens by using 

immunoglobulins or B cell receptors (BCR). The immunoglobulins are very specific to an 

antigen, and each B cell produces only immunoglobulin with a single specificity. When the 

receptor is bound to the membranes of the B cells, it is a BCR, when secreted it is an antibody 

(51).  

B cells can be activated by T cells through thymus dependent (TD) pathway, or directly from 

microbial components, thymus independent (TI) pathway. Whilst in the TD pathway the 

antigen binds to the B cell receptor (BCR). The antigen is then endocytosed and broken down 

into peptides which will be presented on MHC-II molecules to activate Th cells. When the Th 

cell receptor bind to the B cell-MHC II-antigen complex it will initiate the Th cell to express 

CD40 co-stimulatory signal and cytokines, which will allow expression and differentiation of 

B cells. The activation of the B cell causes it to undergo proliferation, immunoglobulin class 

switching and somatic hyper mutation (52). When activated the B cells differentiate into 

different types of B cells; short lived plasmablasts, long-lived plasma cells and memory B cells. 

TI activation is initiated by foreign polysaccharides and unmethylated CpG DNA. Instead of 

being activated by T cells they are activated by cell that have toll like receptors or by 

crosslinking of B cell receptors (53).  
 

B cells differentiate though highly regulated signalling cascades. Plasmablasts are short lived 

and secrete a large number of antibodies with low affinity binding. Plasma cells are long lived, 

non-proliferating antibody secreting cells which produce antibodies with high affinity binding. 

The antibodies bind to the antigen on the pathogen and the other end is exposed and can bind 

effector cells that destroy the pathogen (54).  
 

Memory B-cells are produced during the differentiation and activation process in the germinal 

centres, or independently from short lived plasma cells. The Memory B cells are long lived and 

reside in the spleen and lymph nodes. Upon activation they can initiate a strong secondary 

response. During the secondary response, the memory B cells can re-enter the germinal centres 

and further evolve by undergoing hypermutations and affinity mutations, before differentiating 

into plasma cells (55).  
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Figure 7.  Cells in the Adaptive immune system and their functions. Picture modified from 
basis of disease 8 edition (44).  
 
2.3.3 Cytokines and Chemokines  
Cytokines and chemokines are small molecules secreted by stromal, immune and tumour cells. 

These molecules coordinate and regulate the immune response (56). Figure 8 displays some of 

the cytokines released by activated Th1 and their functions. Cytokines secreted from helper T 

cells are also involved in regulating which type of immunoglobulin the B cell should produce 

(57).  

 

 
Figure 8. Functions of Th1 secreted chemokines. Picture modified from Janeway´s 
immunobiology textbook 6. edition.    
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Cytokines are also used by cells of the innate immune system to maintain and mount an 

inflammatory response.  (58). Chemokines released by macrophages act on the surrounding 

tissues and instate an appropriate immune response according to pathogen. The functions of 

the different cytokines released by macrophages are displayed in Figure 9. The inflammatory 

response can act on both cells of the innate and the adaptive immune system.  

 
Figure 9. Functions of Macrophages secreted chemokines. Picture modified from Janeway´s  
immunobiology textbook 6. edition. 
 

Table 2 summarises the cytokines, chemokines and growth factors measured in the serum of 

breast cancer patient during my internship, the source of cytokines and their main functions. 

Table 2. Chemokines and cytokines, source of production and function (59) (60).  

Cytokine/ 
chemokine  

Binds to 
receptor 

Source of cytokine production Function of cytokine 

Eotaxin-1 CCR3 Dermal fibroblasts, airway, 
epithelial cells and heart cells. 

Recruitment of eosinophils, basophils, 
Th2 subset and smooth muscle cells. 

FGF-basic FGFR-1-to  
FGFR-6 

Adipocytes, normal and tumour 
cells. 

Production of plasminogen activator 
(PA) and collagenase, induces DNA 

synthesis and endothelial cell 
proliferation, mitogenic and 

angiogenic activities. 
G-CSF CSF3R Monocytes, T cells, fibroblasts 

and endothelial cells activated by 
macrophage. 

Survival, proliferation, differentiation, 
and activates neutrophil precursors 

and mature neutrophils. 
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GM-CSF CSF2R Monocytes, T cells, fibroblasts, 
mast cells, NK cells, endothelial 

cells and macrophage. 

Activation, proliferation, 
differentiation of dendritic cells, 

neutrophils, eosinophils and 
mononuclear phagocytes. 

IFN-g IFNGR1 and 
IFNGR2 

Activated CD4+ T lymphocytes 
(Th1), NKT and NK cells. 

Th1 and CD8 memory cells activation 
and proliferation. Macrophage 

activation, increased expression of 
MHC. Suppression of Th2 and Th17. 

IL-10 2α[R1] and 
2β[R2] 

subunits= 
IL10R1+R2 

Monocytes, macrophages, 
dendritic cells, Th1, Th2, Th17 

and Treg. 

Inhibition of Th1, stimulation of Treg, 
NK and B cell. Suppresses 

macrophage functions.   

IL-12 IL-12Rβ1 + IL-
12Rβ2 

Monocytes/macrophages and 
dendritic cells 

Proliferation of Th1. Activates NK 
cells. 

IL-13 IL13R α1 and 
IL13R 

α2+IL4Rα 

Th2 cells, monocytes Downregulation of macrophages, 
monocyte. B lymphocyte 

differentiation and proliferation, 
increases CD23 expression, and 

induces IgG4 and IgE class switching. 
IL-15 IL15R α + 

IL2R α + IL2R 
g 

Monocytes, epithelial cells, T 
lymphocytes and fibroblasts. 

Recruitment and activation of T 
lymphocytes, expansion of B cells, 

proliferation of NK cells. 
IL-17 IL-17RA + IL-

17RC 
Th17, CD4+, CD8+, gamma-delta 

T (γδ-T), invariant NKT and 
innate lymphoid cells (ILCs). 

Recruitment of T cells, neutrophils, 
monocytes, basophils, eosinophils and 

inflammation induction. 
IL-1b IL-1R1 + 

IL1RAcP 
Macrophages, Th1, and epithelial 

cells  
Caspase1-apoptosis, Thymocytes 

proliferation, B-cell maturation and 
proliferation, and fibroblast growth 

factor activity, activation of 
macrophages. Fever inducer.  

IL-1RA (Antagonist of) 
IL1R 

Epithelial, leukocytes, adipocytes, 
monocytes, macrophages, 
neutrophils, hepatocytes.  

Inhibits the activity of interleukin-1 
(alpha and beta) by binding to 

receptor IL1R. 
IL-2 IL2Ra, IL2Rb 

+/- gc 
Activated T cells, activated DCs. T cell proliferation, B-cells, 

monocytes, lymphokine-activated 
killer cells, natural killer cells, and 

glioma cells proliferation.  
IL-4 IL4R a + gc 

(cd132) 
Macrophages, Th2 cells, 

basophils and mast cells, group-2 
innate lymphoid cells (ILC2s). 

Recruitment of mediators of cell 
growth, of resistance to apoptosis, and 
of gene activation and differentiation, 

stimulates B cells to produce IgE. 
IL-5 IL5Ra + β 

(cd131) 
Th2, NK, mast cells. Eosinophil differentiation and 

activation and stimulation of 
immunoglobulin class switching to 

IgA, B cell proliferation. 
IL-6 IL6ST + GP130 

+ IL6-β 
Mononuclear phagocytes, T cells, 

and fibroblasts 
Induction of mature B cells into 

plasma cells, Th17 activation. Fever 
inducer. 

IL-7 IL7R a + gc Bone marrow and thymic stromal 
cell, DCs, keratinocytes, 
hepatocytes, neurons and 

epithelial. 

T cells homeostasis, development of 
pre-B and pre-T cells and early 

thymocytes. 

IL-8 CXCR1/2 Macrophages, epithelial, airway 
smooth muscle cells and 

endothelial cells. 

Tumour epithelial-mesenchymal 
transition (tumour-EMT), neutrophils 

recruitment 
IL-9 IL9R α + gc Th9, Th2, Th17, mast cells Upregulate CD8+T, stimulate 

production of immunoglobulins by B 
cells and the proliferation of mast 

cells, chemokines. 
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IP-10 CXCR3 Monocytes, fibroblasts and 
endothelial cells (IFN-g 

triggered). 

CXCR3 expressing leukocytes 
mobility and recruitment to cancer 

microenvironment. 
MCP-1 CCR2 Monocytes, macrophages, DCs, 

endothelial, epithelial, fibroblasts, 
smooth cell. 

Induce monocyte and memory T 
lymphocyte and NK cells migration. 

MIP-1α CCR1, CCR5 Macrophages, neutrophils 
(bacterial endotoxin stimulation). 

Induce granulocytes, macrophages, T 
cells migration. 

MIP-1β CCR5 Macrophages, neutrophils. Induce granulocytes, macrophages, 
monocytes, naive T cells migration. 

PDGF- ββ PDGFR-β (αβ- 
and/or  ββ) 

Activated platelets, macrophages, 
endothelial and muscle cells. 

Promotes early endothelial cell 
differentiation, lymphogenesis and 

angiogenesis. 
RANTES CCR5 Neutrophils, monocytes, 

macrophages, T cells and 
neutrophils.  

Induce eosinophils, monocytes, 
macrophages, and NK cells  migration 

TNF- α TNFR-1 & 
TNFR-2 

Monocytes, macrophages, 
lymphoid cells, mast cells, 

endothelial cells, fibroblasts and 
neurons. 

Induction of fever, apoptotic cell 
death, cachexia, inflammation. 

VEGFA VEGFR1 & 
VEGFR2 

Cells under hypoxia Vasculogenesis, angiogenesis, 
lymphogenesis, cell migration, cell 

growth. 
 

2.4 Immunity and Cancer  
2.4.1 Immune surveillance and immune editing  
The immune system plays a critical role in protecting the body against cancer. This became 

clear after observing patients with immune deficiencies. Immune-deficient patients (i.e after 

an organ transplant, or HIV infection) have a higher risk of developing cancers (61).  

It is speculated that many emerging cancer cells may be eliminated before they grow into a 

significant detectable tumour. This concept is referred to as immune surveillance (62). Due to 

genetic aberrations, cancer cells may express peptides and protein which can be recognised as 

foreign, these are called neoantigens and allow a specific anti-cancer immune response to begin 

(63).  The concept of immune surveillance speculates that the majority of cancer cells may be 

recognised and destroyed by the immune system. Only a few of the cancer cells will avoid 

immune surveillance though immune editing (64). 

Cancer cells may avoid immune detection. One of the most common mechanism is 

downregulation of human leucocyte antigen complex (HLA) by the tumour. One third to half 

off all cancer cells lack HLA class molecules. Such cancers could however still be targeted by 

NK cells which can recognise and target cells lacking HLA molecules (65). A few mechanisms 

of immune editing, are listed in Table 3 (66) (64). 
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Table 3. Immune editing mechanisms to avoid immune detection and the impact these 
alterations have on the immune system. Table modified from; The biology of cancer, By R.A 
Weinberg (67).  

Immune check point  Impact on the immune system  Result of immune 
editing.  

Repress tumour 
antigens. Not 
expressing HLA 
molecule.  

Cytotoxic T lymphocytes are unable to identify 
the cancer cells.  

Hiding Identity  

Repress NKG2D 
ligands  

By downregulating the NKG2D ligand the cancer 
cell hides from the NK cells. The NKG2D ligand 
represents a cell with dysfunctional DNA 
activities inducing NK cells recognition 

Hide Stress 

Destroying, or 
saturating 
immunocytes 
receptors  

Destroying or saturating the immunocytes 
receptors, unable the NK cells or T cells   to bind 
to the cancer cells antigens.  

Inactivate immunocytes 

Releasing FasL  By releasing FasL cancer cells induce apoptosis 
of the cytotoxic T cells  

Immunocyte killing. 
Initiate immune cells 
destruction by apoptosis 

Tumour inflammation  By releasing cytokines IL-10 and TGF-b, cancer 
cells manipulate the immune system to stop the 
attack and undergo apoptosis.  

Immunocyte suppression 
ending in apoptosis  

CD47 upregulation. By up regulating CD47 expression the cancer cell 
can avoid phagocytose. 
 

Avoid phagocytosis by 
phagocytic cells like 
macrophages 

PD1/PDL1 
upregulation.  

PD1 is an immune checkpoint, When immune 
cells bind to PDL1 they are stimulated to undergo 
apoptosis. Some cancer cells express and 
upregulate the PDL1 to protect themselves.  

Initiate apoptosis and 
immune cell killing.  

CTLA4 expression 
and upregulation  

CTLA4 is expressed by activated T cells and 
transmits an inhibitory signal to other T cells.  

Downregulation of the 
immune response.  

 

It is apparent that the immune system and the cancer cells interact with each other. Being able 

to quantify and assess the local immune response in the vicinity of a tumour will enhance our 

understanding of tumour host interactions.  

Cancer cells develop and alter their behaviour to avoid detection and destruction. Recent 

therapies seek at reactivating the immune system to allow the host to eliminate cancer cells 

(68). 

 

2.4.2 The Tumour Microenvironment 
The microenvironment is a biological term for the structures and molecules that surround a 

given cell. Therefore, the tumour microenvironment (TME) describes the cells and molecules 

surrounding the tumour (69). TME includes blood vessels, immune cells, inflammatory cells, 

fibroblasts, and extracellular matrices. The TME interacts with the tumour and influences 
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progression and proliferation. In return tumours may co-opt their microenvironment to support 

growth through angiogenesis (70). 
 

During the dynamic stages of cancer progression, the environment shifts from being dominated 

by self to be a cancerogenic environment driven by the cancer cells. The type, density and 

spatial location of the immune cells in a tumour are individual to patient and tumour. However, 

patterns have emerged, and can potentially be used as a prognostic marker.  

The latest success of immune checkpoint inhibitors in cancer therapies have revived the interest 

of the cancer community in studying the tumour microenvironment. Suggesting that immune 

cell infiltration can potentially be used as a prognostic and/or predictive marker (70).  
 

Recent studies have assessed the relevance of immune infiltration in regard to risk of relapse, 

clinical subtypes or response to therapy in breast cancers (71). By understanding the role of the 

tumors environment, immunotherapy may be used for specific breast cancer types.  

The infiltration of T-lymphocytes in general is associated with better survival and is thought to 

be a positive prognostic maker in both ER positive and negative subgroups (70) (72). Higher 

levels of infiltrated T-lymphocytes also act as a marker for better pathological complete 

response rate following neoadjuvant therapy (73).  Patients with an Her2-enriched tumours 

receiving targeted therapy against Her2 will respond better with an immunogenic 

microenvironment (72) . 

Regulatory T cells are thought to be recruited by the tumour inflammatory response and are 

considered a marker for poor response and low overall survival. Similarly, the M0 and M2 

macrophages are also associated with poorer outcome in both ER negative and ER positive 

breast cancers (70). M1 macrophages are associated with a favourable outcome in ER positive 

cancers (72).  A higher infiltration rate of plasma cells is also associated with overall favourable 

outcome (70).  These findings are based on two large studies using gene expression, and a gene 

signature-based computational method called CIBERSORT (74).  

 

2.4.3 Methods to investigate the tumour microenvironment  
The microenvironment in cancer is complex and consists of numerous types of cells. In recent 

years, understanding the cellular heterogeneity and the environment surrounding the tumour 

has become increasingly important. It is established that the clinical outcome and therapeutic 

response is dependent on the infiltration of immune cells (75). In that sense, new computational 

methods use the bulk tumour gene expression to digitally indicate which cells are present in 
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the microenvironment. A more conventional method used by pathologist is 

immunohistochemistry. Immunohistochemistry uses antibodies to label specific surface 

markers on immune cells to identify leukocytes.  
 

Immunohistochemistry  
Immunohistochemistry (IHC) is a microscopy-based technique used to visualise cellular 

structures and components. IHC uses antibodies to bind and label cellular components. This 

technology is used among pathologists to investigate the tumour morphology and 

characteristics, but also its microenvironment.  

The principles of IHC is described in Figure 10. Primary antibodies are used to bind a structure 

or epitope with very high specificity. Secondary antibodies carry signalling molecules which 

can be a fluorochrome and will allow detection (76). The most common signalling molecule in 

pathological- clinical setting is an enzyme: peroxidase.   

 
Figure 10. The principle behind immunohistochemistry. Primary antibody binds to epitope. 
Secondary antibody coupled with a fluorophore binds to the primary antibody. Activation of 
the fluorophore makes it detectable in microscope. Picture modified from Cell Signal 
Technology (77).   
 

Deconvolution methods  
Deconvolution is the ability to decompose a complex signal into simpler signal, which compose 

the complex signal. In the recent years several bioinformatical deconvolution tools have 

become available, making it possible to digitally identify different cell types present in a 

tumour. Cell type identity is defined by the expression of very specific marker genes which 

underlie the cell function (75). In the recent years, gene signatures for specific immune cells 

have been reported and used to estimate specific cell type infiltration using bulk tumour 

expression data.  
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ESTIMATE and ISOLATE are two methods calculating the tumour purity and the abundancy 

of the main types of infiltrated immune cells. ESTIMATE has been integrated into The Cancer 

Genome Atlas (TCGA) and is a standard pipeline to evaluate the tumour and immune 

proportions (78). These two tools are useful when looking at tumour purity but gives a 

somewhat limited understanding of the microenvironment. 
 

CIBERSORT characterises immune infiltration of 22 immune cells from gene expression 

profiles. CIBERSORT uses gene signatures, in addition to supervised machine learning 

frameworks through linear regression vectors to identify the proportion of each immune cell 

type in the microenvironment (74). 

Nanodissect uses a large pre-assembled expression compendium and utilises support vector 

mechanisms to identify genes expressed (markers) only in very specific cell types. In that sense 

nanodissect may be an interesting tool when interested in a specific cell type.  (79).  
   

A recent study using the CIBERSORT reported the association between specific cell type 

immune infiltration in ER positive and negative breast cancer patients and overall survival 

(Figure 11) (72).  

However, it is still unclear which immune cell type are more or less expressed according to 

breast cancer subtypes. In the master project we examined immune infiltration across the 

different subtypes within breast cancers. Using xCell the most recent deconvolution method 

that allows to account for 64 different cell types.  
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Figure 11. Immune cell infiltration and overall survival according to ER status. Figure from  
“Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene 
Expression Based Retrospective Study”, By H. Raza Ali. Reprinted with permission (72).  
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3 Aims of the study  
- Investigate how the immune cell infiltration differs within ER positive and ER 

negative samples. 

- Assess immune contexture according to breast cancer  molecular subtype.   

- Investigate whether cytokine serum levels are related to the levels of tumour 

infiltrating immune cells.  
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4 Material  
Our study takes advantage of several breast cancer cohorts which have genome wide 

expression profiles. See Table 4 for a short comparison and description of all the cohorts.    

 

Table 4. 15 cohorts were used in this study. The table shows the number of patients, a brief 
description and the platform used for gene expression.  

Cohort   N_samples Brief description Platform  

MAINZ 200 Study with lymph node negative 

patients.  

Affymetrix HGU 

MDACC 508 Study with samples from tumour core.  Affymetrix HGU 

Metabric 1904 A large study with high representation of 

different types of breast cancer.  

Illumina HT-12 

v3, Affymetrix 

HGU 

MicMa 104 Early stage breast cancer.  Agilent whole 

genome 4x44K 

NeoAva  106 Clinical trial study on patients with large 

tumours (T2-T4).  

Agilent SurePrint  

G3 Human GE 

8x60K 

OsloR 93 Early stage cancer, with operable 

tumours (T1-T2) 

RNA- seq  

Oslo2 277 Early stage cancer, with operable 

tumours (T1-T2) 

Agilent SurePrint  

G3 Human GE 

8x60K 

STAM 856 Early stage (T1-T2) breast cancer 

samples.  

Affymetrix HGU 

STK 159 A study to look at prognostic factors 

defined by clinical outcome. Wide range 

of tumour types.  

Affymetrix HGU 

TAI 327 A study to look at prognostic factors 

defined by subtype. Wide range of 

tumour types. 

Affymetrix HGU 
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TCGA 981 A large multidimensional data 

collection.  

RNA-seq 

TIF 74 Primary breast cancer patients from 

Denmark 

Illumina HT-12 

v3, 

TRANSBIG 198 Patients younger than 61 and are lymph 

node negative. (T1-T2) 

Affymetrix HGU 

UPP 251 Primary breast cancer.  Affymetrix HGU 

VDX 344 Study on metastasis, cohorts with 

differences in tumour grade and lymph 

node status.  

Affymetrix HGU 

 

4.1 MAINZ 
Patients were treated during the time period 1988-1998 at the department of Obstetrics and 

Gynaecology of the Johannes Gutenberg University Mainz. At least 40% of the mass was 

cancer cells (80). The raw, normalised gene expression data and clinical information on the 

samples were collected from Gene expression omnibus (GEO), access number GEO: 

GSE11121.  
 

4.2 MDACC 
The MDACC study is a population-based study of 508 patients from Houston, Texas. The 

samples were obtained by a fine needle aspiration or core biopsy, prior to any treatment. Gene 

expression profiles were then performed at the department of pathology at the M.D. Anderson 

Cancer Centre (81). In addition to gene expression profiles, clinical and patient information 

were collected from GEO, access number: GEO: GSE25066.  
 

4.3 METABRIC 
The Metabric cohort is compiled by 1904 fresh frozen breast cancer specimens from tumour 

banks in the United Kingdom and Canada. The collection of samples is broad and in different 

grade, stage and molecular markers.  Gene expression profiles were preformed, and clinical 

data collected (82). The gene expression data are deposited at EGAD with access number 

EGAD00010000210. 
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4.4 MicMa  
The MicMa cohort is a sub cohort of the DNK study OSLO1 (with blood, bone marrow and 

tumour tissue collection) fresh-frozen tumour tissue were available from 123 patients. Patients 

were all diagnosed with early stage breast cancer. Genomic and transcriptome profiling has 

been done for 104 patient tumour samples. Cytokine serum levels were analysed. Information 

about tumour and patient were also collected into a clinical file and is available at GEO, with 

access number: GSE19536 
 

 

4.5 NeoAva 
The cohort is comprised of 106 patient samples with large primary breast tumours (>2,5 cm) 

(T2-T4). Patients were treated between November 2008 and July 2012 at Oslo University 

Hospital or St. Olav’s Hospital, Trondheim (83). The clinical and gene expression data are 

available from Array Express: EMTAB-4439. 
 

 

4.6 OSLOR 
The OSLOR is a sub population of the Oslo2, where 93 samples were profiled with RNAseq. 

This data was access from Radium hospital.  
 

 

4.7 OSLO2 
The Oslo2 study is a consecutive study with 277 patient samples collected from hospitals in 

south-eastern Norway. The patients are in early stages (T1-T2) (84). Gene expression profiling 

was done using the Agilent SurePrint G3 Human GE 8x60K. The gene expression as well as 

clinical information can be collected from GEO with access number: GSE58215. 
 

 

4.8 STAM 
The STAM cohort consists of 255 early stage (T1-T2) breast cancer samples. The patients were 

diagnosed during the time period 1980-1995 from patients at the John Radcliffe hospital, Guys 

hospital in United Kingdom and from Uppsala university hospital in Sweden (85). The gene 

expression as well as clinical information can be collected from GEO with access number: 

GSE6532. 
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4.9 STK 
The STK cohort contains 159 samples of population-derived breast cancer patients from 

Sweden. The study was set up to identify patients that will respond to treatment. The cohort is 

compiled of a broad range of samples (86). The gene expression and the clinical file can be 

collected from GEO, with access number: GSE1456. 
 

4.10 TAI 
The TAI cohort consists of 327 samples from patients. The study was performed to optimise 

treatment through subtyping as a prediction tool (87). The gene expression and clinical file can 

be accessed from GEO, with access number: GSE20685.  
 

4.11 TCGA 
The TCGA cohort is formed from a collaboration between the national cancer institute (NCI) 

and the national human genome research project (NHGRI) and is publicly available through 

the TCGA data portal. The data were collected from the TCGA data portal. Level 3 RNA-seq 

data were used in this study.  
 

4.12 TIF/DCTB 
The TIF cohort consists of 74 serum and tumour infiltrated fluid samples, collected from 

patients at the Danish centre for the Transnational breast cancer research program from 2003 

and 2012. Staining and Immunohistochemistry was performed on tumour samples, and 

immune infiltration was measured. Cytokine profiling of 27 cytokines using the Luminex 

technology was performed on pre-treatment serum samples for 28 samples. The gene 

expression was available to us through our collaboration with the Danish group. The cytokine 

profiling was performed at Akershus university hospital, Oslo and these data will be published 

with the manuscript in preparation.   
 

4.13 TRANSBIG 
The TRANSBIG study was performed from samples from a frozen archive collected from 

1980-1998. The samples were collected in 6 different hospitals in Sweden, France and England. 

The patients were younger than 61, they were lymph node negative and had a tumour grade 

between T1-T2 (88). The raw, normalised gene expression data, in addition to clinical 

information on the samples were collected from GEO access number GSE7390.  
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4.14 UPP 
The UPP cohort is a population-based study compiling 215 samples collected from patients 

primarily from Uppsala county in Sweden. The samples were collected in the time period 1987-

1889. The samples collected presented primary breast cancers (89). Data file and clinical 

information can be accessed from GEO: with access number: GSE3494. 
  

4.15 VDX 
The VDX cohort consists of 344 samples, which were a part of a study to investigate metastasis. 

Gene expression profiles can be used to estimate the ability to metastasise. Three breast cancer 

cohorts, MSK-99, NKI-295 and EMC-344 were used in this study. The NKI-295 and EMC-

344 consists of early stage breast cancer patients. The MSK-99 were comprised of more 

mature, larger tumours with tumour grade T2-T4, and the majority of these samples were node 

positive (90). The expression data and clinical files can be accessed through GEO, with access 

number: GSE2034/GSE5327. 
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5 Methods 
5.1 Gene expression profiling 
Two main methods can be used to profile expression: microarray and RNA-seq. This section 

contains a short general description on how the gene expression profiling is performed.   

Tumours are usually divided into two sections on which different histological analyses are 

performed. RNA extraction is performed on fresh frozen tumours.  
 

5.1.1 RNA isolation  
Fresh frozen tumour samples are first lysed and homogenized to breach the plasma membrane 

and access the RNA from the cell and nucleus. In our lab the technique mostly used to extract 

RNA is the RNeasy mini spin columns method.  
 

5.1.2 Whole genome expression microarray  
Microarray gene expression analyses is based on hybridisation of RNA to specific probes on a 

solid surface. Before the hybridisation process the samples are labelled with a fluorophore.  

The samples are then amplified. The intensity of the fluorophore captured after hybridisation 

will reflect the amount of expression of a particular gene as illustrated in Figure 12. The gene 

expression from the different cohorts were done on different platforms, listed in Table 5. Most 

of the cohorts profiling were done by microarray.  All the cohorts were normalised to be 

comparable regardless of the platform used.   

 
Figure 12. Microarray expression analysis. Picture modified from gene profile´s website (91). 
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5.2 Statistical and bioinformatics analysis 
5.2.1 Statistical language and computational program R 
Statistical analyses were done in R, a statistical computation and graphic software. To operate 

the program a statistical language called R is used. The program can be downloaded for free. 

R provides a large assortment of statistical and graphical techniques, like classical statistical 

tests, classifications and clustering. In addition, several packages can be downloaded and 

applied to the program.  

The software used during the analyses was, R version 4.3.3 © 2009-2018 RStudio, Inc. 
 

5.2.2 Pre-processing 
Expression data were normalised according to the host lab preferred method. In our lab, 

microarray data were log2-transformed and quantile-normalised, while RNA-seq data were 

analysed using cufflinks v2.2.2 with default parameters to obtain fragment per kilobase million 

(FPKM) value. Further, each cohort was scaled and centred which practically means that the 

mean and standard deviation of each gene across the sample of a cohort would equal zero. 

Therefore, each gene expression would be on the same scale for each cohort to allow accurate 

comparison of the cohorts between each other.  
 

5.2.3 Molecular subclassification into PAM50 subtypes 
The PAM50 molecular subclassification was performed using the Genefu R package. Genefu 

is a platform independent and uses gene expression data to identify the PAM50 subtypes.   

When ER status was not available we used a two-component Gaussian finite mixture model 

using maximum likelihood estimation, as previously described (92). 
 

5.2.4 xCell  
xCell is a recently published novel gene signature based on computational method, which 

allows to score for 64 different cell types (Figure 13) while inputting the normalised expression 

data. Authors harmonised 1822 pure human cell types transcriptomes from various sources and 

employed a curve fitting approach for linear comparison. This method relies on a group of 

signatures for each cell type made from multiple sources limiting contamination and creating 

a robust specific cell signature. This method can be used to predict the microenvironment with 

a high confidence level. Since the xCell method is based on gene signatures this allows us to 

predict the microenvironment based on the expression data from different platforms. Signature 

based methods have in the past had problems with distinguishing cells of similar lineage. The 
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xCell authors applied a novel technique to remove spillover between closely related cells (93). 

We used the xCell R package which can be downloaded through GitHub to score all the cohorts 

described above.  

 
Figure 13. Cell types recognised and identified by the xCell tool. A description of all the 
cells profiles is described in appendix A. Picture modified from the xCell paper (93). 

 
 
5.2.5 Statistics 
t-test  

t-test is a common statistical analysis used to assess whether the means of two groups are equal 

to each other. The t-test assumes that both sample groups are normally distributed with equal 

variances. The null hypothesis is that the two means are equal. When doing statistical analysis 

the p value helps determine the significance of the result. Identifying if the null hypothesis in 

the statistical analyses is validated or not. The p value is a number between 0 and 1. A small p 

value typically < 0.05 indicates that the null hypothesis is rejected and that the two means are 

significantly different. A large p value > 0.05 indicates that the two means are likely to be 

equal.   
 

Kruskal-Wallis test 

The Kruskal Wallis test is a nonparametric method to test whether the median of samples are 

significantly different. The test does not assume normal distribution of the residuals, allowing 

less parametric strains on the groups to be equal. The test null hypothesis is that the median of 
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all groups are equal. We used the Kruskal-Wallis test to assess the significant difference 

between IHC and xCell scores.   
 

Unsupervised clustering 

Clustering is used to group samples, so that the samples that are most alike get grouped 

together. There are several different ways to cluster using different algorithms and parameters.  

Ward D. is a hierarchical cluster analysis using an agglomerative algorithm, assigning each 

sample its own cluster before combining clusters together, based on the optimal value of an 

objective function, ending up with one hierarchical cluster. We used this clustering method 

when making heatmaps, to identify clustering within cell types and subtypes across the 

heatmap.  
 

Pearson correlation coefficient 

Pearson correlation coefficient is a measurement of the linear correlation between two 

variables. The rho value of a Pearson correlation ranges from +1 and -1.  +1 indicates perfect 

positive correlation, while -1 reflects perfect negative correlation and 0 no correlation between 

the two variables. We used Pearson correlation to assess the correlation between cytokine 

levels and xCell scores.  

Correlation plots were used to visualise correlation. Corrplot is a package in R using graphical 

visualisation to evaluate correlation matrix. The rho value of the correlation is displayed in 

colours, positive correlations are displayed in red and negative correlations in blue. Colour 

intensity and size of the circle are proportional to the correlation.  
 

Mann-Whitney test 

Mann-Whitney test is used to assess significant differences between two independent groups. 

The test is nonparametric and does not assume equal distribution. The test is used when 

analysing dependent variables that are ordinal or continuous. We used this test in Figure 29. 
 

Heatmap 

A heatmap is a graphical representation of statistical data, where the individual values are 

represented by colours. Heatmaps are often used when analysing large multidimensional data 

sets, because it allows visualisation of many data points. We used the pheatmap package in R 

to visualise unsupervised clustering through heatmaps. 
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Boxplots  

Boxplots are used to graphically illustrate groups with numerical data, displaying the spread 

and median of the data point within a group. We used the boxplot function in R to generate the 

boxplots comparing infiltration of cell types according to the ER status, subtypes, and cytokine 

levels. The whiskers display the maximum and minimum data points. The box itself shows the 

first to the third quantile. The line across the box is the median.  
 

 

5.2.6 Immunohistochemistry for the TIF Cohort 
Formalin fixative paraffin-embedded blocks were prepared from 2-3 various parts of the 

tumour tissue and was used to make Super Frost Plus slides. The tissue sections were stained 

CK19 (KRT19) antibody to evaluate tumour cell content and tumour stroma percentage. 

Antibodies recognising CD3, CD4, CD8, CD45 and CD68 were used to assess specific immune 

cell infiltration (94). We used the staining to validate the xCell scores.  

 

 

 

5.3 Cytokine profiling   
Cytokine profiling was performed using the multiplex Luminex xMAP platform. Luminex is a 

multi-analyte profiling tool used to detect and quantify multiple secreted proteins such as 

cytokines, chemokines and growth factors. Luminex is bead-based and provides accurate 

reproducible results for target analyte. It has two detecting lasers; one discriminates the 

microsphere type, the analyte, the other detects secondary antibody and sample quantity. In the 

bead-based methods, microspheres are labelled with a panel of specific antibodies. Each 

antibody binds to a specific target protein. The secondary antibodies bound to a biotinylated 

and phycoerythrin binds to the analyte. Lasers detect both the microsphere identity dye and the 

fluorescence, identifying the analyte and the quantity, see Figure 14. Up to 50 user defined 

target proteins can be profiled simultaneously, from cell culture supernatants, serum, or plasma 

samples. Small amount of sample volume is needed to do analyses. Bioplex is the software 

used to operate the Luminex machine and extract the analytical data.  
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Figure 14. Principles behind Luminex platform. Microspheres labelled with a 
corresponding antibody bind the analyte, the molecule of interest. The secondary labelled 
antibody binds to the bead-protein-antibody complex. Two detection lasers excite microsphere 
dye and secondary antibody fluorescence. Yielding information of which analyte is present and 
the quantity. Reprinted with permission from Biorad.     
 

5.3.1 Luminex calibration and validation  
The machine is calibrated every month. Calibration is done to ensure that the result is exact, 

and the machine is operating correctly. The calibration is performed using the BioRad 

calibration kit. Set reagents from the kit as in Figure 15, is used according to the Bioplex 

calibration setup. Our calibration procedure passed. The validation is done by using the BioRad 

validation kit, and is done using the sample plate as in the calibration process. Reagents are 

applied to the appropriate wells validating; optics, carryover/fluidics, receptors and 

classification. During the experiment the user can also choose whether he wants to include a 

validation well to the setup. Validation was performed before every experiment.  

 

 
Figure 15. Picture of the validation and calibration plate. Picture taken in the lab. 
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5.3.2 Cytokine workflow 
The protocol and the workflow (Figure 16) were followed as instructed by the supplier. Serum 

samples were diluted to a 1:3 ratio using a dilution solution. A series of dilutions of known 

concentrations of each analytes were assessed along with the unknown serum samples. These 

provide a standard curve to calculate the exact concentration of each analyte.  

Before starting assay, protocol was made using the Bioplex assay protocol. Indicating which 

well the samples should be applied to. The workflow indicated the steps and in which order the 

steps should be completed (Figure 16).   

 

 
Figure 16. Workflow for cytokine profiling. The figure shows the sequence in order to do 
successful and accurate cytokine profiling.  
 

5.3.3 Prewet filter plate  
The magnetic washer plate bottom was prepared to hold a 96 well plate. The wells were washed 

by adding 100 µl wash buffer. The plate is then placed on the magnetic rack for 45 seconds to 

settle the beads. Paper towels were placed on the well surface before turning the plate upside 

down. Washing buffer was removed by plate inversion.  
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5.3.4 Bead preparation 
Microspheres containing an identity dye code are selected to identify specific analytes; 

chemokines, cytokines and growth factors, Table 2. A 10x magnetic bead solution was 

carefully vortexed at mid speed for 30 seconds. 5175µl assay buffer pipetted out to a 15 ml 

tube. 574µl of the bead solution is added to the buffer tube, creating a 1x bead solution. 5µl 

buffer bead solution was added to each well, 45µl buffer solution was then added to make a 

total of 50 µl. 

 
 

5.3.5  Sample and control preparation  
The serum samples and the control provided by the supplier were collected filtered and 

centrifuged at 10 000 g, at 4° C for 10 min to remove platelets and precipitates. All dilutions 

were made on ice. 150 µl of sample diluting buffer was added to 50µl of samples or control, 

according to the Luminex setup.  
 

 

5.3.6 Standard preparations  
The vial containing the lyophilised standard was first inspected to ensure that the pellet was at 

the bottom of the vial. 500 µl of standard diluent was added to the vial and vortexed fore 1-3 

seconds before incubating on ice for 30 minutes. A dilution series (standard curve) was 

performed as indicated in Table 5.  

 
Table 5. Dilution series setup used under the experiments.  

Standard ID Standard Diluent (µl) Amount to next standard tube(µl) 

Reconstituted standards 500     128 

S1 72      50 

S2 150      50 

S3 150      50 

S4 150      50 

S5 150      50 

S6 150      50 
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S7 150      50 

S8 150       50 

S9 150       0 

Blank 150  

 

5.3.7 Application samples and standards  

The wells containing the beads were washed twice by adding 100 µl wash buffer before 

incubation on the magnetic plate. The plate was then turned upside-down to remove the buffer 

and keep the magnetic beads in the wells. Standards and samples were then applied to the wells, 

the plate was sealed, and placed on a filter plate on a microplate shaker and covered with 

aluminium foil. The speed was increased slowly to 1,100 rpm, it was maintained for 30 seconds 

before it was adjusted down to 700 rpm. The plate was incubated on the shaker for 60 minutes 

at room temperature.    
 

 

 

5.3.8 Preparation and addition of detection antibodies 
It is important that antibodies are used within 15 minutes of preparation. The required volume 

of detection antibody diluent was pipetted out to a 15 ml tube. 2700µl for 96 wells of   detection 

antibodies were then vortexed for 20 seconds, at medium speed, then spun down, and the 

bottom phase 300µl was collected. 1,25 µl of detection antibodies diluted to a 20x with a final 

volume was pipetted in each well. The plate was then sealed, placed on a shaker, the speed was 

increased to 1100 rpm for 30 seconds and then stabilised at 700 rpm for 30 minutes.  

Preparation of Streptavidin-PE 

Streptavidin-PE was vortexed at 20 seconds at medium speed, then spun down and the bottom 

of the vial was collected. 60µl streptavidin-PE were added to 5940 µl of assay buffer and 

vortexed for 3 seconds.  

After the incubation period with the antibodies the plate is washed three times, as previously 

described. 50 µl diluted streptavidin is then added by multichannel pipet. The plate was then 

sealed and set to incubate on a shaker for 10 minutes.  After the incubation period the plate is 

washed three times using the same protocol as before. 125µl of assay buffer was added to each 
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well. The plate was incubated on a shaker at room temperature at 1100 rpm for 30 seconds. 

The plate was then analysed using the following protocol as seen in Table 6. 

 

Table 6. Standard program parameters for running the Luminex platform.  

Dilution factor  4 

RIP: (CAL2 Low RIP target)  Standard PMT  

Bead counts 50 beads per region  

DD gates: low, high 5,000-25,000 

Types of analysis  Quantitative, 5 PL curve fit  

Unit  pg/ml 
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6 Results  
6.1 Validation of the xCell scores using IHC 
At first we compared the xCell outputs to IHC results. IHC has previously been performed on 

the DCTB/TIF cohort to estimate the type of leukocyte infiltration present in the tumours, 

notably, cytotoxic T-lymphocytes (anti-CD8+ antibodies), tumour associated macrophages 

(TAMs);anti-CD68 antibodies) and CD4+ antibodies were assessed. We therefore examined 

the relationship between intensity of CD4, CD8 and CD68 staining and xCell scores for 

immune cell types expressing these surface markers. We compared the pathologists scoring for 

each staining with the output from xCell in Figure 17. To be able to compare the IHC with 

xCell, all CD4, CD8, or CD68 cells, scores were pooled and compared to pathologist scoring 

according to staining, see Table 8. Our results indicate that xCell scoring is a good surrogate 

to investigate immune cell infiltration.   

 

Table 7. Table showing the grouping of cells according to CD markers to be compared to 
pathologist scoring.  

CD4+ staining CD8+ staining CD68+ staining 

CD4 T cells  CD8 T cells  Macrophages 

Regulatory T cells  

Th2 cells NK cells  M1 Macrophages  

Th1 cells  

Tgd cells  NKT cells  M2 Macrophages  

CD4 naïve T cells  CLP  

CD4 Memory cells  CD8 naïve T cells Monocytes  

CD4 Tcm cells  CD8 Tem  

 CD4 Tem cells  CD8 Tcm  
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Figure 17. Comparison of xCell score to IHC staining. The x-axis indicates the amount of 
staining given by pathological inspection. The y-axis indicates the averaged xCell scores for 
the corresponding cell types as described in Table XX. A: CD4 positive cells, B: CD8 positive 
cells, C: CD68 positive infiltration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 44 

6.2 Immune infiltration according to ER status 
We compared xCell scores according to ER status. ER status is often determined by pathologist 

using IHC. However, for some cohorts the ER status was not available, and we also observed 

that the criteria to define ER positivity was not always the same (1 or 10 % of positive tumour 

cells may be the criteria for ER positivity). Therefore, for more homogeneity, we used a two-

component Gaussian finite mixture model using maximum likelihood estimation to determine 

ER status.  

The median of each xCell score were first computed for each cohort according to ER status, 

and then subjected to unsupervised clustering. The heatmap Figure 18A, shows that ER+ and 

ER- clustered separately, according to the median of the xCell scores. We observed higher 

scores in ER- samples for immune cell types (top of the heatmap), these cells are mainly CD4 

and CD8 cell types, which confirm a higher overall immune infiltration in ER- samples.  

While comparing the mean of each cell type according to ER status using t-test, we found cell 

types significantly different in all cohorts. The boxplots in Figure 18B, using the Metabric 

cohort shows 6 cell types which are always (all cohorts) significantly higher scores in ER 

negative tumours. Furthermore, in Appendix B, we summarised for each xCell type whether 

the comparisons of the scores across cohorts were significant or not, and if the score was higher 

in ER+ or ER-.   
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Figure 18.  Comparison of xCell scores for each cell type according to ER status. A. 
Unsupervised clustering of the median of each score in each cohort according to ER status. 
Annotation on top and bottom of the heatmap shows ER- (dark grey) and ER + (light grey) 
medians. B. Boxplots indicating the level of immune infiltration between ER positive and 
negative samples in selected cell types, for the Metabric cohort. The x-axis shows the cell type. 
The y-axis indicates the degree of immune cell infiltration according to the xCell score. 
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6.3 Immune infiltration according to PAM50 subtypes 
Being encouraged by such clear differences in xCell scores according to ER status, we further 

used the same procedure across the PAM50 subtypes. To our knowledge, it has not yet been 

reported which specific immune cell types may be found in a subtype compared to the other. 

We therefore first subtyped each cohort according to PAM50 using the Genefu package as 

described in material and methods. For each cohort we then determined the median of the 

scores for each cohort across the PAM50 subtype.  

- (i) The medians are subjected to unsupervised clustering. Such analyses allowed us to 

visualise whether the xCell scores were sufficient to group the subtypes together, and 

which cell types were mainly different within subtypes. These heatmaps are shown in 

the main figures.  

- (ii) We used t-test to seek whether each score was significantly different in each of the 

15 cohorts. If the p value < 0.05 we reported in which subtype the score was higher. 

These results are reported in the Appendix C.  

- (iii) Based on the t-test analysis, cell types which are always (all cohorts) up or down 

regulated in one subtype compared to the other, we reported in the form of boxplots in 

the main figure. In cases where not all cohorts were significant, top three results were 

chosen to be visualised in a boxplot (see Appendix C for a comparison of all subtypes 

and scores). 
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6.3.1 Luminal A vs Luminal B 

  
Figure 19. Comparison of xCell scores for each cell type according to Luminal A and Luminal 
B subtype.  A. Unsupervised clustering of the median of each score in each cohort according 
to Luminal A and Luminal B subtypes. Annotation on top and bottom of heatmap shows 
Luminal A (blue) and Luminal B (light blue) medians.  B. Boxplots indicating the xCell scores 
according to Luminal A and Luminal B in the Metabric cohort. Cell types shown in the boxplots 
are always up or down-regulated in a Luminal subtype compare to the other. 
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6.3.2 Luminal A vs Her2-enriched.  

 
Figure 20. Comparison of xCell scores for each cell type according to Luminal A and Her2-
enriched subtype. A. Unsupervised clustering of the median of each score in each cohort 
according to Luminal A and Her2-enriched subtypes. Annotation on top and bottom of the 
heatmap shows Luminal A (blue) and Her2-enriched (pink) medians. B. Boxplots indicating 
the xCell scores according to Luminal A and Her2-enriched in the Metabric cohort. Cell types 
shown in the boxplots are always up or down-regulated in Luminal or Her2-enriched subtypes. 
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6.3.3 Luminal A vs Basal-like  

  
Figure 21. Comparison of xCell scores for each cell type according to Luminal A and Basal-
like subtype. A. Unsupervised clustering of the median of each score in each cohort according 
to Luminal A and Basal-like subtypes. Annotation on top and bottom of the heatmap shows 
Luminal A (blue) and Basal-like (red) medians. B. Boxplots indicating the xCell scores 
according to Luminal A and Basal-like in the Metabric cohort. Cell types shown in the boxplots 
are always up or down-regulated in Luminal or Basal-like subtypes. 
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6.3.4 Luminal A vs Normal-like 

 
Figure 22. Comparison of xCell scores for each cell type according to Luminal A and Normal-
like subtype. A. Unsupervised clustering of the median of each score in each cohort according 
to Luminal A and Normal-like subtypes. Annotation on top and bottom of the heatmap shows 
Luminal A (blue) and Normal-like (green) medians. B. Boxplots indicating the xCell scores 
according to Luminal A and Normal-like in the Metabric cohort. Cell types shown in the 
boxplots are always up or down-regulated in Luminal or Normal-like subtypes. 
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6.3.5 Luminal B vs Normal-like  

 
Figure 23. Comparison of xCell scores for each cell type according to Luminal B and Normal-
like subtype. A. Unsupervised clustering of the median of each score in each cohort according 
to Luminal B and Normal-like subtypes. Annotation on top and bottom of heatmap shows 
Luminal B (light blue) and Normal-like (green) medians. B. Boxplots indicating the xCell 
scores according to Luminal B and Normal-like in the Metabric cohort. Cell types shown in 
the boxplots are always up or down-regulated in Luminal or Normal-like subtypes. 
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6.3.6 Luminal B vs Basal-like  

 
Figure 24. Comparison of xCell scores for each cell type according to Luminal B and Basal-
like subtype. A. Unsupervised clustering of the median of each score in each cohort according 
to Luminal B and Basal-like subtypes. Annotation on top and bottom of heatmap shows 
Luminal B (light blue) and Basal-like (red) medians. B. Boxplots indicating the xCell scores 
according to Luminal B and Basal-like in the Metabric cohort. Cell types shown in the boxplots 
are always up or down-regulated in Luminal or Basal-like subtypes. 
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6.3.7 Luminal B vs Her2-enriched  

  
Figure 25. Comparison of xCell scores for each cell type according to Luminal B and Her2-
enriched subtype. A. Unsupervised clustering of the median of each score in each cohort 
according to Luminal B and Her2-enriched subtypes. Annotation on top and bottom of the 
heatmap shows Luminal B (light blue) and Her2-enriched (pink) medians. B. Boxplots 
indicating the xCell scores according to Luminal B and Her2-enriched in the Metabric cohort. 
Cell types shown in the boxplots are always up or down-regulated in Luminal or Her2-enriched 
subtypes. 
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6.3.8 Her2-enriched vs Basal-like 

 
Figure 26. Comparison of xCell scores for each cell type according to Basal-like and Her2-
enriched subtype. A. Unsupervised clustering of the median of each score in each cohort 
according to Basal-like and Her2-enriched subtypes. Annotation on top and bottom of the 
heatmap shows Basal-like (red) and Her2-enriched (pink) medians. B. Boxplots indicating the 
xCell scores according to Basal-like and Her2-enriched in the Metabric cohort. Cell types 
shown in the boxplots are always up or down-regulated in Basal-like or Her2-enriched 
subtypes. 
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6.3.9 Her2-enriched vs Normal-like 

 
Figure 27. Comparison of xCell scores for each cell type according to Normal-like and Her2-
enriched subtype. A. Unsupervised clustering of the median of each score in each cohort 
according to Normal-like and Her2-enriched subtypes. Annotation on top and bottom of the 
heatmap shows Normal-like (green) and Her2-enriched (pink) medians. B. Boxplots indicating 
the xCell scores according to Normal-like and Her2-enriched in the Metabric cohort. Cell types 
shown in the boxplots are always up or down-regulated in Normal-like or Her2-enriched 
subtypes. 
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6.3.10  Normal-like vs Basal-like 

 
Figure 28. Comparison of xCell scores for each cell type according to Basal-like and Normal-
like subtype. A. Unsupervised clustering of the median of each score in each cohort according 
to Basal-like and Normal-like subtypes. Annotation on top and bottom of heatmap the shows 
Basal-like (red) and Normal-like (green) medians. B. Boxplots indicating the xCell scores 
according to Basal-like and Normal-like in the Metabric cohort. Cell types shown in the 
boxplots are always up or down-regulated in Basal-like or Normal-like subtypes. 
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6.4 Cytokine serum levels in perspective of xCell scores 
Finally, taking advantage of two cohorts for which we had (i) xCell scores and (ii) cytokines 

profile in the serum of the same patients. We investigated whether the circulating cytokines 

may correlate with infiltration of specific immune cells in the tumour. 98 MicMa and 25 

DCTB/TIF samples were assessed for both serum cytokine levels, and xCell profiling.  The 26 

most common immune cell types (xCell scores) were correlated to the 27 serum cytokine levels 

profiled using Luminex, by using Pearson correlation heatmaps, seen in Figure 29 A and B. 

The heatmaps indicate that in both the MicMa and the DCTB/TIF cohorts, PDGF correlated 

with pro-B cells and NKT (natural killer T cells). We found that patients with the highest levels 

of pro-B cells (highest quartile) had significantly higher levels of PDGF in corresponding 

serum (Figure 29 C and D).  Furthermore, samples with low NKT scores (lowest quartile) had 

higher levels of PDGF (Figure 29 E and F). In summary, high levels of PDGF in the serum 

associated with lower levels of NKT and higher levels of pro-B cells.  
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Figure 29. Cytokine levels and infiltration immune cells.  A & B Correlation heatmaps 
depict only the correlations with p< 0,1 between cytokines levels and infiltration immune cells. 
Size of the dots reflect the strength of the Pearson correlation and colours the direction of the 
linear relationship. C & D Boxplots represent the average serum levels of PDGF (pg/mL) in 
respect to low or high (highest quantile) scores for pro-B cells infiltration at the tumour site in 
the MicMa (C) and DCTB (D) cohorts. E & F Boxplots of serum PDGF levels according to 
low (lowest quantile) and high scores for natural killer T cells (NKT) infiltration at the tumour 
site in the MicMa (C) and DCTB (D) cohorts. Manny-Whitney test p-values are denoted in the 
bottom right of each boxplot.   

Figure 29 
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7 Discussion   
7.1 Analysing the microenvironment  
Understanding the interplay between the microenvironment and the cancer cells may give 

useful insight into different interactions that occur in the tumour. Higher immune infiltration 

is often associated with better survival rates in breast cancer. By looking at the different cell 

types present in different subtypes we may be able to understand more of what define each 

subtype.   

 

7.1.1 xCell limitations and advantages 
Immunohistochemistry and flow cytometry are traditional tools used to identify cells in the 

tumour microenvironment. However, these methods are somewhat limited, as they rely on a 

limited range of phenotypic markers and are unable to differentiate between cells with similar 

lineage. New deconvolution tools allowing to digitally dissect the microenvironment are not 

without fault and have several restrictions. xCell is a signature-based algorithm and relies on 

gene profiles from multiple sources, making the signature robust compared to single sample 

signatures. Cancer cells have highly dysregulated gene expression which can mimic that of 

other cells. Therefore, misinterpretation due to cancer cells abnormal gene expression could be 

a major issue when using deconvolution tools such as xCell.  

 

xCell identifies 64 different cell types including immune cells from the adaptive and innate 

systems, hematopoietic progenitors, epithelial cells and extracellular matrix cell, all derived 

from thousands of expression profiles. Compared to other deconvolution algorithms, xCell 

signatures are superior to other methods. CIBERSORT, another deconvolution tool identifies 

22 immune cell types.  

 

Many of the cell types predicted by xCell should not be resident in the breast. For example, 

hepatocytes which are liver cells, and osteoblasts which are involved in bone synthesis. We 

therefore interpret the prediction of xCell as the fact that the cancer cells gene expression reflect 

the osteoblast gene signature. Therefore, as all cancer cells do not show the same degree of 

plasticity and expression of genes associated with non-breast resident cell types, the high 

degree of such cell types prediction may reflect more plastic and a stem cell like phenotype.  
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In addition, during the last few months, a new version of xCell that includes p values for the 

score has been released. This version may pinpoint the cell types not likely to be found in the 

environment of interest. 

 

In our work, we validated the xCell method by immunohistochemistry staining with the CD4+, 

CD8+ and CD68 markers to average xCell scores of cell types carrying these markers. 

We found the averaged xCell scores matching the staining´s scores given by pathological 

inspection. Nevertheless, this only validates a small fraction of the cell types that the xCell 

algorithm predicts. In addition the cohort used to validate the result is small. Alternative 

validation using more powerful and high throughput method such as single cell RNA-

sequencing and mass spectrometer Cytof would provide better validation of the xCell 

algorithm. These alternative validations would be able to detect more of the components in the 

microenvironment. In addition a larger more detailed staining using more markers will also 

give a more detailed picture of the tumour environment.  

 

Another limitation of the xCell method is that the scores we used are enrichment scores. These 

scores can be compared from samples (patients) to samples, but scores cannot be compared 

with each other. The CIBERSORT method has translated the enrichment scores into 

quantitative proportions, and the results can be compared between the cell types.  

Additional insights could be provided in the future using CIBERSORT in the same setting as 

in the current study.  

 

Despite faults xCell has addressed many problems that the deconvolution tools have faced 

previously. One of these faults are spillover between closely related cells, creating an algorithm 

to restrict spillover. xCell, unlike many other deconvolution algorithms, have gene signatures 

from several platforms, giving a more diverse signature. CIBERSORT for instants is limited 

to Affymetrix microarray based studies. Up until now, no other deconvolution tool has been 

able to identify as many cell types. We believe that this gives a better representation of the 

tumour microenvironment.  
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7.2 Immune infiltration according to ER status 
We used xCell to compare cell scores according to ER status using unsupervised clustering. 

Interestingly, clustering indicates that the predicted immune infiltration could separate ER- to 

ER+ samples. This is mainly because ER- samples have a  larger immune infiltration of  CD4+ 

and CD8+ cell types. When comparing the mean of each cell type according to ER status using   

t-test, we found cell types significantly different in all cohorts. We found that gamma delta T 

cells (tgd cells), memory B-cells, activated dendritic cells (aDC), immature dendritic cells 

(iDC),  dendritic cells (DC) and Th2 cells, had significantly higher means in ER- samples 

(Figure 18B). Helper T cells and memory B cells have previously been associated with better 

overall survival (72). Higher levels Tgd has been reported to be associated with longer disease 

free survival and overall better survival (95). Dendritic cells have little impact on survival rates 

(Figure 11) (72). A detailed profile of different dendritic cells and survival rates have not been 

assessed, and the effects of different dendritic cells in the environment had not been extensively 

studied. However, the high levels and interplay between dendritic cells and activated T cells 

would indicate an higher immune response in ER negative breast cancer, which has a worse 

prognosis.  

 

 

7.3 Immune infiltration according to PAM50 subtypes 
7.3.1 Comparison between Luminal A and Luminal B  
The comparison between xCell scores and  Luminal subtypes using unsupervised clustering in 

heatmaps (Figure 19A) showed that these two subtypes which are close in lineage could be 

distinguished using only the xCell scores. Clustering also showed higher levels of helper T 

cells and macrophages in the Luminal B subgroup. While in Luminal A, there were higher 

levels of endothelial cells and fibroblasts. When comparing the mean of each cell type 

according to Luminal subtype using t-test, we found cell types significantly different in all 

cohorts (Figure 19B). In the Luminal A subtype there were higher levels of Keratinocytes, 

Chondrocytes, Astrocytes, Endothelial cells, Adipocytes, HSC, and lymphoid endothelial cells 

compared to the Luminal B subtype. The presence of HSC, endothelial cells and other non-

breast resident cell types, might indicate that Luminal A may have more plastic phenotype than 

Luminal B. Luminal B showed higher levels of  Tgd cells, Th1 cells, Th2 cells, myeloid 

progenitor (MEP), and lymphoid progenitor (CLP); therefore, suggesting that Luminal B are 
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more immunogenic. Even though MEP and CLP are most commonly found in the bone marrow 

or the thymus, these results may indicate that a certain level of hemopoietic differentiation may 

be ongoing. Luminal B have a worse survival rate than Luminal A, even though Luminal B 

tumours are more immunogenic. This could be explained by higher levels of Tregs and M2 

macrophages, which has previously been associated with worse prognosis (71) .   

 

7.3.2 Comparison between Luminal A and Her2-enriched  
The comparison between xCell scores in Luminal A and Her2-enriched subtypes using 

unsupervised clustering separates the two subtypes (Figure 20A). A higher level of cells 

associated with connective tissue was found in Luminal A, while there were higher immune 

cells in Her2-enriched, as previously reported (72). Therefore, our results may indicate that a 

main difference between Luminal A and Her2-enriched could be that Her2-enriched mainly 

have an immune response, while the response in Luminal A may be more stromal. 

 

7.3.3 Comparison between Luminal A and Basal-like 
The Luminal A and the Basal-like subtypes also clustered separately. Similarly to the Her2-

enriched comparison with Luminal A, the separation was due to higher immune cell levels in 

Basal-like, while higher connective tissue was present in the Luminal A. Cells that had higher 

levels in the Luminal A subgroup were Mast Cells, Fibroblasts, Chondrocytes and HSC. Mast 

cells are tissue resident cells and are involved in inflammatory response during parasitic 

invasion. However, studies show that mast cells in some types of breast cancers are involved 

in promoting angiogenesis and tumour inflammation (96). As expected, higher levels of many 

immune cells, such as Tgd cells Th1 cells, Th2 cells, pro B cells, macrophages M1, and CD4+ 

memory T-cells were found in the Basal-like subgroup. Interestingly, in the Basal-like 

subgroup, we also found higher levels of Keratinocytes and melanocytes, which are basal cell 

types.  

 

7.3.4 Comparison between Luminal A and Normal-like 
Even though the unsupervised clustering comparing Luminal A to Normal-like separates the 

two subgroups, we found few differences in cell type composition. There is a slight elevation 

of immune cells in the Normal-like subtype. Dendritic cells present antigen to the T cells, which 

initiates the adaptive immune response. There are slightly higher levels of T cells in the 

Normal-like subtype, but there are low levels of helper T cells. These findings indicate that the 
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Normal-like subgroup has some sort of immune response, but very low, and maybe not strong 

enough to activate the adaptive immune response efficiently. Keratinocytes and 

Megakaryocytes are stem cells that have higher means in the Normal-like subtypes. Several 

studies suggests that epithelial cells in the tumour may detach and undergo epithelial-

mesenchymal transition (EMT) and will then resemble stem cells (97). This may explain the 

stem cells in the microenvironment of the Normal-like subtype.  

 

7.3.5 Comparison between Luminal B and Normal-like 
We found more differences in cell type comparison when comparing Luminal B to Normal-

like. One of the main differences seemed to be that Normal-like may be enriched in effector 

lymphocytes while Luminal B in Helper lymphocytes. There were also higher means for stem 

cells and stroma cells in the Normal-like subtype. Our result therefore, indicate an adaptive 

immune response in the Luminal B subtype.  

 

7.3.6 Comparison between Luminal B and Basal-like 
While comparing Luminal B to Basal-like, we observed similar behaviour as comparing the 

Luminal A to the Basal-like. First the higher levels of Melanocytes, Sebocytes, and 

Keratinocytes in the Basal-like phenotype possibly picked up the difference between the two 

linages the cancer originates from. In addition, a higher immune cell infiltration was found in 

the Basal-like, which also includes higher regulatory T cells (tregs) scores. Regulatory T cells 

supress the immune reaction and are correlated with worse survival (95). These results may 

indicate that while an immune response is well initiated in Basal-like, exhaustive amounts of 

immune editing associated with immune evasion as this subtype has a worse survival than 

Luminal B.  

 

7.3.7 Comparison between Luminal B and Her2-eriched  
The comparison between Luminal B and Her2-enriched showed surprisingly little difference 

between these two subgroups. The Her2-enriched subtype is thought to be more immunogenic 

than luminal subgroups. However, it was the first unsupervised clustering we performed which 

did not clearly separate the two subtypes. The presence of dendritic cells may be higher in 

Her2-enriched, possibly indicating higher presence of neoantigens in this subtype.    
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7.3.8 Comparison between Her2-enriched and Basal-like 
Basal-like and Her2-enriched are both thought to be immunogenic. We definitely found little 

difference in the levels of immune cell types between these two subtypes. However, there were 

higher levels of Macrophages and M1 macrophages in the Her2-enriched subtype, while higher 

levels of Melanocytes, Th2 cells, Th1 cells and Tgd cells were found in the Basal-like subtype. 

Nevertheless, according to our analysis it was hard to find some clear cut difference between 

these two immunogenic subtypes. Even the cell types of the basal cell layer were not clearly 

enriched in the Basal-like, suggesting that Her2-enriched may also deride from basal cells.  

 

7.3.9 Comparison between Normal-like and Her2-enriched, Basal-like 
When comparing the Normal-like to Her2-enriched or Basal-like we made similar 

observations. There were higher levels of immune cells in Her2-enriched or Basal-like 

compared to Normal-like. While higher levels of non-breast residents and connective tissue 

cell types were found in the Normal-like which may indicate a certain degree of differentiation, 

plasticity and stem cell like phenotype of the Normal-like tumours compared to the two other 

subtypes.  

 

7.4 Cytokine levels in correlation to Immune cell levels  
Cytokines are used to transmit signals between immune cells, and have an effect on both 

immune and stromal cells. We investigated whether the circulating cytokines may correlate 

with infiltration of specific immune cells in the tumour. The 26 most common immune cell 

types (xCell scores) were correlated to the 27 serum cytokines (Figure 29A and B). We found 

positive correlation between the PDGF serum level and pro-B cell infiltration. Both B cells and 

PDGF are involved in lymphangiogenesis, the formation of lymph vessels (98). Therefore, our 

results suggesting that PDGF may act as a pro-tumorigenic cytokine. Studies indicate that 

inhibition of PDGF may increase chemotherapy efficiency (99). We also reported higher levels 

of Natural Killer T cells (NKT) that are anti-correlated with serum levels of PDGF, which may 

provide further clues to  associate PDGF with tumour progression, as NKT cells can directly 

kill malignant cells (100).  
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8 Conclusion and future perspectives 
 

When looking at the heterogeneity of intertumoral immune infiltrations according to breast 

cancer molecular subtype, we found clear differences between the subtypes. Almost all the 

unsupervised clustering we performed based on the median of the scores in each cohort (14 

cohorts) separated the subtypes. These results showed a strong and consistent association 

between the breast cancer subtypes and immune/stroma cell infiltration. It is at this stage 

impossible to conclude whether a specific subtype “attracts” a specific microenvironment, or 

if an initial microenvironment shapes the subtype. It is however, not to be forgotten that both 

the PAM50 subtyping and xCell scores derive from gene expression data, where in the 

differences we picked up using xCell were intrinsically already present in the PAM50, but not 

clearly pinpointed.  

 

The Luminal A subtype seems to be the subtype with the least immune infiltration. It is 

however the subtype with the best outline and overall survival. Thus it could also be discussed 

whether the presence of immune cells may shape a more heterogenous and immunodetected 

tumour, which may then escape or be more resistant to therapies.  

 

In that sense, the Basal-like subtypes which shows the highest levels of overall immune 

infiltration also contains higher levels of Tregs, which will participate to the immunoediting 

process and to avoid immune destruction. Recent studies have suggested that the presence of 

CD8 T cells may favour the epithelial-mesenchymal transition (EMT) creating a more 

aggressive and differentiated tumour, which will have an increased chance to relapse (97). To 

be able to identify stem cell like phenotypes, associated with specific immune cells, additional 

experiment remain to be performed. Single sell RNA sequencing may give a better idea of the 

function and characteristics of the specific cell.  

 

Using xCell to profile cell scores of 64 different cell types gave an insight to not only the 

immune cells, but the microenvironment complexity of the different subtypes. It would be 

interesting to  perform the statistical analysis with the new version of xCell, as we recently 

checked that the xCell scores obtained were the same as the newest version. Analysis done in 

the new version would not only give us cell types, but also indicate whether the results were 
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trustworthy by using the p-value the authors implemented. This would remove potential 

misinterpretations of cell types.  

In addition, we thought of performing a similar type of analysis using CIBERSORT. Even 

though the cell types obtained  in CIBERSORT would be different a certain level of 

comparison would be possible, allowing to interpret the results with more confidence. 

 

 

Finally, being able to predict or understand the tumour microenvironment, using a surrogate 

and readily available tissue like blood, would be extremely useful. 

When investigating whether cytokine serum levels are related to the levels of tumour 

infiltrating immune cells, we found positive correlation between B cells scores and PDGF-bb 

serum cytokine levels. These results were validated in two small cohorts. Both B cells and 

PDGF-bb are involved in lymphangiogenesis the formation of lymph vessels. Previous studies 

indicate that blocking the level of PDGF increases the efficiency of chemotherapy. PDGF can 

prove to be a good target for immunotherapy.  

 

Our analysis indicates clear differences in tumour microenvironment associated with breast 

cancer molecular subtypes. In the future, it would be interesting to assess how the 

microenvironment evolves during therapy and especially immunotherapy. While lots remain 

to be understood whether the microenvironment shapes the molecular profiles of the tumour or 

vice versa. It is apparent that both are interconnected in breast cancer, while immune infiltration 

has been traditionally associated with a better prognosis, we observe that the subtype with 

better outcome often associate with low immune infiltration. Such an observation suggests that 

high immune infiltration may also shape and drive more aggressive tumours. 
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Appendix A  
Table 8. The 64 cell types xCell calculates profiles for. The cell type names and abbreviations 
xCell uses, Cell type and a short description of cell function is described (101).  

Cell  Abbreviation Cell type  Short description of function: 
CD4 positive  
memory T-cell  

CD4+ memory T-
cell 

Lymphoid  After an primary response a T cell 
is stored and used to mount a 
secondary response at a later time.  

CD4 positive  
Naïve T-cells  

CD4+ Naïve T-
cells 

Lymphoid T helper cell that has not been 
activated by antigen.   

CD4 positive  T-
cells  

CD4+ T-cells Lymphoid T helper cell, used to activate B 
cells and mount the adaptive 
immune response.  

Central memory T 
cell   

Tcm cells Lymphoid Memory lymphocytes that 
circulate between on blood and 
tissue. Ned to be reactivated in the 
secondary lymphoid tissues in 
order to become effector T cells.  

Effector memory 
T cell  

Tem cells  Lymphoid Memory lymphocytes that 
recirculate between blood and 
peripheral tissues. Maturate 
rapidly into effector T cells upon 
secondary stimuli.  

CD4 positive 
Centeral memory  
T cell  

CD4+ Tcm Lymphoid Central memory T cells that when 
stimulated differentiate into CD4+ 
T cells.  

CD4 positive 
Effector memory  
T cell 

CD4+Tem  Lymphoid Effector memory T cells, when 
stimulated differentiate into CD4+ 
T cells.  

CD8 positive  T-
cells  

CD8+ T-cells Lymphoid Cytotoxic T cell, kill virus 
infected cells.  

CD8 positive  
naïve T-cells 

CD8+ naïve T-
cells 

Lymphoid Cytotoxic T cell that has not been 
activated.   

CD8 positive 
Centeral memory  
T cell 

CD8+ Tcm Lymphoid Central memory T cells that when 
stimulated differentiate into CD8+ 
T cells 

CD8 positive 
Effector memory  
T cell 

CD8+ Tem Lymphoid Effector memory T cells, when 
stimulated differentiate into CD4+ 
T cells. 

Regulatory T cells 
  

Tregs Lymphoid Regulates the immune response, 
by supressing the functions of 
other immune cells  

Th1 cells  Th1 cells Lymphoid A subset of helper T cells. 
Involved in macrophage activation 
and stimulating B cells to produce 
antibodies.  
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Th2 cells  Th2 cells Lymphoid A subset of helper T cell. Involved 
in stimulating B cells to produce 
antibodies.   

Tgd cells  Tgd cells Lymphoid T cells that have a TCR made up 
of gamma delta chains, rather than 
the more common alfa beta chains.  

Natural killer cells Nk cells Lymphoid Natural killer cells, kills virus 
infected cells, dose not have 
antigen specific receptors like T 
and B cells.  

Natural killer T 
cells  

NKT Lymphoid Kills infected cells, using specific 
antigen receptors.  

B-cells  
 

B-cells  Lymphoid Antigen specific lymphocyte.  

Naïve B-cells  
 

Naïve B-cells Lymphoid Inactivated B cell.  

Memory B-cells  Memory B-cells Lymphoid After a primary response a pro B 
cell is kept in the bone marrow, 
until reactivation by secondary 
response.  

Class-switched 
memory B-cells  

Class-switched 
memory B-cells 

Lymphoid B cell with a specific 
immunoglobulin, reactivated upon 
secondary response.  

Pro B-cells  Pro B-cells Lymphoid During a stage in B cell 
development in then  B-cell have 
surface markers proteins but have 
not yet completed heavy chain  
gene rearmament.  

Plasma cells  
 

Plasma cells Lymphoid Antigen secreting B cell.  

Monocytes  
 

Monocytes Myeloid  Precursor of tissue macrophages. 

Macrophages  Macrophages Myeloid Phagocytotic cells present in most 
tissues, that phagocytise 
pathogens.  

Macrophages M1  Macrophages M1 Myeloid Macrophages activated by the 
phagocytosis of pathogens, 
inflammatory response.  

Macrophages M2  Macrophages M2 Myeloid Macrophages that are activated by 
a parasite  invasion, stimulate 
tissue repair.  

Dendritic cells  DC Myeloid A cell that takes up pathogens and 
presents antigen to T cells.  

Conventional 
dendritic cells 

cDC Myeloid Dendritic cell that takes up antigen 
in the peripheral tissue, and are 
activated by antigens.  

Plasmacytoid 
dendritic cells  

pDC Myeloid Dendritic cells that’s main 
function is to produce antiviral 
interferons.  
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Immature 
dendritic cells  

iDC Myeloid Immature Dendritic cells are not 
fully developed. 

Neutrophils 
 

Neutrophils Myeloid Phagocytises and kills pathogens.   

Eosinophils  Eosinophils Myeloid A large granule riche cell, protects 
agents parasitic invasion. 

Mast cells Mast cells Myeloid A large granule riche cell, protects 
agents parasitic invasion.  

Basophils Basophils Myeloid A large granule riche cell, protects 
agents parasitic invasion. 

Hematopoietic 
stem cells  

HSC Stem cells Stem cells that gives rise to blood 
cells, found in the bone marrow 
and in the peripheral blood.  

Common 
Lymphoid 
progenitor 

CLP Stem cells  Stem cells that give rise to 
different lymphoid cells.  

Common myeloid 
progenitor 

MSC Stem cells  Stem cells that give rise to 
different myeloid cells. 

Granulocyte-
Macrophage 
progenitor  

GMP Stem cells Stem cells that give rise to 
macrophages. 

Megakaryocyte-
erythroid 
progenitors  

MEP Stem cells  Stem cell that gives rise to 
megakaryocytes and erythrocytes. 

Multipotent 
progenitors 

MPP Stem cells  Stem cells that have the ability to 
differentiate into all cell types 
found in the blood but can no 
longer self-renew themselves.   

Megakaryocytes Megakaryocytes Stem cells A large bone marrow cell that is 
responsible for the production of 
platelets.  

Erythrocytes 
 

Erythrocytes 
 

Stem cells  Red blood cells.  

Platelets 
 

Platelets Stem cells  Involved in clotting.  

Mesenchymal stem 
cells 

Mesenchymal 
stem cells 

Stem cells Stem cell that can differentiate 
into a variety of stroma cells.  

Adipocytes 
 

Adipocytes Stroma 
cells 

Fat cell, energy storage.  

Preadipocytes 
 

Preadipocytes Stroma 
cells 

A collection of adipocytes.  

Stroma cells Stroma cells Stroma 
cells 

A collective term of connective 
tissue.  

Fibroblasts  
 

Fibroblasts Stroma 
cells 

Synthesises collagen and 
structural components in 
extracellular matrix.  

Pericytes Pericytes Stroma 
cells 

Contractile cells that line the 
capillaries an venules, and wrap 
around endothelial cells.  
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Endothelial  Endothelial Stroma 
cells 

Endothelial cells line the interior 
surface of vessels. 

Lymphatic 
endothelial cells 

ly Endothelial 
cells 

Stroma  
cells 

Endothelial cells line the interior 
surface of lymph vessels. 

Microvascular  
endothelial cells  

mv Endothelial 
cells 

Stroma 
cells 

Endothelial cells line the interior 
surface of capillaries. 

Smooth muscle 
cells 

Smooth muscle 
cells 

Stroma 
cells  

Muscle cells that are not satiated 
and smooth.  

Chondrocytes Chondrocytes Stroma 
cells  

Cells found in cartilage.  

Osteoblasts Osteoblasts Stroma 
cells  

Cells found in bone.  

Skeletal muscle 
cells 

Skeletal muscle 
cells 

Stroma 
cells 

Skeletal muscle cells, involved in 
movement.  

Myocytes Myocytes Stroma  
Cells  

Muscle cell.  

    
Epithelial cells  Epithelial cells Epithelial 

cells 
Epithelial cells line the outer 
surface of organs and blood 
vessels. 

Sebocytes 
 

Sebocytes 
 

Epithelial 
cells 

Sebum producing epithelial cells  

Keratinocytes 
 

Keratinocytes Skin cell Keratinocytes are found in the 
outer most layer of the skin  

Mesangial cells Mesangial cells Kidney 
cell  

Mesangial cells are found in the 
kidney.  

Hepatocytes Hepatocytes Liver cell Hepatocytes cells are found in the 
liver.  

Melanocytes  Melanocytes Nerve cell Nerve cell found in the skin.  
Keratocytes keratocytes Stroma 

cell  
Keratocytes are a type of 
fibroblast and are involved in 
mainlining the extracellular 
matrix.  

Astrocytes Astrocytes Nerve cell A type of nerve cell commonly 
found in the brain and in the spinal 
cord.  

Neurones Neurones Nerve cell A type of nerve cell, used to rally 
signals.  
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Appendix B 
Table 9. ER status and cell type infiltration profiles. Table showing for which cohort the 
score for a specific cell type is significantly different: dark grey: significant t-test and higher 
score in ER negative samples, light grey: t-test significant and score higher in ER positive 
samples, Insignificant t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
aDC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
DC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
iDC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Memory B-cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Tgd cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th2 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Keratinocytes 2 2 2 2 2 2 2 2  2 2 2 2 2 
Macrophages M1 2 2 2 2  2 2 2 2 2 2 2 2 2 
Th1 cells 2 2 2  2 2 2 2 2 2 2 2 2 2 
Mast cells 2 2 2  2 2 2 2 2 2 2 2 2 2 
Osteoblast 2 2 2 2 2 2 2 2  2 2 2 2 2 
B-cells 2 2 2   2 2 2 2 2 2 2 2 2 
CD4+ memory T-cells 2 2 2  2 2 2 2 2 2 2 2 2  
CD8+ T-cells 2 2 2 2 2 2 2 2  2 2  2 2 
Melanocytes 2 2 2 2 2 2 2 2  2 2 2  2 
Monocytes 2  2 2 2 2 2 2  2 2 2 2 2 
pDC 2 2 2 2  2 2 2  2 2 2 2 2 
pro B-cells 2 2 2  2 2 2 2  2 2 2 2 2 
Tregs 2 2 2  2 2 2 2  2 2 2 2 2 
Chondrocytes 2 2 2  2 2 2 2 2 2 2 2 2  
Fibroblasts 2 2 2  2 2 2 2  2 2 2 2 2 
CD4+ Tcm 2 2 2  2 2 2 2  2 2 2  2 
CD4+ Tem 2 2 2  2 2 2 2  2 2 2 2  
CD8+ Tem 2 2 2  2 2 2 2  2 2  2 2 
cDC 2 2 2 2  2 2 2  2 2  2 2 
Erythrocytes 2  2   2 2 2 2 2 2 2 2 2 
naive B-cells 2 2 2   2 2 2  2 2 2 2 2 
NK cells 2  2  2 2 2 2  2 2 2 2 2 
Plasma cells 2 2 2   2 2 2  2 2 2 2 2 
HSC 2  2  2 2 2 2  2 2 2 2 2 
Sebocytes 2 2 2 2 2  2 2  2 2   2 
CMP  2 2 2  2 2 2  2 2 2 2  
Hepatocytes  2 2  2  2 2  2 2 2 2 2 
MSC 2 2 2  2  2 2  2 2 2  2 
CD4+ naive T-cells  2 2  2 2 2 2  2 2  2  
Macrophages 2 2 2 2  2 2     2 2 2 
Neutrophils 2  2 2 2 2 2 2   2   2 
Neurons  2 2 2   2 2  2 2 2 2  
Smooth muscle 2  2 2 2  2 2  2 2   2 
Adipocytes 2  2  2 2  2   2 2 2  
Basophils 2  2   2  2   2 2  2 
CD8+ Tcm 2  2   2 2 2   2  2  
MEP 2  2   2  2   2  2 2 
CD4+ T-cells   2   2 2   2  2 2  
Class-switched memory B-cells   2   2 2 2  2 2    
GMP 2 2 2   2  2   2    
Megakaryocytes  2 2 2  2    2    2 
CLP  2 2 2   2 2  2     
Skeletal muscle   2  2   2   2   2 
Myocytes  2 2  2  2    2    
Endothelial cells      2  2   2 2 2  
ly Endothelial cells   2   2     2 2 2  
Eosinophils 2 2 2         2   
CD8+ naive T-cells    2    2  2 2    
Mesangial cells   2  2     2   2  
Pericytes  2   2       2 2  
Preadipocytes   2    2 2   2    
Epithelial cells  2  2       2    
MPP  2 2           2 
mv Endothelial cells      2     2 2   
Macrophages M2   2    2        
Astrocytes  2           2  
NKT  2 2            
Platelets      2         

 



 78 

Appendix C 
Table 10. Luminal B vs Luminal A. Table showing for which cohort the score for a specific 
cell type is significantly different: dark blue: significant t-test and higher score in Luminal A 
samples, light blue: t-test significant and score higher in Luminal B samples, Insignificant t-
test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
CLP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
MEP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Tgd cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th1 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th2 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Adipocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Astrocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Chondrocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Endothelial cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
HSC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Keratinocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
ly Endothelial cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Hepatocytes 2 2 2 2 2  2 2 2 2 2 2 2 2 
Megakaryocytes 2 2 2  2 2 2 2 2 2 2 2 2 2 
Mesangial cells 2 2 2 2 2  2 2 2 2 2 2 2 2 
Macrophages 2  2  2 2 2 2 2 2 2 2 2 2 
Macrophages M1 2  2 2 2 2 2 2 2 2 2  2 2 
pro B-cells 2 2 2 2 2 2 2 2 2 2  2  2 
Fibroblasts  2 2 2 2  2 2 2 2 2 2 2 2 
CD4+ memory T-cells 2 2 2 2  2 2 2 2 2 2  2  
mv Endothelial cells 2  2   2 2 2 2 2 2 2 2 2 
Erythrocytes 2  2   2 2 2 2 2  2 2 2 
Osteoblast 2 2 2  2   2  2 2 2 2 2 
cDC  2 2    2 2 2 2 2 2 2 2 
CMP  2 2    2 2 2 2 2 2 2 2 
Sebocytes  2 2  2  2 2 2  2 2 2 2 
Neurons 2 2 2  2  2 2  2 2  2  
CD8+ naive T-cells 2 2 2      2 2 2  2 2 
MSC  2 2  2   2 2 2   2 2 
Platelets  2   2  2 2  2 2  2 2 
aDC 2  2  2  2  2 2     
Smooth muscle  2 2   2  2   2  2  
Eosinophils  2 2     2   2 2 2  
Tregs 2  2 2    2  2     
Macrophages M2 2 2     2   2    2 
Preadipocytes 2 2 2    2 2       
CD4+ naive T-cells   2 2    2   2 2   
Epithelial cells  2 2     2   2   2 
Mast cells  2 2     2 2    2  
Class-switched memory B-cells    2 2   2   2    
naive B-cells 2   2      2 2    
Melanocytes  2         2 2 2  
Pericytes   2 2       2  2  
NKT          2 2   2 
CD4+ Tcm   2 2       2    
pDC        2   2 2   
CD8+ T-cells   2     2   2    
iDC   2        2  2  
Memory B-cells           2 2 2  
MPP   2        2  2  
B-cells    2       2    
CD4+ Tem    2       2    
DC 2          2    
Neutrophils       2    2    
Plasma cells  2         2    
Myocytes   2        2    
CD4+ T-cells    2           
GMP   2            
Basophils           2    
CD8+ Tcm           2    
CD8+ Tem           2    
Monocytes           2    
NK cells           2    
Skeletal muscle           2    
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Table 11. Luminal A vs Her2-enriched. Table showing for which cohort the score for a 
specific cell type is significantly different: dark blue: significant t-test and higher score in 
Luminal A samples, pink: t-test significant and score higher in Her2-enriched samples, 
Insignificant t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBG UPP VDX 
Macrophages M1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Tgd cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th1 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th2 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
aDC 2 2 2 2  2 2 2 2 2 2 2 2 2 
Plasma cells 2 2 2 2  2 2 2 2 2 2 2 2 2 
Mast cells 2 2 2 2  2 2 2 2 2 2 2 2 2 
CD4+ memory T-cells 2  2 2  2 2 2 2 2 2 2 2 2 
CD4+ Tem 2  2 2  2 2 2 2 2 2 2 2 2 
Macrophages 2 2 2  2 2 2 2 2 2 2  2 2 
naive B-cells 2  2 2  2 2 2 2 2 2 2 2 2 
pro B-cells 2 2 2 2  2 2 2  2 2 2 2 2 
Tregs 2 2 2 2  2 2 2  2 2 2 2 2 
CMP  2 2 2  2 2 2 2 2 2 2 2 2 
HSC 2  2  2 2 2 2 2 2 2 2 2 2 
B-cells   2 2  2 2 2 2 2 2 2 2 2 
DC 2  2 2  2 2 2  2 2 2 2 2 
iDC 2 2 2 2  2 2 2  2 2  2 2 
pDC 2  2 2  2 2 2 2 2 2  2 2 
Neurons  2 2 2   2 2 2 2 2 2 2 2 
CD4+ T-cells   2 2  2 2 2  2 2 2 2 2 
Memory B-cells 2  2 2  2 2 2  2 2  2 2 
MEP 2 2 2   2  2 2 2 2  2 2 
NK cells   2 2  2 2 2  2 2 2 2 2 
Adipocytes   2   2 2 2 2 2 2  2 2 
Chondrocytes   2    2 2 2 2 2 2 2 2 
Fibroblasts  2 2  2   2  2 2 2 2 2 
ly Endothelial cells   2  2 2  2 2  2 2 2 2 
CD8+ Tem   2 2   2 2  2 2  2 2 
Keratinocytes 2 2 2 2   2 2   2   2 
Macrophages M2 2  2    2  2 2 2  2 2 
Monocytes 2  2 2   2   2 2  2 2 
Endothelial cells   2  2 2  2 2  2 2 2  
CD4+ naive T-cells   2 2   2 2  2   2 2 
CD8+ T-cells   2 2   2 2  2   2 2 
CD8+ Tcm   2 2   2 2  2   2 2 
Neutrophils 2  2 2 2 2 2    2    
Class-switched memory B-cells  2 2   2 2   2 2  2  
Megakaryocytes   2  2   2 2 2 2 2   
CD4+ Tcm   2 2   2 2  2    2 
Erythrocytes 2  2       2 2  2 2 
Sebocytes 2 2 2 2   2    2    
mv Endothelial cells    2  2  2   2 2 2  
Astrocytes   2     2  2  2 2 2 
Mesangial cells   2  2   2  2   2 2 
CLP       2  2 2 2  2  
NKT 2         2 2  2 2 
Basophils   2   2     2   2 
Hepatocytes   2     2  2   2  
MPP  2 2        2   2 
Osteoblast   2 2   2   2     
Smooth muscle   2 2   2   2     
CD8+ naive T-cells        2   2  2  
Eosinophils 2  2         2   
Pericytes     2       2 2  
Platelets   2        2  2  
Melanocytes    2         2  
Preadipocytes 2  2            
cDC      2         
Epithelial cells           2    
Skeletal muscle   2            
GMP              2 
MSC               
Myocytes               
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Table 12. Luminal A vs Basal-like. Table showing for which cohort the score for a specific 
cell type is significantly different: dark blue: significant t-test and higher score in Luminal A 
samples, red: t-test significant and score higher in Basal-like samples, Insignificant t-test are 
left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
CD4+ memory T-cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Macrophages M1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
pro B-cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Tgd cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th1 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th2 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Chondrocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Fibroblasts 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
HSC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Mast cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
aDC 2 2 2 2 2 2 2 2  2 2 2 2 2 
DC 2 2 2 2 2 2 2 2  2 2 2 2 2 
Melanocytes 2 2 2 2 2 2 2 2  2 2 2 2 2 
Tregs 2 2 2 2 2 2 2 2  2 2 2 2 2 
Osteoblast 2 2 2 2 2 2 2 2  2 2 2 2 2 
B-cells 2 2 2 2  2 2 2  2 2 2 2 2 
Erythrocytes 2 2 2   2 2 2 2 2 2 2 2 2 
Keratinocytes 2 2 2 2 2  2 2  2 2 2 2 2 
Memory B-cells 2 2 2 2  2 2 2  2 2 2 2 2 
naive B-cells 2 2 2 2  2 2 2  2 2 2 2 2 
Adipocytes 2 2 2  2 2 2 2  2 2 2 2 2 
Hepatocytes 2 2 2 2 2  2 2  2 2 2 2 2 
ly Endothelial cells 2 2 2  2 2 2 2  2 2 2 2 2 
CD8+ T-cells  2 2 2  2 2 2  2 2 2 2 2 
NK cells 2  2 2 2 2 2 2  2 2 2  2 
CMP  2 2 2  2 2 2  2 2 2 2 2 
Endothelial cells 2  2  2 2 2 2  2 2 2 2 2 
Mesangial cells 2 2 2  2  2 2  2 2 2 2 2 
mv Endothelial cells 2  2  2 2 2 2  2 2 2 2 2 
MEP 2 2 2  2   2 2 2 2  2 2 
Neurons  2 2 2 2  2 2  2 2 2 2  
CD4+ Tcm 2 2 2  2 2 2 2    2  2 
GMP 2 2 2   2 2 2  2 2  2  
Plasma cells 2 2 2   2 2 2  2 2   2 
CD8+ Tem   2  2 2 2 2  2 2   2 
Monocytes 2  2 2  2 2 2  2 2    
Sebocytes   2 2   2 2  2 2  2 2 
MSC  2 2 2   2 2  2 2 2   
Basophils 2  2   2  2 2   2  2 
CD4+ Tem 2 2 2   2 2 2   2    
Macrophages 2  2   2 2   2  2  2 
Neutrophils 2  2 2 2 2 2    2    
Megakaryocytes     2 2 2 2   2 2 2  
Smooth muscle   2 2 2  2 2  2  2   
CD4+ naive T-cells  2 2   2 2 2  2     
cDC  2 2   2  2  2   2  
Class-switched memory B-cells   2   2 2 2  2 2    
iDC 2  2   2 2 2      2 
Astrocytes 2    2    2 2 2  2  
Platelets      2 2 2   2  2 2 
Preadipocytes   2 2 2  2   2 2    
pDC   2   2 2 2      2 
Skeletal muscle   2   2  2   2   2 
Eosinophils  2        2 2 2 2  
MPP  2 2       2 2   2 
CD4+ T-cells   2   2 2 2       
CD8+ naive T-cells  2 2   2     2    
CD8+ Tcm   2   2 2 2       
Macrophages M2  2 2     2   2    
Epithelial cells  2 2     2    2   
NKT   2 2   2    2    
Pericytes  2 2 2         2  
CLP 2          2  2  
Myocytes  2   2      2    
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Table 13. Luminal A vs Normal-like. Table showing for which cohort the score for a 
specific cell type is significantly different: dark blue: significant t-test and higher score in 
Luminal A samples, green: t-test significant and score higher in Normal-like samples, 
Insignificant t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
Keratinocytes 2  2 2 2 2 2 2 2 2 2 2 2 2 
Megakaryocytes 2 2 2 2 2 2  2 2 2 2  2 2 
Osteoblast 2 2 2 2 2 2  2 2 2 2  2 2 
iDC 2 2 2 2   2 2 2 2 2  2 2 
CD4+ naive T-cells 2 2 2  2 2  2  2 2  2 2 
ly Endothelial cells 2 2 2  2   2 2 2 2  2 2 
Melanocytes 2 2 2 2 2  2 2 2 2    2 
CD8+ T-cells 2 2 2  2 2  2  2 2   2 
cDC 2 2 2 2  2  2 2 2    2 
DC 2 2 2 2   2 2 2 2    2 
mv Endothelial cells 2 2 2  2   2 2 2 2   2 
Astrocytes 2 2 2   2  2 2 2 2   2 
CD4+ Tcm 2  2   2 2 2  2   2 2 
Endothelial cells 2 2 2  2    2 2 2   2 
HSC 2 2 2     2 2 2 2   2 
Sebocytes 2 2 2 2   2 2 2    2  
aDC  2 2     2 2 2   2 2 
Platelets 2  2     2 2 2 2 2   
CD4+ Tem  2 2   2 2 2      2 
CD8+ Tem  2 2  2 2  2      2 
Mesangial cells 2 2 2     2  2    2 
Monocytes 2 2 2      2 2    2 
CLP  2 2   2   2 2    2 
MSC 2  2  2     2 2   2 
Smooth muscle 2  2     2 2    2 2 
Hepatocytes 2  2 2    2 2      
Memory B-cells 2  2     2     2 2 
MPP 2  2 2     2    2  
NK cells   2  2 2    2 2    
pro B-cells 2 2 2    2     2   
Epithelial cells  2 2      2 2 2    
B-cells 2  2     2      2 
Eosinophils 2  2 2      2     
Chondrocytes  2 2    2 2       
Adipocytes 2 2 2            
Basophils   2     2      2 
CD4+ T-cells   2     2      2 
CMP 2  2     2       
GMP 2  2      2      
Macrophages M1  2 2           2 
naive B-cells   2     2      2 
Neurons 2  2     2       
Neutrophils 2  2     2       
Plasma cells   2  2         2 
Preadipocytes    2 2     2     
Erythrocytes 2     2  2       
Macrophages M2  2 2  2          
Macrophages     2   2   2    
Th1 cells 2     2    2     
CD4+ memory T-cells   2       2     
CD8+ Tcm   2           2 
Skeletal muscle 2  2            
pDC   2        2    
Pericytes     2        2  
Tgd cells         2  2    
CD8+ naive T-cells   2            
Class-switched memory B-cells   2            
Fibroblasts  2             
Tregs   2            
Mast cells           2    
MEP      2         
NKT           2    
Myocytes               
Th2 cells               

 
 
 



 82 

Table 14. Luminal B vs Normal-like. Table showing for which cohort the score for a 
specific cell type is significantly different: light blue: significant t-test and higher score in 
Luminal B samples, green: t-test significant and score higher in Normal-like samples, 
Insignificant t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
Astrocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Keratinocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Megakaryocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Melanocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Tgd cells               
Th1 cells               
Th2 cells               
Hepatocytes 2 2 2 2 2  2 2 2 2 2 2 2 2 
HSC 2 2 2 2 2 2 2 2 2 2 2  2 2 
Sebocytes 2 2 2 2  2 2 2 2 2 2 2 2 2 
cDC 2 2 2 2  2 2 2 2 2 2  2 2 
Chondrocytes 2 2 2 2 2   2 2 2 2 2 2 2 
Endothelial cells 2 2 2 2 2 2  2 2 2 2  2 2 
ly Endothelial cells 2 2 2 2 2 2  2 2 2 2  2 2 
mv Endothelial cells 2 2 2 2 2 2  2 2 2 2  2 2 
Platelets 2 2 2  2 2  2 2 2 2 2 2 2 
CLP               
Adipocytes 2 2 2 2   2 2 2 2 2  2 2 
CD4+ naive T-cells 2 2 2  2 2  2  2 2 2 2 2 
CD8+ T-cells 2 2 2  2 2  2  2 2 2 2 2 
iDC 2 2 2 2   2 2 2 2 2  2 2 
Mesangial cells 2 2 2 2   2 2 2 2 2  2 2 
MEP               
Osteoblast               
               
               
CMP 2 2 2  2   2 2 2 2  2  
DC  2 2 2   2 2  2 2  2 2 
Eosinophils 2 2 2 2   2 2  2 2  2  
Smooth muscle               
CD4+ Tcm 2  2   2  2   2 2 2 2 
MPP 2  2 2   2  2  2  2 2 
Neurons 2  2  2   2 2 2 2  2  
Macrophages M1  2             
Memory B-cells 2 2 2     2   2  2 2 
CD8+ Tem  2 2  2   2   2   2 
Fibroblasts  2 2 2    2  2 2    
Monocytes  2 2     2  2    2 
aDC  2 2     2      2 
B-cells   2     2     2 2 
Neutrophils 2  2     2   2    
Plasma cells   2  2      2   2 
Preadipocytes    2 2     2     
pro B-cells   2          2  
Erythrocytes               
Basophils   2     2   2    
CD4+ Tem   2        2   2 
CD8+ Tcm   2        2   2 
NK cells   2  2      2    
Macrophages M2  2 2            
CD4+ T-cells   2           2 
GMP 2  2            
Mast cells   2          2  
naive B-cells   2     2       
Skeletal muscle   2        2    
Pericytes           2    
Class-switched memory B-cells   2            
Myocytes           2    
NKT    2           
pDC   2            
CD4+ memory T-cells               
CD8+ naive T-cells               
Epithelial cells               
Tregs               
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Table 15. Luminal B vs Basal-like. Table showing for which cohort the score for a specific 
cell type is significantly different: light blue: significant t-test and higher score in Luminal B 
samples, red: t-test significant and score higher in Basal-like samples, Insignificant t-test are 
left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
Keratinocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
cDC 2 2 2 2 2 2 2 2  2 2 2 2 2 
Melanocytes 2 2 2 2 2 2 2 2  2 2 2 2 2 
Sebocytes 2 2 2 2 2 2 2 2  2 2 2 2 2 
CLP 2 2 2  2 2 2 2 2 2 2 2 2 2 
Osteoblast 2 2 2  2 2 2 2 2 2 2 2 2 2 
aDC 2 2 2  2 2 2 2  2 2 2 2 2 
CD8+ T-cells 2 2 2  2 2 2 2  2 2 2 2 2 
Tgd cells 2 2 2  2 2 2 2  2 2 2 2 2 
Th2 cells 2 2 2  2 2 2 2  2 2 2 2 2 
MSC 2 2 2 2 2  2 2  2 2 2 2 2 
Smooth muscle 2 2 2  2 2 2 2  2 2 2 2 2 
DC  2 2  2 2 2 2  2 2 2 2 2 
Memory B-cells 2 2 2   2 2 2  2 2 2 2 2 
Th1 cells 2 2 2   2 2 2  2 2 2 2 2 
Tregs  2 2  2 2 2 2  2 2 2 2 2 
Mast cells 2 2 2 2  2 2 2  2 2 2  2 
B-cells  2 2   2 2 2  2 2 2 2 2 
CD4+ naive T-cells  2 2  2 2 2 2  2 2 2  2 
CD4+ Tcm 2 2 2  2 2 2 2   2 2  2 
Astrocytes  2 2 2   2 2   2 2 2 2 
CD8+ Tem  2 2  2 2 2 2   2 2  2 
GMP  2 2   2 2 2  2 2  2 2 
iDC  2 2  2  2 2   2 2 2 2 
pro B-cells 2  2   2 2 2  2 2  2 2 
Hepatocytes  2 2 2 2  2 2  2  2  2 
Basophils 2  2   2  2   2 2 2 2 
CD4+ memory T-cells  2 2   2 2 2   2 2 2  
Megakaryocytes  2 2    2 2  2 2 2  2 
Monocytes   2  2 2 2 2  2 2 2   
naive B-cells   2   2 2 2  2 2 2 2  
NK cells   2  2 2 2 2   2 2  2 
Preadipocytes 2 2 2  2  2 2   2   2 
Macrophages M1  2 2   2  2   2 2  2 
Plasma cells   2    2 2  2 2 2  2 
CMP   2 2  2  2  2 2 2   
Fibroblasts 2  2  2   2  2  2  2 
CD8+ Tcm   2   2 2 2   2 2   
Neutrophils 2  2  2 2  2   2    
pDC   2   2  2   2 2 2  
Macrophages M2   2  2   2   2  2 2 
CD4+ Tem   2   2  2   2 2   
CD4+ T-cells   2   2 2     2   
Erythrocytes 2       2   2  2  
Mesangial cells  2 2     2   2    
Myocytes  2 2  2      2    
Adipocytes 2 2 2  2          
Eosinophils   2       2 2 2   
CD8+ naive T-cells    2    2  2    2 
Class-switched memory B-cells   2   2     2    
Skeletal muscle   2     2   2    
Pericytes  2   2      2    
MEP  2 2         2   
NKT  2 2    2        
Epithelial cells    2       2    
ly Endothelial cells   2     2       
Platelets  2         2    
MPP  2            2 
Endothelial cells   2            
mv Endothelial cells   2            
Chondrocytes          2     
HSC        2       
Macrophages           2    
Neurons   2            
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Table 16. Luminal B vs Her2-enriched. Table showing for which cohort the score for a 
specific cell type is significantly different: light blue: significant t-test and higher score in 
Luminal B samples, pink: t-test significant and score higher in Her2-enriched samples, 
Insignificant t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
iDC 2 2 2 2  2 2 2  2 2 2 2 2 
Keratinocytes 2 2 2 2   2 2 2 2 2 2 2 2 
pDC 2  2 2  2 2 2 2 2 2 2 2 2 
Sebocytes 2 2 2 2   2 2 2 2 2 2 2 2 
aDC 2  2 2  2 2 2  2 2 2 2 2 
cDC 2 2 2 2  2 2 2  2 2  2 2 
DC 2  2 2  2 2 2  2 2 2 2 2 
Megakaryocytes 2 2 2 2  2 2 2  2 2  2 2 
Plasma cells 2  2   2 2 2 2 2 2 2 2 2 
CLP 2 2 2 2   2 2  2 2 2 2 2 
B-cells   2   2 2 2 2 2 2 2 2 2 
Mast cells  2 2 2  2  2 2 2 2  2 2 
Osteoblast 2 2 2    2 2  2 2 2 2 2 
CD4+ naive T-cells   2   2 2 2  2 2 2 2 2 
CD4+ Tem   2   2 2 2  2 2 2 2 2 
Memory B-cells   2   2 2 2  2 2 2 2 2 
Astrocytes 2 2 2 2   2 2 2  2    
Endothelial cells 2 2 2 2    2  2 2   2 
Mesangial cells 2  2 2   2 2 2  2 2   
naive B-cells   2    2 2  2 2 2 2 2 
NK cells   2    2 2  2 2 2 2 2 
pro B-cells 2  2     2  2 2 2 2 2 
Adipocytes  2 2 2    2  2 2 2   
CD4+ T-cells   2     2  2 2 2 2 2 
CD8+ T-cells   2    2 2  2 2  2 2 
CD8+ Tcm   2     2  2 2 2 2 2 
CD8+ Tem   2     2  2 2 2 2 2 
Monocytes 2  2     2  2 2  2 2 
Neutrophils 2  2 2 2 2     2  2  
Tregs   2   2 2   2 2 2 2  
Smooth muscle   2    2 2  2 2  2 2 
CD4+ Tcm   2     2  2 2 2  2 
Eosinophils 2  2 2   2    2   2 
Epithelial cells   2 2    2   2 2  2 
ly Endothelial cells 2  2 2    2  2 2    
Macrophages M1  2 2     2   2  2 2 
mv Endothelial cells   2 2    2  2 2   2 
Tgd cells   2     2   2 2 2 2 
Class-switched memory B-cells 2 2   2    2 2  2  
Th2 cells        2   2 2 2 2 
MSC 2  2       2 2 2   
CD4+ memory T-cells          2 2 2 2  
Hepatocytes  2 2        2 2   
Macrophages M2  2 2      2  2    
Platelets  2 2       2 2    
Pericytes   2 2       2 2   
Chondrocytes  2  2       2    
Macrophages  2       2  2    
Melanocytes  2  2       2    
Th1 cells  2 2          2  
Fibroblasts   2     2   2    
HSC  2 2     2       
CMP    2    2  2     
GMP   2     2      2 
Myocytes   2        2    
NKT 2   2           
Skeletal muscle   2        2    
Erythrocytes   2        2    
CD8+ naive T-cells  2      2       
MEP 2           2   
Neurons   2      2      
Basophils   2            
Preadipocytes   2            
MPP               
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Table 17. Her2-enriched vs Basal-like. Table showing for which cohort the score for a 
specific cell type is significantly different: red: significant t-test and higher score in Basal-
link samples, pink: t-test significant and score higher in Her2-enriched samples, Insignificant 
t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
Melanocytes 2 2 2 0 2 0 0 2 2 2 0 2 2 2 
Th1 cells 2 2 2 2 0 0 2 2 0 2 2 2 0 2 
Hepatocytes 2 2 2 2 0 0 2 2 0 2 2 2 0 2 
Preadipocytes 2 2 2 2 0 0 2 0 0 2 2 2 2 2 
GMP 0 2 2 2 0 0 2 2 0 2 2 0 2 2 
Macrophages M2 2 2 2 0 0 0 0 2 2 2 2 0 2 2 
Osteoblast 2 2 2 0 2 0 0 2 0 2 2 2 0 2 
Keratinocytes 0 0 2 0 0 0 2 2 0 2 2 0 2 2 
NKT 2 2 2 2 0 0 2 0 0 0 0 0 2 2 
MSC 0 2 2 2 2 0 2 0 0 0 2 0 0 2 
Th2 cells 2 2 2 0 2 0 0 0 0 2 2 0 0 0 
Adipocytes 2 0 0 0 0 0 0 2 0 2 2 2 0 2 
Epithelial cells 2 2 2 0 0 0 0 2 0 0 2 2 0 0 
Fibroblasts 2 0 0 2 0 0 0 0 2 2 2 2 0 0 
Macrophages 0 2 0 0 0 0 0 2 2 0 2 0 2 2 
mv Endothelial cells 0 0 2 2 0 0 0 0 0 2 2 0 2 2 
Tgd cells 0 2 2 0 0 0 2 2 0 0 0 0 0 2 
Endothelial cells 2 0 0 2 0 0 0 0 0 2 2 0 0 2 
Basophils 2 0 2 0 0 0 0 2 0 0 2 0 0 0 
Chondrocytes 2 2 0 0 0 0 0 0 0 2 0 2 0 0 
Eosinophils 0 2 0 2 0 0 0 0 0 2 0 0 0 2 
Pericytes 0 2 2 2 2 0 0 0 0 0 0 0 0 0 
Plasma cells 0 0 0 2 0 0 0 0 2 0 2 0 2 0 
CLP 0 0 0 2 0 0 2 0 0 2 0 0 0 0 
Erythrocytes 0 0 2 0 0 0 0 2 2 0 0 0 0 0 
Tregs 0 2 2 0 0 0 0 2 0 0 0 0 0 0 
iDC 0 0 2 2 0 0 0 0 0 0 2 0 0 0 
CD4+ Tem 0 0 0 0 0 0 0 0 0 2 0 0 2 2 
CMP 0 0 2 0 0 0 0 0 0 0 2 2 0 0 
ly Endothelial cells 0 0 0 2 0 0 0 0 0 2 2 0 0 0 
Mast cells 0 0 2 0 0 0 0 0 0 2 2 0 0 0 
Megakaryocytes 0 0 0 2 0 0 0 0 0 2 0 0 2 0 
Platelets 0 0 2 2 0 0 2 0 0 0 0 0 0 0 
Astrocytes 0 0 2 0 0 0 0 2 0 0 0 0 0 0 
CD4+ memory T-cells 0 2 2 0 0 0 0 0 0 0 0 0 0 0 
CD8+ T-cells 0 2 2 0 0 0 0 0 0 0 0 0 0 0 
cDC 0 0 2 0 2 0 0 0 0 0 0 0 0 0 
Neurons 0 0 0 0 0 0 0 2 2 0 0 0 0 0 
aDC 0 0 2 0 0 0 0 0 0 0 2 0 0 0 
Sebocytes 0 2 2 0 0 0 0 0 0 0 0 0 0 0 
Macrophages M1 0 0 0 0 0 0 0 0 2 0 2 0 0 0 
Mesangial cells 0 0 0 0 0 0 0 0 0 2 2 0 0 0 
pDC 0 0 0 0 0 0 0 0 0 2 2 0 0 0 
CD4+ naive T-cells 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
CD8+ naive T-cells 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
DC 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
Monocytes 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
Myocytes 0 0 0 0 0 0 0 0 0 0 2 0 0 0 
Skeletal muscle 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
CD4+ T-cells 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
CD4+ Tcm 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
HSC 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
MEP 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
Smooth muscle 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
B-cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CD8+ Tcm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CD8+ Tem 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Class-switched memory B-cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Memory B-cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MPP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
naive B-cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Neutrophils 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NK cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
pro B-cells 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 18. Her2-enriched vs Normal-like. Table showing for which cohort the score for a 
specific cell type is significantly different: green: significant t-test and higher score in 
Normal-like samples, pink: t-test significant and score higher in Her2-enriched samples, 
Insignificant t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLO_R OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
HSC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Tgd cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th1 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Megakaryocytes 2 2 2 0 2 2 2 2 2 2 2 2 2 2 
Th2 cells 2 2 2 0 2 2 2 2 2 2 2 2 2 2 
Chondrocytes 2 2 2 2 0 0 0 2 2 2 2 2 2 2 
Endothelial cells 2 2 2 0 2 2 0 2 2 2 2 0 2 2 
ly Endothelial cells 2 2 2 0 2 2 0 2 2 2 2 0 2 2 
mv Endothelial cells 2 2 2 0 2 2 0 2 2 2 2 0 2 2 
Neurons 2 0 2 0 2 0 2 2 2 2 2 2 2 2 
Astrocytes 2 2 2 0 0 0 0 2 2 2 2 2 2 2 
CMP 2 2 2 2 0 0 0 2 2 2 2 0 2 2 
Hepatocytes 2 2 2 2 0 0 2 2 2 2 0 0 2 2 
Macrophages 2 0 2 0 2 2 2 2 2 0 2 0 2 2 
Mast cells 2 2 2 0 0 2 0 2 0 2 2 0 2 2 
Melanocytes 2 2 2 0 2 0 0 0 2 2 0 2 2 2 
Adipocytes 2 2 2 0 0 0 0 2 0 2 2 0 2 2 
Mesangial cells 2 2 2 0 0 0 0 2 2 2 0 0 2 2 
Platelets 2 0 0 0 2 0 0 2 2 2 2 2 2 0 
CLP 0 2 2 0 0 2 0 2 2 2 2 0 2 0 
Macrophages M1 2 0 2 0 2 2 0 2 2 0 2 0 2 0 
MEP 0 2 2 0 0 2 0 2 2 2 2 0 2 0 
Keratinocytes 2 0 2 0 0 0 2 2 2 2 0 0 2 0 
MSC 0 0 2 0 2 0 2 0 2 2 2 0 0 2 
Osteoblast 2 2 2 0 2 0 0 0 2 0 0 0 2 2 
Tregs 2 0 2 2 0 0 0 0 0 2 2 2 2 0 
cDC 0 2 2 0 2 0 0 0 2 2 0 0 0 2 
Fibroblasts 0 2 2 0 0 0 0 2 0 2 2 0 2 0 
GMP 2 0 2 2 0 0 0 2 2 0 0 0 0 2 
aDC 2 0 2 0 0 0 0 2 0 2 2 0 2 0 
pro B-cells 0 2 2 0 0 2 0 2 0 2 2 0 0 0 
MPP 2 0 2 0 0 0 0 0 2 0 0 0 2 2 
Smooth muscle 2 0 2 0 0 0 0 0 2 2 0 0 2 0 
Epithelial cells 2 0 2 0 0 0 0 2 2 0 2 0 0 0 
Plasma cells 0 2 0 0 0 2 0 0 2 2 2 0 0 0 
CD4+ naive T-cells 0 2 0 0 2 0 0 0 0 0 2 0 0 2 
CD8+ T-cells 0 0 2 0 2 0 0 0 0 0 2 0 0 2 
CD8+ naive T-cells 0 0 2 0 0 0 0 2 0 0 2 0 2 0 
CD4+ memory T-cells 0 0 0 0 0 0 0 0 2 0 2 2 2 0 
Erythrocytes 0 0 2 0 0 2 0 0 0 2 2 0 0 0 
Macrophages M2 2 0 2 0 0 0 0 0 2 0 2 0 0 0 
Sebocytes 0 0 2 0 0 0 0 2 0 0 0 0 2 0 
Basophils 0 0 2 0 0 0 0 0 0 0 2 0 0 0 
DC 0 2 2 0 0 0 0 0 0 0 0 0 0 0 
Eosinophils 0 0 2 0 0 0 0 2 0 0 0 0 0 0 
Monocytes 0 2 2 0 0 0 0 0 0 0 0 0 0 0 
Preadipocytes 0 0 2 0 0 0 0 0 0 2 0 0 0 0 
B-cells 0 0 0 0 0 0 0 0 2 0 2 0 0 0 
NK cells 0 0 0 0 0 0 0 0 0 0 0 2 2 0 
pDC 0 0 0 0 0 0 0 2 0 0 2 0 0 0 
iDC 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
Myocytes 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
NKT 0 0 0 0 0 0 0 0 0 0 0 0 2 0 
CD4+ T-cells 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
Class-switched memory B-cells 0 0 0 0 0 0 0 0 0 0 2 0 0 0 
Memory B-cells 0 0 0 0 0 0 0 0 0 0 2 0 0 0 
naive B-cells 0 0 0 0 0 0 0 0 0 0 2 0 0 0 
Pericytes 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
CD4+ Tcm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CD4+ Tem 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CD8+ Tcm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CD8+ Tem 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Neutrophils 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Skeletal muscle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 19. Normal-like vs Basal-like. Table showing for which cohort the score for a 
specific cell type is significantly different: green: significant t-test and higher score in 
Normal-like samples, red: t-test significant and score higher in Basal-like samples, 
Insignificant t-test are left blank. 

Type MAINZ MDACC Metabric Micma Neoava OSLOR OSLO2 STAM STK TAI TCGA TRANSBIG UPP VDX 
HSC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Megakaryocytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Tgd cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th1 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Th2 cells 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
Chondrocytes 2 2 2 2 2 2  2 2 2 2 2 2 2 
Hepatocytes 2 2 2 2 2  2 2 2 2 2 2 2 2 
Endothelial cells 2 2 2 2 2 2  2 2 2 2  2 2 
ly Endothelial cells 2 2 2 2 2 2  2 2 2 2  2 2 
mv Endothelial cells 2 2 2 2 2 2  2 2 2 2  2 2 
Astrocytes 2 2 2  2 2  2 2 2 2  2 2 
CMP 2 2 2 2 2 2  2  2 2 2 2  
Platelets 2  2 2  2  2 2 2 2 2 2 2 
Fibroblasts 2 2 2 2    2 2 2 2  2 2 
Adipocytes 2 2 2   2  2  2 2  2 2 
Mast cells 2 2 2   2  2  2 2  2 2 
Mesangial cells 2 2 2     2 2 2 2  2 2 
Neurons 2  2 2 2  2 2  2 2  2  
Macrophages M1 2  2  2 2 2 2 2  2  2  
MEP 2 2 2   2  2 2 2 2  2  
CLP 2 2    2  2 2 2 2  2  
Macrophages 2  2  2 2  2 2  2  2  
Tregs 2 2 2     2  2 2 2 2  
MPP 2  2 2     2  2  2 2 
Preadipocytes 2  2 2 2     2 2 2   
Erythrocytes 2  2   2    2 2  2 2 
Eosinophils 2 2 2 2    2  2     
CD4+ memory T-cells  2 2      2  2 2 2  
pro B-cells  2 2   2  2  2 2    
aDC 2  2   2  2   2    
NKT  2 2 2   2        
CD4+ naive T-cells  2         2   2 
iDC  2 2 2           
Sebocytes 2       2 2      
MSC    2     2     2 
Osteoblast   2  2    2      
CD8+ T-cells     2         2 
cDC  2            2 
CD4+ T-cells            2  2 
Epithelial cells           2 2   
Macrophages M2  2   2          
Pericytes   2  2          
Basophils   2   2         
CD4+ Tcm   2         2   
CD4+ Tem              2 
CD8+ Tcm              2 
Monocytes  2             
Myocytes          2     
B-cells           2    
CD8+ naive T-cells             2  
CD8+ Tem            2   
Class-switched memory B-cells           2    
GMP           2    
Memory B-cells           2    
naive B-cells           2    
NK cells   2            
pDC           2    
Skeletal muscle   2            
Smooth muscle             2  
DC               
Keratinocytes               
Melanocytes               
Neutrophils               
Plasma cells               

 
 
 


