Hyperparameter optimization
using Bayesian optimization on
transfer learning for medical
Image classification

Rune Johan Borgli

Thesis submitted for the degree of
Master of science in Informatics: Programming
and Networks
60 credits

Institutt for informatikk
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2018

Hyperparameter optimization
using Bayesian optimization on
transfer learning for medical
image classification

Rune Johan Borgli

© 2018 Rune Johan Borgli

Hyperparameter optimization using Bayesian optimization on transfer
learning for medical image classification

http://www.duo.uio.no/

http://www.duo.uio.no/

Abstract

The field of medicine has a history of adopting new technology. Video
equipment and sensors are used to visualize areas of interest in the human
allowing for doctors to make diagnoses based on imagery observations.
However, the detection rate of the doctors towards diseases and abnormal-
ities is heavily dependent on the experience and state of mind of the doctor
doing the examination. Computer-aided detection systems are systems de-
signed to aid the doctor in improving the detection rate, and they are using
or experimenting with machine learning.

Deep convolutional neural networks, a type of machine learning, are
shown to be highly efficient at image detection, classification, and analysis
[103]. However, these networks require large datasets to train properly.
Transfer learning is a training technique where we use a pre-trained
machine learning model and transfer some of the attained knowledge from
other application domains over to a new model. This way, we can use small
datasets and train a model in much shorter time. In this respect, transfer
learning works fine but has many configurations called hyperparameters
which are often not optimized.

Our work aims to address the lack of automatic hyperparameter opti-
mization for transfer learning by experiments utilizing a known hyperpa-
rameter optimization method and creating a system for running those ex-
periments. We decided to focus on the field of gastroenterology by utilizing
two publicly available datasets showing images from the gastrointestinal
tract. We used a specific transfer learning method and chose hyperparam-
eters suitable for automatic optimization. The optimization method we
chose was Bayesian optimization because of its reputation for being one
of the best methods for hyperparameter optimization [45, 70]. However,
Bayesian optimization has its own hyperparameters, and there are also dif-
ferent versions of Bayesian optimization. We chose to limit the thesis, so
we use standard Bayesian optimization with standard parameters.

We created a system for running automatic experiments of three differ-
ent hyperparameter optimization strategies. With the system, we ran a set
of experiments for each dataset. Between the strategies, one was successful
in achieving a high validation accuracy, while the others were considered
failures. Compared to baselines, our best models was around 10% better.
With these experiments, we demonstrated that automatic hyperparameter
optimization is an effective strategy for increasing performance in transfer
learning and that the best hyperparameters are nontrivial to select manu-
ally.

ii

Contents

1 Introduction

1.1 Background and Motivation
1.2 Problem Statement
1.3 Scope and Limitations
14 ResearchMethod
15 Outline e

Background
2.1 The Medical Background
21.1 Gastroenterology
212 Medicaldata.
2.1.3 Medical Multimedia Systems using Handcrafted Im-
ageFeatures
214 Related work on Deep Convolutional Neural Net-
works and Transfer Learning
2.1.5 Medical Multimedia Systems using Deep Convolu-
tional Neural Networks and Transfer Learning
216 Summary
2.2 Machine Learning
2.2.1 Deep Convolutional Neural Networks
222 Transferlearning
2.2.3 Hyperparameter optimization
23 Summary

Methodology

3.1 Datasets
311 Kvasir
312 Nerthus

3.2 Metrics e

3.3 Hyperparameters
3.3.1 Pre-trainedModel
3.3.2 Model Optimization Function.
333 LearmningRate
3.34 Delimiting Layer
34 ProposedSystem
341 Libraries
3.4.2 System Description

iii

SSTIS T QRN

— O O ©

17

20
20
21
22
24
25
27

343 TestSuite. L oo L
344 Optimization Strategies
3.4.5 Bayesian Optimization
34.6 ModelSetup.
3.4.7 C(lassification Block Training
348 Finetuning
3.49 Layeroptimization
3.5 Nonconvergence filtering
3.6 Summary

Experiments

41 Designof Experiments

42 Resultsand Discussion

43 ResultsforKvasir
43.1 Shared Hyperparameters Optimization Strategy . . .
4.3.2 Separate Hyperparameters Optimization Strategy . .
43.3 Separate Optimizers Optimization Strategy
434 BestTrainedModel

44 ResultsforNerthus
441 BestTrainedModel

45 Summary

Conclusion

5.1 Summary and Main Contributions
52 FutureWork
53 FinalRemarks,

Winning Poster from Autonomy Day 2018

Plots From the Nerthus Optimization

B.1 Shared Hyperparameters Optimization Strategy
B.1.1 Model Optimization
B.1.2 Layer Optimization.

B.2 Separate Hyperparameters Optimization Strategy
B.2.1 Model Optimization
B.2.2 Layer Optimization.

B.3 Separate Optimizations Optimization Strategy
B.3.1 C(lassification Block Optimization
B.3.2 Fine-tuning Optimization
B.3.3 Layer Optimization.

Permission To Use Illustrations

iv

104
108
112
114

119
119
122
123

139

141
142
144
146
149
151
153
156
157
159
162

165

List of Figures

2.1

2.2
2.3

24
2.5

3.1
3.2
3.3
34
3.5
3.6
3.7

3.8

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

4.9

[llustration of the lower grastrointestinal anatomy. The
whole gastrointestinal tract is illustrated, but only the lower
partis highlighted. 10
[lustration of the colon with pointers to anatomical landmarks. 12
[lustration of a colonoscopy procedure. The doctor operates
a flexible tune with a camera attached. The tube is then
passed through the anus and provides a video of the insides

ofthecolon. 13
Image of a polyp from the Kvasir dataset 14
[ustration of the colon with polyps growing inside. 14
Images from each class in the Kvasir dataset [98]. 30
Images from each class of the Nerthus dataset [97] 33
Schematic diagram of Inception-ResNet-v2 40
Overview of the TensorFlow architecture 42
Overview of the proposed system flow. 46
Separate Optimization Strategy 49
Bayesian Optimization for shared hyperparameters in our

system 51
Overview over the last optimization step for finding the

delimting layer 58
Plot of full test on the Kvasir dataset inepochs 66
Plot of full test on the Kvasir dataset in time 67
Shared hyperparameters optimization strategy run in steps . 70
Shared hyperparameters optimization strategy run in time . 71
The shared hyperparameters optimization strategy’s model

optimization run for eachepoch. 73
Convergence plot of the shared hyperparameters optimiza-

tion strategy’s model optimizationrun 74
The shared hyperparameters optimization strategy’s layer

optimization run for eachepoch. 78
Convergence plots for the shared hyperparameter optimiza-

tion strategy’s layer optimizationrun 80

Gaussian Process surrogate model and Expected Improve-
ment acquisition function for the shared hyperparameter op-
timization strategy’s layer optimization 81

410 The separate hyperparameters optimization strategy’s plot
of training runs for eachepoch
411 The separate hyperparameters optimization strategy’s plot
of training runs fortime L
4.12 The separate hyperparameters optimization strategy’s plot
of model optimization training runs for each epoch
4.13 The separate hyperparameters optimization strategy’s plot
of layer optimization training runs for each epoch
4.14 The separate hyperparameters optimization strategy’s plot
of layer optimization convergence
4.15 Gaussian Process surrogate model and Expected Improve-
ment acquisition function for the separate hyperparameters
optimization strategy’s layer optimization
416 The separate optimizations optimization strategy’s plot of
training runs for eachepoch
4.17 The separate optimizations optimization strategy’s plot of
training runs fortime oL
4.18 The separate optimizations optimization strategy’s classifi-
cation block optimization run for eachepoch
4.19 Convergence plot of the separate optimizations optimization
strategy’s classification block optimizationrun
420 The separate optimizations optimization strategy’s fine-
tuning optimization run for eachepoch
421 Convergence plot of the separate optimizations optimization
strategy’s fine-tuning optimizationrun
4.22 Gaussian Process surrogate model and Expected Improve-
ment acquisition function for the separate optimizations op-
timization strategy’s fine-tuning optimization.
423 The separate optimizations optimization strategy’s layer
optimization run for eachepoch.
4.24 Convergence plot of the separate optimizations optimization
strategy’s layer optimizationrun
4.25 Gaussian Process surrogate model and Expected Improve-
ment acquisition function for the separate optimizations op-
timization strategy’s layer optimization
4.26 Confusion matrix for best model trained on Kvasir
4.27 Similar images from two different classes in the Kvasir
dataset[98] e
4.28 Plot of all training runs done on the Nerthus dataset for each
epoch [97]
4.29 Plot of all training runs done on the Nerthus dataset for each
timestamp Lo o
4.30 Confusion matrix for best model trained on Nerthus

A.1 Poster winning the Best Poster Award from Autonomy Day
2018 . .

B.1 Shared hyperparameters optimization strategy run in steps .

Vi

142

B.2 Shared hyperparameters optimization strategy run in time . 143
B.3 The shared hyperparameters optimization strategy’s model

optimization run for eachepoch. 144
B.4 Convergence plot of the shared hyperparameters optimiza-

tion strategy’s model optimizationrun 145
B.5 The shared hyperparameters optimization strategy’s layer

optimization run for eachepoch. 146
B.6 Convergence plots for the shared hyperparameter optimiza-

tion strategy’s layer optimizationrun 147

B.7 Gaussian Process surrogate model and Expected Improve-
ment acquisition function for the shared hyperparameter op-

timization strategy’s layer optimization 148
B.8 The separate hyperparameters optimization strategy’s plot

of training runs for eachepoch 149
B.9 The separate hyperparameters optimization strategy’s plot

of training runs fortimeo o L. 150
B.10 The separate hyperparameters optimization strategy’s plot

of model optimization training runs for each epoch 151
B.11 Convergence plots for the separate hyperparameter opti-

mization strategy’s model optimizationrun 152
B.12 The separate hyperparameters optimization strategy’s plot

of layer optimization training runs for each epoch 153
B.13 The separate hyperparameters optimization strategy’s plot

of layer optimization convergence 154

B.14 Gaussian Process surrogate model and Expected Improve-
ment acquisition function for the separate hyperparameters

optimization strategy’s layer optimization 155
B.15 The separate optimizations optimization strategy’s plot of
training runs foreachepoch 156
B.16 The separate optimizations optimization strategy’s plot of
training runsfortime Lo o0 156
B.17 The separate optimizations optimization strategy’s classifi-
cation block optimization run for eachepoch 157
B.18 Convergence plot of the separate optimizations optimization
strategy’s classification block optimizationrun 158
B.19 The separate optimizations optimization strategy’s fine-
tuning optimization run for eachepoch 159
B.20 Convergence plot of the separate optimizations optimization
strategy’s fine-tuning optimizationrun 160

B.21 Gaussian Process surrogate model and Expected Improve-
ment acquisition function for the separate optimizations op-

timization strategy’s fine-tuning optimization. 161
B.22 The separate optimizations optimization strategy’s layer
optimization run for eachepoch. 162

B.23 Convergence plot of the separate optimizations optimization
strategy’s layer optimizationrun 163

vii

B.24 Gaussian Process surrogate model and Expected Improve-

C1

ment acquisition function for the separate optimizations op-
timization strategy’s layer optimization

Signed Thesis Copyright Permission Form which gives
consent to use the illustrations in the background showing
a colonoscopy and gastrointestinal anatomy.

viii

List of Tables

3.1
3.2

3.3

34
3.5
3.6

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Table of hyperparameterbounds
Table of pre-trained CNN models used as hyperparameters
inthisthesis
Table of the optimizers used as hyperparameters in this
thesis and their default learning rate.
Overview over important libraries
Hyperparameter sets for each optimization strategy.
List of selected relevant default parameters given to the
Bayesian optimization function available in the GPyOpt
library [6].

Hardware specifications for our testing environment

Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the shared hyperparameters opti-
mization strategy’s model optimization
Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the shared hyperparameters opti-
mization strategy’s layer optimization
Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate hyperparameters opti-
mization strategy’s model optimization
Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate hyperparameters opti-
mization strategy’s layer optimization
Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate optimizations opti-
mization strategy’s classification block optimization
Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate optimizations opti-
mization strategy’s fine-tuning optimization
Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate optimizations opti-
mization strategy’s layer optimization
Table of hyperparameter values of the best trained model on
the Kvasirdataset
Metrics for each class after hyperparameter optimization for
the best model on the Kvasir dataset

ix

411

4.12

4.13

4.14

Performance metrics for different methods of image classifi-
cation done on the Kvasirdataset
Table of hyperparameter values of the best trained model on
the Nerthusdataset
Metrics for each class after hyperparameter optimization for
the best model on the Nerthus dataset.
Performance metrics for different methods of image classifi-
cation done on the Nerthus dataset

Listings

3.1

Python code of callback for Keras that stops early if the
monitored value is below the given threshold in a given
number of epochs. We call this technique nonconvergence
filtering. The monitor parameter is the value we use for
evaluation, the threshold is the threshold the monitored
value is required to pass, and the patience is the number
of epochs the monitored value is allowed to be under the
threshold before being stopped. The presented version is
stripped down to only work with accuracies and not loss as
thatwasourusecase..

xi

xii

Chapter 1

Introduction

The field of medicine has many use cases for data generated from
examinations, but there is a shortage of such data annotated for use by
machine learning. This thesis is part of the research into using transfer
learning methods for solving the problem of datasets being too small to
train convolutional neural networks without losing their generality. As
a use case, we chose the field of gastroenterology because datasets and
previous results are publicly available to use for comparison.

1.1 Background and Motivation

New technologies are emerging every year. They push the boundaries of
what is possible to achieve. That what was fiction 30 years ago is now a
reality. Ever since the invention of the computer, scientists and writers alike
have been imagining a future where the machines are intelligent. Today
we are closing in on that goal using self-improving algorithms; so-called
“Machine learning”.

Machine learning is a field of computer science where the goal is to
give algorithms the ability to learn. By learning, we mean algorithms
that can improve their performance on a specific task, without being
explicitly programmed [34]. There are several machine learning methods,
and each has their specialized problem area. For example, for image
classification problems, one would typically use deep convolutional neural
networks [103] or handcrafted feature based approaches [81,109]. For
speech recognition, recurrent neural networks would be a good choice
because of their internal state [78].

Machine learning was coined already in 1959 [120] and has been a
research topic over the decades. Nevertheless, it is in the last decade
machine learning has become really popular. The popularity is due
to factors such as higher processing power, better algorithms, and the
emergence of new concepts like deep learning and convolutional networks
[33]. Much of the mass research and adoption of machine learning we see
today is due to the availability of large datasets and software platforms.
The software platforms enable the creation and deployment of machine
learning models and make it easy to use large computational resources

for training [2]. Several fields are deploying or exploring the capabilities
of machine learning. One such field is the medical field where technical
advances are needed to support modern medicine [18,95,110].

One branch of medicine where machine learning is used for image
detection is in gastroenterology. Gastroenterology is the branch of medicine
focused on the digestive system, including the gastrointestinal (GI) tract
and its disorders. In recent years, detection of diseases in the GI tract has
become an important research field due to increasing affliction rates and
their economic and human cost to society. A staggering 10% of deaths in
the US in 2009 were attributable to an underlying gastrointestinal cause
[92]. There is good evidence in research that cancer screening programmes
reduce incident and mortality rates of cancers, especially colorectal cancer
(CRC) [59,91]. In the case of CRC, colonoscopies are the golden standard.
Colonoscopies are used to not only detect stages of CRC but also to
prevent CRC by having polyps found and removed. However, a major
disadvantage of colonoscopies is that the effect of the procedure is entirely
dependent on the performance of the person conducting it [107].

Research is conducted into computer-aided detection (CAD) systems,
to improve the accuracy of the procedure. These are systems designed
to assist the operator of the colonoscopy in detecting abnormalities and
diseases [18]. Detection is done automatically through image analysis of
the images from the colonoscopy. State-of-the-art in the field of automatic
image analysis for colonoscopy is using deep convolutional neural network
models [96,112]. However, these are models that require large amounts of
data to be effective. Unfortunately, in the medical world of colonoscopies,
this data is hard to obtain. There exist a few publicly available datasets, but
they include few images. Recent datasets try to overcome this limitation
[97,98]. Transfer learning is the typical approach used by most CAD
systems to make the most out of the existing data. Studies related to both
transfer learning and automatic polyp detection have shown success in
using transfer learning to improve results [20,144].

Transfer learning is a machine learning method that aims to help
improve the performance of machine learning models and reduce the
amount of data needed for training [90,140]. This is done through the
transfer of knowledge from one task in one domain to a related task in a
different domain. Imagine a model for detecting cars, but the new task is
to detect trucks. By transferring knowledge gained from detecting cars,
the dataset for detecting trucks can be of lesser quality and quantity and
still achieve good results as the new model will have previous knowledge
of how a car looks. In the case of CAD systems, models pre-trained on
the ImageNet dataset are used [144]. ImageNet contains curated URLs
to images belonging to different noun categories. The dataset is more
significant in scale and diversity and much more accurate than any other
image dataset and is used as a benchmark for applications in object
recognition, image classification, and automatic object clustering [60].

In any machine learning model, the goal is to have the model train
itself by changing the weights of the model. These weights are the model’s
parameters. However, how the model is trained is something that can be

2

tuned. These are parameters such as which model to use, the learning
rate of the model and which optimizer to use. We separate between
model parameters and the parameters mentioned above by calling the
latter “hyperparameters”.

Choosing the best hyperparameters is not trivial [26]. Different prob-
lems and different datasets will have different optimal hyperparameters.
There are specific configurations known from literature that might give
good results [69,143], but those parameters could still be far from the op-
timal configuration. Determining the hyperparameters usually requires
testing out different ones and checking the results. By observing how the
model reacts to the current hyperparameter configuration one can manu-
ally tune the hyperparameters and potentially improve the performance.
This is ineffective as it is a slow process and one might only find the local
minima. An automatic approach is in most cases a better solution as it is
fast and can use mathematics and distributions to converge to the global
minima.

Hyperparameter optimization is a research field by itself. There exist
several papers on the subject [10,11,38], but none of those papers mention
hyperparameter optimization for transfer learning. Hyperparameter
optimization for transfer learning has a unique hyperparameter. This
hyperparameter is a layer which decides how many layers of the pre-
trained model will be trained. We call this hyperparameter the delimiting
layer. This hyperparameter is essential to how much of the knowledge from
the original task is preserved and how much is tuned to the new task. This
is linked to how deep convolutional neural networks are structured [103].
Being structured in a top-down fashion, where bottom layer is input layer
and the top layer is output layer, trained convolutional neural networks
have a spread of image features. Image features at the top layers will be
more abstract than image features at the bottom layers. This means that
bottom layer features will be features of natural images, such as lines and
colors. Top layers will contain features such as objects from the dataset.
When transferring knowledge, we are interested in the bottom layer image
features, which are shared among natural images [135]. However, knowing
how many layers should be transferred is not trivial. Therefore, we want
to automatically detect the delimiting layer, which separates the layers we
want to retrain from the layers we want to stay the same.

There are different approaches to optimize the hyperparameter con-
figuration automatically. One such solution is the Bayesian optimization,
which, for example, Google has implemented in their cloud engine [45,70].
Bayesian optimization is a sequential design strategy for global optimiza-
tion of black-box functions [126]. Other solutions are grid search, random
search, and Hyperband [77]. In this thesis, we will use a framework for
Bayesian optimization for tuning the hyperparameters of image classifica-
tion models available in Keras being trained with transfer learning on a
dataset of medical images of the GI tract.

1.2 Problem Statement

In the medical domain, it is hard to acquire large datasets because there
need to be doctors available to annotate the data manually. Additionally,
there needs to be consent from the patients. As a result, medical datasets
publicly available in gastroenterology are all too limited for training from
scratch, except a few which are still much smaller than datasets available
in many other fields. Transfer learning is a solution for the problem of
training deep convolutional neural networks on small datasets. However,
there is a hyperparameter unique to transfer learning which is unintuitive
to tune manually. The goal of the thesis is to explore and utilize automatic
hyperparameter optimization of this hyperparameter. Additionally, we
extend the goal to consider three other hyperparameters which are more
related to the training of a CNN than transfer learning itself. These
hyperparameters and our solution for optimization will also work on
similar tasks outside the medical field. Nevertheless, the dataset we use
in this thesis are datasets from the medical field.
The research questions for this thesis are the following:

1. Can hyperparameters for transfer learning be optimized automatically? If
so, how does it influence the performance and what should be optimized?

2. How should a system be built that automatically can fulfill the task of
automated hyperparameter optimization for transfer learning?

The ultimate goal of this thesis is to show the benefits of employing
hyperparameter optimization on transfer learning, with emphasis on the
hyperparameter unique to transfer learning. Hopefully, this can help
researchers apply even stronger transfer learning models on issues such
as disease detection in the future.

1.3 Scope and Limitations

Based on the research question in section 1.2, the scope of this thesis is
on researching experiments running different strategies for automatically
optimizing selected hyperparameters for a method of transfer learning.
The use case is medical image data of the gastrointestinal tract used for
disease detection. Moreover, we need to design a system for automatically
running the experiments.

We decided to limit the transfer learning to one method and the datasets
used for the experiments to two datasets targeting the gastrointestinal tract.
Additionally, we had to limit the number of hyperparameters to optimize
since a larger search space has a negative effect on the optimization and we
were limited in terms of computing resources. The hardware limitations
also affected our choice of hyperparameters as some hyperparameters,
such as the batch size, had an impact on the memory used, and as a
result, we had to limit the batch size to be small enough so all the tested
machine learning models would work with it. The datasets used had some

4

limitations in that they could affect the classification based on irrelevant
artifacts such as text in the image and a blue box in the corner of some
images.

Another limitation we introduced was to use a single optimization
method, which was Bayesian optimization. Bayesian optimization is
considered as one of the best methods for hyperparameter optimization
for machine learning purposes, but there are several methods building
on Bayesian optimization, and one can configure different options for
the standard Bayesian optimization as well. Consequently, we limited
the Bayesian optimization to the standard method using the default
configuration supplied by the software library supplying the Bayesian
optimization implementation. Finding the best optimization method and
the best configuration of that method could be a thesis itself, so instead,
we focused on strategies for using the optimization method on the transfer
learning.

1.4 Research Method

The ACM Education Board created in 1989 by a task force on the core
of computer science, determines and characterizes the structure of how
research in computing, should be approached. This report [28] defines
computer science in its essence as an intersection between several central
processes. The central processes are applied mathematics, science, and
engineering. The paradigms of (i) theory, (ii) abstraction and (iii) design
reflect these central processes.

For this thesis, we worked mostly on the engineering aspects of creating
experiments exploring hyperparameter optimization for transfer learning.
We based these experiments on the pursuit of better results for real-life
applications adapting to transfer learning. In our work, we focused on the
application of detection of diseases and abnormalities in medical images.
As such, the work implements a system to run different hyperparameters
with an optimizer wrapped around. Therefore, this thesis touches on the
elements of all three processes. The following gives an overview of how
the thesis fits into each process.

e Theory: The theory process is responsible for defining and character-
izing the object under study by formulating and hypothesize possible
relationships. Furthermore, it is characterized by determining rela-
tionships among objects, verifying their correctness and interpreting
the results.

For the theoretical part, we touched upon deep learning with
convolutional neural networks, transfer learning, and optimization
methods. We identified the lack of hyperparameter optimization for
transfer learning training in previous work and focused primarily on
the medical domain where small datasets are convolutional neural
networks challenging to generalize.

e Abstraction: The abstraction process is used for modeling and
emerges from experimental scientific methods. While a researcher
is investigating a problem, a hypothesis is formed, a model created,
experiments designed and finally data collected and analyzed.

Most of this thesis falls into this category. We use experiments and
different datasets to explore and test our hypotheses. Although
the datasets are all from the medical domain, the approach can
be used on other system using transfer learning too. We use a
well-researched optimization method called Bayesian Optimization.
We optimize several hyperparameters and try different ways to do
the optimization. Furthermore, we study the performance of the
optimization regarding accuracy on a validation set, the number of
iterations and speed.

e Design: The last process is design, which is closely related to
engineering. This involves researchers to state requirements and
solutions, followed by designing and implementing a system. This
process is concluded with an evaluation of the system.

The transfer learning training done in this thesis is a solution that
could be implemented in computer-aided detection systems. In
this thesis, the use case is the medical domain, but our work is
general enough to be used in other domains as well. As such, the
training system can be implemented as is, or with minor changes
to produce transfer learned machine learning models for a given
dataset. The Bayesian Optimization wrapper can be added with the
same pretense.

We ran extensive experiments on two medical image datasets containing
images from the gastrointestinal tract. We showed automatic optimization
of four hyperparameters connected to transfer learning using Bayesian
optimization. We created a system for automatically running optimization
for hyperparameters on given datasets, with detailed plots and numbers
being generated as the system finished optimization parts. We analyzed
results from two sets of experiments that we ran on two datasets.
We calculated metrics suggested by the dataset papers and compared
them to methods presented as baselines in the respective dataset papers.
We showed that automatic hyperparameter optimization is an effective
strategy for increasing detection performance and that automatically
adjusting the delimiting layer reveals layers that are nontrivial to select
manually. Additionally, we found which optimization strategy is the best
and pointed out flaws in the lesser strategies as well as a flaw in our way
of optimization. We pointed out this knowledge for future work.
The summarized main contributions of this thesis are:

i. We designed and conducted experiments testing Bayesian optimiza-
tion for three different optimization strategies with four hyperparam-
eters for a method of transfer learning.

ii. We analyzed and calculated metrics for two sets of experiments, which
we ran on two different datasets, which we compared to metrics of
methods used as baselines for the respective datasets. The metrics we
calculated can be used in the future by researchers for comparisons to
heir work.

iii. Technical development of a system for automatically running experi-
mentations of Bayesian optimization in three different hyperparameter
optimization strategies for transfer learning of pre-trained CNN mod-
els on given datasets.

iv. We introduced a method for stopping training runs which failed to
reach a given threshold in a given number of epochs. We called
this method nonconvergence filtering, and its purpose was to terminate
training runs which failed to converge early to save time.

v. We presented a poster and held a 3-minute lightning talk about the
thesis at the Autonomy Day 2018, 2nd workshop on Autonomous and
Adaptive Systems, at Oslo Metropolitan University, May 3rd, 2018.
The website is http://www.autonomia.no/autonomy-day-2018/. The
poster won the best poster award and is included in appendix A of this
thesis.

The summarized main contributions above answers the research
questions from section 1.2. Research question one is answered by bullet
i and ii. Research question two is answered by bullet iii and iv.

1.5 Outline
The thesis is organized as follows:

Chapter 2: Background: We give more background information about
the use case for transfer learning. We talk about the available
data in the medical field and the difficulty of annotating this
data. We also present related work focused on applying transfer
learning on medical image datasets for image classification and
detection. This is followed by examples of computer-aided detection
systems that implement transfer learning. All of this highlights that
hyperparameter optimization is done manually for transfer learning
in related work. Finally, we explain transfer learning and how we use
Bayesian optimization for hyperparameter optimization.

Chapter 3: Methodology We describe our methodology by presenting and
discussing the hyperparameters, the metrics and the datasets we use
for our experiments. Moreover, we present the system running the
experiments and discuss details in its implementation. Lastly, we
introduce a method for saving time during the training by filtering
out training runs that fail to converge.

7

http://www.autonomia.no/autonomy-day-2018/

Chapter 4: Results and Discussion We state the design of the experiments
and show and discuss results from two experiments trained on each
their dataset. We go into detail on each aspect of the results for the
largest of the datasets. The lesser dataset results are also presented,
but not as in-depth as it showed many of the same behaviors as
the larger dataset. At the end of each dataset result presentation,
we show the best-trained model and compare it to baseline metrics
presented in the specific dataset paper.

Chapter 5: Conclusion: Finally, we summarize and conclude this thesis
and present ideas and suggestions for further studies surrounding
the work in this thesis and present final remarks about the thesis.

Chapter 2

Background

In this chapter, we will present the background and motivation of our
thesis. Will will start with the medical background. Here we will
present the motivation and background for our choice of the use case of
Gastroenterology. We will show some computer-aided detection systems
that use handcrafted image features for detection, and we will present
related work into computer-aided detection systems that use machine
learning for crafting the image features for detection. Lastly, we will
present a computer-aided detection system that uses deep convolutional
neural networks for detection of diseases and abnormalities within the
gastrointestinal tract.

2.1 The Medical Background

The field of medicine is in ever advancement. Every year new technologies
emerge. This development is necessary to meet the health requirements of
today’s society. The cost to society and the patient cannot be justified, so
massive investments are made towards improving medical technologies.
These investments have resulted in modern technical equipment being
available in several medical branches. This equipment, like cameras and
sensors, collect vast amounts of data. After using the data for diagnosis, the
data is then mostly archived or deleted. With the rise of machine learning,
more and more researchers realize that machine learning algorithms can
use this data for analysis and classification. This thesis uses datasets of
endoscopies, but primarily colonoscopies for the experiments. As such, the
primary focus of the background will be on colonoscopies.

21.1 Gastroenterology

In the field of Gastroenterology, there are several challenges. Diseases
of the gastrointestinal (GI) tract are in most cases very impactful on the
quality of life of the patient. Figure 2.1 shows an illustration of the
entire GI tract with the lower anatomy highlighted. They often bring
with them symptoms like diarrhea, vomiting, constipation and altered
stool [102], in addition to being painful to the patient. Colorectal cancer

Lower Gastrointestinal Anatomy

® 2011 Terese Winslow LLC
U.S. Govt. has cerain rights

Figure 2.1: Illustration of the lower grastrointestinal anatomy. The whole
gastrointestinal tract is illustrated, but only the lower part is highlighted.

10

(CRC) was the third most common cancer type in 2012 worldwide [16, 19].
It accounted for 8.5% of cancer deaths in the world [39]. The cancer
is a major health issue [92], and the 5-year relative survival rate in the
later stages of the disease is at a measly 14%. However, if the disease is
detected in the early stages, the survival rate increases to 90% [19]. Survival
prospects are higher the earlier the cancer is discovered, and studies show
that a population-wide screening program improves prognosis and even
decreases the incidences of CRC [55]. Because of this, many organizations
in the European Union (EU) and United States (US) have guidelines where
screening is recommended for the population over 50 years of age and
people at increased or high risk of CRC [138]. The aim of the screening is
not only to catch the early stages of CRC but more importantly, to prevent
CRC by having polyps found and removed [128].

The best way to do screenings today is through colonoscopies as it
allows for visualization of the mucosa and the lumen of the entire colon.
Figure 2.2 shows an illustration of the entrie colon and figure 2.3 shows
an illustration of a colonoscopy procedure. Colonoscopies can be used
as either primary screening tool or as a workup tool after other positive
screening tests [82]. A major disadvantage of colonoscopy is how the
efficiency of the procedure is dependent on the skill of the operator. Even
if the operator is a gastroenterologist, substantial operator dependence is
consistently observed [7,15,21,53,63]. On average, 20% of polyps, which
are possible cancer predecessors, are missed. This is mainly caused by an
unwarranted variation in the endoscopist adenoma detection rate [64, 65],
and low rates increase the risk of post-colonoscopy CRC [66]. Furthermore,
characterization of detected polyps regarding size, shape and surface
structure is essential for the resection strategy and scheduling of further
surveillance when needed. High detection rate is not only important for
catching cancer early, but also for the public opinion on colonoscopy. The
procedure is considered by many to be both painful and dangerous. Painful
as the procedure requires air to expand around the colonoscope for the
camera to have vision. Dangerous as the procedure can cause perforations
which can be fatal if not attended to [42]. Even though we can not help
with the public’s opinion on how painful or dangerous a colonoscopy is,
we can help with the endoscopist’s detection rate.

2.1.2 Medical data

The colonoscopy procedure is an endoscopic examination of the large
bowel and the distal part of the small bowel [32]. It is conducted with a
camera attached to a flexible tube passed through the anus. It makes it
possible to provide a visual diagnosis of the lower parts of the GI tract.
In addition it allows for biopsies or removal of polyps [106]. Polyps are
removed as they are at risk of developing CRC. The polyps have different
shapes, sizes and surface structures. Figure 2.4 shows an image of a
polyp from one of the datasets we use in this thesis and figure 2.5 shows
an illuration of polyps inside the bowel. The shape is described by the
Paris classification, and the surface structure most commonly by the NICE

11

Parts of the Colon

Transverse colon

— '.'“_r:-{-{
B, P

Figure 2.2: Illustration of the colon with pointers to anatomical landmarks.

classification predicting the microscopic histological diagnosis [50]. The
majority of polyps are small, non-neoplasitc lesions that are found during
colonoscopies. The polyp type decides the potential of the polyp being
malignant. If a polyp is found with the potential to turn neoplastic, they
are removed through a colonoscopic biopsy. In the procedure of removal,
the polyp is dyed and lifed for visibility. Then, the polyp is resected. It is
important to remove all of the polyp, or the chances are still there of the
polyp turning malignant [12,27].

A colonoscopy generates a lot of data in the form of videos and images.
This data is often stored and unused. Riegler [111] quoted a doctor in the
Vestre Viken Hospital in Norway, September 2015 as saying; "I have a lot of
data lying around. Like for example images, videos, sensor logs, patient records
and so on. Unfortunately, I am not able to use all the different types of data like
I would like to do. They are just stored on a computer somewhere. I even don'’t
know where, and I don’t think the IT support really know either... Sadly, we are
collecting a lot of data, but we do not benefit from it at all.” [110]. The problem is
that most use cases for the data requires manual labeling and classification.
Without it, the data is useless. This is a waste of resources, so researchers
are trying to design viable solutions.

12

Colonoscopy

Colonoscope

Anus © 2012 Terese Winslow LLC
U.S. Govt. has certain rights

Figure 2.3: Illustration of a colonoscopy procedure. The doctor operates a
flexible tune with a camera attached. The tube is then passed through the
anus and provides a video of the insides of the colon.

13

L ‘

Ssxt
15705201
09:14:10

L)
ll[]:?ﬂ:‘/’l
L]

! Y
ll
=
| ...f_....“
REL "
K) g
Fli:&1 Cm:1

Figure 2.4: Image of a polyp from the Kvasir dataset [98].

Figure 2.5: Illustration of the colon with polyps growing inside.

14

2.1.3 Medical Multimedia Systems using Handcrafted Image
Features

Several medical multimedia systems have been proposed to remedy the
situation and make use of the data. These systems are designed to
help annotate, analyze and visualize data. By using image recognition
techniques like handcrafted image features and machine learning, they
can detect objects in the available data. Some also have systems to help
annotate data and support the doctors in visualizing and understanding
what caused the system to react. The following systems are such systems,
but they do not use machine learning. Nevertheless, they are relevant as
they were the precursors to machine learning in the medical domain.

Polyp-Alert

“Polyp-Alert” is a software system created to assist the endoscopist in
finding polyps by providing visual feedback during colonoscopy [139].
Polyp-Alert uses edge-cross-section visual features and a rule-based
classifier to detect edges along the contour of a polyp. It works by
tracking detected polyp edges to group a sequence of images covering the
same polyp as one polyp shot. From the experiments done by Wang et
al. [139] the software correctly detected 97.7% (42 of 43) of polyp shots
on 53 randomly selected video files of entire colonoscopy procedures.
Additionally, Polyp-Alert incorrectly marked only 4.3% of a full-length
colonoscopy procedure as showing a polyp when they do not.

Polyp-Alert was one of the best options in 2015 for polyp detection. One
of the significant drawbacks, however, is the how the system is not able to
perform more than ten feedbacks per second. This performance is not real
time and would slow down a live colonoscopy. The system is also only able
to detect polyps. For such a system to be useful in a live setting, it needs
to be at least able to perform in 25+ frames per second to be considered
real-time. Nevertheless, Polyp-Alert is not using machine learning for
detection. Not using machine learning is limiting as it is more difficult to
expand to other diseases and abnormalities. Currently, the system can only
detect polyps. However, it has good accuracy, so new systems utilizing
machine learning should be able to have the same or higher accuracy.

Basic EIR

EIR, named after the Norwegian mythological goddess with medical skills,
is an efficient and scalable information retrieval system for medical videos.
The goal of the system is to assist gastroenterologists by automatically
detecting diseases in the GI tract from videos or images. It aims to do
this in real-time, something which is not usual for these type of systems
but is essential for these type of systems to have real-world application.
Further, the system is designed in a modular way so it can combine
filters using machine learning, image recognition and extraction of global
and local image features. So far the system is focused on the detection

15

and classification of polyps but will be extended for other diseases and
abnormalities as well. Additionally, a goal of the system is to be able to be
used in combination with video from camera pills [113].

EIR includes the whole pipeline from data collection to analysis of the
data to visualization and thus consists of these three subsystems:

Annotation subsystem: The annotation system subsystem is the entry
point of the whole EIR system. It is to collect efficient training date for
the detection and automatic analysis subsystem. Without this part the rest
of the system is hard to realize as it relies on the data collected. The system
is necessary as labeled data is hard to come by. This is because a physician
is needed to label it and there are legal issues involving patient consent. In
addition, as discussed earlier in section 2.1.1, the quality of the annotations
is dependent on the experience and concentration of the physicians [44].

By utilizing automatic methods that extend the provided data com-
bined with the manual annotations of the physician, the developers of EIR
has designed a semi-automatic annotation system. It allows the physicians
to only provide annotations in a single frame of the video or image series.
The system uses this information to automatically track the regions of in-
terest on previous and subsequent frames. The annotated data collected
can, in addition to the EIR system, be used for surgical documentation or
teaching purposes.

Detection and automatic analysis subsystem: In EIR, the detection
and automatic analysis subsystem is divided into two parts. There is
the subsystem that detects irregularities in frames and the localization
subsystem that localizes where the detected polyps are in the body.
The detection alone can not determine the location, so the localization
subsystem exists. The localization subsystem uses the output of the
detection as input. The polyp’s physical shape is used to find the exact
position in the frame. Handcrafted filters are applied to the image to create
an energy map. The coordinates of one or more polyps in the frame are
chosen from the maxima of the energy map.

Detection subsystem: The detection subsystem is designed to only
detect abnormalities like bleeding or polyps in the given video frame.
The detection subsystem is designed to only detect if a frame has a
polyp. The location of the polyp in the frame is determined by the
localization subsystem which uses the detected frames as input. The
detection subsystem is built in a modular way allowing it to be extended
with new image models or submodels. For example, if there are images of
dyed and lifted polyps, this could be used as a submodel of polyps. The
detection subsystem in EIR started out as a single-class handcrafted global-
feature-based detector able to recognize the abnormalities in a given video
frame [100,111,113]. Handcrafted image features were used because they
were, as Pogorelov et al. put it, “easy and fast to calculate”. In addition,
the exact positions of the abnormalities were not needed for detection

16

using these. The method was built on a search based method for image
classification. Indexes were created from visual features extracted from
video frames or images and used by a classifier to then search the index for
the frames that are most similar to a given input frame [113]. The detection
subsystem then decides, based on the classification results, in which frame
the abnormality belongs to.

Localization subsystem: The localization subsystem takes the posi-
tive frames list generated by the detection subsystem. The processing of
the images is implemented as a sequence of intraframe pre- and mail-filters.
These can be extended to localize different diseases. Differently, from the
detection subsystem, the localization subsystem uses local image features
tobe able to find the exact positions of objects inside the frames. Challenges
like partially covered objects, ambiance and different medical equipment,
which makes the objects hard to find, are handled by applying pre-filters.

Visualization and Computer aided diagnosis subsystem: The visualiza-
tion and computer-aided diagnosis subsystem have two primary purposes.
First, it should help evaluate the system performance of EIR and get bet-
ter insights into why things work well or not. Second, it can be used as a
computer-aided diagnosis system for medical experts. A web-based visu-
alization tool has been developed to support the medical experts in under-
standing what in the detection caused it to classify the way it did. Addi-
tionally, it can help visualize the localization of polyps in a frame.

2.14 Related work on Deep Convolutional Neural Networks and
Transfer Learning

Much of the rapid development around image classification and analysis
using machine learning can be attributed to the development of effective
models using deep convolutional networks trained on large datasets [51,57,
124,133]. However, while useful on large datasets, these models lose their
generality on smaller datasets. Besides they require expensive hardware to
train and training can take several weeks even on good hardware. Transfer
learning could be the answer, and the following research papers explore
this method for small medical image datasets.

Convolutional Neural Networks for Medical Image Analysis

Tajbakhsh et al. [135] tried to answer in their paper the following central
question in the context of medical image analysis: "Can the use of pre-trained
deep CNNs with sufficient fine-tuning eliminate the need for training a deep CNN
from scratch?” This question is central to whether transfer learning is useful
for the medical domain. If transfer learning is unable to achieve the same
result as training a deep CNN from scratch, other solutions need to be
explored.

To answer the question, the researchers carried out an extensive set of
experiments for four medical imaging applications: 1) polyp detection in

17

colonoscopy videos, 2) image quality assessment in colonoscopy videos,
3) pulmonary embolism detection in computed tomography (CT) images,
and 4) intima-media boundary segmentation in ultrasonographic images.
These applications were chosen to represent the most common clinically
used imaging modality systems and the most common medical image
analysis tasks. The performance of the pre-trained CNNs using transfer
learning was compared with the CNNs trained from scratch for each
application. The data trained on was entirely medical imaging data.
Moreover, the performance of the CNN-based system’s corresponding
handcrafted counterparts were compared.

The results of the experiments consistently demonstrated that pre-
trained CNNs with fine-tuning performed better or, in the worst case,
performed as well as CNNs trained from scratch. This was an important
find which proves that transfer learning can be a solution for medical
image analysis and classification. Besides showing pre-trained CNNs can
perform better, fine-tuned CNNs were also more robust to the size of
training sets than CNNs trained from scratch. This was not surprising
as it is the point of transfer learning to be able to perform well on
smaller datasets, but this paper proves this. In context to our thesis,
the most relevant result, however, is that the experiments showed that
neither shallow tuning nor deep tuning was the optimal choice for a
particular application. Hyperparameter optimization could, therefore, find
the optimal choice for the depth of fine-tuning. Finally, the experiments
confirmed the potential of CNNs for medical imaging applications as both
CNN variations outperformed the corresponding handcrafted alternatives
[135].

Exploring Deep Learning and Transfer Learning for Colonic Polyp
Classification

In work by Ribeiro et al. [108] they explore Deep Learning for the
automated classification of colonic polyps. They achieve this by running
experiments with different configurations for training CNNs from scratch
and distinct architectures of pre-trained CNNs. The experiments are
tested on eight high definition endoscopic image databases acquired using
different modalities and then compared. Data augmentation with image
patches to extend the size of the training database were used to train
the CNN from scratch. This work is comparable to the work done by
Tajbaksh et al. [135] in that they both explore whether deep CNNSs trained
with transfer learning work better than CNNs trained from scratch. The
difference, nevertheless, is that the focus of this paper is solely on colonic
polyps. Additionally, the datasets used are close-up pictures focusing
on the properties of the polyp, like color and texture. Since the dataset
contained HD images, the texture of the polyp was something that could
be detected. As such, the focus of the classification was to classify the
polyps into one of three different categories: hyperplastic, adenomatous,
and malignant.

In the work, the researchers trained a CNN from scratch and a CNN

18

with transfer learning. The transfer learning procedure was different from
ours in that instead of choosing a layer to split the knowledge all the
layers were trained from a pre-trained network. Additionally, the focus
was also on resizing and cropping the images to increase the results.
However, that is not our focus in this thesis. In the paper, they do several
experiments with different pre-trained models. The hyperparameters are
not mentioned, so there is room to improve with optimization.

The results were compared with some commonly used features for
colonic polyp classification. The results were deemed sound and suggested
that features learned by CNNs trained from scratch and the pre-trained
CNNs features can be highly relevant for automated classification of
colonic polyps. Furthermore, the paper shows that the combination of
classical features and pre-trained CNNs features can be a viable approach
to improve the results further. Finally, the paper concludes that Deep
Learning using CNNs is a viable option for colonic polyp classification
[108]. The paper builds on the consensus that CNNs with transfer learning
is successful at medical image classification, but does not do any automatic
hyperparameter optimization to increase the results of the tuned CNN.

Transfer Learning with Deep Networks for Saliency Prediction in
Natural Video

From the paper by Chaabouni et al. [20] they propose a deep CNN to
predict salient areas in video content. While the use case is not medical
videos, but more general, natural videos, it is still highly relevant as
polyps are salient in the colon. The deep CNN is trained using transfer
learning, which makes it relevant to this thesis and also to the medical
multimedia systems that are exploring the use of transfer learning. The
CNN in the paper is custom built and is trained on the HOLLYWOOD?2
dataset [83], which is a big dataset. This pre-trained CNN is then fine-
tuned on two smaller datasets. The results show that transfer learning
for the task of saliency in natural videos allows solving the problem of an
insufficient dataset. However, even though the results with the transfer
learning were better, the gain was not strong [20]. The results showed that
transfer learning could improve the performance of a pre-trained CNN on
two small publicly available video datasets. For our work, it is relevant
because it validates the usefulness of transfer learning on small datasets.
However, as with the paper discussed in section 2.1.4, this paper uses a
transfer learning method where they do not consider a delimiting layer,
but just loads pre-trained weights trained on a larger dataset and trains
all layers normally. In our work, we hope to show that by considering
a delimiting layer and doing optimization, we achieve better results than
baselines provided by the datasets we are using.

19

2.1.5 Medical Multimedia Systems using Deep Convolutional
Neural Networks and Transfer Learning

Researchers of medical multimedia systems paid attention as several
different groups of researchers had found good results using deep CNNs
with transfer learning for image object detection. The previous work
promised a solution for the problem of insufficient amounts of available
training data.

Deep EIR

Pogorelov et al., the designers of EIR, took notice of the success other
researchers had using deep learning and transfer learning in similar efforts
[20, 108, 135], and decided to explore this solution for detection in EIR.
They made a neural network version of EIR, called Deep-EIR [94], based on
pre-trained convolutional network architectures and transfer learning. The
researchers chose transfer learning as the available dataset had insufficient
amounts of available training data to conduct adequate training.

The first part of the transfer learning was done the same way we do it in
this thesis. A CNN model pre-trained on the ImageNet dataset, in this case,
InceptionV3 [134] was used. In our thesis, we remove the classification
block instead of just the final layer of the model, which is done in the
paper. A block is a bundle of layers which together perform a function
for the machine learning model. In the paper, the final layer is replaced
with a classification layer fitting the number of classes on the used dataset.
Only the final layer is changed during training. However, the similarities
between the transfer learning methods end here. In our work, we continue
with a fine-tuning step, but Deep EIR decides to use the model trained from
re-training the classification layer as the final classifier.

By expanding the transfer learning with a fine-tuning step and perform-
ing automatic detection of the hyperparameters, we hope to show that
future work into systems like Deep EIR can include these methods and
thereby increase the accuracy of their detection systems.

2.1.6 Summary

In summary, the technological advancements in medicine generate sub-
stantial data such as video, images, and sensor data. Doctors use this
data for diagnosis. It is then archived or deleted. However, medical mul-
timedia systems and computer-aided detection systems try to use this data
to assist doctors in the diagnosis. Researchers have proposed many ap-
proaches to detect polyps and diseases, and there exist many systems for
general image or frame recognition where researchers have spent a consid-
erable amount of time to develop algorithms for detection. Recent medical
multimedia systems now use deep convolutional neural networks as they
have shown excellent results in image classification. Unfortunately, these
networks are heavily dependent on large and varied datasets for training.
Without, neural networks become good at classifying the images they are

20

training on, but terrible at classifying other images, even those that are sim-
ilar. This lack of generality goes against the whole point of deep learning
as one wants the trained network to be able to classify similar, never be-
fore seen images correctly. However, papers exploring the use of transfer
learning have promised a solution for insufficient datasets. Most results in
the field of medical multimedia systems are, as a consequence, focuses on
pre-trained deep CNN models trained on large general datasets. These are
then fine-tuned on the medical dataset. The results have been solid, but
there are ways to improve these results through techniques such as hyper-
parameter optimization and image augmentation. In this thesis, we will
try to improve the results through hyperparameter optimization, and then
with a particular focus on the frozen layer. None of the previous papers
does optimization of this hyperparameter, only manual tuning.

2.2 Machine Learning

Today few people have not heard of machine learning. Machine learning
is a field of computer science where the aim is to develop algorithms that
can learn a task without being explicitly trained. The advantage is that
these algorithms can learn complex patterns, features, and tasks that would
otherwise be practically impossible for a programmer to solve with an
explicitly written algorithm. Machine learning can be divided into three
main categories: Supervised learning, unsupervised learning, and semi-
supervised learning. In supervised learning, the model is given a labeled
dataset to train on. The goal is to learn a generalized rule that maps similar
input to the correct labeled output. In unsupervised learning, the model is
given a dataset without labels. The goal is for the model to find a structure
in the data or discover hidden features. Semi-supervised learning is a form
of supervised learning where not all the target outputs have data to learn
from in the training dataset. It can also be in the form of active learning
or reinforcement learning. Active learning can be used when there are
unlabeled instances in a dataset. A user can then be queried for labeling.
Reinforcement learning is when a model is trained through rewards for
actions performed in a dynamic environment [117]. In this thesis, we will
be using supervised learning.

The popularity of machine learning is sky-rocketing, and massive
investments are being made into development and implementations of
machine learning solutions. Everyone using the Internet is being exposed
to machine learning, and many foresee a future where machine learning
is everywhere. From social media, search engines, and self-driving cars
to personal artificial intelligence assistants, Internet of Things and most of
today’s jobs being done by artificial intelligence.

As the popularity of machine learning is something that has exploded
over the last decade, many would mistakenly assume that the research field
originated around that time ago. This is not the case. Machine learning
was coined already in 1959 by A. Samuel [120] and have been researched
ever since. The reason for the sudden focus and developments of real-

21

life applications in large-scale happening first this decade is because the
algorithms created then were not effective enough. Equally important is
that the hardware was very limiting. Even though breakthroughs were
made, like the invention of artificial neural networks, the requirements
of effective algorithms and powerful hardware met in 2012 when the
image database ImageNet [60] held its annual ImageNet Large Scale Visual
Recognition Challenge [116]. The winner of the 2012 challenge, the deep
convolutional neural network, AlexNet, is considered as the real catalyst
for today’s Al boom [43,72]. This was the turning point for large-scale
object recognition when large-scale deep neural networks entered the scene
[116].

Although the popularity we see today originated from the ImageNet
challenge, image classification is not the only use case for machine learning.
Different fields utilize machine learning such as Image Processing, Com-
puter Vision, Speech Recognition, Machine Translation, Art, Medical imag-
ing, Medical information processing, Robotics and control, Bio-informatics,
Natural Language Processing (NLP), Cybersecurity, and many more [5].
However, for this thesis, we will focus on machine learning for image clas-
sification and analysis. One of the most common methods for image classi-
fication and analysis is using deep convolutional neural networks [103].

2.2.1 Deep Convolutional Neural Networks

Artificial neural networks (ANN) are machine learning computational
models that draw inspiration from the biological neural networks of the
brain. ANNSs can adapt or learn to generalize or to cluster or organize
data. ANN are built of simple processing units reflecting the neurons in
the brain and directed, weighted connections between those neurons. The
weights are multiplied with the input of the connection and summarized.
An activation function decides if the neuron should activate or not. This
means that if the result is above the threshold, the output is the result.
The result is zero if the result is below the threshold. The network forms
a directed, weighted acyclic graph as the output of certain neurons are
connecting to the input of other neurons [47].

The typical neural network and the one most relevant for us is the
multilayer perceptron (MLP). MLP is a class of feedforward ANN. In
these networks, neurons are organized in layers, where neurons from
one layer are connected to the neurons of the next layer. For example,
three functions f(1), f(2), and f(3) can be connected in a chain to form
f(x) = fB)(f(2)(f(1)(x))). In this case, f(1) is the first layer of the
network, f(2) is the second and so on. The layers do not need to be
connected in a chain. Many architectures build a main chain and attach
to it extra architectural features such as skip connections going from layer
i to layer i + 2 or higher. Data is being fed through the network through
these layers until the final layer yielding an output [47]. This process is
what is referenced to as "feedforward”. However, to be able to learn,
the weights of each layer is adjusted by a backpropagation algorithm [47].
The backpropagation algorithm calculates how much each layer needs to

22

change in order to reach the desired output. The algorithm does this by
calculating the gradient for each layer, which is then used for adjusting
the weights of that layer based on a gradient descent optimizing function.
We will use this optimizing function as a hyperparameter in the thesis.
How much the weights are changed for each iteration is dependent on
the optimizing function, but they all have a learning rate in common.
Some functions can adapt this learning rate to the training. We also use
the learning rate as a hyperparameter in this thesis. This kind of neural
network is called a multilayer perceptron [49,71,125]. The layers between
the input and output layer of an MLP are called "hidden” layers. The
classical MLP has one or a few more of these. These networks are far from
as good as the deep learning networks of today.

Deep learning has several definitions described in work by Deng et
al. [33]. Common among them are two key aspects: (1) models consisting
of multiple layers or stages of nonlinear information processing; and (2)
methods for supervised or unsupervised learning of feature representation
at successively higher, more abstract layers. As such, adding many hidden
layers to an MLP makes it a deep neural network (DNN). A deep neural
network is not fundamentally different from the old standard ANN. This is
due to the universal approximation theorem, proven by George Cybenko
[31] that states that a feed-forward network with a single hidden layer
containing a finite number of neurons can approximate any function. A
shallow, 1-layer, ANN can in principle learn anything [75], but the layer
may be infeasibly large and may fail to learn and generalize correctly. For
now, DNNs work better as they can reduce the number of units required to
represent the desired function and can reduce the amount of generalization
error [47].

The type of DNN we will use in this thesis is the deep convolutional
neural network (CNN). CNNs [74] are a special type of neural network
where the core building block is a convolutional layer. These neural
networks are used for processing grid-like topologies such as 1-D grids
or 2-D grid such as pixels in an image. Goodfellow et al. [47] describe
neural networks as being "“simply neural networks that use convolution in place
of general matrix multiplication in at least one of their layers.” Convolution is a
specialized kind of linear operation [47] where the aim is to create a feature
filter. One can think of CNNs as a way to imitate the animal visual cortex
in the way it is organized [85]. CNNs create image feature convolutional
filters that resemble the layers of the visual cortex [93]. As such, CNNs
are the quintessential machine learning method for image classification,
analysis, and object detection [51,57,72,103,108,124,135].

CNNs are feedforward networks and generally have an architecture of
blocks of convolutional and pooling layers. As in standard feedforward
networks, either one or more fully connected layers follows the blocks. An
image is input directly to the network, which is put through the layers
of convolution and pooling. The image features gathered from these
operations are then fed into one or more fully connected layers. The final,
fully connected layer, outputs the class label. However, several models
exist that change this architecture [103]. CNNs require large datasets to

23

avoid the problem of overfitting. When training any CNN model, we
want to strike a balance between the model being able to classify as much
as possible in a dataset correctly, and being able to classify other, similar
images, which are outside of the dataset, correctly as well. Early stopping
is a technique for achieving the balance by testing the classification against
a different, similar dataset, called the validation set. The early stopping
checks if the accuracy or loss from the classification on the validation set is
growing over time. The implementation of early stopping usually takes
a metric to monitor and the number of epochs the training is allowed
before being required to pass the previous best. If the accuracy or loss
on the validation set declines, but the accuracy or loss on the training set
increases or stay the same, our model is being overfitted. Small datasets
are problematic for reaching good classification rates without overfitting
as there are not enough diverse samples for the algorithm to be general.
However, transfer learning is a learning technique that helps solve this
problem.

2.2.2 Transfer learning

Transfer learning is a technique for training machine learning models. The
technique aims to transfer the knowledge obtained by one task in one
domain to another task in another domain [90, 140]. There are several
techniques for transfer learning, such as the works of Razavian et al.
[104] and Oquab et al. [89] which are suggesting that intermediate layers
of a CNN can be used as input features to train other classifiers, such
as support vector machines, for other, different applications obtaining
good performance [108]. However, we will focus on one method for
transfer learning, suitable for our use case. In this method, we remove the
classification block of a pre-trained CNN model. The pre-trained model
will be used as a hyperparameter. We replace the removed classification
block with our own block, which is fitted to the number of classes on the
dataset we are currently using. Then, only the classification block is trained,
while the other layers in the model stay the same. The classification block is
trained until it can classify images based on the previous knowledge. The
next step is to fine-tune the model. We want to train some of the layers, but
not all. Some transfer learning methods will train all the layers, such as the
method used in the paper described in section 2.1.4, but we, instead, want
to explore using a transfer learning method where only train some of the
layers. Each block in a CNN model creates image features which are used
for the classification. These image features become increasingly abstract
as we progress through the network. For example, the earlier layers can
show a line, or a color, while later layers can show the outlines of an object.
The point of transfer learning for CNNs is to keep the lower-level image
features that are learned on very large image sets and tune the higher-level
image features on the new dataset.

Our approach is, therefore, to select a layer which splits the model’s
layers into two groups: The layers that are training and the layers that are
left with the weights from the pre-training. All layers which come before

24

the selected layer are left with weights from the pre-training, and all layers
after the selected layer are tuned on the dataset we target. We call the
splitting layer, the delimiting layer, and use it as a hyperparameter in this
thesis.

The advantage of and the primary reason for using transfer learning is
related to generalization and the size of the datasets used for training. The
training technique is useful for the problem of having small datasets [62].
When training deep learning models, the difficulty lies in achieving good
results, while at the same time being able to generalize over different, but
similar input. In this context, it means that a neural network should be able
to reach good results on similar images even though it has never seen those
images before. For example, a CNN using a dataset of cars to train should
after training be able to detect other, similar images of cars and not only
the cars in the training dataset. If the CNN can detect cars from its training
dataset at a much greater rate than similar images it has never seen before,
we say the CNN has overfitted on the data. Likewise, the training aims
to go from a state of undergeneralization to a state of generalization. The
issue of a small dataset for training is that there are too few samples for
a DNN or CNN to be able to reach a good rate of generalization, and the
network tends to overfit [20, 108, 140].

Another advantage of using transfer learning is that training a CNN
from scratch is very costly. Not only does it require hardware to keep it in
memory, but even with powerful hardware, the training can take several
days [41]. Using transfer learning on the other hand only takes hours. One
would think that transfer learning would come at the disadvantage that
transferring knowledge from a different, but similar dataset would produce
lesser accuracy than those CNNs that were trained from scratch. However,
research on transfer learning for CNNs have shown that transfer-learned
CNNSs can produce the same or even better results than those trained from
scratch [20,94, 108, 135]. This applies only to those domains where very
large datasets are unavailable. Therefore, in this thesis, we focus on transfer
learning for pre-trained CNNSs.

2.2.3 Hyperparameter optimization

In any machine learning models, there are certain parameters that can be
changed. These parameters greatly affect the outcome of the training. In
the context of a CNN, the parameters can be such as which optimizing func-
tion, what learning rate, and what batch size to use when training. These
parameters are very different from the parameters, or weights, the model is
adjusting during training, and as such is called "hyperparameters”. There
are many hyperparameters to choose from, and as long as these are param-
eters that don’t change the structure of the overlying training, we will refer
to them as hyperparameters. This means that we consider the choice of
pre-trained CNN model as a hyperparameter in this thesis. This is because
changing between different pre-trained CNN models does not change the
transfer learning technique used, nor the dataset or the task, only the result.

Considering that the number of hyperparameters can be large, tuning

25

them is not a trivial task. They have a huge impact on the success of the
training. For example, the learning rate helps determine how much the
weights are adjusted each iteration. Having a too low learning rate will
cause the training to take too long to reach good results. Having a too
high learning rate will cause the training never to reach the good results
as the weights are adjusted past the optimal value each iteration. There
exist optimal hyperparameters for each task, so to improve the results of
a model, finding these optimal hyperparameters is important. Manually
tuning the hyperparameters is possible, and has in fact been the procedure
for many machine learning tasks, but it is very ineffective and usually
relies on good starting parameters from other previous research literature.
Automatically detecting the optimal hyperparameter configuration seems
to be the best way.

In transfer learning for CNN models, there is one special hyperparame-
ter. Choosing which layers to tune on the dataset and which layers to keep
the pre-trained weights is a hyperparameter and essential for the effective-
ness of the transfer learning. There is little to no research on the topic.
Most research into fine-tuning pre-trained CNN models uses a manually
chosen delimiter. They split the layers block-wise. For example, many pa-
pers choose only to fine-tune the last convolutional block of a CNN. The
reasoning being that lower-level image features wants to be kept general,
and only the top-level features, where the high-level abstraction happens,
needs to be tuned. This sounds reasonable, but there is no way to be sure
this is true in practice without trying delimiting on other layers. Automatic
hyperparameter optimization might give better and unexpected results.

Optimization of hyperparameters relates to the problem of optimizing
"black-box” functions. A black-box function is a function where all
we can do to affect the outcome is to alter the input. We consider
a neural network a black-box as we do not have an expression of the
neural net we can analyze, and we do not know its derivatives. We
also consider the output of the neural network noisy, as small changes
to the hyperparameters make the results swing unpredictably. There
are several methods for hyperparameter optimization, and new ones are
emerging with time. Typical examples of optimization algorithms are
grid search, random search, and Bayesian optimization. Grid-search is a
method where an exhaustive search is conducted on a manually specified
subset of hyperparameter space. This method has been proven to be
less effective than random search, where the method is to select random
hyperparameters from a specified search space [11]. Regardless, there
are better methods. Bayesian optimization and related sequential model-
based optimization techniques have proven effective [10,26,61,76,127,131],
and hyperparameter optimization systems like Google Vizier implements
it [46]. There exist other optimization methods, but Bayesian optimization
is commonly used because of its good results. As such we will use Bayesian
optimization in this thesis. Nevertheless, there are Bayesian optimization
methods that have shown better results [84] than the one we will use as
well as other methods such as Hyperband [77]. These could be explored in
further work.

26

Bayesian optimization is a strategy for global optimization of noisy, ex-
pensive black-box functions [127]. The efficiency of Bayesian optimization
stems from the ability to incorporate prior belief about the problem to help
direct the sampling and to trade off exploration and exploitation of the
search space [14]. It is called Bayesian because the optimization strategy
uses the Bayes’ theorem. The Bayes’ theorem describes the probability of
an event based on prior knowledge of conditions that might be related to
the event [9]. This is used to construct a probabilistic model that defines a
distribution over objective functions from the input space to the objective.

In this thesis, we use Gaussian Process [37] as the probabilistic model.
The model becomes a surrogate to the real machine learning model but
is significantly cheaper to optimize. Gaussian Process is a model that
generates data located throughout some domain. The model is fitted
through observations in that domain to the model it surrogates. The
Gaussian Process aims to output the same as the surrogated model for
the same inputs. For Bayesian optimization, we use Gaussian Process as
the surrogate model and the hyperparameters as the domain. Gaussian
Process can work in more than one domain, which means we can use
more than one hyperparameter at a time. The Gaussian Process needs
to make observations in the search space to map out the surrogated
model. The Bayesian optimization selects observations from the domain
sequentially. An acquisition function called Expected Improvement [101]
decide from where the next observations are taken in the search space. The
acquisition function tries to balance exploring and exploiting. Exploring
means to get observations from areas in the search space where there
are few observations. Exploiting means to get observations from areas
in the search space where good results have been found. The point of
exploiting is that we rarely hit the best point immediately, and adjusting the
point of observation slightly might return better results. In this thesis, we
use Bayesian optimization with Gaussian Process as the surrogate model
and Expected Improvement as acquisition function. The domain for the
Gaussian Process is the bounds of the hyperparameter values we set. The
result which is evaluated is the validation accuracy from an iteration with
hyperparameter set selected by the acquisition function.

2.3 Summary

In summary, machine learning exceeds at several tasks where developing
explicit algorithms are unfeasible. For image detection, classification, and
analysis, deep convolutional neural networks have achieved superhuman
results. These networks are trained on large datasets with many features
using supervised learning. The training can take many weeks and relies
on hyperparameters that yield a good result. An apparent drawback to
using CNNis is its reliance on large datasets. When training on smaller
datasets, the problem of overfitting makes it very difficult. Transfer
learning alleviates this problem. It is a training method where the aim is
to transfer knowledge from one pre-trained machine learning model onto

27

another. This helps both generalization and training time. In the case of
CNN:s, the classification block of the pre-trained CNN is adapted for the
new dataset and then trained until the classifier can classify based on the
existing features of the pre-trained CNN. The next step is to fine-tune the
pre-trained model by choosing how many layers to tune to the new dataset.
Layers in a CNN contain different levels of feature abstraction. Early layers
contain low-level features like lines and curves, while later layers contain
high-level features like objects. When fine-tuning a layer is chosen as a
delimiter, and all later layers are trained on the new dataset while earlier
layers keep their pre-trained weight values. Therefore, choosing the layer
is a hyperparameter. Hyperparameter optimization can be done in several
ways. For CNNs, there are many methods created for hyperparameter
optimization, and the results have been good. However, for transfer
learning CNNs, there is little hyperparameter optimization done on the
delimiting layer. Automatic hyperparameter optimization could achieve
better results on already existing fine-tuned models. Several methods
for automatic hyperparameter optimization exists, but the most common
one is Bayesian optimization. Bayesian optimization is well researched.
We have therefore chosen to use standard Bayesian optimization in our
experiments.

Many researchers have found transfer learning to be effective for
training CNNs on small datasets insufficient for training from scratch.
Hyperparameter optimization is used for the pre-training, but not for
the hyperparameter of the fine-tuning in transfer learning, which is the
delimiting layer. This layer has a substantial impact on the efficiency of the
fine-tuning. Therefore, we would like the use automatic hyperparameter
optimization on this hyperparameter to test this. There are several ways to
conduct automatic hyperparameter optimization, but we have landed on
the use of Bayesian optimization as it delivers excellent results and its use
is widespread by the research community.

28

Chapter 3

Methodology

To achieve our goal of testing automatic hyperparameter optimization for
transfer learning, we have to create a system for doing so. From related
work, we found that there is room to improve models trained through
transfer learning by adjusting the number of layers we train during fine-
tuning. Additionally, we would like to test other hyperparameters. In
this chapter, we will detail how we designed and implemented a system
for automatically optimizing a given set of hyperparameters. Additionally,
we will discuss our design decisions and introduce our choice of libraries,
metrics, and hyperparameters.

3.1 Datasets

In this thesis, we chose to focus on the use case of medical images. The
reason for this is that our research group at Simula Research Laboratories, is
currently researching a medical multimedia system for automatic detection
of diseases in the GI tract [95,97-100,110,111,121]. There is much value to
society in improving algorithms helping doctors diagnosing diseases from
medical images, and as such this is the ultimate goal of this thesis and the
medical multimedia system being researched. From the previous research
and work conducted by members of our group, there currently exists two
publicly available medical datasets which we will use for our use case. As
discussed in the background chapter, the availability of annotated medical
images makes these datasets insufficient for deep learning from scratch, but
is perfect for our use case of transfer learning.

3.1.1 Kvasir

Kvasir is an eight-class dataset of images from the lower human GI tract.
It is a dataset made available to researchers, educators, and students.
The collection of images are classified into three important anatomical
landmarks and three clinically significant findings. Furthermore, it
contains two categories of images related to endoscopic polyp removal.
The goal of the dataset is to help researchers develop systems that improve
the health-care system in the context of disease detection in videos of the GI

29

(LLUTT]
31k

FhA Cincl

11000005118

-t

i

(g) Normal z-line (h) Normal pylorus

Figure 3.1: Images from each class in the Kvasir dataset [98]. The classes
are from the categories anatomical landmarks, pathological findings, and
endoscopic procedures. The images are taken from different endoscopies
and are images of diseases and abnormalities are taken from different
locations in the GI tract.

30

tract [98]. The dataset is a response to the lack of publicly available datasets
of the GI tract. Additionally, many publications show results that are hard
to reproduce because they use different and non-public data. Therefore,
Pogorelov et al. in collaboration with experiences endoscopists from Vestre
Viken Hospital Trust (VV) in Norway, responsible for the annotation of the
dataset, went together and released Kvasir: A Multi-Class Image Dataset
for Computer Aided Gastrointestinal Disease Detection [98].

Endoscopic equipment at VV captures the medical images which one
or more medical experts from VV and the Cancer Registry of Norway
(CRN) carefully annotates. VV consists of 4 hospitals and provides health
care to 480,000 people in 26 municipalities in Norway [137]. One of the
hospitals has a large gastroenterology department from where Kvasir has
collected the dataset. This department will continue collecting data, so
Kvasir will continue to grow over time. CRN conducts cancer research and
is responsible for the national cancer screening programmes in Norway
with the goal to prevent cancer death by discovering cancer or signs of
cancer early.

There are currently two versions of Kvasir. Version one is the first
version of Kvasir and consists of 4,000 images in 8 classes showing
anatomical landmarks, pathological findings or endoscopic procedures in
the GI tract. There are 500 images for each class in version one. Anatomical
landmarks are features within the GI tract that are easily recognizable
through an endoscope. They are used for navigating the GI tract and
can be used to describe the location of a given finding. The anatomical
landmarks are Z-line, pylorus, and cecum. Pathological findings are, in
the context of Kvasir, abnormal features of the GI tract. It is visible as
damage on or changes in the normal mucosa. The findings may show an
ongoing disease or a precursor to for example cancer. The pathological
findings available in Kvasir are esophagitis, polyps, and ulcerative colitis.
Endoscopic procedures refer in this case to procedures related to the
removal of polyps. The endoscopic procedures depicted in Kvasir are dyed
and lifted polyps and dyed resection margins. The procedure of dyeing and
lifting polyps is done to minimize the risk of mechanical or electrocautery
damage to the deeper layers of the GI wall. Additionally, the color helps
facilitate accurate identification of the polyp margins. After the polyp is
dyed and lifted, it is removed by use of a snare. Evaluation of the resection
margins is important to make sure the polyp is removed entirely. The
images are taken from different colonoscopic procedures.

In our thesis, we use version two of Kvasir. Version two extends the
first version and consists of 8,000 images. It has the same eight classes as
version one, and as such there are 1,000 images for each class. Figure 3.1
shows an example image from each class in the Kvasir dataset. Kvasir is
the most extensive dataset we have available and is sufficient for transfer
learning. However, the images contain several artifacts, such as text and
the blue box in the left bottom corner as can be seen in several images in
figure 3.1 and in figure 2.4. The problem with these artifacts is that they can
train the CNN to activate on them, which means they lose their generality.
For example, the model can learn that polyps must have a blue box and

31

text in the image. Any image we server to the model after training that
does not contain such a blue box, but indeed a polyp might be deemed not
a polyp by the model. Nevertheless, this is the best we have available at
the moment, and it will be sufficient for our experiments as our approach
can be transferred to better datasets in the future.

3.1.2 Nerthus

Contrary to Kvasir, where there are different images from different
colonoscopic procedures, Nerthus” images are from videos of different
parts of the lower GI tract. Nerthus is a four-class image dataset labeled
with different bowel preparation quality scores according to the Boston
Bowel Preparation Scale (BBPS) [73,97]. As with Kvasir, Nerthus was
created by Pogorelov et al. in collaboration with VV and CRN [97].
However, the dataset is focused differently. Pogorelov et al. identified
the challenge for doctors of assessing the bowel preparation quality
before a colonoscopy. It is crucial for a successful colonoscopy to have
clean bowels for detecting diseases since uncleansed bowels can influence
decisions on screening and follow-up examination intervals. There exists
reliable and validated bowel preparation scales, but grading still varies
between doctors. These inequalities could be reduced by an objective
and automated assessment of bowel cleansing. By allowing researchers
and academics to use Nerthus for their research, Pogorelov et al. want
researchers to contribute in the medical field by making systems that
automatically evaluates the quality of bowel cleansing for colonoscopies.
State-of-the-art bowel preparation scales include the BBPS [73] and the
Ottawa Bowel Preparation Scale [114]. Both are reliable and validated, but
for Nerthus, the dataset is labeled after the BBPS score. The reason for this
is that the creators of Nerthus found it to be the best validated and most
frequently used scoring system in both routine clinic and screening settings
today. BBPS uses a four-point scoring system ranging from 0 to 3, where 0
is the worse and 3 is the best quality of the bowel preparation. Examples
from the system can be seen in figure 3.2. BBPS divides the bowel into three
sections; right, middle, and left. The four-point score is then given to each
section and summarized. However, in Nerthus, all the videos are recorded
in the left part of the bowel, and as such, all the scores are between 0 and 3.
Nerthus has only one version so far. It consists of 21 videos with a
total number of 5,525 frames. The frames are annotated and verified by
experienced endoscopists from VV and CRN. Furthermore, there are plans
to involve medical experts from several different countries through a web-
based test to get a dataset with higher quality regarding bowel preparation
assessment. However, this will become an extension of Nerthus at a later
date. For now, Nerthus contains four classes showing four-score BBPS-
defined bowel-preparation quality videos. There are between 1 and 10
videos per class, with the number of frames per class varying from 500
to 2,700. Nerthus is smaller than Kvasir, both in regards to the number of
labels and in regards to the number of images. However, it is still sufficient
for transfer learning. Nevertheless, it suffers from the same problem of

32

(a) BBPS 0 (from splenic flexure) (b) BBPS 1 (from descending colon)

(c) BBPS 2 (from sigmoid colon) (d) BBPS 3 (from rectum)

Figure 3.2: Images from each class of the Nerthus dataset [97]. The images
are frames from videos from colonoscopies. BBPS is a scale for bowel
cleanliness. A score of 0 is most unclean, while 3 is clean. The videos are
taken from different parts of the GI Tract, which is problematic for model
generality.

33

blue boxes and text artifacts as Kvasir. Additionally, each class contains
videos from a different part of the GI tract. The problem with this is that
images from different parts of the GI tract look different without focusing
on the cleanliness, which could mean that the trained CNN model is not
classifying based on cleanliness level alone, but also with regards to the
location of the image. Even though Nerthus can be considered somewhat
flawed because of this, it is still interesting for our use case of transfer
learning even though we might end up with overinflated results.

3.2 Metrics

When optimizing, the Bayesian optimization algorithm needs a metric to
evaluate and minimize or maximize. For transfer learning, this metric can
be one of two: (i) Validation accuracy and (ii) validation loss.

Validation accuracy is a value from 0 to 1, where 1 is a perfect
classification, and 0 is all wrong in the classification of the validation
set images. Validation accuracy is the calculated percentage of correct
classifications, and as such, we want to maximize this value when
optimizing. Validation loss is different from validation accuracy in that
we want to minimize this value as it is a summation of the errors made for
each example in the validation set. In this thesis, we have chosen to focus
on validation accuracy for both optimization and the model’s performance
evaluation. The reason for this is that validation accuracy is what we
care about most. We want to reach the highest classification rate possible
without losing data generalization. However, using validation loss for
optimization would do the job as well. Therefore, it is not clear which one
to choose when optimizing. In the first iterations of the experimentation,
we used validation loss. It worked fine, but we noticed in some runs that
the validation loss was different between two test iterations with the same
validation accuracy. We, therefore, changed to validation accuracy to test
that out as well. We did not notice any difference between the two and
decided to keep using validation accuracy because of it.

Calculation of accuracy and loss can be done the same way for the
training set. However, we only care about the validation set. The reason
for this is that the accuracy calculated for the training set does not account
for “overfitting”. Overfitting is when a neural network is overgeneralizing
when training. It means that the neural network fits too much on the
dataset it uses for training, and the result is that, for example, a CNN model
will be good at classifying data from the training dataset, but will be worse
at classifying data from any other similar datasets. The CNN model learns
the training examples and becomes ineffective for the validation set.

The goal of any CNN training is to train a model that is good at
classification, but at the same time good at generalizing. For this reason,
we split image datasets into a training set and a validation set. We use the
training set for training and the validation set for testing the generalization.
Having another dataset is an alternative. The background for this is that
we also use the validation dataset for checking when the model is good

34

enough to stop training. Using the validation dataset for this could in
some cases mean that the model is overfitted on the validation dataset
instead of the training dataset. However, it is unlikely since the weights
change from input from the training dataset. Nevertheless, to be sure, some
choose to add another dataset which has nothing to do with the training
or determining when to stop to be sure the dataset is generalized. In this
thesis, we omit using another dataset as we have little data and we assess
that we should not have problems with overfitting to the validation dataset
as we find it highly unlikely. However, future work could look into this
aspect.

Besides the previously mentioned metrics, there are also other metrics
mentioned in related work. Although metrics mentioned in related work
do not affect the optimization, they are still important to get a full picture
of the model’s performance. Additionally, it gives a more precise view of
the results from the optimized models. For both the Kvasir and Nerthus
datasets, the authors suggest a set of metrics they deem to be important
in the field of image detection. We include these metrics to understand the
performance of our automatically hyperparameter optimized CNN models
better. It also gives easier comparisons with related work that use these
metrics.

We will use the following metrics, suggested by Pogorelov et al. in the
Kvasir paper [98]:

e True positive (TP). The number of images containing an endoscopic
finding that were classified correctly as an endoscopic finding.

e True negative (TN). The number of images without endoscopic
findings that were classified correctly as without endoscopic findings.

e False positive (FP). The number of images without an endoscopic
finding which was wrongly classified as an endoscopic finding.

e False negative (FN). The number of images with an endoscopic
finding which was wrongly classified as not an endoscopic finding.

e Recall (REC). The ratio of samples that are correctly identified as
positive among all existing positive samples. The number of correct
classifications divided by the number of classifications that should
have been correct. The function is REC = TP/P = TP/(TP + FN),
where P is the sum of all positives.

e Precision (PREC). The ratio of samples that are correctly identified
as positive among the returned samples. The number of correct
positive classifications divided by the sum of all positives. Precision
is calculated by the following: PREC = TP /(TP + FP)

e Specificity (SPEC). The ratio of samples that are correctly identified
as negative among the returned samples. The number of correct
negative classifications divided by the sum of all negatives. The
function is SPEC = TN/N = TN/(TN + FP), where N is the sum
of all negatives.

35

e Accuracy (ACC). The percentage of correctly classified images. It is
calculated by the following: ACC = (TP + TN)/(TP + FP + FN +
TN)

e Matthews correlation coefficient (MCC). MCC takes into account
true and false positives and negatives and is a balanced measure even

if the classes are of very different sizes. MCC is given by the following

function: MCC = TPxTN—FPxFN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

e F1 score (F1). A measure of a test’s accuracy by calculating the
harmonic mean of the precision and recall. The function is the
following: F1 = 2TP/(2TP + FP + FN)

3.3 Hyperparameters

The choice of hyperparameters is essential for the scope of the thesis and
the complexity of the optimization. In deep learning, there are several
hyperparameters, and we had to limit the ones we focus on to be able to
achieve results. The problem with optimizing too many hyperparameters is
that the search space for the optimization algorithm increases in dimension
for each hyperparameter added. The added dimensions mean we get
exponential growth in search space making it very difficult and unlikely
that the optimization algorithm can find the global minima, or even
approach it. As a result, we have chosen to limit the hyperparameter search
space to four hyperparameters. Additionally, hyperparameters affecting
the amount of resources the model requires, such as batch size, was not
included as our resources was limited, and we were restricted to a batch
size of 16 to have enough memory for all of the pre-trained models.

3.3.1 Pre-trained Model

There are several pre-trained CNNs available in the Keras library. These
are well-known state-of-the-art CNN models for image detection, classifi-
cation, and analysis. For many years, ImageNet [60] has been a benchmark
and dataset for CNN models. Researchers try their best to tune their new
models to this dataset, and much of the competition between the models is
about the attained accuracy on the ImageNet validation dataset. As such,

Table 3.1: Table of optimized hyperparameters and their type and bounds

Hyperparameter Type Domain

Pre-trained Model Discrete Pick from a list of models

Model Optimizer = Discrete Pick from a list of optimizers

Learning Rate Continuous From 1 to 10~*

Delimiting layer ~ Discrete From the first layer to the last layer of the model

36

Table 3.2: Table of pre-trained CNN models used as hyperparameters in
this thesis and their overlying performance and properties. Size refers to
how much memory in RAM the model consumes, Top-1 is the top-1
accuracy the model achieved on ImageNet. Top-5 is the top-5 accuracy on
ImageNet. Parameters is the number of weights in total in the model, and
the depth is the number of blocks in the model. The table is taken from the
official Keras website [25].

Model Size Top-1 Top-5 Parameters Depth Layers
Xception [23] 88MB 0.790 0945 22,910,480 126 134
VGG16 [123] 528 MB 0.715 0901 138,357,544 23 21
VGGI19 [123] 5499 MB 0.727 0910 143,667,240 26 24
ResNet50 [52] 9MB 0759 0929 25,636,712 168 177
InceptionV3 [134] 92MB 0.788 0.944 23,851,784 159 313
InceptionResNetV2 [132] 215MB 0.804 0.953 55,873,736 572 782
DenseNet121 [58] 33MB 0.745 0918 8,062,504 121 428
DenseNet169 [58] 57MB 0.759 0928 14,307,880 169 596
DenseNet201 [58] 80MB 0.770 0933 20,242,984 201 708

Keras has implemented a select number of the highest yielding accuracy
CNN models into their application module. These are available for any-
one to use and come with the best-achieved weights pre-trained on Im-
ageNet. The models are therefore easy to use for transfer-learning. As
the primary focus of the thesis is to do hyperparameter optimization for
transfer-learning, we found it interesting to also find the best pre-trained
model for the best results as this would presumably have a significant im-
pact on optimization performance and, therefore, the outcome of the opti-
mization. For outsiders, the models seem like black-boxes where we only
see their performance. However, even though the models are using the
same principle of convolutional neural networks, differences could impact
how fast the optimization performed, the efficiency of the hyperparameter
tuning, and whether the optimization can find local minima, let alone the
global minima.

3.3.2 Model Optimization Function

It is important to note that we here talk about gradient descent optimization
algorithms and not Bayesian optimization. There are a select number of
optimization functions available in Keras. We use all of the optimization
functions available in Keras, and we list them in table 3.8. The optimizer
is one of the two arguments required for compiling a Keras model. All
of the optimization functions are based on gradient descent. Gradient
descent is the most popular algorithm for optimization of neural networks
[115]. There are various algorithms to optimize gradient descent available

37

Table 3.3: Table of the optimizers used as hyperparameters in this thesis
and their default learning rate.

Optimizer Default LR
SGD [13] 0.01
RMSprop [54] 0.001
Adagrad [36] 0.01
Adadelta [143] 1.0
Adam [68,105] 0.001
Adamax [68] 0.002
Nadam [35,130] 0.002

in Keras, and we use all of them as hyperparameter bounds for the
Bayesian optimization function. The gradient descent optimizers can be
configured with parameters such as learning rate, decay, and parameters
unique to each optimization such as momentum for the stochastic gradient
descent optimizer (SGD). However, if these parameters are not specified,
the optimization uses default values. In our work, the only parameter we
change is the learning rate.

We chose to include the optimization function as a hyperparameter
since selecting an optimizer for the training is not trivial. We regard the
optimization functions as black-box optimizers. We have this perception
because we are mostly unable to predict the optimizers effect on training.
Additionally, finding strengths and weaknesses between the optimizers
requires deep knowledge and experience in using them. To someone
unfamiliar with the different optimizers, it is difficult to select between
them. Aside from the difficulty of comparing them, there is also the
nontrivial task of combining them with a pre-trained model. Without
trying out every combination of optimizer and model, knowing which
optimizer works best with which model seems to us impossible. By using
Bayesian optimization for automatic hyperparameter optimization of the
gradient descent optimization algorithm, we eliminate the need for treating
the optimizer as anything else but a black-box, which significantly reduces
the complexity of transfer learning.

3.3.3 Learning Rate

We decided to include the learning rate of the gradient descent optimizer
as a hyperparameter. The reason for including this hyperparameter is that
it is common for all gradient descent optimizers. Additionally, the effect of
the learning rate is hard to predict before training and behaves differently
between the different training runs. By different training runs, we mean
between the classification block run and fine-tuning run. Intuitively, the
classification block run should require a higher learning rate than the

38

fine-tuning run as the point is to reach a sufficient classification ratio
fast. For the fine-tuning, we are interested in reaching the best result and
considering we start the training with already attained knowledge, we,
therefore, use a smaller learning rate. A large learning rate would in a way
contradict the idea of fine-tuning as the weights being trained would take
large steps in the gradient descent direction, which would make it harder
to reach the optimal results.

However, there are also arguments to be made about excluding this
hyperparameter. Not only does it increase the dimensionality, it is also hard
for the optimizer to optimize. The learning rate hyperparameter bound
is continuous and the combination of learning rate and gradient descent
optimizer is very different for each optimizer. In table 3.8 each of the
optimizers we use is listed together with their default learning rate. As they
are different for each optimizer, it means that the optimal hyperparameter
changes everytime the optimizer changes. This volatility will make it
harder for the Bayesian optimization to find the optimal hyperparameters
as there will be a high density of local extrema.

Moreover, we have to consider if changing the learning rate is the right
thing to do considering default parameters exists. Firstly, the creators
of the optimizers have given default values based on their research. By
asserting these to be the correct values for the learning rates would make
changing them pointless. We believe the only way to find out if the
provided learning rates are the optimal ones is to include the learning rate
as a hyperparameter. Secondly, some of the gradient descent optimizers
are implemented to automatically adjust the learning rate while training.
Gradient descent optimizers such as Adagrad, Adadelta, and RMSprop
adapts the learning rate to the parameters, performing larger updates for
infrequent parameters and smaller updates for frequent parameters [115].
Changing the learning rate from the default value might work worse for
these optimizers. In the documentation of the optimizer available in Keras,
the user is advised to not change the learning rate. Nevertheless, we argue
that if the default value given by the researchers is the best one, then our
Bayesian optimization algorithm will reveal this, so we include learning
rate as a hyperparameter.

3.3.4 Delimiting Layer

39

ov

Inception Resnet V2 Network

Compressed View
10x 20X an 10x

Convolution
MaxPool
AvgPool
Concat
@ Dropout
@ Fully Connected
& Softmax
Residual ' .

Figure 3.3: Schematic diagram of Inception-ResNet-v2 taken from the Google Al blog [4]. Each colored rounded rectangle represents a
layer. The layers are structured from left to right, with left being the input and right being the output of the model. The lines
represents the paths the data can take.

For our way of doing transfer learning, fine-tuning a pre-trained CNN
model requires one to know which layers to train and which layers to keep
their pre-trained weights before fine-tuning. CNN models are complex.
From figure 3.2, we can see that each model has different amounts of
blocks. Most have more than a hundred blocks, and each block contains
several layers. In figure 3.3 we show the schematics of InceptionResNetV2,
which is a model containing many layers. From the schematics, we can
see that knowing where to draw the line separating the layers that should
be trained from the layers we want to keep is not trivial. Intuitively, the
separation should be at the connection between two convolutional blocks,
as each block possess image features unique to the block. Splitting in the
middle of a block might break these image features. Nevertheless, we will
find out through automatic hyperparameter optimization.

3.4 Proposed System

To be able to test the effects of automatic hyperparameter optimization,
we had to build experiments running optimization instances. In the
following section, we will describe how we designed and implemented
the experiments. We will also go into detail on libraries used and discuss
design decisions.

3.4.1 Libraries

We relied heavly on libraries to create our tests. We used state of the art
libraries for machine learning, recognized by corporations and researchers
around the world. Additionally we used a library for the Bayesian
optimization. These libraries are described in the sections below and listed
in table 3.4.

TensorFlow

TensorFlow is an open source library for numerical computation using data
flow graphs and is available on Windows, Linux, Mac OS and Android [30].
The graph nodes represent mathematical operations, while the graph edges
represent the multidimensional arrays that flow between them. These
multidimensional arrays are called tensors, which is where TensorFlow
got its name. Tensorflow is designed for large-scale distributed training
and inference and is flexible enough to support experimentation with
new machine learning models and system-level optimizations [1, 136].
For example, it can efficiently use hundreds of powerful servers for fast
training and at the same time run locally on mobile devices [2]. TensorFlow
is created and maintained by Google, and is used in many Google products.

The architecture of the TensorFlow platform is illustrated in figure 3.4.
It is built on layers of abstraction, where the most notable is the C APIL.
The C API separates the user-level code from the core runtime, and allows
for implementations in different languages. The most notable one is the

41

Table 3.4: Overview over important libraries. The table is not exhaustive,
but lists the main libraries used to create the experiments.

Main Libraries Other Libraries

Name Version Language Name Version Language
TensorFlow [1] 14.1 Python Cuda [87] 8.061 C

Keras [25] 214 Python cuDNN [22] 6.021 C
GPyOpt [6] 1.2.1 Python GPy [48] 1.9.2 Python

Training libraries] [Inference libraries]
Python client] [C++ client]
C API

Distributed master] [Dataflow executor

.

()

Const || Var|| MatMul [|Conv2D || ReLU [|Queue

Kernel implementations

. J

e A
[RPC][RDMA] [CPU][GPU]

. Networking layer Device layer)

Figure 3.4: Illustration of the general architecture of the TensorFlow
runtime library. The top layers of the illustration shows higher levels of
software abstraction and the bottom layers show the lowest levels of
abstraction. This is a remade version of the illustration available on the
official web page for TensorFlow and in the paper by Abadi et al. [2,136].

42

Python implementation, but there are also implementations in C++, Java,
Javascript, Go and Swift. In addition, bindings for other languages such as
Rust, Ruby and Scala are in the works [136]. As shown in the illustration,
the architecture resembles that of an operating system, and as such the
heart of the platform is the kernel. The kernel contains over 200 standard
operations, inluding arithmetic, array manipulation, control flow, and state
management operations. These are implemented to use efficient parallel
code for both CPUs and GPUs [2]. In the illustration in figure 3.4, the
device layer mentions GPU. In this thesis, we will use multiple GPUs, and
as such, TensorFlow utilizes Cuda [87] and cuDNN [22], which are Nvidia’s
general GPU API and deep learning GPU API, respectively. Even though
we do not use TensorFlow, Cuda or cuDNN directly, they are important for
the overlying libraries that we use directly. We could have run with other
underlying libraries, but these are the ones best serving our goal, so we
have listed them in table 3.4.

TensorFlow is well-known for its use on machine learning problems
and its great performance and resource utilization. Tensorflow is adopted
by many projects and has an extensive community of collaborators,
researchers and entusiasts [2]. As a result, there exists several resources
and unofficial extensions to TensorFlow either extending functionality or
making it easier to use by abstracting some parts of the platform. One such
extension is the Keras library [25]. It started as a wrapper library, creating a
higher abstraction layer over several neural network libraries, but has since
become part of the TensorFlow distribution. Because of the performance on
GPUs and its support in Keras, TensorFlow was chosen as the platform for
the machine learning models and the training in the thesis. However, every
call to the library is done through the Keras API. This is due to the nature of
our experiments. We don’t make the models ourselves as they are available
pre-trained from Keras, so we only need the functionality offered by the
Keras API. By using TensorFlow as Keras’ tensor manipulation library, we
also have access to TensorBoard [29]. TensorBoard is a visualization tool
to visualize scalars such as validation accuracy and loss. Moreover, it can
visualize a graph of the trained model. We use this tool to display some of
our results later in this thesis.

Keras

Keras is a high-level neural networks API running on top of either
TensorFlow [1], Microsoft Cognitive Toolkit (CNTK) [122], or Theano
[3]. Chollet, the creator of Keras [25], recognized the lack of options
for higher leveled machine learning libraries. Keras aims to allow for
fast experimentation and to be able to go from idea to result with the
least possible delay. The library follows four guiding principles: (1)
User friendliness, meaning the Keras API focuses on user experience and
accessibility. (2) Modularity. Creating models is combining components
such as neural layers, cost functions, optimizers and initialization schemes.
(3) Easy extensibility, which means that adding new classes and functions
are easy if needed. (4) Work with Python.

43

Keras creates a standard way to use functionality across machine
learning libraries, and, the exception being some functionality unique
to TensorFlow, changing the underlying library is as easy as changing
a setting. The primary reason for TensorFlow getting special treatment
is due to Keras being implemented directly into the TensorFlow library.
The core data structure of Keras is a model, which is a way to organize
machine learning layers. There are two ways to make models in Keras:
(1) Using the sequential model, which is a linear stack of layers used for
simple models and (2) the functional model API, which allows for building
arbitrary graphs of layers used for more complex architectures [25].

We used Keras in this thesis because of the simplicity and efficiency
provided. Keras is easy to set up and supports convolutional neural
networks. Additionally, it has several built-in optimizers and contains an
application module including state-of-the-art CNN models pre-trained on
the ImageNet dataset. We have listed these pre-trained models and their
overlying properties in table 3.2. It is a Python library, but using the
TensorFlow library, the performance is impeccable. It would be possible
to use TensorFlow directly, but considering the convenience of Keras and
the available pre-trained CNN models, our choice landed on Keras. In this
thesis, we use Keras by taking pre-trained CNN models, which are Keras
model instances, and use functions available by the model to replace the
classification block. From there we use different functions available in the
model instance to train and later fine-tune the model.

GPyOpt

GPyOpt [6] is a Python open-source library for Bayesian Optimization.
It is based on GPy [48], which is a Gaussian processes framework
in Python. Groups from the University of Sheffield developed both
frameworks. GPyOpt performs global optimization of black-box functions
using Gaussian processes. A black-box function is a function where
we don’t see what happens internally, and can only affect the output
by changing the input. GPyOpt can optimize with different acquisition
functions. It can be used for both the automatic configuration of models
and machine learning algorithms. Additionally, it can be used to optimize
physical experiments both sequentially or in batches. It is also able to
handle large datasets via sparse Gaussian process models.

In the thesis, we use GPyOpt for its capability of running Bayesian
optimization trivially. GPyOpt solves the issue of having to implement and
configure a Bayesian optimization algorithm. The library can run Bayesian
optimization without any configuration, which makes it use default values,
or it can run with different user-specified configurations. Table 3.6 provides
a table of selected relevant parameters available to configure the Bayesian
optimization and their default values. The parameters listed are not all the
possible parameters but are the ones most relevant to our use case.

There are several libraries for Bayesian optimization available online
that we could have used, but we landed on GPyOpt. The reason for this
is that GPyOpt is that the Machine learning group at the University of

44

Sheffield is still maintaining the repository, it is trivial to use, and the
quality is high. It has much more functionality then what we use, but
future research can make use of this functionality to improve the results.
We use the GPyOpt library for instancing a Bayesian optimization object.
This object takes several parameters. However, we only use some, and the
rest of the parameters we leave to their default values. Table 3.6 provides a
list of the most relevant parameters and their default values. In addition
to these, there are the required parameters. These are the function we
want to optimize and the domain from where to extract hyperparameters.
Figure 3.7 shows how the Bayesian optimization object wraps the function
we want to optimize. The optimized function takes one parameter, which
is a NumPy array. This array contains the hyperparameter values for
the current optimization iteration. The values are taken from the domain
specified. Furthermore, the optimized function returns a value, which
the Bayesian optimization object use to evaluate the optimization and
select new hyperparameters for the next iteration. The optimization run
is started from a function in the Bayesian optimization object. We supply
this function with the number of iterations it should run and wait for the
result. At the end of the run, the function saves a report on the model and
evaluation values for each iteration and the summary of the optimization
run. Additionally, it saves a plot for the acquisition function and the
optimization convergence.

3.4.2 System Description

The system for running experiments and the experiments themselves are
written in Python. Python is a versatile language, but the primary reason
for the utilization of Python is that the libraries we use are written in this
language. The system is designed for easy interchangability with other
datasets and hyperparameter bounds. The user experience of the system is
made with a researcher with programming skills in mind as running other
optimizations than the optimizations we run may require changes to some
functions. However, the structure and majority of the system can be left as
is. The system as we use it is illustrated in figure 3.5. The figure gives an
overview of the system flow. From the illustration one can see that datasets
and defined hyperparameter bounds are fed to the test-suite, which runs
one or all of the optimization strategies. After one or all of the optimization
strategies have finished their run, the results are written to disk. The
results describe the optimization and gives the best hyperparameters of
the best trained model. The system running the experiments is structured
as follows:

Arguments decide dataset and experiment settings Arguments such as
name of experiment, type of run and dataset directory are parame-
ters that decide how the system will run. Which hyperparameters to
test and other parameters impacting the optimization at a lower level
are not included here.

45

System Flow

[Collection of datasets] [Defined hyperparameter bounds]
[Kvasir dataset] [Nerthus dataset] Layer Other
hyperparameter hyperparameters

e

[Training data] [Validation data]

For Each Dataset
Run Test-suite

Test-suite
¢) (7 3 (¢)
Shared Separate Separate
Hyperparameter Hyperparameter Optimization Steps
Optimization Strategy Optimization Strategy Optimization Strategy
N Y N J N J
Y Y Y
e A e A e A
Layer optimization Layer optimization Layer optimization

2 AN AN)
QV v ‘F_/
/ Output Written To Disk \

e N
Best Trained Model from

(Hyperparameters from h (Report from optimization h
each iteration including . o . performance including
each iteration including)
best hyperparameters from evaluation and model
best model overall

L optimization JAN) __ valuesforeachstep)

(N)

such as validation Best evaluated metric from Acquisition f“"°“°’? plot
o AT . from each Bayesian
accuracy and validation each optimization iteration

| optimization run
& 0SS J J \ /

Figure 3.5: Overview of the proposed system flow. Datasets are fed along
with defined hyperparameter bounds to the test-suite. For each dataset,
the test-suite runs one or all of the optimization strategies, depending on
the program arguments. Each optimization strategy ends with a layer
optimization, which writes results from the training together with
optimization statistics and plots to disk.

@calars from each iteration)

46

Three different optimization strategies per dataset There are three differ-
ent optimization strategies to run. For each dataset, we run all or one
of them, depending on the argument given to the program.

Bayesian optimization chooses hyperparameters We utilize Bayesian op-
timization for each optimization. It is a wrapper around a function
running one test instance. The test instance function gets hyperpa-
rameters from the Bayesian optimization algorithm each time it is
called. The hyperparameters are chosen from a dictionary of hyper-
parameter bounds decided by us.

Pre-trained model is created The pre-trained model is a hyperparameter.
We remove the classification block and replace it with a pooling layer
and a classification layer with the same amount of outputs as there
are labeled categories.

Classification layer is tuned We tune the classification and pool layer
only. All pre-trained layers are not trained. Hyperparameters are
given by the Bayesian optimization.

Fine-tuning of layers separated by default 2/3rd layer After the classifier
is trained, we use hyperparameters from the Bayesian optimization to
fine-tune the model. The delimiting layer is a default value of 2/3rd
the length of the model. We don’t care about the delimiting layer in
this step, and only want to find the best hyperparameters among the
other hyperparameters.

Fine-tuning with best hyperparameters for finding best delimiting layer
After finding the best hyperparameters, we want to find the best de-
limiting layer. We fine-tune the network again, but this time use the
best hyperparameters from the previous step and get the delimiting
layer from the Bayesian optimization.

Best validation accuracy is used for optimization The Bayesian optimiza-
tion chooses hyperparameters based on the optimization instance
that yields the best validation accuracy.

Following is a detailed description of the system:

3.4.3 Test Suite

The test suite is designed to run the tests sequentially from start to finish. It
automatically creates a log directory if not already existing. It also creates
anew test folder for storage of each test result. For test-suite configuration,
the program takes arguments from the user. A configuration file, which
is typically used for configuration, is not needed as the experiment is the
same for each optimization strategy. There are five arguments available:

1. The name of the test-file for the run. The folder can’t already
exist. Naming the test-file is an alternative to having the test-suite
generating the name.

47

2. The type of test run. This refers to which optimization strategy to
use. The options are all or one of them.

3. How many GPUs to use. If there is more than one GPU available to
the system, there is the alternative to use them. The default value is
one GPU.

4. Disable nonconvergence filtering. The default value is that the
nonconvergence filtering callback is enabled. —Nonconvergence
filtering is canceling a training early because the training failed to
reach a given threshold in a given number of epochs. We introduce
nonconvergence filtering in detail in section 3.5.

5. Resume running tests in a given folder. The folder must already
exist. The tests have a checkpoint system in case they shut down
early, and the resume option is an extension to this. Option 5 is
mutually exclusive with option 1.

There are some global constants available to the test-suite. These are
the directory of the datasets and a list of models and optimizers that the
hyperparameter optimizer selects from when optimizing. The test-suite
iterates through each dataset and sets up the folder structure of each test
when running them. For each dataset, it runs each optimization strategy
sequentially unless the arguments specify a specific strategy. The test-
suite times the whole run, and logs metadata such as the arguments and
constants.

3.4.4 Optimization Strategies

There are three optimization strategies available to us:

1. Share one set of hyperparameters on both the training of the
classification block of the pre-trained CNN and the fine-tuning of the
pre-trained CNN onto the dataset.

2. Have two separate sets of hyperparameters, one for each type of
training.

3. Do the optimization in two steps:

(a) Optimize the training of the classification block until you get the
hyperparameters yielding the highest validation accuracy. The
optimization will use one set of hyperparameters for this step.

(b) Use the best model from the previous step and optimize the fine-
tuning. This step will also have its own set of hyperparameters.
At the end of each strategy, we use the same function for layer
optimization.

The system implements the optimization strategies through two func-
tions. The first function performs both the shared hyperparameter and sep-
arate hyperparameter optimization strategies. The user can decide the op-
timization strategy by passing a boolean to the function. The similarity for

48

Separate optimization strategy

Bayesian Optimization Bayesian Optimization
ﬂ)timized function \ @timized function \
) —

Selected
hyperparameters

Selected
hyperparameters

Hyperparameter Hyperparameter
bounds bounds

The best model is Load best model
used by the fine- from

tuning - classification

i block training

Create Model

Bayesian

Bayesian
Evaluation Model Evaluation Model
delimiting layer
/ K\/alidation accuracy /

Separate optimization of Separate optimization of
classification block fine-tuning

Train
classification
block

Fine-tune with
default

Validation accuracy

Figure 3.6: Overview over the separate optimization stategy. The figure
shows two instances of Bayesian optimization running sequentially. The
left box represents the first optimization run. Here the goal is to train the
replaced classification block of the pre-trained layer and optimize until the
best results are achieved over a set number of iterations. When the
Bayesian optimization algorithm finishes, the model yielding the best
results are sent to the next step, represented by the box on the right. Here
the goal is to do the fine-tuning with a default limiting layer. The
optimization algorithm is finished when it reaches the set number of
iterations or it can no longer improve the results.

49

Table 3.5: Hyperparameter sets for each optimization strategy.

Optimization strategy Optimization step Hyperparameter set
Model Type

Shared Hyperparameters Shared Optimizer Type
Shared Learning Rate
Model Type

Classification Optimizer
Separate Hyperparameters Classification Learning Rate
Fine-tuning Optimizer

Fine-tuning Learning Rate

Classification Model Type

block Optimization Type
Separate Optimizations optimization Learning Rate

Fine-tuning Optimization Type

optimization Learning Rate

both optimization strategies is that the function creates a function to pass
to the Bayesian optimization library. The function passed is what is opti-
mized, and as such contains the training procedure. We call this function
the optimization function, and it takes only one parameter; a NumPy [88]
array containing the hyperparameters selected by the Bayesian optimiza-
tion algorithm for a specific iteration. The optimization function unpacks
the hyperparameters from the NumPy array and sends them to the next
step where they are used for training. The only difference between running
the function in share hyperparameter mode versus separate hyperparam-
eter mode is the number of hyperparameters. In shared hyperparameter
mode, we have a set of three hyperparameters: The model, the optimizer,
and the learning rate. We then copy the optimizer and learning rate to get
two sets of hyperparameters. In separate hyperparameter mode, we have a
set of five hyperparameters: The model, the optimizer and learning rate for
the classification block training, and the optimizer and learning rate for the
fine-tuning. Figure 3.7 shows an illustrated overview of the optimization
function.

3.4.5 Bayesian Optimization

The Bayesian optimization class running the test instances and evaluating
the results is a class available from the GPyOpt library [6]. This class takes

50

Bayesian Optimization

Optimized function

Bayesian optimization chooses
/ next hyperparameters from
Selected _\hyperpara.met.er bounds based
on validation accuracy
hyperparameters
s N
Create Model €— Hyperparameter
bounds
N J
Train classification |
block A e N
v ___| Bayesian Evaluation
e N Model
Fine-tune with default) N J
delimiting layer
\ ¢ Y,

K Validation accuracy /
|
N\

Figure 3.7: Overview over how Bayesian optimization is implemented in
the system. The optimized function is called for every iteration by the
Bayesian optimization function. The hyperparameters for the optimized
function is chosen from hyperparameter bounds and by the Bayesian
optimization. It is therefore highly probable, almost guaranteed, that the
hyperparameters are different for each iteration. This particular
illustration is of a shared hyperparameter or separate hyperparameter
optimization strategy. In this case the model hyperparameter is sent to the
create model part of the system, while the optimizer and learning rate is
distributet among the next parts of the system. Finding the optimal
delimiting layer is done in a separate optimization.

51

Table 3.6: List of selected relevant default parameters given to the
Bayesian optimization function available in the GPyOpt library [6].

Parameter Name Description Default Value

model_type Type of model to use 'GP’ (Standard Gaus-
as surrogate sian process)

acquisition_type Type of acquisition ’‘EI’ (Expected im-
function to use provement)

acquisition_optimizer_type

initial_design_type

initial_design numdata

model_update_interval

normalize_Y

batch_size

Type of acquisition
optimzer to use

Type of initial design

Number of initial
points that are col-
lected jointly before
start running the
optimization

Interval of collected
overservations after
which the model is
updated

Whether to normal-
ize the outputs be-
fore performing any
optimization

Size of the batch in
which the objective is
evaluated

"Ibfgs” (L-BFGS)

‘random’ (To collect
points in random lo-
cations)

5

True

52

several parameters affecting the optimization such as the type of model
to use as a surrogate, the type of acquisition function to use, the type
of acquisition optimizer, and more. However, to limit the scope of the
thesis, default values were used for all of these parameters. It would be
interesting for future work to adjust these values for perhaps even better
results. The options for each parameter can be found in the documentation
for the Bayesian optimization module in the GPyOpt library [6]. The
relevant default parameters we used are listed in table 3.6. Nevertheless,
the parameters that we had to supply was the function to optimize and the
domain, namely the hyperparameters and their boundaries.

The Bayesian optimization class acts as a wrapper for the function to
optimize. Figure 3.7 illustrates Bayesian optimization. Any calls to the
training function are done through this class. After creating an instance
of the class with the given parameter configuration, which in our case is
the default one, a call to the class’ run_optimization function will start the
optimization steps. This function will run until it has reached a given
number of iterations after the initial exploration data. When done, the
function will plot the acquisition function and convergence from the run
as well as report evaluation and model values for each iteration. It will also
give a summary of the optimization.

It is the function to optimize that is the transfer learning. Figure 3.7
also illustrates this function for the shared hyperparameter optimization
strategy. For every iteration, this function is run from scratch. The
only difference between each run is the hyperparameter values it selects.
These come through the function’s sole parameter. This parameter is a
NumPy array containing the name of the hyperparameter and the value
chosen by the Bayesian optimization from the hyperparameter bounds
defined by us. The format of the hyperparameter value is a number from
the bounds, and as such we must convert it to the correct format. The
hyperparameter bounds, therefore, need a conversion function along with
each hyperparameter. For example, the model hyperparameter will be
an index from the defined list of models. The conversion function will
then convert the index into the actual class representing the model. The
Bayesian optimization uses the return value from the function to optimize
to select the hyperparameters for the next iteration. The return value is
therefore in our case the validation accuracy from the training.

3.4.6 Model Setup

From figure 3.7 one can get an impression of how we structured the op-
timized function. After receiving the hyperparameters from the Bayesian
optimization, the first step is to create an instance of the pre-trained model
and to replace the classification block. In this step, we utilize Keras” ap-
plication module [24]. The application module has several pre-built CNN
models, pre-trained on the ImageNet [60] dataset. These are well-known,
state-of-the-art models for image classification. We have listed the ones we
use in table 3.2. These are not all of the available models, but we chose to
limit the number of models by not including the NASNetMobile and NAS-

53

NetLarge [145] models which were made available with version 2.1.3 of
Keras as these were heavy to run and we did not want increase the search
space further. We also did not include the MobileNet [56] model as it re-
quired a different image size than the other models and was reported to
perform worse on ImageNet in Top-1 accuracy and Top-5 accuracy [25].

When creating the instance of the model, we make sure to remove
the top block of the model. This block is the classification block and
is by default tuned for 1000 classes in the ImageNet validation dataset.
Our datasets are far from that size, so we must replace the block with a
classification block tuned for the number of classes in the dataset we want
to use for fine-tuning. Additionally, we signal the instance that we want to
use weights pre-trained from that model’s best training on ImageNet. The
alternative would be randomly initialized weights, but that would mean
we would train the model from scratch instead of using transfer learning.

The new classification block we put on the model is the same for every
model instance. We add a layer doing global max pooling for spatial data
and then a dense layer with softmax activation. Adding this structure to the
end of a CNN is the solution of most CNN models. The idea is to generate
one feature map for each corresponding category of the classification task
in the last layer of a convolutional block. The max of each feature map
is then added to a vector and fed directly into the softmax layer. Using
this structure has the advantage of enforcing correspondences between
feature maps and categories, and as such, the feature maps can be easily
interpreted as categories confidence maps [79,129].

After creating the instance of the model, we create generators for the
validation dataset and the training dataset of the model. For the training
dataset, we only flip the images horizontally and vertically. We rescale
the images to fit with our models. The image generator is a class available
from the Keras library, and its function is to process new data automatically
when training and validating. It has a function that creates a flow from a
dataset directory. It takes as parameters the directory of the training or
validation dataset, the target size of the images, size of the image batch
that is loaded at a time, and the class mode. We set image width and height
to 299 and batch size to 16. We set the class mode to categorical, meaning
we get categories from the directories where the images are loaded.

3.4.7 Classification Block Training

After instancing the pre-trained model and replacing the classification
block, it is time to train the classification block. It is necessary to train
the classification block before fine-tuning because the weights of the
classification block layers are randomly initialized after the replacement.
Randomly initialized weights can not classify. For training CNN models
from scratch, the weights of all layers are randomized. As it trains, the
weights are tuned until it is able to classify most images correctly. However,
when using a pre-trained CNN model, we do not want to train every layer
again as we then lose knowledge attained on the bigger dataset. The reason
for replacing the classification block is to let it classify features into the

54

number of classes that our dataset has. Training this block lets the CNN
model classify into the classes in the new dataset using only the pre-trained
knowledge. If we were to use the new classification block without training
it first, we would probably not be able to achieve good results when later
fine-tuning. At the very least, it would take much longer as the balance
in the network would be off. With an untrained classification block, each
iteration would give bad results because of the classification block and not
necessarily because of the image features being bad.

When training the classification block, we mark all layers from the base
model as untrainable, so we only change the weights of the block. Then we
compile the model with the optimization function and learning rate, given
as a hyperparameter by the Bayesian optimization. We create a callback
list which we will pass to the training function containing the following
callbacks:

1. Logging. We use the CSVLogger callback available in Keras for
logging scalars for each epoch in a CSV file.

2. Saving the best model. We use the ModelCheckpoint callback available
in Keras for saving the best model weights. These model weights
are used for the fine-tuning and also for reference and calculation
of performance metrics. The best model is the model with the best
validation accuracy in this work, but it could also have been based
on other scalars.

3. TensorBoard support. To enable the use of TensorBoard, we need
to generate a TensorBoard events file. This callback generates and
updates such a file for every epoch in one training. Doing this makes
it possible for us to visualize the training through live-plotting of the
scalars.

4. Early-stopping. We use the EarlyStopping available in Keras. Early
stopping is a regularization technique to avoid overfitting neural
networks when training [17,142]. In our case, the callback evaluates
the validation accuracy. If the validation accuracy stops increasing
over five epochs, we end the training early.

5. Nonconvergence filtering When optimizing, the Bayesian optimiza-
tion will try many different combinations of hyperparameters. Many
of these will be useless, and the training will never converge to a good
result. Instead, they will stay at low validation accuracies and spend
time. A full optimization takes several days, so we needed ways to
speed this up. Therefore, we introduced our callback that stops a
training run if the monitored scalar fails to reach a certain threshold
in a certain number of epochs. We call this callback “nonconvergence
filtering”, and it is explained in detail in section 3.5. In our case, we
evaluate validation accuracy. We set the threshold to 0.5 and patience
to 5 epochs. Patience is the number of steps before evaluating the
scalar against the threshold. There is a program argument to turn
this feature off, but the default behavior is to have it enabled.

55

After creating the callback list we start fitting the classification block on
the training dataset. We use the model object’s Keras function fit_generator,
which starts the training. The training runs for ten epochs if not stopped
by either early stopping or nonconvergence filtering. The number is
somewhat arbitrary. The idea behind is that the training of the classification
block should converge quickly as it already has the image features pre-
trained. Additionally, the point of training is not the achieve the perfect
classification block, but rather to have a block capable of classification
enough for fine-tuning to work. The highest validation accuracy reached
is returned to be used in the separate optimization strategy. The other
optimization strategies discard this value.

3.4.8 Fine-tuning

After training the classification block, the next step is to fine-tune the CNN
model to the dataset. In this step, we want to find the best hyperparameters
except for the delimiting layer. We will find the delimiting layer in the final
step. Technically, it is possible to find the layer in the same optimization
step, as we can measure the number of layers from the classification
block run. That number will not change. However, we see it as an
advantage to be able to decrease the dimensionality and the search space
of the hyperparameter domain. To the best of our knowledge, the other
hyperparameters are not affected by the delimiting layer and vice versa.
Therefore, we can, without consequences to the performance, split the
optimization into two steps. The other hyperparameters cannot be split the
same way as, for example, the learning rate will be dependent on the model
optimization function. Nevertheless, we split the optimization into two
steps, but we still need to train certain layers and keep others pre-trained.
Therefore, we use a default delimiting layer value. To keep the results of
each model moderately consistent, we decided to give a value based on
the length of the model, rather than a constant. Somewhat arbitrarily, we
decided on having the delimiting layer be the layer two-thirds of the model
length. That being delimiting layer = model length x %. Our reasoning is
that two-thirds of the model intuitively should hit close to the balance of
keeping low-level abstraction image features and training the high-level
abstraction image features on our dataset. We can unfortunately not verify
this without optimizing the delimiting layer. Nevertheless, for our purpose
of being a default value, it is sufficient.

In the fine-tuning step, the first thing we do is to load the model with
the top weights from the classification block training. At this point, we
have the pre-trained weights of the base model and the trained weights of
the classification block. After loading the weights, we set all layers that
precede the delimiting layer to untrainable and set all layers including the
delimiting layer to trainable. From here we do all the same steps as in the
classification block training. We create the same callback list, compile the
model with the hyperparameters from the Bayesian optimization, and start
the training. See section 3.4.7 for how we did this in the classification block
step. The hyperparameters from the run with the best result are what we

56

use for the next step, which is layer optimization.

3.4.9 Layer optimization

The final step of any of the optimization strategies is optimizing the
delimiting layer. As discussed in the previous section, section 3.4.8, we split
the optimization of the fine-tuning hyperparameters into two Bayesian
optimization runs. We do this mainly to reduce the dimensionality of the
search space available to the Bayesian optimization. It is possible to do this
as we assert that the delimiting layer does not affect the effectiveness of the
other hyperparameters. For other the other hyperparameters we use, this
is not true, so they need to be run in the same optimization run.

At the beginning of this step, we have found the best hyperparameters,
except for the delimiting layer, for both the classification block training
and the fine-tuning. We have consequently also found the best weights
for these runs. However, we want to increase the performance of the
model, and our default delimiting layer is likely far from the optimal. We
do this through a separate optimization where we train the fine-tuning
again from the start, depicted in figure 3.8. However, this time we use
the hyperparameters we found to be training the best performing CNN
model instead of getting them from the Bayesian optimization. The only
hyperparameter the Bayesian optimization provides is the delimiting layer,
which is taken from a hyperparameter bound of the first layer to the last
layer of the model. This optimization is one-dimensional with a relatively
small bound, which makes the optimization potentially very effective at
finding the global minima. The result of the layer optimization is a model
with the optimal hyperparameters, including the delimiting layer, and
the best performing CNN model, found by the Bayesian optimization
algorithm automatically. How well the model performs, is dependent on
the random nature of the optimization. Different runs will consequently
produce different results.

3.5 Nonconvergence filtering

Itis in the nature of automatic optimization to test combinations and values
that absolutely do not work. One of the toughest parts of hyperparameter
optimization is how volatile the performance output is between test
iterations. The relationships between the pre-trained model, the optimizing
function, and the learning rate is filled with local minima, and as such, a
change in one can make a huge impact on the performance of the CNN
model. For example, a combination of the pre-trained Xception model
with Nadam might give good results. Changing the optimizer or the pre-
trained model to something else might make the results significantly worse.
The consequence of this volatility is that we will have many optimization
iterations that will produce inferior results and fail to converge to better
results over epochs. Running any of the optimization strategies could
take up to days, depending on the number of iterations per optimization,

57

Last Optimization Step For Finding Delimiting Layer

Bayesian Optimization

(4 7\ \
/ Selected P Hyperparameter\
delimiting layer bounds
—_—— The best b /
TR
The best hyperparameters Load best model
hyperparameters are used in the from classification
- layer optimization block training
N Fine-tune with
The trained The best CNN selected Bayesian
classification model is used for delimiting layer Evaluation Model
block from the fine-tuning in layer ™ g
best iteration optimization ¢

Cidation accuracy J

Layer Optimization

-/

Any
optimization
strategy

Figure 3.8: Overview over the last optimization step for finding the
delimting layer. The figure shows the final step for all optimization
strategies. From any of the optimization strategies we get the best
hyperparameters with the expection of the delimiting layer. In addition
we get the best classification block model from the best run and use this
and the hyperparameters to optimize the delimiting layer. The Bayesian
optimization chooses a delimiting layer, which is then used for
fine-tuning. The validation accuracy is then measured and used for
evaluating the next optimization step.

58

class NonconvergenceFiltering (Callback):

def __init__(self, monitor, threshold, patience):
super(CancelBadResultEarly , self). __init__ ()
self . monitor = monitor
self.threshold = threshold
self .stopped_epoch = 0
self.patience = patience
self.wait = 0

def on_epoch_end(self, epoch, logs=None):
current = logs.get(self.monitor)
if current < self.threshold:
if self.wait >= self.patience:
self .stopped_epoch = epoch
self .model.stop_training = True
else:
self . wait += 1
else:
self . wait = 0

def on_train_end(self, logs=None):
if self.stopped_epoch:
print ("Epoch %05d: stopped by
‘nonconvergence filtering’ %

(self .stopped_epoch + 1))

7

Listing 3.1: Python code of callback for Keras that stops early if the
monitored value is below the given threshold in a given number of
epochs. We call this technique nonconvergence filtering. The monitor
parameter is the value we use for evaluation, the threshold is the
threshold the monitored value is required to pass, and the patience is the
number of epochs the monitored value is allowed to be under the
threshold before being stopped. The presented version is stripped down
to only work with accuracies and not loss as that was our use case.

59

so being able to cancel the runs that do not work early is an advantage.
Not only does it save time, but we can fill that time with more Bayesian
optimization iterations for a chance at better results.

We, therefore, introduce a solution to the problem called "nonconver-
gence filtering”. Nonconvergence filtering is a technique for stopping train-
ing runs that fail to produce a metric which value reaches a given threshold
in a given number of steps. The technique filters out training runs that fail
produce metrics that converge to the desired metric space in the desired
number of steps or epochs, hence the name. Nonconvergence filtering is
inspired by early stopping [17] as it stops the run earlier than the planned
number of epochs, and as such, the implementation draws inspiration from
the code for early stopping in Keras [67]. We implemented nonconvergence
filtering as a callback to be used in Keras, and present it in listing 3.1. The
presented implementation is in Python and is the one we use in the pro-
posed system. However, nonconvergence filtering can be applied to other
use cases and implemented in other languages. Our presented implemen-
tation is simplified to only work with the validation accuracy metric, nev-
ertheless, expanding the function to include other metrics is trivial, and
inspiration can be drawn from how Keras implements early stopping [67].

Nonconvergence filtering draws inspiration from early stopping but
solves different problems. Early stopping is a method for detecting when
the training of a model has stopped improving. To evaluate the model the
early stopping compares the accuracy or loss of the model when classifying
the validation dataset. If the validation accuracy or validation loss fails
to improve over a given number of epochs, early stopping terminates the
training run. This is done to prevent the training run from training too long,
as training too long will cause the model to overfit on the training dataset,
making the model unable to classify images that are similar, correctly.
Nonconvergence filtering tackles the problem of training runs which we
early see will not be able to train to achieve acceptable results and are
running for several epochs more than necessary. These situations happen
very often when doing automatic hyperparameter optimization, but it
could also work for other cases where hyperparameters are tuned, or new
models are tested. In our results, we have found we save considerable
amounts of time by using the nonconvergence filtering technique.

On April 28th, 2018, a Keras API Design Review was created. It was
a draft of a proposal to add the same functionality as nonconvergence
filtering brings to Keras [118]. On May 3rd, a pull request was approved
and merged into the master branch of Keras [119]. The approach proposed
in the design proposal was nearly identical to our approach in listing 3.1,
and the signature of the init-function contained monitor, threshold, and
patience. Nonconvergence filtering was implemented 20th of Match in our
codebase before it was added to Keras, and it is unfortunate that our work
came out at a later date as it can imply that we copied them. Regardless,
the version implemented by Keras is called EarlyBaselineStopping, and it
was implemented a little differently than suggested by the design proposal.
Instead of creating a new class, it was implemented as part of Early
stopping. In new versions of Keras, it is, therefore, possible to use the

60

functionality of nonconvergence filtering by setting a parameter called
baseline, which is the same as the threshold parameter in nonconvergence
filtering. Our solution has the advantage of being useful for older versions
of Keras. However, new versions should rely on the EarlyStopping class
available in Keras.

3.6 Summary

The methodology chapter aims at giving an in-depth description of the
methods applied to achieve the goal of creating a system for running our
experiments. We present the datasets Kvasir and Nerthus. The datasets are
both small compared to the huge datasets, such as ImageNet, required for
training a CNN model from scratch, but they are perfect for fine-tuning.
Kvasir shows eight classes of images of diseases and abnormalities in the
GI tract, while Nerthus is a smaller dataset that is showing four classes of
GI tract cleanliness. Both datasets have artifacts in the images, and each
class of Nerthus is from different locations of the colon, but they are the
best we have available and are sufficient for our use case.

We discuss the metrics we use for presenting the results of the thesis.
We chose validation accuracy over validation loss as the metric to optimize.
We talk about our choice of splitting the datasets into a test and validation
set, and to not split into three datasets. We also present the metrics
suggested in the Kvasir dataset paper. These are metrics known from
statistics and often used in related work. We use these metrics to present
our results.

We discuss our choice of hyperparameters to optimize and present each
of them. We talk about how we want the dimensionality and size of the
search space to be as low as possible to increase our chances of reaching
the best results. We present each hyperparameter:

o Pre-trained model. Keras has several well-known pre-trained CNN
models available. These are trained on the ImageNet dataset, and
the weights are from the best training done by the researchers that
created them or Keras themselves. The best model might be different
for different datasets, and the nature of the model means we treat
them as black-boxes. We want to know which model is the best for
our problem, so we use the pre-trained model as a hyperparameter.

e Model optimization function. By model optimization function
we mean the gradient descent optimizing algorithm. Similarly to
the pre-trained models, there are several optimizers available in
Keras. An optimizer is required for compiling the CNN model. The
optimizers act as black-boxes, and we do not know which optimizer
works best with what model. We want to find the best combination
automatically, so the optimizer is a hyperparameter.

e Learning rate. Including the learning rate as a hyperparameter
was not a trivial choice. There are arguments to be made for both

61

decisions. The disadvantage of including it is that we increase
dimensionality and the search space. Additionally, there are default
values for each optimizer. The tradeoff of dimensionality and search
space size when we could have used default values that might
work good, might not be worth it. Some of the optimizers are
also implemented to adjust the learning rate automatically, and it
is adviced against changing the default values for these optimizers.
However, we believe the automatic hyperparameter optimization
will be able to achieve a better or at least the same learning rate.
Additionally, fine-tuning and classification block training might
require different learning rates.

e Delimiting layer. The pre-trained CNN models are complex and
knowing at which layer to separate the model into a part we train
and one we do not train is nontrivial. Intuitively, one would split
the model on the connection between two convolutional blocks, but
hyperparameter optimization might find a layer which is unintuitive
to humans.

We introduce our proposed system. The proposed system is made
for running automatic hyperparameter optimization experiments. It is
built on Keras and TensorFlow for the machine learning and GPyOpt
for the Bayesian optimization. The system contains a configurable test
suite, where one can enable or disable certain features. The system
runs each optimization strategy sequentially. After each strategy, the
delimiting layer is optimized for the best-trained model. We explain how
Bayesian optimization is implemented in our system. We decided to use
standard Bayesian optimization with the default parameters supplied by
the GPyOpt library. For each optimization strategy trains a classification
block and fine-tune the best classification block, but they differ in their
approach. The shared hyperparameters optimization shares the gradient
descent optimization function and learning rate between the two training
steps, while the separate hyperparameters optimization does not. The
separate optimizations strategy, however, splits the two training steps into
two separate optimizations and uses the best classification block model
from the optimization for the fine-tuning. At the end of each optimization,
a TensorBoard file is completed for analysis, and the Bayesian optimization
writes convergence plots and an acquisition and surrogate model plot for
those optimizations that have a dimension of two or one. Additionally, we
get an overview of the hyperparameters that were chosen for each iteration.

We introduce nonconvergence filtering. Nonconvergence filtering is
a technique for stopping training runs that fail to produce metrics past
a given threshold in a given number of epochs. It can be used by
researchers that are testing out different models or hyperparameters, but
it is particularly effective for automatic hyperparameter optimization.
Nonconvergence filtering saves us time because we do not have to run
training runs that are hopeless at achieving results that can compete with
the desired results. In our results, we have found that we save considerable
amounts of time by using the nonconvergence filtering technique.

62

Chapter 4

Experiments

In the previous chapter, we described our methodology. We presented
our system for testing, and we presented and discussed parts such as
metrics, hyperparameters, and libraries. In this chapter, we will describe
the experiments in detail and present the results of each experiment. We
will start with description and discussion around the experiments and their
design. Afterward, we will present the results of the experiment from each
of the datasets. Finally, for each dataset, we present the best model and its
performance metrics.

4.1 Design of Experiments

We want our experiments to show how hyperparameter optimization for
the hyperparameters we chose can improve the performance of our way
of doing transfer learning for CNN models. We want to produce results
comparable to both choosing random hyperparameters and manually
chosen hyperparameters. We ran an experiment for both the Kvasir
and Nerthus datasets. Both experiments were ran through our proposed
system presented in section 3.4 in the methodology chapter. We ran the
experiments a server with the hardware specifications listed in table 4.1.
We used Ubuntu 16.04 LTS for the server and used the software libraries

Table 4.1: Hardware specifications for our testing environment.

Device Type

CPU1 Intel Xeon E5-2630 v3 2.40GHz
CPU2 Intel Xeon E5-2630 v3 2.40GHz
GPU1 Nvidia Tesla K40c

GPU2 Nvidia GeForce GTX TITAN X
GPU3 Nvidia GeForce GTX TITAN X
RAM 62 GiB System memory

63

listed in table 3.4. The experiments are designed as follows:

1. We split the given dataset into 70% training data and 30% validation
data. For a Kvasir class of 1000 images, 700 images are randomly put
as training data, and 300 images are randomly put as validation data.

2. Bayesian optimization from the GPyOpt library with default param-
eters was used for each optimization step. An optimization step is,
therefore, a Bayesian optimization run where the goal is to minimize
the validation accuracy based on a set of hyperparameters. After an
optimization step, we have the best model and the best hyperparam-
eters from that step.

3. We replace the classification block and train it on the training set,
a procedure we call classification block training. Next, we train all
layers after a given default layer of 2/3rd of the current CNN model’s
number of layers on the training set, a procedure we call fine-tuning.
This procedure is the gist of the hyperparameter optimization for the
three hyperparameters; pre-trained CNN model, model optimization
function, and learning rate. The optimization strategy decides how
hyperparameters are distributed and whether to divide the two
training steps into two optimization steps or keep it at one step.

4. Each iteration of Bayesian optimization selects new hyperparameter
values from a given domain. We call the search space the hyperpa-
rameter bound as the domain contains an upper and lower bound for
continuous values and also for some discrete values such as the de-
limiting layer. The hyperparameter bound for the four hyperparam-
eters are as follows:

(a)

(b)

()

(d)

Pre-trained model: An index into a list of models. The list is
in the following order: Xception, VGG16, VGG19, ResNet50,
InceptionV3, InceptionResNetV2, DenseNet121, DenseNet169,
DenseNet201.

Gradient decent optimization function: An index into a list
of optimization functions. The list is in the following order:
Nadam, SGD, RMSprop, Adagrad, Adam, Adamax, Adadelta.

Learning rate: A continuous value between 1 and 10~*. The
values were chosen because 1 is the highest default value and
10~* is the lowest default value of the optimization functions.

Delimiting later: A discrete value between 0 and number of
layers of the pre-trained model that is used. The drawback to
this is that the bound is dependent on the pre-trained model
being chosen before optimizing the hyperparameter.

5. For each dataset, we run three optimization strategies: The shared
hyperparameters, the separate hyperparameters, and the separate
optimizations optimization strategy.

64

(a) The shared hyperparameters optimization strategy. In this
strategy, we use the same hyperparameters for both the classi-
fication block training and the fine-tuning. This results in the
number of hyperparameters in the hyperparameters set being
three: The pre-trained model, the gradient descent optimiza-
tion function, and the learning rate. The optimization function
and learning rate are used for both the classification block train-
ing and the fine-tuning. The hyperparameters and the hyperpa-
rameter bounds are described in section 3.3 in the methodology
chapter. The dimensionality for the Bayesian optimization itera-
tion is three.

(b) The separate hyperparameters optimization strategy. The sep-
arate hyperparameters strategy is equal to the shared hyper-
parameters strategy but differs in the size of the hyperparam-
eter domain and the distribution of the hyperparameters. In-
stead of using a hyperparameter set of three hyperparameters,
the shared hyperparameters strategy uses five: The pre-trained
model, the gradient descent optimization function and learning
rate for the classification block training, and the gradient descent
optimization function and learning rate for the fine-tuning. The
point is to find whether we can improve the optimization by
having different hyperparameters for the two training steps. As
such, the dimensionality becomes five.

(c) The separate optimizations optimization strategy. For this
strategy, we split the classification block training and fine-
tuning into two separate optimizations. The idea is to decrease
the dimensionality in the search space and still have different
hyperparameters for the two training steps. The classification
block training has a dimensionality of three with the following
hyperparameters: The pre-trained model, the gradient descent
optimization function, and the learning rate. The best model
is then used for the fine-tuning optimization, which has a
dimensionality of two with the following hyperparameters: The
gradient descent optimization function and the learning rate.

6. After a strategy has finished, we fine-tune again, but this time we
use the best hyperparameters found by the optimization strategy and
optimize the delimiting layer alone.

7. Data is produced for each training run in each optimization. We use
TensorBoard to visualize this data into graphs. With TensorBoard we
can plot the validation accuracy for both each epoch and time stamp.
Both types of plot are used for analysis of the optimizations in the
next sections.

8. Data is also produced for each optimization, offering details such as
hyperparameters for each iteration, convergence plots, and acquisi-
tion and surrogate model plot.

65

val_acc

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

9. Lastly, metrics are calculated for the best model based on the
validation dataset.

4.2 Results and Discussion

In the following sections, we will present our results. We are dividing the
result into a section for each dataset. The Kvasir results will be examined
in detail, while only the important Nerthus results will be presented. The
Kvasir results are divided into subsections for each optimization strategy.
We divide each optimization strategy into sections for each optimization
step. At the end of both the Kvasir results and the Nerthus results we
discuss the best model from that full optimization run and compare their
metrics to baseline metrics released with each dataset.

4.3 Results for Kvasir

0.000 5.000 10.00 15.00 20.00 25.00

Figure 4.1: Plot of full test on the Kvasir dataset in epochs. X-axis is the
number of epochs the training run has lasted, and Y-axis is the attained
validation accuracy. Each line represents a training run. One Bayesian
optimization iteration is, therefore, segmented into several lines. The
training of the classification block produces one line, while the training of
the fine-tuning produces another line. The optimization of the delimiting
layer will also produce a line.

In figure 4.1, we see a plot of all training runs in a full experiment
based on the Kvasir dataset. Each line represents a training run. They

66

val_acc

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

12AM

Shared hyperparameters

HTHE T e
rl' r 'l' r yperp

optimizations

4({
(’lH h
[b LT ul‘lﬂ 3!

b

) Separate

06 AM 12 PM 06 PM 12 AM 06 AM 12PMm 06 PM 12 AM 06 AM 12PM 06 PM 12 Am 06 AM 12PM 06 PM 12AM 06 AM 12PM
April 11, 2018 April 12, 2018 April 13, 2018 April 14, 2018 April 15, 2018

Figure 4.2: Plot of full test on the Kvasir dataset in time. X-axis is
timestamps for each finished epoch. Y-axis is the attained validation
accuracy. Each line represents a training run. The plot is from the same
full optimization run that figure 4.1 shows. We have added boxes with
captions to show where each optimization strategy is plotted.

67

06 PM

do not represent a whole optimization run. A plot line could be from
a classification block training, fine-tuning or layer optimization. Each
iteration of such a training optimization has their own line. Figure 4.1
shows validation accuracy for each training run for each epoch, while
figure 4.2 shows validation accuracy for each training run for time steps.
In figure 4.1, we see a cluster of lines. However, we can draw some
information from this plot.

1. The nonconvergence filtering is working as intended by stopping
every training that fails to pass the threshold in five epochs. We can
see the filtering in the plot by looking at all the lines that end after five
epochs. From the plot, we can see that this is a majority of the runs. It
is safe to conclude that we save a significant amount of time by doing
this. Nevertheless, there are very few of the runs that are stopped
early that are growing, so we could decrease the number of epochs
before stopping. For the threshold, it is hard to say whether it should
be adjusted or not. Finding out if the threshold should be adjusted
would require more targeted tests, so we leave this for future work.

2. There are several high yielding training runs. Most produce results
between 0.80 to 0.85, and some hit as high as 0.89. We can see these
at the top of the plot. From this, we can see that transfer learning can
reach excellent results. We will compare the results to the baseline in
section 4.3.4. The highest producing training runs are from the shared
hyperparameter optimization, which we will show later.

3. Some of the training runs stand out as they train for very long.
Examples from the plot are the green line, hovering around 0.8
validation accuracy, ending on step 21, the orange line, almost
reaching 0.7 validaiton accuracy, ending on 26 epochs, and the
turquoise line, ending with 0.55 validation accuracy after 20 epochs.
We use early stopping to avoid overfitting together with fifty epochs
for fine-tuning. From the plot, it is clear that every training run
is early stopped as none reach fifty epochs. The training runs that
reach high numbers of epochs are able to do that as they manage
to increase their top achieved validation accuracy before five epochs
have occurred. We configured the early stopping callback to work
like that. Even though the orange training run does barely grow and
stalls the whole optimization, the green’s top training run reaches
its peak result late. We accept this compromise, so there is no
reason to change the early stopping configuration by looking at this
optimization run.

4. Many training runs fluctuate, nearly oscillate, significantly. One of
the more prominent examples is the yellow line fluctuating from a
validation accuracy of 0.74 in epoch 7 to 0.41 in epoch 8 back to a
validation accuracy of 0.79 in epoch 9. There are examples of lesser
fluctuation in the plot like the turquoise line mentioned in the point
above as well. We can attribute this to high learning rates. These are

68

runs where the optimizer tries a too high learning rate for the gradient
descent optimizer. We expect this as there is a random distribution
at the beginning of the Bayesian optimization, and the optimization
will have problems as there will be many local extrema since the
relationship between the learning rate and the optimizer depends on
the combination. For some optimizers a learning rate of 0.1 is good,
but for others, that learning rate is really bad.

Figure 4.2 provides another perspective on the same optimization run
shown in figure 4.1. In figure 4.2, we see the training runs for time steps.
From this plot each optimization strategy is visible, and we have added
boxes to mark the location of each within the plot. From the start of the run
to April 12th 06 AM, shared optimization is visible. The other optimization
strategies are more difficult to separate. The separate hyperparameters
optimization strategy is from April 12th 06 AM to April 14th, and the
separate optimizations optimization strategy is from April 14th 13 PM to
April 15th 11 AM. We can also gain more information from this plot:

1. The shared hyperparameters optimization yields much better results
than the other optimization strategies. We can see that many of the
line, particularly the last lines reach between 0.85 to 0.89 near the end
of the shared hyperparameters strategy. The separate hyperparam-
eters optimization yields better results than the separate optimiza-
tions optimization, but they are much closer and produces worse re-
sults than the shared hyperparameter optimization. Additionally, the
highest results in the shared hyperparameters and shared optimiza-
tions strategies are inconsistent, meaning they fluctuate and seem
more like outliers.

2. The shared hyperparameter optimization is faster than the other
strategies in converging. Both of the other strategies are converging
at the end of their optimization runs, so this could indicate that these
strategies need more iterations to be able to converge to the same
values as the shared hyperparameter optimization. We can see that
the shared hyperparameters strategy has converged a little before
halfway into the optimization run, while the other two strategies
produce spiky results and show signs of converging at the end of
their optimization runs.

3. The whole run takes almost four days, but what stands out is that
each optimization strategy takes different amounts of time. The
shared hyperparameters strategy takes 1 day and 19 hours, the
separate hyperparameters strategy takes 1 day and 6 hours, and
the separate optimizations strategy takes 22 hours. We have no
explanation for this difference. The reason could be resource related,
but we do not know and finding it out as outside of the scope of the
thesis.

69

val_acc

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000 5.000 10.00 15.00 20.00 25.00

Figure 4.3: Plot of Shared hyperparameters optimization strategy run in
steps on the Kvasir dataset. X-axis is the number of epochs the training
run has lasted and Y-axis is the attained validation accuracy. Each line

represents a training run. One Bayesian optimization iteration is,
therefore, segmented into several lines. The training of the classification
block produces one line, while the training of the fine-tuning produces

another line. The optimization of the delimiting layer will also produce a

line. The plot is from the same run as figure 4.1, but with filtering out
every line that is not from the shared hyperparameter optimization
strategy.

4.3.1 Shared Hyperparameters Optimization Strategy

The shared hyperparameters optimization strategy was shown in figure
4.2 to produce the best results of all the strategies. In this section, we
will present the results of the shared hyperparameter optimization strategy.
Figure 4.3 and 4.4 are plots from the same run as figure 4.2 and 4.1, but they
are of the shared hyperparameter strategy results only. In figure 4.3, we see
many of the same features as in figure 4.1:

1. We see some lines from training runs that did not pass the threshold
of 0.5 in five epochs, a rule enforced by the nonconvergence filtering,
and are subsequently stopped early.

2. We see the high yielding lines attaining validation accuracies above
0.80. Most of them converged before ten epochs, but there are several
lines, such as the green line, ending at 21 epochs, and the purple line,
ending at 18 epochs, that take time to converge.

3. We see fluctuating lines. The yellow line, ending on epoch 14 and

70

val_acc

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

06 AM

03 AM

Model Optimization Layer Optimization

ATl SRR

12 PM 03 PM 06 PM 09 PM 12 AM 03 AM 06 AM 09 AM 12 PM™ 03 PM 06 PM 09 PM 12AM

April 11, 2018 April 12, 2018

03 AM

Figure 4.4: Plot of Shared hyperparameters optimization strategy run in
time on the Kvasir dataset. X-axis is timestamps for each finished epoch.
Y-axis is the attained validation accuracy. Each line represents a training

run. The plot is a subplot from figure 4.2 of the marked box of shared
hyperparameters optimization strategy. We have added boxes with
captions to show where each optimization step is plotted.

exemplified in section 4.3, shows heavy fluctuations, but there are
also other lines present, such as the blue line, fluctuating from 0.18 in
epoch 0, up to 0.34 in epoch 1, down to 0.19 in epoch 2, and up to 0.41

in epoch 3.

4. There are less training runs that are stopped early due to nonconver-
gence filtering than there are training runs that run until early stop-
ping stops them. This contrasts the findings in figure 4.1 which shows
a heavy majority of training runs filtered by the nonconvergence fil-
tering. We can draw from this that the shared hyperparameter op-
timization stands for a significant amount of the high yielding lines
present in figure 4.1. Additionally, shared hyperparameter optimiza-

tion needs fewer iterations before converging.

In figure 4.4, we see the shared hyperparameter optimization strategy
marked in figure 4.1. We can see from figure 4.4 that we have marked
the model optimization step, where we train the classification block and
do the fine-tuning with a default delimiting layer, and marked the layer
optimization, where we fine-tune with only the delimiting layer as a
hyperparameter. In figure 4.4 we can deduce the following;:

1. Both the model optimization step and the layer optimization step

71

06 AM
April 13, 2018

09 AM

reaches high validation accuracies. From the two, layer optimization
reaches the highest validation accuracy of 0.89. This run can be seen
as the green line on April 12th at 09 PM. This run shows us that
optimizing the layers beyond the default value of 2/3 of the number
of layers in the model works and in this case increased the result. The
light green line April 11th at 02 PM achieved the highest validation
accuracy of the model optimization. The run reached a validation
accuracy of 0.86, which is close to the layer optimization run of
0.89. The small increase in validation accuracy indicates that layer
optimization does indeed help, but only with small gains. However,
these relatively small gains are important as we want to be as close
to a hundred percent accuracy on classification as possible. For the
medical field, a few percents could be the difference of diagnosing a
disease or not.

2. The model optimization has very spiky results, meaning some
training runs are really bad with validation accuracies close to
0.1, while others reach over 0.5 validation accuracy. The layer
optimization, which uses the best model for training and the best
hyperparameters from the fine-tuning, is very consistent and show
little difference between each run. The lack of difference between
the runs could mean that the delimiting layer does not matter too
much in our use case to make a big impact on the validation accuracy
outcome. We will look into this in more detail in section 4.3.1.

Model Optimization

In this section, we will take a closer look into model optimization for shared
hyperparameter optimization by looking at figure 4.5 and 4.6. Figure 4.4
showed us that model optimization reach high validation accuracies, but
also have significant differences between all of the runs. By examining
figure 4.5, we can see the same features as discussed in section 4.3.1 about
figure 4.3, such as runs being filtered by the nonconvergence filtering,
fluctuations in validation accuracy for many of the runs, some runs
achieving high validation accuracies and a few runs running for many
more epochs than the majority. However, we can see in figure 4.5 that some
of the runs are the examples we pointed out in the previous sections:

1. The yellow line that fluctuates and ends on epoch 14 comes from
the model optimization run. The training run is a fine-tuning run
and uses a learning rate of 0.8 with Adadelta as optimizer and
InceptionV3 as the pre-trained CNN model. The default learning
rate for Adadelta is 1.0, which should indicate that the fluctuations
are indeed not from a high learning rate. However, during the fine-
tuning step, it would, from intuition, be advantageous to have a
smaller learning rate as we do not want to change the pre-trained
weights too much since that might cause them to lose their previous
knowledge instead of building on top of it. There is not way we can
say for certain the reason for the fluctuation from these plots. We can

72

val_acc

0.900

/\ < -

0.700
0.600 /__'v_A
0,500 /

0.400

0.300

0.200

0.100

1

0.000 5.000 10.00 15.00 20.00 25.00

Figure 4.5: The shared hyperparameters optimization strategy’s model
optimization run for each epoch. Training runs from the model
optimization is plotted in the graph for validation accuracy in Y-axis and
epoch in X-axis. Classification block training and fine-tuning is plotted
together.

only speculate that it must be the combination of model, optimizer
and transfer learning that do not work well with such a high learning
rate.

2. The orange line that lasts until epoch 26 comes from the model
optimization run. This run contrasts the yellow line run in that it
barely fluctuates. However, the run takes a long time to converge.
The training run is a fine-tuning run and uses a learning rate of
0.014 with Adadelta and Xception as the pre-trained CNN model. In
this run, the learning rate is much lower, which explains the slow
convergence and long run.

3. Thelight green line yielding the highest validation accuracy and ends
on epoch 14 comes from the model optimization. This run is also a
fine-tuning run, and uses a learning rate of 0.84 with Adadelta as
optimizer and InceptionReNetV2 as the pre-trained CNN model. We
can see from the results and the plot that the relationship between the
learning rate and the gradient descent optimizer makes a difference
for the fluctuations. However, it seems that the most important aspect
is the pre-trained CNN model. For the yellow line, using Adadelta
with a learning rate of 0.8 made it flucutate heavly, but for the light
green line, the roughly same learning rate made it yield the best
validation accuracy. We can conclude from this that the learning

73

d(x[n], x[n-1])

Distance between consecutive x's Value of the best selected sample

10 A

_02 4

_03 4

_04 4

Besty

_05 4

_0.6 -

—0.7 A

—0.8 1

0 2 4 6 8 10 12 0 2 4 6 8 10 12

Iteration Iteration

Figure 4.6: Convergence plot of the shared hyperparameters optimization
strategy’s model optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the
Euclidean distance is plotted as Y-axis, and the iteration is plotted as

X-axis. The iteration means the going from one iteration to another, so for

example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

rate is different for each model and gradient descent combination,
and that using the default learning rate does not work for every pre-
trained CNN model.

In this section, we will take a closer look at model optimization for
shared hyperparameter optimization by looking at figure 4.5 and 4.6.
Figure 4.4 showed us that model optimization reach high validation
accuracies, but also have significant differences between all of the runs. By
examining figure 4.5, we can see the same features as discussed in section
4.3.1 about figure 4.3, such as runs being filtered by the nonconvergence
filtering, fluctuations in validation accuracy for many of the runs, some
runs achieving high validation accuracies and a few runs running for many
more epochs than the majority. However, we can see in figure 4.5 that some
of the runs are the examples we pointed out in the previous sections:

1. The yellow line that fluctuates and ends on epoch 14 comes from
the model optimization run. The training run is a fine-tuning run
and uses a learning rate of 0.8 with Adadelta as optimizer and

74

InceptionV3 as the pre-trained CNN model. The default learning
rate for Adadelta is 1.0, which should indicate that the fluctuations
are indeed not from a high learning rate. However, during the fine-
tuning step, it would, from intuition, be advantageous to have a
smaller learning rate as we do not want to change the pre-trained
weights too much since that might cause them to lose their previous
knowledge instead of building on top of it. There is no way we
can say for certain the reason for the fluctuation from these plots.
We can only speculate that it must be the combination of model,
optimizer and transfer learning that does not work well with such
a high learning rate.

2. The orange line that lasts until epoch 26 comes from the model
optimization run. This run contrasts the yellow line run in that it
barely fluctuates. However, the run takes a long time to converge.
The training run is a fine-tuning run and uses a learning rate of
0.014 with Adadelta and Xception as the pre-trained CNN model. In
this run, the learning rate is much lower, which explains the slow
convergence and long run.

3. The light green line yielding the highest validation accuracy and ends
on epoch 14 comes from the model optimization. This run is also
a fine-tuning run and uses a learning rate of 0.84 with Adadelta as
optimizer and InceptionReNetV2 as the pre-trained CNN model. We
can see from the results and the plot that the relationship between the
learning rate and the gradient descent optimizer makes a difference
for the fluctuations. However, it seems that the most important aspect
is the pre-trained CNN model. For the yellow line, using Adadelta
with a learning rate of 0.8 made it fluctuate heavily, but for the light
green line, the roughly same learning rate made it yield the best
validation accuracy. We can conclude from this that the learning rate
is different for each model and gradient descent combination and that

using the default learning rate does not work for every pre-trained
CNN model.

Figure 4.6 shows two plots. The first plot shows the distance between
two consecutive x’s. X is the hyperparameter values of an iteration. How
the X is calculated depends on the dimensionality of the hyperparameters.
For example, the first plot in figure 4.8, which is from layer optimization,
shows the distance between two consecutive x’s for the delimiting layer,
which is a one-dimensional hyperparameter set since because we only
optimize the delimiting layer. For one-dimensional hyperparameter sets,
the distance between two consecutive x’s is the difference between the two
numbers. If the Bayesian optimization in iteration 5 try a delimiting layer
of 178 and in iteration 6 try a delimiting layer of 478, the distance between
the two consecutive x’s for that iteration is 300 = 478 — 178. The first plot in
figure 4.6 is from model optimization, which has three hyperparameters for
the shared hyperparameter optimization strategy. Three hyperparameters
make the dimensionality three-dimensional, which means we must use a

75

different technique for calculating the distance. We use Euclidean distance
[8] for the calculation of the distance between each of the hyperparameter
sets the Bayesian optimization tries. Euclidean distance can calculate the
straight-line distance between points in any dimension and is defined by:

A(p, @) = \/(p1 = @2+ (12— 22+ + (pi — 42+ + (P —)2
(4.1)
where p and q are two points in n-dimensional space.

The first plot in figure 4.6 shows the Euclidean distance between
consecutive hyperparameter set iterations for each iteration. As an index
represents each model and optimizer in a list, the combination creates a
point in three-dimensional space. By plotting the distance between these
points, we can get a sense of how much difference it is between the
hyperparameters of each iteration. However, the drawback is that there
will be a bigger distance between for example a pre-trained model with
index 1 and another pre-trained model with index 7 than a pre-trained
model with index 1 and a pre-trained model with index 2. Changing
between models should not be weighted, but they are when calculating
distance as the index is included in the calculation. Nevertheless, we can
see from the plot when the hyperparameters are not changing, and we
can gain more insight into how the Bayesian optimization evaluates the
hyperparameters. GPyOpt generates the plot, so because of the previously
mentioned advantages, we choose to show it.

We can see in the first plot in figure 4.6 that there are some big changes
in the tested hyperparameters happening between iteration nine, and ten.
The iteration of the plot is zero-indexed, so the distance between iteration
nine and ten is plotted in iteration 8 in the graph. In iteration nine,
DenseNet201 is used with Nadam and learning rate of 0.05, and in iteration
ten, Xception is used with Adadelta with a learning rate of 0.01. The point
at iteration 8 in the graph is the highest point in the graph, but it does not
reflect reality. The reason for the large distance is because numeric values
that represent indices represent the pre-trained model and the gradient
descent optimizer. The problem is that using numeric values implies a
numeric relationship between each model or optimizer. For example, a
model with index 1 will be closer to a model with index 2 than a model
with index 8. In reality, there is no relationship between the models, but
the Bayesian optimization mistakenly assumes there is.

The second plot in figure 4.6 shows us the best result of all iterations
for each iteration. The Y-axis is the validation accuracy negated. There
is no reason for us to use the negated number, but that is how GPyOpt
calculated the plot. We can see from this graph that the training converge
to the maximum validation accuracy after only four Bayesian optimization
iterations. There is a huge difference from the iteration marked 1, and the
iteration marked 2 in the plot. It indicates that the optimization does not
converge properly, but is lucky to try combinations that work well early
and fail to improve on this. This observation reflects the same observations
made in section 4.3.1 about figure 4.4, where we see that training runs in

76

the model optimization seemingly are all over the graph. This variance of
attained validation accuracies is also reflected in table 4.2.

Iteration Val Acc Model Optimizer Learning Rate
1 0.1389 InceptionV3 RMSprop 0.8463
2 0.1379 ResNet50 Adam 0.4595
3 07728 Xception Adadelta 0.8310
4 0.8562 InceptionResNetV2 Adadelta 0.8417
5 0.1349 VGG16 Adam 0.4336
6 0.8333 InceptionResNetV2 Adadelta 0.2626
7 04077 DenseNet169 Adadelta 0.9307
8 0.7927 InceptionV3 Adadelta 0.8033
9 0.1210 DenseNet201 Nadam 0.0489

10 0.6835 Xception Adadelta 0.0144
11 0.1379 Xception Nadam 0.9764
12 0.1319 VGG16 Adadelta 0.8948
13 0.1329 InceptionResNetV2 Adamax 0.6861
14 0.8403 InceptionResNetV2 Adadelta 0.5789
15 0.7183 InceptionV3 Adadelta 0.0278

Table 4.2: Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the shared hyperparameters optimization
strategy’s model optimization.

All of the Bayesian optimization iterations and their attained validation
accuracies and used hyperparameters for the model optimization run are
listed in 4.2. The first plot in figure 4.6 should be evaluated in the context
of table 4.2, and we can see from the plot that there are many different
combinations of hyperparameters that are tested and that the Bayesian
optimization does not converge to a particular set of hyperparameters.
Nevertheless, the graph does not reflect the true performance of the
Bayesian optimization but shows us that using indices for representing
models and optimizers might present a problem for the convergence of
the Bayesian optimization algorithm as it detects relationships that are not
present in reality.

Layer Optimization

The layer optimization is different from the model optimization in that
it only has one hyperparameter, the delimiting layer. It uses the best
hyperparameters from the model optimization and the best CNN model for
training, then repeats the fine-tuning while only changing the delimiting
layer between iterations. Using only one hyperparameter makes the

77

val_acc

0.900

0.880

0.860

0.820

0.800

0.780

0.760

0.740

0.720

0.700

0.680

0.000

2.000 4,000 6.000 8.000 10.00 12,00 14.00 16.00 18.00

Figure 4.7: The shared hyperparameters optimization strategy’s layer
optimization run for each epoch. Training runs from the model
optimization is plotted in the graph for validation accuracy in Y-axis and
epoch in X-axis. Classification block training and fine-tuning are plotted
together.

search space one-dimensional. One-dimensional search space combined
with a relatively small search space of the number of layers in the
model, makes the optimization perform better. Additionally, the layer
numbers are numeric values with normal numeric relationships between
them. Numeric values in comparison to representative values remove the
complexity the model optimization presents to the Bayesian optimization,
making the run converge faster.

Figure 4.7 shows the shared hyperparameters optimization strategy’s
layer optimization. The test is the same as the test plotted in figure 4.1.
We can see from figure 4.7 that all the training runs reach validation
accuracies above 0.74. The layer optimization is based on the best model
from the model optimization which is from iteration 4 in table 4.2, which
is an InceptionResNetV2 model with Adadelta as optimizer and 0.8417 as
learning rate. We can observe in figure 4.7 that many of the training runs
start out and end with lower values of validation accuracy. An example
of this is the blue line at the bottom of the graph, ending on epoch seven
with a validation accuracy of right under 0.74. The blue line never reaches
the same values as the model it starts out with, which means there are
delimiting layers which are worse than the 2/3rd of model layers default
layer we use for fine-tuning. However, we can also see several lines
reaching validation accuracies above the starting point of 0.856 which is

78

20.00

the validation accuracy reached by the model optimization. The highest
value we reach is by the green line at epoch four, where it reaches 0.893
in validation accuracy. From this result, we can deduce that we have
increased the validation accuracy by 3.7% by tuning the delimiting layer.
The result for each Bayesian optimization iteration is listed in table 4.3.

Iteration Val Acc Layer

1 0.8065 345
2 0.7698 603
3 0.8800 479
4 0.8363 417
5 0.8681 178
6 0.8512 478
7 08115 480
8 0.8681 177
9 0.8710 179
10 0.8869 177
11 0.8730 152
12 0.8929 136
13 0.8700 92
14 0.8790 131

15 0.8730 131

Table 4.3: Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the shared hyperparameters optimization
strategy’s layer optimization.

Since the layer optimization searches in one-dimensional space and
each hyperparameter has a numeric value, the first plot in figure 4.8 is
more useful for visualizing the distance between each delimiting layer that
the Bayesian optimization tries than the first plot in figure 4.6. We can
see in the first plot in figure 4.8 that the optimization tries many different
fine-tuning layers before leveling out at the seventh iteration. The large
fluctuations from iteration two to seven can be explained by looking at the
second plot in figure 4.8. Similarly to the second plot in figure 4.6, the plot
converges quickly to a high value. However, in the second plot in figure
4.8, we see that it manages to improve the best validation accuracy after
seven iterations. Bayesian optimization tries to balance exploration with
exploitation, which means it tries to search in regions of search space with
high uncertainty and search in regions with high estimated value. The first
five iterations are randomly placed to map the search space. We see large
variances in the hyperparameters tried as the Bayesian optimization tried
to explore the whole search space. After the exploration, the optimization

79

d(x[n], x[n-1])

Distance between consecutive x's Value of the best selected sample

300 A
250 4 —0.82 1
200 A
—0.84 A
>
150 1
)
—0.86 A
100 1
50 1 —0.88 1
0 -
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure 4.8: Convergence plot of the shared hyperparameters optimization
strategy’s layer optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the

Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

tries to exploit the numeric area it found the best validation accuracy. We
can see it works in the second plot in figure 4.8 as the Bayesian optimization
manages to find a better result twice after starting to exploit the area.

The acquisition function is responsible for determining where to
explore or exploit next. We can only plot it for one- and two-dimensional
search spaces. We use the acquisition function “Expected improvement”
[101], which tries to improve the validation accuracy by calculating a
tradeoff between exploration and exploitation. In figure 4.9, we see the
Gaussian process surrogate model and the acquisition function, expected
improvement, plotted for the layer optimization. Bayesian optimization
works by creating a surrogate model, which is a Gaussian process in our
case. The surrogate model is much cheaper to optimize than the real model
and is used by the acquisition function to determine where in the search
space to fetch the new values for the hyperparameters. The Y-axis in figure
4.9 shows the surrogate model’s output for a value of a hyperparameter,
which is, in this case, the delimiting layer. The X-axis shows the value of
the hyperparameter. The Gaussian model is tuned over time by each result,

80

f(x)

T
- Acquisition (arbitrary units)

5

X

Figure 4.9: Gaussian Process surrogate model and Expected Improvement
acquisition function for the shared hyperparameters optimization
strategy’s layer optimization. The Y-axis is the expected result of a

hyperparameter in the surrogate model. X-axis is the hyperparameter,
which is this case is the delimiting layer. The black line represents the
posterior mean, the gray lines represent the posterior uncertainty, the red
dots are tested hyperparameters and their results on the surrogate model,
the red vertical line is where the acquisition function would try the next
test should it run for another iteration, and, finally, the horizontal red
curve is the acquisition function in arbitrary units. A lower posterior
mean is better, and a higher value for the acquisition function is where the
next hyperparameter values will be taken from.

and we see the surrogate model plotted after the optimization is done. The
black line represents the output of the Gaussian process surrogate model
for each delimiting layer value, which becomes the posterior mean as it
is a prediction. The gray lines, with gradient blue between them and
the black line in the middle, represents the posterior uncertainty of the
surrogate model. Each red dot is a tested hyperparameter value and the
results. Lower outputs for the surrogate model is better, and the lowest
dot gives the best validation accuracy. The red, bottom line represents
the acquisition function and is given in arbitrary units. The highs of the

81

0 100 200 300 400 500 600 700 800

val_acc

0.700

0.600

0500

0.400

0300

0.200

0.100

acquisition function show wherein the search space it wants to explore
next. The red vertical line shows where the optimization would get the next
value for the delimiting layer in the search space should the optimization
continue for one more iteration. As we can see, the red vertical line is where
the acquisition function is at its highest.

The plot of the fitted surrogate model and acquisition function in figure
4.9 is valuable to us as we can get a deeper insight into how the Bayesian
optimization works. We see in the figure, that the acquisition function
finds success with lower values for the delimiting layer, meaning most
of the CNN model is re-trained. Additionally, we see that much of the
search space is left unexplored and several attempts have been made at
exploiting the area around the best performing delimiting layer. Perhaps
more iterations would achieve better results. Nevertheless, we are content
with the improvement as it achieved the best result of the full run of the
optimization.

4.3.2 Separate Hyperparameters Optimization Strategy

0.000

2000 4,000 6.000 8.000 10.00 1200 14,00 16.00 1800

Figure 4.10: The separate hyperparameters optimization strategy’s plot of
training runs for each epoch.

From figure 4.2 we know that the separate hyperparameters optimiza-
tion strategy yielded the worst results in regards to validation accuracy.
Figure 4.10 and 4.11 shows us the same full optimization from the perspec-
tive of the separate hyperparameters optimization strategy. From figure
4.10, we can make the following observations:

1. No training run in the graph achieve the same levels of validation
accuracy as the best shared hyperparameters optimization strategy
training runs achieve. The highest validation accuracy achieved is by
the brown line, reaching a best value of 0.70.

82

20.00

val_acc

0700

0.600

0500

0.400

0300

0.200

0.100

0.00

Model Optimization

R et

H[Layer Optimization

03AM 04AM 05AM O6AM OTAM 08AM O00AM 1DAM 11AM 12PM OLPM | 02PM 03PM 04PM 05PM O06PM | O7PM 08PM 09PM 10PM 11PM 12AM O1AM | 02AM | 03AM 04AM O5AM | 06AM | O7AM OBAM 09 AM

April 13, 2018 April 14, 2018

Figure 4.11: The separate hyperparameters optimization strategy’s plot of
training runs for time. The model optimization and layer optimization has
been marked with black boxes.

2. Only five training runs pass the 0.5 validation accuracy threshold.
It is unlikely that any of the runs filtered by the nonconvergence
filtering would pass the threshold, even with more epochs, as they
do not converge fast enough, so filtering them is the right choice.

Figure 4.11 shows us that the model optimization has some random
spikes, but do not converge at all. We can also see that the layer
optimization fails to exceed the model optimization. We can see that the
Bayesian optimization algorithm during the layer optimization stopped
after seven iterations instead of the fifteen it was allowed to do. We will
examine what happened in the next sections.

Model Optimization

Figure 4.12 gives us more insight into how the separate hyperparameters
optimization strategy did. We see that only three training runs pass the
threshold of 0.5. The brown line achieves the best validation accuracy of
0.70. The brown line is the same highest reaching training run we discussed
in section 4.3.2 from figure 4.10. The validation accuracies are subpar
compared to those achieved by the shared hyperparameters optimization
strategy, but there is more to the lines than what the graph shows.

By looking at table 4.4, we can see that iteration eight reach a validation
accuracy of 0.41, while all other iterations reach validation accuracies below
0.19. These values are not consistent with the values we saw in figure 4.12
and 0.41 is far from the 0.70 validation accuracy we saw. The reason for
this discrepancy is that the three lines above 0.5 validation accuracy we
see in figure 4.12 are from the classification block training run and not

83

10AM | 11AM 12PM O1PM 02PM

val_acc

0.700

0.600

0500

0.400

0300

0.200

0.100

0.000

1000 2,000 3.000 4.000 5000 6.000 7.000 8.000

Figure 4.12: The separate hyperparameters optimization strategy’s plot of
model optimization training runs for each epoch. Training runs from the
model optimization is plotted in the graph for validation accuracy in
Y-axis and epoch in X-axis. Classification block training and fine-tuning is
plotted together.

from the fine-tuning. As such we can say the following about separate
hyperparameters optimization:

1. The classification block training optimization did significantly better
than the fine-tuning. The fine-tuning degraded the performance of
the trained classification block it was built on. Even though some
of the performance attained from the classification block runs were
good, the Bayesian optimization failed to improve the performance
by each iteration as can be seen in table 4.4 where only iteration
eight stands out. However, even iteration eight’s attained validation
accuracy of 0.41 is below the threshold of 0.5. Iteration eight was
trained on a classification block training with a validation accuracy
of 0.61, and the best classification block training with a validation
accuracy of 0.70 resulted in a fine-tuning reaching a validation
accuracy of 0.13, shown as iteration fifteen in table 4.4.

2. All the fine-tuning runs failed to pass 0.5 validation accuracy and
were consequently terminated by the nonconvergence filtering.

3. We can see in table 4.4 that once the Bayesian optimization found
a combination that gave a better validation accuracy in iteration
eight, it continued with the same model and optimizers and only
tried adjusting the learning rates in the next three iterations. When
changing the learning rates, the Bayesian optimization got terrible
validation accuracies around 0.13. We find this interesting because it

84

9.000

Iteration Val Acc Model Block Optimizer Block LR Tune Optimizer Tune LR
1 0.1419 DenseNet169 SGD 0.6081 Adam 0.2029
2 0.1359 Xception RMSprop 0.5402 RMSprop 0.5203
3 01329 VGG16 Adamax 0.8095 SGD 0.3851
4 01339 ResNet50 Adagrad 0.1632 RMSprop 0.6369
5 0.1815 DenseNet201 Nadam 0.4378 Adamax 0.7506
6 01329 DenseNet201 Nadam 0.2015 Adamax 0.7203
7 01399 VGG19 Adam 0.7275 RMSprop 0.2186
8 04137 InceptionResNetV2 SGD 0.1999 Adamax 0.0720
9 0.1339 InceptionResNetV2 SGD 0.8519 Adamax 0.6365

10 0.1329 InceptionResNetV2 SGD 0.0811 Adamax 0.6922
11 0.1349 InceptionResNetV2 SGD 0.4545 Adamax 0.3055
12 0.1716 DenseNet201 Nadam 0.5744 Adamax 0.9106
13 0.1300 Xception Adamax 0.6329 SGD 0.3818
14 0.1349 DenseNet201 Nadam 0.7666 Adamax 0.3332
15 0.1349 VGG16 Adadelta 0.3300 Nadam 0.8331

Table 4.4: Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate hyperparameters optimization
strategy’s model optimization.

shows the effect of the learning rate alone on the performance of the

training runs.

It is clear from the results that the separate hyperparameters optimiza-
tion strategy failed. It could only train a few classification blocks above the
threshold of 0.5 validation accuracy. There is a combination of reasons for
the bad results:

1. High dimensionality in an already complicated search space makes it
less likely for the Bayesian optimization to find a good combination
in the same number of iterations compared optimizing in a lesser di-
mensionality. We can not say for certain that the Bayesian optimiza-
tion would not have found a good combination eventually, but these
are high resource training runs, so the separate hyperparameters op-
timization strategy does not fit for our use case.

Different hyperparameters between the classification block training
and the fine-tuning might work with more iterations or different
Bayesian optimization settings. However, since shared hyperparam-
eters worked so much better, we have reason to suspect that chang-
ing the optimizer and the learning rate between classification block
training and fine-tuning is fundamentally wrong. Nevertheless, to

85

val_acc

0.700

0.600

0.400

0300

0.200

0.000

give merit to such a statement would require more testing and longer
runs. Additionally, related work suggests using different learning
rates between the classification block training and the fine-tuning,
with a slower learning rate for the fine-tuning than the classification
block [40]. Our limited results do, however, not reflect that.

Our results in table 4.4 reflects the result per Bayesian optimization
iteration, and as such only consider the results after the fine-tuning is
finished. It would be interesting to see the performance of the model
optimization in terms of validation accuracy as well. While possible to
add for future tests, we have not implemented it as our focus was on
achieving the best validation accuracies for each iteration. Having results
for the model optimization would only benefit us in comparing the model
optimizations between optimization strategies. However, it is irrelevant to
the problem statement as the performance of the model optimization and
the hyperparameters that the Bayesian optimization finds decide the fine-
tuning. The model optimization cannot be considered alone as the success
of the optimization is always evaluated by the result of the fine-tuning,
which is dependent on the model optimization. As such, the results we got
from the separate hyperparameters optimization strategy does not mean
we need to change the model optimization, but rather change the way the
Bayesian optimization selects the hyperparameters.

Layer Optimization

LN

2,000 4,000 6.000 8.000 1000 1200 1400 16.00 18.00

Figure 4.13: The separate hyperparameters optimization strategy’s plot of
layer optimization training runs for each epoch. Training runs from the
model optimization is plotted in the graph for validation accuracy in
Y-axis and epoch in X-axis. Classification block training and fine-tuning is
plotted together.

86

2000

In the previous section, we found that we failed in finding good hy-
perparameters for the separate hyperparameters strategy. The best-trained
model reached 0.41 validation accuracy, which is considerably lower than
the best-trained model from the model optimization of the shared hyper-
parameters optimization strategy, reaching a validation accuracy of 0.86. It
was the fine-tuning step in the model optimization that lowered the results
from the classification block step. A reason for this could be that the de-
fault layer we selected produce bad results. As we chose the default layer
arbitrarily, it would make sense that certain models could produce bad re-
sults. This could give unfair advantages to some models over others. For
example, the default layer could work great for fine-tuning an Inception-
ResNetV2 model but work really bad for a VGG16 model. After all, the best
runs from both the shared hyperparameters optimization and the separate
hyperparameters optimization are both using the InceptionResNetV2 pre-
trained model. This connection could mean that InceptionResNetV2 is the
best model for the default delimiting layer. Solving this source of unfair-
ness would require us to either include the layer in the same optimization
step as the model optimization, which would increase the dimensionality
or remove the pre-trained model from the hyperparameters and instead
run the whole Bayesian optimization for each pre-trained model.

The best result from the shared hyperparameters optimization used In-
ceptionResNetV2, and the layer optimization was successful in increasing
the validation accuracy by adjusting the delimiting layer. The best layer
tested was 136. We would expect the layer optimization to achieve the
same results for the separate hyperparameter optimization strategy as they
share the pre-trained model. The same results being increased validation
accuracies and the best delimiting layer being around the same.

In figure 4.13, we see that the layer optimization does indeed increase
the achieved validation accuracy. The light green line and the turquoise
line both reach a validation accuracy above 0.6. We can say the following
about the lines:

1. The light green line is early stopped because it fails to increase the
validation accuracy after five epochs. We can see it reach a validation
accuracy of 0.60 in epoch three but falls in the next step to 0.41. Even
though it is increasing from there, it does not reach a better validation
accuracy, so the early stopping callback, meant to avoid overfitting,
stops the training run. However, the light green line was increasing,
so stopping it might have been wrong as it could perhaps reach a
higher validation accuracy after more epochs. We can only speculate,
but the light green line shows us that we need to consider how we
configure early stopping carefully.

2. The turquoise line manage to last for twenty epochs, which is
many more than the eight epochs the light green line, which is the
second longest run of the layer optimization, lasted. The turquoise
line managed to increase the validation accuracy before five epochs
several times and avoided early stopping until epoch twenty. Because

87

of this, it managed to outperform the light green line and became the
highest yielding training run with a validation accuracy of 0.63.

Iteration Val Acc Layer

1 0.2292 608
2 0.6339 758
3 0.2450 257
4 0.2232 99
5 03512 241
6 0.3909 758
7 0.6081 758

Table 4.5: Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate hyperparameters optimization
strategy’s layer optimization.

Distance between consecutive x's Value of the best selected sample

500 7 —0.25

—0.30 1
400 A

—0.35 A1

d(x[n], x[n-1])
w
o
o
|
I
N
o

N
o
o

100 A —0.55 A

—0.60 1

—0.65 -

Iteration Iteration

Figure 4.14: Convergence plot of the separate hyperparameters
optimization strategy’s layer optimization run. The first plot shows the
distance between each hyperparameter using Euclidean distance, where
the Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

88

- Acquisition (arbitrary units)

-1
$
-2
-3
T Y T Tv T T T j T
0 100 200 300 400 500 600 700
X

Figure 4.15: Gaussian Process surrogate model and Expected
Improvement acquisition function for the separate hyperparameters
optimization strategy’s layer optimization. The Y-axis is the expected

result of a hyperparameter in the surrogate model. X-axis is the
hyperparameter, which is this case is the delimiting layer. The black line
represent the posterior mean, the gray lines represents the posterior
uncertainty, the red dots are tested hyperparameters and their results on
the surrogate model, the red vertical line is where the acquisition function
would try the next test should it run for another iteration, and, finally, the
horizontal red curve is the acquisition function in arbitrary units. A lower
posterior mean is better, and a higher value for the acquisition function is
where the next hyperparameter values will be taken from.

Layer optimization was successful in increasing the validation accuracy
significantly. From table 4.5, we see that in iteration two we achieve
a validation accuracy of 0.63, which is 0.22 validation accuracy better
than using the default delimiting layer. Aside from the better validation
accuracy, we expect the best layer to stay somewhat consistent with
the one found in the layer optimization of the shared hyperparameter
optimization. From table 4.5, we see that this is not the case. We can see
from the table, that the best training run was from the delimiting layer of
758. This is very interesting because of the following:

89

800

1. The delimiting layer found by the layer optimization is far from
the best delimiting layer found in the best shared hyperparameters
optimization strategy, which was 136. This discrepancy indicates that
either the Bayesian optimization failed to find the best delimiting
layer within the search space, or the best delimiting layer is different
for different hyperparameter configurations aside from the pre-
trained model.

2. Layer number 758 is tested three times where one of the tests did
considerably worse than the other two. We can see in figure 4.5 that
iteration two, six, and seven tests the delimiting layer 758. Iteration
two and seven have validation accuracies which are within 0.04 of
each other, but iteration six, which should also be close to the other
two iterations, has a validation accuracy of 0.39. We expect the same
hyperparameters to yield roughly the same results. There will always
be some difference in the training outcome because of a degree of
randomness in the way CNNs are trained. We see no other reason
for the varying results other than the degree of randomness. The
yellow line in figure 4.13 represents the training run reaching the 0.39
validation accuracy. We can see from this line that it is similar to the
light green performance but produces lower validation accuracies. It
fails to reach the threshold of 0.5 set by the nonconvergence filtering
and is terminated early. However, there is little reason to believe the
yellow line would reach much higher results as it was on a downward
trend.

3. Only seven iterations were performed by the Bayesian optimization
even though we set the maximum allowed iterations to fifteen. The
optimization stops performing new iterations when it believes it
has reached the best result for validation accuracy. We can see
from the second plot in figure 4.14 that the optimization reaches
the highest validation accuracy in the second iteration. We see in
the first plot from figure 4.14 that it tries different delimiting layers
with large distances between them, but in the last iteration tries the
same delimiting layer twice in a row. From the results, it seems
that the Bayesian optimization stops early because it became certain
that 758 was the best delimiting layer after trying it three times.
This interpretation of the results is further confirmed by figure 4.15,
where we see a plot of the Gaussian Process model and the expected
improvement acquisition function. We can see that the model has
only found one minimum and that the acquisition function only
expects improvement in that location.

Figure 4.15 looks very different than figure4.9. In figure 4.15, we see
that the surrogate model is barely being fitted as the posterior mean and
uncertainty is almost the same for all the delimiting layer values. The
acquisition function does almost no exploration as it does not expect the
other areas of the search space to be as good as the one area found in layer
number 758. We can see that it tries to get results from 758 three times

90

val_ace

0500

0.450

0.400

0350

0300

0250

0200

0150

and gets varied results. However, they are still better than the other areas
in the acquisition functions point of view, so the next iteration would be
using the same layer. As such, the Bayesian optimization determines that it
has found the best achievable validation accuracy with layer number 758.
But, as we can see, the area is not fully explored, and something must have
affected the surrogate model to be unable to fit properly. This should be
explored in future work when optimizing the Bayesian optimization.

4.3.3 Separate Optimizers Optimization Strategy

0.000

1.000 2000 3.000 4.000 5.000 6.000 7.000 8.000

Figure 4.16: The separate optimizations optimization strategy’s plot of
training runs for each epoch.

The separate hyperparameters optimization strategy failed to reach the
same levels of validation accuracy as the shared hyperparameters opti-
mization strategy. The main contributing factor was that the Bayesian
optimization did not manage to optimize the hyperparameters in five-
dimensional space over the limited number of optimizations imposed by
us. The layer optimization did do the job of increasing the validation accu-
racy, but we saw it failing to explore the search space and ending early as
a result. From figure 4.2, we already know that the separate optimizations
strategy did worse in terms of validation accuracy than the other strategies.
The results were surprising to us. We expected the separate optimizations
to solve the problem of dimensionality for separate hyperparameters opti-
mization and using the same hyperparameters for both classification block
training and fine-tuning. The problem of dimensionality would be solved
by splitting the optimizations in two, making classification block train-
ing a three-dimensional search and fine-tuning a two-dimensional search.
The optimization split would train different hyperparameters for both of
the training types and would solve the problem of using the same hyper-

91

9.000

Layer Optimization

0500 Classification Block Optimization

0.450
0.400

0.350

ry Fine-tuning Optimization

0.250

B I R I A AT ER R O

0100

00500

12PM 01PM 02PM 03 PM 04 PN 05PM 06 PM 07 PM 08PM 09PM 10PM 11PM 124M 01AM 02 AM 03 AM 04 AM 05 AM 06 AM 07 AM 08 AM 09 AM 10 AM 1AM
April 14, 2018 April 15, 2018

Figure 4.17: The separate optimizations optimization strategy’s plot of
training runs for time. The classification block optimization, fine-tuning
optimization, and layer optimizationa is marked with black boxes.

parameters for both training types. We mentioned in section 4.3.2 when
discussing why the separate hyperparameters optimization strategy failed
that having different hyperparameters between classification block train-
ing and fine-tuning might be a reason why the optimization strategy failed.
We will see from the results from the separate optimizations optimization
strategy if different hyperparameters are part of the reason it failed.

From figure 4.16, we can see that the separate optimizations strategy
fails. The highest validation accuracy is reached in epoch one by the
top blue line, but that validation accuracy is barely over 0.5 validation
accuracy. The blue line is terminated by both the early stopping and the
nonconvergence filtering as it does not improve the validation accuracy
over the threshold of 0.5 and does not increase the validation accuracy
over the next five epochs. The nonconvergence filtering filters all training
runs except the blue and green line. The turquoise line at the bottom even
reaches a validation accuracy well below the other lower-achieving training
runs of under 0.05 in epoch two, which is by far the lowest across every
training run from all optimization strategies.

In figure 4.17, we have the time plot of the separate optimizations
optimization strategy marked with a black box in figure 4.2. We have
marked the three optimization steps in the separate optimizations strategy
in figure 4.17 with black boxes, and we point out the following:

1. The fine-tuning does not achieve better results than the classification
block training. The worse results do not necessarily mean the
optimization step failed as it uses the default delimiting layer, which
could be the reason for the low validation accuracies. If the reason is

92

the default delimiting layer, we would expect the layer optimization
to reach higher validation accuracies than the classification block
training. We can see that this is the case in figure 4.17. Layer
optimization is the only optimization step that reaches above 0.5
validation accuracy.

2. Classification block training and fine-tuning take roughly the same
time to finish, but the layer optimization takes a fraction of the time.
We can see that the layer optimization only runs for 7 epochs, which
is the same number of epochs the layer optimization of the separate
hyperparameters optimization strategy ran.

3. The whole optimization strategy ran for almost 24 hours, which is
the lowest of all the strategies. However, as we can see from figure
4.16 and 4.17, only two training runs passed the threshold for not
being terminated by nonconvergence filtering, and the longest run
lasted for nine epochs. By comparing the separate optimizations
strategy with the shared hyperparameters strategy which had a much
lower rate of nonconvergence filtering, we see that nonconvergence
filtering does help considerably with saving time on training runs
which produce low validation accuracies.

4. The optimization of the classification block training and the layer
optimization shows convergence. Both show an increase, where the
optimization step starts with low validation accuracies, but over time
reach higher levels as it converges. However, we can see in both
optimization steps that the convergence happens as a leap and not
progressively. In the classification block optimization, we see that
the validation accuracy leaps from 0.21 to 0.47 around April 14th
03:30 PM. After the leap, the average validation accuracy of the
next training runs is higher than the average validation accuracy of
the previous training runs. The same behavior is seen in the layer
optimization after the orange line peaks.

Classification Block Optimization

We can see in figure 4.18 that no training runs pass the threshold of 0.5
and are consequently stopped early. Many of the runs are producing
validation accuracies around 0.125, which is the validation accuracy we
would get should we classify randomly. The highest yielding training
run is represented by the dark purple top line, which only reaches a top
validation accuracy of 0.47.

From table 4.6 and figure 4.19 we can see some strange behaviour by
the Bayesian optimization. In table 4.6, we see that the hyperparameters
barely changes between iteration seven and fifteen. The same behavior
is reflected in the first plot in figure 4.19, where we can see that the
first iterations explore the search space, but after iteration 6 in the plot,
which represents the distance between iteration 7 and 8 in table 4.6,
the distance is low. This indicates that the Bayesian optimization’s

93

val_acc

0450

0400

0350

0300

0250

0200

0150

0100

0.0500

0.000

500.0m 1.000 1500 2000 2,500 3.000 2500 4.000 4500

Figure 4.18: The separate optimizations optimization strategy’s
classification block optimization run for each epoch. Training runs from
the model optimization is plotted in the graph for validation accuracy in

Y-axis and epoch in X-axis. Classification block training and fine-tuning is
plotted together.

expected improvement acquisition function explores the search space in
the early iterations then exploits the area immediately after determining
it is the best area. We can see that iteration 6 in the second plot from
figure 4.19 coincides with iteration 6 in the first plot and iteration 7 in
figure 4.6. This iteration is where the best validation accuracy of 0.47
is reached, which was significantly better than the previous best of 0.21.
As a result, the Bayesian optimization decided that iteration 7 in table
4.6 had the best hyperparameters, so it stopped exploring and started
exploiting the search space area by choosing hyperparameters close to
the highest yielding combination. Considering the whole run did poorly
compared to the classification blocks trained in the shared hyperparameter
optimization strategy, we can conclude that this is a weakness in the
Bayesian optimization as it does not properly explore the search space and
settles too early. Changing the parameters of the Bayesian optimization
could help alleviate the problem, but that is outside of the scope of the
thesis and should be looked into for future work.

Fine-tuning Optimization

The separate optimizations optimization strategy’s fine-tuning optimiza-
tion is a two-dimensional optimization since we use the best CNN model
from the classification block optimization. A lower dimensionality would
intuitively make the task of optimization easier for the Bayesian optimiza-
tion. However, from figure 4.20 we see the same behaviour as for the classi-

94

5.000

d(x[n], x[n-11)

Distance between consecutive x's Value of the best selected sample

3.5 4 —0.15 A
3.0 1 —0.20 A
2.5 A —0.25 A
- >
2.0 I —0.30
()
m
1.51
—0.35 A
1.0 A
—0.40 A
0.5 A
—0.45 A
0.0 A
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure 4.19: Convergence plot of the separate optimizations optimization
strategy’s classification block optimization run. The first plot shows the
distance between each hyperparameter using Euclidean distance, where
the Euclidean distance is plotted as Y-axis, and the iteration is plotted as

X-axis. The iteration means the going from one iteration to another, so for

example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

fication block optimization figure 4.18 discussed in section 4.3.3. Similarly
to the classification block optimization, we see that none of the training
runs escape nonconvergence filtering. Additionally, most of the training
runs yield validation accuracies around 0.125, which is what random clas-
sification would yield. However, the validation accuracies of the best train-
ing runs are worse than for the classification block optimization and reach
at best 0.29. At worst it reaches 0.02, which means the CNN has learned
wrong and classified not randomly, but based on wrong knowledge. The
validation accuracies of the fine-tuning being worse than the classification
block training could be attributed to the default layer being bad for the
chosen model. In contrast to the other optimization strategies, the default
delimiting layer does not affect the choice of the best pre-trained model.
Instead, the pre-trained model’s ability to train the best classification block
is how we choose it. Whether this is problematic or not is unknown to
us. Finding out would require more runs for comparison. We had limited
resources, so finding out will have to be future work.

To further highlight the similarities between the classification block

95

Iteration Val Acc Model Optimizer Learning Rate

1 01379 Xception Nadam 0.7906
2 01349 ResNet50 RMSprop 0.6060
3 01290 InceptionV3 ~ Adamax 0.1660
4 02143 DenseNet121 RMSprop 0.7641
5 01359 InceptionResNetV2 Adamax 0.3135
6 0.2063 DenseNet169 RMSprop 0.7528
7 04732 DenseNet121 SGD 0.8635
8 03353 DenseNet121 SGD 0.6727
9 0.3552 DenseNet121 SGD 0.7496
10 0.2421 DenseNet121 SGD 0.8327
11 0.4335 DenseNet121 SGD 0.7811
12 0.3581 DenseNet121 SGD 0.9243
13 0.2351 DenseNet121 Nadam 0.9456
14 0.3522 DenseNet121 SGD 0.8413
15 0.4216 DenseNet121 SGD 0.9324

Table 4.6: Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate optimizations optimization
strategy’s classification block optimization.

optimization and the fine-tuning optimization, we look to figure 4.21 and
table 4.7. We can see that both plots in figure 4.21 share similarities to
the plots in figure 4.19 from the classification block optimization. The first
graphs in each figure are similar in that each iteration has a greater distance
between them until iteration four in the first graph in figure 4.21 and
iteration six in the first graph in figure 4.19. Then after several iterations
with almost no distance between the hyperparameters, the optimization
gets a spike over three iterations with a higher distance between the
hyperparameters. By looking the second graph in each figure, we see that
the best validation accuracy is achieved in the fourth and sixth iteration
and therefore correlates to the first plot for both figures. We can tell from
this behavior that the Bayesian optimization in both optimizations runs
emphasized exploring the search space until it found a better validation
accuracy it wanted to exploit, meaning it tries different hyperparameters
close in the search space to the current best hyperparameters. Because we
use the default parameters for the Bayesian optimization, the optimization
will first use five iterations with randomly distributed hyperparameters to
map the search space. We can see this affecting the run, as the optimization
randomly found one area in the search space much better than the others
and decided to use most of the remaining optimization runs into exploiting
this area. For both runs, it could not achieve better results from the

96

val_acc

0.250

0.200

0.150

0.100

0.0500

0.000

500.0m 1.000 1500 2.000 2,500 3.000 3500 4.000 4500

Figure 4.20: The separate optimizations optimization strategy’s
fine-tuning optimization run for each epoch. Training runs from the
model optimization is plotted in the graph for validation accuracy in
Y-axis and epoch in X-axis. Classification block training and fine-tuning is
plotted together.

exploitation, and therefore it starts exploring again at the end. Future work
could try to increase the initial random mapping iterations in an attempt to
increase the odds of finding more high achieving areas in the search space.

The fine-tuning step uses a hyperparameter set of two: The gradient
descent optimization function and the learning rate. The previous
classification block optimization gives the model. As a result, the search
space is two-dimensional, making it possible to plotit. In figure 4.22, we see
the Gaussian model, and the acquisition function plotted. Instead of having
it all plotted together in one graph, we must use three different graphs to
plot it because of the two-dimensionality. The graphs show the posterior
mean, the posterior standard deviation and the acquisition function as a
color gradient. The Y-axis, X2, is the normalized learning rate and the X-
axis, X1, is the index of the gradient descent optimization function in a list.
The list is the following with the corresponding index:

0. Nadam
1. SGD

2. RMSprop
3. Adagrad
4. Adam

5. Adamax

97

5.000

d(x[n], x[n-1])

Distance between consecutive x's

Value of the best selected sample

4.0 —0.14 A
3.5 1 —0.16
3.0 A —0.18 1
2.5 A
—0.20 A
>
2.0]
B —0.22 -
1.5 A
—0.24 A
1.0 4
—0.26
0.5 A
—0.28 A
0.0 A
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure 4.21: Convergence plot of the separate optimizations optimization
strategy’s fine-tuning optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the
Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

6. Adadelta

The red dots in the posterior mean and posterior standard deviation plots
are the tested hyperparameters, and the gradient surrounding them is
the posterior mean calculated from the result of an iteration with those
hyperparameters. The black dot in the acquisition function is wherein the
search space the next hyperparameters would have been taken from should
the optimization do another iteration.

The plots in figure 4.22 are interesting as they show us some important
aspects of Bayesian optimization:

1. Large portions of the search space are unexplored. For example, the
gradient descent functions Nadam, Adagrad, and Adadelta is not
even tested once.

2. The areas that are explored and their gradients are limited to their
class. This means that Bayesian optimization does not create a
relationship between each gradient descent optimizer, but treats them

98

Iteration Val Acc Optimizer Learning Rate

1 0.1409 RMSprop 0.5256
2 0.1310 Adamax 0.3128
3 0.1419 Adam 0.4809
4 0.1399 RMSprop 0.2453
5 0.2867 SGD 0.5022
6 0.1369 SGD 0.8047
7 02024 SGD 0.4901
8 0.1865 SGD 0.5150
9 0.2579 SGD 0.5014
10 0.2034 SGD 0.5083
11 0.2351 SGD 0.4940
12 0.2123 SGD 0.5008
13 0.1359 Adamax 0.5124
14 0.1369 SGD 0.5009
15 0.2718 SGD 0.4770

Table 4.7: Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate optimizations optimization
strategy’s fine-tuning optimization.

as separate with their own range of possible learning rates. This
contradicts our observations in previous sections, such as section
4.3.1, where we saw fluctuations between Bayesian optimization
iterations that we attributed to a numeric relationship between the
gradient descent optimization functions. The observations in figure
4.22 instead show that Bayesian optimization is able to separate each
gradient descent class and find learning rates for that class in the
search space.

3. We see from the posterior mean function that there is only one area in
the search space which gives lower posterior mean than 0. As a result,
instead of exploring further, the acquisition function continuously
tries to exploit that area. It seems Bayesian optimization tries too
much to exploit an area it deems good instead of exploring the search
space for better solutions. Perhaps adding a threshold for when the
Bayesian optimization can begin exploiting would increase the final
results.

99

Posterior mean Posterior sd.

Acquisition function

0.0 0.0
0.996

0.2 1 0981 5

0.966

O g4 0.951 o4
0.00
o 0.936%

-0.11 g6 : 0.921 06
-0.22 0.906
-0.33 0.8 0.891 0.8
-0.44 : 0.876

1.0 - - r T r 0.861 1.0

o 1 2 3 4 5 6 o 1 2 3 4
X1 X1

Figure 4.22: Gaussian Process surrogate model and Expected
Improvement acquisition function for the separate optimizations
optimization strategy’s fine-tuning optimization. The Y-axis is the
normalized learning rate domain, and the X-axis is the index of each
gradient descent optimization function in a list. The color gradient
represents the posterior mean in the first graph, the posterior standard
deviation in the second graph, and the acquisition function in the final
graph. The graph shows the model after the optimization. The red dots in
the first two graphs are the tests that have been done during the
optimization. The black dot in the acquisition function is where the next
test would have occurred should the optimization continue for another
iteration.

Layer Optimization

The classification block optimization failed to produce a model which
could compete with the models produced in the shared hyperparameters
optimization strategy. The fine-tuning optimization failed to improve
the classification block model, which could be attributed to the default
delimiting layer. However, compared to the share hyperparameters
optimization, where the fine-tuning increased the classification block
model’s validation accuracy, the delimiting layer seems not to be the cause
for the failed fine-tuning. By analyzing the layer optimization, we can
examine in what way the default delimiting layer have affected the fine-
tuning by looking at the attained validation accuracies after optimization.

We start by looking at figure 4.23. In this figure, we can see the
following;:

1. Only two lines reach above 0.5 validation accuracy and avoid being
stopped early by nonconvergence filtering in the fifth epoch.

2. Four of the training runs are producing validation accuracies below
0.3, while three give validation accuracies above 0.3. There is a clear
separation here.

100

0.99

0.88

0.77

0.66

0.55

0.44

0.33

0.22

0.11

0.00

val_ace

0600

0500

0.400

0300

0200

0.100

0.000

1.000 2.000 3.000 4000 5.000 6.000 7.000 8.000

Figure 4.23: The separate optimizations optimization strategy’s layer
optimization run for each epoch. Training runs from the model
optimization is plotted in the graph for validation accuracy in Y-axis and
epoch in X-axis. Classification block training and fine-tuning is plotted
together.

3. The validation accuracy achieved by the highest yielding training run
is 0.54, which is higher than both the classification block and fine-
tuning optimization.

4. Similarly to the layer optimization for the separate hyperparameters
optimization strategy, only seven iterations of the allowed fifteen
were conducted. Seven iterations are low because the Bayesian
optimization by default uses five iterations for randomly mapping
the search space. It seems the Bayesian optimization, in this case,
found a validation accuracy it deemed good and instead of searching
more of the area, was confident it had found the global best result.

We see in table 4.8 and figure 4.24, that the layer optimization resembles
the layer optimization of the separate hyperparameters strategy. The
two layer optimizations are similar in that they both last for only seven
iterations instead of the fifteen allowed. Additionally, table 4.8 and table
4.5 show that the layer optimization in both optimization strategies first
does the five random iterations mapping the search space, then one of the
five iterations achieve much better results than the other iterations. The
optimization then tries two more runs at the same search space area as the
current best and gives up early when it cannot find a better result.

The convergence plots show the same behavior. The first plot of figure
4.24 first has high, varying distance between each tested hyperparameter,
but at the final iteration, after the initial random search, has no distance
between the hyperparameters anymore and stops. The second plot in

101

9.000

d(x[n], x[n-1])

Iteration Val Acc Layer

1 0.2579 154
2 0.2480 219
3 04881 425
4 02232 149
5 02421 184
6 0.5417 427
7 0.5000 427

Table 4.8: Validation accuracy and hyperparameters for each Bayesian
optimization iteration in the separate optimizations optimization
strategy’s layer optimization.

Distance between consecutive x's Value of the best selected sample
—0.25 1
250 -
—0.30 1
200 A
—0.35 1
150 - "
0 —0.40 -
aa]
100
—0.45 1
50
—0.50 1
0 | T T T T T T _0.55 1 T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Iteration Iteration

Figure 4.24: Convergence plot of the separate optimizations optimization
strategy’s layer optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the

Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

102

figure 4.24, shows that the optimization does improve the result over time.
However, it still stops after trying the same layer twice and failing to reach
a higher result in the final try.

2 1 = Acquisition (arbitrary units)
14 [
[
% 07
—1 1
—2 -
I“ 1 1 1 1
0 100 200 300 400

X

Figure 4.25: Gaussian Process surrogate model and Expected
Improvement acquisition function for the separate optimizations
optimization strategy’s layer optimization. The Y-axis is the expected
result of a hyperparameter in the surrogate model. X-axis is the
hyperparameter, which is this case is the delimiting layer. The black line
represents the posterior mean, the gray lines represents the posterior
uncertainty, the red dots are tested hyperparameters and their results on
the surrogate model, the red vertical line is where the acquisition function
would try the next test should it run for another iteration, and, finally, the
horizontal red curve is the acquisition function in arbitrary units. A lower
posterior mean is better, and a higher value for the acquisition function is
where the next hyperparameter values will be taken from.

Looking at the surrogate model and acquisition function in figure 4.25,
we can see that little of the model was explored and that the random initial

103

search was primarily based around the middle of the search space, except
the one at the highest delimiting layer values. We can see that the model
suffers from this initial search being so centered as we only have two areas
of information. We can see from the acquisition function that it thinks the
best area is at the end of the delimiting layer search space. The only area
it still thinks it would be worth exploring later is at the beginning of the
search space. We see this behavior in the other strategies as well, and it
would seem future work would have to solve this by using a higher result
threshold and more iterations for the initial random search space mapping.

4.3.4 Best Trained Model

Table 4.9: Table of hyperparameter values of the best trained model on the
Kvasir dataset.

Hyperparameter = Optimal value

Pre-trained Model InceptionResNetV2
Model Optimizer = Adadelta

Learning Rate 0.8417

Delimiting layer 136

The best performing hyperparameters over all the optimization strate-
gies from the full optimization run of Kvasir presented in the previous sec-
tions were achieved by the shared hyperparameters optimization strategy
and are listed in table 4.9. The iteration reached a validation accuracy of
0.8929 and is listed as iteration 12 in table 4.3. The layer optimization reach-
ing the 0.8929 validation accuracy is built on the best model from the classi-
fication block optimization, which reached a validation accuracy of 0.8562
and is listed as iteration 4 in table 4.2. In table 4.9, we see the hyperpa-
rameters achieving the best validation accuracy. Since the best validation
accuracy comes from the shared hyperparameters optimization strategy,
the same model optimizer and learning rate are used for both the classifi-
cation block training and the fine-tuning. The best delimiting layer is 136,
which is low compared to the number of layers in the CNN model. Ta-
ble 3.2 in the hyperparameters section of the methodology chapter shows
an overview of the pre-trained models used. Here we see that the Incep-
tionResNetV2 model, which is the model reaching the highest validation
accuracy, contains 782 layers and is the deepest model with 572 different
blocks.

We used metrics presented in the metrics section 3.2 of the methodology
chapter to evaluate the performance of the best-trained model. The metrics
were calculated by running predictions on the validation set of 2400
images, 300 for each class, from the Kvasir dataset. Using these metrics
gives a deeper insight into the behavior of the trained model and makes
the result easier to compare to related work using the same metrics. We

104

Class FN FP TN TP FF ACC MCC PREC REC SPEC
Dyed lifted polyps 15 24 2076 285 094 098 093 092 095 0.99
Dyed resection margins 23 8 2092 277 095 099 094 097 092 1.00
Esophagitis 181 4 2096 119 056 092 059 097 040 1.00
Normal cecum 8 18 2082 292 09 099 095 094 097 099
Normal pylorus 2 18 2082 298 097 099 09 094 099 0.99
Normal z-line 183 1917 293 076 092 074 0.62 098 091
Polyps 19 7 2093 281 096 099 095 098 094 1.00
Ulcerative colitis 20 13 2087 280 094 099 094 096 093 0.99
Average 3438 3438 2065.62 265.62 0.88 097 087 091 089 098

Table 4.10: Metrics for each class after hyperparameter optimization for
the best model on the Kvasir dataset, including average values for
comparing with baseline metrics presented in the Kvasir paper [98].

can see in table 4.10, that the trained model reach F; scores of well above
0.90 in all the classes except Esophagitis and Normal z-line. We see that
181 images are false-negative for the esophagitis class and 183 are false-
positive for the normal z-line class. For esophagitis, we see that there are
more false-negative than true-positive, which means most of the images for
esophagitis was wrongly classified as normal z-line. However, aside from
the esophagitis being wrongly classified as normal z-line, the classification
accuracy for all other classes are high.

We can compare the metrics to those obtained from the Kvasir paper
[98]. The metrics from the Kvasir paper serves as comparisons to and
baselines for our results and are listed in table 4.11. In the table, there
are metrics from results of experiments based on global features, GF in the
table, CNNs and transfer learning, TFL in the table. The first three methods
in the table are methods based on CNN classification, the next six methods
are based on methods using handcrafted global image features, and the
last method is random classification. The methods were used on the Kvasir
dataset, and the metrics are the average of all the eight classes. Information
about the methods and their implementations can be found in the Kvasir
paper [98].

The 3-layer and 6-layer CNN implementations were trained from
scratch using Keras. The CNN implementations were custom basic im-
plementations not based on one of the CNN models used as hyperparam-
eters in our experiments. The custom implementations contained either
three or six layers of convolutional layers with the rectified linear unit
(ReLU) [86] as activation function and max-pooling for pooling. For all
layers, a dropout of 0.5 was included, and the last classification step was
performed using two dense layers with first ReLu and then Sigmoid as
activation functions. The Adam optimizer was used with 200 epochs of

105

Method 3] ACC MCC PREC REC SPEC

3 Layer CNN 0453 0959 0.430 0.589 0.408 0.890
6 Layer CNN 0.651 0914 0.602 0.661 0.640 0.953
Inception v3 TFL 0.693 0924 0.649 0.698 0.689 0.957
JCD Random Forest 0.706 0927 0.666 0.708 0.710 0.958

2 GF Random Forrest 0711 0928 0.672 0.713 0.715 0.959
2 GF Logistic Model Tree 0.705 0.926 0.664 0.706 0.707 0.958
6 GF Random Forrest 0.727 0933 0.692 0.732 0.732 0.962
6 GF Logistic Model Tree 0.747 0937 0.711 0.748 0.748 0.964

Random /Majority 0.000 0.016 0.666 0.016 0.125 0.000

Table 4.11: Performance metrics for different methods of image
classification done on the Kvasir dataset [98]. The methods and their
metrics are taken from the Kvasir paper. TFL stands for transfer learning
and GF stands for global features. JCD stands for joint composite
descriptor, and is a global color and texture feature. The metrics from JCD
random forest and random /majority was used as baseline for the Kvasir
run, but we use all the methods as baseline and comparison to our
optimized solution.

training.

In the transfer learning implementation, an InceptionV3 model was
used. The training protocol was similar to the one we used for our
experiments. For the classification block training, Pogorelov et al. used two
dense classification layers in contrast to our global average 2d pooling and
dense layer classification block. Another difference is that the classification
block was trained for 1,000 epochs using the RMSprop optimizer. The fine-
tuning was done in the same manner as in our experiments, but on the two
top convolutional layers of the classification block model. The fine-tuning
was done with the SGD optimizer and a “low learning rate” [98].

The global feature methods used different image features for classifi-
cation using an open source software library for content-based image re-
trieval called LIRE [80]. The extracted features are JCD, Tamura, Color Lay-
out, Edge Histogram, Auto Color Correlogram and Pyramid Histogram of
Oriented Gradients. The 2 GF runs use combined JCD and Tamura result-
ing in a feature vector of 187. The 6 GF runs use all of the previously men-
tioned features, resulting in a feature vector of 1186. These combinations
were chosen based on previous work done by Pogorelov et al. Classifiers
used were Random Forest and Logistic Model Tree provided by the Weka
machine learning library [141].

By comparing the average metrics from the result of our best-trained
model in table 4.10 with those of the baseline metrics provided by the
Kvasir dataset paper in table 4.11, we can see that our model outperforms

106

True label

all of the methods in all metrics. In comparison, the transfer learning
method, which reached an F; score of 0.70, had an F; score 0.18 lower than
our optimized method reached, which achieved an F; score of 0.88. Our
hyperparameter optimized transfer learning method is also better than the
6 global feature logistic model tree, which was the best performing baseline
with 0.75 F; score. Our method’s F; score is 0.13 better.

o o o o/ W20

200
-150
-100

-50

710 0 1 10

0 1 2 3 4 5 5) 7
Predicted label

Figure 4.26: Confusion matrix for the best model trained on Kvasir. There
are 300 images per class and the labels are the following: 0. Dyed lifted
polyps, 1. Dyed resection margins, 2. Esophagitis, 3. Normal cecum, 4.

Normal pylorus, 5. Normal z-line, 6. Polyps, 7. Ulcerative colitis.

Compared to the baseline methods provided in the Kvasir dataset, our
optimized method did significantly better. However, from the confusion
matrix in figure 4.26 of the optimized model, we can see that the model
classifies most images correctly. The labels in the plot correspond to the
following classes:

0. Dyed lifted polyps

1. Dyed resection margins

107

2. Esophagitis

3. Normal cecum
4. Normal pylorus
5. Normal z-line
6. Polyps

7. Ulcerative colitis

From the confusion matrix, we can see that there is a smaller outlier,
which is a misclassification of dyed resection margins as dyed lifted polyps.
The reason for the misclassification is probably due to both classes having
blue dye covering the area of interest. However, the outlier is small in
comparison to the correctly classified images. Only 23 of the 300 dyed
resection margins images are classified wrongly into, and all of the 23 are
classified to the dyed lifted polyps class.

The big outlier is the one we mentioned previously in the current
section: The esophagitis class is wrongly classified as a normal z-line in
176 instances, which are more instances of wrongly classified images than
correctly classified images for the esophagitis class. This misclassification
is the only reason the average F; score is not around 0.95. However,
looking at figure 4.27, we can see a side-by-side comparison of the two
classes. From the comparison, we can see that there are visual similarities
which can even make it difficult for humans to distinguish. It is our
opinion that the similarities are so striking, that the algorithm, similarly
to a human, is unable to spot the differences. This leaves one question: If
some images are so similar that they are interchangeable, why are there
almost no misclassifications where the normal z-line class is classified as
the esophagitis class? By looking at the confusion matrix in figure 4.26, we
see the misclassifications where the normal z-line class is classified as the
esophagitis class involving only three images. We can only speculate that
it must be of some CNN implementation-specific reason.

4.4 Results for Nerthus

We also ran a test for the Nerthus dataset. However, we came to many of
the same conclusions from the Nerthus results as we did for the tests on the
Kvasir dataset. We will, therefore, only briefly discuss them and present
the best-trained model. The results not presented here will be added to
appendix B.

The Nerthus dataset differs from the Kvasir dataset in many ways,
and as such makes it impossible to compare to the Kvasir experiment
directly. However, we can still see much of the same behavior from the
optimization run, and we can see if we reach some of the same results for
the optimization strategies. In figure 4.28, we can see the whole experiment
for Nerthus plotted in the same graph with validation accuracy for each

108

|

(a) Esophagitis (b) Normal z-line

(c) Esophagitis (d) Normal z-line

(e) Esophagitis (f) Normal z-line

(g) Esophagitis (h) Normal z-line

Figure 4.27: Similar images from two different classes in the Kvasir
dataset [98]. The figures are side-by-side comparisons of selected images
from the esophagitis class and the z-line class.

109

val_acc

0.800

0.600

0.400

0.200

=
T
AN IR,
NN o U\ 1Y
LRI ,’ \V4
Ve

: A
S y’ A __.'/,‘;‘
A ’_“:%:.:Iih‘k

\.' v ;’?} "/ -
AP
s VNI,

=X
og;{ &
AR %
Az 5N T
SN,

F-v.,A' WV
X7 SX

;"%&

0.000

2.000 4.000 6.000 8.000 10.00 12.00 14.00 16.00 18.00 20.00

Figure 4.28: Plot of all training runs done on the Nerthus dataset [97].
Each line represents a training run, which can be a classification block
training run or fine-tuning training run. The Y-axis is the validation
accuracy and the X-axis is the current epoch.

epoch. We see that in contrast to the Kvasir experiment, the majority of
training runs are not stopped early by the nonconvergence filtering. We see
that many training runs are centered around 0.5 validation accuracy, and
of those that got stopped early by the nonconvergence filtering, most were
around 0.24 and 0.18 validation accuracy, which were the lowest validation
accuracies. Additionally, we can see that the highest achieving runs
achieved a validation accuracy of 1, which means the models managed to
classify every image, or enough to round up to 1. Lastly, we see that many
training runs fluctuate and oscillate heavily in addition to some training
runs lasting for many iterations. We also saw this when analysing the
Kvasir run in figure 4.1 in section 4.3.

In figure 4.29, we can spot the differences between each optimization
strategy and each optimization step within each strategy. We can see
that it is the separate hyperparameters optimization strategy that takes
the most amount of time to finish instead of the shared hyperparameters
optimization strategy which took the most amount of time in the Kvasir
test. The reason for this is because of the nonconvergence filtering.

We see many of the same features in the Nerthus training as we did in
the Kvasir training shown in figure 4.2:

1. The shared hyperparameter optimization strategy is the best per-
forming strategy, reaching a validation accuracy of 1. The model
optimization in the shared hyperparameter optimization strategy

110

22.00

val_acc

Shared hyperparameters

10 r e ar Separate optimizations
r l n Separate hyperparameters
CIRES IJ i }m’l P an] P Py oew b “ »rvi
r , brooeh
0.200 I s m: I’P‘ E -
Model Layer Model Layer 7 S

Block Tuning Layer

12 PM 03 PM 06 PM 09 PM 12 AM 03 AM 06 AM 09 AM 12PM 03 PM 06 PM 09 PM 12 AM 03 AM 08 AM 09 AM
April 17, 2018 April 18, 2018 Apiil 19, 2018

Figure 4.29: Plot of all training runs done on the Nerthus dataset for each
time stamp. Each optimization strategy has been marked with black boxes
and each optimization step within an optimization strategy has been
separated by dotted lines.

achieves a very high score of 0.99, and the layer optimization man-
ages to bump this up to 1. This is similar to how the model optimiza-
tion for the same strategy on the Kvasir dataset reached 0.86 valida-
tion accuracy, and the layer optimization bumped it up to 0.89.

2. The separate hyperparameter optimization strategy fails to converge.
The model optimization barely improves the validation accuracy
above 0.5, just as it failed to improve it when running on Kvasir.
However, compared to Kvasir, it did worse in the model optimiza-
tion, and the layer optimization barely improved the validation accu-
racy.

3. The separate optimizations optimization strategy did much better for
Nerthus than it did for the Kvasir dataset, but only for the classifi-
cation block optimization. In the fine-tuning optimization, the op-
timization failed completely and produced validation accuracy that
was worse than random classification along with validation accuracy
around 0.5, which seemed to be where most validation accuracy that
failed to converge where centered. The layer optimization failed to
make the results better, which points to the default delimiting layer
not being the problem, but rather the other hyperparameters.

111

Table 4.12: Table of hyperparameter values of the best trained model on
the Nerthus dataset.

Hyperparameter = Optimal value

Pre-trained Model Xception
Model Optimizer = SGD
Learning Rate 0.5495
Delimiting layer 0

Class FN FP TN P F, ACC MCC PREC REC SPEC
BBPS 0 0 0 1507 150 1.00 1.00 1.00 1.00 1.00 1.00
BBPS 1 1 2 845 809 1.00 1.00 1.00 1.00 1.00 1.00
BBPS 2 0 1 1364 292 1.00 1.00 1.00 1.00 1.00 1.00
BBPS 3 2 0 1252 403 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.75 0.75 124200 413,50 1.00 1.00 1.00 1.00 1.00

1.00

Table 4.13: Metrics for each class after hyperparameter optimization for
the best model on the Nerthus dataset, including average values for
comparing with baseline metrics presented in the Nerthus paper [97].

44.1 Best Trained Model

The best-trained model in Nerthus achieved 1 in validation accuracy, which
means the model was able to classify the validation dataset of Nerthus
100% correctly, or at least closer to 100% than 99%. However, there were
more than one trained model to reach 1 in validation accuracy, so we chose
the first one. When more than one model reaches 1 in validation accuracy,
we see the drawback to optimizing using the validation accuracy instead
of the validation loss. As the validation accuracy will be 1 even when a few
images are classified wrongly because it is still closer to 1 than 0.9999, the
granularity of the validation loss would help us find the best model among
those with 1 in validation accuracy. Even though we here talk about minor
differences, for the correct best model to be selected, future work should
use validation loss over validation accuracy for the optimization.

From looking at table 4.12, we can see that the best delimiting layer is 0,
which means all the layers in the fine-tuning step was trained. We can see
from the metrics in figure 4.13, that the model is successful at classifying
all except three images. Because we round to the closest digit, we get 1
in F; score, which is the highest possible. Figure 4.30 shows the confusion
matrix, in which we can see that two images of 3 in BBPS score, which
is the cleanest category, were set to 1 in BBPS score, which is the second
dirtiest category. One image from the second dirtiest category was falsely
categorized as have 2 in BBPS score.

112

True label

800
04 150 0 0 0 700

600

1 0 500

-400
2 0 0 292 0 -300

-200
3 A 0 2 0 403 -100

- - - - 0
0 1 2 3

Predicted label

Figure 4.30: Confusion matrix for the best model trained on Nerthus.
There are differing numbers of images per class, and the labels are the
BBPS score. A higher BBPS score is cleaner than a lower BBPS score.

An almost perfect classification is tough to beat, and, indeed, we see
in table 4.14, that the metrics from our best model is much better than the
metrics produced in the Nerthus paper. The overall metrics are higher than
those in the Kvasir paper, shown in table 4.11, meaning classification is
overall easier for Nerthus than for Kvasir. Reaching better metrics for the
best Nerthus model is, therefore, expected. From looking at table 4.14, we
see that the best F; score was reached by the 6 global features logistic model
tree, the same method that reached the best result in the Kvasir baseline,
of 0.9. In comparison to our model, that is 0.1 validation accuracy, 10%
percent, less.

113

Method 3] ACC MCC PREC REC SPEC

3 Layer CNN 0742 0772 0.621 0.811 0.694 0.937
6 Layer CNN 0.854 0.854 0.805 0.856 0.852 0.952
Inception v3 TFL 0748 0.748 0.665 0.751 0.745 0918
JCD Random Forest 0.790 0.861 0.679 0.805 0.794 0.870

2 GF Random Forrest 0.769 0.847 0.647 0.792 0.774 0.849
2 GF Logistic Model Tree 0.737 0.825 0.594 0.744 0.737 0.862
6 GF Random Forrest 0.860 0913 0.801 0.885 0.866 0.895
6 GF Logistic Model Tree 0.899 0.949 0.863 0.901 0.901 0.960

Random /Majority 0322 0.652 0.000 0.240 0489 0.512

Table 4.14: Performance metrics for different methods of image
classification done on the Nerthus dataset [97]. The methods and their
metrics are taken from the Nerthus paper. TFL stands for transfer learning
and GF stands for global features. JCD stands for joint composite
descriptor and is a global color and texture feature. The metrics from JCD
random forest and random /majority were used as the baseline for the
Nerthus run, but we use all the methods as baseline and comparison to
our optimized solution.

4.5 Summary

In summary, we have presented and discussed the experiments and
the results of the thesis. We started by describing the design of the
experiments. We presented the hardware we ran the experiments on and
details on how they were conducted. After describing the design of the
experiments, we presented the results from running the experiment on the
Kvasir dataset. The results presented were from one full run where three
different optimization strategies were tested. We split the presentation
and discussion of the results into each of the different strategies. For
each optimization strategy we went into detail of the results from each
optimization step. The optimization strategies were:

e Shared hyperparameters optimization strategy. This strategy has
one set of hyperparameters which it uses for both the classification
block training and the fine-tuning in each Bayesian optimization
iteration. The dimensionality of the search space is, therefore, three.

e Separate hyperparameters optimization strategy. This strategy has
two sets of hyperparameters which it uses for both the classification
block training and the fine-tuning in each Bayesian optimization
iteration. The dimensionality of the search space is, therefore, five.

e Separate optimizations optimization strategy. This strategy sepa-

114

rates the classification block training and fine-tuning into each their
own optimization. The next optimization step uses the best model
achieved from each optimization. The dimensionality of the classifi-
cation block optimization is three, and the dimensionality of the fine-
tuning is two.

Initially, we evaluated the whole run. From this evaluation, we
found that the nonconvergence filtering was working as intended by
terminating training runs that achieved bad results early. Additionally,
we found that the shared hyperparameters optimization strategy achieved
better validation accuracies than the other two optimization strategies.
The shared hyperparameters optimization strategy achieved a validation
accuracy of 0.89, which was much higher than the best of the separate
hyperparameters optimization strategy at 0.63 validation accuracy and the
best of the separate optimizations optimization strategy at 0.54 validation
accuracy. Moreover, between most training runs the results would fluctuate
significantly, and some training runs would train for many more epochs
than the average training run would. Lastly, we found that the shared
hyperparameters optimization took more time to finish than the other two
optimization strategies.

We examined the shared hyperparameter optimization strategy results
by themselves and found that, while many training runs were stopped
early by nonconvergence filtering, the majority of training runs reached
above the nonconvergence threshold. We found that the optimization strat-
egy contained training runs where the validations accuracy would fluctu-
ate heavily, take long to converge, reach validation accuracy comparable to
a random classification of around 0.125, and reach the best validation accu-
racies over the whole test. By looking at the model optimization step, we
found that the model optimization alone achieves a higher validation ac-
curacy than the other optimization strategies of 0.86. However, the model
optimization was very spiky in that it would in one step reach a high vali-
dation accuracy, but in the next step reach a low validation accuracy. From
looking at the convergence plots and the table showing the hyperparame-
ters and validation accuracy for each iteration, we saw that the best vali-
dation accuracy achieved happened in iteration four and that the Bayesian
optimization would change the hyperparameters frequently between iter-
ations after that, meaning it focused on exploring the search space.

The layer optimization of the shared hyperparameter optimization
strategy showed us that it was successful in increasing the best validation
accuracy from the model optimization from 0.86 to 0.89. The layer
optimization ran for fifteen iterations and all the runs were from 0.73
to 0.89, which made the run the least fluctuating of all the optimization
runs in the test. Some of the runs lasted up to 24 epochs, but the results
were overall good and showed that the optimization was successful for
the shared hyperparameter optimization strategy. The best run used
InceptionResNetV2 as CNN model, Adadelta and 0.8417 learning rate for
both classification block training and fine-tuning, and 136 as the delimiting
layer.

115

The other optimization strategies could not compete with the shared
hyperparameters optimization strategy in terms of attained validation
accuracy. Upon closer examination of the lesser optimization strategies, we
saw that both the separate hyperparameters optimization strategy and the
separate optimizations optimization strategy failed to converge to higher
validation accuracies and were most of the time terminated early by the
nonconvergence filtering.

In the case of the separate hyperparameters optimization strategy, we
found that the higher dimensionality of five made the optimization unable
to converge, and all except a few training runs were stopped early by
nonconvergence filtering. Additionally, the classification block training
would reach higher validation accuracies than the fine-tuning. In the
model optimization, the best run was one that reached 0.41, which is much
lower than the shared hyperparameters model optimization best of 0.86.
The validation accuracy of 0.41 stood alone, where all the other iterations
reached below 0.19 validation accuracy and can be seen as the algorithm
being lucky instead of actually converging on a good result. However,
the optimization of the fine-tuning layer turned successful, and we saw
an increase from 0.41 in the model optimization step to 0.61 in the layer
optimization step.

In the case of the separate optimizations optimization strategy, we
found that similarly to the separate hyperparameters strategy, the training
runs were stopped by the nonconvergence filtering because of validation
accuracies failing to reach the threshold of 0.5 validation accuracy. Where
the separate hyperparameters strategy would have five training runs reach
above the threshold, the separate optimizations strategy only had two
runs pass the threshold. There were several similarities between the two
strategies:

1. Both had higher classification block results than the fine-tuning
results. In the case of separate optimizations, the fine-tuning
optimization degraded the best classification block model from 0.47
to 0.29.

2. Both had most of their runs stopped early by nonconvergence
filtering.

3. Both had layer optimization only running for seven iterations instead
of the fifteen allowed.

4. Layer optimization increased the validation accuracy for both strate-
gies, indicating that the default delimiting layer in the fine-tuning is
a problem.

5. Regarding performance, both strategies failed compared to the
shared hyperparameters optimization strategy, as both had best val-
idation accuracies well below the shared hyperparameters strategy’s
best.

116

We presented the best-trained model from the Kvasir dataset experi-
ment. The model was trained from the shared hyperparameters optimiza-
tion strategy in the layer optimization step. The attained validation accu-
racy was 0.89. We calculated metrics suggested by the Kvasir paper, and
in turn, compared the metrics to metrics given as baselines in the Kvasir
paper. The best model from the optimization reached an F; score of 0.88,
which was significantly higher than the best baseline F; score of 0.75, which
was a method using handcrafted global image features. Compared to a
transfer learning method using InceptionV3 achieving an F; score of 0.69,
which did not include hyperprameter optimization, our results show that
hyperparameter optimization makes a significant impact on the accuracy
of the model.

Besides the Kvasir dataset experiment, we also presented an experiment
conducted on the Nerthus dataset. We did not present the whole dataset
as we saw many similarities to the Kvasir experiment, but we added the
rest of the plots to appendix B. However, there were some distinctions
such as the validation accuracies of training runs being generally higher for
Nerthus than Kvasir, and the highest achieved validation accuracy being
higher than for Kvasir. This behavior is expected as there are fewer classes
to classify into. We saw from the plots we presented in the Nerthus section
4.4, that the shared hyperparameter optimization strategy was the clear
winner among the strategies. Similarly to the Kvasir test, both the separate
hyperparameters and separate optimizations optimization strategies failed.

The best-trained model from the Nerthus dataset reached a validation
accuracy of 1, which means it classified the images from the validation
set with almost 100% accuracy. As with the Kvasir experiment for the
Kvasir dataset paper, we calculated the suggested metrics from the Nerthus
dataset paper for the best model and compared them to the baseline
methods presented in the Nerthus dataset paper. The metrics were all 1 for
the best model, so they were impossible to beat without greater precision
for the validation accuracy. The best method from the Nerthus paper used
six handcrafted global image features and reached an F; score of 0.9, which
is 10% less than the best model with an F; score of 1. When we compare the
transfer learning method using Inception v3 from the Nerthus paper, with
an F; score of 0.75, we see an even greater difference.

117

118

Chapter 5

Conclusion

5.1 Summary and Main Contributions

In this thesis, we presented our experiences with researching hyperparam-
eter optimization in transfer learning. Transfer learning has risen in popu-
larity the last years because it promises a solution for datasets insufficient
for training deep neural networks from scratch because of size or variation.
There are several research fields where acquiring enough data for training
from scratch is challenging. One such field and the one we decided to focus
on is the medical field, and more specifically, gastroenterology. Technol-
ogy allows doctors to use sensors and multimedia equipment for diagno-
sis. However, the diagnosis is heavily dependant on the capabilities of the
doctor. Deep convolutional neural networks are used in computer-aided
detection systems to help reduce the number of missed diseases or abnor-
malities. Those computer-aided detection systems we discovered utilize
or examine in many cases transfer learning. Transfer learning has many
hyperparameters, and in most cases, these hyperparameters are not au-
tomatically optimized. This thesis explored the benefits of automatically
optimizing the hyperparameters for transfer learning and gave answers to
the questions posed in section 1.2 in the introduction.

We chose a method for transfer learning fitting to our use case of
image classification and analysis in medical image datasets. The gist of
the technique was to replace the classification block of a pre-trained deep
convolutional neural network model and only train the classification block
on the dataset. After training, the next step was to fine-tune the model,
meaning we took the best performing classification block model, selected
a layer number and trained all layers after that number only. Which layer
number to choose is not a trivial matter, so we included this delimiting
layer as a hyperparameter. Moreover, we decided to use the pre-trained
deep convolutional neural network mode, the gradient descent optimizing
function and the learning rate as hyperparameters targeted for automatic
optimization.

To perform the optimization, we selected an optimization technique
called Bayesian optimization. We chose this technique over methods such
as random and grid-search optimization because recent research has shown

119

Bayesian optimization to perform better. Bayesian optimization creates
a surrogate model and sequentially runs experiments which tunes the
surrogate model. An acquisition function chooses where hyperparameter
values of the next iteration are selected from in search space. However,
Bayesian optimization is challenging to use, as it, like the machine learning
models, has options we can consider hyperparameters. Optimizing the
configuration of the Bayesian optimization would be out of the scope of
this thesis, so we are using standard Bayesian optimization with default
parameters.

We defined the hyperparameter bounds which the Bayesian optimiza-
tion will take hyperparameter values from before initiating the optimiza-
tion. The optimization then chose for each iteration hyperparameters for
testing. However, we found that there are at least three different strategies
for optimizing the hyperparameters:

1. The shared hyperparameters optimization strategy. In this strategy,
we had three hyperparameters: The pre-trained model, the optimiz-
ing function, and the learning rate. The same optimizing function
and the learning rate was used for both classification block training
and the fine-tuning. The dimensionality in the search space was then
three.

2. The separate hyperparameters optimization strategy. This strategy
was similar to the shared hyperparameter strategy, except we used
separate optimization functions and learning rates for the two
training runs. The dimensionality was, therefore, five for the search
space.

3. The separate optimizations optimization strategy. This strategy was
not similar to the others. Instead of having one optimization run with
a large set of hyperparameters, this strategy split the optimization
into two and divided the hyperparameters. The classification block
was then optimized separately and had three hyperparameters:
The pre-trained model, the optimization function, and the learning
rate. The dimensionality was then 3. The fine-tuning optimization
used the best model from the classification block optimization and
only had two hyperparameters: The optimization function and the
learning rate.

The delimiting layer hyperparameter was separately optimized after an
optimization strategy finished and the dimensionality of the optimization
was one. We based the choice of separating the delimiting layer from the
other hyperparameters because we wanted to reduce the dimensionality
of the optimizations and saw an opportunity in the delimiting layer
since it did not impact the other hyperparameters. However, this meant
we had to use a default delimiting layer for the fine-tuning steps in
the optimization strategies. We did not recognize before later in the
thesis that this delimiting layer posed a problem for how the optimizer
chose the pre-trained model. The issue was that some models could

120

produce better results initially with the default delimiting layer than other
models. The issue meant that some models would potentially never win
the optimization because they were not as compatible with the default
delimiting layer as others. We could not see that this happened in our
results, but the theory was against us, so we urge other researchers to either
include the pre-trained model and the delimiting layer in the same step or
merely exclude the pre-trained model from the hyperparameter set and do
optimizations for each model instead.

We ran experiments for two medical image datasets called Kvasir and
Nerthus. Both datasets showed frames from the gastrointestinal tract.
Kvasir was an eight-class dataset containing 8000 images with diseases,
polyps, medical procedures, and anatomical landmarks. Nerthus was a
four-class dataset containing 5525 images of different cleanliness scores
in the bowel. We ran these experiments on a system we designed to
run full tests using all of the optimization strategies automatically. The
proposed system used Keras and TensorFlow for the machine learning
capabilities and GPyOpt for the Bayesian optimization. We designed it to
be configurable, and it used a technique called nonconvergence filtering
which could be disabled. Nonconvergence filtering was a technique
presented in this thesis which stops a training run early if it does not
pass a given threshold in a given number of epochs. The goal of the
technique was to avoid having runs train for a long time when they could
not compete with other training runs that did pass the given threshold.
Automatic optimization with Bayesian optimization tried many hopeless
hyperparameters, so we saved a lot of time by doing this.

We presented two sets of results in this thesis, one from Kvasir and
one from Nerthus. We examined the results of Kvasir in-depth and
presented only the most important observations from the Nerthus dataset
as we could observe much of the same behavior between them. For both
experiments, we saw that the shared hyperparameters optimization was
the best optimization strategy, achieving a validation accuracy of 0.89 and
F; score of 0.88 on Kvasir and 1.0 in both validation accuracy and F; score
on Nerthus. We compared the results to results given as baselines by the
respective dataset papers and found that our best model for Kvasir had
an F; score that was 0.13 better than the best baseline method, and that
the best model for Nerthus had an F; score that was 0.10 better than the
best baseline method. We achieved these results after layer optimization,
but even without layer optimization, we achieved a validation accuracy of
0.86 for Kvasir and 0.99 for Nerthus. We found that the hyperparameter
optimization done in the optimization strategies had a greater impact on
the results than the layer optimization done after. However, the layer
optimization succeeded in nudging the results even higher. We also saw
that the delimiting layer chosen by the algorithm was nontrivial to select
manually.

The other two strategies failed to converge, and the reason was most
likely due to the higher number of hyperparameters to search through, and
that different hyperparameter between the classification block training and
fine-tuning rarely worked in our results.

121

In conclusion, we have answered the research questions in section 1.2:

1. Can hyperparameters for transfer learning be optimized automatically? If
so, how does it influence the performance and what should be optimized?
We have shown results for two small medical image datasets using
four hyperparameters and three different optimization strategies. In
the results, we saw that the performance increased for one of the
strategies over ten percent past comparable methods from the dataset
papers. From the results, we found a flaw in having the delimit-
ing layer and the pre-trained model in different hyperparameter op-
timizations, so we suggested removing the pre-trained model as a
hyperparameter in future work.

2. How should a system be built that automatically can fulfill the task of auto-
mated hyperparameter optimization for transfer learning? We proposed
and developed a system for running automatic experiments with
Bayesian optimization on hyperparameters with a transfer learning
approach. The system is configurable and runs three different hyper-
parameter optimization strategies. For each optimization, graphs and
summaries for each optimization strategy are saved to disk.

We conclude that automatic hyperparameter optimization is an effec-
tive strategy for increasing performance in transfer learning use cases and
that automatically adjusting the delimiting layer reveals layers that are
nontrivial to select manually.

5.2 Future Work

For future work, researchers can further improve the way we optimize
the transfer learning method. Other optimization methods than Bayesian
optimization could be tested, and other methods that are building on
Bayesian optimization might give better results than using the standard
Bayesian optimization algorithm. The standard Bayesian optimization
we use in this thesis could be improved by tuning the options available
to us, such as changing the surrogate model option, the acquisition
function, the acquisition function optimizer, the number of data points
collected initially, the batch size, the type of evaluation, and more.
These options is one of the drawbacks of Bayesian optimization, as they
can also be considered hyperparameters, which only increases the total
amount of hyperparameters to optimize. However, optimization of the
Bayesian optimization hyperparameters can be done manually based on
observations from the results in this thesis and further future experiments.
For example, we saw in the results in several of the surrogate model
and acquisition plots that much of the search space is omitted because
the acquisition function relies on more iterations, both initial, randomly
distributed among the search space, and maximum allowed. We advise
future work to, therefore, increase the number of iterations if possible.
Future work should learn from the methods we found did not work
in this thesis. Those methods being the default delimiting layer and

122

the separate hyperparameters and separate optimizations optimization
strategies.

The default delimiting layer introduces a bias in the shared and
separate hyperparameters optimization strategies for those pre-trained
CNN models which performs better with the default delimiting layer
than others. Future work should consider solutions which remove any
dependencies between a model and the default delimiting layer, such as
for example removing the pre-trained model as a hyperparameter and run
full optimizations for each model and later compare those to find the best
one.

The separate hyperparameters and separate optimizations optimization
strategies failed to achieve results that could compete with the shared
hyperparameters optimization strategy for both the Kvasir and Nerthus
datasets. Future work should conduct more tests to find if there is an
underlying issue, such as different hyperparameters not working for the
two steps, or if there are ways to improve the optimization to make the
strategies viable.

Finally, if researchers can make the optimization perform better
and more reliable, future work can also include optimization of other
hyperparameters, such as the batch size, different classification blocks, and
gradient descent parameters such as momentum.

5.3 Final Remarks

We relied on external tools for the majority of our plots. For the plots
showing the validation accuracy of training runs, we use TensorBoard,
and for the plots showing the convergence and surrogate model with
the acquisition function, we used GPyOpt. To make the plots clearer,
we should have employed our own solutions for the plotting. Aside
from this, even though splitting up the model optimization and the layer
optimization resulting in the use of a default delimiting layer was flawed,
we managed to show this flaw and be successful at optimizing the transfer
learning method we used. This work can be used for further work into
transfer learning hyperparameter optimization, or be used as is in current
computer-aided diagnosis systems to increase their detection accuracy. By
showing that hyperparameters can be models and optimizers and that
optimizing the delimiting layer is important to improve performance, we
hope to offer a valuable contribution to the research into transfer learning,
but more importantly, into medical multimedia systems that in the future
can save lives by detecting some of the most lethal diseases affecting
mankind.

123

124

Bibliography

(1]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaogiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaogiang Zheng. TensorFlow: A system for large-scale machine
learning. 2016.

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Anger-
mueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin
Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Ar-
naud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Sny-
der, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier
Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc
Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim
Cooijmans, Marc-Alexandre Co6té, Myriam Co6té, Aaron Courville,
Yann N Dauphin, Olivier Delalleau, Julien Demouth, Guillaume
Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vin-
cent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan,
Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt
Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-
Philippe Heng, Balazs Hidasi, Sina Honari, Arjun Jain, Sébastien
Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal
Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois,
Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A Livezey,

125

Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Man-
zagol, Olivier Mastropietro, Robert T McGibbon, Roland Memise-
vic, Bart van Merriénboer, Vincent Michalski, Mehdi Mirza, Alberto
Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki,
Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero,
Markus Roth, Peter Sadowski, John Salvatier, Francois Savard, Jan
Schliiter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban,
Dmitriy Serdyuk, Samira Shabanian, Etienne Simon, Sigurd Spieck-
ermann, S Ramana Subramanyam, Jakub Sygnowski, Jérémie Tan-
guay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vin-
cent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin |
Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng
Zhang, and Ying Zhang. Theano: A {Python} framework for fast
computation of mathematical expressions. arXiv e-prints, abs/1605.0,
2016.

[4] Alex Alemi. Improving Inception and Image Classification in
TensorFlow, 2016.

[5] Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan
Westberg, Mahmudul Hasan, Brian C Van Esesn, Abdul A S.
Awwal, and Vijayan K. Asari. The History Began from AlexNet: A
Comprehensive Survey on Deep Learning Approaches. arXiv, mar
2018.

[6] The GPyOpt authors. GPyOpt: A bayesian optimization framework
in python. http://github.com/SheffieldML/GPyOpt, 2016.

[7] Robert L. Barclay, Joseph]. Vicari, Andrea S. Doughty, John F
Johanson, and Roger L. Greenlaw. Colonoscopic Withdrawal Times
and Adenoma Detection during Screening Colonoscopy. New
England Journal of Medicine, 355(24):2533-2541, dec 2006.

[8] Paul Barrett. Euclidean Distance: raw, normalized, and double-
scaled coefficients. pbarret.net, 2005.

[9] James O. Berger. Statistical Decision Theory and Bayesian Analysis.
Springer Science & Business Media, 2 edition, 2013.

[10] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl.
Algorithms for Hyper-Parameter Optimization. In Advances in Neural
Information Processing Systems (NIPS), pages 2546-2554, 2011.

[11] James Bergstra JAMESBERGSTRA and Umontrealca Yoshua Bengio
YOSHUABENGIO. Random Search for Hyper-Parameter Optimiza-
tion. Journal of Machine Learning Research, 13:281-305, 2012.

[12] J. Bond. Colon Polyps and Cancer. Endoscopy, 37(03):208-212, feb
2005.

126

http://github.com/SheffieldML/GPyOpt

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient
Descent. In Yves Lechevallier and Gilbert Saporta, editors, Proc. of
COMPSTAT 2010, pages 177-186, Heidelberg, 2010. Physica-Verlag
HD.

Eric Brochu, Vlad M. Cora, and N De Freitas. A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. ArXiv,
page 49, dec 2010.

Lynn Butterly, Christina M Robinson, Joseph C Anderson, Julia E
Weiss, Martha Goodrich, Tracy L Onega, Christopher I Amos, and
Michael L Beach. Serrated and Adenomatous Polyp Detection
Increases With Longer Withdrawal Time: Results From the New
Hampshire Colonoscopy Registry. The American Journal of Gastroen-
terology, 109(3):417-426, mar 2014.

World Health Organization International Agency for Research
on Cancer Cancer Research UK. World cancer factsheet,
2014. http://www.cancerresearchuk.org/sites/default/files/
cs_report_world.pdf Accessed: 2017-11-02.

Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural
nets: Backpropagation, conjugate gradient, and early stopping. In the
13th International Conference on Neural Information Processing Systems,
pages 402-408, 2000.

Ronald A Castellino. Computer aided detection (CAD): an overview.
Cancer imaging : the official publication of the International Cancer
Imaging Society, 5(1):17-9, aug 2005.

American Cancer Society Cancer Statistics Center. 5-year
relative survival, 2006-2012, colorectum, by stage at diag-
nosis, 2016. https://cancerstatisticscenter.cancer.org/
cancer-site/Colorectum/i5NQiDbI Accessed: 2017-11-06.

Souad Chaabouni, Jenny Benois-Pineau, and Chokri Ben Amar.
Transfer learning with deep networks for saliency prediction in
natural video. In Proc. of ICIP, volume 2016-Augus, pages 1604-1608.
IEEE, sep 2016.

Shawn C. Chen and Douglas K. Rex. Endoscopist Can Be More Pow-
erful than Age and Male Gender in Predicting Adenoma Detection
at Colonoscopy. The American Journal of Gastroenterology, 102(4):856—
861, apr 2007.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan
Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN:
Efficient Primitives for Deep Learning. CoRR, abs/1410.0759, 2014.

Frangois Chollet. Xception: Deep Learning with Depthwise Separa-
ble Convolutions. CoRR, abs/1610.02357, 2016.

127

http://www.cancerresearchuk.org/sites/default/files/cs_report_world.pdf
http://www.cancerresearchuk.org/sites/default/files/cs_report_world.pdf
https://cancerstatisticscenter.cancer.org/cancer-site/Colorectum/i5NQiDbI
https://cancerstatisticscenter.cancer.org/cancer-site/Colorectum/i5NQiDbI

[24] Francgois Chollet and Collaborators. Applications - Keras Documen-
tation, 2018.

[25] Francois Chollet and et al. Keras, 2015. https://keras.io. Accessed:
2018-05-30.

[26] Marc Claesen and Bart De Moor. Hyperparameter Search in Machine
Learning. 2015.

[27] Philomena M Colucci, Steven H Yale, and Christopher] Rall.
Colorectal polyps. Clinical medicine & research, 1(3):261-2, jul 2003.

[28] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe
Turner, and Paul R. Young. Computing as a discipline. Commun.
ACM, 32(1):9-23, January 1989.

[29] TensorBoard Contributors. TensorBoard - TensorFlow’s Vizualisation
Toolkit, 2018.

[30] Tensorflow Contributors. Tensorflow GitHub Repository, 2018.

[31] George Cybenko. Approximation by Superpositions of a Sigmoidal
Function. Math. Control Signals Systems, 2:303-314, 1989.

[32] Dallas Gastroenterologist. What is a Colonoscopy Procedure and
How to Prepare for it?, 2018.

[33] Li Deng and Dong Yu. Deep Learning: Methods and Applications.
Foundations and Trends®) in Signal Processing, 7(3-4):197-387, may
2014.

[34] Pedro Domingos. A few useful things to know about machine
learning. Commun. ACM, 55(10):78-87, October 2012.

[35] Timothy Dozat. Incorporating Nesterov Momentum into Adam.
ICLR Workshop, (1):2013-2016, 2016.

[36] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization. Journal of
Machine Learning Research, 12:2121-2159, 2011.

[37] Mark Ebden. Gaussian Processes: A Quick Introduction. may 2015.

[38] Katharina Eggensperger, Matthias Feurer, and Frank Hutter. To-
wards an empirical foundation for assessing bayesian optimization
of hyperparameters. NIPS, BayesOpt workshop, pages 1-5, 2013.

[39] Jacques Ferlay, Isabelle Soerjomataram, Rajesh Dikshit, Sultan Eser,
Colin Mathers, Marise Rebelo, Donald Maxwell Parkin, David For-
man, and Freddie Bray. Cancer incidence and mortality worldwide:
Sources, methods and major patterns in GLOBOCAN 2012. Interna-
tional Journal of Cancer, 136(5):E359—-E386, mar 2015.

128

https://keras.io

[40] Frangois Chollet. Building powerful image classification models
using very little data, 2016.

[41] Iris Fu and Cambron Carter. Benchmarking Training Time for CNN-
based Detectors with Apache MXNet, 2017.

[42] N. M. Gatto, H. Frucht, V. Sundararajan, J. S. Jacobson, V. R. Grann,
and A. I. Neugut. Risk of Perforation After Colonoscopy and
Sigmoidoscopy: A Population-Based Study. JNCI Journal of the
National Cancer Institute, 95(3):230-236, feb 2003.

[43] Dave Gershgorn. ImageNet: the data that spawned the current Al
boom. Quartz, 2017.

[44] B. Giritharan, Xiaohui Yuan, Jianguo Liu, B. Buckles, JungHwan Oh,
and Shou Jiang Tang. Bleeding detection from capsule endoscopy
videos. In Proc. of EMBS, 2008.

[45] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochan-
ski, John Karro, and D Sculley. Google Vizier: A Service for Black-Box
Optimization.

[46] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochan-
ski, John Karro, and D Sculley. Google Vizier: A Service for Black-Box
Optimization. 2017.

[47] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://wuw.deeplearningbook.org.

[48] GPy. GPy: A Gaussian process framework in python. http://
github.com/SheffieldML/GPy.

[49] Kevin Gurney. An introduction to neural networks. UCL Press, 2004
edition, 1997.

[50] Hayashi N. et. al. Endoscopic prediction of deep submucosal inva-
sive carcinoma: validation of the narrow-band imaging international
colorectal endoscopic (nice) classification. Gastrointest Endosc, 2013.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. CoRR, abs/1512.03385,
2015.

[53] Jeremy T Hetzel, Christopher S Huang, Jennifer A Coukos, Kelsey
Omstead, Sandra R Cerda, Shi Yang, Michael] O’Brien, and Francis A
Farraye. Variation in the Detection of Serrated Polyps in an Average
Risk Colorectal Cancer Screening Cohort. The American Journal of
Gastroenterology, 105(12):2656-2664, dec 2010.

129

http://www.deeplearningbook.org
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

[64] Geoffrey E. Hinton, Nitish Srivastava, and Kevin Swersky. Lecture
6a- overview of mini-batch gradient descent. COURSERA: Neural
Networks for Machine Learning, page 31, 2012.

[65] O. Holme, M. Bretthauer, A. Fretheim,]. Odgaard-Jensen, and
G. Hoff. Flexible sigmoidoscopy versus faecal occult blood testing
for colorectal cancer screening in asymptomatic individuals. Cochrane
Database of SR, 2013.

[56] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. ArXiv, page 9, 2017.

[67] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely Connected Convolutional Networks.

[58] Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely
Connected Convolutional Networks. CoRR, abs/1608.06993, 2016.

[59] IARC Working Group. Cancer Screening in Report on the implemen-
tation of the Council Recommendation on cancer screening. 2017.

[60] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248-255,
20009.

[61] Tinu Theckel Joy, Santu Rana, Sunil Gupta, and Svetha Venkatesh.
Hyperparameter tuning for big data using Bayesian optimisation. In
Proc. of Pattern Recognition, pages 2574-2579. IEEE, dec 2017.

[62] Janusz Kacprzyk and Witold Pedrycz. Springer handbook of computa-
tional intelligence. Springer, 2015.

[63] Charles J. Kahi, David G. Hewett, Dustin Lee Norton, George J.
Eckert, and Douglas K. Rex. Prevalence and Variable Detection
of Proximal Colon Serrated Polyps During Screening Colonoscopy.
Clinical Gastroenterology and Hepatology, 9(1):42-46, jan 2011.

[64] M. F. Kaminski, J. Regula, E. Kraszewska, M. Polkowski, U. Woj-
ciechowska, J. Didkowska, M. Zwierko, M. Rupinski, M. P. Nowacki,
and E. Butruk. Quality indicators for colonoscopy and the risk of
interval cancer. New England Journal of Medicine, 362(19):1795-1803,
2010.

[65] Kaminski et. al. Leadership training to improve adenoma detection
rate in screening colonoscopy: a randomised trial. Gut, 2015.

[66] Kaminski MF et. al. Increased rate of adenoma detection associates
with reduced risk of colorectal cancer and death. Gastroenterology,
2017.

130

[67] Keras. Keras Callbacks Source Code. https://github.com/
keras-team/keras/blob/master/keras/callbacks.py, 2018.

[68] Diederik P Kingma and Jimmy Ba. Adam: {A} Method for Stochastic
Optimization. CoRR, abs/1412.6980, 2014.

[69] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. In ICML, 2015.

[70] Greg Kochanski, Daniel Golovin, John Karro, Benjamin Solnik,
Subhodeep Moitra, and D Sculley. Bayesian Optimization for a Better
Dessert. In Proc. of NIPS Workshop on Bayesian Optimization, number
Nips, 2017.

[71] David Kriesel. A Dbrief introduction to neural net-
works. http://www.dkriesel.com/_media/science/
neuronalenetze-en-zeta2-2col-dkrieselcom.pdf, 2007.

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. Advances
In Neural Information Processing Systems, pages 1-9, 2012.

[73] Edwin] Lai, Audrey H Calderwood, Gheorghe Doros, Oren K
Fix, and Brian C Jacobson. The Boston bowel preparation scale:
a valid and reliable instrument for colonoscopy-oriented research.
Gastrointestinal endoscopy, 69(3 Pt 2):620-5, mar 2009.

[74] Y. LeCun, B. Boser,]J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Computation, 1:541-551,
1989.

[75] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon
Schocken. Multilayer Feedforward Networks With a Nonpolyno-

mial Activation Function Can Approximate Any Function. Neural
Networks, 6:861-867, 1993.

[76] Julien Charles Levesque, Audrey Durand, Christian Gagne, and
Robert Sabourin. Bayesian optimization for conditional hyperparam-
eter spaces. In Proc. of NN, volume 2017-May, pages 286-293. IEEE,
may 2017.

[77] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization. 2016.

[78] Xiangang Li and Xihong Wu. Constructing Long Short-Term Mem-
ory based Deep Recurrent Neural Networks for Large Vocabulary
Speech Recognition. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 45204524, 2014.

[79] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network.
arXiv preprint, page 10, 2013.

131

https://github.com/keras-team/keras/blob/master/keras/callbacks.py
https://github.com/keras-team/keras/blob/master/keras/callbacks.py
http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf
http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf

[80] Mathias Lux and Savvas A. Chatzichristofis. Lire: Lucene image
retrieval: An extensible java cbir library. In Proc. of ACM MM, pages
1085-1088, 2008.

[81] Mathias Lux, Michael Riegler, P4l Halvorsen, Konstantin Pogorelov,
and Nektarios Anagnostopoulos. LIRE: Open Source Visual Infor-
mation Retrieval. In Proc. of MMSys, MMSys 16, pages 30:1—-30:4,
New York, NY, USA, 2016. ACM.

[82] Shawn Mallery and Jacques Van Dam. Advances in diagnostic and
therapeutic endoscopy. Medical Clinics of North America, 84(5):1059—
1083, 2000.

[83] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in
Context. (1):2929-2936, 2010.

[84] Ruben Martinez-Cantin, Kevin Tee, and Michael McCourt. Practical
Bayesian optimization in the presence of outliers. dec 2017.

[85] Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitari, and Yuji
Kaneda. Subject independent facial expression recognition with
robust face detection using a convolutional neural network. Neural
networks : the official journal of the International Neural Network Society,
16(5-6):555-9, 2003.

[86] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve
Restricted Boltzmann Machines. Proc. of ML, (3):807-814, 2010.

[87] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable Parallel Programming with CUDA. Queue, 6(2):40-53, 2008.

[88] Travis E. Oliphant. A guide to NumPy. Trelgol Publishing, 2006.

[89] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning
and Transferring Mid-level Image Representations Using Convolu-
tional Neural Networks. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1717-1724. IEEE, jun 2014.

[90] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning, oct
2010.

[91] PDQ Screening and Prevention Editorial Board. Colorectal Cancer
Screening (PDQ®): Health Professional Version, volume 103. 2002.

[92] Anne F Peery, Evan S Dellon, Jennifer Lund, Seth D Crockett,
Christopher E McGowan, William] Bulsiewicz, Lisa M Gangarosa,
Michelle T Thiny, Karyn Stizenberg, Douglas R Morgan, Yehuda
Ringel, Hannah P Kim, Marco Dacosta Dibonaventura, Charlotte F
Carroll, Jeffery K Allen, Suzanne F Cook, Robert S Sandler, Michael D
Kappelman, and Nicholas] Shaheen. Burden of gastrointestinal dis-
ease in the United States: 2012 update. Gastroenterology, 143(5):1179—
87.e1-3, nov 2012.

132

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Tomaso Poggio and Fabio Anselmi. Visual Cortex and Deep networks:
Learning Invariant Representations. 2016.

Konstantin Pogorelov, Baerum Hospital, Norway Thomas de Lange,
Carsten Griwodz, Kristin Ranheim Randel, Hakon Kvale Stens-
land, Duc-Tien Dang-Nguyen, Concetto Spampinato, Dag Johansen,
Michael Riegler, Pal Halvorsen, Sigrun Losada Eskeland, and
Thomas de Lange. A Holistic Multimedia System for Gastrointesti-
nal Tract Disease Detection Sigrun Losada Eskeland ACM Reference
format.

Konstantin Pogorelov, Sigrun Losada, Carsten Griwodz, Thomas
de Lange, Kristin Ranheim Randel, Duc Tien Dang Nguyen, Hakon
Kvale Stensland, Francesco De Natale, Dag Johansen, Michael
Riegler, and Pal Halvorsen. A holistic multimedia system for
gastrointestinal tract disease detection. In Proc. of MMSys, 2017.

Konstantin Pogorelov, Olga Ostroukhova, Andreas Petlund, Pal
Halvorsen, Thomas De Lange, Havard Nygaard Espeland, Tomas
Kupka, Carsten Griwodz, and Michael Riegler. Deep Learning and
Handcrafted Feature Based Approaches for Automatic Detection of
Angiectasia. In Proc. of IEEE BHI, 2018.

Konstantin Pogorelov, Kristin Ranheim Randel, Thomas de Lange,
Sigrun Losada Eskeland, Carsten Griwodz, Dag Johansen, Concetto
Spampinato, Mario Taschwer, Mathias Lux, Peter Thelin Schmidt,
Michael Riegler, and Pal Halvorsen. Nerthus: A bowel preparation
quality video dataset. In Proc. of ACM MMSys Conference, MMSys’17,
pages 170-174, New York, NY, USA, 2017. ACM.

Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz,
Sigrun Losada Eskeland, Thomas de Lange, Dag Johansen, Concetto
Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter Thelin
Schmidt, Michael Riegler, and Pal Halvorsen. Kvasir: A multi-class
image dataset for computer aided gastrointestinal disease detection.
In Proc. of ACM MMSys, MMSys’17, pages 164-169, New York, NY,
USA, 2017. ACM.

Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland,
Thomas de Lange, Dag Johansen, Carsten Griwodz, Peter Thelin
Schmidt, and Pal Halvorsen. Efficient disease detection in gastroin-
testinal videos — global features versus neural networks. Multimedia
Tools and Applications, 76(21):22493-22525, 2017.

Konstantin Pogorelov, Michael Riegler, Pal Halvorsen, Peter Thelin
Schmidt, Carsten Griwodz, Dag Johansen, Sigrun Losada Eskeland,
and Thomas de Lange. GPU-Accelerated Real-Time Gastrointestinal
Diseases Detection. In 2016 IEEE 29th International Symposium on
Computer-Based Medical Systems (CBMS), pages 185-190. IEEE, jun
2016.

133

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Chao Qin, Diego Klabjan, and Daniel Russo. Improving the Expected
Improvement Algorithm. CoRR, abs/1705.1, 2017.

Stuart H Ralston, Ian Penman, Mark Strachan, and Richard Hobson.
Davidson’s Principles and Practice of Medicine E-Book. 2014.

Waseem Rawat and Zenghui Wang. Deep Convolutional Neural
Networks for Image Classification: A Comprehensive Review.
Neural Computation, 29(9):2352-2449, 2017.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and
Stefan Carlsson. CNN features off-the-shelf: An astounding baseline
for recognition. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, pages 512-519, 2014.

Sashank] Reddi, Satyen Kale, and Sanjiv Kumar. On the Conver-
gence of Adam and Beyond. In International Conference on Learning
Representations, 2018.

C.J. Rees, Roisin Bevan, Katharina Zimmermann-Fraedrich, M.D.
Rutter, Douglas Rex, Evelien Dekker, Thierry Ponchon, Michael
Bretthauer, Jaroslaw Regula, Brian Saunders, Cesare Hassan, M.].
Bourke, and T. Rosch. Expert opinions and scientific evidence for
colonoscopy key performance indicators. Gut, 65(12), 2016.

Douglas K Rex, C. Richard Boland, Jason A Dominitz, Francis M
Giardiello, David A Johnson, Tonya Kaltenbach, Theodore R Levin,
David Lieberman, and Douglas] Robertson. Colorectal Cancer
Screening: Recommendations for Physicians and Patients from the
U.S. Multi-Society Task Force on Colorectal Cancer, 2017.

Eduardo Ribeiro, Andreas Uhl, Georg Wimmer, and Michael Héfner.
Exploring Deep Learning and Transfer Learning for Colonic Polyp
Classification. Computational and Mathematical Methods in Medicine,
2016:6584725, 2016.

Michael Riegler, Martha Larson, Mathias Lux, and Christoph Kofler.
How "how’ reflects what’s what: Content-based exploitation of how
users frame social images. In Proc. of ACM MM, pages 397406, 2014.

Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spamp-
inato, Thomas de Lange, Sigrun L. Eskeland, Konstantin Pogorelov,
Wallapak Tavanapong, Peter T. Schmidt, Cathal Gurrin, Dag Jo-
hansen, Havard Johansen, and Pal Halvorsen. Multimedia and
medicine: Teammates for better disease detection and survival. In
Proc. of ACM MM, pages 968-977, 2016.

Michael Riegler, Konstantin Pogorelov, Sigrun Losada Eskeland,
Peter Thelin Schmidt, Zeno Albisser, Dag Johansen, Carsten Gri-
wodz, Pal Halvorsen, and Thomas De Lange. From Annotation to
Computer-Aided Diagnosis. ACM Transactions on Multimedia Com-
puting, Communications, and Applications, 13(3):1-26, may 2017.

134

[112] Michael Riegler, Konstantin Pogorelov, Sigrun Losada Eskeland, Pe-
ter Thelin Schmidt, Zeno Albisser, Dag Johansen, Carsten Griwodz,
Pal Halvorsen, and Thomas De Lange. From annotation to computer-
aided diagnosis: Detailed evaluation of a medical multimedia sys-
tem. ACM Trans. Multimedia Comput. Commun. Appl., 13(3):26:1-26:26,
May 2017.

[113] Michael Riegler, Konstantin Pogorelov, Pal Halvorsen, Thomas
de Lange, Carsten Griwodz, Peter Thelin Schmidt, Sigrun Losada
Eskeland, and Dag Johansen. Eir - efficient computer aided diagnosis
framework for gastrointestinal endoscopies. In Proc. of CBMI, 2016.

[114] Alaa Rostom and Emilie Jolicoeur. Validation of a new scale for the
assessment of bowel preparation quality. Gastrointestinal endoscopy,
59(4):482-6, apr 2004.

[115] Sebastian Ruder. An overview of gradient descent optimization
algorithms. CoRR, sep 2016.

[116] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211-252, dec 2015.

[117] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Third edit edition, 2010.

[118] Dennis Salguero. Keras API Proposal - EarlyBaselineStopping, 2018.

[119] Dennis Salguero. Pull Request: “"New Callback: EarlyBaselineStop-
ping”, 2018.

[120] A.L.Samuel. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, 3(3):210-229, jul
1959.

[121] Klaus Schoeffmann, Bernd Miinzer, Michael Riegler, and Pal
Halvorsen. Medical Multimedia Information Systems (MMIS). In
Proc. of ACM MM, MM "17, pages 1957-1958, New York, NY, USA,
2017. ACM.

[122] Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source
Deep-Learning Toolkit. In Proc. of ACM SIGKDD KDD, KDD 16,
page 2135, New York, NY, USA, 2016. ACM.

[123] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556,
2014.

[124] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. International Conference
on Learning Representations (ICRL), pages 1-14, 2015.

135

[125] P. Patrick Van Der Smagt, P. Patrick Van Der Smagt, Ben J. A. Krése,
Ben J. A. Krose, and P. Patrick Smagt. An introduction to Neural
Networks. 1993.

[126] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical
Bayesian Optimization of Machine Learning Algorithms. Adv. Neural
Inf. Process. Syst. 25, pages 1-9, 2012.

[127] Jasper Snoek, Oren Rippel, and Ryan P Adams. Scalable Bayesian
Optimization Using Deep Neural Networks. In Proc. of ML, 2015.

[128] American Cancer Society. American cancer society rec-
ommendations for colorectal cancer early detection, 2017.
https://www.cancer.org/cancer/colon-rectal-cancer/
detection-diagnosis-staging/acs-recommendations.html

Accessed: 2017-11-06.

[129] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and
Martin Riedmiller. Striving for Simplicity: The All Convolutional
Net. 2014.

[130] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.
On the importance of initialization and momentum in deep learning.
ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, (2010):8609-8613, 2013.

[131] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-Task
Bayesian Optimization. In Proc. of NIPS, pages 20042012, 2013.

[132] Christian Szegedy, Sergey loffe, and Vincent Vanhoucke. Inception-
v4, Inception-ResNet and the Impact of Residual Connections on
Learning. CoRR, abs/1602.07261, 2016.

[133] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the Inception Architecture
for Computer Vision. 2015.

[134] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the Inception Architecture
for Computer Vision. CoRR, abs/1512.00567, 2015.

[135] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst,
Christopher B Kendall, Michael B Gotway, and Jianming Liang.
Convolutional Neural Networks for Medical Image Analysis: Full
Training or Fine Tuning? IEEE Transactions on Medical Imaging,
35(5):1299-1312, 2016.

[136] TensorFlow. TensorFlow, 2018. https://www.tensorflow.org/.
Accessed: 2018-05-01.

[137] Vestre Viken Hospital Trust. Vestre Viken Hospital Trust,
2018. https://vestreviken.no/vestre-viken-hospital-trust.
Accessed 2018-05-07.

136

https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/acs-recommendations.html
https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/acs-recommendations.html
https://www.tensorflow.org/
https://vestreviken.no/vestre-viken-hospital-trust

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

L. von Karsa, J. Patnick, and N. Segnan. European guidelines for
quality assurance in colorectal cancer screening and diagnosis. first
edition-executive summary. Endoscopy, 44 Suppl 3:SE1-8, 2012.

Yi Wang, Wallapak Tavanapong, Johnny Wong, Jung Hwan Oh,
and Piet C. de Groen. Polyp-Alert: Near real-time feedback
during colonoscopy. Computer Methods and Programs in Biomedicine,
120(3):164-179, jul 2015.

Karl Weiss, Taghi M. Khoshgoftaar, and Ding Ding Wang. A survey
of transfer learning. Journal of Big Data, 3(1):9, dec 2016.

Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. The
WEKA Workbench. In Data Mining: Practical Machine Learning Tools

and Techniques, chapter Online App. Morgan Kaufmann, fourth edi
edition, 2016.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On Early
Stopping In Gradient Descent Learning. MIT, 2005.

Matthew D Zeiler. {ADADELTA:} An Adaptive Learning Rate
Method. CoRR, abs/1212.5701, 2012.

Ruikai Zhang, Yali Zheng, Tony Wing Chung Mak, Ruoxi Yu,
Sunny H. Wong, James Y.W. Lau, and Carmen C.Y. Poon. Automatic
Detection and Classification of Colorectal Polyps by Transferring
Low-Level CNN Features from Nonmedical Domain. IEEE Journal
of Biomedical and Health Informatics, 21(1):41-47, jan 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning Transferable Architectures for Scalable Image Recognition.
CoRR, abs/1707.07012, 2017.

137

138

Appendix A

Winning Poster from
Autonomy Day 2018

139

Hyperparameter optimization in transfer
learning for medical image analysis

CNN CNN Successfully trained CNN

Hyperparameters
e Pre-trained model

e Model optimizer

e Learning rate
 Delimiting layer

We use Bayesian Optimization

Three ways to optimize Three parts for optimization
e Shared hyperparameters » Replace and train classification block
o Separate hyperparameters o Fine-tune with default delimiting layer
o Two-step optimization « Fine-tune again, but find best

delimiting layer

0.000 5.000 10.00 15.00 2000 25.00

' | [w T“
o TR r U'I.‘ .'. !'r. o “J il ..T].Ltl 1..M

12AM 06AM 12PM 06PM 12AM 06AM 12PM (06PM 12AM (06AM 12PM [06PM 12AM 06AM 12PM 06PM 12AM OGAM 12PM 06PM
April 11,2018 April 12, 2018 April 13,2018 April 14,2018 ‘April 15, 2018

UiO ¢ Institutt for informatikk [la.research laboratory]

Det ige fakultet - by thinking constantly about it
Rune Johan Borgli, University of Oslo and Simula

Figure A.1: Poster winning the Best Poster Award from Autonomy Day
2018. The poster was awarded the best poster award at Autonomy Day
2018: 2nd workshop on Autonomous and Adaptive Systems held at Oslo
Metropolitan University, May 3rd 2018. The poster was one of many
presented during the workshop. It briefly presents our work and results
from the Kvasir dataset experiment. Additonally, the work was presented
by a three-minute lightning talk at the same event.

140

141

Appendix B

Plots From the Nerthus
Optimization

B.1 Shared Hyperparameters Optimization Strategy

val_acc

0.800
0.600
0.400

0.200

0.000 2.000 4.000 6.000 8.000 10.00 12.00 14.00

Figure B.1: Plot of Shared hyperparameters optimization strategy run in
steps on the Kvasir dataset. X-axis is the number of epochs the training
run has lasted and Y-axis is the attained validation accuracy. Each line

represents a training run. One Bayesian optimization iteration is,

therefore, segmented into several lines. The training of the classification
block produces one line, while the training of the fine-tuning produces

another line. The optimization of the delimiting layer will also produce a
line. The plot is from the same run as figure 4.28, but with filering out

every line that is not from the shared hyperparameter optimization
strategy.

142

16.00

val_acc

0.200

wer

12:00PM 12:30 PM 01:00PM 01:30PM 02:00PM 02:30 PM 03:00 PM |03:30 PM 04:00 PM 04:30 PM 05:00 PM 05:30 PM 06:00 PM 06:30 PM 07:00 PM 07:30PM 08:00 PM 08:30 PM 09:00 PM 09:30PM 10:00 PM 10:30 PM [11:00 PM 11:30 PM
April 17, 2018

Figure B.2: Plot of Shared hyperparameters optimization strategy run in
time on the Kvasir dataset. X-axis is timestamps for each finished epoch.
Y-axis is the attained validation accuracy. Each line represents a training
run. The plot is a subplot from figure 4.29 of the marked box of shared
hyperparameters optimization strategy. We have added boxes with
captions to show where each optimization step is plotted.

143

val_acc

0.800

0.700

0.600

B.1.1 Model Optimization

0.000 2.000 4.000 6.000 8.000 10.00 12.00 14.00 16.00

Figure B.3: The shared hyperparameters optimization strategy’s model
optimization run for each epoch. Training runs from the model
optimization is plotted in the graph for validation accuracy in Y-axis and
epoch in X-axis. Classification block training and fine-tuning is plotted
together.

144

d(x[n], x[n-1])

Distance between consecutive x's Value of the best selected sample

7 -
—0.5 1
6 -
—0.6 1
5 -
4 -0.7 1
>
®
[
34 [an]
—0.8
2 .
—0.9 1
1 .
01 —1.0 A
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure B.4: Convergence plot of the shared hyperparameters optimization
strategy’s model optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the
Euclidean distance is plotted as Y-axis, and the iteration is plotted as

X-axis. The iteration means the going from one iteration to another, so for

example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

145

val_ace

0.200

B.1.2 Layer Optimization

0.000 2.000 4.000 6.000 8.000 10.00 12.00 14.00

Figure B.5: The shared hyperparameters optimization strategy’s layer
optimization run for each epoch. Training runs from the model
optimization is plotted in the graph for validation accuracy in Y-axis and
epoch in X-axis. Classification block training and fine-tuning is plotted
together.

146

16.00

d(x[n], x[n-1])

Distance between consecutive x's Value of the best selected sample

—0.970 A
80 A
—0.975 A
60 —0.980 A
>
9 —0.985 1
40 A o
—0.990 A
20 A
—0.995 ~
0 —1.000 A
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure B.6: Convergence plot of the shared hyperparameters optimization
strategy’s layer optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the

Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

147

- Acquisition (arbitrary units)

| T

[

0 20 4

0 60 80

X

100 120

Figure B.7: Gaussian Process surrogate model and Expected Improvement
acquisition function for the shared hyperparameters optimization
strategy’s layer optimization. The Y-axis is the expected result of a

hyperparameter in the surrogate model. X-axis is the hyperparameter,
which is this case is the delimiting layer. The black line represents the
posterior mean, the gray lines represents the posterior uncertainty, the red
dots are tested hyperparameters and their results on the surrogate model,
the red vertical line is where the acquisition function would try the next
test should it run for another iteration, and, finally, the horizontal red
curve is the acquisition function in arbitrary units. A lower posterior
mean is better, and a higher value for the acquisition function is where the
next hyperparameter values will be taken from.

148

val_acc

0.800

0.700

0.600

B.2 Separate Hyperparameters Optimization Strategy

A

\‘A«ﬂﬁ,’ \

(A
/

=" e

AW

0.000 2.000 4.000 6.000 8.000 10.00 12.00

Figure B.8: The separate hyperparameters optimization strategy’s plot of
training runs for each epoch.

149

val_acc

0.800 +
0.700

0.600 r

0500 Ml ,.rv ;’.m '5 rﬂ ‘r \‘ Y3 } "

0.300

0.200

0.100

09PM 10PM 11PM 12AM O1AM 02AM 03AM O04AM 05AM O06AM O7AM 08AM 09AM 10AM 11AM 12PM OLPM 02PM 03PM 04PM O0S5PM OGPM O07PM 08PM O09PM 10PM I11PM 12AM OLAM 02 AM
April 17, 2018 April 18, 2018 April 19, 2018

Figure B.9: The separate hyperparameters optimization strategy’s plot of
training runs for time. The model optimization and layer optimization has
been marked with black boxes.

150

B.2.1 Model Optimization

val_acc

0.600

0.500

0.300

0.200

0.100

0.000 2.000 4.000 6.000 8.000 10.00 12.00

Figure B.10: The separate hyperparameters optimization strategy’s plot of
model optimization training runs for each epoch. Training runs from the
model optimization is plotted in the graph for validation accuracy in
Y-axis and epoch in X-axis. Classification block training and fine-tuning is
plotted together.

151

d(x[n], x[n-11)

Distance between consecutive x's Value of the best selected sample

8 1 —0.2 1
7 -
_03 .
6 -
—0.4 A
5 >
il
[
@ _0.5 -
4 4
3 1 —0.6 1
2 -
—0.7 A
1 b T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure B.11: Convergence plot of the separate hyperparameters
optimization strategy’s model optimization run. The first plot shows the
distance between each hyperparameter using Euclidean distance, where
the Euclidean distance is plotted as Y-axis, and the iteration is plotted as

X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

152

val_acc

0.800

0.700 +

0.600

0.500

0.300

0.200

0.100

B.2.2 Layer Optimization

0.000 2.000 4.000 6.000 8.000 10.00 12.00 14.00

Figure B.12: The separate hyperparameters optimization strategy’s plot of
layer optimization training runs for each epoch. Training runs from the
model optimization is plotted in the graph for validation accuracy in
Y-axis and epoch in X-axis. Classification block training and fine-tuning is
plotted together.

153

16.00

d(x[n], x[n-11)

Distance between consecutive x's Value of the best selected sample

300 A
—0.77 A
250 A
200 A —0.78 1
>
150 - @
P —0.79 A
100 +
—0.80 A
50
04 —0.81 A
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure B.13: Convergence plot of the separate hyperparameters
optimization strategy’s layer optimization run. The first plot shows the
distance between each hyperparameter using Euclidean distance, where
the Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

154

I
3 { = Acquisition (arbitrary units)

iﬁ }]X I

=z 07
. Y
.
3

AV.VA \/

0 100 200 300 400
X

Figure B.14: Gaussian Process surrogate model and Expected
Improvement acquisition function for the separate hyperparameters
optimization strategy’s layer optimization. The Y-axis is the expected

result of a hyperparameter in the surrogate model. X-axis is the
hyperparameter, which is this case is the delimiting layer. The black line
represents the posterior mean, the gray lines represents the posterior
uncertainty, the red dots are tested hyperparameters and their results on
the surrogate model, the red vertical line is where the acquisition function
would try the next test should it run for another iteration, and, finally, the
horizontal red curve is the acquisition function in arbitrary units. A lower
posterior mean is better, and a higher value for the acquisition function is
where the next hyperparameter values will be taken from.

155

val_acc

0.800

0.800

0.700

0.600

0500

0.400

0.200

0.200

0.100

val_ace

100

0.900

0800

0700

0.600

0500

0.400

0300

0200

0.100

B.3 Separate Optimizations Optimization Strategy

0.000 1000 2,000 3.000 4,000 5.000 6,000 7.000 8.000 9.000

Figure B.15: The separate optimizations optimization strategy’s plot of
training runs for each epoch.

J o 1

01:00 AM

01:30 AM

02:00 AM 02:30 AM 03:00 AM 03:30 AM 04:00 AM 04:30 AM 05:00 AM 05:30 AM 06:00 AM 06:30 AM 07:00 AM 07:30 AM 08:00 AM 08:30 AM 09:00 AM
Apiil 18, 2018

Figure B.16: The separate optimizations optimization strategy’s plot of
training runs for time. The classification block optimization, fine-tuning
optimization, and layer optimizationa is marked with black boxes.

156

09:30 AM

val_acc

0.900

0.800

0.700

0.600

0500

0.400

B.3.1 Classification Block Optimization

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

Figure B.17: The separate optimizations optimization strategy’s
classification block optimization run for each epoch. Training runs from
the model optimization is plotted in the graph for validation accuracy in

Y-axis and epoch in X-axis. Classification block training and fine-tuning is
plotted together.

157

%‘W
l"‘. ,
<~

9.000

d(x[n], x[n-11)

Distance between consecutive x's Value of the best selected sample

—0.90
7 -
61 -0.92 -
5 -
> —0.94 1
47 i —0—0—0-0-0-0-0-0-0-0-0-0-0-90
(]
m
3 -
—0.96
2 -
1 —0.98 A
0 -
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure B.18: Convergence plot of the separate optimizations optimization
strategy’s classification block optimization run. The first plot shows the
distance between each hyperparameter using Euclidean distance, where
the Euclidean distance is plotted as Y-axis, and the iteration is plotted as

X-axis. The iteration means the going from one iteration to another, so for

example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

158

val_ace

0600

0500

0.400

0300

0200

0100

B.3.2 Fine-tuning Optimization

0.000 1.000 2,000 3.000 4.000 5.000 6.000 7.000 8000

Figure B.19: The separate optimizations optimization strategy’s
fine-tuning optimization run for each epoch. Training runs from the
model optimization is plotted in the graph for validation accuracy in

Y-axis and epoch in X-axis. Classification block training and fine-tuning is

plotted together.

159

9.000

d(x[n], x[n-1])

Distance between consecutive x's Value of the best selected sample

4.0 ~0.20
3.5 1
—0.25 A
3.0 A
—0.30 A
2.5 1
>
2.0 1 @ —0.35
m
1.5 1
—0.40 A
1.0 A
—0.45 A
0.5 1
0.0 -0.50 A
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
Iteration Iteration

Figure B.20: Convergence plot of the separate optimizations optimization
strategy’s fine-tuning optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the
Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

160

X2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.0
0.048
0.99544
L]
0.036
024 i 099514
0.024 0.99484
L]
0.012 (] 0.99454 ,
0.000%¢ 0.99434
—0.012 061 099394 ¢
ooa 0.99364
0.8 0.993340.8
~0.036
2 0.99304
~0.048
1.0 e 0.992741.0
o 1 2 3 4 5 6 0
X1

Posterior mean Posterior sd. Acquisition function

0 1 2 3 4 5 6
X1 X1

Figure B.21: Gaussian Process surrogate model and Expected
Improvement acquisition function for the separate optimizations
optimization strategy’s fine-tuning optimization. The Y-axis is the
normalized learning rate domain and the X-axis is the index of each
gradient descent optimization function in a list. The color gradient
represtents the posterior mean in the first graph, the posterior standard
deviation in the second graph, and the acquisition function in the final
graph. The graph shows the model after the optimization. The red dots in
the first two graphs are the tests that have been done during the
optimization. The black dot in the acquisition function is where the next
test would have occured should the optimization continue for another
iteration.

161

0.99

0.88

0.77

0.66

0.55

0.44

0.33

0.22

0.11

0.00

val_ace

0.600

0500

0.400

0300

0200

0100

B.3.3 Layer Optimization

0000 1.000 2.000 3.000 4.000 5.000 6.000 7.000

Figure B.22: The separate optimizations optimization strategy’s layer
optimization run for each epoch. Training runs from the model
optimization is plotted in the graph for validation accuracy in Y-axis and
epoch in X-axis. Classification block training and fine-tuning is plotted
together.

162

8.000

d(x[n], x[n-1])

Distance between consecutive x's Value of the best selected sample

6 —0.25 A
5 .
—0.30 A
4 .
—0.35 A
>
31 4
m
—0.40
2 .
—0.45 A
1 .
01 —0.50 A
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4
Iteration Iteration

Figure B.23: Convergence plot of the separate optimizations optimization
strategy’s layer optimization run. The first plot shows the distance
between each hyperparameter using Euclidean distance, where the

Euclidean distance is plotted as Y-axis, and the iteration is plotted as
X-axis. The iteration means the going from one iteration to another, so for
example; iteration 0 means the distance between iteration 0 and 1. The
second figure shows the highest attained validation accuracy, in Y-axis, for
each iteration, in X-axis. The validation accuracy is negated as that is how
it is handled in the GPyOpt library, which is used to create the plot. The
iterations here are normal iterations.

163

- Acquisition (arbitrary units)

Figure B.24: Gaussian Process surrogate model and Expected
Improvement acquisition function for the separate optimizations
optimization strategy’s layer optimization. The Y-axis is the expected
result of a hyperparameter in the surrogate model. X-axis is the
hyperparameter, which is this case is the delimiting layer. The black line
represents the posterior mean, the gray lines represents the posterior
uncertainty, the red dots are tested hyperparameters and their results on
the surrogate model, the red vertical line is where the acquisition function
would try the next test should it run for another iteration, and, finally, the
horizontal red curve is the acquisition function in arbitrary units. A lower
posterior mean is better, and a higher value for the acquisition function is
where the next hyperparameter values will be taken from.

164

Appendix C

Permission To Use Illustrations

THESIS COPYRIGHT PERMISSION FORM

Title(s) of the Image(s): Terese Winslow LLC owns the copyright to the following image(s):

Lower Gastrointestinal Anatomy,
Colon Polyps,
Colonoscopy,
Parts of the Body Where Gastrointestinal Carcinoid Tumors Form,
Parts of the Colon,
Upper Endoscopy,
Upper Gastrointestinal Anatomy,
Esophagoscopy,
Sigmoidoscopy

Description of the Work: Terese Winslow LLC hereby grants permission to reproduce the above
image(s) for use in the work specified:

Thesis title: Hyperparameter optimization in transfer learning for medical image analysis
University: University of Oslo

License Granted: Terese Winslow LLC hereby grants limited, non-exclusive worldwide print and
electronic rights only for use in the Work specified. Terese Winslow LLC grants such rights “AS 1S”
without representation or warranty of any kind and shall have no liability in connection with such license.
Restrictions: Reproduction for use in any other work, derivative works, or by any third party by manual
or electronic methods is prohibited. Ownership of original artwork, copyright, and all rights not
specifically transferred herein remain the exclusive property of Terese Winslow LLC. Additional
license(s) are required for ancillary usage(s).

Credit must be placed adjacent to the image(s) as follows:

For the National Cancer Institute © (year) Terese Winslow LLC, U.S. Govt. has certain rights
Permission granted to:

Author name: Rune Johan Borgli

Mailing address: Nordengveien 8, 3406 Tranby, Norway

Email address: rune.borgli@gmail.com

Phone number: +4799237816

e J?MW» Mbw :bmn/ Date, QS(Z]((Z

Author /

W Digitally signed by TERESE WINSLOW
Teee Date: 2018.05.26 08:46:52 -04'00'

Figure C.1: Signed Thesis Copyright Permission Form which gives
consent to use the illustrations in the background showing a colonoscopy
and gastrointestinal anatomy:.

165

	Introduction
	Background and Motivation
	Problem Statement
	Scope and Limitations
	Research Method
	Outline

	Background
	The Medical Background
	Gastroenterology
	Medical data
	Medical Multimedia Systems using Handcrafted Image Features
	Related work on Deep Convolutional Neural Networks and Transfer Learning
	Medical Multimedia Systems using Deep Convolutional Neural Networks and Transfer Learning
	Summary

	Machine Learning
	Deep Convolutional Neural Networks
	Transfer learning
	Hyperparameter optimization

	Summary

	Methodology
	Datasets
	Kvasir
	Nerthus

	Metrics
	Hyperparameters
	Pre-trained Model
	Model Optimization Function
	Learning Rate
	Delimiting Layer

	Proposed System
	Libraries
	System Description
	Test Suite
	Optimization Strategies
	Bayesian Optimization
	Model Setup
	Classification Block Training
	Fine-tuning
	Layer optimization

	Nonconvergence filtering
	Summary

	Experiments
	Design of Experiments
	Results and Discussion
	Results for Kvasir
	Shared Hyperparameters Optimization Strategy
	Separate Hyperparameters Optimization Strategy
	Separate Optimizers Optimization Strategy
	Best Trained Model

	Results for Nerthus
	Best Trained Model

	Summary

	Conclusion
	Summary and Main Contributions
	Future Work
	Final Remarks

	Winning Poster from Autonomy Day 2018
	Plots From the Nerthus Optimization
	Shared Hyperparameters Optimization Strategy
	Model Optimization
	Layer Optimization

	Separate Hyperparameters Optimization Strategy
	Model Optimization
	Layer Optimization

	Separate Optimizations Optimization Strategy
	Classification Block Optimization
	Fine-tuning Optimization
	Layer Optimization

	Permission To Use Illustrations

