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Abstract

Solar flares play a key role in the dynamics of the solar atmosphere. They occur with
a wide range of energies, from the largest X-class flares representing some of the most
violent releases of energy in the solar system, to the tiny nanoflares whose faintness
imposes a considerable observational challenge for current telescopes. While unimpress-
ive in isolation, nanoflares are believed to occur in great numbers, and their collective
heating has been proposed as a possible explanation for the high temperature of the
corona. Detailed 1D numerical models have provided great insight into the behaviour
of individual flares, but they are unsuited for examining how flares collectively influence
the atmosphere.

We develop a numerical model for the generation and evolution of accelerated elec-
tron beams associated with small flares in the solar atmosphere. This is integrated into
the 3D radiative magnetohydrodynamics code Bifrost. The model tackles four primary
tasks: detecting electron acceleration sites, determining the resulting electron energies,
tracing the trajectories of the accelerated electron beams and computing the amount of
heat they deposit. The latter two tasks are the focus of this thesis.

A realistic simulation of the solar atmosphere is run with the electron beam physics
included. Regions of strong beam heating are produced in the lower transition region, at
locations where magnetic coronal loops are anchored in the lower atmosphere. The heat
input shifts the transition region downwards locally by approximately 10 km, which is
expected to lead to a slightly enhanced emission in transition region spectral lines. A
modest increase in pressure accelerates the plasma at the heating sites upwards by a
few kilometres per second.

The relatively small response of the plasma to the presence of electron beams is a
consequence of the abnormally cool and dense corona of the initial atmosphere. This
leads to fewer high-energy electrons being generated and more of the beam energy
being deposited in the corona. A larger simulation box is likely required for obtaining
an atmosphere capable of producing stronger flare events.
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Chapter 1

Introduction

Our host star, the Sun, is a radiant ball of plasma making up the bulk of the matter in
the solar system. It is kept stable by a balance between the inward gravitational pull
and the outward push due to the rise in pressure with depth. This balance is sustained
by nuclear fusion of hydrogen to helium in the Sun’s core. Outside the core, in a layer
known as the radiative region, the energy produced in the core is transported outwards
primarily in the form of radiation. Farther out, in the convective region, the plasma is
convectively unstable, meaning that heated cells of plasma become buoyant and start
rising towards the surface. This creates circular movements of hot rising plasma and
cold sinking plasma, which is the main mechanism of energy transport between the top
of the radiative region and the solar surface.

On top of the convective region lies the solar atmosphere. This is where all the
radiation we can observe from the Sun is emitted. The atmosphere is a very diverse
place, with plasma in a range of different temperatures and densities being heated,
cooled and accelerated by interactions with the Sun’s electromagnetic field. The bottom
of the atmosphere is where most of the visible light escapes from the Sun, and is known
as the photosphere. Above lies the chromosphere, where the plasma becomes less dense
and undergoes large changes in temperature. The hot upper chromosphere transitions
rapidly into the extremely hot and tenuous corona.

The Sun rotates, but separate parts of the Sun rotate in different ways. The core
and radiative region rotate together as a solid body, while the convective region exhibits
differential rotation: it rotates faster near the solar equator and slower near the poles.
Complex plasma flows in the convective region due to solar rotation and convection
are believed to be the source of the Sun’s magnetic field, via a mechanism known as
the solar dynamo. On large scales, the solar magnetic field resembles that of a bar
magnet, with the bar aligned with the Sun’s axis of rotation. However, the smaller
scale magnetic field is highly non-uniform and dynamic, and is the source of most of
the activity in the solar atmosphere.

Regions of high activity and strong magnetic fields tend to produce energetic phe-
nomena like solar flares. Flares are typically caused by loops of concentrated magnetic
field rising up from the solar interior and interacting with the pre-existing magnetic field



2 Introduction

in the corona. This releases magnetic energy in a process known as magnetic reconnec-
tion, which heats the plasma and accelerates charged particles like electrons and ions
into very high energies. Beams of high-energy particles travel downwards through the
corona along magnetic field lines, eventually colliding with the denser chromospheric
plasma and releasing large amounts of energy.

The different phenomena believed to govern solar flares have been extensively stud-
ied, and detailed numerical models have been created for many of them. Examples
include 2D simulations of particle acceleration during magnetic reconnection (e.g. Boris-
sov et al. (2017)) and 1D simulations of the interactions between a beam of charged
particles and the solar atmospheric plasma (e.g. Allred et al. (2015)). Such models
are critical tools for understanding the physics behind individual flare events. However,
there is also value in trying to understand how large numbers of flares of different sizes
collectively influence the atmosphere. In particular, very small but frequent flares called
microflares and nanoflares have been proposed as an important mechanism for heating
the chromosphere and corona (Parker, 1988). Recent observations and modelling by
Testa et al. (2014) provides support for this theory. Confirming this observationally
remains a great challenge, because nanoflares are too faint to be directly observable at
all relevant wavelengths with today’s instruments. Numerical simulations are thus a
necessary tool for gaining an increased understanding of these processes.

The primary purpose of this thesis is to develop a numerical model for the heating
due to electron beams generated by reconnection in a realistic solar atmospheric sim-
ulation, and use it to study the collective heating effect of numerous small flares on
the solar atmosphere. This flare model is implemented into the Bifrost framework, a
3D radiative magnetohydrodynamics (MHD) code with support for optional modules
for including additional physics. By using the state of the atmosphere to derive the
locations and properties of the beams, we minimise the number of free parameters in
the model. There are four primary tasks that the flare model has to solve: determining
where in the atmosphere reconnection is happening, finding the energies of accelerated
electrons, tracing the magnetic field lines that the electrons will follow and finally simu-
lating the evolution of the electrons as they move through the atmosphere. This thesis
is mainly concerned with the latter two tasks. The former tasks are the topic of Helle
Bakke’s master’s thesis (Bakke, 2018), which should be read in conjunction with this
one. My aim is to use the flare model to answer the question of how the electron beams
associated with nanoflares will influence the solar atmospheric plasma.

This thesis is structured as follows: Chapter 2 contains background theory relevant
for understanding the work done in the project, particularly related to the solar atmo-
sphere (Section 2.1) and solar flares (Section 2.2). The details of how the flare model
was developed and implemented are then described throughout Chapter 3. Section 3.1
presents the Bifrost code and how the flare model is integrated into it. The tasks of
detecting reconnection sites and computing electron energies are briefly discussed in
Section 3.2. The subject of tracing magnetic field lines is the topic of Section 3.3, while
Section 3.4 discusses how the processes governing the evolution of the electron beam
are simulated. Chapter 4 then presents the results of the simulations, starting with a
look at the initial atmosphere in Section 4.1, followed by the results of some tests for
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deciding how many beams to simulate in Section 3.5. Section 4.2 then briefly presents
the detected electron acceleration sites. The beam heating produced during a single
time step is discussed in Section 4.3, and the effect of beam heating on the atmosphere
is explored in Section 4.4. Finally, the thesis is summarised in Chapter 5, which also
contains some concluding remarks. Some supplementary material is included in the
appendices; a derivation of the interpolation algorithm used when tracing field lines can
be found in Appendix A, and a description of how the simulation code is parallelised is
given in Appendix B.
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Chapter 2

Theory

2.1 The solar atmosphere

The solar atmosphere is the layer of plasma making up the outermost part of the Sun.
It begins with the photosphere, the thin layer from which most of the Sun’s visible
light is emitted. Atop the photosphere lies the more tenuous chromosphere, where
plasma is heated to higher temperatures, eventually reaching millions of kelvins on top
of the transition region, a thin region where the plasma undergoes an extreme rise
in temperature and fall in density. The transition region marks the beginning of the
outermost layer of the atmosphere, the corona, where plasma is confined to move along
the field lines of the Sun’s magnetic field, which powers most of the activity in the solar
atmosphere.

While it can be tempting from this description to picture the atmosphere as series
of uniform layers on top of each other, this view is far from the truth. Figure 2.1 shows
a snapshot from a 2D numerical simulation of a small, relatively calm region in the
atmosphere, and we can see that there are significant variations with horizontal position
as well as with height. Indeed, the real solar atmosphere is highly inhomogeneous and
dynamic, with plasma being heated, cooled and accelerated at very different heights
depending on the local conditions. Much of this inhomogeneity is due to the magnetic
field. Generated by large-scale motions of plasma in the solar interior, the magnetic field
emerges at the surface as loops and strands rising through the atmosphere. Tensions
in the magnetic field are released through heating and acceleration of the atmospheric
plasma, driving energetic events like solar flares.

The following sections discuss the photosphere, chromosphere and corona in more
detail. Several of the important features of the atmosphere are apparent in Figure 2.1,
so it can be useful to refer to the figure as a visual aid throughout the discussion.

2.1.1 The photosphere

The photosphere is the deepest part of the solar atmosphere. It sits on top of the
convective region, the outer layer of the solar interior where most of the energy is
transported outwards by convection. The photosphere begins where the plasma in the
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Figure 2.1: A 2D numerical simulation of the quiet solar atmosphere. Below the lower
white curve (indicating the top of the photosphere, near z = 0 Mm), bright areas
correspond to upward velocity and dark areas correspond to downward velocity. Above
it, brighter areas indicate higher temperature. The white area in the top of the figure
is the corona. Below the central white curve (near z = 1 Mm), the plasma β is larger
than unity, while above the curve it is smaller. The black lines are magnetic field lines.
From Carlsson and Hansteen (2005).

upper layers of the convective region becomes thin enough that most of the visible
photons can escape the Sun without any further scattering. Hence, the majority of
the radiation that we can observe from the Sun comes from the photosphere. In more
precise terms, the photosphere is usually considered to begin where the optical depth is
close to unity for visible light1. The intensity emitted at an optical depth τ will have
been reduced by a factor of e−τ by the time it leaves the solar atmosphere (ignoring the
additional contribution to intensity from emission at greater heights).

The photosphere represents a transition from local thermodynamic equilibrium (LTE)
to non-local thermodynamic equilibrium (non-LTE). Most of the plasma below the pho-
tosphere is in LTE, meaning that the radiation field everywhere only depends on the
local conditions and is described by Planck’s law (radiation described by Planck’s law
is known as blackbody radiation). This locality of the radiation field below the atmo-
sphere is a result of the relatively high density. Photons emitted at some position will
immediately interact with nearby plasma particles and have their energy converted into

1The one-dimensional VAL model of Vernazza et al. (1981) defines the bottom of the photosphere
as the location where τ = 1 for light with a wavelength of 500 nm.
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heat, so they are unable to directly contribute to the radiation field farther away. How-
ever, as the density drops drastically throughout the atmosphere, this situation changes.
Radiation emitted at one place can travel significant distances before interacting with
the plasma, making the radiation field at each point in the atmosphere coupled to the
conditions everywhere else. Hence, the plasma is in non-LTE. This global coupling
significantly complicates any attempt of realistically modelling the solar atmosphere.

The visual appearance of the photosphere is dominated by small, short-lived bright
areas separated by darker lanes. These features are called granules, and are typically a
few thousand kilometres in diameter. They exist as a result of cells of hot plasma from
the interior being convected out to the photosphere, where they appear as bright regions.
The emerging plasma is pushed sideways by the underlying column of ascending gas,
while at the same time radiating away much of its heat, cooling down and becoming
denser. Eventually, the plasma becomes denser than its surroundings, and sinks back
into the interior, completing the circular convection pattern. The lower part of Figure
2.1 shows convection cells below the photosphere giving rise to granules.

On larger scales, sunspots are often apparent. These are extended regions much
darker than their surroundings, usually consisting of a central dark umbra surrounded
by a somewhat brighter penumbra. While not actually dark by terrestrial standards, the
sunspots have a significantly lower flux than the average photospheric plasma due to
their relatively low temperature of around 3800 K, compared to the typical photospheric
temperature of around 5800 K. The sunspots are cool because they are regions where the
transport of energy from the upper interior to the surface is less effective than normal.
This happens when convection is inhibited by the presence of a strong magnetic field
directed perpendicularly to the surface. The magnetic forces prevent the plasma from
moving across the magnetic field lines, shutting off the sideways motion required for
maintaining the circular convection pattern.

The magnetic field lines emerging in the photosphere from the solar interior are
mainly concentrated in bundles called magnetic flux tubes. The field lines spread out
with height, making the magnetic field weaker higher up. When the plasma is highly
conductive (which is the case for most of the solar atmosphere), the motion of the plasma
and the magnetic field lines is always coupled (the magnetic field is said to be frozen
in to the plasma). Plasma is prohibited from moving perpendicularly to the magnetic
field direction, but it might pull the magnetic field lines along with it. Whether it is the
plasma or the magnetic field that dictates the coupled motion is indicated by the plasma
β, defined as the ratio of gas pressure to magnetic pressure. If β > 1, the gas pressure
forces are stronger than the magnetic forces, and the magnetic field lines have to follow
along with the motion of the plasma. This is the case in most of the photosphere,
where the plasma is dense enough that it is relatively unaffected by the magnetic field.
The convective motion of the plasma gives the magnetic field lines a tendency to come
together in the lanes between granular cells, where the plasma flow converges (this is
very apparent in Figure 2.1). However, the constant shifting and shuffling by convective
motion makes the photospheric magnetic field quite complex and highly non-uniform.
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2.1.2 The chromosphere

Because a large amount of energy is radiated away from the photospheric plasma, the
temperature decreases on average as we move higher up from the bottom of the pho-
tosphere. The density and pressure also decrease, since the weight of the overlying
atmosphere becomes smaller and easier to support. After a few hundred kilometres, the
photosphere transitions into the chromosphere. In the lower part of the chromosphere,
we reach a temperature minimum (of around 4300 K on average), above which the tem-
perature starts to increase. Throughout the rest of the chromosphere the temperature
increases with height, culminating in the thin transition region where the temperature
increases from around 30 000 K to more than 106 K in just a few tens to hundreds of
kilometres. This marks the interface between the chromosphere and the hot, tenuous
corona.

We do not have a complete picture of how the chromosphere and corona are heated,
but several different physical processes are believed to play a role (see Jess et al. (2015)
for a more comprehensive review of these). They mainly fall into two categories: mag-
netic reconnection and MHD waves. Magnetic reconnection is a change in the topology
of the magnetic field; separate magnetic field lines merging to form new field lines. When
magnetic flux tubes get shuffled around by the convective motion in the photosphere,
tensions are created in the magnetic field, and these are released through reconnection.
During a reconnection event, magnetic energy is converted into heat and acceleration
of the nearby plasma, which can lead to solar flares (the topic of Section 2.2). Local
heating from reconnection within the chromosphere, as well as heating from flares ori-
ginating higher up in the atmosphere, are thought to play a major role in the heating of
the chromosphere. The other main heating mechanism, MHD waves, also has its origin
in the churning motions on top of the convective region. The waves generated by these
motions propagate outwards in the atmosphere and eventually dissipate their energy as
heat.

In addition to the transition from low to high temperature, the chromosphere also
contains the transition from high to low plasma β. As mentioned earlier, gas pressure
controls the dynamics in most of the photosphere, so the plasma β there is high. Above
the photosphere, the magnetic field tends to decrease in magnitude with height. How-
ever, the gas pressure decreases even faster, so the magnetic pressure eventually exceeds
the gas pressure and magnetic forces start to dominate. The plasma is then confined to
move along magnetic field lines.

The appearance of the upper chromosphere is dominated by hot plasma jets called
spicules. There are typically a few hundred thousand spicules present throughout the
solar chromosphere at any given time, and they reach up several thousand kilometres
through the atmosphere. They are relatively short-lived, with typical lifetimes of a few
minutes. The origin of spicules is still not well understood, but one possible creation
mechanism is the acceleration of gas inside magnetic flux tubes by shocks powered by
global oscillations of the solar surface (De Pontieu et al., 2004).

In regions of high magnetic activity, prominences may form in the chromosphere.
They are loop-shaped concentrations of chromospheric gas extending high into the much
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hotter and thinner corona, and can be observed as bright arcs protruding out from the
solar limb2. When viewed against the more luminous solar disk rather than at the limb,
they appear as dark bands across the surface, and are referred to as filaments. We do
not yet have the whole picture of how prominences and filaments are created.

2.1.3 The corona

The corona is the upper part of the solar atmosphere. It begins where the chromospheric
plasma reaches temperatures of several hundred thousand to millions of kelvins, in the
transition region. As the temperature rises, the density also drops by many orders of
magnitude, so the coronal plasma is extremely sparse. Although it can be tempting to
imagine the transition region as a uniform, static layer lying at a given height above
the photosphere, this is far from the truth. It is really the set of individual locations
at different heights throughout the atmosphere where plasma happens to transition
between chromospheric and coronal temperatures. Figure 2.1 shows how the transition
region (the bottom of the white area in the top of the figure) occurs at very different
heights depending on the local conditions.

The presence of the sharp temperature rise of the transition region does not reflect a
sudden increase in the efficiency of the heating processes described in the previous sub-
section. In fact, the heat input in the chromosphere is substantially larger than that in
the transition region. It is rather the result of an abrupt inability of the chromospheric
plasma to radiate away its energy effectively. In the chromosphere, where the temper-
ature is a few tens of thousands of kelvins, helium is only partially ionised, meaning
that one of its two electrons is still bound to the helium nucleus. This electron can be
excited into higher energy levels by collisions with nearby atoms, effectively absorbing
heat from the plasma. When the electron eventually falls down to a lower energy level,
a photon containing the excess energy is emitted, and may leave the plasma, transport-
ing the energy away. However, as soon as the temperature is high enough that helium
becomes fully ionised, this cooling process is no longer possible, and the plasma needs
to be at a much higher temperature before radiative cooling again is able to balance the
heating. Hence, the transition region forms wherever the chromospheric plasma reaches
the helium ionisation temperature.

The corona predominately consists of coronal holes and coronal loops. Coronal holes
are large regions where the coronal plasma has a relatively low temperature and density,
so they emit less radiation than the hotter components of the corona. They are mainly
located around the polar regions of the Sun. The magnetic field lines in coronal holes are
mostly open, meaning that they extend out to infinity rather than connecting two points
on the surface. Plasma flows along the open field lines away from the Sun, giving rise
to the solar wind, the steady stream of charged particles permeating the solar system.

Coronal loops make up most of the corona. They consist of higher concentrations
of hot plasma situated along arc-shaped magnetic field lines. These field lines connect
magnetic regions of opposite polarity in the photosphere, referred to as the loop’s foot

2The solar limb is the edge of the visible solar disk.
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points. Plasma can be injected from the photosphere or chromosphere into a coronal
loop foot point, before rising through the loop, being heated through the chromosphere
and transition region to coronal temperatures. This process is called chromospheric
evaporation. The reverse process, chromospheric condensation, happens when plasma
is drained from the loop through a foot point and cools down through the transition
region and chromosphere. Coronal loops come in a large range of sizes, with the longest
ones having lengths of several hundred thousand kilometres.

2.2 Solar flares

A solar flare is a sudden brightening on the Sun’s surface, with the main release of
energy typically lasting in the order of minutes. The emitted radiation spans the entire
electromagnetic spectrum, and is often accompanied by high-energy charged particles
like protons and electrons. Flares occur with a wide range of energies. The largest flares
release up to 1032 ergs of energy, while the smaller ones typically release around 1028

ergs.
The origin of flares is thought to be the release of magnetic energy through magnetic

reconnection. Plasma is heated directly at the reconnection site, but the reconnection
process also causes an acceleration of charged particles to very high energies. The high-
energy particles travel along magnetic field lines through the atmosphere, until they
reach a sufficiently dense region of plasma (typically the bottom of the transition region),
where their energy is converted to heat through collisions. Heat is also conducted from
the hot reconnection site down to the cooler chromosphere. The heated chromospheric
plasma expands and moves upwards into the corona, in the process of chromospheric
evaporation mentioned in the previous section. So a flare is often accompanied by
heating at several different locations in the atmosphere, as well as bulk motions of
heated plasma.

Flares are classified according to their peak emission of soft X-rays3 as measured by
the GOES satellite in orbit around the Earth. The weakest flares are given the class
A, followed by B, C, M and finally X for the strongest flares. The strength of a flare
within a class is denoted by a number between 1 and 9 (or possibly more than 9 for
X-class flares).

Closely related to ordinary flares are the phenomena called microflares and nano-
flares (Cargill, 2013). These are the type of flares that we aim to model in this thesis.
Statistical studies of flares with a wide range of different energies indicate that these
events could be governed by similar physical processes as ordinary flares, with the dis-
tinction mainly being one of scale (Christe et al., 2008; Crosby et al., 1993; Feldman
et al., 1996). This view is supported by Testa et al. (2014), who studied IRIS (Interface
Region Imaging Spectrograph) observations of nanoflares in the form of rapidly varying
ultraviolet brightenings at coronal loop foot points. They found the observations to
be consistent with results from 1D simulations of beams of high-energy electrons trav-

3The qualifiers “soft” and “hard” are typically used to denote ionising radiation in the lower and
higher end of the energy spectrum, respectively.
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elling along a coronal loop. However, the energy of a typical nanoflare is only in the
order of 1024 ergs. This is too small to be directly observable by current instruments at
all the wavelengths (particularly X-rays) relevant for probing their underlying physical
processes, and as a result, the role of nanoflares in the solar atmosphere is still not well
understood.

The purpose of the following discussion is to provide some background useful for un-
derstanding the flare model developed in the thesis by giving a basic grasp of the concept
of a solar flare, working from the assumption that nanoflares behave like downscaled
versions of ordinary flares. Hence, the following sections discuss solar flares in more
detail, starting with the physical processes related to flare creation and propagation
of high-energy particles, followed by an overview of their observable spectral, spatial
and temporal characteristics. However, the reader should note that flares are complex
phenomena that come in a large variety of types. This discussion is by no means a
comprehensive treatment of the topic; it rather tries to touch upon some general ideas
and features. I recommend the article of Shibata and Magara (2011) for a more detailed
overview of solar flares.

2.2.1 Physical origins

It is now widely accepted that magnetic reconnection is a likely mechanism for powering
solar flares. The process is hard to observe directly, and our understanding of the details
of magnetic reconnection in three dimensions is still not complete. Nevertheless, we have
numerous observations of phenomena suggestive of magnetic reconnection during the
birth of a flare (see e.g. Shibata (1999)).

Magnetic reconnection is the annihilation of magnetic energy by the transition of
the field to a configuration with lower energy. The magnetic energy is converted into
thermal and kinetic energy. Reconnection involves a topological change of the field in
which separate magnetic field lines become connected, hence the name. Two domains of
oppositely directed magnetic fields are brought together by an inflow of plasma towards
a current sheet, a thin region of enhanced electrical current (Figure 2.2). The magnetic

Figure 2.2: Simple model of magnetic reconnection in a current sheet. The encircled
crosses denote magnetic null points. From Shibata and Magara (2011).
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field vanishes at the interface between the two magnetic domains. A point where the
magnetic field is zero is called a magnetic null point, and the set of null points making
up the interface between the two magnetic domains is called a separatrix surface. Near
the separatrix surface, there will naturally be a large gradient in the magnetic field.
As the oppositely directed magnetic field lines are pushed together by the inflowing
plasma, the gradient tends towards infinity. A larger magnetic gradient requires a
larger electrical current in order to sustain it, but the finite resistivity in the current
sheet prohibits the current from growing without limits. Instead, when the gradient
becomes sufficiently large, the frozen-in condition mentioned in Section 2.1.1 breaks
down near the separatrix surface, and magnetic diffusion sets in. Magnetic diffusion
lets the two magnetic domains meet and cancel magnetic flux at the separatrix surface.

The electrical current driven by the reconnection process produces heat due to the
resistivity in the current sheet, in a process known as Ohmic heating or Joule heating.
At either end of the current sheet, the magnetic field lines tend to be strongly bent,
and this produces a force called magnetic tension, which tries to straighten out the
field lines. The magnetic tension accelerates plasma outwards along the magnetic field
lines. These outflows of plasma (called reconnection jets) reduce the pressure inside
the reconnection region, so more plasma will be pulled in, sustaining the reconnection
process.

Part of the energy released by magnetic reconnection is responsible for accelerating
nearby charged particles to very high speeds. Some observations suggest that nearly
50% of the released magnetic energy goes into accelerated particles (Emslie et al., 2005,
2004), although this number might vary significantly. The exact mechanism behind
the acceleration process is not properly understood, but several candidates have been
proposed. They can be broadly divided into three groups: acceleration by direct cur-
rent (DC) electric fields, acceleration by shocks and stochastic acceleration by waves.
A proper explanation of these processes would require an unreasonable amount of ad-
ditional background and is thus outside the scope of this discussion. The interested
reader can instead refer to e.g. Miller et al. (1997) or Zharkova et al. (2011) for detailed
descriptions of particle acceleration mechanisms in flares.

Observations of hard X-rays from flares (see Section 2.2.3) suggest that the distri-
bution of accelerated electrons resembles a power law in energy:

N(E ≥ Emin) ∝ E−δ, (2.1)

where N is the number of accelerated electrons with a given energy E, Emin is the lowest
energy of any electron in the distribution and δ is a parameter describing how rapidly
the number of electrons decreases with energy. Values for δ inferred from observations
typically range from 3 to 7 (e.g. Leach (1984)). We will return to this distribution
many times throughout the thesis.

There are many ways in which separate magnetic field domains can be forced to-
gether to initiate magnetic reconnection in the solar atmosphere. They typically involve
magnetic flux tubes emerging from the solar interior by convection and expanding up
into the pre-existing coronal magnetic field (Figure 2.3).
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Figure 2.3: Magnetic field lines from the solar interior expanding into the atmosphere
and reconnecting with overlying field lines. From Shibata and Magara (2011).
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2.2.2 Transport of high-energy particles

The energy released by magnetic reconnection is transported away from the reconnection
site by many different means, including heat conduction, high-energy particles, mass
flow, waves and radiation. This discussion focusses on the transport of high-energy
particles, partly because this is a complicated process which is central for understanding
flares, but mainly because it is the basis for the numerical simulation code developed
for this thesis.

Although high-energy ions (predominately protons) are believed to be produced at
the acceleration sites of flares, this thesis is only concerned with accelerated electrons.
The main reason for this is that electrons are typically accelerated to speeds greatly
exceeding the average electron speed in the thermal plasma (the accelerated electrons
are therefore referred to as non-thermal). This allows us to view the ambient plasma as
a cold target with respect to accelerated electrons, meaning that the thermal speed of
the ambient particles is negligible compared to the speed of the non-thermal electrons.
This simplifies the theoretical description of the interaction between the accelerated
particles and the ambient plasma. Because ions are thousands of times more massive
than electrons, they will typically not be able to achieve non-thermal speeds with respect
to the ambient electron gas, meaning that the cold target approximation fails and a more
complicated description is required. Ions are indeed believed to be important for the
energetics of many flares (Emslie et al., 2012), so a more accurate treatment of the beam
heating process should include the effect of accelerated ions.

As the accelerated electrons travel through the atmosphere, they are affected by a
number of different processes caused by the interactions between particles, the electro-
magnetic field, ambient plasma, radiation and waves. The following sections present
the most important of these.

The Lorentz force

In general, a particle with electric charge q and velocity v will experience a force

F = q (E + v ×B) (2.2)

due to the electric field E and magnetic field B at its location. This is called the Lorentz
force. In a plasma, electric fields are generated everywhere by charged particles like elec-
trons and ions. However, as the total number of positive and negative charges typically
are very similar, plasmas tend to be electrically neutral on large scales. Since plasmas
are highly conductive, any significant build-up of charge will quickly lead to electrical
currents between oppositely charged regions, restoring neutrality. This cancellation of
charges results in a damping of the average electric field, and is referred to as Debye
screening. It is effective on scales exceeding the Debye length. On smaller scales, the
charge is no longer uniformly distributed and hence strong electric fields may be present.

A consequence of the small electric fields in a plasma is that the magnetic term
in equation (2.2) typically dominates. As the non-thermal electrons move through the
plasma, the magnetic field exerts a force F on the electrons in the direction perpendicular
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to their velocity v and the magnetic field B. This confines the electrons to move along
the magnetic field lines, as any transversal motion is transformed to a gyration around
the direction of the magnetic field. The radius of this helical motion, or gyroradius,
increases with the magnitude of the transversal speed.

Since the magnetic force always points perpendicularly to the direction of motion, it
is unable change the kinetic energy of the electrons. But a stronger magnetic field will
cause a larger fraction of the electron energy to go into the gyrating motion. Hence, if
the magnetic field strength increases with depth, the electrons will have to gyrate more
and more rapidly, meaning that the component of the velocity parallel to the magnetic
field direction will have to decrease (or even switch direction). This effect is sometimes
called magnetic mirroring.

Any electric field E that might be present can introduce two different modifications
to the behaviour caused by the magnetic field alone. Firstly, the electric field component
parallel to the magnetic field will lead to an acceleration of the electrons along the field
lines4. Secondly, the electric field component perpendicular to the magnetic field will
result in a drift of the centre of the helical motion away from the field line. This
is sometimes referred to as E × B drift. We do not include these effects in our flare
model, since the electric fields typically are very small. The minor differences in electron
distributions and trajectories that would be obtained are negligible compared to the
other uncertainties in the model.

Coulomb collisions

The non-thermal electrons interact with other particles (electrons, protons and heavier
elements) due to their respective electric fields. The law describing the mutual forces
between electrically charged particles is Coulomb’s law, so the resulting interactions
are called Coulomb collisions. The collisions will change the velocities the non-thermal
electrons, and the amount of change depends on several factors, including the relative
velocities of the colliding particles and the number density of the other particle spe-
cies, as well as the scattering cross section for the interaction. The combined effect of
Coulomb collisions on the distribution of electrons in the beam can be found by in-
tegrating the individual velocity changes over all collisions (Rosenbluth et al., 1957).
This yields the main component of equation (3.44) in Section 3.4.1, which is used to
simulate the electron beam. The actual derivation involves an integral of the scattering
cross section over all scattering angles. This integral turns out to diverge in the limit of
very small scattering angles due to the long-range nature of the Coulomb force between
the particles. However, as mentioned previously, Debye screening causes the average
electric field in a plasma to become negligible at scales exceeding the Debye length, so
the long-range electrical forces will in reality vanish. The Debye length for the plasma
can be written as

λD =

√
kBT

4πnee2
, (2.3)

4This is what happens in the DC acceleration process mentioned in Section 2.2.1.
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where kB is the Boltzmann constant, T is the temperature, ne is the number density
of plasma electrons and e is the elementary charge. The divergence of the scattering
integral is avoided by introducing a lower limit θmin for the scattering angle, taken to be
θmin ≈ 1/Λ, where Λ ≡ λD/rc. Here, rc is the closest separation of the particles during
the collision and is from energy considerations given (classically) by rc = 1

2mev
2/e2,

where me is the electron mass and v is the speed of the electron relative to the other
particle (which is assumed here to be much heavier than the electron).

The quantity Λ indicates to which extent Coulomb collisions influence the electron
velocities, and is central to computing the evolution of the electron beam. It is more
commonly expressed in the form ln Λ, and referred to as the Coulomb logarithm. Using
the expressions for λD and rc we get

ln Λ ≈ 1

2
ln

(
e2

3πnemev2

)
. (2.4)

So the Coulomb logarithm depends on the number density of electrons in the plasma
and the speed of the electron. However, using the Debye length as the screening distance
for the electric force is not always appropriate5, so the value of the Coulomb logarithm
is subject to some uncertainty. A more suitable expression for the Coulomb logarithm
for solar flare conditions, which is also valid for relativistic electrons, was derived by
Ginzburg and Syrovatskii (1964). This form can be written as

ln Λ =
1

2
ln

(
(2πmec/h)3

πα
· (E(E + 2))2

ne

)
, (2.5)

where c is the speed of light, h is the Planck constant, α is the fine structure constant
and E is the total kinetic energy of the electron in units of the rest energy mec

2.
Note that the term “collision” for describing the interaction between a beam electron

and the ambient plasma is somewhat misleading. At any instant the beam electron
experiences a force from the combined electric field of the surrounding particles (within
the Debye length), so the notion of a chain of separate binary collisions determining the
motion of the beam electron is incorrect. However, it turns out that considering the
average effect of a large number of collisions yields the same result as the more physically
correct approach of considering the effect of the combined electric force (Leach, 1984).

The effect of Coulomb collisions is to transfer energy from the non-thermal electrons
to the thermal plasma, as well as randomising the electron energies and directions. This
is the dominating process affecting the evolution of the electron beam. Because the
collisions transfer energy from the beam to the thermal plasma, the plasma is heated.
And since the ambient electrons are by far the least massive particle species in the
plasma, they are heated the fastest. The heavier species are then heated at a slower
rate both from the collisions with the non-thermal electrons and from collisions with
the ambient electrons that have already been heated.

In addition to heating the ambient plasma, direct collisions with non-thermal elec-
trons can also excite or even ionise atoms in the plasma. This is mainly relevant in the

5In some cases the electron’s mean free path or gyroradius could be a better choice.
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chromosphere, where there is a significant fraction of neutral hydrogen and other par-
tially ionised atoms. When free electrons are eventually recaptured by ions, in a process
known as recombination, they emit radiation. Radiation emitted by recombination and
de-excitations in the lower atmosphere can make up a significant fraction of the total
radiative output in many flares.

Reverse currents

During a solar flare, a very large number of electrons are accelerated into the electron
beam from a small region. The large flux of negative charge leaving the acceleration
region gives rise to a charge separation at the reconnection site. In response to this
charge separation, an electric field is generated, forcing ambient electrons to stream back
towards the acceleration region. This reverse current thus counteracts the depletion of
electrons at the acceleration site, ensuring that global charge neutrality is maintained.
The reverse current will deposit energy in the plasma through Joule heating. The
electric field driving the reverse current will also slow down the non-thermal electrons.
If the non-thermal electrons have very high energies, the ambient electrons making
up the reverse current will have to move very fast to ensure charge neutrality (unless
the density is very high), and this can cause the reverse current to become unstable
and significantly influence the evolution of the electron beam (Emslie, 1980). On the
other hand, if the beam energy is relatively low, the reverse current plays a much less
significant role.

Synchrotron emission

When the electrons gyrate around the magnetic field lines, they emit radiation due
to their continuous acceleration. This radiation removes (a small amount of) energy
from the electron beam. When the electrons are non-relativistic, they emit cyclotron
radiation (typically microwaves if the electron energies are not too high) in the directions
perpendicular to the magnetic field. Relativistic electrons emit synchrotron radiation
(up to X-ray energies for high-energy electrons), which is beamed towards the direction
of the magnetic field. The energy loss of the electrons to synchrotron radiation is
typically smaller than 1% of the energy lost to Coulomb collisions (Kane, 1973).

Bremsstrahlung emission

When the beam electrons interact with ambient particles through Coulomb collisions, a
small fraction of their energy loss is not transferred to the other particles, but is instead
emitted in the form of radiation. This radiation is termed bremsstrahlung. The fraction
of the energy converted to bremsstrahlung is usually in the order of 10−4 (Brown, 1971).
Most of the bremsstrahlung produced by a typical flare consists of soft and hard X-rays.
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Inverse Compton scattering

High-energy electrons moving through the plasma can interact with the photon gas,
transferring energy to the photons. This effect is called inverse Compton scattering.

2.2.3 Spectral characteristics

As mentioned in the previous section, the non-thermal flare electrons emit soft and hard
X-rays in the form of bremsstrahlung as they collide with the ambient plasma particles.
The spectrum of emitted hard X-rays can typically be approximated as a power law6

(Jeffrey, 2014). For the strongest flares, high-energy accelerated ions can collide with
other particles and cause nuclear reactions that produce gamma-rays. The emission of
hard X-rays and gamma-rays is an important diagnostic tool for flares, because such
radiation can travel relatively unaffected through the upper solar atmosphere, giving a
direct view of the conditions at the collision sites.

Chromospheric evaporation resulting from the energy release of the flare gives hot,
rising chromospheric plasma emitting thermal radiation in the extreme ultraviolet, from
which we can also observe blue-shifted versions of various chromospheric emission lines
(e.g. Antonucci et al. (1985)). The hot plasma eventually fills the coronal loop as-
sociated with the flare. This loop is sometimes observable from soft X-rays emitted
as thermal bremsstrahlung by the electrons in the plasma. Microwaves will also be
emitted in the flaring loop, in the form of synchrotron radiation from the gyration of
non-thermal electrons around the magnetic field lines. Enhanced emission of visible
light, especially from hydrogen recombination as well as in the Hα spectral line7, is
often observed deeper in the atmosphere below the loop foot points (see for instance
Zarro et al. (1988)). This light tends to be red-shifted, indicating that the emitting
plasma is moving downwards in the atmosphere.

2.2.4 Temporal behaviour

The temporal evolution of solar flares is usually divided into three phases; the initial
phase, the explosive phase and the decay phase8 (Syrovatskii, 1972). The initial phase
can last for a few seconds to minutes, the impulsive phase is typically in the order of
seconds, while the decay phase can last for several hours.

During the initial phase, chromospheric plasma at the loop foot points is quickly
heated by the electron beam and the energy conducted from the hot reconnection site.
The plasma reaches a thermal equilibrium at around 104 K, where radiative cooling
by neutral hydrogen is quite efficient. However, collisions with non-thermal electrons
gradually ionise the hydrogen atoms, eventually disabling the cooling. A new phase of

6Because of how the hard X-ray spectrum and the non-thermal electron distribution are related,
the electron distribution can consequently also be approximated as a power law (but with a different
power law index), as we saw in Section 2.2.1.

7Hα radiation has a wavelength of 656.28 nm, and is emitted when the electron of a hydrogen atom
is de-excited from the third to the second lowest energy level.

8These are also commonly referred to as the preflare, impulsive and gradual phases.
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rapid heating follows, ending in a new equilibrium at 105 K, when radiative cooling by
various metal ions becomes effective. There is some bulk motion of plasma due to the
heating, but relatively little compared to what is to come in the explosive phase.

The explosive phase begins when the chromospheric plasma can no longer radiate
away the incoming beam heating efficiently. When this happens, nearly all the energy
deposited by non-thermal electrons will contribute directly to heating and acceleration of
the plasma. Large amounts of plasma are heated to more than 106 K, and the resulting
overpressure creates waves and accelerate hot plasma upwards into the flaring loop.
Some plasma also moves downwards, and reaches lower temperatures as the radiative
cooling becomes more effective due to the increased density in the wave.

After the explosive heating event, the remainder of the lifetime of the flare consti-
tutes the decay phase. The release of energy typically continues into the decay phase
(Svestka, 1989). Increased emission of soft X-rays from the coronal loop is common,
and there may also be an increase of brightness in Hα at the loop foot points9. The
remainder of the decay phase involves the gradual decrease of emission and bulk motion
as the heated plasma cools and settles into equilibrium.

All three of the phases described above are not necessarily apparent for all flares.
Very strong flares can reach the explosive phase so quickly after the onset of the flare
that the initial phase is hardly detectable. On the other hand, very small flare events,
in particular microflares and nanoflares, will not have enough energy to initiate the
explosive event at all. For more detailed discussions of the physics driving the flare
evolution, see e.g. Abbett and Hawley (1999) or Allred et al. (2005).

2.2.5 Spatial structure

As described in previous sections, chromospheric evaporation at the foot points during
a flare fills the coronal loop with hot plasma. As a result, the full loop can be observed
as a source of thermal soft X-rays. The soft X-ray emission is usually the strongest
near the apex of the loop. The loop foot points themselves appear as strong sources
of hard X-rays due to non-thermal bremsstrahlung from beam electrons. A somewhat
weaker source of hard X-rays can sometimes be observed near the top of the loop (Figure
2.4). Discovered by Masuda et al. (1994), this feature is called a loop-top source, and is
present in a small minority of flares. Initially it was not clear whether its hard X-ray
emission was caused by non-thermal bremsstrahlung, like for the foot point sources, or
if it was actually thermal radiation from extremely hot plasma. Further analysis by
Alexander and Metcalf (1997) showed that the loop-top emission of the Masuda flare
was non-thermal in nature during the impulsive phase, but exhibited a 5-minute decay
consisting of thermal emission.

The hard X-ray foot point sources tend to be elliptical in shape, with the semi-major
axis oriented along the magnetic field direction. Kontar et al. (2010) showed that the
length of the semi-major axis decreases with X-ray energy, meaning that harder X-rays
tend to be emitted from a narrower depth interval. This depth interval lies deeper in the

9This period with increasing emission is sometimes separately referred to as the rise phase of flash
phase.
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Figure 2.4: Soft and hard X-ray im-
age of a flare (the Masuda flare of 13th
January 1992) seen at the solar limb.
The coronal loop is visible in soft X-
rays, while hard X-rays are emitted
from the two foot points as well as
above the top of the loop. From Jef-
frey (2014).

chromosphere for higher energies, consistent with the larger penetration depth expected
from the high-energy electrons producing the X-rays. The perpendicular size of the foot
point source was also shown to decrease with X-ray energy. This is attributed to the
convergence of the magnetic field lines as one moves deeper down in the chromosphere.

Some flares exhibit very little foot point X-ray emission, with most of the emission
coming from within the flare loop, in a so-called thick target coronal source. These
flares have unusually high densities inside the loop, causing the non-thermal electrons
to deposit their energy directly in the corona rather than propagating down to the chro-
mosphere. Kontar et al. (2011) studied how the extent of thick target coronal sources
varies with X-ray energy. In contrast to foot point sources, they found that the coronal
sources increase in length with higher energy. This is consistent with the expected be-
haviour of non-thermal electrons colliding with a dense but relatively uniform region of
plasma (the density in foot point sources, however, is far from uniform, hence the dif-
ferent dependence of source length on energy). More interestingly, they also found that
the perpendicular extent of coronal sources increases with energy. As discussed earlier,
the non-thermal electrons are prohibited from moving across the magnetic field lines
(except for the possibility of a tiny E×B drift), so we would expect the perpendicular
source extent to remain the same for all energies. The explanation proposed by Kontar
et al. (2011) is the presence of magnetic turbulence within the flaring loop. Simply
put, fluctuations in the small-scale magnetic field can introduce some perpendicular
transport of charged particles with respect to the mean magnetic field.
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Methods

3.1 Simulating the solar atmosphere

3.1.1 The 3D MHD code Bifrost

The simulation of the flare process takes place inside a 3D box representing a region of
the solar atmosphere, extending from the lower photosphere to the upper corona. The
time evolution of the plasma, magnetic field and radiation inside this box is simulated
using the Bifrost code (Gudiksen et al., 2011). Bifrost solves the MHD equations,
coupled with the equations of radiative transfer, on a 3D Cartesian grid. The MHD
equations is a set of eight partial differential equations, describing the time evolution
of the mass density ρ, momentum ρu, magnetic field B and internal energy per unit
volume e. They are given by

∂ρ

∂t
= −∇ · ρu (3.1)

∂ρu

∂t
= −∇ · (ρuu− τ)−∇P + J×B + ρg (3.2)

∂B

∂t
= −∇×E (3.3)

∂e

∂t
= −∇ · eu− P∇ · u +Q, (3.4)

where τ is the viscous stress tensor, P is the gas pressure, J is the electric current
density, g is the gravitational acceleration, E is the electric field and Q is a sum of
contributions to the rate of heating of the plasma. In addition, we have the following
two equations relating the secondary variables J and E to the primary variables B and
u:

µJ = ∇×B (3.5)
E = ηJ− u×B. (3.6)

Here µ is the permeability of vacuum and η is the magnetic diffusivity. Finally, an
equation of state (EOS) relating P to ρ and e is needed to close the system of equations.
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It should be chosen based on the required level of detail for the microphysics. Bifrost
provides several options for specifying the EOS (see Gudiksen et al. (2011) for details).

Several different methods for computing radiative transfer can be used in a Bifrost
simulation. They all provide the radiative losses for the source term Q in the energy
equation (3.4). The different methods generally have different domains of applicability.
For instance, the corona can be assumed to be very optically thin for most wavelengths,
and in this case a relatively simple expression for the radiative losses can be used. The
chromosphere, on the other hand, is a more challenging environment for computing ra-
diative transfer, since it is generally neither optically thin nor thick. The chromospheric
plasma is in non-LTE (Section 2.1.1), meaning that the local conditions are influenced
significantly by the global radiation field. Here, Bifrost approximates the total radi-
ative losses from the contributions of a hand-full of spectral lines that dominate the
chromospheric radiative losses. The expression used for these contributions is given in
Gudiksen et al. (2011). Bifrost also has a more detailed method for radiative trans-
fer that solves the full radiative transfer equation under some simplifying assumptions.
This is described in detail by Hayek et al. (2010).

The Bifrost code can integrate equations (3.1) – (3.4) forward in time using one of
two possible explicit time stepping schemes; either a third-order Runge–Kutta scheme
or a third-order Hyman scheme (Hyman, 1979). In order to keep the solution scheme
stable, spatial gradients that are too strong must be smoothed out by adding artificial
diffusion terms to the right-hand sides of the governing equations. Refer to Gudiksen
et al. (2011) for more details on how these diffusion terms are computed. Spatial deriv-
atives are computed using a sixth-order finite difference approximation. The resulting
values for the derivatives will be shifted by half a grid cell relative to the quantities being
differentiated. In principle, this would make it necessary to interpolate the derivatives
so that they are defined at the same locations as the primary variables. However, by
strategically defining the different variables to be slightly offset from the cell centra, the
number of interpolations required for obtaining the variables at the correct locations
can be significantly reduced. As a result, each primary variable in Bifrost is specified
either in the cell centre, in the middle of a cell face or at a cell corner. Such a grid,
where the different variables are not defined at the same locations, is often referred to
as a staggered grid. When interpolations are required, they are computed by evaluating
an interpolant fitted to the six closest surrounding grid points.

The Bifrost code is highly modular, making it easy to change which implementation
to use for the various parts of the simulation process. The choice of EOS and time
stepping scheme are examples of this, as well as the option to use various different
boundary conditions and methods for radiative transfer. The modular nature of the
code also makes it possible to implement additional physical phenomena separately
from the main code. For instance, there is a module that implements the Spitzer model
for conductivity, where the conductivity is computed based on the frequency of collisions
between electrons and ions. There are also modules for computing the number densities
of hydrogen and helium without having to assume LTE (which is what Bifrost does by
default). Another example is the implementation of the generalised Ohm’s law, where
two additional terms are added to equation (3.6) (and thus to the induction equation
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(3.3)) in order to better take into account that the plasma in general will not be fully
ionised.

3.1.2 Integrating a flare simulation into Bifrost

With Bifrost providing the appropriate environment for flares to take place, a flare
simulation code can be implemented as an additional module similar to the ones just
mentioned. The code has the following main tasks:

1. Identify sites of reconnection. This is where electrons will be accelerated to non-
thermal velocities.

2. Compute the distribution of accelerated electrons leaving each reconnection site.

3. Trace the magnetic field line passing through the acceleration region. This repres-
ents the path that the accelerated electrons will follow through the atmosphere.

4. Compute the thermal energy deposited by the electron beam in the plasma at
each point along the field line. This heating is added to the source term Q in
equation (3.4).

Task 1 is discussed in Section 3.2.1, task 2 is the subject of Section 3.2.2, and tasks 3
and 4 are described in Sections 3.3 and 3.4 respectively. As the transport and energy
deposition of beam electrons is the primary focus of this thesis, the first two tasks,
concerning the generation of electron beams, are only briefly outlined here. This aspect
of the model was treated by Helle Bakke, whose master’s thesis (Bakke, 2018) contains
detailed discussions of all topics relevant to the beam generation part of the model.

3.2 Generating electron beams

3.2.1 Finding reconnection sites

The first step in generating the electron beams is to identify sites in the atmosphere
where the magnetic field is reconnecting. In order to do this we follow Biskamp (2005)
and compute the quantity

K(x, y, z) ≡ ‖B(x, y, z)× (∇× S(x, y, z))‖ , (3.7)

at each point in the atmosphere. The vector S is defined as

S ≡ E‖
B

‖B‖
, (3.8)

where E‖ is the component of the electric field that is parallel to the magnetic field:

E‖ =
E ·B
‖B‖

. (3.9)
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So we can express S as

S =

(
E ·B
B ·B

)
B. (3.10)

Biskamp (2005) shows that there is reconnection wherever K > 0. In the numerical
simulation there are hardly going to be any points where K evaluates exactly to zero,
so for practical purposes it is better to use the criterion K > Klim, where Klim is chosen
as small as possible while still not providing a larger number of reconnection sites than
what is computationally manageable. However, one problem with this approach is that
it produces a distribution of reconnection sites that strongly favours points low down in
the atmosphere. Many of these points are not relevant with respect to energy transport
by electron beams, because they lie in high-density regions where the beams are going
to deposit all of their energy as soon as they are created. To resolve this, we can apply
a horizontal normalisation to K, for example by dividing each K by the average of K
over all points at the same height. Using discrete coordinates i, j and k for x, y and z,
we can express this as

K̃i,j,k ≡
Ki,j,k

(NxNy)−1
∑

i

∑
jKi,j,k

, (3.11)

where Nx and Ny are the total number of points in the x- and y-direction respectively.
This expression was implemented in the code due to its computational efficiency, but
other normalisation methods could also have been used. All points where K̃i,j,k exceeds
some threshold K̃lim are then considered to be relevant reconnection sites.

3.2.2 Determining beam parameters

When the sites of electron acceleration have been located, the next step is to determine
the properties of the resulting electron beams. We saw in Section 2.2.1 that the distri-
bution of non-thermal electrons in a beam takes the form of a power law parametrised
by the minimum energy Emin and the power law index δ. Additional properties of the
beam are its total energy Etot, as well as its mean energy Emean = Etot/Ntot, where Ntot

is the total number of beam electrons. When the electron distribution is normalised to
satisfy the properties of a probability distribution (i.e. that it must integrate to unity),
it has the expression

fPL(E) = (δ − 1)Emin
δ−1E−δ. (3.12)

Note that in order for this distribution to be valid, δ is required to be larger than 2.
We can express the mean energy Emean in terms of Emin and δ by solving the integral
for the expected value of E:

Emean =

∫ ∞
Emin

EfPL(E) dE. (3.13)

Inserting equation (3.12) and evaluating the integral yields

Emean =

(
δ − 1

δ − 2

)
Emin. (3.14)



3.2 Generating electron beams 25

In order to determine Etot, we assume that 50% of the reconnection energy is in-
jected into the electron beam (see Section 2.2.1). By default, Bifrost deposits all the
reconnection energy in the form of Joule heating QJoule. We therefore remove half the
Joule heating at the reconnection site, and instead put it into the beam. The total
beam energy can then be found as Etot = 0.5 ·QJoule∆trec, where ∆trec is the duration
of the reconnection event. In practice, we never represent ∆trec explicitly, but instead
initialise and evolve new beams for each time step with durations corresponding to the
duration ∆t of the time step.

For the power law index δ, we simply set a constant value for all beams. In all
the simulations performed for this thesis I used a value of δ = 4, selected somewhat
arbitrarily from the range mentioned in Section 2.2.1. A more precise determination
of δ for individual beams would probably require a model of the acceleration process,
which is outside the scope of this project.

All that remains is then to determine the minimum energy Emin. It represents
a (rather artificial) limit separating the non-thermal electrons of the beam from the
thermal electrons of the ambient plasma. The thermal electrons can be described col-
lectively by a probability distribution known as the Maxwell–Boltzmann distribution. It
has the form

fMB(E) =
2√
π
β3/2E1/2e−βE , (3.15)

where β ≡ 1/kBT . It is reasonable to approximate the full distribution of both thermal
and non-thermal electrons at the reconnection site as a weighted sum of the thermal
and non-thermal distributions:

f(E) = cMBfMB(E) + cPLfPL(E). (3.16)

Because all probability distributions must integrate to unity, the two weights are subject
to the constraint cMB + cPL = 1. We can impose another constraint by considering
what the average energy of beam electrons would be in the framework of the combined
distribution. Let us call this energy E∗mean, to keep it separate from the average beam
electron energy Emean for the pure power-law distribution. Just like we did for the pure
power-law distribution, we can find an analytical relation between E∗mean and Emin by
computing the integral

E∗mean =

∫ ∞
Emin

Ef(E) dE ≈
∫ ∞
Emin

EcPLfPL(E) dE, (3.17)

where the approximate expression follows from the fact that the thermal component
of f(E) should become small for energies exceeding Emin. Solving the second integral
yields the relation

cPL =

(
δ − 2

δ − 1

)
E∗mean

Emin
. (3.18)

The value of E∗mean can be estimated from the conditions at the reconnection site, by
assuming that Ntot corresponds roughly to the total number of electrons at the site.
By inserting that estimate into equation (3.18) we can then express the coefficients cPL
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and cMB purely in terms known quantities in addition to the unknown Emin. Finally,
we can estimate Emin as the intersection between the thermal component cMBfMB(E)
and the non-thermal component cPLfPL(E) of the full electron distribution, i.e. finding
Emin such that

cMBfMB(Emin) = cPLfPL(Emin). (3.19)

In the code we solve this root-finding problem numerically using the Newton–Raphson
method (see e.g. Press et al. (2007)).

Note that the value we compute for Emin will be closely tied to the local temper-
ature. A high temperature leads to a broad Maxwell–Boltzmann distribution, so the
intersection with the power law distribution will occur at a relatively high energy. The
opposite is true for low temperatures: the thermal distribution will be narrow, and the
intersection will occur at a low energy.

3.3 Tracing magnetic field lines

3.3.1 Interpolating the magnetic field

To accurately follow the magnetic field lines, we will have to trace the field direction
in steps that are much smaller than the width of the grid cells. The magnetic field
components are only known at the cell faces, so an interpolation must be performed to
approximate them in the exact locations where they are needed.

Let us first consider how we can interpolate in one dimension. Given a set of discrete
grid points xi and corresponding function values f(xi), we can fit a polynomial P of
order N to the function values of f at the points xk, xk+1, . . . , xk+N and use P (x) as an
approximation to f(x), given that xk ≤ x ≤ xk+N . There are a number of algorithms
for evaluating the interpolating polynomial P (x). In my implementation I have used
Neville’s algorithm, which is described in Appendix A.

To extend the interpolation scheme to two dimensions, i.e. approximating f(x, y)
when we also have a set of grid points yi in the y-direction, we first apply the 1D scheme
to find P (x, yi) for yk, yk+1, . . . , yk+N (note that the value of k in general is different for
x and y). We then use the 1D scheme again to interpolate P (x, yi) in the y-direction,
and we get P (x, y). For three dimensions we apply the same concept again. We have an
additional set of grid points zi in the z-direction, and find P (x, y, zi) as just described
for the points zk, zk+1, . . . , zk+N . These function values are then interpolated in the
z-direction to obtain P (x, y, z).

The index k of the first grid point to use in the interpolation must be chosen so
that x ∈ [xk, xk+N ] (otherwise the result would be an extrapolation rather than an
interpolation). Assuming that this condition is met, there are still N+1 possible choices
for k, representing how much the interpolating polynomial will be shifted relative to x.
In other words, the choice of k will affect how much the interpolated value is influenced
by the function values lying behind and ahead of x. If we let c denote an index such
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that xc ≤ x < xc+1, then a useful way of expressing k is

k = c+ b+ 1−
⌊
N + 1

2

⌋
, (3.20)

where b is an integer describing the bias of the interpolation in the forward direction.
The last term (note the integer division) makes sure that for a bias of zero, x lies as
close as possible to the centre of the interpolation range. A positive bias will give a
more forward-weighted interpolation, while a negative bias will give a more backward-
weighted interpolation. In the implemented code, I use a bias of zero everywhere except
near the non-periodic boundaries of the simulation box, where some of the neighbouring
grid cells do not exist.

3.3.2 Stepping along the magnetic field

The problem of tracing a magnetic field line can be stated in terms of the following set
of ordinary differential equations:

dx

ds
=

B(x)

‖B(x)‖
, (3.21)

where x = [x, y, z] is the position of a point on the field line, s is the distance along
the field line and B(x) = [Bx(x, y, z), By(x, y, z), Bz(x, y, z)] is the magnetic field at the
position x. Equation (3.21) simply states that the tangent of the field line points in
the direction of the magnetic field. A number of different methods have been devised
for solving such equations numerically, all with different strengths and weaknesses.
The schemes I have chosen for my implementation belong to the Runge–Kutta class of
methods. The idea behind them is to sample the direction dx/ds at several points close
to the current position, and use a weighted average of these directions as the actual
direction to step in. Let f(x) ≡ dx/ds1 denote the direction at point x, and let xn
be the current position for step n of the solution procedure. If we sample m different
directions, the different samples are computed as

kn,1 = f(xn)

kn,2 = f(xn + ∆sn(a21kn,1))

kn,3 = f(xn + ∆sn(a31kn,1 + a32kn,2))

...
kn,m = f(xn + ∆sn(am1kn,1 + am2kn,2 + . . .+ amm−1kn,m−1)),

(3.22)

where ∆sn is the size of the step we want to take and aij are weights that affect where
the different directions will be sampled. We then average these direction samples with
weights bi to obtain an effective direction dn, given by

dn = b1kn,1 + b2kn,2 + . . .+ bmkn,m, (3.23)
1For a general set of ordinary differential equations, f can also be a function of s, in which case

equation (3.22) also includes a set of coefficients ci that describe how to vary s for the different ks.
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so that we can compute the next position as

xn+1 = xn + ∆sndn. (3.24)

The point xn+1 will not correspond precisely to an exact point x̃n+1 on the same field
line, since the effective direction found from equation (3.23) is only an approximation
to the true effective direction d̃n, defined by

x̃n+1 = xn + ∆snd̃n. (3.25)

In fact, for some integer p we have

d̃n = dn +O(∆sn
p) (3.26)

and thus from equation (3.25)

x̃n+1 = xn+1 +O(∆sn
p+1). (3.27)

The exponent p is called the order of the method, and a higher order means that the
error term will be smaller. It depends on the weights aij and bi as well as the number
of samples m that we use. In general a larger number of samples will allow us to better
probe the curvature of f , so higher order methods have to use more samples.

As I will discuss in Section 3.3.6, the solar magnetic field lines are often relatively
smooth in the corona, but can become irregular and turbulent on the lower atmosphere
where plasma motions move the field around. It is therefore necessary for the field line
tracing algorithm to be able to effectively follow both smooth and irregular regions of
a field line. Since the irregular regions will require significantly smaller step sizes than
the smooth regions, we need a way of determining a suitable step size prior to each step.
We can achieve this by comparing the error that we make in each step to a target error,
and increase or decrease the step size based on how far below or above the target error
we are.

Before we go into details on how to adjust the step size, we will consider how we
can estimate the error made during a step. One way of doing this it to compare the
results obtained by performing the step with two schemes of a different order. Indeed,
a special class of methods called adaptive Runge–Kutta schemes have the advantage
that a lower-order approximation to the effective direction d̃n can be computed without
sampling any additional directions. This lower-order approximation is given by

d∗n = b∗1kn,1 + b∗2kn,2 + . . .+ b∗mkn,m + b∗m+1kn,m+1, (3.28)

where
kn,m+1 ≡ f(xn+1). (3.29)

The corresponding approximation to the next position is then

x∗n+1 = xn + ∆snd
∗
n, (3.30)
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and for comparison with equations (3.26) and (3.27) we have

d̃n = d∗n +O(∆sn
p−1) (3.31)

and
x̃n+1 = x∗n+1 +O(∆sn

p). (3.32)

The coefficients b∗i are specified by the scheme along with aij and bi. From equation
(3.29) it looks like we do have to sample an additional direction after all, but in practice
this amounts to no extra work, because the quantity f(xn+1) corresponds to the first
sample direction kn+1,1 of the next step. So all we have to do is to replace the first
expression in equation (3.22) with

kn,1 = kn−1,m+1. (3.33)

We can now compute an approximation δn to the error term in equation (3.32) by
pretending that xn+1 rather than x̃n+1 is the true solution, i.e.

δn = xn+1 − x∗n+1

= ∆sn(dn − d∗n).
(3.34)

Inserting equations (3.23) and (3.28) we get

δn = ∆sn(e1kn,1 + e2kn,2 + . . .+ emkn,m + em+1kn,m+1), (3.35)

where ei ≡ bi − b∗i (with bm+1 = 0).

3.3.3 Adaptive step size control

To decide how much to adjust the step size for the next step, the error estimate obtained
from equation (3.35) must be compared with a target error. We can define the target
error vector as

εn = εabs + εrelSn, (3.36)

where εabs is the tolerance for absolute error and εrel is the tolerance for relative error.
Sn represents the scale of the current solution. Following Press et al. (2007), we will
compute this scale as

Sn = max(|xn|, |xn+1|), (3.37)

where the maximum is taken for each coordinate separately. By taking the maximum
of two different positions we avoid instabilities that could occur if any of them has
components very close to zero. For controlling the step size it is useful to introduce a
factor En specifying the solution error relative to the target error:

En =

√√√√1

3

[(
δn,x
εn,x

)2

+

(
δn,y
εn,y

)2

+

(
δn,z
εn,z

)2
]

(3.38)
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This is simply the root-mean-square value of the components of δn/εn. If En ≈ 1, the
step error is roughly equal to the target error, so the step size is considered optimal.
If En < 1 we have an unnecessarily small error, and the step size should be increased.
On the other hand, if En > 1 the step error is too large, and we should decrease the
step size. Since the error for the step was too large, we should reject the new position
computed by the step and try it again with the decreased step size.

How should we compute the new step size from the error En and the current step
size? We start by determining how the error scales with step size. From equations
(3.27) and (3.32) it can be seen that δn must scale as ∆sn

p (since the ∆sn
p+1 term

from equation (3.27) is dominated by the ∆sn
p term from equation (3.32)). Since

equation (3.38) does not affect this scaling, En must also scale as ∆sn
p. So, we know

that the current step size ∆sn produced an error of En, and the next step size ∆sn+1

will produce some error En+1. From the scaling of these errors with step size, we must
have that

En+1

En
∝
(

∆sn+1

∆sn

)p
. (3.39)

We want the next step size ∆sn+1 to produce an error of En+1 = 1. Equation (3.39)
then gives us the corresponding relation between the two step sizes:

∆sn+1 = σEn
−1/p∆sn. (3.40)

I have here included the proportionality constant σ. It is a safety factor that should be
set to a value slightly below one (e.g. 0.9). The purpose of the safety factor is to bias
the solution towards smaller errors to prevent oscillation of the error around En = 1
(which would lead to a lot of rejected steps). It is also a good idea to impose a lower and
upper bound on the scale factor ∆sn+1/∆sn, to avoid very abrupt changes in step size.
In addition, we should not let the step size increase if the previous step was rejected,
since this might lead to oscillation around En = 1.

Like other explicit integration schemes, the Runge–Kutta scheme presented in Sec-
tion 3.3.2 can become unstable if the step size becomes too large. This can lead to large
oscillations in the step size as the step size controller given by equation (3.40) tries to
keep the error below the target error. Such oscillations are unfavourable because they
result in many steps being rejected, which is computationally costly. To prevent this, it
is possible to modify equation (3.40) in such a way that it tends to smooth out the step
size sequence. Applying concepts from control theory, Gustafsson (1994) has suggested
an alternative step size controller of the following form:

∆sn+1 = σEn
−αEn−1

β∆sn. (3.41)

It uses both the current and previous error for correcting the step size. Here, both α
and β should be positive and proportional to 1/p, but the actual values giving the best
results will depend on the scheme and must be estimated by trial and error. Gustafsson
found that a good place to start is α = 0.3/p and β = 0.4/p. This controller has the
advantage that it is nearly as easy to implement as equation (3.40) (we just have to
store the previous error in addition to the current one), while still providing the option
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to stabilise the step size sequence. We can see that equation (3.41) reduces to equation
(3.40) if we set α = 1/p and β = 0.

3.3.4 Interpolating output quantities

A consequence of using an adaptive step size when solving a differential equation is that
we have no direct control over exactly where the solution is obtained, since the step size
is continually modified throughout the solution process. The set of points where the
traced field line is specified will not necessarily be very practical to use when computing
the heating from the electron beam. It is better to be able to have the required output
values be regularly spaced along the field line, or to be able to specify a set of distances
along the field line where the output values should be produced. Suppose that we want
to find the solution xout at the distance sout lying between two “naturally occurring”
distances sn and sn+1 where we know the solutions xn and xn+1. This is achieved by
performing an interpolation between sn and sn+1. Ideally, we would like to make due
without having to perform any additional evaluations of f(x), since these evaluations
are relatively expensive. If we only knew the values xn and xn+1 at these distances,
the best we could hope to do would then be a linear interpolation, i.e. only first-order
accuracy. Fortunately, we also know the derivatives f(xn) and f(xn+1), since they
were used in the stepping scheme. This actually allows us to perform a third-order
interpolation2. Indeed, even higher-order interpolations are possible in some schemes
(e.g. the Dormand–Prince scheme mentioned in Section 3.3.5) by also making use of
the intermediate derivatives kn,j from equation (3.22). Note that only the positions
x at the output location can be obtained in this way. Any other quantities that are
also needed for the heating computations, like the density, must be interpolated in the
ordinary way as described in Section 3.3.1.

3.3.5 Implemented schemes

I chose to implement two different adaptive Runge–Kutta schemes; a third-order method
developed by P. Bogacki and L. F. Shampine, and a fifth-order method developed by J.
R. Dormand and P. J. Prince. The corresponding weights aij , bi and b∗i can be found
in Bogacki and Shampine (1989), and Dormand and Prince (1980) respectively. For
the Bogacki–Shampine scheme I use a third-order Hermite interpolation for the out-
put positions, while for the Dormand–Prince scheme I use a fourth-order interpolation
described in Shampine (1986).

3.3.6 Terminating the tracing process

In order to ensure the stability and efficiency of the tracing algorithm, it is important
to consider when and how the tracing procedure should be terminated. For instance,
since a field line cannot be traced beyond the borders of the simulation box, the tracing

2Such an interpolation, where the interpolating polynomial matches both the solution values and
their derivatives, is known as an Hermite interpolation.
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should be stopped immediately if a non-periodic border is reached. Typically, this will
be the bottom of the box, since the field lines originate deep below the solar atmosphere,
but sometimes they will also extend through the top of the box. In Bifrost, periodic
boundary conditions are often applied to the borders in x and y, so that the field lines
will simply pass through one side and emerge from the opposite side.

The magnetic field lines tend to be relatively smooth in the solar corona. As de-
scribed in Section 2.1.1, this is because the dynamics of the plasma typically is domin-
ated by magnetic forces rather than gas pressure forces in this region, and the magnetic
forces tend to smooth out the magnetic field as much as possible. Farther down, in the
lower chromosphere, photosphere and beyond, the situation is the other way around.
The plasma is much denser and the gas pressure forces are much stronger than the
magnetic forces. The magnetic field lines are then frozen in to the plasma, and get
pulled along as the plasma moves. Convection drives the overall mass flow, and as the

Figure 3.1: Height profiles for 100 field lines from a Bifrost simulation. The field
lines were traced from random starting positions in the upper corona. The quantity
along the x-axis is the integrated horizontal distance from the starting position, i.e.
sh ≡

∫ √
dx2 + dy2. z is defined to be zero at the top of the photosphere, and increases

with depth. The horizontal line indicates the depth at which the plasma β tends to be
smallest (see discussion in the main text).
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plasma gets shuffled around by convective motions the magnetic field structure becomes
turbulent and irregular.

Figure 3.1 gives an example of how the magnetic field lines change their behaviour
with depth. As the figure shows, the field lines often “crawl” around a significant distance
close to the bottom of the box before vanishing through the bottom. For the purpose of
calculating the energy deposition from an electron beam along the field line, including
the entire irregular part serves no useful purpose, because the relatively high density
below the transition region will ensure that all the energy is deposited over a relatively
small distance. The irregular parts of the field lines are relatively expensive to trace,
since they require small step sizes. Field line tracing actually turns out to be the most
computationally expensive part of the beam transport code, so we can save a significant
amount of execution time by terminating the tracing procedure before the field line
actually hits the bottom of the box.

A reasonable indicator of where the magnetic field will start to become irregular is
the plasma β (briefly mentioned in Section 2.1.1), defined as

β ≡ Pg

PB
, (3.42)

where Pg is the gas pressure and PB = ‖B‖2 /8π (in cgs units) is the magnetic pressure.
The plasma β thus measures to which extent the dynamics of the plasma is dominated
by gas pressure forces rather than magnetic forces. Figure 3.2 shows how β varies with
depth for a selection of different field lines. High in the corona, β tends to be in the
order of unity. As the field lines descend towards the lower atmosphere, β decreases
gradually, and reaches a minimum in the order of 10−2 in the lower chromosphere at a
height of about 1–2 Mm above the photosphere. Farther down, β increases rapidly as
the gas pressure forces begin to dominate. The height below which a field line is likely
to become turbulent can thus be found by monitoring where the plasma β exceeds a
certain value (probably of order unity). However, since β can sometimes reach relatively
high values in the corona, this should only apply below the height of 1–2 Mm where β
tends to be minimal.

As mentioned above, the high density of the lower atmosphere should prevent the
electron beam from moving very far at large depths. Figure 3.3 shows the mass densities
at the points where the field lines reach the β limit (i.e. the points where they enter
the rectangle in Figure 3.2). Some field lines are actually terminated relatively high
up at somewhat low densities. This means that the termination point might not be
deep enough for all the electron beam energy to be deposited before the field line is
terminated. A reasonable way to solve this issue is to extend the field line artificially.
The extension should be as simple as possible in order to maintain efficiency, but it
should also preserve the way the beam energy is deposited with depth. The simplest
solution is to extend the field lines straight down until they reach the bottom of the
simulation box. Although we know that the field lines also move horizontally in the
lower atmosphere, there is no a priori reason for the field lines to prefer one horizontal
direction over others, so on average we can expect the bulk of the energy deposition
to occur directly below the points where the field lines enter the lower atmosphere.
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Figure 3.2: Plasma β along 300 field lines from the same Bifrost simulation as for Figure
3.1. The starting positions were sampled from the same region as in Figure 3.1. The
horizontal line segment indicates the approximate depth where most of the β values
are small. The vertical line segment indicates the upper limit for β that was used for
deciding when the field lines should be terminated.

However, we still cannot completely neglect the horizontal components of the field lines.
Since the field lines on average move through the lowest parts of the simulation box at
an angle with respect to the vertical direction, the electrons will have to move through
more plasma to get to a certain depth than if they were travelling straight down. So
we must include the effect of this extra distance in order to avoid overestimating the
penetration depth of the electron beam. By measuring distances from the termination
points to the bottom for a large number of field lines, I found that the total distance
on average is about twice as large as the vertical distance. So to obtain the correct
distribution of energy deposition with depth when we extend the field lines straight
down, we must effectively double the rate of collisions between the non-thermal electrons
and the plasma particles. To avoid a discontinuity in the energy deposition at the
point where the vertical field line extension begins, the transition from the field line
to the vertical extension must be done smoothly. The simplest way of doing this is
to have a small region after the termination point where the direction is found by a
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Figure 3.3: Mass densities at the points where the field lines in Figure 3.2 enter the
rectangle and are terminated. The horizontal line corresponds to the same horizontal
line as in Figures 3.1 and 3.2.

linear interpolation between the field line direction and the vertical direction. By also
interpolating the distance correction factor in this region we ensure that the transition
occurs smoothly.

We can see the effect of the artificial field line extensions in Figure 3.4. The two
panels show the column masses along the field lines from the starting positions to the
bottom, for both the full-length field lines and when they have been terminated and
extended as described above. The column masses indicate how much the electron beam
will have been obstructed at a given depth. Although the full-length field lines do have
larger variations in their final column masses, the extended field lines still have the same
average behaviour. Keeping in mind that the electron beams will never penetrate far
beyond the transition region, the approximations discussed in this section appear to be
quite reasonable.

Because our purpose for tracing field lines is to simulate electron beams moving
along them, we can apply one more criterion for terminating the tracing process. The
electrons lose energy as they move along the field line, and eventually the beam will
contain so little energy that there is no point in transporting it further. So we can check
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Figure 3.4: Column masses, i.e. mass density integrated from the starting positions
along the length of the field lines, for the same field lines as in the previous figures. In
the upper panel the field lines were not terminated until they hit the bottom of the box.
In the lower panel they were terminated as described in the main text, and extended
vertically downwards, with the distance correction factor included in the computation
of column mass. The vertical lines indicate average column masses at the bottom of the
simulation box. The blue line is the same in both panels and indicates what would be
obtained for the extended field lines without the distance correction factor. The green
lines show what is actually obtained for the field lines in the respective panels, and they
make it clear that the average final column mass for the extended field lines (with the
correction applied) is nearly the same as for the full field lines. The horizontal line is
the same as in the previous figures.
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the remaining energy of the electron beam at each depth, and when it drops below a
certain value we stop the tracing procedure and simply dump the little energy that
remains at the current position. Of course, this only works if the tracing and the beam
transport calculations are performed in tandem, so that is what we do in our code.

3.3.7 Deciding which direction to trace field lines

During a reconnection event, electrons are accelerated to non-thermal energies by the
electric field. The direction the electrons are allowed to propagate in must be either
parallel or anti-parallel with the magnetic field direction (the only difference between
the two cases is that the electrons will gyrate in opposite directions around the field
line). So if we consider the direction of the electric field with respect to the magnetic
field, we can decide whether the electron beam will travel in the forward or the backward
direction along the field line. In case there are significant variations in the electric field
direction around the reconnection site, it is more stable to consider the average direction
in a small region around the site rather than at a single point. If the overall electric
field around the reconnection site is roughly parallel to the magnetic field direction, we
assume that the majority of the accelerated electrons will be forced to move backwards
along the field line (because negatively charged particles are accelerated in the direction
opposite to that of the electric field), and correspondingly in the opposite case. Finally,
there are the cases where the electric field is more or less perpendicular to the magnetic
field. In these cases the ability of the electric field to accelerate the electrons along
the field line will be strongly reduced, so we would not expect to see significant beam
energies in such a situation. In the code we therefore discard these cases from the set of
relevant reconnection events. This is also in accordance with our criterion from Section
3.2.1 for detecting reconnection sites. Recall that the quantity S in the definition of K
(equation (3.7)) is given by

S =

(
E ·B
B ·B

)
B. (3.43)

If E and B are close to perpendicular, then E ·B ≈ 0, so K will tend to be small and
the criterion will probably not be satisfied.

3.4 Simulating the electron distribution

3.4.1 Transporting the electron distribution

The processes governing electron transport along a field line are discussed in Section
2.2.2. In order to make the problem of electron transport and energy deposition more
manageable, we can make some simplifying assumptions:

• The typical time scale for the traversal of a field line by non-thermal electrons is
in the order of a few tenths of a second, which is much smaller than the typical
time scales for magnetohydrodynamic changes in the plasma. So we do not have to
consider the time evolution of the electron beam: we can assume that the electrons
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deposit their energy instantaneously and that their distribution has reached a
steady state (Leach and Petrosian, 1981).

• The electron gyroradius (which is typically the order of 10 cm) is much smaller
than MHD length scales, so the variation of the distribution perpendicularly to
the field lines can be ignored. Only the one-dimensional distance along the field
line has to be considered.

• Hydrogen dominates the atmospheric composition, and will thus be the element
that has the strongest influence on the electron beam through Coulomb collisions.
The∼ 10% fraction of Helium might add 20 to 30% to the effect of collisions (Leach
and Petrosian, 1981), but this is not very significant considering the uncertainties
in the parameters. So we can neglect collisions with other species than hydrogen.
Interactions between the non-thermal electrons themselves will be so rare that
they can be neglected. However, collisions with ambient electrons, protons and
neutral hydrogen are all potentially important3. Energy exchange between beam
electrons and ambient free electrons is the most effective process, because the low
mass of electrons compared to protons and neutral hydrogen causes them to be
heated much faster. The ambient electrons will then transfer their excess heat to
the other plasma species over a larger time scale.

• The enhanced rates of excitation and ionisation in the plasma caused by the
colliding non-thermal electrons are ignored. While ionisation from the electron
beam is a central mechanism for initiating the explosive phase of flares (see Section
2.2.4), we do not expect to achieve high enough beam energies for this to happen
in the simulations performed for this thesis.

• Reverse currents do not significantly affect the electron beam as long as the beam
energy is small. So we neglect reverse currents. The same is true for inverse
Compton scattering.

• The energy losses of the non-thermal electrons from the emission of synchrotron
radiation and bremsstrahlung are typically very small compared to the losses from
Coulomb collisions, so they can be ignored.

The probability distribution of the non-thermal electrons is governed by a type of partial
differential equation from statistical mechanics known as a Fokker–Planck equation.
From the discussions above, the contributing processes that we have to consider are
Coulomb collisions and magnetic mirroring. The resulting Fokker–Planck equation is

3Although it does turn out that the electrons will be thermalised at relatively high ambient tem-
peratures, so the fraction of neutrals will be very small.
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given by Leach (1984) as

µ
∂f(E,µ, s)

∂s
=

1− µ2

2
· dlnB

ds
· ∂f(E,µ, s)

∂µ
+

2

β
· ∂
∂E

(
C1

β
· f(E,µ, s)

)
+

C2

β4(E + 1)2
· ∂
∂µ

(
(1− µ2)∂f(E,µ, s)

∂µ

)
.

(3.44)

The quantity µ is the pitch angle; the cosine of the angle between the electron velocity
vector and the magnetic field direction. In this equation, β does not represent the
plasma β, but rather the speed of the electron relative to the speed of light. It can
be written as β =

√
1− (E + 1)−2. Like in Section 2.2.2, the energy E is in units of

the electron rest energy. The first term on the right-hand side describes the influence
of a gradient in the magnetic field strength on the electron pitch angles (magnetic
mirroring). The second term describes the energy loss from Coulomb collisions, while
the third term describes the diffusion of pitch angles from Coulomb collisions. The two
collision coefficients are

C1 = 2πr0
2
(
ne ln Λ + nH ln Λ′H

)
(3.45)

C2 = 2πr0
2
(
ne ln Λ + np ln Λ + nH ln Λ′′H

)
. (3.46)

where np and nH are the number densities of protons and neutral hydrogen atoms,
respectively. ln Λ′H and ln Λ′′H are the effective Coulomb logarithms for hydrogen, and
are computed according to

(Λ′H)2 = E2(E + 2)/IH
2 (3.47)

(Λ′′H)2 = E(E + 2)/2α2, (3.48)

where IH is the ionisation energy for hydrogen.
If we assume an electron distribution with no electrons moving backwards (i.e. µ <

0), but which is otherwise isotropic, it can be written on the form

f(E,µ, s) =

{
g(E, s) if µ ≥ 0
0 if µ < 0

. (3.49)

We then have
∂f(E,µ, s)

∂µ
= 0. (3.50)

Inserting equation (3.49) into equation (3.44) and using equation (3.50) we get

µ
∂g(E, s)

∂s
=

2

β
· ∂
∂E

(
C1

β
· g(E, s)

)
. (3.51)

We can integrate over all pitch angles from 0 to 1 on both sides to get rid of the µ factor
on the left-hand side. This gives

∂g(E, s)

∂s
=

4

β
· ∂
∂E

(
C1

β
· g(E, s)

)
. (3.52)
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A different simplification is to assume that all the electrons move straight forward, so
µ = 1. In that case, we have

f(E,µ, s) =

{
g(E, s) if µ = 1
0 if µ 6= 1

, (3.53)

and equation (3.44) becomes

∂g(E, s)

∂s
=

2

β
· ∂
∂E

(
C1

β
· g(E, s)

)
. (3.54)

Since the two simplified forms of the Fokker–Planck equation are almost identical, let
us represent both cases with the following expression:

∂g(E, s)

∂s
=
ξ

β
· ∂
∂E

(
C1

β
· g(E, s)

)
, (3.55)

where ξ = 4 for the isotropic distribution and ξ = 2 for the peaked distribution. An
accurate simulation of the electron beam would need to include the dependence on pitch
angle. However, in this thesis I will simply assume a peaked distribution. This is partly
because we do not treat the electron acceleration process in enough detail to be able
to say anything about the pitch angle distribution, and partly in order to make the
simulation of a large number of beams more computationally manageable.

From equation (3.45), the dependence of C1 on energy E is logarithmic, and thus
quite weak. We will therefore replace C1(E, s) with an energy-independent approxima-
tion C̃1(s) ≡ C1(Emean, s), where Emean (from Section 3.2.2) is the average non-thermal
electron energy at s = 0. In addition, we define φ(E, s) ≡ g(E, s)/β. We then get

∂φ(E, s)

∂s
=
ξC̃1

β2
· ∂φ(E, s)

∂E
. (3.56)

This can be solved by introducing the new variables η and τ , given by

dη ≡ β2 dE (3.57)

dτ ≡ ξC̃1 ds, (3.58)

so that

η(E) = E2/(E + 1) (3.59)

τ(s) = ξ

∫ s

0
C̃1(s

′) ds′. (3.60)

η plays the role of energy, while τ plays a role similar to that of optical depth in radiative
transfer theory. Note that both of these quantities are dimensionless. The energy can
be computed from η as

E(η) =
1

2

(
η +

√
η · (η + 4)

)
, (3.61)
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or, in the non-relativistic limit (β � 1)

E(η) =
√
η. (3.62)

In terms of η and τ , equation (3.56) can be written as

∂φ(η, τ)

∂τ
=
∂φ(η, τ)

∂η
, (3.63)

which has the solution
φ(η, τ) = φ0(η + τ), (3.64)

or equivalently
g(η, τ) = g0(η + τ), (3.65)

where g0(η) is the electron distribution at the acceleration site (τ = 0). In terms of en-
ergy E we have g0(E) dE = g0(η) dη, so (from equation (3.57)) g0(E) = β2(E)g0(η(E)),
or g0(η) = g0(E(η))/β2(E(η)). We assume that g0 is normalised like a probability dis-
tribution, so that ∫ ∞

ηmin

g0(η) dη =

∫ ∞
Emin

g0(E) dE = 1. (3.66)

Recall from Section 3.2.2 that Ntot denoted the total number of thermal electrons that
are accelerated into the beam at the acceleration site. If we instead only consider the
(infinitesimal) number of electrons n(η) with energy η, we have

n(η) = Ntot · g0(η). (3.67)

This is at τ = 0. More generally, the number of electrons with energy η remaining in
the beam at a depth τ will be

n(η, τ) = Ntot · g0(η + τ). (3.68)

Since each of these electrons has a kinetic energy E(η), we can write the total energy
contained in electrons with energy η at a depth τ as

ε(η, τ) = Ntot · E(η) · g0(η + τ). (3.69)

Note that the numerical values of equations (3.68) and (3.69) do not correspond directly
to kinetic energies or numbers of electrons, but rather densities of these quantities with
respect to energy η. To avoid confusion, I will therefore refer to equation (3.68) as
a number distribution and equation (3.69) as an energy distribution. Integrating these
distributions over an η-interval would yield the actual kinetic energy or number of beam
electrons in the interval. Equations (3.65), (3.68) and (3.69) are plotted in Figure 3.5
when g0(E) is set to equal the power-law distribution in equation (3.12).

Since g(η, τ) is a probability distribution function, it does not tell us directly how
each individual electron will move. However, we can still determine the average beha-
viour of an electron by considering the curves defined by g(η, τ) = constant, which from
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Figure 3.5: Variants of the electron distribution. The plots were computed using equa-
tion (3.12) as g0(E), with δ = 4 and Emin = 5 keV. The value used for Ntot is
1031 electrons, corresponding to a total beam energy similar to that of nanoflares. Up-
per panel: the probability distribution of the beam plotted as function of η for various
equally spaced depths τ . The distribution is simply shifted to the left (lower energies)
by a constant amount for each τ , in accordance with equation (3.65). Middle panel:
the electron number distribution of the beam (equation (3.68)) as function of energy,
for the same values of τ as in the upper panel. Lower panel: the energy distribution of
the beam (equation (3.69)) as function of energy for the same values of τ as in the two
other panels.
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equation (3.65) corresponds to η + τ = constant. From equation (3.68), the number of
electrons is conserved along these curves, so they describe a way the electrons can move
that is consistent with their probability distribution. In other words, if all the electrons
really moved according to η + τ = constant, we would find that their distribution was
given by g(η, τ). Let η0 = η(E0) represent the energy of an electron at τ = 0. The
kinetic energy of the electron at a different depth τ must then be given by

E = E(η0 − τ) (3.70)

with E(η) from equation (3.61) or equation (3.62). In the non-relativistic case, equation
(3.70) becomes

E = E0

√
1− τ/E0

2. (3.71)

This is a commonly used expression for energy loss in a thick target (see e.g. Brown
(1972), equation 15). The energy of an electron as function of distance s along a
field line as computed from equation (3.71) is plotted in Figure 3.6 for a large number
of electrons with initial energies sampled from equation (3.12). We can see that the

Figure 3.6: Energies of 10 000 individual electrons as functions of distance along a
magnetic field line. The initial electron energies were sampled from the distribution in
equation (3.12), with Emin = 5 keV and δ = 4.
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electrons with low initial energies stop relatively quickly. From equation (3.71), the
electrons have lost their energy when τ reaches E0

2. The top part of the field line lies in
the corona, where the density, and thus also the collisional coefficient C̃1, is relatively
constant. From the definition of τ , this means that τ ∝ s in this region. So the stopping
distance of an electron in the corona is proportional to the square of its initial energy.
As the initial energies increase, the electrons penetrate correspondingly deeper. At
around s = 6.1 Mm in the figure, the energies drop very steeply. This happens because
the electrons have reached the transition region where the density increases abruptly,
with a corresponding increase in the rate of collisions. The reason that not all the
curves go all the way to zero is that the field line was not traced deep enough into
the lower atmosphere for the highest-energy electrons to completely thermalise. It is
clear that only a very small fraction of the electrons have high enough energies to avoid
thermalisation before the end of the field line, so this will not influence the calculated
energy deposition from the beam in any meaningful way.

3.4.2 Computing beam heating

In principle, we can integrate equation (3.69) over all energies η to find the total energy
E(τ) remaining in the beam when it has reached a given depth τ :

E(τ) =

∫ ∞
ηmin

ε(η, τ) dη

= Ntot

∫ ∞
ηmin

E(η) · g0(η + τ) dη.

(3.72)

Then, to determine the loss of energy from the beam with depth, we can take the
derivative of equation (3.72) with respect to τ , giving

dE(τ)

dτ
= Ntot ·

d

dτ

(∫ ∞
ηmin

E(η) · g0(η + τ) dη

)
= Ntot

∫ ∞
ηmin

E(η) · ∂g0(η + τ)

∂η
dη.

(3.73)

We can avoid the need for working with the (possibly complicated) derivative of g0
by performing an integration by parts and using the fact that g0(η) has to vanish as
η →∞. This gives the expression

dE(τ)

dτ
= −Ntot · Emin · g0(ηmin + τ)−Ntot

∫ ∞
ηmin

dE(η)

dη
· g0(η + τ) dη. (3.74)

However, the problem with equation (3.74) is that it requires the numerical solution of
an integral at every single depth. This quickly becomes too numerically expensive. We
will therefore consider a simplified approach based on the fact that electrons with the
same energy will be thermalised at the same depth. We start by using equation (3.69)
to write the beam energy distribution at τ = 0 as

ε(η0) = Ntot · E(η0) · g0(η0). (3.75)
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The total energy dE0 contained in all the electrons with initial energies in the infinites-
imal interval η0 ± dη0/2 is then

dE0 = ε(η0) dη0 = Ntot · E(η0) · g0(η0) dη0. (3.76)

An electron is considered thermalised when its energy reaches Emin, which from equation
(3.70) (when expressed in terms of η instead of E) happens at the depth

τtherm = η0 − ηmin. (3.77)

So the electrons holding the initial energy dE0 are all going to be thermalised in the
depth interval τtherm ± dτtherm/2. Let us make the approximation that the electrons
do not lose any energy until they reach τtherm, at which point all of their energy is
converted into thermal energy. In that case, all the energy dE0 is going to be deposited
in the interval τtherm±dτtherm/2. We can then obtain the deposited energy as a function
of thermalisation depth by substituting η0 with τtherm + ηmin and dη0 with dτtherm in
equation (3.76):

dQ = Ntot · E(ηmin + τtherm) · g0(ηmin + τtherm) dτtherm. (3.78)

I have here changed the name of the variable E0 to Q to reflect that equation (3.78)
concerns energy that is being deposited from the beam. The energy remaining in the
beam is then dE(τ) = −dQ(τ). The rate of change of beam energy with depth τ is
then given by

dE(τ)

dτ
= −Ntot · E(ηmin + τ) · g0(ηmin + τ). (3.79)

Notice that this expression resembles the first term in equation (3.74), the difference
being that equation (3.79) uses the “shifted” energy E(ηmin + τ) rather than Emin.

So how well does this simplified approach work? Figure 3.7 shows the beam energy
deposition with distance along a field line computed for both the full result in equation
(3.74) and the simplified result in equation (3.79). As an additional point of comparison,
both cases were computed with both the relativistic and non-relativistic version of the
relation between E and η. We can see that the simplified expression results in somewhat
stronger heating near the transition region compared to the full expression. This is due
to the approximation that all the electrons with a given energy deposit all their energy
at the thermalisation depth. In reality, as Figure 3.6 shows, they deposit their energy
continuously above this depth, causing the heating to occur higher up than in the
simplified case. Consequently, the simplified expression yields less heating near the
reconnection site than the full expression, but this part of the figure is cropped out to
better show the peak at the transition region.

The figure also shows that the non-relativistic expressions overestimate the heating
compared to the relativistic expressions. This happens because η is mapped to a smaller
E in the non-relativistic case, which causes the probability distribution g0(E) to be
evaluated for a smaller E at a given depth τ . This results in a higher numerical value
of g0 at that depth, which translates to stronger heating.
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Figure 3.7: Energy deposition from a non-thermal electron beam as a function of dis-
tance along a field line. The field line and initial distribution are the same as for Figure
3.6. As with Figure 3.5, the value used for Ntot is 1031 electrons. The curves denoted
as “full” were computed from equation (3.74), while the curves denoted as “simplified”
were computed from equation (3.79). In addition, the “relativistic” curves used equation
(3.61) for E(η), while the “non-relativistic” curves used equation (3.62). Only the lower
part of the beam trajectory (in the vicinity of the transition region) is shown in the
plot.

The value computed from the most simple expression (simplified and non-relativistic)
is about 60% higher at the transition region peak than that computed from the most
accurate expression (full and relativistic). I find this error to be acceptable considering
the major savings in computational complexity. As we will see in Section 3.5, there is a
limit to the number of beams that we can hope to simulate, which will tend to make us
underestimate the total amount of heating near the transition region. This will partially
cancel out the extra transition region heating that we introduce by using the simplified
expression.

When it comes to relativistic versus non-relativistic, the two cases for the simplified
expression are sufficiently close that the extra computations for the relativistic case do
not appear to be worth it (especially when considering the error we are already making
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by using the simplified expression). For the electron distribution plotted in Figure 3.5, a
small calculation shows that about 1% of the electrons will have initial speeds exceeding
30% of the speed of light, and these together account for roughly 5% of the total beam
energy. The small fraction of beam energy inherent in relativistic electrons supports
the choice of neglecting relativistic effects. Still, considering that the most relativistic
electrons are also the ones that will be able to make it to the transition region and
beyond, this assumption would probably need to be reconsidered if we were to simulate
harder distributions or more energetic beams.

In the non-relativistic approximation, and using equation (3.12) for g0(E), equation
(3.79) gives

dE(τ)

dτ
= −Ntot

(
δ − 1

2Emin

)(
1 +

τ

Emin
2

)−δ/2
. (3.80)

A closed-form expression for the remaining beam energy E(τ) at depth τ can now be
found by integrating equation (3.80) from infinity to τ (the lower integration limit is
infinity because we know that E(τ)→ 0 when τ →∞):

E(τ) =

∫ τ

∞

dE(τ ′)

dτ ′
dτ ′ = Ntot

(
δ − 1

δ − 2

)
Emin

(
1 +

τ

Emin
2

)1−δ/2
. (3.81)

Comparing with equation (3.14) we can recognise the two factors in the middle of the
above expression as nothing more than Emean. When multiplying this with the total
number of beam electrons, we simply obtain the total beam energy Etot, so equation
(3.81) reduces to

E(τ) = Etot

(
1 +

τ

Emin
2

)1−δ/2
. (3.82)

This result is useful for computing the total beam heating between two arbitrary depths
τ and τ ′ > τ , which simply becomes

Q(τ, τ ′) = E(τ)− E(τ ′). (3.83)

Numerically, using equation (3.83) for calculating the beam heating is better than per-
forming a numerical integration of equation (3.80), since equation (3.83) does not in-
troduce truncation errors in the result.

3.4.3 Excluding local heating events

At some acceleration sites the gas density might be high enough that the electron beam
will only be able to travel a very small distance before all of its energy has been deposited
in the surrounding plasma. These events have the same effect as when the reconnection
energy is converted directly into heat, so they do not represent a significant transport
of energy from one place to another. For the purpose of computational efficiency, it
is a good idea to exclude these sites from the transport simulation in the first place.
Fortunately, this is easy to achieve with the help of equation (3.82). We want to obtain
the distance δs at which the remaining beam energy drops below a small threshold
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value Elim. Over small distances, we can assume that the collision coefficient C̃1 stays
nearly uniform, so that the corresponding depth δτ can be written as δτ ≈ ξC̃1δs. The
threshold energy can then be written as

Elim = Etot

(
1 +

ξC̃1δs

Emin
2

)1−δ/2

. (3.84)

Solving this equation for δs gives

δs =
Emin

2

ξC̃1

((
Elim

Etot

)2/(2−δ)
− 1

)
. (3.85)

C̃1 can be computed from the particle density at the acceleration site. Given the beam
parameters Emin, δ, Etot and ξ, as well as the energy threshold Elim, we can check
whether the depletion distance δs is smaller than a few grid cell widths. If it is, we can
safely assume that no significant amount of energy will be transported away from the
site via the electron beam.

The code also performs an initial, more coarse rejection of reconnection sites based
solely on their depth and temperature. Sites lying very low in the atmosphere (e.g.
below the lower chromosphere) will not contribute to energy transport by non-thermal
electrons because the surrounding density would stop the beams immediately, so they
can be excluded straight away. In addition, sites with low temperatures will generate
electron beams with small values of Emin (see Section 3.2.2). These beams will consist
mainly of relatively low-energy electrons that lose their energies very quickly and hence
not contribute significantly to the energy transport. So low-temperature sites are also
ignored.

3.5 Deciding how many beams to simulate

As discussed in Section 3.2.1, we consider electron beams to originate wherever the
value of the reconnection heuristic value K̃ is higher than some threshold K̃lim. Hence,
the total number of electron beams we need to simulate depends on the value we set
for K̃lim. Because this is a free parameter that is significantly going to affect the total
heating by electron beams, it is important to consider carefully which value to use. We
want to include enough beams that we do not underestimate the total heating, while at
the same time being able to complete the simulation in a reasonable amount of time.

Figure 3.8 shows the horizontal average of the total beam heating in the atmosphere
as a function of depth for different values of K̃lim. The curves are also annotated with
the total number of beams generated for each threshold value. We will study a similar
plot of the beam heating in more detail in Section 4.3.2. For now, we will focus on the
peaks near z = −1 Mm (just below the transition region), where the beams deposit most
of their energies. As one would naturally expect, the height of the peaks increase with
the number of beams. However, this effect slows down for the largest beam numbers:
although the number of beams increases by nearly 50 000 from K̃lim = 2 to K̃lim = 1,
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Figure 3.8: Total beam heating in the atmosphere as a function of depth, averaged over
each horizontal layer. Each curve corresponds to a separate simulation with a different
value of K̃lim, and correspondingly a different number of electron beams.

the corresponding heating curves are very similar. This suggests that there is little
extra heating to be gained by going below 1–2 for the threshold value.

Another consideration is how the total number of beams affects the execution time
of the code. This is shown in Figure 3.9, where the measured execution time for a
single time step is plotted against the number of beams, for the same threshold values
as in Figure 3.8. The execution time is affected not only by the number of beams
but also by how they are distributed throughout the atmosphere. This will determine
the average length of the field lines and also how the work load is distributed between
different processes (see Appendix B). However, apart from a dip for K̃lim = 4, the
execution time appears to scale quite linearly with the number of field lines, at least
for the particular snapshot used in these runs. Compared to the MHD simulations, the
execution times for the electron beam module are higher by a factor of 1 to 5. From
K̃lim = 2 to K̃lim = 1, the execution time increases by roughly 30%. Considering the
very minor increase in heating that is gained by using K̃lim = 1 instead of K̃lim = 2,
this is in my opinion not worth the extra execution time. The results in the following
sections are therefore produced with K̃lim = 2.
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Figure 3.9: Measured execution times of the electron beam module for a single time
step with various numbers of beams. The corresponding execution times for the module
responsible for the MHD simulation are also included for reference. The axis on top
indicates the corresponding values of K̃lim that were used. Each run was performed
with 256 MPI processes.
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Results

4.1 The initial atmosphere

In order to study the effect of the electron beams in a realistic solar atmospheric box, I
re-ran a pre-existing Bifrost simulation of such an atmosphere with the electron beam
physics included. This makes it easy to compare the results with and without electron
beams. The box measures about 25 Mm in the horizontal directions, with depth ranging
from z = 2.5 Mm at the bottom to z = −14.3 Mm at the top. The zero level of depth
is made to correspond roughly to the top of the photosphere. There are 768 grid cells
along each dimension, meaning that each grid cell spans about 32 km in each horizontal
direction. The resolution is non-uniform in depth, as grid cells near the transition
region are packed much tighter together in the z-direction than the cells at the far
top and bottom. This is done to accommodate the requirement for higher resolution
near the transition region where the atmosphere changes very rapidly with depth. The
horizontal boundary conditions are periodic: everything exiting one side of the box will
re-enter through the opposite side. The fluid motions in the bottom of the box are
driven by a forced convection. In addition, magnetic flux is pushed up through the
bottom boundary, causing reconnection as emerging magnetic flux tubes collide with
the pre-existing coronal magnetic field.

Figure 4.1 shows the temperature, density and Joule heating through a vertical
slice of the Bifrost atmosphere at the time when we first include the beam simulations.
Note that I will use the term snapshot to refer to the state of the atmosphere at a
particular point in time. The initial snapshot has a relatively cold corona, as can be
seen in the top panel of the figure. There are some hot regions with temperatures of
several million kelvins, but most of the corona has temperatures below 105 K. There are
also cold spots with temperatures of just a few thousand kelvins. The coronal density is
correspondingly high, as can be seen in the middle panel. It is also evident that the areas
with the highest temperatures are typically also the ones with the lowest densities. The
reason for the low coronal temperatures and high densities is likely that the magnetic
field emerging through the bottom boundary has lifted cool, dense photospheric and
chromospheric material into the corona. The arcing structure of this magnetic field is
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Figure 4.1: Slices in the xz-plane of the initial atmosphere, near the centre of the box
at y = 12.3 Mm. The upper panel shows the gas temperature, the middle panel shows
the mass density and the lower panel shows the Joule heating, all in logarithmic scales.



4.2 Acceleration sites 53

quite evident in all three plots. Due to reconnection of the emerging magnetic field lines,
the corona is relatively active, as the plot of Joule heating in the bottom panel shows.
Joule heating occurs where gradients in the magnetic field generate electric currents.
The current flows along the coronal magnetic field lines, revealing them as thin arcs of
concentrated Joule heating in the figure.

I investigated three different atmospheric simulations as candidates for the electron
beam simulations. My reason for choosing this particular atmosphere was simply that,
despite the cool, dense corona, it yielded the highest amount of beam heating in the
transition region during the first time step. The other two atmospheres both had hotter
and more tenuous coronas, which would let the electron beams retain a larger fraction of
their energies before hitting the transition region. However, they also had significantly
less Joule heating, meaning that the available energy for the electron beams would be
much smaller in the first place.

4.2 Acceleration sites

Figure 4.2 shows a 3D view of the simulation box with the acceleration sites obtained
using a threshold value of K̃lim = 2. The colours indicate the amount of energy etot

Figure 4.2: Points in a Bifrost simulation for which K̃ > 2. There are roughly 160 000
acceleration sites in the figure. The colours represent the total beam energy.
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injected into the electron beams per volume and time. This quantity is related to the
total beam energy by Etot = etotVrec∆trec, where Vrec and ∆trec are the volume of the
reconnection region and duration of the reconnection event, respectively. The beam
energies in the figure vary by a few orders of magnitude, but typical values of etot
appear to be between 0.1 and 10 erg cm−3 s−1. To get a better sense of the scale
of these energies, consider a reconnection event in a volume extending 1 Mm in each
direction and lasting 1 s. With etot = 1 erg cm−3 s−1, the total beam energy would be
1024 erg. This makes it clear that we are dealing with very small flares, with energies
comparable to those of the nanoflares mentioned in Section 2.2.

The acceleration sites in the figure tend to occur in elongated clusters, presumably
following the shape of the current sheets forming at the intersections of different mag-
netic domains. There is a majority of points at lower heights, and these also tend to
produce somewhat higher beam energies than the points higher up. This is likely due to
the fact that the available magnetic energy decreases with height as the magnetic field
spreads out, and at the same time becomes less turbulent and dynamic. The absence
of points in the lowest part of the box is due to the restrictions that were imposed on
the temperature and depth of the acceleration sites, as discussed in Section 3.4.3. In
particular, points lying deeper than z = −0.5 Mm or with temperatures below 105 K
were automatically rejected.

4.3 Beam heating during a single time step

4.3.1 Heating from a single electron beam

Before studying the effect of beam heating in a full Bifrost simulation evolving in time,
it is informative to look at how electron beams transport energy during a single time
step. We will first look at the effect of a single beam. An example of the heating along
a field line due to an electron beam is plotted in Figure 4.3. The beam originates at an
acceleration site slightly higher than 6 Mm above the photosphere. We can see that a
great deal of heating occurs in the immediate vicinity of the acceleration site. This is
because a large fraction of the beam electrons have a relatively low energy, meaning that
they will be thermalised quickly. This local beam heating will partially compensate for
the removed Joule heating near the acceleration site (recall that the energy allocated
to the beam is removed from the already computed Joule heating at the site)1. After
leaving the acceleration site, the beam electrons that still remain follow the magnetic
field and descend downwards through the corona. Due to the relatively dense corona
in this particular Bifrost snapshot, the amount of heating is quite high throughout the
corona, but decreases with distance as an ever larger fraction of the beam electrons
become thermalised. The sudden peak in heating near z = −1 Mm occurs when the
electrons hit the transition region, where the plasma is a lot denser. Over the next few
megametres, all the remaining electrons thermalise and the beam vanishes.

1Note that the presence of beams still ends up reducing the net heating near the acceleration sites,
since more energy is injected into the beams than what they deposit locally.
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Figure 4.3: The heat deposited by a single electron beam as a function of vertical depth.
The field line is the same as the one used in Figures 3.6 and 3.8. The total energy of
the beam is about etot = 3 erg cm−3 s−1.

4.3.2 Vertical distribution of beam heating

Having followed the path of a single electron beam, we now look at the collective effect of
a large number of beams. The horizontal average of the total beam heating in the initial
atmosphere after a single time step is plotted in Figure 4.4. Also shown for each depth
are the horizontal averages of the initial energies of the beams, as well as their total
deposited energy. Notice that these two curves are quite similar. This is due to the rapid
thermalisation of low-energy beam electrons (as we saw in Figure 4.3), causing a large
fraction of the total beam energy to be deposited very close to the acceleration sites.
The net beam heating curve, which is the difference between the two, thus corresponds
to energy transport via the electrons that travel farther through the atmosphere before
stopping.

There is a clear peak in beam heating near z = −1 Mm, just below the transition
region. This is where the density becomes high enough that all the non-thermal electrons
collide with ambient plasma and deposit their energy. Many of these electrons appear
to come from a layer with a width of a few megametres just above the transition region,
where we see a net reduction of heating. There is also a similar layer of reduced heating
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Figure 4.4: Horizontally averaged beam heating as a function of depth. The initial beam
energies and total energy deposited by the beams (also horizontally averaged) are shown
as well. The net beam heating is the deposited energy minus the initial beam energy.
In order to indicate the location of the transition region, the horizontally averaged
temperature is also included. A threshold of K̃lim = 2 was used for the acceleration
sites.

somewhat higher up in the corona near z = −6 Mm, contributing to the transition
region heating via electrons with initial energies high enough to make it through most
of the atmosphere.

Notice that the curve of initial beam energies goes to zero near z = −1 Mm. This is
above the artificial depth limit of z = −0.5 Mm that was used to exclude acceleration
sites that are thought not to contribute to the heating, so we know that our particular
choice of the value for the limit does not affect the results. We also had a corresponding
lower limit of 105 K for the temperature at the acceleration sites. This is what is
causing the beam energies to go to zero where they do. I found that decreasing the
temperature limit increased the number of acceleration sites by a factor of several, but
it did not affect the net beam heating in any significant way. The reason for this is
that low temperatures will lead to very small values of Emin (see Section 3.2.2), so the
corresponding beams will deposit all their energy almost immediately.



4.3 Beam heating during a single time step 57

Figure 4.5: Top panel: Beam heating averaged vertically in a 0.3 Mm range centred on
the positive heating peak in Figure 4.4. The red circle indicates a heating site discussed
in Section 4.4.2. Bottom panel: Average Joule heating in the same height range.
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4.3.3 Horizontal distribution of beam heating

While it can indeed be informative to look at averages over horizontal layers to study
the effect of beam heating, it hides the fact that the sites of beam heating are not
evenly distributed horizontally, but rather tend to cluster in small regions where the
magnetic field lines converge. This is evident from the top panel in Figure 4.5, where
the horizontal distribution of beam heating around the heating peak in Figure 4.4 is
shown. Most of the locations in this layer have no beam heating at all, but there are a
few isolated regions with relatively strong heating. These regions correspond to coronal
loop foot points where a large number of field lines converge in a tight bundle.

The bottom panel shows the corresponding horizontal distribution of Joule heating
for comparison. Overall, the total amount of beam heating is relatively minor compared
to the total amount of Joule heating. However, the sites where there is significant beam
heating have values comparable to those of Joule heating, indicating that the electron
beams may have a notable heating impact in certain regions. Notice that the pattern of
beam heating has many similarities to the pattern of Joule heating. This is reasonable
considering that the electron beams converge along with the magnetic field lines to
locations of strong magnetic flux emergence, and at these locations there also tends to
be strong induced currents that lead to Joule heating.

4.4 Effect of beam heating on the atmosphere

4.4.1 Differences at beam heating sites

In order to get a general idea of how various atmospheric properties are affected by the
presence of electron beams, I compared the values at certain locations in the beam sim-
ulation to the corresponding values in the original simulation (the one without beams).
There are three separate effects that can lead to a discrepancy between the two simu-
lations at some position. Firstly, energy could be deposited at the position by passing
beams. Secondly, the position could correspond to an acceleration site, meaning that
local Joule heating will have been removed and put into the beam that originates there.
Finally, the two simulations could simply have evolved away from each other. A tiny
perturbation to the state of the atmosphere will eventually lead to completely different
results. This happens because of the non-linearity of the MHD equations and is some-
times referred to as the butterfly effect2. Even if we did not have the discrepancies caused
by the extra beam physics, we would still be left with tiny perturbations throughout
the atmosphere caused by variations in how floating-point values are rounded3. Since
the aim here is to look at the heating of the plasma caused by electron beams, it is
only the differences due to the first effect mentioned above that are of interest. Care

2Coined by American meteorologist Edward Lorenz in 1969, the term refers to a metaphor where
the flapping of the wings of a butterfly affects the path of a tornado by introducing a tiny initial
perturbation to the evolution of the non-linear weather system.

3Even though IEEE floating-point operations are in themselves deterministic, running the code on
different machines will typically introduce variations that lead to different rounding, like expressions
not being evaluated in the same order.
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Figure 4.6: Relative differences in temperature between the simulations with and
without electron beams, for varying amounts of beam heating, when the simulations
have been run for 5 (upper panel) and 10 (lower panel) seconds of solar time. Tbeams

is the temperature at a point in the beam simulation, and Torig is the temperature at
the corresponding point in the original simulation. Qbeam was computed as the average
beam heating since t = 0 s. The blue curve is the running average of the temperature
difference, with each horizontal segment indicating the width of the bin in which the
differences were averaged.
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thus has to be taken when comparing the two simulations so that differences due to the
butterfly effect are not attributed to the presence of beams.

Temperature

Figure 4.6 shows the relative difference in gas temperature between the two simulations
after 5 and 10 seconds of solar time. Only the points below z = −2 Mm and where
the beam heating is larger than 10−5 erg cm−3 s−1 are included in the plots. This
automatically excludes points like acceleration sites where the total heating is reduced
due to Joule heating being converted into beam energy. The temperature differences
are plotted against the value of beam heating, and the colours represent the actual
temperatures taken from the simulation with beams.

The plots contain less than 0.5% of all the points below z = −2 Mm. This immedi-
ately tells us that just a very small fraction of the points in the lower atmosphere will
be directly influenced by beam heating. For points with Qbeam < 0.1 erg cm−3 s−1, the
average temperature difference (as indicated by the blue curve) remains close to zero
after both 5 and 10 seconds. However, their spread in temperature differences increases
over time. Because these points have never been subjected to any significant amount of
beam heating, this spread must have been caused by the butterfly effect. The fact that
the butterfly effect has not changed the average temperature difference indicates that
the average is a reasonable measure of the direct influence of the electron beams on the
plasma. For larger values of beam heating, the average increase in temperature grows
steadily, peaking at around 35% at the sites with the strongest beam heating. For these
sites, the individual temperature differences range from no change at all to a doubling
of temperature.

Density

Figure 4.7 shows the relative differences in density after 5 seconds, plotted in the same
way as for the temperature. Unlike an increase in internal energy (and hence in tem-
perature and pressure), a change in density is not a primary reaction to an enhanced
rate of heating. The density is affected by the divergence of the velocity field: if more
plasma flows out of a region than into it, the density decreases. Such a situation can be
caused by a localised increase in pressure, but it takes time to accelerate the plasma.
This resistance to change is reflected in the figure. On average, the density remains
unchanged for most values of beam heating. There is a very slight increase in density
for intermediate beam heating values, and a small decrease in density for the highest
beam heating values, but these differences are only in the order of 1% on average. I will
come back to the reason for these slight differences in Section 4.4.2.

Pressure

The corresponding plot of the relative pressure differences after 5 seconds looks almost
identical to the upper panel in Figure 4.6, so I do not include it here. Considering the
very minor average differences in density in Figure 4.7, this similarity between pressure
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Figure 4.7: Relative differences in mass density after 5 seconds of solar time, in the
same format as the plots in Figure 4.6.

and temperature is indeed what we would expect if we assume that the plasma follows
the ideal gas law4:

P = ρkBT. (4.1)

It is clear from this equation that the pressure will behave in exactly the same way as
the temperature if the density is kept constant.

Vertical velocity

Let us finally consider the differences in vertical plasma velocity between the two simula-
tions. These are shown after 5 seconds in Figure 4.8. This time, absolute differences are
used rather than relative differences. The points with significant beam heating appear
to exhibit both downward and upward motions, but downward motion appears to be
the most prevalent. In the beam simulation, the plasma has been accelerated upwards
relative to the original simulation by up to 2 km/s on average, with the largest changes

4The equation of state used for the simulations is in fact not the ideal gas law, but a more de-
tailed relation that has been pre-computed and tabulated. Still, the ideal gas law works as a decent
approximation for understanding the rough behaviour of the plasma.
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Figure 4.8: Absolute differences in vertical plasma velocity, plotted in the same way as
in Figures 4.6 and 4.7. Note that positive vertical velocities result in motion downwards
in the atmosphere. The colour coding corresponds to the Doppler-shifts of the velocities,
with red indicating downward motion and blue indicating upward motion.

occurring at sites of intermediate to strong beam heating. Differences of up to 10 km/s
in the upward direction can be seen for some of the sites.

Preliminary discussion

The results that we have looked at so far make it clear that heating from electron
beams has a direct, appreciable influence on the plasma at a relatively small number
of points in the lower atmosphere where the heating is most intense. We know from
Section 4.3 that these points predominately are located near the bottom of the transition
region (around z = −1 Mm), and that they form several extended heating sites at the
foot points of coronal loops. In the corona, there are scattered sites of strong beam
heating close to where electrons are accelerated, as we saw from Figure 4.3. However,
the high coronal conductivity will quickly make sure that this heating just goes into
compensating for the removal of energy at the acceleration sites. This justifies the
exclusion of points above z = −2 Mm in the previous figures. We saw that after 5
seconds, the temperature and pressure at the transition region beam heating sites have
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increased by up to 35% on average, and the heated plasma has been accelerated upwards
by several km/s. Meanwhile, the density has remained relatively unaffected.

Although useful for providing an overview of how the plasma is affected by electron
beams, the average differences considered in this section do not tell the whole story of
what is happening at the beam heating sites. In the following section, we will gain a
better understanding of what the electron beams do by studying the state of the plasma
near the foot point of a coronal loop.

4.4.2 Effect on plasma in a coronal loop

The most intense beam heating regions occur where a large number of beams converge on
the same spot in the lower atmosphere. This can happen near the foot points of coronal
loops, where the associated magnetic field lines are tightly bundled together. In this
section we will study the effect of beam heating on the transition region plasma inside

Figure 4.9: Temperature as a function of depth along coronal loop field lines near an
intense beam heating region. There are two sets of field lines, taken from both the
original and the beam simulation, in both cases when the simulations had been evolved
for 5 seconds of solar time. The latter set of field lines are colour coded with the amount
of heating that was produced by the beam traversing each field line.
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such a bundle of field lines. The red circle in the upper panel of Figure 4.5 indicates the
location of the particular heating region in question. To extract the relevant field lines,
I started by transporting a full set of electron beams in both the simulation that was
run with and without beams. In both cases I recorded which beams passed through a
small box centred on the chosen beam heating region and extending about 100 km in
each direction. Among these beams I only considered the ones originating near z = −5
to z = −6 Mm, and with a relatively high energy deposition in the transition region.
This resulted in two sets of field lines corresponding to the same coronal loop, one for
the run that included beam heating and one for the original run.

Temperature

The temperatures along the coronal loop field lines for both runs (after 5 seconds)
are plotted as a function of depth in Figure 4.9. The depth range in the figure spans
300 km, centred on the depth where the beam heating is strongest (z = −1.1 Mm).
For the field lines from the beam simulation, each curve is colour coded according to
the amount of heating generated by the beam that traversed the field line. Both at the

Figure 4.10: Density as a function of temperature along the same field lines as in Figure
4.9.
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top and bottom of the depth range, the two bundles have the same temperature. Near
the middle, where there is beam heating, the coronal loop from the beam simulation
is hotter. The heating is evident for a large range of temperatures, from about 104 to
106 K. In fact, the beam heating effectively moves the entire transition region about
10 km deeper. This happens because the plasma just below the transition region is made
hot enough to halt the radiative cooling and undergo a massive temperature increase,
as described in Section 2.1.3.

Recall from Figure 4.7 that the density is rather unaffected by beam heating. The
density increases very steeply with depth inside the transition region, so moving the
transition region deeper should lead to a higher overall density inside the transition
region. Figure 4.10 verifies this suspicion. It shows the densities inside the field line
bundles plotted as a function of temperature. The increase in density is evident for
nearly the full temperature range from 104 to 106 K. The largest relative increases
occur between 30 000 and 80 000 K, and typically appear to be in the order of a few
tens of percent. A higher density for the plasma at a given temperature will tend to
enhance the emission of radiation. These results can therefore provide predictions for
the degree of brightening that should be observed in the various spectral lines produced
at transition region temperatures.

Pressure

Let us now look at the pressure inside the coronal loops, which is plotted as a function of
depth in Figure 4.11. For both runs there is a significant pressure drop from z = −1.15
to z = −1.1 Mm, meaning that the transition region is not in hydrostatic equilibrium.
If present at other beam heating sites as well, such a pressure drop would explain the
trend of downflows evident in Figure 4.8, as plasma will flow from the higher-pressure
region just above the beam heating site to the lower-pressure region below. The exact
reason for the irregular pressure profile is not clear, but it is likely related to the high
activity in the initial atmosphere. For the simulation with beam heating, the pressure
is generally higher inside the beam heating region, in accordance with the elevated
temperature.

Vertical velocity

Figure 4.12 shows the vertical plasma velocity along the field lines in the two coronal
loops. The previously mentioned downflow is very apparent between z = −1.2 and z =
−1.1 Mm in this figure (recall that a positive vertical velocity corresponds to downward
motion). Higher up, the plasma changes direction and starts to move upwards. This
can be understood from the moderate drop in pressure when moving upwards from the
pressure peak near z = −1.17 Mm in Figure 4.11.

The velocity profile in the beam simulation is shifted slightly towards larger depths
and has a lower peak compared to original velocity profile. Both of these features can
be explained from the changes in pressure. The general increase of pressure by beam
heating causes the pressure drop in Figure 4.11 to occur at a slightly larger depth, and
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Figure 4.11: Pressure as a function of depth along the same field lines as in Figure 4.9.

hence the largest acceleration of the plasma will take place somewhat deeper down in
the transition region. Because the maximum pressure enhancement by beam heating
occurs near the bottom of the pressure drop, the pressure gradient is not quite as large
in the simulation with beams, causing the maximum downward velocity to be a bit
smaller.

Near z = −1.12 Mm, the vertical velocity profiles for the two cases intersect. Higher
up, the plasma in the beam simulation has a slower downward (or faster upward) motion
compared to in the original simulation, while the opposite is true farther down. However,
the differences are significantly larger on the upper side of the intersection, and this
explains the general trend of the beams increasing the upward velocity at the beam
heating sites, as we saw in Figure 4.8. The switch between downward to upward velocity
occurs at about z = −1.2 Mm in the beam simulation, while in the original simulation
it occurs a few tens of kilometres higher up. At this height, where the plasma in the
original simulation is stationary, the plasma in the beam simulation has an upward
velocity of about 7 km/s.

Figure 4.12 also enables us to understand the average differences in density from
Figure 4.7, which shows a very slight increase in density at locations of intermediate
beam heating and decrease in density at locations of strong beam heating. The net
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Figure 4.12: Vertical velocity as a function of depth along the same field lines as in
Figure 4.9.

effect of the beams is to accelerate plasma in the direction away from the location of
the strongest beam heating. When plasma flows away from these locations, the density
there will decrease. As this plasma flows to the surrounding regions of intermediate
beam heating, the density at these locations will in turn increase.

Time evolution

I conclude this examination of the beam heating’s influence on the coronal loop with
a quick look at how the temperature changes over time. The temperature at a single
position (near the depth of z = −1.12 Mm), corresponding to where the beam heating
in the coronal loop is strongest, is plotted as a function of time in Figure 4.13. The
temperature at the same position in the original simulation is included for comparison,
as well as the amount of beam heating. Initially, the beam heating is zero (since no
beams have been simulated), and the temperature is about 35 000 K. Even without
beam heating, there is a steady increase in temperature over time at a rate of about
500 K/s. This is caused by local Joule heating and heat conduction, as well as by the
flow of hotter coronal plasma downwards through the transition region. When the beam
heating is switched on, the temperature increases rapidly, reaching about 42 000 K after
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Figure 4.13: Time evolution of the temperature at the most intense beam heating site
in the coronal loop, for both the simulation with and without electron beams. The
amount of beam heating is also plotted.

the first second. For the next 7 seconds, the beam heating remains constant, while
the temperature increases at about the same rate as the case without beams. This
indicates that most of the extra heat input is balanced by an increased rate of radiative
cooling. Between t = 9 and 10 s, the beam heating increases significantly, and this
is accompanied by a roughly proportional increase in temperature. The temperature
then returns to its original rate of increase, as the beam heating levels out and starts
to go slightly down. After 18 seconds, the temperature is about 65 000 K in the beam
simulation, compared to 45 000 K in the original simulation.

Discussion

The particular coronal loop explored in this section showed a response to the beam
heating that was consistent with the differences studied in Section 4.4.1, and even
allowed us to better understand some of the features in the plots of differences. This
suggests that the situation is quite similar also in the other beam heating regions in the
atmosphere, and that the detailed behaviour studied in this section to some extent is
representative of typical heating response in other coronal loops.
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The stronger emission at transition region temperatures caused by the shifting of the
transition region to higher densities at the beam heating sites is an effect that potentially
could be observed. Coronal loop foot point brightenings were indeed observed by Testa
et al. (2014) in several transition region spectral lines, including the CII (1335.78 Å)
and SI IV (1402.77 Å) lines, which are formed at temperatures of roughly 30 000 and
80 000 K respectively. These are temperatures where we saw some of the largest relative
increases in density in Figure 4.10. However, the observed brightenings showed intensity
variations by up to a couple of orders of magnitude, while Figure 4.10 suggests that any
brightenings produced in the beam simulation at a given temperature would only be
by a few tens of percent with respect to the original simulation. This matter could be
made clearer by simulating the radiative transfer in detail to produce synthetic observed
spectra, rather than just looking at the increase in density.

As mentioned in Section 2.2, Testa et al. (2014) found the observed brightenings
to be consistent with 1D numerical simulations of an electron beam. Their best fit
with the observations involved a value of Emin of about 10 keV, which enabled a large
number of electrons to deposit their energy in the chromosphere, leading to a pressure
pulse accelerating the transition region plasma upwards. This produced a blue-shift of
the SI IV line, which is consistent with what they observed. The electron beam in their
simulation had a total energy of about 1025 erg. It is not straightforward to compare
this to the energy release in our model, due to the important qualitative difference
that each beam heating site in our model is the result of a large number of different,
relatively low-energy beams converging on the same location, rather than of a single
high-energy beam. However, it is clear that the electron beams simulated in this thesis
did not acquire nearly as hard energy distributions, because the method of determining
Emin from the intersection between the thermal and non-thermal distributions (Section
3.2.2) naturally leads to small values of Emin in the relatively cool corona of the initial
atmosphere. Because of the low fraction of very high-energy electrons, the beams did not
penetrate significantly into the chromosphere. Still, we did see an increase in pressure
centred at the beam heating sites, which caused the plasma to be accelerated in either
direction away from the site. An upward velocity of 7 km/s was found at the point
where the plasma would have been stationary in the absence of beams. While this is
smaller than the several tens of km/s obtained by Testa et al. (2014), it represents a
noteworthy qualitative agreement between the models.

Testa et al. (2014) also reported about 20–30 second variability in the observed
brightenings. The time interval covered by Figure 4.13 is not sufficiently long to identify
any such variability. However, the figure does show that the amount of beam heating
at a given location can change rapidly and by a significant amount, indicating that
variations with time scales of the order of seconds are indeed plausible.

The difference between a simulation with and without electron beams is essentially
the means by which energy is transported along field lines from the corona to the lower
atmosphere. Even in the absence of beams, energy will flow along the field lines due
to heat conduction caused by collisions between electrons and ions (modelled in Bifrost
by the Spitzer conductivity mentioned in Section 3.1.1). Our results show that electron
beams represent a more effective process than Spitzer conductivity for transport of
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energy from the corona. In addition, there is an important qualitative difference in that
heat conduction will not proceed far past the transition region, as the plasma becomes
cool and the resistivity increases. Electron beams, on the other hand, can in principle
penetrate deep into the lower atmosphere before they deposit their energy, as long as
the electrons are sufficiently energetic. This suggests that the simulation with electron
beams would become increasingly different in character from the simulation without
beams if we had obtained larger beam energies or harder energy distributions.

As a final note, it is worth stressing that the choice of the initial atmosphere will have
had a great influence on the final results, both by determining the amount of energy
available for the beams and by providing the setting in which the beams deposit this
energy. As discussed in Section 4.1, the particular atmosphere used for this thesis had a
relatively dense and cool corona. A hotter corona would have resulted in higher values
of Emin, and hence a larger fraction of higher-energy beam electrons. We would then
have seen deeper penetration of the electron beams into the chromosphere, and possibly
have obtained a different atmospheric response to the beam heating. Correspondingly,
a more tenuous corona would have let more of the lower-energy beam electrons reach
the transition region, increasing the total amount of transition region heating. It could
therefore be informative to include the beam physics in different kinds of atmospheres
and study the effect of beams under various conditions.
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Summary and concluding remarks

Summary

The aim of this thesis was to develop a model for computing the heating due to beams
of non-thermal electrons accelerated by magnetic reconnection in the solar atmosphere,
and use it to study the impact of such heating in the atmosphere. In order to perform a
realistic 3D simulation of a limited region of the solar atmosphere, we used the radiative
MHD code Bifrost. The implementation of the beam simulation code could then be
broken down into four tasks.

Firstly, points in the atmosphere where the magnetic field is reconnecting had to
be identified. For this we computed a quantity described in Biskamp (2005), which we
denoted by K, and made use of the fact that reconnection in theory should happen
when K > 0. For practical purposes we used a normalised variant K̃, and considered
reconnection sites to occur where K̃ exceeded some limit K̃lim.

Next, the energy distribution of accelerated electrons at the reconnection sites had
to be determined. We assumed a power law for the distribution, with a total energy Etot

corresponding to half of the energy released by reconnection. The power law index δ was
simply set to a number in the range of typical values inferred from observations. Finally,
we determined the minimum beam electron energy Emin by finding the intersection
between the non-thermal power law distribution and the thermal Maxwell–Boltzmann
distribution of electrons at the acceleration site.

Both of these tasks are the focus of Helle Bakke’s master’s thesis and have thus
received less attention in this thesis. The primary focus of this thesis has been the
latter two tasks: determining the trajectories that the electron beams would follow by
tracing magnetic field lines, and computing the energy loss of the beam electrons along
the way in order to determine the heating of the ambient plasma.

The tracing of magnetic field lines was performed by solving the ordinary differen-
tial equations for the direction of the field line using a Runge–Kutta scheme with an
adaptive step length. We applied ideas from control theory in order to stabilise the se-
quence of step lengths. To avoid excessive computational effort in the lower part of the
atmosphere, the field lines were gradually decoupled from the highly irregular magnetic
field direction and instead forced to point straight down when the plasma β became
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sufficiently high.
For simulating the evolution of the non-thermal electron distribution with distance

along the field line, we started with a Fokker–Planck equation describing the effect
of Coulomb collisions and magnetic mirroring on the electron beam. To simplify the
problem, we assumed the beam electrons to have a trivial distribution of pitch angles.
The beam heating at each point along the field line was then calculated as the collective
energy loss from the beam electrons. We made the simplifying assumption that each
individual electron would not lose any energy until it reached its thermalisation depth,
where all of its initial energy would be deposited. This yielded a very simple expression
for the beam heating, but resulted in a moderately overestimated beam heating in
the transition region. The number of beams to simulate was chosen as a compromise
between obtaining enough beam heating and avoiding a too high computational expense.
A good balance was struck at around 160 000 beams (K̃lim = 2), as this was when the
amount of beam heating started to stagnate.

We included the electron beam physics in an already well-evolved Bifrost simula-
tion of the solar atmosphere, with significant magnetic flux emergence and an active,
although relatively cool and dense corona. The atmosphere could then be simulated for-
ward in time both with and without electron beams, so that the effect of beam heating
on the atmosphere could be studied. We obtained a distribution of acceleration sites
favouring points at relatively low heights, and consisting of clusters corresponding to
the intersections of different magnetic domains. Acceleration sites lying too low in the
atmosphere were automatically excluded, as their generated beams would deposit all of
their energy immediately due to the high density and low temperature, and hence not
contribute to any energy transport.

When looking at the heating caused by a single beam, we found that a large fraction
of the beam energy was deposited in the immediate vicinity of the acceleration site. This
was a result of the rapid thermalisation of the large fraction of relatively low-energy
electrons in the beam. The remaining beam electrons were typically thermalised in
the transition region, where the density increases rapidly with depth. The latter effect
was also seen when we looked at the horizontally averaged heating generated by all the
electron beams, where the majority of the beam heating was found to occur at a height
of about 1 Mm above the top of the photosphere. The most intense beam heating sites
were located at the positions where the bundles of magnetic field lines associated with
coronal loops entered the transition region. In the corona, the injection of energy into
the beams led to an average reduction of heating. This reduction would have been more
significant if it were not for the rapid thermalisation of the lower-energy beam electrons.

We also studied the average differences in various quantities between the simulation
with and without beams included, after the simulations had been evolved for a few
seconds of solar time. There was a clear correlation between the increase in temperature
in the beam simulation and the amount of beam heating. For the strongest beam heating
sites, the relative temperature increase compared to the simulation without beams was
around 35% on average. There was also a corresponding increase in pressure, while the
density remained almost the same in both simulations. The transition region plasma
tended to exhibit a downward motion at the positions that were compared, but the
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presence of beam heating typically lead to upwardly directed changes in velocity of a
few km/s.

For the purpose of better understanding the details of how the beam heating influ-
enced the atmosphere, we went on to look at the state of the plasma in the vicinity of
a beam heating region inside a particular coronal loop. The heating had the effect of
shifting the transition region downwards by roughly 10 km, to a depth with a slightly
higher density. As a result, we predicted an increase in intensity by a few tens of per-
cent for the spectral lines formed at temperatures in the range of 30 000 to 80 000 K.
We also saw an increase in pressure centred at the position with the strongest beam
heating. This led to an acceleration of plasma in the directions away from this pos-
ition, predominantly in the upward direction. Finally, we looked briefly at the time
evolution of temperature at the position of maximum beam heating in the coronal loop,
for both the beam simulation and the original simulation. In both cases there was a
steady increase in temperature over time, but the addition of beam heating resulted in
an approximately 50% higher final temperature. The rate of temperature increase did
not always increase in proportion to the amount of beam heating, suggesting that the
rate of radiative cooling increased to compensate for the extra heat input.

Conclusion

The strength of the flare model developed for this and Helle Bakke’s thesis is that it
is fully integrated into a realistic 3D model of the solar atmosphere. This allows for
a self-consistent treatment where the presence of flares can affect the atmosphere and
hence have an influence on later flare events1. In addition, we can avoid a number of
free parameters that would otherwise be required. For instance, in 1D flare models like
those of Abbett and Hawley (1999) and Allred et al. (2005, 2015), the total beam energy
Etot and minimum electron energy Emin, as well as the state of the plasma along the
beam trajectory, have to be set based on the particular kind of situation that is the
aim to study. In our model, these quantities are all derived from the state of a realistic
3D atmosphere. The drawback with this is a great increase in computational cost,
which necessitates a relatively simple treatment of the underlying physical processes
compared to what is done in the 1D models (the omission of pitch angle scattering
being one example).

For the particular initial atmosphere used in this thesis, we found that the beam
heating produced by our simple flare model had a notable effect on the atmospheric
plasma in a limited number of regions where the heating was sufficiently strong. These
regions correspond to coronal loop foot points, where beams converge along the increas-
ingly concentrated magnetic field lines. Most of the energy was deposited at the bottom
of the transition region, and the resulting shift of the transition region to larger depths
could lead to slightly enhanced emission in transition region spectral lines like C II and
SI IV. Together with the upwards acceleration of plasma found at the heating sites,
this is in correspondence with the observations and modelling of Testa et al. (2014).

1Although, in the particular simulations performed for this thesis, the plasma response was too
small to significantly influence the overall state of the atmosphere.
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However, the response of the plasma in our model was relatively small compared to
what their results would suggest. This can in part be attributed to the low fraction
of high-energy electrons in the generated beams, which was a result of the relatively
low temperatures at many of the coronal electron acceleration sites. In addition, the
somewhat high coronal density of the initial atmosphere caused a large fraction of the
total beam energy to be deposited before the electrons reached the transition region.
This state of affairs would probably be quite different for a different choice of initial
atmosphere.

Future work

Seeing as many aspects of the physical processes governing the interaction between beam
particles and the plasma have been neglected or simplified (as discussed throughout
Section 3.4.1), there are several improvements that could be made to the flare model to
make it more realistic. For instance, including the increased rate of collisional ionisation
due to the presence of non-thermal electrons could be important for obtaining the
correct plasma response in higher-energy events, as this is the process that triggers
the explosive phase of flares (Section 2.2.4). In addition, the ad hoc assumption of
a peaked pitch angle distribution, which allowed us to neglect pitch angle scattering,
could certainly be improved upon. This could be done by assuming a more general
form of the pitch angle distribution, with parameters that are either set freely (like
δ in the energy distribution) or derived from the underlying plasma properties (like
Emin). However, the latter approach would likely require a more detailed model for
the acceleration process, which could quickly become computationally expensive. A
large amount of extra computational effort would also be required for transporting the
electron distribution while including the effect of pitch angle scattering, as the Fokker–
Planck equation would have to be solved numerically for every depth. This would also
be true if we were to drop the assumption that each electron deposits all of its energy
at the thermalisation depth (rather than loosing it continuously), since we would need
to numerically evaluate the integral in equation (3.74) at each depth. Rather than just
speculating on which aspects of the beam transport simulation that should be given a
more accurate treatment, it would probably be better to set up a comparison between
the present transport model and that of a detailed 1D code like RADYN (Abbett and
Hawley, 1999; Allred et al., 2005, 2015; Carlsson and Stein, 1992, 1995, 1997, 2002).

Due to the limited time at hand, I was not able to simulate the atmosphere for
more than about 20 seconds of solar time, which is too short to gain much information
about the temporal aspect of the plasma response to the electron beams. Simulations
lasting several minutes would be able to reveal the presence of any periodicity similar
to the 30-second variations observed by Testa et al. (2014). In addition, the generation
of synthetic spectra would provide a better understanding of how the results of the
model can be verified observationally. Finally, one of the limitations of these results is
that relatively little beam energy reaches the transition region, so the response is very
faint. The amount of transition region beam heating is determined by the coolness and
denseness of the corona compared to the strength of magnetic reconnection. However,
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in order to release a large amount of magnetic energy through reconnection, a strong
magnetic flux has to be pushed up though the bottom of the simulation box, and this
tends to lift cool, dense photospheric plasma into the corona. The solution to this is
to use a larger simulation box, which would naturally allow for stronger magnetic fields
higher up in the atmosphere while retaining a hot and tenuous corona. Simulations
using larger grids would therefore make it easier to study the effect of beam heating,
but this is currently too computationally expensive.

Some of the computational challenges discussed above could be made more manage-
able by the planned integration of Bifrost into the DISPATCH framework (Nordlund
et al., 2018), which allows for the division of the simulation into individual tasks that
can be performed in parallel without imposing constraints on the time steps used by
other tasks. By letting certain tasks run with a longer time step than is permissible in
the current Bifrost code, DISPATCH can free up computational capacity which can be
allocated to the simulation of a larger domain. In addition, various solutions to tasks
like simulating the electron acceleration process or transporting an electron beam can
be integrated into the framework and take full advantage of the task-based approach to
parallelisation.
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Appendix A

Neville’s interpolation algorithm

Neville’s algorithm is a recursive way of evaluating the interpolating polynomial P (x)
described in Section 3.3.1, by constructing it from lower order interpolating poly-
nomials. We start with the zeroth order interpolating polynomials for the points
xk, xk+1, . . . , xk+N . These will simply be the constants corresponding to the func-
tion values yk, yk+1, . . . , yk+N . Let us denote these polynomials by P(i)(x), where
i = 0, . . . , N , so that P(i)(x) is the interpolating polynomial for point xk+i. We thus
have P(0)(x) = yk, P(1)(x) = yk+1, and so forth. There are N + 1 such polynomials in
total, one for each point. We will soon see how we can use these zeroth order polynomials
to construct the N first order polynomials P(i)(i+1)(x) that interpolate between the N
point pairs (xk, xk+1), (xk+1, xk+2), . . . , (xk+N−1, xk+N ). These will in turn be used to
construct the N − 1 second order polynomials P(i)(i+1)(i+2)(x) that interpolate between
theN−1 point triples (xk, xk+1, xk+2), (xk+1, xk+2, xk+3), . . . , (xk+N−2, xk+N−1, xk+N ).
The procedure is then repeated until we end up with the single N ’th order polynomial
P(i)(i+1)···(N)(x) = P (x) that interpolates between all the points (xk, xk+1, . . . , xk+N ).

So how do we determine the relationship between the N − n + 1 polynomials of
order n and the N − n polynomials of order n+ 1? Take for instance the second order
polynomial P(0)(1)(2)(x). It is the parabola that passes through the points (x0, y0),
(x1, y1) and (x2, y2). We already know the two lines P(0)(1)(x) and P(1)(2)(x) that
extend from (x0, y0) to (x1, y1) and from (x1, y1) to (x2, y2) respectively. We can use
these to construct P(0)(1)(2)(x) by increasing their order by one (through multiplication
with x), whilst making sure that the combined expression still produces the values y0
at x0, y1 at x1 and y2 at x2. Here is an expression that fulfils these requirements:

P(0)(1)(2)(x) =
(x2 − x)P(0)(1)(x) + (x− x0)P(1)(2)(x)

x2 − x0
(A.1)

We know that this must indeed be the polynomial we want since it passes through the
three points and is of second order. The same idea can be used to derive a general
expression for the relation between the two n’th order polynomials P(i)···(i+n)(x) and
P(i+1)···(i+n+1)(x), and the n+ 1’st order polynomial P(i)···(i+n+1)(x):

P(i)···(i+n) =
(xi+n − x)P(i)···(i+n−1)(x) + (x− xi)P(i+1)···(i+n)(x)

xi+n − xi
(A.2)
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Equation (A.2) reduces to equation (A.1) if we set i = 0 and n = 2. A more practical
alternative to equation (A.2) when it comes to implementation (Press et al., 2007) is to
define the n’th order correction polynomials

Cn,i(x) ≡ P(i)···(i+n)(x)− P(i)···(i+n−1)(x) (A.3)

Dn,i(x) ≡ P(i)···(i+n)(x)− P(i+1)···(i+n)(x), (A.4)

valid for n = 1, 2, . . . , N . In the n = 0 case, we simply have

C0,i(x) ≡ P(i)(x) (A.5)

D0,i(x) ≡ P(i)(x). (A.6)

So to obtain P(0)(1)(2)(x) from P(0)(1)(x) we could use

P(0)(1)(2)(x) = P(0)(1)(x) + C2,0(x). (A.7)

If we instead wanted to obtain P(0)(1)(2)(x) from P(1)(2)(x), we could use

P(0)(1)(2)(x) = P(1)(2)(x) +D2,0(x). (A.8)

Recurrence relations for computing Cn+1,i and Dn+1,i can be derived from equation
(A.2) using the definitions in equations (A.3) and (A.4). The results are

Cn+1,i(x) = (x− xi)
[
Cn,i+1(x)−Dn,i(x)

xi+n+1 − xi

]
(A.9)

Dn+1,i(x) = −(xi+n+1 − x)

[
Cn,i+1(x)−Dn,i(x)

xi+n+1 − xi

]
. (A.10)

To obtain P (x), we start by setting C0,i(x) and D0,i(x) equal to yi, then compute the
corrections C1,i and D1,i using equations (A.9) and (A.10). These are in turn inserted
into equations (A.9) and (A.10) to obtain C1,i and D1,i, and this continues until we have
computed CN,i and DN,i. In each step n of the process we also maintain a cumulative
sum Pn,i(x) of correction polynomials that we correct with either Cn+1,i or Dn+1,i−1
(yielding either Pn+1,i(x) or Pn+1,i−1(x) respectively)1, landing us at P (x) after the
final iteration. The final correction yields an estimate of the error, in the sense that a
large final correction indicates that the sequence of corrections has not converged, so
that there will be a significant difference between solutions obtained using interpolations
of different orders.

1It makes no difference for the result whether C or D is used, but sometimes only one of them will
be defined.
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Performing the simulations in
parallel

The Bifrost code is typically executed in parallel on a large number of CPUs in order
to reduce the execution time as much as possible. Individual instances of the execut-
ing program, or processes, are distributed among the CPUs. The full simulation box
is divided into equally sized sub-domains, one for each process, and every process is
responsible for performing the simulation in its assigned sub-domain. In order to fulfil
the local boundary conditions, each processes also has to communicate its results at
the boundaries of the sub-domain to the neighbouring processes, and in turn receive
the corresponding results of the other processes. This is achieved with the help of a
communication protocol known as the Message Passing Interface (MPI).

As with the rest of Bifrost, the simulations of the electron beams are also parallelised.
However, the task of tracing a magnetic field line is inherently serial; each new position
has to be computed from the previous position. As discussed at the end of Section 3.3.6,
the beam heating is computed in tandem with the tracing of the associated field line,
so we cannot split these tasks between processes either. But there is still a potential
for concurrency due to the fact that we simulate a large number of beams in each time
step.

Since a process only has access to the part of the atmosphere belonging to its sub-
domain, each process is responsible for simulating a beam as long as it resides in its
sub-domain. This includes the simulation of all beams that originate in the sub-domain
until they pass into another domain, as well as beams originating in other domains but
passing through the sub-domain belonging to the process.

Each process has a message buffer for storing the current state of all incoming beams.
As soon as it has simulated the current beam, it checks the buffer and begins simulating
the next incoming beam. If there are no incoming beams at the moment, it instead
begins the simulation of the next beam originating in its sub-domain. When a process
stops simulating a beam, it is either because the beam is completed (because there is
no energy left in the beam or it has reached a non-periodic boundary), or because the
beam has entered a neighbouring sub-domain. In the former case, the process simply
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increments a count of how many beams it has completed. In the latter case, the process
determines which process should take over the beam and stores the current state of the
beam in the message buffer of that process.

There is one process, hereafter referred to as the communication master, which is
additionally responsible for determining when all the beams have been completed. One
of the processes lying at the top of the atmosphere is chosen for this task, because
they typically have fewer beams to simulate than the processes farther down. After a
process has no remaining beams originating in its sub-domain, it will check its count
of completed beams every time it does not detect an incoming beam. If the count is
non-zero (because it has completed new incoming beams), it sends the count to the
communication master and resets it to zero. The communication master sums up the
number of completed beams from all processes, and when this number reaches the total
number of beams it puts a special message in the message buffers of the other processes,
instructing them to exit the simulation loop.

Figure B.1: Measured execution times of the electron beam module for a single time
step with various numbers of MPI processes. The corresponding execution times for
the module responsible for the MHD simulation are also included for reference. The
processes were evenly distributed over 29 individual nodes (connected computers) during
each run. Each run was performed with a threshold of K̃lim = 2, resulting in roughly
160 000 beams.
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The amount of work will not be evenly distributed between the processes, because
some parts of the atmosphere will have a higher traffic of beams than other. In particu-
lar, processes with sub-domains very high in the corona or deep in the lower atmosphere
where the beams cannot reach, are likely to be mostly idle. The communication of beam
states and counts will also steal processing resources. We therefore cannot expect the
execution time to decrease linearly with the number of processes. Figure B.1 shows how
the execution time for the beam simulations varied with the number of MPI processes
when run on a particular computer cluster.

The performance scales decently well going from 32 to 128 processes, with the exe-
cution time roughly being cut to half by the fourfold increase in number of processes.
It then starts to level out, with relatively little speedup from 256 to 512 processes.
This behaviour is likely due to the aforementioned uneven load balance between the
processes. We actually see a similar behaviour for the MHD module. However, in this

Figure B.2: Measured execution times of the electron beam module for a single time
step with various numbers of extra threads. The number of processes is 256 in each run,
and the threshold K̃lim is the same as in Figure B.1. Like in Figure B.1, the execution
times for the MHD simulation are also shown for reference. The first data point (20

extra threads) in practice yielded no extra threads due to the numbers being rounded
to zero when each process computes the number of additional threads to use.
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case the work should be very evenly distributed, so the stagnation is more likely a result
of the simulations reaching a point where the decrease in computation time is offset by
the increase in communication time.

The uneven load balance can be improved by having multiple CPUs simulating
beams within the same sub-domain. This can be achieved by letting each process
spawn a number of threads before entering the simulation loop, and distribute among the
threads the beams to be simulated in the sub-domain. A thread is a lightweight variant
of a process: the threads spawned by a process share nearly all the data associated with
the process, apart from a few quantities that each thread needs to have independent
copies of, like the state of the current beam to simulate. By deciding the number of
threads to use in each sub-domain based on the number of beams that originate there,
the available processing resources can be applied where they are needed the most.

I implemented this functionality using a multithreading API1 called OpenMP (short-
hand for Open Multi-Processing). I then ran a simulation while varying the total num-
ber of extra threads that were made available for the processes. The corresponding
execution times for a single time step are shown in Figure B.2.

With just a small number of additional threads, the performance improves quite
substantially. The “sweet spot” appears to be 32 extra threads, which reduces the
execution time by 45% while only requiring a 12.5% increase in the number of active
CPU cores. This cheap performance increase is possible because the majority of all
the work is done in just a hand-full of sub-domains, and this is where the additional
threads are provided. However, too many threads in a single sub-domain will become
counter-productive, because the CPUs running the threads will eventually have to be
physically far apart, meaning that some of them only have relatively slow access to their
shared memory2. These threads will then mostly get in the way of the faster threads
while adding little in terms of computational resources.

1An API, or application programming interface, is essentially an interface to a set of software com-
ponents, enabling you to use them within your application source code.

2This is a result of the NUMA (non-uniform memory access) design used for the memory system of
the nodes in the cluster.
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