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Abstract 

Glioblastoma is the most common and aggressive form of brain cancer. Even with 

comprehensive treatment regimes, patients face an expected survival of only 15 months. 

Currently, methods for assessing treatment response are lacking; it is difficult to accurately 

determine the efficacy of a treatment. The goal of the present study was to contribute to 

treatment assessment by scouting for metabolic biomarkers occurring in response to exposure 

to chemotherapeutic agents temozolomide (TMZ) and sepantronium bromide (YM155).  

Untargeted metabolomics of lysate from cultured glioblastoma cells was carried out with liquid 

state proton nuclear magnetic resonance (NMR) spectroscopy at resonance frequency 800 

MHz. Spectral data were analyzed with two different multivariate statistical methods: principal 

component analysis (PCA) and partial least squares (PLS) regression. For YM155, two 

biomarker candidates were found: citric and lactic acid. Citric acid appeared to increase most 

in samples from cell lines less sensitive to YM155. Lactic acid decreased in all cell lines and 

was considered a more general biomarker of treatment exposure. TMZ-treated samples were 

not distinguishable from control samples, most likely due to too short exposure time (24 hours). 

Analyses with nano hydrophilic interaction liquid chromatography coupled with mass 

spectrometry (MS) corroborated the findings by NMR spectroscopy and statistical analyses.  

Both citric acid and lactic acid are biomarker candidates, but a more detailed understanding of 

their fluctuations in glioblastoma during treatment is needed. Nevertheless, they represent 

genuine candidates and should be considered for further in vivo magnetic resonance 

spectroscopy (MRS) studies. In the future, the biomarkers could be monitored with MRS, 

allowing a more unambiguous and personalized assessment of response to treatment in 

individual patients.  
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1 Abbreviations  

Abbreviation Full name 

µL Microliter  

µm Micrometer 

µsec Microsecond  

ACN Acetonitrile 

AIC 5-aminoimidazole-4-carboxamide 

APAF-1 Apoptotic protease activating factor 1 

AQ Acquisition time 

B0 External static magnetic field 

B1 Applied magnetic field 

Bak Bcl-2 homologous antagonist killer 

Bax Bcl-2-associated X protein 

BBB Blood-brain barrier 

Bcl-2 B-cell lymphoma 2 

BER Base excision repair 

bFGF Basic fibroblast growth factor 

Bid Bcl-2 homology domain 3 (BH3) interacting-domain death 

agonist 

Bim Bcl-2-like protein 11 

BMRB Biological magnetic resonance bank 

CNS Central nervous system 

COLMAR Complex mixture analysis by NMR 

CSC Cancer stem cell 

CUSP9 Coordinated undermining of survival paths 

CV Cross-validation 

DMEM Dulbecco’s modified Eagle’s medium 

DMSO Dimethyl sulfoxide  

DNA Deoxyribonucleic acid 

DPBS Dulbecco’s phosphate buffered saline 

DS Number of dummy scans 

DW Dwell time 

EC50 Half maximal effective concentration 

EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor 

EGFR Epidermal growth factor receptor 

ESI Electrospray ionization 

f1 Indirect dimension 

F16BP Fructose 1,6-bisphosphate 

f2 Direct dimension 
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FID Free induction decay 

FIS Full ion scan 

GC Gas chromatography 

GSC Glioblastoma stem cell 

GUI Graphical user interface 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HILIC Hydrophilic interaction chromatography 

HMDB Human metabolome database 

HSQC Heteronuclear single quantum coherence spectroscopy 

IAP Inhibitors of apoptosis 

ID Inner diameter 

IN_F Increment for delay 

JRES J-resolved spectroscopy 

LB Line broadening 

LC Liquid chromatography 

LOH Loss of heterozygosity 

LPBIN Number of output points for linear prediction 

LV Latent variable 

M Bulk magnetization vector 

MDM2 Murine double minute-2 homolog 

ME_mod Linear prediction for Fourier transformation 

MGMT O6-methylguanine-DNA methyltransferase  

MMR (DNA) Mismatch repair 

MP Mobile phase 

MRI Magnetic resonance imaging 

MRS In vivo magnetic resonance spectroscopy 

MS Mass spectrometry 

MTIC 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide 

NAA N-acetyl-L-aspartic acid 

NAD+ Nicotinamide adenine dinucleotide 

NCE Normalized collision energy 

NCOEF Number of linear prediction coefficients 

NIPALS Non-linear iterative partial least squares 

nL Nanoliter 

NMPRTase Nicotinamide phosphoribosyl transferase   

NMR Nuclear magnetic resonance 

NS Number of scans 

NSC Neural stem cells 

NUS Non-uniform sampling 

o1 Frequency transmitter offset 

OD Outer diameter 

OMM Outer mitochondrial membrane 
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OPC Oligodendrocyte precursor cells 

O-PEA O-phosphoethanolamine 

P Phosphate 

PC Principal component 

PCA Principal component analysis 

PDGF Platelet-derived growth factor 

PEEK Polyetheretherketone 

PEP Phosphoenolpyruvate 

PFG Pulsed field gradient 

PH_mod Phasing mode 

PLS Partial least squares (regression) 

Projection to latent structures (regression) 

POM Polyoxymethylene 

ppm Parts per million 

PRM Parallel reaction monitoring 

PTEN Phosphatase and tensin homolog 

RG Receiver gain 

RNA Ribonucleic acid 

RP Reversed phase 

SCT Sample changer temperature  

SF Spectrometer frequency 

SI Size of real spectrum 

Smac/Diablo Second mitochondria-derived activator 

SP Stationary phase 

SS Stainless steel 

SW Sweep width 

TCI Triple resonance cryoprobe 

TD Size of the free induction decay (FID) 

TE Probe temperature 

TMZ Temozolomide 

TOCSY Total correlation spectroscopy 

TSP Trimethylsilyl propionic-2,2,3,3-d4 acid 

UV Ultraviolet 

VEGF Vascular endothelial growth factor 

WDW Window function 

WHO World health organization 

ZIC Zwitterionic 
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2 Definitions  

Sources 

*Defined by the author. 

1 Biomarkers Definitions Working Group, A. J. Atkinson, W.A. Colburn, V.G. DeGruttola, D. 

L. DeMets, G.J. Downing, D.F. Hoth, J.A. Oates, C.C. Peck, R. T. Schooley, B. A. Spilker, J. 

Woodcock, and S. L. Zeger, Biomarkers and surrogate endpoints: Preferred definitions and 

conceptual framework, Clinical Pharmacology & Therapeutics, 69 (2001) 89-95.  

2 Compiled by A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical 

Terminology (the "Gold Book"), 2nd ed., Blackwell Scientific Publications, Oxford, 1997.  

XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, 

B. Kosata; updates compiled by A. Jenkins. https://doi.org/10.1351/goldbook. 

3"in vitro", in Oxford Dictionary of Biochemistry and Molecular Biology, edited by R. 

Cammack, T. Atwood, P. Campbell, H. Parish, A. Smith, F. Vella, and J. Stirling, Oxford 

University Press, Oxford, 2006. Accessed May 26th, 2018:  

http://www.oxfordreference.com/view/10.1093/acref/9780198529170.001.0001/acref-

9780198529170-e-10235  

4"in vivo”, in Oxford Dictionary of Biochemistry and Molecular Biology, edited by R. 

Cammack, T. Atwood, P. Campbell, H. Parish, A. Smith, F. Vella, and J. Stirling, Oxford 

University Press, Oxford, 2006. Accessed May 26th, 2018: 

http://www.oxfordreference.com/view/10.1093/acref/9780198529170.001.0001/acref-

9780198529170-e-10239    

5a D.C. Harris, Quantitative chemical analysis, 9th ed., W.H Freeman, New York, 2016, pp. 

GL16 and GL20. 

5b C. Wermuth, C. Ganellin, P. Lindberg, L. Mitscher, Glossary of terms used in medicinal 

chemistry (IUPAC Recommendations 1998). Pure and Applied Chemistry, 70(5) (2009) 1129-

1143.  

6 D. L. Nelson, A. L. Lehninger, and M. M. Cox, Lehninger Principles of Biochemistry, 6th ed., 

W.H. Freeman, New York, 2013, pp. G-10  

7 K.K. Murray, R. K. Boyd, M. N. Eberlin, G. J. Langley, L. Li, Y. Naito, Definitions of terms 

relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry. 

85(7) (2013) 1515-1609.  

8 J. Vessman, R. Stefan, J. van Staden, K. Danzer, W. Lindner, D. Thorburn Burns, A. Fajgelj, 

H. Müller. Selectivity in analytical chemistry (IUPAC Recommendations 2001), Pure and 

Applied Chemistry, 73(8) (2009) 1381-1386.  

  

http://goldbook.iupac.org/
https://doi.org/10.1351/goldbook
http://www.oxfordreference.com/view/10.1093/acref/9780198529170.001.0001/acref-9780198529170-e-10235
http://www.oxfordreference.com/view/10.1093/acref/9780198529170.001.0001/acref-9780198529170-e-10235
http://www.oxfordreference.com/view/10.1093/acref/9780198529170.001.0001/acref-9780198529170-e-10239
http://www.oxfordreference.com/view/10.1093/acref/9780198529170.001.0001/acref-9780198529170-e-10239
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9 A. Klassen, A.T. Faccio, G.A.B. Canuto, P.L.R. da Cruz, H.C. Ribeiro, M.F.M. Tavares, A. 

Sussulini, Metabolomics: Definitions and Significance in Systems Biology, in: A. Sussulini 

(Ed.) Metabolomics: From Fundamentals to Clinical Applications, Springer International 

Publishing, Cham, 2017, pp. 3-17 

 

Phrase Description 

Analyte* Compound(s) of interest in the analysis 

Biomarker1 “A characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic 

intervention.” 

Charge number2 “Ratio of the charge of a particle to the elementary charge.” 

Data* Spectrum or chromatogram associated with one sample 

Dataset* All spectra or chromatograms for a set of samples 

In vitro3 “Latin (of any biological process, reaction, or experiment) 

occurring or made to occur outside an organism, e.g. in 

extracts or cultures; literally it means ‘in glass’.” 

In vivo4 “Latin (of any biological process, reaction, or experiment) 

occurring or made to occur within a living organism; literally 

it means ‘in life’.” 

Log p  

(partition coefficient5a/ 

lipophilicity5b)  

The distribution of neutral or unionized compound (X) in a 

biphasic system of water and octanol-1-ol:  

log 𝑝 = log⁡([𝑋]𝑜𝑐𝑡𝑎𝑛𝑜𝑙−1−𝑜𝑙 [𝑋]𝑤𝑎𝑡𝑒𝑟⁄ ). 

Metabolite6 “A chemical intermediate in the enzyme-catalyzed reactions 

of metabolism.”  

Metabolome6 “The complete set of small molecule metabolites (metabolic 

intermediates, signals, secondary metabolites) present in a 

given cell or tissue under specific conditions.” 

Metabolomics6 “The systematic characterization of the metabolome of a cell 

or tissue.” 

m/z7 “Abbreviation representing the dimensionless quantity 

formed by dividing the ratio of the mass of an ion to the 

https://goldbook.iupac.org/html/E/E02032.html
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unified atomic mass unit, by its charge number (regardless of 

sign).” 

Selectivity8 “… the extent to which the method can be used to determine 

particular analytes in mixtures or matrices without 

interferences from other components of similar behavior.” 

Sensitivity5a “Capability of responding reliably and measurably to changes 

in analyte concentration. In quantitative terms, sensitivity is 

the amount of instrument response per unit change in 

concentration of analyte.” 

Small sample* Samples ranging in size 10-1000 µL 

Targeted metabolomics9 “…a quantitative analysis (concentrations are determined) or 

semiquantitative analysis (relative intensities are registered) 

of a few metabolites and/or substrates of metabolic reactions 

that might be associated to common chemical classes or 

linked to selected metabolic pathways.” 

Untargeted metabolomics9 “…is based primarily on the qualitative or semiquantitative 

analysis of the largest possible number of metabolites from a 

diversity of chemical and biological classes contained in a 

biological specimen.” 
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3 Introduction 

3.1 Cancer 

Humans are made up of approximately 30 trillion cells [1]. Within each cell deoxyribonucleic 

acid (DNA), the genetic material encoding all genes, is found. A double lipid bilayer 

compartmentalizes the DNA, separating it from the rest of the cell and protecting it from harm. 

Furthermore, the DNA is so vital that cells have extensive repair mechanisms to deal with any 

damage that might occur. If the harm is beyond what the cell can repair it dies on purpose 

(apoptosis) [2 (p. 1021-1022)], or is removed by the immune system [3 (p. 279-281)].  

Cancer originates in surviving defective cells where DNA damage has enabled the cells to grow 

abnormally and invasively. Two major types of genes contribute to cancer development: tumor 

suppressor genes and oncogenes. Tumor suppressor genes encode for proteins that partake in 

protective processes keeping a cell from turning cancerous. These genes are usually recessive, 

meaning both alleles1 have to be lost for the process to cease [5]. On the other hand, the products 

of oncogenes promote carcinogenesis. Oncogenes are usually dominant and only one allele 

needs to be mutated for an effect to take place. The products of oncogenes usually give 

increased protein expression or enzymatic activity [6].  

Genetic instability and inflammation pave the way for cells to develop the hallmarks of cancer 

and evolve into a tumor. Cancer cells are recognized by their ability to take control over 

proliferative cell signaling pathways and avoiding inhibitory signals from stopping their 

growth. Furthermore, cancer cells can avoid the mechanisms set in place to stop infinite cell 

division and even evade apoptosis. Cancer cells also gain the ability to promote the formation 

of new blood vessels (angiogenesis) to feed the tumor with nutrients and oxygen. Finally, 

cancer cells can become capable of spreading throughout the body, an ability healthy cells lack 

[7].  

For certain cancers, it has also been proposed that only a subset of their cells are capable of 

endless self-renewal [8-10]. These cells can differentiate and supply the tumor with various cell 

types, suggesting the tumors are hierarchically organized. The capabilities of these cells are 

                                                 
1 Allele is a variant of a gene. Humans always have two copies of a gene, which can have the same or different 

alleles of said gene [4] K.L. Voje, Alleler, Store Norske Leksikon, 2014, https://snl.no/alleler  
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similar to that of somatic stem cells (self-renewal and differentiation) and they are aptly named 

cancer stem cells (CSCs). Often, the CSCs are able to survive initial treatments and pave the 

way for recurrence because of their ability to produce differentiated cells [3 (p. 178-182), 10]. 

Exactly how CSCs develop and for which cancers the model applies, is under discussion [10, 

11]. Yet, strong evidence for CSCs has been found in e.g. leukemia [8], breast [12], colon [13, 

14], and brain cancers [15, 16].    

Regardless of the organization of cells within a tumor, all the growth and frenzied activity 

require nutrients for energy and building blocks to establish new cells. Cancer cells have the 

ability to reprogram their energy metabolism in a variety of ways to achieve further growth. In 

1924, Otto Warburg was the first to observe a difference in the metabolism of healthy and 

cancerous cells [17]. Usually, healthy cells will utilize glucose fully in presence of oxygen and 

break it down to CO2. If there is little or no oxygen present, the cells produce lactic acid instead, 

in part to regenerate an important redox coenzyme (nicotinamide adenine dinucleotide (NAD+)) 

[18 (p. 563-565)]. Warburg observed that cancer cells would produce lactic acid even when 

oxygen was available [17]. The process is known as the Warburg effect or aerobic glycolysis. 

The exact reason for why cancer cells switch from full glucose oxidation to aerobic glycolysis 

is uncertain, but there is mounting evidence that it is in part to conserve carbon and funnel it 

towards building biomass [19]. Furthermore, cancer cells have been shown to reprogram their 

glutamine, serine/glycine, and acetate metabolism with the same goal in mind [20].  

3.2 Glioblastoma 

Glioblastoma is an aggressive form of brain cancer. The exact cell type it originates from is not 

yet determined, but both mature astrocytes [21], oligodendrocyte precursor cells (OPCs) and 

adult neural stem cells (NSCs) have been suggested [22]. In the World Health Organization’s 

(WHO) Classification of Tumors, glioblastoma is listed as a grade IV (of grades I-IV) central 

nervous system (CNS) tumor. The higher the grading score, the more malignant the tumor is. 

Less malignant cancers can also arise in the CNS and are generally called gliomas if thought to 

arise from glial cells, or astrocytomas if thought to arise from astrocytes [23].  

The pathogenesis of glioblastoma is complex and not fully understood. The originator cells 

undergo several different genetic mutations that together or in part contribute to the 

development of the cancer [24]. Furthermore, it is important to distinguish between ‘primary’ 
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and ‘secondary’ glioblastoma. The former arises de novo, while the latter is a malignant 

progression of a lower grade glioma. Primary glioblastoma is much more common than 

secondary, accounting for approximately 95% of all cases [25]. Additionally, primary 

glioblastoma exhibits a different mutational pathway than secondary glioblastoma, indicating 

their different origins [26]. The various common genetic mutations leading to primary and 

secondary glioblastoma are illustrated in Figure 3.1.  

 

Figure 3.1: The common genetic mutations leading to primary and secondary glioblastoma. Figure adapted 

from [26]. Oncogenes are written in blue and tumor suppressor genes are written in grey. The percentage 

of glioblastomas found with the mentioned genetic changes are given for each mutation. Epidermal growth 

factor receptor (EGFR) takes part in several different signaling pathways related to cancer, e.g. apoptosis, 

proliferation and invasion [27]. Murine double minute-2 homolog (MDM2) is a negative regulator of the 

p53 gene, an important tumor suppressor gene [28].  The p16 protein inhibits parts of the cell cycle and the 

deletion of its gene chips away at defense mechanisms against unlimited cell division [2, 26]. Loss of 

heterozygosity (LOH) is the event where whole genes and surrounding DNA is lost. LOH of regions of 

chromosome 10 is quite common in both primary and secondary glioblastoma, while loss of regions of 

chromosome 19 is most common for secondary glioblastoma. Phosphatase and tensin homolog (PTEN) is a 

part of chromosome 10, and is often a part of LOH of chromosome 10 [24]. Both Rb and p53 alterations 

and mutations affect the cell’s ability to regulate its cell cycle. Platelet-derived growth factors (PDGF) and 

vascular endothelial growth factors (VEGF) both contribute to formation of new blood vessels [26].  

Glioblastoma is one of several cancers indicated to consist of CSCs and various differentiated 

cells [15, 29]. More specifically, it appears that most of the cells are sorted into a hierarchy of 

slow dividing stem cells (GSCs), rapidly cycling progenitor cells, and non-proliferative cells 

[16].  
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In epidemiological context, glioblastoma is the most common form of malignant brain cancer, 

with approximately 300 new cases occurring per year in Norway [30, 31]. It can develop at all 

ages but is more common among the elderly (average age at diagnosis: 62 years) and men [32, 

33]. Median survival is merely ~15 months and only about 5% of patients are still alive 5 years 

after diagnosis [31, 33].   

The current treatment scheme of glioblastoma includes surgical resection or biopsy, followed 

by combined chemo- and radiation therapy. Surgery alone is not considered curative, as the 

tumor is too diffuse for complete resection. If resection is not feasible, a biopsy is usually still 

obtained. Both resected and biopsied tumors are analyzed further to assure that the correct 

diagnosis has been made and to identify various molecular markers consequential for prognosis 

and treatment strategies [34]. The chemotherapeutic agent currently in use is temozolomide, 

described in detail in section 3.3. Several studies have shown increased survival rates for 

patients receiving temozolomide as an adjuvant treatment to radiation therapy, which is why 

the current treatment scheme includes both [35-37].    

In spite of numerous studies into improving treatment and overall survival of glioblastoma 

patients, little headway has been made [31]. It has been proposed that glioblastoma is 

challenging to treat because of heterogeneity within the tumor and between patients [38-43]. 

Intra-tumor heterogeneity poses two main issues. First, analysis of a single biopsy may give 

inadequate information of the molecular pathology of the cancer since it varies across the tumor. 

This can influence the choice of treatment and lead to selecting treatment options that possibly 

only work on a fraction of the cells. Second, certain cells may be resistant to treatment and 

survive, leading to the patient relapsing [44, 45]. It is especially concerning considering GSCs; 

several studies have found them resistant to radiation and temozolomide treatment [46-49]. 

Because of their ability to differentiate into various cancerous cells, their survival sets the stage 

for recurrence [29]. Finally, concerning heterogeneity between patients, the main issue is the 

lack of a “one-size-fits-all” treatment option.  
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3.3 Chemotherapeutic agents for treatment of glioblastoma 

Two chemotherapeutic agents are presented in the following section: temozolomide is an 

established drug and YM155 is a candidate for treatment of glioblastoma. Other drug candidates 

are described in the Appendix (section 8.2). Chemotherapeutic agents are compounds that are 

either cytotoxic or cytostatic to cells, i.e. they either kill cells or inhibit their growth [50, 51]. 

Patients receive chemotherapeutic agents either for curative or palliative purposes [52].  

Temozolomide (TMZ) 

Temozolomide is an alkylating agent; it causes extensive DNA methylation. Moreover, it is 

small and rather lipophilic and can, therefore, cross the blood-brain barrier (BBB) unaided. The 

molecule is stable at acidic pH, but becomes labile at pH above seven and spontaneously breaks 

down to 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide (MTIC). MTIC can react with 

water, generating 5-aminoimidazole-4-carboxamide (AIC) and a methyldiazonium cation (as 

shown in Figure 3.2). Once formed, the methyldiazonium cation can methylate DNA, 

preferably guanine at the N7 position but other reactions may occur too [53, 54]. In Figure 3.3, 

the three most common methylation products are shown. 

 

 

Figure 3.2: Activation of temozolomide. Temozolomide spontaneously forms MTIC at alkaline pH, and 

MTIC can react with water to release AIC and a methyldiazonium cation. The cation reacts with a 

nucleophile (NuH) center in the DNA, methylating it.  
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Figure 3.3: The three most common products of DNA methylation by temozolomide. Guanine is most 

commonly methylated at the N7 position, but can also be methylated at the O6 position. Adenine is most 

commonly methylated on the N3 position.    

The cytotoxicity of temozolomide is dependent on DNA mismatch repair (MMR). O6-

methylguanine pairs with thymine instead of cytosine. The mismatch is recognized by MMR 

proteins and they excise the thymine and replace it with cytosine. The proteins are not capable 

of removing O6-methylguanine, thus the mismatch issue persists. For each reparation attempt, 

DNA strand breaks can occur and these will further on cause replication failure and cell cycle 

arrest [54, 55].  

Cells have various mechanisms for combatting methylated bases, consequently lowering the 

cytotoxicity of temozolomide. The two most common in glioblastoma are demethylation and 

base excision. All cells have the enzyme O6-methylguanine-DNA methyltransferase (MGMT), 

which can remove O6-methyl groups from guanine. In glioblastoma, the gene for MGMT is 

often silenced or lost. However, some glioblastomas have a normal or increased expression of 

MGMT, and they show reduced sensitivity towards temozolomide [54]. Base excision repair 

(BER) is a pathway in which ‘bulky’ DNA bases are removed and replaced. BER can extract 

the N7-methylguanine and N3-methyladenine bases but if it is impaired, temozolomide toxicity 

is increased [56].  



13 

 

YM155 (Sepantronium bromide) 

YM155, structure shown in Figure 3.4, is an inhibitor of survivin gene transcription [57-60]. 

Survivin is a protein involved in inhibition of apoptosis and regulation of the cell cycle [61]. In 

other words, by blocking survivin transcription apoptosis can proceed. YM155 is a good 

candidate for treatment of glioblastoma because the cancer has been shown to overexpress 

survivin [62, 63].  

Cells have two different pathways for 

induction of apoptosis: the extrinsic pathway 

and the intrinsic pathway. The former is 

initiated by external stimuli, e.g. tumor 

necrosis factors, while the latter is induced by 

internal stimuli, e.g. DNA damage or 

oxidative stress [3]. They both end with 

initiating a caspase cascade. Caspases are 

proteases, enzymes that can cleave proteins. 

Survivin can inhibit certain caspases, as well 

as regulate some other participants of the intrinsic apoptotic pathway [61, 64].  

In the intrinsic pathway, illustrated in Figure 3.5, some of the proteins necessary for initiating 

the caspase cascade are located in the mitochondria. Their release requires the formation of 

pores in the outer mitochondrial membrane (OMM). Proteins from the B-cell lymphoma 2 (Bcl-

2) protein family (mainly Bax2 and Bak3) make up the pores. Other proapoptotic Bcl-2 proteins 

(Bid4 and Bim5) can assist Bak and Bax during the necessary conformational changes prior to 

pore-formation. Once the pores have formed, cytochrome c and procaspase 9 can be released 

to the cytosol. Cytochrome c binds to the apoptotic protease activating factor 1 (APAF-1). Next, 

procaspase 9 can bind to this complex (known as the apoptosome) and become activated. 

Caspase 9 is an initiator caspase, meaning it activates other caspases and triggers the caspase 

cascade. Survivin can inhibit activation of caspase 9 [65], in addition to inhibiting activated 

                                                 
2 Bcl-2-associated X protein.  
3 Bcl-2 homologous antagonist killer 
4 Bcl-2 homology domain 3 (BH3) interacting-domain death agonist 
5 Bcl-2-like protein 11 

 

Figure 3.4: Molecular structure of YM155.  
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downstream caspases. There is some disagreement on which of the downstream caspases 

survivin is capable of inhibiting [66-69].  

Cells have mechanisms for stopping the cascade. Survivin is a part of the family of inhibitor of 

apoptosis proteins (IAPs). Like survivin, the IAPs are capable of inhibiting the caspases of the 

cascade. However, when the intrinsic pathway is activated mitochondria also release the protein 

second mitochondria-derived activator (Smac/Diablo), which can inhibit certain IAPs. Survivin 

can bind to Smac/Diablo and stop it from inactivating the other IAPs [64]. Thus, survivin both 

inhibits caspases and factors that can inhibit other IAPs.   

 

Figure 3.5: The intrinsic apoptotic pathway. It begins with proapoptotic Bcl-2 protein family members (here 

Bax) being activated by internal signal(s) for cellular stress (I). With help from Bid, another proapoptotic 

Bcl-2 protein family member, several Bax come together and form pores in the OMM (II). Cytochrome c, 

procaspase 9 and Smac/Diablo are released to the cytosol (III). Cytochrome c and APAF-1 form a complex 

(the apoptosome, IV) that procaspase 9 can bind to and be activated by (V). Once activated, caspase 9 can 

activate other caspases (e.g. caspase-3, -6 and -7) and initiate a caspase cascade (VI). IAPS can stop the 

caspases, but Smac/Diablo can inhibit the IAPS (VII), allowing apoptosis to go forth anyways (VIII). 

Survivin can inhibit both caspase 9, some of the caspases in the cascade, as well as Smac/Diablo. Figure 

adapted from [3 (p. 161)].  
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3.4 Evaluation of treatment response 

Currently, a patient’s response to treatment is monitored by assessing the reduction of tumor 

size with magnetic resonance imaging (MRI), dependence on corticosteroids for symptom 

alleviation, and overall patient health [70, 71]. The present criteria and established methods 

have several issues. Most notably, it is difficult to distinguish the tumor from surrounding 

structures, e.g. necrotic tissue and the postoperative cavity. In addition, the MRI measurements 

are subject to interobserver inconsistencies [70, 72]. Taken together, it is difficult to report 

treatment response accurately and robustly.    

Better tools for assessment are needed, and ideally, they would be as non-invasive and free of 

side-effects as possible. Furthermore, since glioblastoma has both intratumoral and inter-patient 

heterogeneity, the new tools should account for this. Biomarkers could increase the specificity 

of the assessment of a tumor’s response to treatment.  

The challenge is to find methods or tools that can conveniently provide indirect measurements 

of the biomarkers or samples containing them. Repeat biopsies of the tumor(s) are not favored 

because biopsies are invasive and have some serious side-effects, including intracerebral 

hemorrhage (bleeding in the brain tissue) [73]. Blood tests (liquid biopsies) are another 

possibility; they are much less invasive than direct biopsies. However, the BBB is not entirely 

disrupted in glioblastoma [74, 75], and a biomarker found in in vitro studies might not be 

detectable in the blood. Proton magnetic resonance spectroscopy (MRS) is a complementary 

technique to magnetic resonance imaging (MRI); it allows for detection of chemical compounds 

in brain tissue. Moreover, MRS is non-invasive and can be carried out in vivo [76]. Thus, MRS 

is the best candidate considering currently available procedures.  

MRS can only detect small molecules, such as metabolites (mass < 1500 Dalton) [76, 77], and 

by refraining from biopsies DNA, ribonucleic acid (RNA), and proteins are not available as 

biomarker candidates. However, the metabolites provide other information. Since they are the 

products of a number of metabolic pathways, they represent a broad view and to some extent a 

summary of the processes occurring in cells. Another advantage of metabolites as biomarkers 

is that they do not undergo the same type of modifications as DNA, RNA, and proteins, and are 

thus easier to correlate with phenotype [78].  

Possible biomarkers should be established in vitro prior to studies with MRS. Nuclear magnetic 

resonance (NMR) spectroscopy is the technique that MRS is developed from [79], and therefore 
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it could be a suitable choice for in vitro metabolomics studies. NMR has several advantages as 

an analytical technique. First, it is non-destructive, does not require extensive sample 

preparation or derivatization of analytes, and can handle complex mixtures. Second, it can be 

used to identify novel compounds and it is relatively easy to quantify compounds of interest. 

Finally, NMR is robust and reproducible, allowing for straightforward comparison of collected 

data and standardized databases [80-82]. In a study by Lehtimäki et al., findings in in vivo MRS 

of rat glioma cells generally corresponded to findings in in vitro NMR analysis of tissue 

extracts, showcasing the complementary nature of the two techniques [83]. One major 

disadvantage of NMR is its lack of sensitivity.  

3.5 Nuclear magnetic resonance spectroscopy 

3.5.1 General theory of nuclear magnetic resonance spectroscopy 

When certain nuclei are placed in a static magnetic field, they can absorb and reemit quantized 

amounts of energy. The nuclei must have nuclear angular momentum (spin), which in turn gives 

them a magnetic moment; this is found in nuclei with odd numbers of protons, neutrons or both, 

e.g. 1H, 13C and 19F. The spin can be further described by its spin quantum number (I), which 

also depends on the number of protons and neutrons, as shown in Table 3.1 [84 (p. 561-563)].  

Table 3.1: The value of the spin quantum number (I) depends on the number of protons and neutrons in 

the nucleus.  

Spin quantum number Number of protons/neutrons 

Zero Even/Even 

Whole integers  Odd/Odd 

Half integers Odd/Even or Even/Odd 

 

As a result of their magnetic moments, nuclei behave as small magnets and can interact with an 

external magnetic field. In quantum mechanics, it is stated that a nucleus can have 2I+1 

orientations (‘energy levels’) when placed in a static magnetic field [84 (p. 561-563)]. Nuclei 

with I = ½  thus can have two different orientations, commonly referred to as parallel (α) and 

antiparallel (β) with respect to the external field [85 (p. 11-14)]. Since spin-half nuclei are most 

often used in NMR the following description will focus on their behavior in static magnetic 

fields. 
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The parallel orientation of nucleus spin is associated with lower energy. Because of the 

energetic advantage, most nuclei will try to align themselves in that manner. From this, it has 

been popular to describe the nuclei in a sample as all either parallel or antiparallel to the external 

static magnetic field. However, this is an oversimplification. The random, thermal motion of 

molecules will disrupt the parallel or antiparallel positions that the nuclei have relative to the 

external magnetic field. Yet, the slight energetic advantage of being parallel remains and a small 

net amount of magnetization exists in the sample. The net magnetization is called the bulk 

magnetization vector, and is conventionally drawn along the z-axis. When a sample is placed 

in a static magnetic field, it takes a certain amount of time for the bulk magnetization vector to 

appear and stabilize, called the relaxation time [85 (p. 11-20), 86 (p. 47-50)]. The process is 

illustrated schematically in Figure 3.6.   

 

Figure 3.6: Establishing the bulk magnetization vector. (I) When a strong, static magnetic field is absent, 

nuclei have no net magnetization. (II) When placed in a magnetic field (B0) it takes some time for the sample 

to build a net magnetization (M). (III) Once equilibrium is reached, there is a net magnetization across the 

sample as whole, but each individual nucleus is not necessarily aligned parallel or antiparallel relative to 

the applied field. The bulk magnetization vector (M) is drawn along the positive z-axis by convention. Figure 

adapted from [86 (p. 50)].  

There is no net magnetization in the xy-plane because there is no energetic advantage in aligning 

one way or the other; the static magnetic field has only one direction, along the z-axis. Thus, 

the magnetic moments of the nuclei average out in the xy-plane due to their thermal motion [86 

(p. 47-50)]. 
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After the bulk magnetization vector has formed, it does not change in size or direction unless 

acted upon by a magnetic force. If the vector is tipped away from the z-axis, it will move in a 

circular motion about the field due to the magnetic field imposing torque on it, as illustrated in 

Figure 3.7. The motion is called Larmor precession and the frequency (ν) of it is dependent on 

the strength of the static magnetic field (B0), given by Equation 3.1.  

𝜈 = ⁡−
𝛾𝐵0

2𝜋
⁡           Equation 3.1 

Where γ is the magnetogyric ratio of the nucleus in question. The magnetogyric ratio is a 

constant for given nucleus species and can be negative or positive. The sign of γ determines 

whether the precession is clockwise or anticlockwise [85 (p. 11-13), 86 (p. 50-51)].  

Individual nuclei also precess at the Larmor 

frequency when placed in a magnetic field. 

Nuclear magnetic resonance occurs if a 

nucleus changes its spin state by absorbing a 

quantum of energy with the same frequency as 

the Larmor frequency. The energy required is 

given by Equation 3.2. 

 ∆𝐸 = ℎ𝜈 = ⁡
ℎ𝛾𝐵0

2𝜋
   Equation 3.2 

Where h is the Planck constant (6.62607004 × 

10-34 m2 kg/s). The energy difference between 

the two spin states is very small. According to the Boltzmann equation, given by Equation 3.3, 

it results in only a small surplus of nuclei in the favored spin state (parallel/α) and only those 

nuclei allow observation of resonance [87].  

 
𝑁𝛼

𝑁𝛽
=⁡𝑒

∆𝐸
𝑘𝐵𝑇
⁄

         Equation 3.3 

Where Nα is the number of nuclei in the parallel state, Nβ is the number of nuclei in the 

antiparallel state, T is the temperature, and kb the Boltzmann constant (1.38064852 × 10-23 m2 

kg s-2 K-1). For practical purposes, it means that NMR has low sensitivity compared to many 

other spectroscopic techniques, e.g. ultraviolet (UV) [85 (p. 11-14)].  

  

 

Figure 3.7: Larmor precession of the bulk 

magnetization vector (M). Figure adapted 

from [85 (p. 13)] 
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Pulses 

The induction of nuclear magnetic resonance requires radiation with frequency equal to the 

Larmor frequency of the nuclei in the sample. In NMR spectroscopy, this is accomplished by 

applying a pulse of oscillating electromagnetic radiation (pulse) through the sample such that 

the magnetic component (B1) of electromagnetic radiation is in the transverse plane. Returning 

to the vector model, the effect of the applied magnetic field is to tip the vector away from the 

z-axis (by convention drawn moving toward the y-axis) at an angle that depends on the 

amplitude and duration of the pulse, given by Equation 3.4.  

𝜃 = ⁡
360𝛾𝐵1𝑡𝑝

2𝜋
          Equation 3.4 

Where tp is the duration of time the pulse is applied and θ denotes the angle between M and the 

z-axis.  

Pulses are, among other things, named after the degree to which they flip the bulk magnetization 

vector, e.g. a pulse that flips the bulk magnetization vector to the y-axis is known as a 90° pulse. 

Furthermore, depending on which axis B1 is applied along, various subscripts such as x or y, 

and + or – may be added. Additional details on pulses and pulse sequences are given in the 

Appendix (section 8.1.2 and 8.1.3), including a comment on the choice of frame of reference 

(section 8.1.1).    

It should be kept in mind that the bulk 

magnetization vector is made up of 

the magnetic moments of individual 

nuclei. The effect of e.g. a 90° pulse 

is not to flip the magnetic moments, 

but “bunch them together” such that 

they move in phase or have phase 

coherence. The result is that net 

magnetization no longer occurs along 

the z-axis, but in the xy-plane, as 

illustrated in Figure 3.8 [85 (p. 15-

17), 86 (p. 52-55)].  

 

 

Figure 3.8: Phase coherence. An applied magnetic field 

(B1) forces the magnetic moments of the nuclei in a 

sample to cluster together; they obtain phase coherence. 

The bulk magnetization vector (M) appears in the xy-

plane rather than along the z-axis. Figure adapted from 

[85 (p. 16)].  
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Detection 

The electromagnetic pulse used to initiate NMR is generated from a coil surrounding the 

sample. After the pulse has been stopped, the precessing bulk magnetization vector can induce 

a current in the coil. The signal is amplified before being sent to a processing computer. Since 

nothing is forcing the bulk magnetization vector to remain in the xy-plane it returns to the z-

axis. This causes the induced signal, called the free induction decay (FID) signal, to die out 

over time, as illustrated in Figure 3.9.  

The FID is converted to a 

comprehensible frequency 

spectrum by Fourier 

transformation. In short, to 

find the intensity of a 

signal at a given 

frequency, the FID is 

multiplied with a cosine 

wave with the same 

frequency. The area of the 

resulting product wave function equals the signal intensity at the chosen frequency. To obtain 

the whole of the spectrum, the procedure is repeated with incrementally increasing frequencies  

[86 (p. 77-82)]. 

Usually more than one FID is collected during the acquisition of an NMR spectrum. The FIDs 

are added together and only the summed FID is Fourier transformed. Summation of FIDs 

increases the sensitivity of the measurement: if N FIDs are collected, the signal is N times 

stronger, while the noise increases only with √𝑁 because it is random [85 (p. 81-82)].  

Chemical shift 

The Larmor frequency of a nucleus depends on its chemical and physical surroundings. 

Consequently, it is possible to distinguish nuclei of the same species in a molecule, given that 

they are in different chemical and/or physical environments.  

In any given molecule, electrons surround the nuclei to varying degree. The electrons are also 

affected by the magnetic field utilized in NMR spectroscopy because they also possess spin and 

a magnetic moment. The valence electrons of each nucleus will begin to circulate around the 

 

Figure 3.9: Schematic illustration of the free induction decay (FID) 

signal, which is recorded during an NMR experiment.  
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nucleus once placed in a static magnetic field, as illustrated in Figure 3.10. The movement 

generates a small magnetic field around the nucleus that counters the main static magnetic field, 

moderately shielding the nucleus. Thus, because the net magnetic field is diminished, the 

shielded nucleus will have a lower Larmor frequency than an unshielded one [87 (p. 112-114)]. 

The higher the electron density around the nucleus, the more shielded it becomes, and the lower 

its Larmor frequency will be.  

In the vector model, 

differences in shift can be 

depicted as several bulk 

magnetization vectors, one 

for each set of chemically 

distinct nuclei, precessing at 

different rates. Only the 

differences in precession 

frequencies (kHz range) are 

needed to describe the 

system, not absolute values 

(MHz) [85 (p. 17-18)].  

In NMR spectroscopy, it is 

common to add a compound 

to the sample that has a 

signal designated as 

chemical shift zero. All other chemical shifts are given relative to the signal from this 

compound. Furthermore, because the size of the relative shifts also depends on the strength of 

the static magnetic field, chemical shift is usually listed with a relative value, given by 

Equation 3.5. It ensures easier comparison of spectra from different instruments.  

𝛿 = ⁡
𝜈−⁡𝜈𝑆𝐶⁡

𝜈𝑆𝐶⁡
              Equation 3.5 

Where νSC is the frequency of the signal from the standard compound and ν is the frequency of 

the signal from the compound of interest. As mentioned, the difference between two chemical 

shifts is usually in the kHZ range, while the absolute value is in the MHz range. Thus, δ is 

usually expressed in parts per million (ppm) [86 (p. 6-7), 87 (112-114)].  

 

Figure 3.10: The origin of chemical shift. Chemical shift arises 

due to the valence electrons around the nucleus. They have spin 

and magnetic moment and when placed in a magnetic field, the 

electrons will begin to circulate around the nucleus and form a 

small magnetic field with opposite direction of the external field 

(I). Thus, the net magnetic field the nucleus experiences is smaller 

than the external static magnetic field (II). The figure is 

schematically drawn and chosen sizes should be considered 

arbitrary. Figure I) adapted from [87 (p. 112)].  
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To excite all nuclei simultaneously in a sample, a range of frequencies must be applied. In order 

to achieve a simultaneous range of frequencies, the excitation pulse is kept very short (one to 

ten µsec). Due to Heisenberg’s uncertainty principle, the short pulse time does not allow an 

exact frequency to be established; this ensures that the sample is irradiated with the required 

range of frequencies. If the pulse is longer, the sample can be irradiated with a more exact 

frequency [85 (p. 64)].   

Coupling 

Through chemical bonds, nuclei can ‘communicate’ with each other. The communication, or 

coupling, shows up in the splitting patterns found in NMR spectra. Coupling can occur between 

any nuclei with spin, but it is most common to study the coupling between protons. The 

combination of information from chemical shift and coupling patterns is in most cases sufficient 

to identify the molecule in question.  

The coupling patterns arise because the chemical shift of one nuclei depends on the spin state 

of its neighbor(s). Consider a simple model of two coupled spin-half nuclei, A and B. If the 

spin of B is parallel to the static magnetic field, it adds to the total field A experiences (as 

illustrated in Figure 3.10b), thus increasing its chemical shift. Since B can have two different 

spin states, A can have two slightly different chemical shifts. Furthermore, A affects B in the 

same manner [87 (p. 134-136 and 233-247)]. From the vector model point-of-view, the A nuclei 

give rise to two magnetization vectors with slightly different Larmor frequencies (and therefore 

chemical shifts), and likewise for the B nuclei [85 (p. 17-18)].  

The coupling between two nuclei is constant and independent of the strength of the static 

magnetic field. Coupling occurring through chemical bonds is called scalar or J coupling, and 

is measured in Hz. The size of the coupling constant depends largely on the number of bonds 

between the interacting nuclei. In general, the more bonds between two coupled nuclei, the 

smaller the coupling constant is [87 (p. 233-247)]. 

3.5.2 Instrumental considerations 

Preceding acquisition of an NMR spectrum, the instrument and sample need to be prepared. In 

NMR, solvents are usually deuterated for two different reasons. First, if the solvent contains 

protons the signals of the analytes would be inundated because their concentration would be 

much lower than that of the solvent. 2H is NMR active (I = 1), but it resonates at different 
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frequencies than 1H and therefore does not show up in 1H spectra. Second, the static magnetic 

field of NMR instruments has a tendency to drift over time. To correct for the drift, the 

frequency of the deuterated solvent is measured with a separate coil throughout the experiment. 

The process of locating the deuterated signal is colloquially called locking and is done prior to 

initiation of experiments [85 (p. 105-107)].  

Samples are lowered into a probe inside the static magnetic field. The probe holds the coils 

needed to conduct NMR experiments. In a process called tuning and matching, the circuitry of 

the probe is optimized for the sample at hand. It ensures that the probe is utilizing the 

frequencies at which measurements of the nuclei are most sensitive and that the circuitry can 

operate at the necessary radio frequency energy levels [85 (p. 103-105)]. 

NMR relies heavily on a perfectly homogenous static magnetic field to acquire high-quality 

data. The Larmor frequency of a nucleus depends on the magnetic field it is in; any 

inhomogeneity will change the chemical shift of the nucleus slightly. The consequence is a 

spectrum with bulging and broad peaks. The main static magnetic field does not provide a 

sufficiently homogenous field on its own. Therefore, superconducting coils are used to supply 

an additional small and adjustable magnetic field. The process of homogenizing the net 

magnetic field is called shimming [85 (p. 107-112)].       

3.5.3 One-dimensional nuclear magnetic resonance spectroscopy 

In NMR-based metabolomics, it is common to use a solvent with a higher proportion of H2O 

compared to D2O to ensure that the signals from labile protons are not lost. The large amount 

of H2O complicates the acquisition of one-dimensional spectra. The water peak often 

completely dominates a spectrum and can shift the dynamic range such that the solutes in low 

concentrations are no longer detectable. To counter this, various specialized pulse sequences 

that can suppress or remove the water (solvent) signal have been developed [85 (p. 480-486)]. 

The following short description highlights different ways of eliminating a solvent peak from a 

spectrum. The pulse sequences are described in the Appendix (section 8.1.2).   

Presaturation of the solvent signal is the simplest and most robust technique. In NMR, 

saturating a signal means stopping the magnetization vector from recovering after the previous 

pulse, thus making it impossible to observe. In some cases, this is an undesirable effect but in 

presaturation it is exploited to remove the water signal. While presaturation has the goal of 
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killing the solvent signal, zero excitation separates the solvent magnetization vector from the 

others by placing it in the +z-axis prior to detection. Solvent suppression techniques utilizing 

pulsed field gradients (PFGs) are the most effective at removing the solvent signal. PFGs are 

time-dependent magnetic fields applied along the z-axis of the sample such that the field no 

longer is equal throughout the sample. In one variant of PFG-aided solvent suppression, called 

excitation sculpting, two PFGs, a selective and a short 180° pulse will together ensure that all 

magnetization vectors except that belonging to the solvent, are in phase and measurable [85 (p. 

473-474 and 480-486)]. 

3.5.4 Two-dimensional magnetic resonance spectroscopy 

Human metabolites are estimated to number in the thousands to tens of thousands [88]. 

Consequently, the most common samples in metabolomics (plasma, urine, cell lysate, tissue 

extract, and saliva) contain numerous compounds. For one-dimensional NMR spectroscopy, 

this poses two major issues. First, there is significant overlap between peaks and it can be 

difficult to discern their true splitting patterns. Second, because of the mixture of compounds, 

it is nearly impossible to identify which peaks arise from the same molecule [89].  

Luckily, NMR is not limited to one-dimensional spectra. A wide variety of two-dimensional 

experiments is available, which can provide information on splitting patterns and connectivity. 

In metabolomics, proton total correlation spectroscopy (TOCSY) and J-resolved spectroscopy 

(JRES) are most commonly used [89]. Descriptions of pulse sequences for JRES and TOCSY 

are given in the Appendix (section 8.1.3). Observation of 13C is often omitted due to lack of 

sensitivity because of the combination of the low natural abundance of 13C (ca 1.1% [85 (p. 

12)]), lower magnetogyric ratio of 13C compared to 1H,  and the small size of biological samples.  

TOCSY reveals which protons come from the same spin system. As mentioned above, 

neighboring nuclei can couple with each other and that any nuclei with spin are capable of this. 

If there is an unbroken chain of spin-spin coupled protons, they form a spin system and can 

relay their coupling from one to the other. In the resulting spectrum, spin systems are revealed 

by cross peaks that appear on either side of the diagonal peaks. The diagonal peaks are simply 

a projection of the one-dimensional spectrum onto the two-dimensional plane [85 (p. 220-230)]. 

See Figure 3.11 for an illustration of a TOCSY spectrum.  
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The JRES spectrum provides information of the multiplicity of each peak and the size of its 

coupling constants. In the simplest JRES experiments, the chemical shifts and couplings appear 

in the direct dimension (f2 in Figure 3.11), while only the couplings appear in the indirect 

dimension (f1 in Figure 3.11). More advanced pulse sequences resulting in spectra with only 

chemical shifts in the direct dimension and the couplings in the indirect dimension have been 

developed. The advantage with the latter type of experiment is increased resolution of 

previously overlapping peaks [85 (p. 301-313)]. See figure 3.11 for an illustration of a JRES 

spectrum.   

 

Figure 3.11: (I) Schematic TOCSY spectrum. The cross peaks indicate that the protons giving rise to the 

two signals are coupled. (II) Schematic JRES spectrum, with coupling pattern and size appearing in the f1 

dimension. F2 and f1 are the direct and indirect dimensions, respectively.  

Two-dimensional NMR is time-consuming to acquire and this can be especially problematic in 

metabolomics studies where samples often are small. Fast acquisition methods, in which only 

parts of the data matrix are actually collected, can reduce experiment time drastically. NMR 

spectra with two or more dimensions contain few genuine peaks of interest and a lot of noise 

(“empty” space) [90]. The presence of few peaks makes it possible to reconstruct the whole 

spectrum from only a small number of measured data points. Non-uniform sampling (NUS), in 

which a random choice of data points are collected, is one of the more common fast acquisition 

methods. The number of data points acquired with NUS should not be less than the number of 

peaks expected in the final spectrum. Too few points can lead to artifacts appearing in the final 

spectrum [85 (p. 185-186)].  
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3.6 Mass spectrometry 

MS is widely utilized in metabolomics for detection and identification of metabolites [91]. It is 

a very sensitive and selective technique. While NMR can reach low micromolar detection 

limits, MS can measure compounds to at least nanomolar concentrations [92, 93]. However, 

MS is not without drawbacks, which include moderate robustness compared to NMR, being a 

destructive technique, and that it usually requires more sample preparation than NMR. Most 

sample types encountered in metabolomics are complex; without sample preparation or prior 

separation MS often suffers from loss in sensitivity due to matrix effects (e.g. ion suppression) 

[92].  

In MS, the ratio of the mass number (molecular mass divided by the unified atomic mass unit) 

to charge number (m/z) of gaseous ions is determined [87 (p. 418-438), 94]. The mass 

spectrometer is capable of separating ions with differing m/z values and its ability to do so can 

be quantified with the parameter mass resolution: 𝑅 =⁡𝑚 ∆𝑚⁄ , where m is the mass of the ion 

and Δm is the full width of the mass peak at half maximum height [94]. In addition, mass 

spectrometers are assessed by their accuracy: 𝐸 =⁡
𝐸𝑥𝑎𝑐𝑡⁡𝑚 𝑧⁄ −𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁡𝑚 𝑧⁄

𝐸𝑥𝑎𝑐𝑡⁡𝑚 𝑧⁄
× 106⁡𝑝𝑝𝑚, where 

the exact mass is calculated based on the molecular formula of the compound [95].    

There are several different types of mass spectrometers available. All include an ion source, a 

mass analyzer and an ion detector. In the ion source, gaseous ions are generated and can also 

be fragmented, i.e. split into smaller pieces. The fragments can aid in identification of analytes. 

There is a variety of ion sources available; the biggest difference between them is the type of 

ionization they provide and the degree of fragmentation that occurs. Ion species are generated 

by gain or loss of electrons or association or disassociation with a charged compound (e.g. H+, 

NH4
+, CH4

+˙, C4H10
+˙). In the mass analyzer, ions and fragment ions are separated based on 

their m/z. Finally, the ions are detected either directly or indirectly. In direct detection, the ions 

induce a current by hitting the detector wall, causing electrons to be emitted. Next, the electrons 

hit the wall and cause even more electrons to be emitted. The process is repeated several times 

to amplify the current before the signal is sent to a computer [87 (p. 418-438)]. Indirect 

detection is used for mass analyzers that keep ions moving in a circular and periodic manner. 

The ions in motion induce a current in electrodes surrounding the mass analyzer. The detected 

current, similar to an FID, requires Fourier transformation to obtain the mass spectrum [96 (p. 

93-94)].         
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The Orbitrap™ mass analyzer is popular to use in metabolomics studies because of its high (R 

> 100 000) resolution and excellent mass accuracy (E < 5 ppm), which greatly aid in the 

identification of metabolites [97-101]. As the name implies, the Orbitrap is a trap; it holds the 

ions by the help of an electrical field (shown in Figure 3.12.I). The ions enter the Orbitrap in 

concentrated packets and their trajectories are manipulated so they orbit the spindle. After a 

short while, the ions spread out and form rings that move axially along the spindle. The 

frequency (ω) of the motion depends on the mass and charge of the ion: 𝜔 ∝⁡1 √𝑚/𝑧⁄ . Outer 

electrodes detect the motion, and the resulting data can be Fourier transformed to reveal which 

m/z values are present [102].  

Most commercially available Orbitraps are hybrids, i.e. a combination of two or more mass 

analyzers. The additional mass analyzer is usually a quadrupole or linear ion trap and it is often 

used to filter out unwanted ions. Between the first mass analyzer and the Orbitrap there is an 

additional trapping device to store ions. The device is a type of quadrupole, called a C-trap 

because of its bent shape, and it can inject packets of ions into the Orbitrap. Finally, since the 

Orbitrap is unable to fragment ions, a collision cell must be provided if controlled fragmentation 

is needed [103].  

Quadrupole mass analyzers are made up of four parallel rods, as illustrated in Figure 3.12.II. 

Through two of the opposing rods, radio frequency (RF) voltage is applied and through the 

other two a direct current (DC). The currents are adjusted so that the desired ion(s) have a stable 

oscillatory trajectory through the poles [87 (p. 430-432)]. The C-trap in Orbitrap instruments 

uses only RF-voltages when trapping and storing the ions, but a high-voltage DC pulse is 

applied when the ions are injected into the Orbitrap [98]. If there is a collision cell present, the 

C-trap can direct the ion package into this for fragmentation. Within the collision cell, an 

applied voltage accelerates the ions and they collide with neutral gas atoms or molecules 

(helium, argon or nitrogen). The collision cell is usually an octopole version of the quadrupole 

and is capable of returning the fragments to the C-trap [104].   
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Figure 3.12: Schematic illustration of the Orbitrap mass analyzer (I) and cross section of quadrupole mass 

analyzer (II, figure adapted from [87 (p. 431)]). In the Orbitrap mass analyzer, the ion rings (blue, yellow 

and green) move axially along the spindle electrode, i.e. back and forth in the direction of the grey dashed 

arrow.  

3.7 Liquid chromatography 

In chromatography, compounds in a sample are separated from each other based on their 

different chemical properties. The sample is carried through the system by a mobile phase (MP), 

which is either a liquid (liquid chromatography, LC) or a gas (gas chromatography, GC). 

Separation occurs by interaction with the stationary phase (SP), usually held inside a column, 

and the MP (only in LC). Generally, in LC the functional groups of the SP (e.g. C18-chains) are 

attached to a support material, but in some cases the support material itself can function as an 

SP. The most common type of SP “support” is porous silica particles [96 (p. 2-15)]. 

There are several different types of chromatographic principles, and which one is used depends 

on the sample composition and the chemical properties of the analyte(s) in question. Reversed 

phase (RP) chromatography is the most widely used principle and it separates compounds based 

on differences in their hydrophobicity [96 (p. 64-80)]. Although the vast majority of metabolites 

found in the human body are ionic or hydrophilic [18 (p. 14-15)], RP chromatography is often 

employed in metabolomics, but it has issues with co-elution of the most polar and ionic 

metabolites [105, 106]. Hydrophilic interaction chromatography (HILIC) provides an 

alternative for separation of hydrophilic and ionic compounds [107, 108].  
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HILIC columns are available in many different chemistries generally classified as neutral, 

charged or zwitterionic. Examples of each type are diol, amine (low pH), and sulfobetaine, 

respectively. Each specific type has different strengths and weaknesses, and choosing the right 

one is often not a straightforward task [109-111]. Zwitterionic (ZIC) HILIC is appealing due to 

its ability to separate anionic and cationic species simultaneously, and has been used in a variety 

of metabolomics studies [112-116]. In Figure 3.13.I, the common sulfobetaine ZIC SP is 

shown.  

The MP in HILIC is usually a mixture of a high percentage (60-95%) of organic solvent, most 

often acetonitrile, and a low percentage of aqueous solvent (40-5%). The aqueous fraction 

usually has some form of pH control, either an acid, a base or a pH-adjustable salt (e.g. 

ammonium formate/acetate/bicarbonate). Choice of percentage organic phase, pH, and salt can 

have a large impact on elution time and order [111].  

The HILIC materials have a high affinity for water and when the “SP” is exposed to MP, an 

immobilized layer of water forms as illustrated in Figure 3.13.II [117]. It is an important aspect 

of the retention mechanisms occurring in HILIC; analytes are in part separated by their differing 

degree of diffusion into the water layer, which is believed to constitute the SP. Electrostatic 

interactions and hydrogen bonding contribute to the overall retention mechanism as well. 

Increasing the percentage of water in the MP reduces its difference in polarity compared to the 

water layer. Consequently, analytes become more soluble in the MP and can elute more easily. 

Water is therefore considered to have high elution strength in HILIC, while acetonitrile has low 

(opposite of RP chromatography) [110, 118, 119].  

 

Figure 3.13: (I) The molecular structure of sulfobetaine, commonly used for ZIC-HILIC. (II) The 

immobilized water layer in HILIC. The grey area in both figures represents the surface of a porous silica 

or polymeric particle.  
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Metabolomics samples are usually small in size because their biological sources are often 

inherently limited. In addition, metabolites are present at low concentrations (nano- to 

millimolar) [18 (p. 14-15)]. As a consequence, analysis methods must be sensitive to reach 

adequate detection limits (ng/mL). Mass spectrometers are highly sensitive and can be 

connected to LC instruments, but additional adjustments of the LC method itself can increase 

sensitivity.  

Most columns in LC have inner diameters (ID) of 4.6 or 2.1 mm and are 50-150 mm long. 

When a small sample (0.5-5 µL) is introduced into a column of such dimensions, it will be 

radially diluted due to diffusion, as illustrated in Figure 3.14. While the sample components 

travel through the column they will also be diluted longitudinally. The band of analytes that 

reaches the detector will have a lower concentration than when it was injected. Even though the 

MS is mass sensitive, LC-MS with an electrospray ionization (ESI) source is concentration-

sensitive, i.e. the intensity of the detected signal depends on the concentration of the analyte 

entering the MS. By reducing column ID radial dilution is decreased and the concentration of 

analyte in the band reaching the MS will be increased, thus leading to a higher detected signal 

intensity and higher sensitivity. When the column ID is between 0.01-0.10 mm, the method is 

prefixed with nano because of the low flow rate of the MP (20-1000 nL/minute) [96 (p. 47-

104), 120].   

 

Figure 3.14: Effect of decreasing the inner diameter of the LC column. Longitudinal dilution is not affected 

by column ID, only length. Figure adapted from [121].  
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3.8 Electrospray Ionization 

MS measures ions in the gas phase, thus connecting LC to MS requires a transition from liquid 

phase analytes to gaseous ions. There are several different interfaces available, but electrospray 

ionization (ESI) is popular in metabolomics because it is suitable for charged or easily ionizable 

compounds [96 (p. 86-88), 122, 123]. In ESI, the MP from the LC column enters a heated 

capillary with a high voltage (up to ± 5 kV) applied to it; at the outlet of the capillary a Taylor 

cone forms, from which charged droplets can escape as illustrated in Figure 3.15. As solvent 

evaporates, the charge density in the droplet increases. When the surface tension of the droplet 

is less than the repulsive electrostatic forces, the droplet explodes. The process is repeated, and 

in the end, gaseous ions are formed [96 (p. 86-88)]. In addition, ions can be emitted (‘kicked 

out’) of a small droplet. Both mechanisms are thought to contribute to formation of gaseous 

ions [124 (p. 3-26)]. Analytes can carry a charge before reaching the ESI capillary if they are 

acids or bases and if the MP has a pH suitable for deprotonation/protonation. In addition, at the 

walls of the capillary the MP can be oxidized or reduced, depending on if the ESI is run in 

positive or negative mode. The electrochemical reactions can further alter the pH of the MP 

[125]. When MS is coupled with ESI, the system as a whole becomes a concentration sensitive, 

because the gas-phase analyte ion current is dependent on the concentration of ions in the ESI 

spray [126].  

 

Figure 3.15: Schematic illustration of ESI source and ionization. Adapted from [96 (p. 87)] and [87 (p. 427)] 
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3.9 Multivariate statistical analysis of metabolomics data 

In metabolomics, it is common to measure more than one variable per sample and the collected 

data is therefore multivariate. An important aspect of metabolomics is finding biomarkers 

among all the measured variables. The biomarkers should be able to distinguish different 

sample types, e.g. healthy and diseased or treated and untreated [127 (p. 221-250)]. The 

scouting for biomarkers is greatly aided by multivariate statistical analysis methods capable of 

extracting possible trends in the data. In some cases, the identified trends can lead to 

identification of specific compounds. 

3.9.1 Pre-processing of metabolomics data 

Metabolomics NMR and MS data are complex and require “clean-up” prior to statistical 

analysis. The clean-up ensures that only biologically relevant data affects the outcome of the 

analysis. Several different steps must be taken to maintain the quality of the dataset. However, 

no two datasets are alike and a “one-size-fits-all” method does not exist. Each dataset should 

be considered in context of how the biological samples were acquired and handled and how the 

analytical analysis was carried out. 

The first pre-processing steps involve removing noise and non-essential data regions to simplify 

the data matrix and avoid accidentally obscuring meaningful signals. In LC-MS, this includes 

removing the signals from the MP and de-isotoping the spectrum (combining the isotope peaks 

corresponding to the same compound into one peak). Sometimes, a signal-to-noise ratio 

threshold is added as well; any peaks below the threshold are not included in the final data 

matrix. In NMR data, no signal areas of the spectrum, residual water signal, and any signal from 

compounds that were added to the sample (e.g. internal standard) are removed. A signal-to-

noise ratio threshold can be applied as well, if deemed necessary. The data should be visually 

inspected after processing to ensure that the correct peaks and regions have been removed [128].  

The next step is to remove baseline distortions and ensure that all corresponding peaks are 

aligned [128]. Correction of the baseline is done with processing algorithms and there are 

several different ones available [129, 130]. It is usually best to try moderate adjustments first 

to avoid “overcorrecting” or introducing artifacts. Peak alignment is in many cases achieved by 

simply giving a peak present in all data the same ppm or retention time throughout the dataset. 

In other cases, certain areas of the data can have large shifts in peak placement; these require 
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corrective algorithms. Finally, the data should be visually inspected again to catch any badly 

corrected or faulty data [128].  

Two more corrective procedures can be applied to the data: normalization and scaling. The 

former involves dividing all data by a factor specific for each sample, e.g. total spectral 

intensity, sample weight/volume or intensity of an internal reference compound. In other words, 

normalization removes systemic differences between samples and ensures that all data is 

directly comparable. Scaling is similar, but is used to improve comparison of the same features 

within the dataset. Different types of scaling factors can be implemented, e.g. subtraction of the 

mean value of peak intensity, or multiplying each peak with the inverse of the standard 

deviation or the inverse of the squared standard deviation. Means and standard deviations are 

calculated with values for each peak in the dataset, e.g. all peaks corresponding to lactate are 

used to find the mean and standard deviation for lactate in the dataset [128, 131].  

Finally, to reduce the number of data points the spectra or chromatograms can be binned. In 

binning, data is split into small intervals and each interval is given a value corresponding to 

peak intensity found within [128]. Binning is not as necessary today as it used to be, since 

computers are more powerful, but can be useful if perfect alignment of peaks is challenging.  

3.9.2 Unsupervised and supervised multivariate statistical analysis 
methods 

Multivariate statistical methods can generally be divided into two types: unsupervised and 

supervised. In the former, the statistical analysis is carried out without knowledge of class 

membership. Only the spectral or chromatographic data, called the x-data or x-matrix, is 

utilized. It is considered an exploratory analysis of the data. In the latter method, the class 

membership is included in the analysis. Usually, supervised methods are used to build a model 

for identifying the membership of a new sample with only x-data available [132]. Below, two 

of the more common unsupervised and supervised multivariate analysis methods are briefly 

explained.   

Unsupervised: Principal component analysis (PCA) 

The goal of PCA is to simplify the dataset by reducing dimensionality and see which samples 

co-vary, i.e. have similar spectral/chromatographic data. The spectral/chromatographic data is 

held in a matrix, with the number of rows equaling the number of samples (n) and the number 
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of columns equaling the number of variables (p). The reduction of dimensionality is achieved 

by finding the principal components (PCs) of the matrix. Each PC is a linear combination of 

the n-dimensional vectors found in each column. They are multiplied with a vector of constants 

(a). The constants are chosen such that the first PC accounts for the most variation found in the 

dataset, the second PC the second most variation, and so forth. It turns out that the most 

important variations in the dataset often can be expressed with a few PCs and not all of the 

measured variables. Plotting the values of the PCs for each sample against each other gives a 

scores plot. In addition, the contribution of each variable to the PCs can be illustrated with a 

loadings plot [127 (p. 224-228), 133].  

Supervised analysis: Partial least squares (PLS) regression 

In PCA, the variables in the data matrix that contributed most to the variation between samples 

were identified. In PLS regression, the goal is to find the variables in the data matrix that 

correlate highly with the class membership of the various samples. It is achieved by finding 

linear combinations of the original variables (now called latent variables (LV)) that correlate 

with the response variable(s). For most metabolomics studies, the response variables 

(control/treatment or healthy/diseased) are often labeled 0 and 1. Variation between the 

variables is not entirely ignored in PLS, but it is no longer the foundation the model is built on 

[127 (p. 241-245), 134].  

PLS models are evaluated by cross-validation (CV). In one type of CV, the dataset is split into 

n random and approximately equally sized parts. The PLS regression model is calculated with 

all but one of the n parts. The final fraction is used to test the predictive ability of the model, 

and this ability is scored in the following manner [135, 136]. First, the square of the error of 

prediction for each individual sample assessed by the model is found, and they are subsequently 

summed (see Equation 3.6)  

𝑃𝑅𝐸𝑆𝑆 = ⁡∑(𝑦 − 𝑦̂)2         Equation 3.6 

Where, yi is the true class (e.g. 0 or 1), while 𝑦𝑖̂ is the predicted class. The statistic is named 

PRESS, short for predicted residual error sum of squares. Second, the total sum of squares 

(TSS) for all n samples is found, which is the sum of the squared difference between the mean 

value of the response variable and each individual response variable (see Equation 3.7).  

𝑇𝑆𝑆 =⁡ ∑(𝑦 − 𝑦̅)2         Equation 3.7 
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Finally, the score (Q2) is calculated, given by Equation 3.8.  

𝑄2 = 1 −⁡𝑃𝑅𝐸𝑆𝑆 𝑇𝑆𝑆⁄         Equation 3.8 

The process is repeated n times, and for each turn the model parameters are adjusted until a 

maximal Q2 score is obtained. In other words, Q2 estimates the predictive power of the PLS 

regression model. A determination coefficient (R2) between the linear combinations and 

response variables is also found. Q2, R2, and Q2/R2 can be plotted versus the number of LVs; 

when the curves flatten or decrease it indicates how many LVs that are necessary to include 

[132, 134, 137].  

Finally, and most importantly, the PLS model should be assessed with a new dataset, called the 

test set, which cannot have been involved with building the PLS model. It is scored the same 

way as in cross-validation, except that the score is called V2. If the model is overfitted it will 

perform poorly on the test set. Usually, there are no ways of remedying poor validation and test 

scores; it either means there are too few samples to build a satisfactory model, or there is no 

correlation between the measured data and its response variables [132].    
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3.10  Aim of Study 

Glioblastoma is the most common and aggressive form of brain cancer. Patients face dismal 

survival rates (~ 15 months), even with comprehensive treatment regimes. Current methods for 

evaluating response to treatment are lacking. Thorough mapping of the metabolic response of 

the cancer during treatment could lead to the discovery of biomarkers appropriate for detection 

with in vivo with MRS.  

The aim of the study was to identify metabolite biomarkers for response to treatment with the 

chemotherapeutic agents (TMZ and YM155) in cultured glioblastoma stem cells. Liquid state 

NMR spectroscopy (1H resonance frequency: 800 MHz) was used as the principal analysis 

method. Multivariate statistical analysis methods (PCA and PLS regression) were used to scout 

for biomarkers and assess metabolic differences between control and treated samples. Targeted 

HILIC nano-LC-MS was used to support any findings from the statistical analyses. The aim of 

study is illustrated in Figure 3.16.   

 

 

Figure 3.16: Graphical illustration of the aim of study.  
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4 Experimental 

4.1 Instrumentation and equipment 

4.1.1 Small instruments and equipment 

The following containers were used: protein LoBind 1.5 mL tubes from Eppendorf (Hamburg, 

Germany), from now on called Eppendorf tubes; Thermo-Tubes (0.5 mL) from Advanced 

Biotechnologies LTD (Surrey, United Kingdom), from now on called Thermo-tubes; sample 

vials (0.3 mL Microvials) with screw caps from VWR (Radnor, PA, USA); 15 mL centrifuge 

tubes (Corning®, Therapak) from VWR; glass vials (Chromatography Autosampler Vials (1.5 

mL)) and lids (snap ring caps, 11 mm blue) from VWR; volumetric flasks (MBL™, class A, 

borosilicate glass) from Thermo Fisher Scientific (Waltham, MA, USA), with sizes that ranged 

from 5 mL to 500 mL; and MP flasks (round laboratory bottles, Borosilicate 3.3) from VWR, 

with sizes that ranged from 25 mL to 1000 mL.  

Centrifugation was done with two different centrifuges; a BIOFUGE Fresco centrifuge from 

Heraeus (Hanaum, Germany) was used in March and April 2017, and a 5424 R Eppendorf 

centrifuge was used from May 2017 to April 2018. For quick spinning down of samples, a 

Ministar Silverline microcentrifuge from VWR was used.  

Weighing was done with a Mettler AT200 analytical balance from Mettler Toledo (Greifensee, 

Switzerland). Ultrasonic treatments were done in a Branson 200 Ultrasonic Cleaner ultrasonic 

bath from Emerson (Danbury, CT, USA). Sample drying and vacuum concentration were done 

with a Concentrator Plus from Eppendorf. Sample stirring was carried out on an MS2 

Minishaker vortex mixer or on a Topolino magnet stirrer, both from IKA (Staufen im Breisgau, 

Germany).  

Measurements of pH were done with pH paper or on either one of two pH meters; an 877 Titrino 

Plus pH meter from Metrohm (Herisau, Switzerland) equipped with a Primatrode pH electrode 

with an integrated temperature sensor (NTC), also from Metrohm, or a Thermo Orion (model 

720) pH meter from Thermo Fischer Scientific equipped with a Schott “BlueLine 11 pH” glass 

pH electrode from Cole-Parmer (Vernon Hills, IL, USA). The pH paper (MColorpHast™) was 

from Millipore (Burlington, MA, USA), which is now Merck (Kenilworth, NJ, USA).  
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NMR analyses were done with 5 mm outer diameter (OD) Boro800-5-7 tubes from Deutero 

(Kastellaun, Germany). The tubes were placed in polyoxymethylene (POM) standard bore 

spinners from Bruker (Billerica, MA, USA). The tubes were washed in a Multi-Tube Jet 

Washer/Dryer (WG-1209-J1) from Wilmad-LabGlass (Vineland, NJ, USA).  

Fused silica capillary used as the column body was from Polymicro Technologies (Phoenix, 

AZ, USA), with an ID of 100 µm and OD of 360 µm. Fused silica capillary used in connections 

had IDs of either 20 µm or 30 µm and OD of 360 μm, and were also from Polymicro 

Technologies. Red polyetheretherketone (PEEK) tubing with ID 127 µm and OD 1.6 mm was 

from Idex Health and Science (Lake Forest, IL, USA). Magnets used for stirring were three by 

three mm round magnets from VWR. Manual inspection of capillaries was done with a 

microscope from Motic (Hong Kong, China).  

The following fittings and valves were used, all from VICI AG International (Schenkon, 

Switzerland): ferrules (Vespel/graphite, 1/16”, FS1.3-5), stainless steel (SS) nuts and unions 

(SS, 1/16”, 2.5 mm bore), SS and silicone fill ports (1/16”, VISF-1) and a four-port valve with 

an internal and exchangeable sample loop. Two different loops with volumes 50 nL and 500 

nL were used. The ferrules were in-house modified to have a 0.37 mm ID. For MS analyses, 

the capillary column was connected to an ES 542 SS nanobore emitter (20 µm ID, 40 mm 

length) from Thermo Scientific. The emitter and capillary were held in separate 360 µm ID 

“Upchurch Microtight® Tubing Sleeves” and connected together via an “Upchurch PEEK 

Microtight® Connector Butt” and “MicroFingertight I Fittings”, all from Sigma-Aldrich (St. 

Louis, MO, USA). 

The Pump 11 Elite programmable syringe pump was from Harvard Apparatus (Holliston, MA, 

USA). Glass syringes (5-250 µL) were from SGE Analytical Science, owned by Trajan 

Scientific and Medical (Ringwood, VIC, Australia).    

4.1.2 Large instruments and equipment 

An AVIIIHD800 NMR instrument (800 MHz) with a 5 mm Triple Resonance (TCI) cryoprobe 

and a temperature adjustable Sample Case was used, all from Bruker.  

During preparation of capillary column frits, a GC-17A Gas Chromatograph oven from 

Shimadzu (Kyoto, Japan) was used. Column packing was carried out with an in-house pressure 

bomb system, described in [138].   
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LC studies with ultraviolet (UV) detection were done with a Proxeon EASY-nLC pump from 

Bruker and an Ultimate 3000 RS Variable Wavelength Detector from Thermo Fisher Scientific 

(formerly Dionex). The flow cell in the UV-detector had a U cell geometry, with a 20 µm ID 

and 6 mm light path length. Further description of UV detection is given in the Appendix 

(section 8.7).  

The LC-MS study was done with an Agilent 1200 series (G1376) capillary pump with an 1100 

series degasser (G1379), both from Agilent (Santa Clara, CA, USA). The Q Exactive™ Hybrid 

Quadrupole-Orbitrap™ mass spectrometer equipped with a “Nanospray Flex” ion source was 

from Thermo Fischer Scientific.  

4.2 Chemicals 

The water used in the project was either type I water purified with a Milli-Q Integral purification 

system with Q-POD (0.22 μm filter) dispenser from Merck (formerly Merck-Millipore) or HPLC 

grade water from VWR. Unless specifically noted, “water” refers to type I water.     

4.2.1 Chemicals specific for nuclear magnetic resonance 
spectroscopy 

Nitric acid (HNO3, AnalaR NORMAPUR® 65%) was obtained from VWR. Potassium 

hydroxide pellets were from KeboLab (Bohus/Sweden), deuterated water (D2O, 99% D) was 

from Cambridge Isotope Laboratories (Andover, MA/USA), potassium dihydrogen phosphate 

(powder) was from Merck, trimethylsilyl propionic-2,2,3,3-d4 acid (TSP, D 98%) was from 

Cambridge Isotope Laboratories, and sodium azide (NaN3) had unknown purity and unknown 

producer.  

4.2.2 Chemicals specific for liquid chromatography based analyses 

A Frit Kit from Next Advance (Troy, NY, USA) was used. It contained formamide, Kasil 1 and 

Kasil 1624, each stored in separate flasks. Kasil 1 is a solution with a 2.50 weight ratio 

potassium to silicate (29.1 Wt. %), in addition to water (70.9 Wt. %). Kasil 1624 is a solution 

with a 1.6 weight ratio of potassium to silicate (24 Wt. %), in addition to water (76 Wt %).   
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SeQuant® ZIC®-HILIC 5 µm particles were collected from a column from Merck (formerly 

Merck-Millipore). Nitrogen gas (>99.99%) was from Praxair (Oslo, Norway).   

HPLC quality acetonitrile was from VWR, ammonium formate (NH4CH2O, ≥ 99.0% purity) 

and formic acid (reagent grade, ≥ 95%) were both from Sigma-Aldrich. Buffer solutions for pH 

calibration (TITRINORM®, pH 4.00 and 7.00 ± 0.02 (phosphate buffer)) were from VWR.  

Tryptophan (chemical reference substance) was from European Pharmacopeia Reference 

Standard (Strasbourg, France) and toluene was from Rathburn Chemicals Ltd. (Walkerburn, 

Scotland, UK).  Citric acid (ACS reagent, ≥ 99.5%) and sodium lactate (~98%) were from 

Sigma-Aldrich.  

4.3 Cell samples 

Primary glioblastoma cells were received from the Vilhelm Magnus Laboratory for 

Neurosurgical Research, Institute of Clinical Medicine, University of Oslo (UiO). Fellow Marit 

Christensen or research technician Maria Ewa Walewska cultured the cell samples given in 

Table 4.1 and Figure 4.1. The cells were treated with either YM155 (sepantronium bromide 

(S1130)) from Selleck Chemicals (Munich, Germany and Houston, TX, USA) or 

temozolomide/TMZ (T2577) from Sigma-Aldrich. The control samples were “treated” with 

dimethyl sulfoxide (DMSO, unknown purity) from Sigma-Aldrich.  

Details on the chemicals used and how the cells were cultured are given in the Appendix 

(section 8.3). For details on cell samples used in the preliminary NMR analyses, see the 

Appendix (section 8.4).  
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Table 4.1: Overview of samples analyzed with NMR. For each sample the sample number, cell line it 

originated from, treatment, date collected and identifier are listed. All samples contained approximately 3 

million cells. Samples treated with DMSO were considered control samples, and are highlighted with gray. 

Five different cell lines were analyzed, each with one control group and two different groups treated with 

either TMZ or YM155. Christensen cultured the cells harvested before March and April 2017. Walewska 

cultured the cells harvested August-November 2017.  

Sample 

Number 

Cell 

line 

Treatment Date sample collection (day/month/year) Identifier 

45 T1454 DMSO 07/01/2017 D45 

46 T1454 DMSO 07/01/2017 D46 

21 T1454 DMSO 10/01/2017 D21 

50 T1454 DMSO 25/07/2017 D50 

51 T1454 DMSO 25/07/2017 D51 

41 T1454 TMZ 07/01/2017 T41 

42 T1454 TMZ 07/01/2017 T42 

19 T1454 TMZ 10/01/2017 T19 

52 T1454 TMZ 25/07/2017 T52 

43 T1454 YM155 07/01/2017 Y43 

44 T1454 YM155 07/01/2017 Y44 

20 T1454 YM155 10/01/2017 Y20 

53 T1454 YM155 25/07/2017 Y53 

54 T1454 YM155 25/07/2017 Y54 

55 T1456 DMSO 04/08/2017 D55 

56 T1456 DMSO 04/08/2017 D56 

57 T1456 TMZ 04/08/2017 T57 

58 T1456 TMZ 04/08/2017 T58 

62 T1456 TMZ 10/08/2017 T62 

59 T1456 YM155 04/08/2017 Y59 

60 T1456 YM155 04/08/2017 Y60 

61 T1456 YM155 04/08/2017 Y61 

63 T1456 YM155 10/08/2017 Y63 

28 T1459 DMSO 19/01/2017 D28 

24 T1459 DMSO 11/01/2017 D24 

25 T1459 DMSO 11/01/2017 D25 

39 T1459 DMSO 08/01/2017 D39 

40 T1459 DMSO 08/01/2017 D40 

64 T1459 TMZ 01/08/2017 T64 

65 T1459 TMZ 01/08/2017 T65 

22 T1459 TMZ 11/01/2017 T22 

26 T1459 TMZ 19/01/2017 T26 

35 T1459 TMZ 08/01/2017 T35 

36 T1459 TMZ 08/01/2017 T36 

23 T1459 YM155 11/01/2017 Y23 

27 T1459 YM155 19/01/2017 Y27 

37 T1459 YM155 08/01/2017 Y37 

38 T1459 YM155 08/01/2017 Y38 

102 T1459 YM155 29/09/2017 Y102 

104 T1459 YM155 18/10/2017 Y104 

105 T1459 YM155 18/10/2017 Y105 

106 T1459 YM155 18/10/2017 Y106 

66 T1547 DMSO 04/08/2017 D66 

67 T1547 DMSO 04/08/2017 D67 

73 T1547 DMSO 15/08/2017 D73 

98 T1547 DMSO 18/10/2017 D98 
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99 T1547 DMSO 18/10/2017 D99 

68 T1547 TMZ 04/08/2017 T68 

74 T1547 TMZ 15/08/2017 T74 

75 T1547 TMZ 15/08/2017 T75 

71 T1547 TMZ 08/08/2017 T71 

72 T1547 YM155 08/08/2017 Y72 

69 T1547 YM155 04/08/2017 Y69 

70 T1547 YM155 04/08/2017 Y70 

100 T1547 YM155 18/10/2017 Y100 

101 T1547 YM155 18/10/2017 Y101 

103 T1547 YM155 18/10/2017 Y103 

76 T1548 DMSO 28/06/2017 D76 

77 T1548 DMSO 28/06/2017 D77 

78 T1548 DMSO 28/06/2017 D78 

85 T1548 DMSO 11/07/2017 D85 

86 T1548 DMSO 11/07/2017 D86 

79 T1548 TMZ 28/06/2017 T79 

80 T1548 TMZ 28/06/2017 T80 

81 T1548 TMZ 28/06/2017 T81 

87 T1548 TMZ 11/07/2017 T87 

88 T1548 TMZ 11/07/2017 T88 

82 T1548 YM155 28/06/2017 Y82 

83 T1548 YM155 28/06/2017 Y83 

84 T1548 YM155 28/06/2017 Y84 

89 T1548 YM155 11/07/2017 Y89 

90 T1548 YM155 11/07/2017 Y90 

 

 

Figure 4.1: Graphical overview of the samples received from Vilhelm Magnus Laboratory for Neurosurgical 

Research. The shapes on the flasks denote treatment: circle = DMSO (control), square = TMZ, and triangle 

= YM155. The number beneath each flask represents the number of replicates of each cell line and treatment 

combination.  

  



43 

 

4.4 Solutions 

4.4.1 Solutions used in nuclear magnetic resonance spectroscopy 

NMR buffer 

The NMR buffer was a 1.5M potassium phosphate monobasic buffer in D2O at pH 7.4 with 

0.1% TSP, made by first dissolving 20.4 g of KH2PO4 in 80 mL of deuterated water (D2O). 

Then the pH was adjusted to approximately 5 by dropwise adding a strong (~12M) solution of 

KOH dissolved in D2O. Once desired pH was reached, 100 mg of TSP dissolved in 10.0 mL of 

D2O was added to the buffer, which was mixed with a vortex mixer. The pH was further 

adjusted to 7.4 by adding more ~12M KOH in D2O and the volume was adjusted to 100 mL 

with D2O. Finally, approximately 20 mg of NaN3 was added to the buffer as a bactericide.  

The pH was measured with the 877 Plus Titrino pH meter and Primatrode pH electrode. The 

buffer was stored in a closed volumetric flask at 4 °C between uses.  

4.4.2 Solutions used for liquid chromatography based analysis 

For preliminary liquid chromatography analysis with UV detection, two different MP buffers 

were made. Both were 30 mM ammonium formate buffers, but had either pH 3 or 4.5. The 

buffers were made by transferring 472.8 mg of ammonium formate to 250 mL of water. Then, 

the solutions were pH adjusted with formic acid to either pH ~3 or ~4.5; measurements were 

done with pH paper. The two different buffers (pH 3 and pH 4.5) were transferred to individual 

25 mL MP flasks. HPLC quality acetonitrile was transferred to a separate 25 mL MP flask. To 

obtain the chosen MP composition, acetonitrile and buffer was mixed by the Proxeon nLC 

pump.  

Three different sample solutions were made for assessing the capillary columns in the LC-UV 

analysis; they are described in Table 4.2. 
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Table 4.2: The three different sample solutions made for testing separation abilities of the capillary columns. 

Both analytes, toluene and tryptophan, were dissolved in 70% acetonitrile and 30% buffer (30 mM 

ammonium formate, pH 3 or 4.5) (v/v).  

Solution name Toluene concentration (µL/mL) Tryptophan concentration (mg/mL) 

S1 18 - 

S2 - 1.0 

S3 18 1.0 

     

For the LC-MS analyses, the MP buffer consisted of a 30 mM ammonium formate buffer made 

with HPLC grade water. The pH of the buffer was adjusted to 4.5 with formic acid; 

measurements were done with the Thermo Orion pH meter and a Schott “BlueLine 11 pH” 

glass pH electrode. Prior to analysis, the buffer was mixed with acetonitrile. Each component 

was measured separately with graduated cylinders; the mixture had an acetonitrile/buffer ratio 

of 65/35 (v/v).  

Two different solutions of citric acid and one of lactic acid were made, both are described in 

Table 4.3.  

Table 4.3: Citric and lactic acid solutions used in direct injection to MS and LC-MS analyses. The 

concentration of citric or lactic acid and type of sample solvent are listed. The buffer pH was 4.5.  

Solution 

name 

Contained Concentration 

(µg/mL) 

Solvents Solvent 

ratio (v/v) 

Used for 

C0 Citric acid 10 Acetonitrile  

30 mM ammonium formate buffer 

70/30 Direct 

injection 

L0 Lactic acid 10 Acetonitrile  

30 mM ammonium formate buffer 

70/30 Direct 

injection 

C1 Citric acid 20 Acetonitrile  

30 mM ammonium formate buffer 

80/20 LC-MS 
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4.5 Nuclear magnetic resonance spectroscopy analyses 

4.5.1 Sample preparation 

The various steps taken during preparation of samples prior to analysis on the NMR instrument 

are described below.  

Cleaning NMR tubes 

The 5 mm Boro800-5-7 tubes 

were washed with the Multi-Tube 

Jet Washer/Dryer. A schematic 

illustration of the washer is shown 

in Figure 4.2. The washing acid 

had a concentration of 6.5% nitric 

acid in water. The cup was filled 

three times with washing acid, 

letting it become entirely empty 

before refilling. The tubes were 

rinsed five times with water, by 

filling the cup five times. Finally, 

the tubes were left upside down to 

air dry at room temperature, 

usually taking from 48 to 72 

hours to dry completely.   

Preparing metabolomics samples for NMR 

The cell samples described in Section 4.3 were received as pellets. Each pellet was stored in a 

separate 15 mL centrifuge tube. The tubes were placed on ice and 600 µL water was added. 

Pellet and liquid were transferred to Eppendorf tubes and then placed in an ultrasonic bath. In 

the bath, the cells were subjected to ultrasonic treatment for 30 seconds on/30 seconds off 10 

times, taking a total of 10 minutes. Afterward the Eppendorf tubes were transferred to a 

centrifuge cooled to 4 °C and spun for 5 minutes at 12,000 rpm, to spin down cellular debris. 

Before transfer to NMR tubes, 540 µL of the supernatant was moved to a fresh Eppendorf tube 

 

Figure 4.2: Schematic illustration of NMR tube washer. (I) 

Cup containing acid or water. (II) The NMR tubes were 

placed over the hollow black tubes, and when the aspirator 

(III) was opened, liquid traveled from the cup, up along the 

NMR tube, and out through the hollow black tube.  
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and mixed with 60 µL NMR buffer. An additional 40 µL of supernatant was set aside in 

Thermo-Tubes and stored at -80 °C pending LC-MS analysis.  

Before NMR analysis the samples were either stored at 4 °C in a refrigerator or at 7 °C in the 

Sample Case attached to the 800 MHz NMR instrument.  

4.5.2 One-dimensional nuclear magnetic resonance spectroscopy 

Optimization procedure prior to acquisition of NMR data 

The AVIIIHD800 NMR instrument was run with TopSpin 3.5 patch level 6 (3.5pl6) from 

Bruker.   

Before data acquisition, each sample was left in the magnet for 15 minutes to temperature 

equilibrate. The probe was kept at 300.8 K with 535 L/hour gas flow, ensuring the samples 

experienced a temperature of 25 °C during measurements. Then the deuterium signal was 

locked to D2O, using the Bruker’s lock made for 90% H2O and 10% D2O mixtures with salt. 

After locking, the sample was “tuned and matched” using the command atma (automatic tuning 

and matching), or atmm (manual tuning and matching) if atma failed.  

Once tuning and matching were complete the sample could be shimmed, starting with reading 

an old shimfile (command rsh). The old shimfile would be from an earlier metabolomics sample 

with same content of water, deuterated water and salt. The shimfile was updated using Bruker’s 

TopShim GUI function, shown in Figure 4.3. Under TUNING, in the before slot, z-x-y was 

chosen; in the after slot, z-x-y-xz-yz-z was chosen. The shimming was run until all changes of 

shim directions (z, x, y, xz, yz) were not larger than two digits. The size of changes was given 

under Report once shimming was completed. The updated shim data was saved to the old 

shimfile with the command wsh.  
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Samples run with the automated system 

IconNMR™ had their shimming based on the 

updated shimfile. The shimfile was updated 

manually every 2-3 days, unless there was 

major drift in the magnetic field, if so the 

shimfile was updated daily.  

The one-dimensional proton spectra were 

acquired with water suppression by excitation 

sculpting. The pulse program used during 

acquisition required a specific transmitter 

frequency offset (o1) value. The program had 

an automatically set standard o1 value of 

3760.14 Hz, but in some cases a self-found o1 

value was used instead.  To establish an o1 

value, the following procedure6 was used. 

First, a 1H spectrum was recorded with 

number of scans (NS) 1 and number of dummy 

scans7 (DS) 0 using the experiment PROTON 

and pulse program zg. Then a pulse calibration 

was run, with the command pulsecal. An 

example result of the pulse calibration is 

shown in Figure 4.4. Once the calibration was 

finished, the command p1 was written into the 

command line, and the number (length of 

pulse p1) found during pulse calibration was 

multiplied by four. The 90-degree pulse was 

now instead a 360-degree pulse. The 

PROTON experiment was run again, with NS = 1 and DS = 0. Finally, the resulting spectrum 

was phased 180 degrees, and the o1 value was identified in the spectrum. An example of a final 

spectrum and where the o1 value was found is shown in Figure 4.5. 

                                                 
6 Taught by senior Engineer Per Eugen Kristiansen (Section for Biochemistry and Molecular Biology, UiO).  
7 In a dummy scan, the pulsed sequence is run but no FID is acquired.  

 

Figure 4.3: The graphical user interface 

(GUI) in TopSpin for shimming NMR 

samples. Usually, the samples were optimized 

for 1H, unless carbon spectra were being 

acquired. 3D dimension shimming was only 

chosen if the sample shimming was especially 

difficult. The before and after options for 

tuning were chosen as Z-X-Y and Z-X-Y-XZ-

YZ-Z, respectively. 
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Figure 4.4: Output given by TopSpin after a pulse calibration was run. The length of the 90 degree pulse at 

-10.4 dB (marked with a red rectangle) was multiplied by four before the next 1H spectrum was acquired. 

 

 

Figure 4.5: An example of a spectrum with long p1 pulse. The picture to the right is zoomed in to show the 

“bump” where the o1 value was found. The bump is indicated with a red arrow. 
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Acquisition of one-dimensional nuclear magnetic resonance spectra 

All 1D spectra used for further statistical analysis were acquired with the pulse program 

zgesgp.nn, a program customized by Nils Nyberg from Bruker. The code for the pulse program 

is given in the Appendix (section 8.12). For each sample, pulses were calibrated prior to 

acquisition. Suppression of the water signal was obtained with excitation sculpting. Acquisition 

parameters are given in Table 4.4. The individual o1 values for each sample are given in Table 

4.5.  

Table 4.4: The general acquisition parameters for all samples analyzed with the pulse program zgesgp.nn. 

Sec is an abbreviation of second and μsec is an abbreviation of microsecond (1×10-6 second). 

Name of acquisition parameter Abbreviation Settings  

Size of FID TD 32,768 

Number of dummy scans DS 4 

Number of scans NS 4096 

Spectral width SW 16.0250 ppm 

Acquisition time AQ 1.278 sec 

Receiver gain RG 203 

Dwell time DW 39.00 µsec 

Probe temperature TE 300.8 K 

Sample changer temperature SCT 280.0 K 
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Table 4.5: Overview of the o1 values used during acquisition of 1D spectrum of the samples listed in Table 

4.1. The samples are numbered with the same serial number, but a treatment identifier has also been added 

(D = DMSO, T = TMZ, Y = YM155).  

Sample number and 

treatment identifier 

Value of o1 (Hz) Sample number and 

treatment identifier 

Value of o1 (Hz) 

D45 3761.58 Y37 3761.91 

D46 3761.85 Y38 3761.60 

D21 3761.85 D66 3761.59 

D50 3761.59 D67 3761.59 

D51 3761.59 D73 3761.59 

T41 3761.91 T68 3760.14 

T42 3761.91 T74 3761.57 

T19 3761.85 T75 3761.59 

T52 3760.14 T71 3761.59 

Y43 3761.85 Y72 3761.59 

Y44 3761.85 Y69 3761.59 

Y20 3761.85 Y70 3761.00 

Y53 3761.59 D76 3761.59 

Y54 3760.14 D77 3761.59 

D55 3761.57 D78 3761.59 

D56 3761.59 D85 3761.57 

T57 3761.59 D86 3761.59 

T58 3761.59 T79 3761.59 

T62 3761.59 T80 3761.59 

Y59 3761.57 T81 3760.14 

Y60 3761.59 T87 3761.57 

Y61 3761.59 T88 3761.59 

Y63 3761.59 Y82 3761.59 

D28 3761.85 Y83 3761.59 

D24 3761.85 Y84 3761.59 

D25 3761.85 Y89 3761.57 

D39 3761.60 Y90 3761.59 

D40 3761.58 D98 3760.14 

T64 3761.59 D99 3760.14 

T65 3761.59 Y100 3760.14 

T22 3761.91 Y101 3760.14 

T26 3761.85 Y102 3760.14 

T35 3761.60 Y103 3760.14 

T36 3761.00 Y104 3760.14 

Y23 3761.60 Y105 3760.14 

Y27 3761.85 Y106 3760.14 

 

4.5.3 Two-dimensional nuclear magnetic resonance spectroscopy 

Optimization procedure prior to acquisition of NMR data 

All samples were locked, tuned and matched before acquisition of one-dimensional 

experiments, and the same parameters were kept in place for all two-dimensional experiments.  
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Acquisition of two-dimensional nuclear magnetic resonance spectra 

The JRES experiments were acquired with the pulse program jresgpprqf and the TOCSY 

experiments were acquired with the pulse program dipsi2esgpph. The code for the pulse 

programs are given in the Appendix (section 8.12). General acquisition parameters for the 

JRES experiment and TOCSY experiment are given in Table 4.6. Both experiments were 

acquired with non-uniform sampling (NUS).  

Table 4.6: The general acquisition parameters for all samples analyzed with the pulse program jresgppraf 

and dipsi2esgpph. F1 and F2 denote the frequency axes. Sec is an abbreviation of seconds and μsec is an 

abbreviation of microsecond (1×10-6 second). 

Name of acquisition parameter Abbreviation Settings (JRES) Settings (TOCSY) 

nD acquisition mode FnTYPE NUS NUS 

Size of FID TD F2: 8192 

F1:160 

F2: 2048 

F1:1024 

Number of dummy scans DS F2: 16 F2: 32 

Number of scans NS F2: 32 F2: 32 

Spectral width SW F2: 16.6216 ppm 

F1: 0.0975 ppm 

F2: 13.9503 ppm 

F1: 13.9503 ppm 

Acquisition time AQ F2: 0.3080 seconds 

F1: 1.0259 seconds 

F2: 0.0918 sec 

F1: 0.0459 sec 

Increment for delay IN_F 12,823.23 µsec 89.60 µsec 

Receiver gain RG 203 203 

Dwell time DW 37.600 µsec 44.800 µsec 

Probe temperature TE 300.8 K 300.8 K 

Sample changer temperature SCT 280.0 K 280.0 K 

Amount of sparse sampling NusAMOUNT 25% 25% 

Number of hypercomplex points 

in indirect dimension 

NusPOINTS 40 128 

 

NUS data could not be processed with conventional Fourier transform algorithms. Thus, once 

acquired, both the JRES and the TOCSY data were processed with the Compressed Sensing 

algorithm [139]. The JRES spectra all had the size of the real spectrum increased to 16,384 

(twice the size of F2’s TD) and were calibrated by placing TSP at 0.00 ppm in all spectra. The 

TOCSY spectra required more processing, and the general parameters applied to all are given 

in Table 4.7.  
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Table 4.7: The general processing parameters for all samples analyzed with the pulse program dipsi2esgpph. 

Name of processing parameter Abbreviation Settings 

Size of real spectrum SI F2: 4096 

F1: 1024 

Spectrometer frequency SF F2: 800.03 MHz 

F1: 800.03 MHz 

Window function WDW F2: QSINE 

F1: QSINE 

Line broadening LB F2: 1.00 Hz 

F1: 0.30 Hz 

Phasing mode PH_mod F2: pk 

F1: pk  

Linear prediction for Fourier transformation ME_mod F2: None 

F1: LPfc 

Number of linear prediction coefficients  NCOEF F2: 0 

F1: 32 

Number of output points for linear prediction LPBIN F2: 0 

F1: 2048 

 

4.5.4 Identification of metabolites: Database searches 

Identification of metabolites in the collected NMR data was carried out with manual peak 

searches in the following databases: Complex Mixture Analysis by NMR (COLMAR) from 

Ohio State University [82, 140], the Human Metabolome Database (HMDB) [80], and the 

Biological Magnetic Resonance Data Bank (BMRB) [141]. The BMRB was mainly used the 

few times the HMDB was malfunctioning or did not have the necessary NMR spectra.  

For each cell line, the spectra from a representative sample of DMSO, TMZ- and YM155-

treated cells were selected. A total of 15 samples were examined for metabolite identification. 

For each sample, all cross peaks in the TOCSY spectrum were found and grouped together 

according to which peaks were coupled. The multiplicity of each cross peak was identified in 

the JRES spectra. Each group of identified peaks was run through the COLMAR database for 

two-dimensional data. If that search gave no conclusive results, the group of peaks was also run 

through the HMDB. Additional compounds known to occur in glioblastoma cells, but with no 

correlation peaks, were manually searched for in the different spectra for all 15 samples.  
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The standard NMR spectra of the suggested molecules were found either on HMDB or BMRB 

and compared to the observed peaks. Certain or confident identification of a compound required 

that several known peaks were seen in the one-dimensional NMR spectrum and that multiplicity 

matched control spectra. Compounds with missing or unclear identification of peaks were 

categorized as ambiguously determined. If no realistic candidate compound was suggested by 

the databases, peaks were categorized as having “no good matches”.  

4.5.5 Statistical analysis of nuclear magnetic resonance data 

Preprocessing and statistical analyses were done with the programming language R, version 

3.3.3 from https://www.r-project.org/ [142]. R was run with R-Studio version 1.0.136 from R-

Studio, Inc. (Boston, MA, USA). Daniel Sachse wrote the scripts used for the following 

statistical analyses. The scripts are presented in the Appendix (section 8.11). The author has 

made minor changes, but Sachse did the main bulk of coding.  

Pre-processing 

The one-dimensional spectra were phased and calibrated manually in TopSpin 3.5p6, before 

being transformed to ASCII files (.txt) with the command convbin2asc. Additional general 

processing parameters and their settings are shown in Table 4.8.  

Table 4.8: The general processing parameters for all samples analyzed with the pulse program and 

zgesgp.nn. 

Name of processing parameter Abbreviation Settings (zgesgp.nn) 

Size of real spectrum SI 262,144 

Spectrometer frequency SF 800.03 MHz 

Line broadening LB 0.30 Hz 

Phasing mode PH_mod Pk 

Linear prediction for Fourier transformation ME_mod No 

Number of linear prediction coefficients  NCOEF 0 

Number of output points for linear prediction LPBIN 0 

 

https://www.r-project.org/


54 

 

Certain regions of the NMR spectra were removed before further analysis. This included all 

regions above 10.0 ppm and below -0.5 ppm, as well as 4.5 to 4.9 ppm (residual water peak), 

1.16 to 1.21 ppm and 3.64 to 3.70 ppm (ethanol peaks), and 2.64 to 2.70 ppm (DMSO peak).  

Normalization was either to the integral of the TSP peak or to the total integral of the spectrum 

(not including the TSP peak). Unit variance was used as the scaling method; each variable was 

divided by its standard deviation. The spectral baselines were corrected (non-polynomial 

smoothing) prior to multivariate statistical analyses, using an algorithm from the FTICRMS R 

package [143]. 

PCA 

PCA was carried out with a NIPALS (Non-linear Iterative Partial Least Squares) algorithm 

from the package pcaMethods [144], and the TSP peak was excluded during the analysis. 

Plotting was done with functions from the package plotrix [145]. The R script for PCA can be 

found in the Appendix (section 8.11.2).  

PLS regression 

PLS regression was carried out with a kernel algorithm (for matrices with many variables 

compared to samples [146]), which gives similar results as NIPALS, from the package pls [147, 

148]. The YM155- and TMZ-treated samples were compared separately to the control samples. 

The PLS regression model for control and YM155-treated samples was calculated and cross-

validated with data from cell lines T1454, T1459 and T1547. The dataset was split into four 

during CV, and a maximum of 10 LVs were calculated. The final model was tested with data 

from cell lines T1456 and T1548. The PLS regression model for control and TMZ-treated 

samples was calculated and cross-validated with data from all of the cell lines. The dataset was 

split into four groups for CV. The R script for PLS regression can be found in the Appendix 

(section 8.11.2).  
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4.6 Methods used in liquid chromatography based analysis 

LC-UV data were acquired, handled and processed with Chromeleon® 7 version 7.1.0.898 from 

Dionex (now Thermo Fisher Scientific). LC-MS data were acquired, handled and processed 

with Xcalibur™ Software from Thermo Fischer Scientific.  

4.6.1 Making frits and packing capillary columns 

The capillary frits were made with the Frit Kit and in accordance with the method described in 

[138]. The fritted capillaries were approximately 25 cm long with a 1-2 mm long frit. They 

were packed with ZIC® HILIC particles (5 µm) following the column packing procedure 

outlined in [138].  

4.6.2 Testing capillary columns 

The capillary column  (100 µm ID/360 µm OD/length 25 cm, 11 cm with particles) was 

connected to the Proxeon pump via a four-gated valve with nuts, unions, ferrules and empty 

capillary (30 µm ID/360 µm OD/length 10 cm). The valve had an inner loop with a volume of 

50 nL. The column was connected to the UV flow cell with the same type of capillary (30 µm 

ID/360 µm OD/length 10 cm), nuts, unions, and ferrules. Detection was carried out at 254 nm. 

Waste was led away from the valve via red PEEK (127 µm ID/1.6 mm OD/length 5 cm). The 

MP was led from the pump to the valve via a capillary (30 µm ID/360 µm OD/length 30 cm). 

The setup is schematically illustrated in Figure 4.6. 
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Figure 4.6: Set-up of LC-UV system. The pump was connected to the valve via a capillary (30 µm ID/360 

µm OD/length 30 cm). The MP went directly to the column when the valve was in the “load position”, and 

via the internal loop when in the “inject position”. The 50 nL loop (internal, not shown) was filled manually 

with a syringe, with excess liquid passing through PEEK tubing. The capillary column (100 µm ID/360 µm 

OD/length 25 cm, 11 cm with particles) was connected to the valve via empty capillary (30 µm ID/360 µm 

OD/length 10 cm). From the capillary column, empty capillary (30 µm ID/360 µm OD/length 10 cm) led the 

MP to the UV flow cell (20 µm ID and 6 mm light path length, U cell geometry).  

The capillary column was conditioned with 70% acetonitrile and 30% ammonium formate 

buffer (either pH 3 or pH 4-5) (v/v) for approximately 30 minutes before analysis. The MP 

composition was kept throughout the assessment of the capillary columns. The MP flow rate 

was kept at 1.00 µL per minute at all times. The UV lamp was turned on at least 30 minutes 

prior to any detection. The three different solutions outlined in Table 4.2 were injected into the 

column in order.  

4.6.3 Liquid chromatography-mass spectrometry analyses  

Preparing metabolomics samples for LC-MS 

Cell lysate from samples D45, D46, Y20, Y44, Y23, and Y27 (listed in Table 4.1, section 4.3) 

were prepared. The cell lysate (40 µL) was thawed on ice prior to protein precipitation with 80 

µL cold acetonitrile. The samples were stirred with a vortex mixer for 15 seconds before waiting 

30 minutes on ice. Then the samples were centrifuged for 10 minutes at 12,000 rpm at 4 °C. 
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From the original sample, 100 µL of the supernatant was transferred to an Eppendorf tube and 

dried for approximately 1 hour and 45 minutes at 30 °C by vacuum concentration (in the 

Concentrator Plus). Each dry sample was re-dissolved in 20 µL 80/20 (v/v) acetonitrile/ buffer 

(30 mM ammonium formate pH 4.5).  

Direct injection 

Connective capillary (30 µm ID/360 µm OD/length 50 cm) was held to the syringe tip via 

ferrule, nut, union, and fill port. The other end of the capillary was directly connected to a SS 

emitter (20 µm ID, 40 mm length) with PEEK fittings, sleeves, and butt. A schematic overview 

of the set-up is given in Figure 4.7. The syringe (250 µL) was held in place and pushed by a 

programmable syringe pump (Pump 11 Elite). The flow rate was kept at 1.00 µL/minute at all 

times.  

 

Figure 4.7: Schematic illustration of set-up for direct injection of citric and lactic acid into the MS. Not 

shown: Programmable syringe pump (holding the syringe in place) and the MS.  

 

Liquid chromatography set up and parameters 

The capillary column (100 µm ID/360 µm OD/length 25 cm, 12 cm with particles) was 

connected to the Agilent 1200 series pump via a four-gated valve with nuts, unions, ferrules 

and empty capillary (30 µm ID/360 µm OD/length 10 cm). The valve had an inner loop with a 

volume of 500 nL. The capillary column was connected to a SS emitter (20 µm ID, 40 mm 

length) with PEEK fittings, sleeves and butt. Waste was led away from the valve via red PEEK 

(127 µm ID/1.6 mm OD/length 5 cm). The MP was led from the pump to the valve via a 

capillary (30 µm ID/360 µm OD/length 75 cm). A schematic overview of the set-up is given in 

Figure 4.8. The MP composition was 65/35 (v/v) of acetonitrile and buffer (30 mM ammonium 

formate, pH 4.5), and the ratio was achieved by mixing the solvents in the same MP flask. The 

flow rate was kept at 0.60 µL per minute at all times.  
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Figure 4.8: Set-up of LC-MS system. The pump was connected to the valve via a capillary (30 µm ID/360 

µm OD/length 75 cm). The MP went directly to the column when the valve was in the “load position”, and 

via the internal loop when in the “inject position”. The 500 nL loop (internal, not shown) was filled manually 

with a syringe, with excess liquid passing through PEEK tubing (127 µm ID/1.6 mm OD/length 5 cm). The 

capillary column (100 µm ID/360 µm OD/length 25 cm, 12 cm with particles) was connected to the valve via 

empty capillary (30 µm ID/360 µm OD/length 10 cm). The capillary column was directly connected to an SS 

emitter (20 µm x 40 mm) via a PEEK sleeve, fitting and butt. 
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MS parameters   

The mass spectrometer was run in negative mode for all experiments. Further details on MS 

parameters for both direct injection and when coupled with LC are given in Table 4.9.  

Table 4.9: MS parameters used during direct injection and when coupled to liquid chromatography.  

Parameter Direct injection Coupled with LC 

Mode Full ion scan (FIS)  

Parallel reaction monitoring (PRM) 

Parallel reaction monitoring (PRM) 

Resolving power FIS: 70,000 

PRM: 70,000 and 17,500 

PRM: 70,000 and 17,500 

Temperature 225-300 °C 300 °C 

Capillary voltage 1.6-2.4 kV 2.2 kV 

S-lens radiofrequency level 50.0 50.0 

Maximal inject time 120 ms 

PRM: 100 ms 

100 ms 

Automatic gain control (AGC) 

target 

FIS: 1 000 000 

PRM: 200 000 

PRM: 200 000 

Inclusion list (PRM) m/z 191.01975  

(C6H7O7
-)  

m/z 191.01975 

(C6H7O7
-) 

Default charge -1 -1 

Isolation window PRM: m/z 4.0 PRM: m/z 4.0 

Normalized collision energy 

(NCE) 

35.0 35.0 

Run time ∞ 30 minutes 
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5 Results and Discussion 

In the present study, the main focus was to identify biomarkers for response to treatment with 

chemotherapeutic agents (TMZ and YM155) in cultured glioblastoma stem cells. Liquid state 

NMR spectroscopy (1H resonance frequency: 800 MHz) was used as the principal analysis 

method and was followed by multivariate statistical analyses (PCA and PLS regression) to scout 

for biomarkers and assess metabolic differences between control and treated samples. A nano 

HILIC LC-MS system was subsequently employed to support any findings from the statistical 

analyses.   

In Figure 5.1, a graphical presentation of the workflow of the study is given. The preliminary 

study (red) is presented in the Appendix (sections 8.4-8.5). In sections 5.1-5.3 the findings 

from work done with the 800 MHz NMR (blue) is presented, except assessment of 3 mm NMR 

tubes, which can be found in the Appendix (section 8.5.1). In section 5.4, the investigation by 

nano HILIC LC with UV or MS detection (yellow) is presented. Each section title is colored in 

correspondence to Figure 5.1.  

Throughout the sections, short summaries of current conclusions will be given in italics.  

 

Figure 5.1: Graphical overview of study workflow.  
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5.1 Choice of sample type, preparation method and nuclear 
magnetic resonance spectroscopy experiments 

An important aspect of metabolomics is the choice of 

sample type. In the present study, the goal was to find 

biomarkers of treatment response that later can be 

detected inside glioblastoma tumors with MRS. It was 

prudent to begin with surveying the cultured glioblastoma 

cells response to treatment. The chosen cells provided a 

simplified model of the cancer [149, 150]. If any likely 

biomarkers were found, they could be further investigated 

in more complex systems, e.g. tumor biopsies. In other 

words, cultured cells give findings of limited scope, but 

they reduce many of the confounding effects biological 

systems can contribute. The samples received from Rikshospitalet were enriched in 

glioblastoma stem cells (GSCs), as it was considered a strength to study the most aggressive 

cells and their response to treatment. In Figure 5.2, free-floating tumorspheres, which the cells 

formed when cultured in suspension, are shown.   

Prior to NMR spectroscopy analysis, the content of the cells had to be extracted and suspended 

in a suitable solvent. Lysis and extraction were done with ultrasonic treatment and type I water 

because it was simple, rapid and reproducible [151]. In addition, there would be limited loss of 

metabolites or alteration of the sample metabolomes. Other lysis and extraction methods often 

involve the addition of organic solvent(s), freeze/thaw cycles and ultrasonic treatment [152-

155]. These methods are time-consuming and can increase experimental errors and variability 

[151], and were therefore avoided if possible. The resulting NMR spectra were highly 

repeatable, exemplified in Figure 5.3, in which five control samples from the same cell line are 

shown. The samples were cultured, prepared, and analyzed on different days. Furthermore, the 

peak area of the lactate doublet at 1.33 ppm in the five control samples had relative standard 

deviation of 15.8%, a satisfactory precision for biological analyses [156, 157].  

After extraction, a buffer had to be added to ensure equal and stable pH in all samples.    

Changes or differences in pH can cause peak shifting, which encumbers metabolite 

identification and convolutes statistical analyses [128, 158]. The buffer chosen in this study was 

based on a recipe from Bruker, usually used for analysis of urine samples [159]. Earlier work 

 

Figure 5.2: Free-floating tumor-

spheres in suspension culture. The 

cells are patient-derived and from 

cell line T1456. The scale bar is 100 

µm.  Photograph by MD Erlend 

Skaga.  
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carried out with this buffer had shown satisfactory repeatability and few issues with tuning, 

matching or shimming [160]. The same could be said for this study, as exemplified in Figure 

5.3.  

 

Figure 5.3: One-dimensional 1H NMR spectra of five different control cell samples, all from the same cell 

line (T1548). The samples were cultured, prepared, and analyzed on different days. Solvent suppression was 

by excitation sculpting and NS = 4096. 

The NMR experiments were chosen based on a preliminary study carried out during fall 2016, 

described in detail in the Appendix (sections 8.4-8.5). In short, excitations sculpting was 

chosen as the solvent suppression method instead of presaturation because it was more effective 

at removing the water signal. Due to small sample sizes (3 million cells) 13C NMR was not 

feasible. To aid identification of metabolites, TOCSY and JRES were acquired with 25% NUS 

coverage. Lower NUS coverage was avoided due to the high number of peaks present in the 

spectra.   

To summarize, cultured glioblastoma cells provide a simple model of the brain cancer, suitable 

for preliminary and exploratory scouting for biomarkers. Organic solvents and harsh 

conditions were avoided during sample preparation to minimize the effect on the sample 

metabolomes. Both the choice of buffer and sample preparation method proved to be suitable 

and repeatable. Only proton NMR experiments could be carried out because of small samples 

and lack of sensitivity. Presaturation was deemed unsatisfactory as a solvent suppression 

method, and excitation sculpting was employed instead.    
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5.2 Identification of metabolites 

Identification of metabolites was mainly aided by the COLMAR database from Ohio State 

University and the HMDB, as described in section 4.5.4. The identification was carried out for 

two reasons: to establish the identity of biomarkers possibly found in the following statistical 

analyses and to gain a perspective of the metabolic processes occurring in the cells. In Table 

5.1, a list of identified metabolites is given. Some of the metabolites could be identified with 

confidence, while others were more ambiguous due to overlapping or missing peaks. 

Furthermore, fumaric acid, L-glycine and succinic acid gave rise to only one peak with no 

coupling, creatine gave rise to two singlets with no coupling, and total choline (free choline, 

phosphorylcholine, and glycerophosphorylcholine) was identified by only one singlet. 

Consequently, the identification of all five was considered ambiguous. Additionally, the 

presumed peak for succinic acid overlapped for some samples, thus the metabolite was not 

considered even ambiguously detected. Note that the table only states if a metabolite was 

identified, it does not give the relative intensities of the associated peaks.  

All of the samples contained varying amounts of ethanol; it entered the samples during culturing 

because the workspace where the samples were held was regularly disinfected with ethanol. In 

addition, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), a common buffering 

agent added to the cell medium during culturing, was identified. All of the control and TMZ-

treated samples also contained DMSO because it was added during culturing.  

The NMR peaks and splitting patterns for all the listed compounds are given in the Appendix 

(section 8.10).  
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Table 5.1: Identified compounds in glioblastoma cell samples. D = control samples, T = TMZ-treated 

samples, and Y = YM155-treated samples. The color code indicates the identification and how certain it 

was: green = confident, orange = ambiguous, grey = none/missing. The following abbreviations were used: 

F16BP = fructose 1,6-bisphosphate, PEP = phosphoenolpyruvate, O-PEA = O-phosphoethanolamine, P = 

phosphate group.  

Compound T1454 T1456 T1459 T1547 T1548 

D T Y D T Y D T Y D T Y D T Y 

Total choline                

Citric acid                

Creatine                

Cytidine                

Cytidine triphosphate                

D-Fructose                

D-F16BP                

D-Glucose                

D-glucose 1-phosphate                

DMSO                

Ethanol                

Fumaric acid                

Glutathione                 

HEPES                

Lactic acid                

L-Alanine                

L-Glutamate                

L-Glutamine                

L-Glycine                

L-Isoleucine                

L-Phenylalanine                

L-Threonine                

L-Tyrosine                

L-Valine                

Myo-inositol                

O-PEA                

3-phosphoglyceric acid                

6-phosphogluconic acid                

PEP                

Succinic acid                

Uracil                
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In total, ~30 endogenic compounds could be identified with confidence or slight ambiguity. 

However, there were many correlated peaks that could not be assigned due to difficulty 

discerning couplings in TOCSY and splitting patterns in JRES. Mainly, this concerned peaks 

in the 3-4.5 ppm region, which can be seen in Figure 5.4. The peaks in this area usually arise 

from various carbohydrate molecules, e.g. fructose and glucose-6-phosphate. They are known 

for having many peaks and complicated splitting patterns [161], and it is therefore not surprising 

that it was an issue to attain reliable identifications. Commercially available programs 

specialized in identification of metabolites in NMR data (e.g. Chenomx [162]) could possibly 

have increased the number of assigned peaks. However, most of these programs are 

prohibitively expensive and were therefore not available in this study.  

 

Figure 5.4: The crowded 3-4.5 ppm region of a representative control sample. 

Previous studies have identified a number of similar compounds in vitro, including glycine, 

glutamate, glutamine, alanine, lactate, threonine, tyrosine, phenylalanine, myo-inositol, 

creatine, total choline, and citric acid [163, 164]. In addition, in vivo studies have identified 

lactate, alanine, creatine, total choline, myo-inositol/glycine, and glutamine/glutamate. The 

latter two pairs are often difficult to separate in MRS. It is also common for in vivo studies to 

identify N-acetyl-L-aspartic acid (NAA) [165-168], but it was not found in the spectral data of 

the present study. NAA is present at high concentrations in brain tissue, only second to 

glutamate [169]. Guidoni et al. were able to identify it in their in vitro study of cultured 

glioblastoma cells [164], while Cuperlovic-Culf et al. only found very low relative 

concentrations [163, (Supplementary Table 1)]. Perhaps the concentration of NAA was low in 

the present study as well, making it troublesome to even ambiguously identify.  
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In the introduction, section 3.1, the reprogramming of metabolism that cancers undergo was 

briefly reviewed. Glioblastoma also undergoes metabolic adaptations; several of the 

metabolites in Table 5.1 are indicated to play a role in its metabolism, including glutamine, 

glutamate, lactate, and alanine [163, 164, 170-172]. The cells in the present study were cultured 

with both glucose and glutamine present and without restriction of oxygen (see section 8.3 for 

details). Both metabolites can be utilized by the cells for energetic and anabolic processes [170].  

Lactic acid is present at high levels in all of the control samples, which is indicative that aerobic 

glycolysis is occurring. Glioblastoma has previously been shown to exhibit the Warburg effect 

in vivo [166, 172]. Furthermore, DeBerardinis et al. found that glutamine commonly was 

converted to glutamate, which was then further converted to α-ketoglutarate [170]. There are 

three different ways of converting glutamate to α-ketoglutarate: oxidative deamination, 

transamination of pyruvate (also yields alanine), or transamination of oxaloacetate (also yields 

aspartic acid) [18 (p. 715-725)]. It was not possible to identify aspartic acid with sufficient 

confidence in the spectral data of the current study. Thus, the first two conversion strategies 

seem more likely. The results are congruent with findings by DeBerardinis et al., where high 

levels of alanine also indicated that alanine transaminase was the most active transaminase 

enzyme [170].  

Compounds from the TCA cycle are often rerouted to anabolic pathways to fuel cancer growth 

[173]. For example, citric acid can be utilized for the synthesis of fatty acids in both healthy 

proliferating cells and cancer cells [18 (p. 840), 174], including glioblastoma [170]. Conversion 

of glutamate to α-ketoglutarate is one way for the cells to replenish the TCA cycle.   

Myo-inositol acts as an osmolyte and takes part in the regulation of brain tissue volume [175], 

and it is found at high levels in astrocytes [176], which are one of three cell types glioblastoma 

is speculated to originate from. Moreover, myo-inositol is found at higher levels in glioblastoma 

tumor tissue compared to low-grade glioma and healthy (brain) tissue [166, 177]. It is therefore 

not unreasonable that it would appear in the spectral data of the samples used in the current 

study.  

In summary, ~30 endogenous metabolites could be identified from the spectral data with either 

confidence or slight ambiguity. Several of the metabolites are indicated to have central roles in 

glioblastoma metabolism.   
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5.3 Multivariate statistical analysis of nuclear magnetic 
resonance data 

5.3.1 Pre-processing of data 

The one-dimensional 1H NMR spectra underwent several pre-processing steps (e.g. baseline 

correction) prior to PCA and PLS regression. The removed spectral regions were either empty 

(above 10 ppm or below -0.5 ppm), artifacts from acquisition (residual water signal), or 

contained signals from molecules that were not endogenous to the samples (ethanol, DMSO). 

The signals arising from HEPES did not interfere with the PCA or PLS regression, like ethanol 

and DMSO did, and were therefore not deemed necessary to remove. Furthermore, the 

identified HEPES peaks were in the more crowded region of the spectra (from 2.9 ppm and 

above), and by not having to remove them it was possible to keep as much biologically spectral 

relevant data as possible.  

Normalization to the total spectral integral (excluding the TSP peak) and to the integral of the 

TSP peak were both assessed. The subsequent distributions of samples in the PCA scores plots 

were similar, but the loading plots for the dataset normalized to the total integral showed much 

more influence from noise. The major differences in metabolite concentrations were the same 

for both normalization methods, thus it was concluded that in this study, normalization to the 

integral of the TSP peak was preferred. Unit variance scaling was investigated first because it 

is the standard method [131]. It did not over-enhance the noise in the spectral data and was 

deemed suitable for the current dataset.     

The baseline processing method gave satisfactory smoothing of the spectral data, and this is not 

surprising as earlier work with urinary NMR metabolomics data has had similar outcomes 

[160]. However, four spectra consistently failed to have their baselines corrected (sample 

number 67, 82, 88 and 90 in Table 4.1). Visual inspection of the NMR spectra revealed no 

clues as to why the algorithm failed. The writer of the R code used in the present study, PhD 

Daniel Sachse, acknowledged that it happened from time to time and that there was no clear 

explanation why it occurred. PCA without baseline correction provided only mediocre 

separation of the samples in the scores plot. In the loading plot it became clear that the variations 

in baseline dominated the PCA, unless removed (plots not shown). Thus, it was concluded that 

the baseline correction procedure should be carried out regardless of the four failed samples. 

The spectra that failed baseline correction were left out of subsequent analyses.   
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5.3.2 Principal component analysis revealed two distinct responses 
to treatment with YM155 

The PCA including all of the samples revealed dense clustering for cell lines T1456, T1459 and 

T1547 and their sample types (i.e. control and TMZ- and YM155-treated), as shown in Figure 

5.5. The remaining two cell lines, T1454 and T1548, clustered less densely but it was still 

possible to see grouping by cell line. However, the loading plot, presented in Figure 5.5, did 

not reveal any immediate biomarker candidates. In general, the difference between samples in 

the PCA scores plot was due to a global decrease in metabolites. The color bar of the loading 

plot indicates the degree of influence the variation has on the principal component; in Figure 

5.5 it is evident that almost all the metabolites contribute.  

Nevertheless, from the PCA of all the cell lines together, separation by cell line was still 

achieved to some degree. Other studies, by e.g. Cuperlovic-Culf et al., were similarly able to 

find clustering and differences in metabolic profiles between cell lines of glioblastoma [163]. 

A separate PCA of only the control samples was carried out, but no clear biomarkers separating 

the different cell lines were found (plot not shown).  

 

Figure 5.5: PCA scores (left) and loading (right) plots with all cell lines present. Shapes denote treatment: 

control samples = ○, TMZ-treated samples = ■, and YM155-treated samples = ▲. The colors denote cell 

lines: black = T1454, red = T1456, green = T1459, blue = T1547, cyan = T1548.  

The statistical analysis proceeded with PCAs of control versus treated samples within each cell 

line. The scores and loading plots of representative samples are shown in Figure 5.6. Analogous 

to the PCA in Figure 5.5, the set of PCAs showed two groups of cell lines: T1456/T1459/T1547 

and T1454/T1548. Within each group the scores and loading plots had similar appearances. 
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Moreover, T1454 and T1548 cells treated with YM155 did not exclusively have a global 

reduction in metabolite levels, but a large increase in citric acid and a small increase in 

metabolite(s) in the carbohydrate region of the spectrum. Most of the other metabolites were 

reduced in amount, including lactate and alanine.  

 

Figure 5.6: PCA scores (I and III) and loading (II and IV) plots for cell line T1454 (black) and T1459 (green). 

Shapes denote treatment: control samples = ○, TMZ-treated samples = ■, and YM155-treated samples = ▲. 

Closer inspection of the spectral regions showing major change in the loading plots confirmed 

that lactate and alanine were strongly reduced across all cell lines, and citric acid was strongly 

increased in T1454 and T1548 after treatment with YM155. However, it was difficult to clearly 

identify which metabolite or metabolites were increased in the carbohydrate region of the 

YM155-treated for T1454 and T1548 cells. The regions of interest in the spectral data are shown 

for T1454 and T1459 in Figure 5.7. In addition, the integral of the citric acid peak relative to 

the TSP peak for all samples treated with YM155 is given in Figure 5.8.   
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Figure 5.7: Overlaid NMR spectra of three regions of interest: 1.2 to 1.6 ppm (lactate (L) and alanine (A) 

doublets), 2.35 to 3.0 ppm (citric acid (C)), and 2.8 to 4.5 ppm (carbohydrate region) from T1454 (left) and 

T1459 (right) cell lines. The spectra are colored by treatment: control = turquoise, TMZ-treated = magenta, 

YM155-treated = yellow. 
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Figure 5.8: Integral of citric acid peak relative to the integral of the TSP peak for all YM155-treated 

samples. Figure made with Excel template from [178]. 

The response to YM155 for the five cell lines was also assessed with a dose-response curve, in 

which the half maximal effective concentration (EC50) can be estimated. The curve was made 

by comparing the percentage of cells alive after treatment with a certain dosage of drug for a 

certain amount of time. EC50 is the drug dose at which 50% of the cells die. Treated cells were 

compared to control samples, which were handled exactly the same except for having no drug 

added to the culture medium [179]. In the present study, the cells were exposed to YM155 for 

72 hours before the survival percentage was measured. The measurements were done by MD 

Erlend Skaga, and the dose-response curve is presented in Figure 5.9. Note that the cells 

received for NMR analysis were treated for 24 hours and not 72 hours.  

0

1

2

3

4

5

6

T1454 T1456 T1459 T1547 T1548

In
te

gr
al

 o
f 

ci
tr

ic
 a

ci
d

 p
e

ak
 r

e
la

ti
ve

 t
o

 t
h

e
 in

te
gr

al
 o

f 
TS

P



72 

 

 

Figure 5.9: EC50 curve of the five cell lines used in the present study. Figure courtesy of MD Erlend Skaga. 

From the curve, it is evident that the EC50 values correlate with the two groups of cell lines 

found in the NMR and statistical analyses. In other words, the largest relative increase in citric 

acid and the smallest decrease in metabolites occurs in the cell lines that are the least sensitive 

to YM155. In Figure 5.10, the average integral of the citric acid peak is plotted versus the cell 

line EC50 value, further illustrating the correlation between sensitivity to YM155 and the 

amount of citric acid accumulating in the cells during treatment. The two groups of cell lines 

will from now on be called sensitive (T1456, T1459, T1547) and less sensitive (T1454, T1548) 

to YM155.  

 

Figure 5.10: Comparison of the average integral of citric acid (relative to the integral of TSP) in YM155-

treated samples from each cell line and their respective YM155 EC50 values. The color denotes cell line: 

green = T1459, red = T1456, blue = T1547, turquoise = T1548, and black = T1454.   
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At first glance, citric acid could be named the biomarker for lack of sensitivity towards YM155. 

However, it is important to note that the current data is only for a single time point (24 hours of 

treatment) and a single, and very high, concentration of drug (1250 nM). Furthermore, citric 

acid was identified in the one-dimensional spectra of all of the YM155-treated samples. It could 

be that the amount of citric acid in the sensitive cell lines was so low that it was not caught by 

the statistical analysis. Yet, even when the data were normalized to the total spectral intensity 

(instead of the TSP peak), no large citric acid peaks appeared in the sensitive cell lines. Thus, 

the difference is not solely due to the less sensitive lines having more cells left in the medium 

after the treatment course.  

Due to the limited data, it is difficult to pinpoint an exact reason for the differences in citric 

acid. In a study by Tiek et al., an increased amount of citric acid was found in the culture 

medium of TMZ-resistant cells, compared to TMZ-sensitive cells [180]. Perhaps the 

considerable rise in concentration (relative to the control samples) is a general response for less 

sensitive or resistant cells to a chemotherapeutic agent.  

Citric acid has not been extensively measured in vivo in brain tissue because of its low 

concentration. In a study by Seymour et al., they found an MR signal in pediatric CNS tumors 

consistent with citric acid, showing that the metabolite can possibly be seen with MRS in brain 

tissue [181]. Citric acid has been detected with MRS in healthy prostate tissue, were it is found 

in high concentrations [182, 183].  

To summarize, citric acid appears to have an excessively higher concentration in YM155-

treated samples from cell lines with high YM155 EC50 values (T1454, T1518). Thus, it is a 

potential biomarker of drug sensitivity in glioblastoma, and could be an important variable in 

non-invasive treatment assessment. Citric acid is detectable with MRS, but has not been 

extensively studied in (healthy) brain tissue because of its low concentration.    

Lactic acid: a possible biomarker for treatment exposure? 

Unlike citric acid, the lactic acid concentration had a uniform response to YM155 treatment: it 

decreased across all cell lines. Considering that it is readily detected with MRS [79, 177, 184], 

it could be considered a suitable biomarker for treatment exposure, i.e. that the 

chemotherapeutic agent has reached the tumor. For the sensitive cell lines, the decrease in lactic 

acid is likely due to a general loss of cells and thus metabolites. However, in the less sensitive 

cell lines, where there was both an increase and decrease in metabolite concentrations, the loss 
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of lactate is more difficult to explain. Possible reasons could be decreased rates of glycolysis or 

a stronger reliance on oxidative phosphorylation. The former may simply be because the cancer 

cells no longer are as proliferative as before, the latter as a possible survival adaptation.   

In summary, lactic acid decreases across all cell lines after treatment with YM155 and is thus 

a biomarker candidate for treatment exposure, regardless of sensitivity towards the drug.  

5.3.3 Principal component analysis did not reveal any biomarkers for 
response to temozolomide 

The TMZ-treated cell samples had 

similar distribution in the PCA scores 

plot as the control samples for all cell 

lines (see Figure 5.5); it was 

confirmed with an additional PCA 

comparing only control and TMZ-

treated samples, with the scores plot 

shown in Figure 5.11. At first glance 

all of the five cell lines may appear to 

be not sensitive to TMZ, since they 

were similar to the control samples. 

However, TMZ is a DNA-alkylating 

agent and it takes some time for its 

cytotoxic effect to develop. In the 

recent study by Tiek et al., the 

glioblastoma cells were cultured with 

TMZ for 72 hours [180], while in the 

present study they were cultured for only 24 hours. Thus, the most likely explanation for the 

similarities between control and TMZ-treated samples is that the cells were not yet experiencing 

the full cytotoxic effect of the drug. The short exposure period was chosen so that the YM155- 

and TMZ-treated cells were exposed to their respective chemotherapeutic agents for an equal 

amount of time, facilitating direct comparison of their corresponding spectral data.  

To summarize, the TMZ treated cells did not show any clear difference compared to the control 

samples, most likely due to too short exposure time to the chemotherapeutic agent.  

 

Figure 5.11: PCA scores plot of control and TMZ-treated 

samples from all cell lines.  Shapes denote treatment: 

control samples = ○ and TMZ-treated samples = ■. The 

colors denote cell lines: black = T1454, red = T1456, green 

= T1459, blue = T1547, cyan = T1548. 
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5.3.4 Examination of the second principal component  

The discussion so far has revolved 

around the loading plots of the first 

principal component (PC1), which 

accounts for approximately 25% of 

the variation seen in the data. The 

loading plots from PC2 did not lead 

to identification of any distinct new 

metabolites, except for cell line 

T1459. In the PC2 loading plot for 

T1459, shown in Figure 5.12, 

several peaks are elevated and almost 

all of the red ones can be assigned to 

D-glucose. In a study by Rozental et 

al., glioblastoma tumors were shown 

to increase glucose uptake 24 hours after treatment with carmustine (alkylating agent that can 

crosslink DNA [185]), and they believed this indicated tumor growth and repair [186]. It is 

perhaps a similar phenomenon occurring in the YM155-treated T1459 cells.    

In summary, the second PC revealed that cell line T1459 had an increase of cellular glucose 

levels after treatment with YM155. It did not reveal additional biomarker candidates in any of 

the other cell lines.   

5.3.5 Partial least squares regression was congruent with findings in 
the principal component analyses 

Since the PCA could separate the control and YM155-treated samples, a PLS regression was 

carried out to examine if it gave a congruent assessment of the sample data. The dataset was 

divided into a training set and a test set. The training set consisted of all of the control and 

YM155-treated samples from cell lines T1454, T1459 and T1547; the test set consisted of the 

corresponding samples from cell lines T1456 and T1548. The split was chosen such that the 

model was both trained and tested with sensitive and less sensitive cell lines. An even more 

reliable regression model could possibly have been achieved by not splitting along cell lines, 

but instead semi-randomly assigning the samples to either the training or test set. Both sets 

 

Figure 5.12: Loading plot for the second principal 

component of the PCA of control and treated samples 

from cell line T1459.  
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should then have received an approximately equal number of sample data from control/treated 

and sensitive/less sensitive cell lines, ensuring a reliable regression model. However, due to 

time constraints, code for the random sorting of the samples was not written and the former 

sorting method was used instead.  

The different assessment parameters of the PLS regression model (R2, Q2, Q2/R2, and V2) were 

plotted versus the number of latent variables (LVs) to determine two properties. First, to 

examine if the model was capable of predicting the response variable, which usually requires 

that the ratio between Q2 and R2 is equal to or above 0.8. If it is well below 0.8, the model might 

have incorporated noise and would show poor predictive capabilities [187]. Second, to decide 

how many LVs should be incorporated to provide a sufficiently accurate prediction without 

overfitting. Once the Q2/R2 curve either leveled off or fell below the maximum ratio, the highest 

number of necessary LVs had been reached.  

The assessment parameters of 

the control/YM155 PLS 

regression is shown in Figure 

5.13. The Q2/R2 ratio reached 

0.8 (red line) by the first LV, 

indicating that the model was 

valid. Considering the 

assessment parameter of the 

test set (green, V2), the model 

was generally able to predict 

the correct class of the sample 

based on its spectral data. 

Since the dataset was small 

(training = 33 samples, test = 

14 samples), the outcome was 

satisfactory.   

 

Figure 5.13: The Q2, R2, Q2/R2, and V2 values for the PLS 

regression of control samples versus YM155 treated samples.  
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The PCA was unable to 

distinguish control and TMZ 

samples, and neither could the 

PLS regression model. The 

analysis was first carried out 

with only CV and no test set, 

and it was immediately clear 

that the regression had failed; 

the Q2/R2 ratio was very low 

(<0.5), which can also be seen 

in Figure 5.14. No further test 

of the model was carried out.  

The consistent findings in the 

PCAs and PLS regressions 

further demonstrated that the 

metabolic differences between 

the control and YM155-treated cells were most likely not random.  

To summarize, the outcome of the PLS regression was congruent with the PCA: control and 

YM155-treated samples could be distinguished, while control and TMZ-treated samples could 

not. 

  

 

Figure 5.14: The Q2, R2, and Q2/R2 values for the PLS 

regression of control samples versus TMZ treated samples.  
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5.4 Liquid chromatography studies 

The NMR and statistical analyses revealed at least two metabolites as likely biomarker 

candidates in response to treatment with YM155: citric and lactic acid. The following liquid 

chromatography study was carried out to assess whether the findings could be repeated with a 

different analytical technique. In the two sections below, the assessment of packing silica 

particles with HILIC SPs in narrow capillaries (ID = 100 µm) and the subsequent coupling to 

mass spectrometry are described.  

5.4.1 Preliminary examination of narrow capillary columns 

A description of how column efficiency is calculated and how the UV detector operates is given 

in the Appendix (section 8.6 and 8.7, respectively).  

HILIC was chosen instead of RP as the stationary phase because of the high polarity of the two 

metabolites (log plactic acid = -0.7 [188] and log pcitric acid = -1.7 [189]). Furthermore, zwitterionic 

HILIC was chosen because of its versatility and because it has been utilized in a variety of 

metabolomics studies [112-116]. Specifically, in a study by Huang et al., ZIC HILIC was shown 

capable of separating citric and lactic acid [190].  

The application of narrow columns was pursued because of the possible gains in sensitivity (as 

described in section 3.7). ESI-MS is concentration sensitive and since the samples at hand were 

limited (40 µL cell lysate) and with small amounts of analyte, it was sensible to explore nano 

HILIC LC-MS. Nano-LC columns with HILIC are commercially available, from e.g. Merck-

Millipore, but they are often quite expensive to purchase. To reduce costs, the columns can be 

packed in-house, but this had not been done before with HILIC particles with the method 

described in [138]. Thus, a preliminary assessment of both “ease of packing” and the separation 

capabilities of HILIC capillary columns with 100 µm ID needed to be completed. In addition, 

the preliminary assessment would give some indication of which MP(s) worked well for the 

particular ZIC® HILIC particles that were available.  

The packing procedure followed that outlined in [138], the only difference being packing time 

(two minutes vs one hour). This can be most likely attributed to the difference in capillary ID 

(50 µm in the cited study vs 100 µm here) and particle diameters. In the study by Berg et al., 

the capillaries were packed with 2.6 µm diameter silica particles, which will lead to higher back 
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pressure and longer packing times than the 5 µm diameter silica particles used in the present 

study.  

Two different MP buffers were evaluated: 30 mM ammonium formate at pH 3 and pH 4.5. 

Earlier work by Johnsen et al. ([191]) and Bjørseth ([192]) concluded that ammonium formate 

buffers were suitable for ZIC® HILIC and the conclusion remains the same in this study. The 

pH of the buffer component of the MP had a large effect on the efficiency and quality of the 

chromatographic separation. In the present study, only the MP with buffer pH 4.5 provided 

satisfactory peak intensity and shape. Furthermore, the MP composition that was found to be 

most suitable was 70/30 (v/v) acetonitrile/buffer. Increasing the acetonitrile fraction resulted in 

very long elution times (>30 minutes) and poor peak shape for tryptophan, which was used as 

a test compound due to its UV absorption. MP gradients can be difficult to use with HILIC, in 

part because of long equilibration time [193], and it was not further elaborated upon in the 

present study due to time constraints.  

With the selected MP, toluene and tryptophan could be separated within 8 minutes, as shown 

in Figure 5.15. Separation efficiency was acceptable: N=2200 plates for the toluene peak with 

an 11 cm long column, equivalent of plate height H = 50 µm. N was calculated at full width, 

half maximum height of the toluene peak. In comparison, Kawachi et al. obtained plate heights 

of approximately 25 µm with a 2.1 mm x 150 mm ZIC® HILIC column from Merck, also 

packed with 5 µm diameter particles [194]. The equivalent plate number for the 15 cm long 

column is 6000.  
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Figure 5.15: Chromatogram of toluene (tR 4.95 minutes) and tryptophan (tR 5.70 minutes) separated on a 

capillary ZIC® HILIC column (100 µm ID/360 µm OD/25 cm long, 11 cm with particles) . The MP consisted 

of 70/30 (v/v) acetonitrile/buffer (30 mM ammonium formate, pH 4.5). The flow rate was kept at 1.00 

µL/minute.  

In summary, the preliminary assessment of in-house packing of ZIC® HILIC particles in 100 

µm ID capillaries showed that the packing resulted in columns with decent efficiency. The 

packing procedure was straightforward and quick. It was possible to separate toluene and 

tryptophan within 8 minutes on the column, with an efficiency of N = 2200 plates (11 cm 

column).  

5.4.2 Targeted metabolomics with liquid chromatography-mass 
spectrometry    

The mass spectrometry analysis was carried out in negative mode because citric and lactic acid 

were more likely to form ions via deprotonation than protonation. Prior to coupling the LC 

system to the MS, the m/z values of the deprotonated ions and fragment ions of citric and lactic 

acid had to be established by direct injection analysis. Additionally, the direct injection analyses 

were done to optimize MS parameters, e.g. ESI needle temperature and voltage. 

Lactic acid has a monoisotopic mass of 90.0317, and when deprotonated its calculated m/z 

equaled 89.0238. The pKa of lactic acid is 3.86, and it was assumed that it would be mostly 

deprotonated in the MP (buffer pH 4.5). Citric acid, on the other hand, has three carboxylic 

groups with pKa values of 3.13, 4.76, and 6.39, respectively. It was assumed to only be 
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singularly deprotonated, but a search for all three corresponding m/z values was carried out. 

The monoisotopic mass of citric acid is 192.0270, and the following m/z values were calculated: 

[M-H]-1 = 191.0191, [M-2H]-2 = 95.0056, and [M-3H]-3 = 63.0011. In a study by Huang et al., 

the main fragment of lactic acid was listed as m/z 43, resulting from loss of the carboxylic acid 

group. The main fragment of citric acid was listed as m/z 111, resulting from loss one carboxylic 

acid group and two water molecules [190].  

The citric acid [M-H]-1 ion and fragment ion with m/z = 111.007 were found in the direct 

injection analysis. However, for lactic acid there was a compound in the MP with very similar 

m/z. The interfering ion might have been eliminated by switching MPs, but due to time 

constraints it was not feasible in the present study. The LC-MS analyses thus only involved 

measurements of citric acid. 

The retention time of citric acid was established with a standard solution, and the MP 

composition was adjusted to 65% acetonitrile and 35% buffer (30 mM ammonium formate, pH 

4.5), as it resulted in better peak shape and shorter retention time. All samples, including the 

cell samples, were dissolved in 80/20 acetonitrile/buffer to promote focusing of the injected 

sample when it reached the column [195, 196]. 

Prior to LC-MS analysis, the proteins in the cell lysate were precipitated to avoid clogging of 

the capillary column and ion suppression in the ion source (ESI). Cold acetonitrile was chosen 

as the precipitant for several reasons. First, it is miscible with water but also easy to remove by 

evaporation. Second, it was a constituent of the MP and any small remnants of it from the 

precipitation would not interfere with the subsequent LC-MS analysis. Finally, salts were 

avoided, both to avoid clogging the capillary column and because not all salts are compatible 

with MS. An internal standard was not added because no absolute quantification was 

performed.  
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Due to time constraints, only six 

cell samples were analyzed: two 

control samples from T1454, two 

YM155-treated from a sensitive 

(T1459), and two from a less 

sensitive (T1454), cell line. In 

Figure 5.16, the relative peak areas 

for citric acid in the six samples are 

given. In the Appendix (section 

8.9), representative chromatograms 

are shown. From the figure, it is 

clear that there was vastly higher 

concentrations of citric acid in the 

YM155-treated samples from the 

less sensitive cell line. Even though 

the data are limited, they remain 

congruent with the NMR analyses.  

To summarize, only citric acid could be measured by targeted LC-MS, as lactic acid had similar 

m/z to an ion in the MP. Six cell samples (two control, two sensitive to YM155, two less sensitive 

to YM155) were measured and the relative peak areas of citric acid were compared. The 

findings were congruent with the NMR analysis: citric acid was present at high levels in the 

YM155-treated samples from less sensitive cell lines.  

  

 

Figure 5.16: The relative peak areas of citric acid in two 

control samples and YM155-treated samples from a 

sensitive (T1459) and a less sensitive (T1454) cell line. 

Figure made with Excel template from [178].  
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6 Conclusion 

In the present study, two biomarker candidates for treatment response were found. Citric acid 

was identified as a tentative biomarker of sensitivity towards chemotherapeutic agent YM155; 

its concentration was increased substantially in cell lines less sensitive to YM155 compared to 

those that were sensitive. On the other hand, the decrease in lactic acid in all cell lines following 

YM155 treatment indicated that lactic acid is a more general biomarker of exposure to the 

chemotherapeutic agent. Unfortunately, the TMZ-treated samples were not distinguishable 

from the control samples, most likely due to the short exposure time to the chemotherapeutic 

agent (24 hours) prior to NMR analysis. 

Both citric and lactic acid are measurable with MRS, indicating that the more long-term goal 

of following treatment in a noninvasive, personalized, and accurate manner could be possible. 

The clinical application of the current findings would rely on additional experiments to further 

develop an understanding of the exact fluctuations of citric and lactic acid during treatment. 

However, it remains clear that the demonstrated methods, especially 800 MHz 1H NMR with 

excitation sculpting as solvent suppression, are viable means to scout for biomarkers 

appropriate for MRS. The biomarkers found in the present study represent genuine candidates.  

6.1 Future work 

Further investigation of the fluctuations of citric and lactic acid in cultured glioblastoma cells 

is necessary to be able to more soundly understand their roles as biomarkers in response to 

YM155 treatment. The study should include additional patient-derived cell lines and different 

lengths of treatment and drug dosages. Furthermore, a similar study of TMZ-treated cells should 

be carried out, including cells treated for the appropriate amount of time (≥ 72 hours) with a 

variety of dosages across several patient-derived cell lines. Finally, biomarker candidates 

should be examined in patients being treated with TMZ, and YM155 if it is approved for clinical 

use. If successful, the scope could be broadened even further and other drugs could be 

investigated as well.  

The conclusion and suggestions for future work are illustrated in Figure 6.1.  
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Figure 6.1: Graphical illustration of conclusion and future work. The glioblastoma MRI is a case courtesy 

of Professor Frank Gaillard, Radiopaedia.org, rID: 8939.  
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8 Appendix 

8.1 Additional NMR theory 

8.1.1 Frame of reference 

It is common to describe NMR and the effect of pulses on the bulk magnetization vector from 

a rotating frame of reference rather than the laboratory frame of reference. If NMR is considered 

from a laboratory frame of reference, both B1 and the bulk magnetization vector are moving 

simultaneously, which is difficult to consider visually. In the rotating frame of reference, the x, 

y, z coordinate system is rotating with the same frequency as the bulk magnetization vector and 

B1, i.e. the Larmor frequency.  

In the rotating frame of reference, it is simpler to consider B1 as the sum of two vectors moving 

opposite of each other, as illustrated in Figure 8.1. The first vector remains static since it is 

moving with the same frequency as the coordinate system. The other vector moves with twice 

the frequency and in the opposite direction of the rotating frame; it has no significant interaction 

with the bulk magnetization vector and is ignored. Thus, the system has been simplified to two 

stationary vectors, M and the first vector of B1, and is much easier to study [85 (p. 14-15), 86 

(p. 53-55)]. In Figure 8.2, a schematic illustration of laboratory frame vs rotating frame is 

shown.  

 

Figure 8.1: The applied magnetic field B1 can be considered as one vector or the sum of two vectors. (I) B1 

oscillation can be illustrated as a single vector growing and shrinking along the x-axis. (II) B1 is made up of 

two vectors moving in the opposite directions, with the sum of the blue and grey vector equaling the black 

vector in (I). Figure adapted from [86 (p. 53)] 
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Figure 8.2: Laboratory frame of reference versus rotating frame of reference. When observing M and B1 in 

the laboratory frame of reference, the coordinate system is stationary while both B1 and M can move. This 

can be simplified by observing them in the rotating frame of reference, because B1 and M become stationary 

while the coordinate system rotates at the Larmor frequency. B1 is observed as the combination of two 

vectors, but only one of them is considered in the rotating frame of reference. While the first vector remains 

stationary, the other moves at twice the frequency, has no significant interaction with M and is therefore 

ignored. Figure adapted from [85 (p. 15)]. 

A common and illustrative analogy is to picture the laboratory frame of reference as observing 

the passengers on a merry-go-round from the ground. The merry-go-round is revolving and the 

passengers are moving up and down; their motion is a complex combination of both processes. 

In a rotating frame of reference, observation of the passengers would occur on the merry-go-

round. Then the motion of the passengers is much easier to understand: they are simply moving 

up and down.    

8.1.2 Pulse sequences: solvent suppression 

In Figure 8.3.I, the simplest one-dimensional pulse sequence is illustrated. The pulse sequence 

for solvent suppression by presaturation starts with a long, weak pulse that continuously 

irradiates the water signal, as shown in Figure 8.3.II. Since the pulse is long, the frequency is 

exact. After 1-3 seconds, the sample is irradiated with a short 90° pulse to acquire the signals 

from the other protons in the sample. The suppression of the water signal can be improved by 

adding various additional pulses with short delays (0-10 ms). Because of the total length of each 

repetition of the pulse program (ca 2 seconds), the signals from exchangeable protons are 

usually lost [85 (p. 480-482)].   
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Zero excitation can be achieved with a variety of pulse sequences. The simplest one begins by 

moving the bulk magnetization vector into the xy-plane with a 90° pulse, as shown in Figure 

8.3.III. As the various vectors fan out due to the differences in chemical shift of the nuclei, the 

solvent peak remains along the x-axis because it is on-resonance. A second 90° pulse, applied 

in the opposite direction, moves the solvent magnetization vector back to the z-axis. The other 

magnetization vectors do not perfectly align with the z-axis and the remaining x-component of 

their magnetization vectors enables detection [85 (p. 482-483), 197]. Improved pulse programs 

that remove more of the solvent signal have also been developed [85 (p. 482-483)].   

Recall that PFGs are magnetic fields applied along the z-axis of the sample such that the field 

no longer is equal throughout the sample. Additionally, recall that the Larmor frequency of 

nuclei depend on the static magnetic field they are placed in. If a PFG is applied after the initial 

excitation pulse, the nuclei in the sample are no longer precessing in an equal field and will fan 

out at varying rates, becoming dephased or defocused. The magnetization vectors will cancel 

each other out and no NMR signals can be detected. If a PFG of equal magnitude but opposite 

direction is applied to the sample, the magnetization vectors will be refocused [85 (p. 191-195 

and 473-485)].  

In excitation sculpting, a variant of solvent suppression with PFGs, the solvent nuclei are 

dephased and made unmeasurable by the combined action of PFGs and selective 180° pulses. 

In the same set of pulses, the other magnetization vectors are refocused by hard (short) 180° 

pulses. The process can be repeated prior to acquisition for an increased suppression, but the 

second set of PFGs should have different strength to avoid refocusing any of the previously 

defocused elements. The name excitation sculpting was chosen in part because the solvent 

signal is “chipped” away for each repetition of the PFGs and selective 180° pulses [85 (p. 191-

195 and 473-485), 198, 199]. In Figure 8.3.IV, an illustration of an example of an excitation 

sculpting pulse program is shown.   
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Figure 8.3: One-dimensional pulse sequences. (I) Simplest one-dimensional pulse sequence with relaxation 

time prior to a 90° excitation pulse. (II) Pulse program for solvent suppression by presaturation. The dashed 

rectangle illustrates where additional pulses would be added. (III) Simple pulse program for solvent 

suppression by zero excitation. (IV) Pulse program for solvent suppression by excitation sculpting. The 

selective pulses are shown as grey triangles, but each actually consists of a selective and a hard 180° pulse. 

The PFGs are the rounded pulses on the second line. Figures adapted from [85 (p. 134, 481, and 484)].  

8.1.3 Pulse sequences: Two-dimensional NMR 

All two-dimensional NMR pulse programs are based on the same general set up, schematically 

illustrated in Figure 8.4.I. The pulse sequence starts with a preparation pulse that excites the 

nuclei in the sample. It is followed by an evolution period (t1) that is incrementally increased 

for each repetition of the pulse sequence. Then a mixing pulse is applied to ensure that the 

desired signals are observable. The sequence ends with acquisition of the FID, which gives rise 

to the signals in the first dimension of the spectrum. The second dimension is acquired 

indirectly. For each increase of the evolution period, the magnetization vectors can precess for 

longer and the resulting frequency spectrum reflects that. If all of the first dimension frequency 

spectra are placed in a row, the changes in intensity can be traced and a second FID will emerge, 

as shown in Figure 8.4.II [85 (p. 171-176)]. In NUS, a random selection of evolution periods 

(t1) are carried out and acquired, the remaining data is calculated based on the few actual 

measurements made [85 (p. 185-186)].   
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Figure 8.4: General theory of two-dimensional NMR. (I) The pulse sequence of two-dimensional NMR 

experiments are all based on the same general set up. A preparation pulse (P) excites all nuclei in the sample, 

followed by an evolution time (t1) that is increased incrementally for each repetition of the pulse sequence. 

Then the mixing pulse (M) ensures that the desired magnetization is observable prior to detection. (II) The 

FID for the second dimension (t1) is found by following the modulation of signal intensity of peaks in the 

first dimension (f2). (III) The two-dimensional spectrum is usually displayed with one-dimensional spectra 

on its top and left side. The direct dimension is named f2 because it is acquired after the indirect dimension 

(f1). Figures adapted from [85 (p-171-176)].  
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The TOCSY pulse sequence, illustrated 

in Figure 8.5, consists of a 90° excitation 

pulse, the variable evolution time and a 

spin lock prior to detection. The spin lock 

is a continuous low-frequency pulse 

applied along the y-axis, i.e. where the 

magnetization vectors of the nuclei are 

first placed. While the spin lock is in 

place the magnetization vectors are 

continuously refocused and no chemical shift evolution occurs. However, evolution due to spin-

spin coupling is not affected by the spin lock and continues as if there were no pulse irradiating 

the sample [85 (p. 220-229)]. 

The simplest JRES pulse sequence begins 

with a 90° excitation pulse and is followed 

by a 180° pulse applied in the middle of the 

evolution time, as shown in Figure 8.6. 

The effect of the 180° pulse is similar to the 

spin lock in TOCSY: the chemical shifts 

are refocused but not the spin-spin 

couplings. After acquisition, the spectrum 

requires some processing because the 

coupling patterns in the indirect dimension are not vertical; they have a 45° tilt. The tilted peaks 

can cause overlap and confusion during examination of the spectrum. Processing packages are 

usually available in the NMR software [85 (p. 301-313)].      

Heteronuclear Single Quantum Coherence (HSQC) spectroscopy 

The HSQC spectrum reveals which protons and carbons are directly coupled with each other. 

Unlike TOCSY, it only has cross peaks and no diagonal line [85 (p. 246-256)]. Because of the 

very limited use of HSQC, no detailed description of its pulse sequence is given.  

  

 

Figure 8.5: TOCSY pulse sequence. Figure adapted 

from [85 (p. 221)].  

 

Figure 8.6: Simple JRES pulse sequence. Figure 

adapted from [85 (p. 301)].  
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8.2 Description of chemotherapeutic agent candidates and 
a drug mixture for treatment of glioblastoma 

CUDC-907 

CUDC-907 is a dual inhibitor of class I and II histone deacetylases (HDAC) and class I 

phosphoinositide 3-kinases (PI3K). The molecule is a combination of the active groups known 

to inhibit HDAC and PI3K, held together by a linker [200]. The various parts are highlighted 

in Figure 8.7, in which the molecular structure is shown.  

 

Figure 8.7: The molecular structure of CUDC-907. The HDAC inhibitor functionality site is encircled, while 

the PI3K inhibitor functionality site is enclosed in a rectangle, with the linker in between. The 2-

methoxypyridine connected to the PI3K inhibitor functionality had no specified function in the original 

article presenting CUDC-907, where it was simply shown as an R-group [200].  

PI3Ks are involved in cell signaling pathways stimulating cell growth and survival [2], and 

have been found to undergo genetic alterations in glioblastoma [201]. Current 

chemotherapeutic agents targeting the cell signaling pathways involving PI3Ks often fail. It is 

speculated that cancer cells are capable of reducing treatment efficacy by reprogramming their 

cell signaling pathways [202]. A suggested approach to sensitize cancer cells to PI3K inhibitors 

is to block HDACs simultaneously [203]. HDACs are involved in deacetylation of histones, 

proteins that take part in packing DNA into tighter structures. The packing of DNA affects 

transcription, and HDACs generally decreases the cells ability to transcribe genes [2 (p. 196-

197), 3  (p. 62-63)]. By inhibiting HDACs, cell differentiation and apoptosis can be induced 

[204]. The exact mechanisms involved are not clear. It has been shown that by inhibiting both 
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HDAC and PI3K simultaneously increases the efficacy of both treatments [200, 203]. CUDC-

907 has been tested on patient-derived glioblastoma cells and was found to be potent [205].      

FK866 (Daporinad) 

FK866 inhibits synthesis of nicotinamide adenine dinucleotide (NAD+) [206], an important co-

enzyme in several metabolic reactions occurring in cells [18 (p. 306-309)]. The depletion of 

NAD+ leads to apoptosis [206]. Specifically, FK866 is a noncompetitive inhibitor of the enzyme 

nicotinamide phosphoribosyl transferase (NMPRTase, also abbreviated to NAMPT), which 

catalyzes the conversion of nicotinamide and phosphoribosyl pyrophosphate to nicotinamide 

mononucleotide and pyrophosphate (P2O7
-4), the rate-limiting step of NAD+ synthesis [207]. 

Several cancers have elevated expression of NMPRTase and are highly dependent of NAD+, 

including glioblastoma [208]. The molecular structure of FK866 is shown in Figure 8.8.    

 

Figure 8.8: The molecular structure of the novel chemotherapeutic agent FK866.  

CUSP9  

CUSP9 (Coordinated Undermining of Survival Paths) started as a mixture of eight different 

drugs given in addition to temozolomide to patients suffering from recurrent glioblastoma. All 

of the drugs were already established and well tolerated in treatment of other diseases. They 

were chosen because they targeted vulnerable pathways in glioblastoma or were thought to give 

a general increase in overall survival. Five of the drugs were given with the goal of impairing 

or inhibiting growth factors and growth signaling pathways: aprepitant, artesunate, auranofin, 

disulfiram with copper gluconate, and nelfinavir. The three remaining drugs had published 

results of increasing overall survival: captopril, sertraline, and ketoconazole [209].  

A year later, the authors published an article describing an updated mixture, CUSP9*. The main 

differences between the two mixtures were changing drugs that were no longer available 
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(ketoconazole to itraconazole, nelfinavir to ritonavir), no longer adding an exogenous copper 

source for disulfiram to chelate with as it was deemed unnecessary, and adding celecoxib 

because it also targeted survival signaling pathways in glioblastoma [210].  

The authors of the first article carefully evaluated the possibility of interactions between the 

nine drugs and concluded that the only two with potential harmful interaction was artesunate 

and auranofin. However, side-effects did turn out to be an issue, even with CUSP9*, and further 

adjustments of dose and type of drugs has been made. The mixture used in this project 

(CUSP9v4) contains aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, 

minocycline, quetiapine, and sertraline, in addition to temozolomide. The expected benefit of 

the drugs and their molecular structures are given in Table 8.1 and Table 8.2 respectively. 

Temozolomide is not included because it is described in detail in section 3.3. 

Table 8.1: The expected benefit of the drugs found in CUSP9v4, not including temozolomide.   

Drug  Expected benefit Source 

Aprepitant Commonly used to treat nausea.  

Inhibitor of neurokinin-1 receptor (NK1R). NK1R is involved in cell proliferation 

and inhibition of it has been suggested to cause glioblastoma cells to undergo 

apoptosis.  

[210, 

211] 

Auranofin Commonly used to treat rheumatoid arthritis.  

In glioblastoma, auranofin has three possible effects. First, it can cause increased 

generation of reactive oxygen species because of its ability to inhibit thioredoxin 

reductase.  Second, it weakly inhibits cathepsin B, a protein that is upregulated and 

contributes to glioblastoma growth. Finally, auranofin can inhibit the protein 5-

lipoxygenase (5-LO), yet another important enzyme in glioblastoma survival 

pathways.  

[210] 

Captopril Commonly used to treat hypertension and congestive heart failure because of its 

ability to inhibit the angiotensin conversion enzyme (ACE).  

In glioblastoma, it has been shown to reduce the need of steroids, inhibit 

angiogenesis, and inhibit growth in cancer cell models.  

[209, 

210] 

Celecoxib Commonly used for treatment of pain.  

Celecoxib inhibits cyclooxygenase (COX). COX, together with 5-LO, are suggested 

to have roles in the tumorigenesis and proliferation of glioblastoma.  

[210, 

212] 

Disulfiram Commonly used to treat alcoholism. Disulfiram makes consumption of ethanol highly 

unpleasant by inhibiting aldehyde dehydrogenase, which leads to build-up of 

acetaldehyde.  

[209, 

210] 
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Disulfiram has several possible anti-cancer capabilities, among them inhibition of 

MGMT (thus sensitizing glioblastoma to temozolomide). In addition, it can inhibit a 

drug exporter found in the brain (P-glycoprotein).   

Itraconazole Commonly used as an anti-fungal agent.  

The anti-tumor effect of itraconazole includes anti-angiogenic abilities and inhibition 

of VEGF.  

[210] 

Minocycline Commonly used as an antibiotic in treatment of acne vulgaris.  

In glioblastoma, it has been shown to have antiangiogenic effects in mouse models 

and is being considered as an adjuvant therapy to temozolomide.  

[213, 

214] 

Quetiapine Commonly used as an antipsychotic, e.g. for treatment of schizophrenia, bipolar 

disorder, major depressive disorder, and generalized anxiety. 

In glioblastoma, quetiapine has shown an ability to suppress cell growth, 

downregulate PI3K, and sensitize glioblastoma cells to temozolomide, among other 

things.   

[215, 

216] 

Sertraline Commonly used as an anti-depressant and for treatment of excessive anxiety.  

Sertraline is also used as an anti-depressant in CUSP9 because it has been shown to 

have a positive effect on glioblastoma patients. Additionally, the compound has 

shown to have some anti-cancer abilities. It inhibits translationally controlled tumor 

protein (TCTP), which in turn is an inhibitor of the protein p53. By reestablishing the 

pro-apoptotic signaling from p53, cancer cells can be sensitized to other cytotoxic 

compounds.   

[210] 
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Table 8.2: The molecular structure of the drugs found in the mixture CUSP9v4, not including temozolomide.    

Drug  Molecular structure 

Aprepitant 

 
Auranofin 

 
Captopril 

 
Celecoxib 

 

Disulfiram 
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Itraconazole 

 
Minocycline 

 

Quetiapine 

 

Sertraline 
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8.3 Experimental details: Cell culturing 

MD and PhD candidate Erlend Skaga cultured the cell samples received during fall 2016, and 

fellow Marit Christensen cultured samples received from December 2016 to April 2017. Lab 

technician Maria Ewa Walewska cultured the samples received from May to November 2017. 

All three carried out their work at the facilities at the Vilhelm Magnus Laboratory for 

Neurosurgical Research, Institute of Clinical Medicine, University of Oslo (UiO).  

8.3.1 Chemicals 

The following chemicals were used during cell culturing: trypsin-EDTA 

(ethylenediaminetetraacetic acid) from Invitrogen (Carlsbad, CA, USA), owned by Thermo 

Fisher; human albumin from Octapharma Pharmazeutika Produktionges (Lachen, Switzerland); 

L-15 cell culture medium from Lonza (Basel, Switzerland); serum free Dulbecco’s Modified 

Eagle’s Medium (DMEM/F-12 GlutaMAX™) from Gibco/Thermo Fisher Scientific; 10 ng/mL 

basic fibroblast growth factor (bFGF) and 20 ng/mL epidermal growth factor (EGF), both from 

R&D Systems (Minneapolis, MN, USA); penicillin/streptomycin 100 U/mL from Lonza; 

heparin 1 ng/mL from Leo Pharma (Ballerup, Denmark); 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) 8 mM from Lonza; 1:50 B27-supplement without 

retinoic acid from Gibco/Thermo Fisher Scientific. 

The following drugs (in addition to DMSO, temozolomide, and YM155 listed in section 5.3) 

were used to treat the cultured cells: CUDC-907 (ID S2759) from Selleck Chemicals, daporinad 

(also known as FK866, ID Axon 1546) from Axon MedChem (Reston, VA, USA), and CUSP9 

which contains auranofin (ID sc-202476) from Santa Cruz Biotechnology (Dallas, TX, USA), 

temozolomide, and aprepitant (ID S1189), captopril (ID S2051), celecoxib (ID S1261), 

disulfiram (ID S1680), itraconazole (ID S2476), minocycline (ID S4226), quetiapine fumarate 

(ID S1763), sertraline (ID S4052) all from Selleck Chemicals.  

8.3.2 Method: cell culturing 

Skaga wrote the following description of how the samples were obtained and the cells cultured.  

Technical information: Spinning procedure: 300xg in 5 minutes.  



112 

 

Glioblastoma biopsies were obtained from seven informed and consenting patients undergoing 

surgery for glioblastoma at Oslo University Hospital, Norway, approved by The Norwegian 

Regional Committee for Medical Research Ethics. Histopathological diagnostics were 

performed according to the WHO classification. Cell cultures were established both from the 

tumor biopsy and ultrasonic aspirate generated during surgery. Single cells were isolated 

mechanically and enzymatically with trypsin-EDTA, blocked by 2 mg/mL human albumin and 

washed in L-15 cell culture medium. Cells were cultured under sphere forming conditions 

containing serum free Dulbecco’s Modified Eagle’s Medium (DMEM), 10 ng/mL bFGF, 20 

ng/mL EGF, penicillin/streptomycin 100 U/mL, heparin 1 ng/mL (Leo Pharma), HEPES 8 mM 

and 1:50 B27-supplement without retinoic acid.  

Cell treatment and sample preparations 

Cells were plated at 300,000 cells/mL under sphere-forming conditions. YM155 (final 

concentration 1250 nM), temozolomide (final concentration 250 µM) and negative control 

(0.5% DMSO) were added in three different flasks, respectively. Following incubation for 24 

h cells were washed two times in Dulbecco’s Phosphate Buffered Saline (DPBS) and snap 

frozen in liquid nitrogen before storage in -80 °C. The samples were transported to the NMR 

facility with dry ice in a Styrofoam box with a lid. 

8.3.3 Received cell samples for preliminary nuclear magnetic 
resonance spectroscopy analyses  

The samples received fall 2016 and January 2017 were used for preliminary NMR analyses and 

testing of 3 ID mm NMR tubes, respectively. In Table 8.3 an overview of the samples received 

from Skaga are shown, while in Table 8.4 an overview of Christensen’s samples are given. The 

remaining samples received are listed in Table 4.1.  
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Table 8.3: Overview of samples analyzed in the preliminary NMR analysis fall 2016. For each sample the 

sample number, cell line it originated from, the approximate number of cells in the sample, treatment and 

identifier are listed. Samples with treatment cell medium and 0.5% DMSO were control samples for the 

samples treated with temozolomide. The samples only treated with cell medium were control samples for 

the samples treated with YM155 or daporinad. The sample treated with cell medium and 0.1% DMSO was 

the control sample for the sample treated with CUDC-907. Finally, the samples treated with cell medium, 

0.1% DMSO and 20 µM Cu(ii)Cl were control samples for samples treated with CUSP9. Skaga cultured 

the cells.  

Sample 

number 

Cell 

line 

Number 

of cells 

(millions) 

Treatment Identifier 

1 T1456 3 Temozolomide pT1 

2 T1456 3 Cell medium + 0.5% DMSO pD2 

3 T1456 3 YM155 pY3 

4 T1456 3 Only cell medium pM4 

5 T1456 3 Cell medium + 0.1% DMSO pD5 

6 T1456 3 CUDC-907 pC6 

7 T1456 3 CUSP9 pCU7 

8 T1456 3 Cell medium + 0.1% DMSO + 20 μM Cu(ii)Cl pDCu8 

9 T1502 2.5 Temozolomide pT9 

10 T1502 2.5 Cell medium + 0.5% DMSO pD10 

11 T0965 1.5 Only cell medium pM11 

12 T0965 1.5 YM155 pY12 

13 T0965 3 Cell medium + 0.5% DMSO pD13 

14 T0965 3 Temozolomide pT14 

15 T1459 2 Temozolomide pT15 

16 T1459 2 Cell medium + 0.5% DMSO pD16 

17 T1459 2 YM155 pY17 

18 T1459 2 Only cell medium pM18 

19 T1454 3 Temozolomide pT19 

20 T1454 3 Cell medium + 0.5% DMSO pD20 

21 T1454 3 CUSP9 pCU21 

22 T1454 3 Cell medium + 0.1% DMSO + 20 μM Cu(ii)Cl pDCu22 

23 T1454 3 YM155 pY23 

24 T1454 3 Only cell medium pM24 

25 T1459 3 Daporinad pDa25 

26 T1459 3 Daporinad pDa26 

27 T1459 4 Daporinad pDa27 

28 T1459 3 Cell medium pM28 

29 T1459 3 Cell medium pM29 

30 T1459 4 Cell medium pM30 
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Table 8.4: Overview of samples analyzed when 3 mm NMR tubes were tested, January 2017. For each 

sample the sample number, cell line it originated from, treatment and identifier are listed. Three different 

cell lines were analyzed, each with one control group and two different groups treated with either 

temozolomide or YM155. All the samples contained approximately 3 million cells. Samples treated with 

DMSO were considered control samples, and are highlighted with gray. Christensen cultured the cells.  

Sample 

Number 

Cell line Treatment Date sample collection (day/month/year) Identifier 

1 T1456 Temozolomide 23/12/2016 T1 

2 T1456 Temozolomide 23/12/2016 T2 

3 T1456 YM155 23/12/2016 Y3 

4 T1456 YM155 23/12/2016 Y4 

5 T1456 DMSO 23/12/2016 D5 

6 T1456 DMSO 23/12/2016 D6 

7 T1456 Temozolomide 06/01/2016 T7 

8 T1456 YM155 06/01/2016 Y8 

9 T1456 DMSO 06/01/2016 D9 

10 T1459 DMSO 23/12/2016 D10 

11 T1459 DMSO 23/12/2016 D11 

12 T1459 DMSO 23/12/2016 D12 

13 T1454 Temozolomide 23/12/2016 T13 

14 T1454 Temozolomide 23/12/2016 T14 

15 T1454 YM155 23/12/2016 Y15 

16 T1454 YM155 23/12/2016 Y16 

17 T1454 DMSO 23/12/2016 D17 

18 T1454 DMSO 23/12/2016 D18 

 

8.4 Experimental details: Preliminary studies in nuclear 
magnetic resonance spectroscopy 

8.4.1 Instrumentation 

Preliminary NMR analyses were done with 5 mm OD Boroeco-5-7 tubes from Deutero. The 

tubes were placed in POM standard bore spinners from Bruker. NMR tubes with 3 outer mm 

diameter, model 341-PP-7 from Wilmad-LabGlass, were assessed as well. The tubes had 

5X3INS-B Optimizer Inserts™ from Norell (Morganton, NC, USA) in addition, to fit into the 

standard bore POM spinners. 

Centrifugation was done with A 5415 R Eppendorf centrifuge.  

The following NMR instrumentation from Bruker was used: an AVI600 (600 MHz) NMR 

instrument with a 5 mm Triple Resonance (TCI) cryoprobe and Bruker Automated Control 
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System (B-ACS) 60-sample changer was used. The 600 MHz instrument was run with the 

program TopSpin versions 2.1 patch level 6 (2.1pl6).  

8.4.2 Chemicals 

The same chemicals as listed in section 4.2.1 were used, in addition to acetone (GPR 

RECTAPUR®, ≥ 99.5%) from VWR.  

8.4.3 Solutions 

The NMR buffer described in section 4.4.1 was used.  

8.4.4 Methods 

NMR sample preparation 

The Boroeco-5-7 NMR tubes, which were used for cancer samples from September to 

December 2016, were rinsed manually once with acetone and three times with type 1 water. 

The 3 mm NMR tubes were washed with the Multi-Tube Jet Washer/Dryer, as described in 

Section 4.5.1.  

The cell samples were prepared as described in section 4.5.1 in the preliminary NMR study. 

For the test of 3 mm NMR tubes, only 220 µL of type 1 water was added before cell lysis by 

ultrasound, and only 180 µL of sample and 20 µL of buffer was transferred to the NMR tubes.  

Setup of preliminary NMR analyses  

Probe temperature was 299.7 K and gas flow was 800 L/hour, which ensured the samples 

experienced a temperature of 25 °C during measurements. Once in the magnet, the sample was 

locked to the deuterium signal of D2O, using Bruker’s lock made for 90% H2O and 10% D2O 

mixtures. After locking, the sample was tuned and matched using the command atma 

(automatic tuning and matching). The samples were shimmed in the same way as described in 

section 4.5.2. 

The 3 mm tubes were set up in as described in section 4.5.2. Only one-dimensional spectra with 

excitation sculpting as solvent suppression was carried out, also as described in section 4.5.2.   
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One-dimensional NMR analyses 

Two different one-dimensional spectra were acquired: proton spectrum with NOESY 

presaturation solvent suppression (pulse program noesygppr1d.comp) and proton spectrum with 

excitation sculpting solvent suppression (pulse program zgesgp.dp). The code for each pulse 

program is given in section 8.12. Details concerning acquisition parameters are given in Table 

8.5 and details concerning processing parameters are given in Table 8.6.  

Table 8.5: The general acquisition parameters for all samples analyzed with the pulse programs 

noesygppr1d.comp and zgesgp.dp. Sec is an abbreviation of seconds and μsec is an abbreviation of 

microsecond (1×10-6 second). 

Name of acquisition parameter Abbreviation Settings (NOESY 

presaturation) 

Settings (Excitation 

sculpting) 

Size of FID TD 65536 65536 

Number of dummy scans DS 4 2 

Number of scans NS 32 128 

Spectral width SW 20.6225 ppm 16.0221 ppm 

Acquisition time AQ 2.6476543 sec 3.4078720 sec 

Receiver gain RG 512 256 or 512 

Dwell time DW 40.400 μsec 52.000 

Probe temperature TE 302.5 K 300.0 

Transmitter frequency offset o1 2816.20 ppm 2816.20 ppm 

 

Table 8.6: The general processing parameters for all samples analyzed with the pulse programs 

noesygppr1d.comp and zgesgp.dp.  

Name of processing parameter Abbreviation Settings (NOESY 

presaturation) 

Settings (Excitation 

sculpting) 

Size of real spectrum SI 65536 65536 

Spectrometer frequency SF 600.13 MHz 600.13 MHz 

Line broadening LB 0.30 Hz 1.00 Hz 

Phasing mode PH_mod pk No 

Linear prediction for Fourier 

transformation 

ME_mod No No  

Number of linear prediction 

coefficients  

NCOEF 0 0 

Number of output points for linear 

prediction 

LPBIN 0 0 
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Two-dimensional NMR analyses 

The JRES experiments were acquired with the pulse program jresgpprqf, the TOCSY 

experiments were acquired with the pulse program dipsi2esgpph, and the HSQC experiment 

was acquired with pulse program hsqcdietgpsisp.2. Details concerning acquisition parameters 

are given in Table 8.7 and details concerning processing parameters for TOCSY are given in 

Table 8.8. The JRES spectra all had the size of the real spectrum increased to 16,384 (twice the 

size of F2’s TD) and were calibrated by placing TSP at 0.00 ppm in all spectra. The HSQC 

spectrum was not further processed once acquired.  

The code for each pulse program is given in section 8.12.  

Table 8.7: The general acquisition parameters for all samples analyzed with the pulse programs jresgppraf, 

dipsi2esgpph, and hsqcdietgpsisp.2. F1 and F2 denote the frequency axes.  Sec is an abbreviation of seconds 

and μsec is an abbreviation of microsecond (1×10-6 second). 

Name of acquisition 

parameter 

Abbreviation Settings  

(JRES)  

Settings  

(TOCSY) 

Settings  

(HSQC) 

nD acquisition mode FnTYPE Traditional(planes) Traditional(planes) Traditional (planes) 

Size of FID TD F2: 8192  

F1: 40 

F2: 2048 

F1: 512 

F2: 1024 

F1: 512 

Number of dummy 

scans 

DS F2: 16 F2: 32 F2: 64 

Number of scans NS F2: 128 F2: 8 F2: 16 

Spectral width SW F2: 16.6630 ppm 

F1: 0.1320 ppm  

F2: 10.2102 ppm 

F1: 10.2016 ppm 

F2: 10.0138 ppm 

F1: 160.0000 ppm 

Acquisition time AQ F2: 0.40960 sec 

F1: 0.25600 sec 

F2: 0.1671168 sec 

F1: 0.0418143 sec 

F2: 0.0851968 sec 

F1: 0.0106020 sec 

Increment for delay IN_F F1: 12800.00 µsec F1: 163.34 µsec F1: 41.41 µsec  

Receiver gain RG 512 256 11585.2 

Dwell time DW 50.000 µsec 81.600 µsec 83.200 µsec 

Probe temperature TE 3002.5 K 300.0 K 300.0 K 
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Table 8.8: The general processing parameters for all samples analyzed with the pulse program 

dipsi2esgpph. 

Name of processing parameter Abbreviation Settings 

Size of real spectrum SI F2: 2048 

F1: 1024 

Spectrometer frequency SF F2: 600.13 MHz 

F1: 600.13 MHz 

Window function WDW F2: QSINE 

F1: QSINE 

Line broadening LB F2: 1.00 Hz 

F1: 0.30 Hz 

Phasing mode PH_mod F2: pk 

F1: pk  

Linear prediction for Fourier transformation ME_mod F2: None 

F1: LPfc 

Number of linear prediction coefficients  NCOEF F2: 0 

F1: 32 

Number of output points for linear prediction LPBIN F2: 0 

F1: 2048 

 

Statistical analysis: pre-processing 

The one-dimensional spectra were phased and calibrated manually in TopSpin, before being 

transformed to ASCII files (.txt) with the command convbin2asc.  

The NMR data were pre-processed as described in section 4.5.5, except normalization was to 

the integral of the total spectrum (not including the TSP peak), not to the integral of the TSP 

peak.  Pareto was used as the scaling method; each variable was divided by its squared standard 

deviation. The spectral baselines were corrected (non-polynomial smoothing) prior to 

multivariate statistical analyses, using an algorithm from the FTICRMS R package [143]. 

PCA with R 

PCA was carried out the same way as described section 4.5.5. The script used for the PCA of 

the preliminary data is given in section 8.11.1.  
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8.5 Results and discussion: preliminary studies 

8.5.1 Exploration and selection of nuclear magnetic resonance 
spectroscopy experiments 

The goal of the preliminary studies was to decide what kind of solvent suppression method best 

suited the samples, which type of NMR experiments to continue with, and perform a 

preliminary statistical analysis of data to hone in on which chemotherapies would be the focus 

for the remainder of the project.  

Assessment of solvent suppression methods 

The cell samples used in the preliminary NMR analysis contained 90% water (1H2O). The cell 

lysate was not diluted in pure deuterated water (D2O) because it would result in loss of signal 

from exchangeable protons on acids and bases. Since biological samples contain a variety of 

acids and bases, valuable information could have been lost by diluting the lysate with D2O only. 

However, without the use of solvent suppression during the acquisition of spectra, the 

overpowering water (1H2O) signal would disguise most of the other signals coming from the 

sample. [85 (p. 480-486)].  In Figure 8.9, a comparison of a sample before and after solvent 

suppression is given. It is clear that collection of useful data was dependent on acquisition of 

spectra with successful suppression of the solvent signal.  
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FIGURE 8.9: Difference between acquiring one-dimensional NMR spectra without (I) and with (II) solvent 

suppression. The same sample was used to acquire both spectra. In (I), NS = 16 and DS = 2. The highlighted 

area of the spectrum is the TSP peak. In (II), NS = 128 and DS = 2. The solvent was suppressed with 

excitation sculpting.  
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In section 3.5.3, three different methods for suppression of solvent signals were described: 

presaturation, zero excitation and excitation sculpting. Of these three, presaturation and 

excitation sculpting were chosen to be examined. The presaturation pulse sequence included 

pulses usually found in Nuclear Overhauser effect spectroscopy (NOESY) sequences. The 

additional pulses are added to further suppress the solvent signal. NOESY presaturation was 

chosen because it is a simple and robust technique, while excitation sculpting was chosen 

because it has fewer issues with baseline distortions and has improved phase properties [85 (p. 

480-486)]. Of the two, NOESY presaturation is the most common to use, as shown in recent 

metabolomics studies of urine [217], and serum [218, 219]. Excitation sculpting usually has 

more efficient solvent suppression, and can be employed if deemed necessary [89].  

A representative spectrum of solvent suppression with NOESY presaturation is shown in 

Figure 8.10 and a representative spectrum with excitation sculpting is shown in Figure 8.11. 

It is clear from the spectra shown in the two following figures that excitation sculpting was the 

better solvent suppression method because the residual water signal was three factors smaller 

than in the NOESY presaturation spectrum.  

 

Figure 8.10: Solvent suppression by NOESY presaturation. Notice the large, residual water peak at 4.5 to 5 

ppm and the increased intensity of the constituent molecules of the sample. NS = 32 and DS = 2.   
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Figure 8.11: Solvent suppression by excitation sculpting. Notice how much smaller the residual water peak 

at 4.5 to 5 ppm is. Furthermore, the constituent molecules of the sample show increased signal intensity. NS 

= 128 and DS = 2.   

Thus, in summary, further work with one-dimensional experiments was carried out with 

excitation sculpting as the solvent suppression method.  

Assessment of two-dimensional spectra 

In section 3.5.4, the advantages of two-dimensional spectra for metabolite identification was 

highlighted. Briefly, two-dimensional spectra can provide information on connectivity between 

nuclei and coupling patterns otherwise overlapped in the one-dimensional spectra. In the 

preliminary study, coupling between 13C and 1H was attempted examined by acquiring HSQC 

spectra. The additional information about carbon would be a great aid in identification of the 

constituent molecules [89].  

The two-dimensional spectra had to be possible to acquire in a reasonable amount of time and 

with satisfactory signal intensity. Considering several dozens of samples needed to be 

measured, a reasonable amount of time was set as maximum 8 hours total per sample for all 

spectral measurements. Within that time, a satisfactory signal intensity was considered 

detection of peaks (signal-to-noise ratio > 3) from approximately zero to eight ppm.   
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The low natural abundance of 13C (1.1%) and small magnetogyric ratio (γ) severely impacts the 

sensitivity of acquisition, but it can be alleviated to some degree. Three common approaches 

are to acquire several scans, increasing the sample concentration [85 (p. 97-103)], or enriching 

the sample with 13C [170, 220]. There are drawbacks with all three solutions: additional scans 

mean longer experiments, growing many cells is time-consuming and often technically 

difficult, and 13C enrichment is prohibitively expensive. Thus, if 13C NMR spectra could not be 

acquired with the samples on hand (three million cultured cells per sample, unenriched) within 

a reasonable amount of time (< 8 hours), it would be not be carried out.  

Three different two-dimensional NMR experiments were assessed: 1H JRES, 1H TOCSY, and 

HSQC, as they are the most commonly used in metabolomics [89]. Representative spectra are 

shown in Figures 8.12 (JRES), 8.13 (TOCSY), and 8.14 (HSQC). Both JRES and TOCSY 

filled the criteria set: adding overall useful additional information within a practical time frame 

and with satisfactory signal intensity.  

The JRES spectrum untangled the coupling patterns of the various peaks in the one-dimensional 

proton spectrum. Many of the peaks were overlapping and difficult to discern properly in the 

one-dimensional spectrum alone. The experimental time on the AVI600 was 2 hours and 25 

minutes, but this was lowered to 1 hour and 4 minutes on the AVIIIHD800 because of intrinsic 

higher sensitivity and use of NUS (25% coverage).   

The TOCSY spectrum gave valuable information on the coupling of the various peaks in the 

one-dimensional proton spectrum. By acquiring TOCSY spectra, it was possible to know which 

peaks were derived from the same molecule – knowledge that would be exceedingly difficult 

to unravel from the one-dimensional spectrum only. Experimental time was 2 hours and 4 

minutes on the AVI600, but it was increased to 4 hours on the AVIIIHD800, in addition to 

using NUS (25% coverage), to maximize the amount of information gathered.   

The HSQC experiment was not feasible to do. Even with 4 hours experiment time, few to no 

peaks were seen. It was briefly considered to do HSQC on one replicate sample per cell line 

and treatment scheme. However, this could have possibly added weeks of measuring time, even 

on the AVIIIHD800 instrument, and it was decided that the JRES and TOCSY experiments 

would suffice.  
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Figure 8.12: Representative JRES spectrum, acquired on the AVI600 instrument. NS = 128 and number of 

t1 increments was 40. Experiment time was 2 hours and 25 minutes.  

 

Figure 8.13: Representative TOCSY spectrum, acquired on the AVI600 instrument. NS = 8 and number of 

t1 increments was 512. Experiment time was 2 hours and 4 minutes.  
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Figure 8.14: Representative HSQC spectrum, acquired on the AVI600 instrument. NS = 16 and number of 

t1 increments was 512. Experiment time was 4 hours.  

In summary, three different two-dimensional NMR experiments were assessed: 1H JRES, 1H 

TOCSY, and HSQC. Due to sensitivity issues, only proton two-dimensional spectra could be 

acquired. JRES and TOCSY experiments proved to be both rich in information and possible to 

acquire within a reasonable time frame.  

Initial statistical analysis 

The cultured cells had been treated with five different drugs or drug mixtures: temozolomide, 

YM155, CUSP9, CUDC-907, and daporinad. It would not be feasible to measure adequate 

numbers of replicates (≥ 3) for all treatments on a variety of cell lines (≥ 3) within the time 

constraints of the project. Instead, it was decided to focus on temozolomide and one additional 

chemotherapeutic agent. Temozolomide is an adjuvant chemotherapy given together with 

radiation therapy in treatment of glioblastoma patients [35, 36], and was therefore of interest to 

study further.  

To facilitate the choice of one of the other four chemotherapies, PCA of the data listed in Table 

8.3 was carried out. In metabolomics, it is common to use PCA in the initial exploratory analysis 

of data [221]; it simplifies complex datasets and can reveal similarities and differences between 

samples. Ideally, it would point out which of the treated samples were dissimilar to the control 
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samples, i.e. show in which samples metabolic change had occurred. Samples with ID 9, 10, 13 

and 14 were not included because they did not have satisfactory one-dimensional spectra. PCA 

with and without baseline correction was carried out, and it was clear that it affected the scores 

plot of the PCA quite heavily, further illustrated in Figure 8.15 and 8.16. Three samples failed 

to have their baselines corrected: 3, 6, and 8. Scaling with unit variance was deemed too harsh 

and introduced too much noise. Instead, pareto scaling, division by the squared standard 

deviation, was used. 

 

Figure 8.15: PCA scores plots of all cell lines without (left) and with (right) baseline correction. Color 

denotes cell line: black = T1454, red = T1456, and green = T1459. Shape denotes treatment: control = ○, 

TMZ = ■, YM155 = ▲, CUSP9 = ◊, FK866/daporinad = , CUDC-907 = *.  
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Figure 8.16: PCA scores plots of cell lines T1454, T1456, and T1459 without (left) and with (right) baseline 

correction. In the baseline corrected PCA of T1456, three samples were removed because they failed 

correction (sample ID 3, 6, and 8). Color denotes cell line: black = T1454, red = T1456, and green = T1459. 

Shape denotes treatment: control = ○, TMZ = ■, YM155 = ▲, CUSP9 = ◊, FK866/daporinad = , CUDC-

907 = *.  
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The most noticeable effect seen in the PCA scores plots is how much baseline correction 

affected the outcome of the PCA. In addition, there were very few replicates of each sample 

type (cell line and treatment). Thus, the outcome of the PCA could not be considered without 

caution.  

Samples treated with YM155, FK866/daporinad, CUDC-907 and CUSP9 were all separated 

from their respective control samples. CUSP9 was rejected as an option because it involved 

many different drugs and would probably not be available for widespread clinical use in the 

near future. FK866/daporinad showed consistent separation from control samples, but its 

benefit is largely in sensitizing cells to TMZ and not as a standalone chemotherapeutic agent 

[56, 222]. The present study was interested in examining the individual differences of response 

to chemotherapeutic agents, and mixing could confound the metabolic findings. CUDC-907 

was at the time (autumn 2016) in early clinical trials. It was of greater interest to the surgeons 

at Rikshospitalet to pursue YM155, which had shown promising effect on glioblastoma cell 

lines [59, 60, 223]. The decision was supported by the fact that YM155 was clearly separated 

from control samples in two different cell lines (T1454 and T1456), as shown in Figure 8.16.  

Two different chemotherapies were chosen as candidates for further study: temozolomide and 

YM155. The former because of its widespread use for glioblastoma patients and the latter 

because of its promising clinical usefulness.   

8.5.2 Assessment of narrower sample tubes 

After the preliminary study was concluded, there was a desire to increase the sensitivity of the 

measurements, even though the 800 MHz instrument had become available. In short, the 

sensitivity of detection in NMR is described by Equation 8.1.  

𝑆𝑖𝑔𝑛𝑎𝑙

𝑁𝑜𝑖𝑠𝑒
∝ 𝑁𝑚𝐴𝑇𝑠

−1𝐵0
3
2⁄ 𝛾

5
2⁄ 𝑇2

∗(𝑁𝑠)
1
2⁄       Equation 8.1 

Where NM denotes the number of molecules in the observed sample volume, A is the abundance 

of the observed nucleus, Ts is the temperature of the sample and the surrounding coil, B0 is the 

strength of the magnetic field, γ is the magnetogyric ratio of the observed nucleus, T2* is the 

effective time it takes for magnetization to disappear from the transverse plane (depends on 

field homogeneity and the molecule being measured), and Ns is the number of scans collected 

[85 (p. 97-99)].  
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T2*, γ and A are intrinsic and cannot be changed, except for ensuring as homogenous magnetic 

field as possible considering T2*. The probes used in both the AVI 600 MHz and AVIIIHD 800 

MHz were cryogenically cooled, thus the S/N ratio was already increased in that aspect. The 

remaining factors were number of scans or concentration of analytes. Since additional scans are 

time-consuming, it was decided to attempt to increase the concentration by using narrower 

sample tubes: 3 mm outer diameter instead of 5 mm. In NMR, the sample must fill the tube 

enough to have solution above the coils, i.e. the sample height in the tube must be ≥ 5 cm. For 

a 5 mm tube, that requires at least 500 µL (preferably 600 µL) of sample, while in a 3 mm tube 

it only requires 180 µL sample. Thus, theoretically, a three-fold gain of sensitivity could be 

achieved.   

Disappointingly, it turned out that working with 3 mm tubes was fraught with difficulty. Not 

only was it very challenging to manually fill the tubes with sample, but sufficient suppression 

of the solvent signal turned into an unnecessarily laborious task. It could take three to four 

attempts to obtain a spectrum without a large residual solvent peak. In Figure 8.17, an example 

of a typical bad suppression is shown.   

 

Figure 8.17: A representative spectrum of bad solvent suppression often occurring when using 3 mm 

NMR tubes instead of 5 mm NMR tubes. Compared to Figure 8.11, the residual water peak is a factor of 

three greater in intensity and four times wider on the x-axis.  

 

Several different explanations were considered, among them contamination of the sample, 

instability of the sample within the magnet (wobbling of the tube), or issues with the tubes 

themselves. To address the first issue, contamination, the NMR buffer was mixed with pure 

water in a 3 mm NMR tube; solvent suppression was feasible without too many issues. 
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Contamination was therefore not the cause of the bad solvent suppression. The second issue 

was addressed by adding small weights to the spinners holding the 3 mm NMR tubes or using 

a heavier spinner. This had little to no effect on the spectral quality, and wobbling was ruled 

out as a cause. Finally, moving samples from 3 mm tubes to 5 mm tubes seemed to fix the issue, 

i.e. satisfactory suppression was usually obtained on the first or second try. It was concluded 

that it was the 3 mm tubes themselves that were causing issues with water signal suppression.  

Nils Nyberg from Bruker was also consulted on the issue, and he came to a similar conclusion: 

5 mm tubes were easier to work with than 3 mm tubes. It turned out that shimming with 5 mm 

tubes was much less troublesome than with 3 mm tubes. If the shimming was not adequate the 

water peak was not narrow enough and thus could not be successfully suppressed. The 3 mm 

tubes were therefore replaced with 5 mm tubes to reduce issues with shimming. New 5 mm 

NMR tubes of higher quality (thinner and straighter glass walls) than those used in the 

preliminary studies, were purchased to further reduce external effects on shimming.   

However, when returning to 5 mm tubes, the issue with solvent suppression persisted. 

Something else was spoiling the shimming of the samples, independently of the NMR tubes. 

The main difference between the AVI600 and the AVIIIHD800 was the automatic sample 

changer; the latter one was possible to cool and was kept at 7 °C. The probe temperature was 

25 °C and the samples must have experienced solvent convection after being placed in the 

probe. This would reduce the quality of the shimming. If the samples were given a minimum 

of 15 minutes to temperature equilibrate in the magnet prior to shimming, satisfactory solvent 

suppression was achieved in almost every single spectrum. In hindsight, this probably applied 

to the 3 mm tubes as well. However, due to the difficulty in handling and filling them with 

samples they were not used again.  

3 mm tubes were tested with the goal of increasing sensitivity by increasing sample 

concentration. Issues with solvent suppression encumbered the work. No explanation other than 

that 3 mm tubes were more difficult to shim with than 5 mm tubes, could be found. However, 

when returning to 5 mm tubes, the issues persisted and it was found that the samples required 

a minimum of 15 minutes to reach probe temperatures when coming from a cooled sample 

holder. Temperature fluctuations and accompanying solvent movements would encumber 

shimming, and this was the cause of the issues with solvent suppression, not the NMR tube 

geometry. However, the 3 mm tubes were difficult to use in other respects too, and were 

therefore not reconsidered.  
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8.6 Calculation of column efficiency  

Column efficiency expresses the extent of band broadening, i.e. how much a band of solutes is 

expanded as it travels through a column. It can be expressed by plate number, which is defined 

by Equation 8.2.  

𝑁 =⁡ (𝑡𝑅 𝜎⁄ )2          Equation 8.2 

Where tR is the retention time and σ its standard deviation. If the peaks are assumed to have a 

Gaussian distribution, peak width can be used to measure σ. There are three different 

approaches commonly used to measure N, given by Equation 8.3, 8.4, and 8.5, respectively.  

𝑁 = 5.54 (𝑡𝑅 𝑤1

2
ℎ

⁄ )
2

         Equation 8.3 

𝑁 = ⁡16(𝑡𝑅 𝑤𝑏𝑎𝑠𝑒⁄ )2         Equation 8.4 

𝑁 = ⁡25(𝑡𝑅 𝑤4.4%ℎ⁄ )2        Equation 8.5 

Measuring peak width at half maximum height (Equation 8.3) is common if the peak is 

symmetrical, while the measuring at the base or 4.4% of peak height should be employed if the 

peak has a lot of tailing. Furthermore, column efficiency must be determined in experiments 

run without a MP composition gradient or temperature gradient (isocratic and isothermal 

elution). The injected sample must be dissolved in the MP [96 (p. 5-10)]. In Figure 8.18, the 

different ways of measuring peak width are shown.  

 

Figure 8.18: The three different approaches of calculating plate number (N). Figure adapted from [96 (p. 

10)].  
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For comparison of columns with different length, plate height (H) can be calculated instead, 

given by Equation 8.6.  

𝐻 =⁡𝐿 𝑁⁄           Equation 8.6 

Where L is the length of the column [96 (p. 10-11)].  

8.7 Chromatographic detection with ultraviolet 
spectroscopy 

Detection of compounds based on their UV absorption at specific wavelengths is used 

extensively in liquid chromatography analyses because it is simple and robust [96 (p. 80-84)]. 

It is based on Beer’s law, given by Equation 8.7, which states that absorbance (A) of UV 

radiation depends on the concentration of the analyte (c), the length the radiation travels through 

the solution (l), and the molar absorptivity (ε) of the compound.  

𝐴 = ⁡𝜀𝑙𝑐          Equation 8.7 

The molar absorptivity is constant for a compound at a given wavelength. It expresses how 

much radiation the compound can absorb at the given wavelength [224 (p.436-437)]. There are 

three different factors that can affect the sensitivity of the detection. First, the wavelength of 

the UV radiation should be at or close to the εmax of the compounds of interest, to maximize the 

absorptivity.  

However, this must be balanced with not 

measuring at a wavelength where other 

compounds in the sample also absorb 

radiation. Second, the length the radiation 

travels through the solution should be 

maximized, for example done with a U-path 

flow cell, which is schematically illustrated 

in Figure 8.19. Third, the analytes should be 

as concentrated as possible when reaching 

the detector, i.e. band broadening should be minimized. Limiting band broadening requires an 

efficient column, tight couplings (no gaps that allow dwell volumes to collect), and narrow 

tubing [96 (p. 47-84), 224 (p. 686-687)]. 

 

Figure 8.19: A schematic illustration of a U-

path flow cell.     
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8.8 Nuclear magnetic resonance spectra 

In the following section, various representative NMR spectra are presented. First, a 

representative spectrum for each experiment (one-dimensional 1H NMR with excitation 

sculpting in Figure 8.20, JRES in Figure 8.21, and TOCSY in Figure 8.22) is given. A control 

sample from cell line T1548 was used in acquisition of the spectra (sample ID 76 in Table 4.1). 

Second, the one-dimensional spectrum of YM155-treated samples from a sensitive (Figure 

8.23) and less sensitive (Figure 8.24) cell line is presented, to illustrate the difference in 

response to treatment. Finally, a representative spectrum of a TMZ-treated cell samples is given 

in Figure 8.25.  

 

 

Figure 8.20: Representative one-dimensional spectrum with solvent suppression by excitation sculpting, NS 

= 4096. Spectrum obtained with a control sample (ID 76 in Table 4.1) from cell line T1548. The y-axes is 

adjusted to show maximum amount of detail. 
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Figure 8.21: Representative JRES spectrum (f2: 0.5-4.5 ppm (top) and 5.0 to 8.6 ppm (bottom)), NS = 32 

and number of t1 increments was 160. Spectrum obtained with a control sample (ID 76 in Table 4.1) from 

cell line T1548.  
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Figure 8.22: Representative TOCSY spectrum (f2: 0.5-4.5 ppm (top) and 5.0 to 8.5 ppm (bottom)), NS = 

32 and number of t1 increments was 1024. Spectrum obtained with a control sample (ID 76 in Table 4.1) 

from cell line T1548.  
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Figure 8.23: Representative one-dimensional spectrum of a sample from a less sensitive cell line treated with 

YM155. Solvent suppression was by excitation sculpting and NS = 4096. Spectrum obtained with an YM155-

treated sample (ID 54 in Table 4.1) from cell line T1454. The y-axis is adjusted to show maximum amount 

of detail.  

 

Figure 8.24: Representative one-dimensional spectrum of a sample from a sensitive cell line treated with 

YM155. Solvent suppression was by excitation sculpting and NS = 4096. Spectrum obtained with an YM155-

treated sample (ID 102 in Table 4.1) from cell line T1459. The y-axis is adjusted to show maximum amount 

of detail.  



137 

 

 

 

Figure 8.25: Representative one-dimensional spectrum of a sample treated with TMZ. Solvent suppression 

was by excitation sculpting and NS = 4096. Spectrum obtained with a TMZ-treated sample (ID 80 in Table 

4.1) from cell line T1548. The y-axis is adjusted to show maximum amount of detail.  
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8.9 Chromatograms from liquid-chromatography-mass 
spectrometry analyses 

Six chromatograms are presented below: two of control samples from cell line T1454 in Figure 

8.26, two of YM155-treated samples from cell line T1459 in Figure 8.27, two of YM155-

treated samples from cell line T1454 in Figure 8.28, and one of the standard citric acid solution 

(20 µg/mL) in Figure 8.29.  

All the cell samples were dissolved in 80/20 (v/v) acetonitrile/buffer (30 mM ammonium 

formate, pH 4.5). The standard citric acid solution (20 µg/mL) was dissolved in the same 

solvent mixture. The injection loop had a volume of 500 nL. The MP flow rate was 0.60 

µL/minute, and the MS was run in negative mode with parallel reaction monitoring (PRM) of 

m/z 191. All of the following chromatograms were for extracted fragment ions with m/z 

111.005-111.009.  

 

Figure 8.26: Chromatograms of two control samples from cell line T1454.  
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Figure 8.27: Chromatograms of two YM155-treated samples from cell line T1459.  

 

 

Figure 8.28: Chromatograms of two YM155-treated samples from cell line T1454.  
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Figure 8.29: Chromatogram citric acid standard solution, from 4.00 to 5.50 minutes to the left and 0 to 30 

minutes to the right. Due to the large amount of citric acid injected, the peak had a lot of tailing. 
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8.10  Molecule Encyclopedia 

Peak ppm values written in bold are mainly used in identification of the metabolite, and only 

the protons with ppm values stated are numbered. Ppm values and coupling patterns are from 

the HMDB and an article by Govindaraju et al. [169], unless otherwise noted. The following 

abbreviations for splitting patterns are used: singlet = s, doublet = d, t = triplet, q = quartet, dd 

= double doublet, m = multiplet.  

Total choline 

 
Choline (C) 

 

 

Phosphorylcholine (PC) 

 

 

 

Glycerophosphorylcholine (GPC) 

 

 

Monoisotopic mass C: 104.10754 Da 

PC: 184.0739 Da 

GPC: 257.1028 Da 

NMR peaks C:  

PC 

GPC 

3.19 (#1, s), 3.51 (#2, dd), 4.06 (#3, m) 

3.208 (#1, s), 3.64 (#2 , m), 4.28 (#3 , m) 

3.212 (#1, s), 3.66 (#2 , m), 4.31 (#3, m), 3.90 (#4, 6, m), 3.87/3.95 (#5, m/m), 

3.61/3.67 (#6, dd/dd)  
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Citric acid 

 

Monoisotopic mass 192.0270 Da 

NMR peaks 2.53 (#1b and 2b, d), 2.66 (#1a and 2a, d) 

Creatine 

 

 

Monoisotopic mass 131.0695 Da 

NMR peaks 3.02 (#2, s),  3.92 (#1, s) 

Cytidine 

 

 

Monoisotopic mass 243.0855 Da 

NMR peaks 3.80 (#1, dd), 3.92 (#1, m), 4.11 (#2, m), 4.20 (#3, t), 4.30 (#4, t), 5.89 (#5, d),  

6.04 (#7, d), 7.83 (#6, d) 
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Cytidine triphosphate 

 

Monoisotopic mass 482.9845 Da 

NMR peaks 4.25 (#1 and 2, m), 4.32 (#3, dd), 4.41 (#4, dd), 5.99 (#5, d), 6.13 (#8, d), 7.97 (#6, 

d) 

D-Fructose 

 

Monoisotopic mass 180.0634 Da 

NMR peaks 3.58 (#1, m), 3.69 (#1 and 5, m), 3.82 (#2, 4, and 5, m), 3.90 (#3, dd), 4.00 (#4, m), 

4.03 (#5, dd), 4.12 (#2 and 3, m)  

D-Fructose 1,6-bisphosphate 

 

Monoisotopic mass 339.9960 Da 

NMR peaks 3.77 (#1), 3.895 (#5), 3.925 (#4), 4.177 (#2), 4.19 (#3)  

Note NMR peaks found in Biological Magnetic Resonance Bank (BMRB). No splitting 

patterns were given by the database.  
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D-Glucose 

 

Monoisotopic mass 180.0634 Da 

NMR peaks 3.233 (#3, dd), 3.398 (#4, m), 3.458 (#5, m), 3.524 (#2, dd), 3.728 (#3 and 6, m),  

3.824 (#5 and 6, m), 3.889 (#6, dd), 4.634 (#1, d), 5.223 (#1, d) 

D-Glucose 1-phosphate 

 

Monoisotopic mass 260.0297 Da 

NMR peaks 3.39 (#4, t), 3.48 (#5, m), 3.75 (#3, m), 3.85 (#6, m), 3.90 (#2, m), 5.45 (#1, dd) 

DMSO (Dimethyl sulfoxide) 

 

Monoisotopic mass 78.0139 Da 

NMR peaks 2.62 (#1, s) 

Ethanol 

 

Monoisotopic mass 46.06844 Da 

NMR peaks 1.17 (#2, t), 3.65 (#1, q) 
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Fumaric acid 

 

Monoisotopic mass 116.0110 Da 

NMR peaks 6.51 (#1 and 2, s) 

Glutathione 

 

Monoisotopic mass 307.0838 Da 

NMR peaks 2.15 (#5, m), 2.54 (#4, m), 2.97 (#3, dd), 3.78 (#6 and 1, m), 4.20 (#2, q)  

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

NMR peaks found in Biological Magnetic Resonance Bank (BMRB). No splitting patterns were 

given by the database.  

 

Monoisotopic mass 238.3045 Da 

NMR peaks 2.851 (#3 and 5), 2.936 (#2),  3.151 (#1), 3.151 (#4 and 6), 3.056 (#8), 3.851 (#7) 
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Lactic acid 

 

Monoisotopic mass 89.0244 Da 

NMR peaks 1.32 (#2, d), 4.10 (#1, q) 

L-Alanine 

 

Monoisotopic mass 89.0477 Da 

NMR peaks 1.47 (#2, d), 3.77 (#1, q) 

L-Glutamic acid 

 

Monoisotopic mass 147.1293 Da 

NMR peaks ~2.04 (#2, m), 2.119 (#2, m), 2.341 (#3, m), 3.748 (#1, dd) 

L-Glutamine 

 

Monoisotopic mass 146.0691 Da 

NMR peaks 2.12 (#4, m), 2.45 (#5, m), 3.77 (#3, t) 
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L-Glycine 

 

Monoisotopic mass 75.032028409 Da 

NMR peaks 3.54 (#1, s) 

L-Isoleucine 

 

Monoisotopic mass 131.0946 Da 

NMR peaks 0.93 (#4, t), 1.00 (#5, d), 1.25 (#3, m), 1.46 (#3, m), 1.97 (#2, m), 3.66 (#1, d) 

L-Phenylalanine 

 

Monoisotopic mass 165.0790 Da 

NMR peaks 3.11 (#2, m), 3.27 (#2, m), 3.98 (#1, m), 7.32 (#3 and 7, d),  

7.36 8#5, m), 7.42 8#4 and 6, m) 

L-Threonine 

 

Monoisotopic mass 119.0582 Da 

NMR peaks 1.32 (#3, d), 3.58 (#1, d), 4.24 (#2, m) 
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L-Tyrosine 

 

Monoisotopic mass 181.0739 Da 

NMR peaks 3.024 (#2, dd), 3.17 (#2, dd), 3.921 (#1, dd), 6.877 (#4 and 5, d), 7.17 (#3 and 6, d) 

L-Valine 

 

Monoisotopic mass 117.1463 Da 

NMR peaks 0.98 (#3, d), 1.03 (#3, d), 2.26 (#2, m), 3.60 (#1, d) 

Myo-inositol 

 

Monoisotopic mass 180.0634 Da 

NMR peaks 3.28 (#6, t), 3.52 (#2 and 4, dd), 3.61 (#1 and 5, t), 4.05 (#3, t) 

O-Phosphoethanolamine 

 

Monoisotopic mass 141.0191 Da 

NMR peaks 3.24 (#2, t), 4.01 (#1, m) 
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3-phosphoglyceric acid 

 

Monoisotopic mass 185.9929 Da 

NMR peaks 3.88 (#1, m), 4.00 (#1, m), 4.19 (#1, dd) 

6-Phosphogluconic acid 

 

Monoisotopic mass 276.0246 Da 

NMR peaks 3.84 (#2 and 3, m), 3.96 (#4, m), 4.10 (#1, m), 4.19 (#5, d) 

Phosphoenolpyruvic acid 

 

Monoisotopic mass 167.9824 Da 

NMR peaks 5.18 (#1, t), 5.26 (#1, t) 

Succinic acid 

 

Monoisotopic mass 118.0266 Da 

NMR peaks 2.39 (#1 and 2, s) 
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Uracil 

 

Monoisotopic mass 112.0272 Da 

NMR peaks 5.79 (#2, d), 7.52 (#1, d) 
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8.11  R scripts 

Daniel Sachse has written the scripts presented here. The author has made minor changes, but 

Sachse did the main bulk of coding. The code in sections 8.11.1 and 8.11.2 were colored by the 

author. The script presented in section 8.11.3 contains functions made by Sachse, which are 

used in the two preceding scripts. 

8.11.1 R script: pre-processing and PCA of preliminary data 

require(pcaMethods); 

require(FTICRMS); #for the baseline correction 

require(pls); 

require(plotrix); 

source("functions.R");# Loading and processing data 

 

#  

#### Remember to set session working directory to source file location! #### 

#  

 

# # where are the spectra files, relative to this R script? 

folder = "./Old 1D NMR txt files/"; 

 

# Get the file names 

vnames <- list.files(folder) 

 

# We convert the txt files to appropriate, two-column matrices with a for loop 

# First, always use the length command so the code is robust to data changes! 

 

numObs <- length(vnames) 

for(i in 1:numObs){ 

   

  # Create a temporary variable tmp. It has four columns. (index, Re, Im, ppm) 

  tmp <- read.csv(paste0(folder, vnames[i]), header=FALSE) 

  cat(vnames[i], ":", nrow(tmp),"lines read. Ppm: ", range(tmp[,4]), "\n") 

   

  # Only take the "safe" window from -1 til +11 ppm to combat Bruker's varying ppm scales 

  right = which(tmp[,4] < (-1))[1] 

  left = which(tmp[,4] < 11)[1] 

  window = left:right 

  cat("\tleft", left, tmp[left,4], "right", right,  tmp[right,4], 

      "-> window", length(window), tmp[left,4] - tmp[right,4], "\n") 

  if (i == 1) { 

    windowLenFixed = length(window) # remember for later, so all spec have same length 
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  } 

  right = left + windowLenFixed; # -1, ah w/e 

  window = left:right 

   

  # Put together a big matrix: 

  # On first iteration, initialize matrix with correct size, but all nulls 

  if (i == 1) { 

    rownames = paste("m",gsub(".txt","",vnames[1:numObs]),sep="") 

    colnames = tmp[window,4] # ppm 

    spec0 <- matrix(0, nrow = numObs, ncol = length(window), 

                    dimnames = list(rownames, colnames)) 

  } 

  # Then, for each iteration, copy the intensities from file to matrix row: 

  spec0[i,] = tmp[left:right,2] # intensities Re 

} 

 

# Clip water and ethanol, remove empty space (by defining regions we want to keep) 

spec = spec0[ , c(sclr(spec0, 10, 5.0), sclr(spec0, 4.5, 3.7), sclr(spec0, 3.62, 1.22), 

sclr(spec0, 1.15, -0.5))] 

 

# Save this preliminary data matrix 

save(spec, file = "Glioblastoma-Spec-Matrix.RData") 

load("Glioblastoma-Spec-Matrix.RData") 

 

# Make a data frame 

data = data.frame(fnames = I(rownames(spec))) 

data$spec = spec 

data$cellLine = substring(data$fnames, 2,2) 

data$treatment = substring(data$fnames, 3,3) 

data$id = substring(data$fnames, 4) 

 

cbind(data$fnames, data$treatment) 

with(data, cbind(fnames, cellLine, treatment, id)) 

 

# More cleaning: Measure TSP, normalize 

# Look at TSP 

plotspectra(spec[,sclr(spec, -0.02, 0.02)], ylim=c(1,1e9)) 

# integrate TSP: 

data$tspint = rowSums(spec[,sclr(spec, -0.02, 0.02)]) 

# integrate entire spectrum (except TSP) 

data$totalint = rowSums(spec[,sclr(spec, 0.2, 9.9)]) 

 

# Remove TSP as well: 

data$spec = data$spec[,sclr(data$spec, 0.2, 10)] 

 

#Normalize to total integral (different number of cells in the various samples...) 
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data$spec.totint = sweep(data$spec,1,data$totalint,"/") 

plotspectra(data$spec.totint[1:10,], ylim=c(0,0.001), col=data$treatment) 

 

# Save this. 

save(data, file="Glioblastoma-Spec-Dataframe.RData") 

load(file="Glioblastoma-Spec-Dataframe.RData") 

 

symbTr = function(x) { (x=="1")*1 + (x=="2")*15 + (x=="3")*17 + (x=="4")*8 + (x=="5")*5 + 

(x=="6")*11} 

 

tmp = data$spec.totint 

 

# Run a PCA with pareto scaling and no baseline: 

# Run with one cell line of choice (flt = data$cellLine==”X”) or all cell lines (flt = TRUE) 

#flt=TRUE 

flt = data$cellLine=="1" 

cat("Doing PCA, this will take a while.\n"); 

spec.pca <- pca(tmp[flt,],method="nipals",nPcs=4,scale="pareto") 

summary(spec.pca) 

pc <- sprintf("%.1f",100*R2cum(spec.pca)[1]) 

pc <- c( pc , sprintf("%.1f",100*diff(R2cum(spec.pca))) ) 

pcs <- c(1,2) #which to show in plot 

xlim <- NULL #c(-104,120); 

ylim <- NULL #c(-700,100); 

 

plot(pcaMethods::scores(spec.pca)[,pcs[1]],pcaMethods::scores(spec.pca)[,pcs[2]],type="p",cex.

axis=1.75,main="PCA of all cell lines",cex.lab=1.5,xlab=paste("PC",pcs[1],": 

",pc[pcs[1]],"%",sep=""),ylab=paste("PC",pcs[2],":",pc[pcs[2]],"%",sep=""),xlim=xlim, 

ylim=ylim, col=data$cellLine[flt],pch=symbTr(data$treatment[flt]),cex=3); 

 

# Strict baseline: 

mxx=nrow(data); 

max.iter=30; 

plot.this = TRUE; 

water = c(4.5,4.9) #leave this region out of the baseline correction; careful not to exceed 

the clipping region below 

data$basl <- data$spec; #initialize #matrix(0, mxx, length(ppm), dimnames=list(NULL,ppm)); 

data$spec.bas <- data$spec; # initialize #matrix(0, mxx, length(ppm), 

dimnames=list(NULL,ppm)); 

for (i in 1:mxx) { 

  cat(i,"/",mxx,"\n"); 

  mindex = min(sclv(data$basl,water)) 

  maxdex = max(sclv(data$basl,water)) 

  #from 1 to mindex: 

  region=data$spec.totint[i,1:mindex] 

  tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                 max.iter=max.iter); 

  if (tmp$iter == max.iter) { 
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    cat("2nd try\n") 

    tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                   max.iter=max.iter, init.bd=rep(0,mindex)); 

  } 

  #   if (tmp$iter == max.iter) { 

  #     cat("3rd try\n") 

  #     tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

  #                    max.iter=max.iter, halve.search=TRUE); 

  #   } 

  data$basl[i,1:mindex] = tmp$baseline; 

  cat("   Baseline (1/2) :",tmp$iter,"iterations.\n"); 

  #in the water region, copy the original spec, makes the result zero: 

  data$basl[i,(mindex+1):(maxdex-1)] = data$spec.totint[i,(mindex+1):(maxdex-1)]; 

  #from maxdex to end: 

  region=data$spec.totint[i,maxdex:ncol(data$spec.totint)] 

  tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                 max.iter=max.iter); 

  if (tmp$iter == max.iter) { 

    cat("2nd try\n") 

    tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                   max.iter=max.iter, init.bd=rep(0,ncol(data$spec.totint)-maxdex+1)); 

  } 

  #   if (tmp$iter == max.iter) { 

  #     cat("3rd try\n") 

  #     tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

  #                    max.iter=max.iter, halve.search=TRUE); 

  #   } 

  data$basl[i,maxdex:ncol(data$spec.totint)] = tmp$baseline; 

  cat("   Baseline (2/2) :",tmp$iter,"iterations.\n"); 

   

  #subtract baseline from spec: 

  data$spec.bas[i,] = data$spec.totint[i,] - data$basl[i,] 

   

  if (plot.this) 

    plotspectra(data$spec.bas[i,], main=i) 

} 

 

badones = c("m21608", "m23603", "m24606") 

good = !(data$fnames %in% badones) 

 

flt = !good 

 

with(data[flt,], plotspectra(spec.tsp[,sclr(spec.tsp, 6, 7.5)], col=treatment)) 

with(data[flt,], plotspectra(spec.tsp[,], col=treatment)) 

 

# One colum is now all 0 after baseline. Remove it to allow UV scaling. 
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allnull = which.min(apply(data$spec.bas,2,"sd")) 

data$spec.bas = data$spec.bas[,-allnull] 

# Run a PCA after baseline with pareto scaling: 

tmp = data$spec.bas 

 

# Run with one cell line of choice (flt = data$cellLine==”X”) or all cell lines (flt = good) 

#flt=good 

flt = good & data$cellLine=="1" 

cat("Doing PCA, this will take a while.\n"); 

spec.pca <- pca(tmp[flt,],method="nipals",nPcs=4,scale="pareto") 

summary(spec.pca) 

pc <- sprintf("%.1f",100*R2cum(spec.pca)[1]) 

pc <- c( pc , sprintf("%.1f",100*diff(R2cum(spec.pca))) ) 

pcs <- c(1,2) #which to show in plot 

xlim <- NULL #c(-104,120); 

ylim <- NULL #c(-700,100); 

 

plot(pcaMethods::scores(spec.pca)[,pcs[1]],pcaMethods::scores(spec.pca)[,pcs[2]],type="p",cex.

axis=1.75,main="PCA of all cell 

lines",cex.lab=1.5,xlab=paste("PC",pcs[1],":",pc[pcs[1]],"%",sep=""), 

ylab=paste("PC",pcs[2],":",pc[pcs[2]],"%",sep=""),xlim=xlim,ylim=ylim,col=data$cellLine[flt],p

ch=symbTr(data$treatment[flt]),cex=3); 

8.11.2 R script: pre-processing, PCA and PLS 

require(pcaMethods); 

require(FTICRMS); #for the baseline correction 

require(pls); 

require(plotrix); 

source("functions.R"); # Loading and processing data 

#  

#### Remember to set session working directory to source file location! ############ 

#  

# # where are the spectra files, relative to this R script? 

folder = "./1D NMR txt files/"; 

# Get the file names 

vnames <- list.files(folder) 

# We convert the txt files to appropriate, two-column matrices with a for loop 

# First, always use the length command so the code is robust to data changes! 

numObs <- length(vnames) 

for(i in 1:numObs){ 

   

  # Create a temporary variable tmp. It has four columns. (index, Re, Im, ppm) 
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  tmp <- read.csv(paste0(folder, vnames[i]), header=FALSE) 

  cat(vnames[i], ":", nrow(tmp),"lines read. Ppm: ", range(tmp[,4]), "\n") 

   

  # Only take the "safe" window from -1 til +11 ppm to combat Bruker's varying ppm scales 

  right = which(tmp[,4] < (-1))[1] 

  left = which(tmp[,4] < 11)[1] 

  window = left:right 

  cat("\tleft", left, tmp[left,4], "right", right,  tmp[right,4], 

      "-> window", length(window), tmp[left,4] - tmp[right,4], "\n") 

  if (i == 1) { 

    windowLenFixed = length(window) # remember for later, so all spec have same length 

  } 

  right = left + windowLenFixed; # -1, ah w/e 

  window = left:right 

   

  # Put together a big matrix: 

  # On first iteration, initialize matrix with correct size, but all nulls 

  if (i == 1) { 

    rownames = paste("m",gsub(".txt","",vnames[1:numObs]),sep="") 

    colnames = tmp[window,4] # ppm 

    spec0 <- matrix(0, nrow = numObs, ncol = length(window), 

                    dimnames = list(rownames, colnames)) 

  } 

  # Then, for each iteration, copy the intensities from file to matrix row: 

  spec0[i,] = tmp[left:right,2] # intensities Re 

} 

 

# Clip water and ethanol, remove empty space (by defining regions we want to keep) 

spec = spec0[ , c(sclr(spec0, 10, 5.0), sclr(spec0, 4.5, 3.7), sclr(spec0, 3.62, 1.22), 

sclr(spec0, 1.15, -0.5))] 

 

# Save this preliminary data matrix 

save(spec, file = "Glioblastoma-Spec-Matrix.RData") 

load("Glioblastoma-Spec-Matrix.RData") 

 

# Make a data frame 

data = data.frame(fnames = I(rownames(spec))) 

data$spec = spec 

data$cellLine = substring(data$fnames, 2,2) 

data$treatment = substring(data$fnames, 3,3) 

data$id = substring(data$fnames, 4) 

 

cbind(data$fnames, data$treatment) 

with(data, cbind(fnames, cellLine, treatment, id)) 
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# Look at TSP 

plotspectra(spec[,sclr(spec, -0.02, 0.02)]) 

# integrate TSP: 

data$tspint = rowSums(spec[,sclr(spec, -0.02, 0.02)]) 

# integrate entire spectrum (except TSP) 

data$totalint = rowSums(spec[,sclr(spec, 0.2, 9.9)]) 

# Remove TSP as well: 

data$spec = data$spec[,sclr(data$spec, 0.2, 10)] 

plotspectra(data$spec[1:10], ylim=c(0,1e7)) 

# Normalize to TSP: 

data$spec.tsp = sweep(data$spec,1,data$tspint,"/") 

plotspectra(data$spec.tsp[1:10,], ylim=c(0,0.001), col=data$treatment) 

# Save this. 

save(data, file="Glioblastoma-Spec-Dataframe.RData") 

load(file="Glioblastoma-Spec-Dataframe.RData") 

# Symbols for plotting 

symbTr = function(x) { (x=="1")*1 + (x=="2")*15 + (x=="3")*17 } 

tmp = data$spec.tsp 

# Strict baseline: 

mxx=nrow(data); 

max.iter=30; 

plot.this = TRUE; 

water = c(4.5,4.9) #leave this region out of the baseline correction; careful not to exceed 

the clipping region below 

data$basl <- data$spec; #initialize #matrix(0, mxx, length(ppm), dimnames=list(NULL,ppm)); 

data$spec.bas <- data$spec; # initialize #matrix(0, mxx, length(ppm), 

dimnames=list(NULL,ppm)); 

for (i in 1:mxx) { 

  cat(i,"/",mxx,"\n"); 

  mindex = min(sclv(data$basl,water)) 

  maxdex = max(sclv(data$basl,water)) 

  #from 1 to mindex: 

  region=data$spec.tsp[i,1:mindex] 

  tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                 max.iter=max.iter); 

  if (tmp$iter == max.iter) { 

    cat("2nd try\n") 

    tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                   max.iter=max.iter, init.bd=rep(0,mindex)); 

  } 

  #   if (tmp$iter == max.iter) { 

  #     cat("3rd try\n") 

  #     tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 
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  #                    max.iter=max.iter, halve.search=TRUE); 

  #   } 

  data$basl[i,1:mindex] = tmp$baseline; 

  cat("   Baseline (1/2) :",tmp$iter,"iterations.\n"); 

  #in the water region, copy the original spec, makes the result zero: 

  data$basl[i,(mindex+1):(maxdex-1)] = data$spec.tsp[i,(mindex+1):(maxdex-1)]; 

  #from maxdex to end: 

  region=data$spec.tsp[i,maxdex:ncol(data$spec.tsp)] 

  tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                 max.iter=max.iter); 

  if (tmp$iter == max.iter) { 

    cat("2nd try\n") 

    tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

                   max.iter=max.iter, init.bd=rep(0,ncol(data$spec.tsp)-maxdex+1)); 

  } 

  #   if (tmp$iter == max.iter) { 

  #     cat("3rd try\n") 

  #     tmp = baseline(region,sm.norm.by="constant",neg.norm="constant", 

  #                    max.iter=max.iter, halve.search=TRUE); 

  #   } 

  data$basl[i,maxdex:ncol(data$spec.tsp)] = tmp$baseline; 

  cat("   Baseline (2/2) :",tmp$iter,"iterations.\n"); 

   

  #subtract baseline from spec: 

  data$spec.bas[i,] = data$spec.tsp[i,] - data$basl[i,] 

   

  if (plot.this) 

    plotspectra(data$spec.bas[i,], main=i) 

} 

badones = c("m41067", "m52088", "m53082", "m53090") 

good = !(data$fnames %in% badones) 

flt = !good 

with(data[flt,], plotspectra(spec.tsp[,sclr(spec.tsp, 6, 7.5)], col=treatment)) 

with(data[flt,], plotspectra(spec.tsp[,], col=treatment)) 

# One colum is now all 0 after baseline. Remove it to allow UV scaling. 

allnull = which.min(apply(data$spec.bas,2,"sd")) 

data$spec.bas = data$spec.bas[,-allnull] 
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# Run a PCA after baseline: 

tmp = data$spec.bas 

#All cell lines  

flt=good 

cat("Doing PCA, this will take a while.\n"); 

spec.pca <- pca(tmp[flt,],method="nipals",nPcs=4,scale="uv") 

summary(spec.pca) 

pc <- sprintf("%.1f",100*R2cum(spec.pca)[1]) 

pc <- c( pc , sprintf("%.1f",100*diff(R2cum(spec.pca))) ) 

pcs <- c(1,2) #which to show in plot 

xlim <- NULL #c(-104,120); 

ylim <- NULL #c(-700,100); 

plot(pcaMethods::scores(spec.pca)[,pcs[1]],pcaMethods::scores(spec.pca)[,pcs[2]],type="p",cex.

axis=1.75,main="PCA of all cell lines",cex.lab=1.5,xlab=paste("PC",pcs[1],": 

",pc[pcs[1]],"%",sep=""),ylab=paste("PC",pcs[2],": 

",pc[pcs[2]],"%",sep=""),xlim=xlim,ylim=ylim,col=data$cellLine[flt],pch=symbTr(data$treatment[

flt]),cex=3); 

#Loadings: 

lwplot(pcaMethods::loadings(spec.pca)[,1],pcaMethods::scl(spec.pca),main="PC1", cex.main=1.75, 

cex.axis=1.75) 

lwplot(pcaMethods::loadings(spec.pca)[,2],pcaMethods::scl(spec.pca),main="PC2", cex.main=1.75, 

cex.axis=1.75) 

 

# Run with one cell line 

#Adjust number in cellLine prior to all. Also remember to change the title in plot.  

flt = good & data$cellLine=="1" 

cat("Doing PCA, this will take a while.\n"); 

spec.pca <- pca(tmp[flt,],method="nipals",nPcs=4,scale="uv") 

summary(spec.pca) 

pc <- sprintf("%.1f",100*R2cum(spec.pca)[1]) 

pc <- c( pc , sprintf("%.1f",100*diff(R2cum(spec.pca))) ) 

pcs <- c(1,2) #which to show in plot 

xlim <- NULL #c(-104,120); 

ylim <- NULL #c(-700,100); 

plot(pcaMethods::scores(spec.pca)[,pcs[1]],pcaMethods::scores(spec.pca)[,pcs[2]],type="p",cex.

axis=2,main="PCA of cell line T1454",cex.lab=1.75,xlab=paste("PC",pcs[1],": 

",pc[pcs[1]],"%",sep=""),ylab=paste("PC",pcs[2],": 

",pc[pcs[2]],"%",sep=""),xlim=xlim,ylim=ylim,col=data$cellLine[flt],pch=symbTr(data$treatment[

flt]),cex=3); 
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#Loadings (1 and 2): 

lwplot(pcaMethods::loadings(spec.pca)[,1],pcaMethods::scl(spec.pca),main="PC1", cex.main=1.75, 

cex.axis=1.75) 

lwplot(pcaMethods::loadings(spec.pca)[,2],pcaMethods::scl(spec.pca),main="PC2", cex.main=1.75, 

cex.axis=1.75) 

#Plot spectral areas of interest, color code by treatment (black=control, red=TMZ, 

green=YM155) 

with(data[flt,], plotspectra(spec.bas[,sclr(spec.bas, 2.35, 3.0)], cex.axis=1.7, cex.lab=1.5, 

col=treatment)) 

with(data[flt,], plotspectra(spec.bas[,sclr(spec.bas, 1.2, 1.6)], cex.axis=1.7, cex.lab=1.5, 

col=treatment)) 

with(data[flt,], plotspectra(spec.bas[,sclr(spec.bas, 2.8, 4.0)], cex.axis=1.7, cex.lab=1.5, 

col=treatment)) 

 

################# PLS ################# 

data$control = as.numeric(data$treatment == 1) 

data$tmz = as.numeric(data$treatment == 2) 

data$ym = as.numeric(data$treatment == 3) 

with(data, cbind(id, control, tmz, ym)) 

### YM med valideringssett ### 

validering = data$cellLine=="2" | data$cellLine=="5" 

flt = good & data$tmz==0 & !validering #data$time_followup %in% smp; 

spec2.pls = plsr( ym~spec.bas , data=data[flt,], ncomp=10 , validation="LOO", scale=TRUE ) 

#hent ut R2 og Q2 - husk å tilpasse variabelnavn i for-løkken 

rsq=c(); 

rsq=as.vector(as.table(R2(spec2.pls,intercept=FALSE,estimate = "train")$val)[,,]) 

qsq=as.vector(as.table(R2(spec2.pls,intercept=FALSE)$val)[,,]) 

#x11(); 

plot(qsq/rsq,type="b",ylim=c(-1,1),main=paste("Q2/R2")); 

abline(0.8,0,col="red") 

abline(0,0,col="black") 

lines(qsq) 

lines(rsq, col="blue") 

print(rsq); 

print(qsq); 

print(qsq/rsq); 

### validation set: Calculate Q2 (?) ### 

fltv =  good & data$tmz==0 & validering #same as above, but YES validering 

vsq=as.vector(as.table(R2(spec2.pls,intercept=FALSE,newdata = data[fltv,])$val)[,,]) 
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# Add them to same plot above 

lines(vsq, col="green") 

### PLS, other treatment TMZ ### 

#Without validation, results were bogus/bad 

flt = good & data$ym==0; #data$time_followup %in% smp; 

spec2.pls = plsr( tmz~spec.bas , data=data[flt,], ncomp=10, 

validation="CV",segments=4,segment.type="random", scale=TRUE ) 

#hent ut R2 og Q2 - husk å tilpasse variabelnavn i for-løkken 

rsq=c(); 

rsq=as.vector(as.table(R2(spec2.pls,intercept=FALSE,estimate = "train")$val)[,,]) 

qsq=as.vector(as.table(R2(spec2.pls,intercept=FALSE)$val)[,,]) 

#x11(); 

plot(qsq/rsq,type="b",ylim=c(-1,1),main=paste("Q2/R2")); 

abline(0.8,0,col="red") 

abline(0,0,col="black") 

lines(qsq) 

lines(rsq, col="blue") 

print(rsq); 

print(qsq); 

print(qsq/rsq); 

#### End of document ### 

8.11.3 R code for file ‘functions.R’ 

danielclip <- function(x) { x[x<0]=0; x } #alternatively: { x-abs(x) } #which is faster? or 

"better"? 

#returns the column names of a matrix, converted to numeric (e.g. the ppm scale of a set of 

spectra) 

scl <- function(m) as.numeric(dimnames(m)[[2]]) 

#returns the closest matrix index to a given value among its column names (e.g. the closest 

index to a given ppm value) 

sclv <- function(mat,v) { # the matrix m is not duplicated in memory as long as it's not 

changed, see tracemem() or duplicate() 

 sapply(v,function(x) which.min(abs(scl(mat)-x)) ); #automatically resolves ties by 

taking the first that fits - just like me. 

} 

#returns a range of matrix indices between the two given x-axis (e.g. ppm) values 

sclr <- function(mat,v1,v2) { 

 sclv(mat,v1) : sclv(mat,v2) ; 

} 
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# Binning to (quite arbitrary) new bins: 

# takes an x-axis (the old bin midpoints), a y-matrix (i.e. sets of spectra) and "breaks" (the 

new bin edges). 

# Note 1: The resulting spectrum is scaled such that its y values are on the same order of 

magnitude as the original ones, facilitating comparing them. 

# Note 2: "breaks" can be a vector or a list of vectors, each vector specifying the edges of 

"target bins".  

#         The latter case is useful when excluding e.g. the clipped water signal from the 

procedure. 

# Note 3: Within the scope of each "target bin" vector, the original x-axis is ASSUMED TO BE 

EQUIDISTANT 

# 

danielbin <- function(x, y, breaks) { 

 #test and process input 

 x <- as.numeric(x); #if the x scale came from e.g. some dimnames 

 if (!is.matrix(y)) { y <- t(as.matrix(y)); } #if single spectrum, make it a one-row 

matrix 

 if (!is.list(breaks)) { breaks <- list(breaks) } 

  

 #prepare the output list (this has -unfortunately- to be done beforehand in order to 

save memory and avoid cbind() operations) 

 newx=c(); #empty vector, to contain the new bin midpoints 

 for(k in 1:length(breaks)) { newx = append(newx,(breaks[[k]][-1]+breaks[[k]][-

length(breaks[[k]])])/2); } #iterate through the "breaks" input and calculate the midpoints 

for each segment; append to x 

 widths=c(); #same for the target bin widths 

 for(k in 1:length(breaks)) { widths = append(widths,breaks[[k]][-1]-breaks[[k]][-

length(breaks[[k]])]); } 

 outlist <- list( x=newx, widths=widths, 

y=matrix(0,nrow(y),length(newx),dimnames=list(dimnames(y)[[1]],newx)) ); #a matrix of zeros, 

with as many rows as the input, as many columns as target bins, and proper dimnames 

 c = 0; #the current index offset, will help us while filling the output "y", i.e. 

overwriting the zeros 

  

 #now for each segment of "breaks", do a regular binning: 

 for(k in 1:length(breaks)) { 

  cat("k =",k,"\n"); 

  #find the indices of x that definitely can contribute to the new bins, 

calculate "old" resolution in that region... 

  possib = which( (x>=min(breaks[[k]])) & (x<=max(breaks[[k]])) ); #so far: old 

bins *within* the new breaks - might be missing some at the edges! 

  oldres   <- (x[possib][length(x[possib])]-x[possib][1])/(length(x[possib])-1); 

#calculate resolution 

  #...then, just to be safe and include *all possible* contributing old bins, 

expand the list of indices by one on each side, 
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  mi = min(possib); if (mi>1) { possib=c(mi-1,possib); } 

  ma = max(possib); if (ma<length(x)) { possib=c(possib,ma+1); } 

  #and construct the old bin edges (assumes equidistant x in each segment) 

  oldleft  <- x[possib]-oldres/2; 

  oldright <- x[possib]+oldres/2; 

  if ( (breaks[[k]][1])<oldleft[1] || 

(breaks[[k]])[length(breaks[[k]])]>oldright[length(oldright)] ) { warning("New bin edges 

exceed old bin edges."); } 

  #construct new bin edges from "breaks" (trivial) 

  newleft  <- breaks[[k]][-length(breaks[[k]])]; #chop last one 

  newright <- breaks[[k]][-1]; 

   

  #now iterate over the new bins: 

  for(i in 1:length(newleft)) { 

  cat("."); 

   #for each new bin, look at the overlaps between the new bin and the old 

bins 

   #and sum up the values found in the old bins accordingly. So, iterate 

over the old bins: 

   for(j in 1:length(oldleft)) { 

    fact = ( min(newright[i],oldright[j]) - 

max(newleft[i],oldleft[j]) ) / (oldright[j]-oldleft[j]) #find overlap "ratio" of the old with 

the new bin 

    scalfac = oldres/(newright[i]-newleft[i]); #introduce scaling 

factor to average the new bin (two effects: 1) scales spectrum back to original size after 

"summing the contributions", 2) in the case of unequally wide new bins, corrects for the size 

of the bins) 

    #cat("i=",i,"/",length(newleft)," j=",j,"/",length(oldleft)," 

overlap=",fact,"\tc+i=",c+i,"/",ncol(outlist$y),"\n",sep=""); 

    if (fact>0) { outlist$y[,c+i] <- outlist$y[,c+i] + 

scalfac*fact*y[,possib[j]]; } #sum up 

   } 

  } 

  cat("\n"); 

   

  #finally, increase current column index by number of new bins filled: 

  c = c+length(breaks[[k]])-1; 

 } 

  

 return (outlist); 

} 

#color map for heatmaps: red-black-green 
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danielheatcols <- function(n) { 

 sapply(seq(-1,1,length.out=n), function(x) rgb( (-x+abs(-x))/2 , (x+abs(x))/2 , 0 )) 

#from red to black to green 

} 

danieloplscols <- function(n=5) { 

 rgb( approx(c(0,0.5,0,1,0.7),n=n)$y , approx(c(0,0.5,1,1,0),n=n)$y , 

approx(c(0.7,1,0,0,0),n=n)$y  ) 

} 

danieloplscols.mapped <- function(y,scale=c(min(y),max(y)) ) { 

 y = pmax(y[-1],y[-length(y)]); 

 rgb( approx(seq(scale[1],scale[2],length.out=5),c(0,0.5,0,1,0.7),xout=y)$y , 

approx(seq(scale[1],scale[2],length.out=5),c(0,0.5,1,1,0),xout=y)$y , 

approx(seq(scale[1],scale[2],length.out=5),c(0.7,1,0,0,0),xout=y)$y  ) 

} 

#color map for correlation matrix maps: blue-white-red 

danielcm.cols <- function(n) { 

 sapply(seq(-1,1,length.out=n), function(x) rgb( 1+(x-abs(x))/2 , 1-abs(x) , 1+(-x-abs(-

x))/2 )) #from blue to white to red 

} 

danielcm.cols2 <- function(n=16) { 

 x  = c( -1, -0.5,  0, 0.5,  1 ) 

 yR = c(  0,    0,  0,   1,  1 ) 

 yG = c(  1,    0,  0,   0,  1 ) 

 yB = c(  1,    1,  0,   0,  0 ) 

 #  cyan, blue, black, red, yellow (read column-wise) 

 rgb( approx(x,yR,n=n)$y, approx(x,yG,n=n)$y, approx(x,yB,n=n)$y ); 

} 

#Plot one or more spectra. X-axis is taken from colnames() and inverted. Color-coded cylically 

plotspectra <- function(inspec, col=c("black","red","green","blue","magenta"), 

ylim=c(min(inspec),max(inspec)), xlab="Chemical Shift (ppm)", ylab="Intensity (a.u.)", 

xaxs="i", ... ) { 

 if (!is.matrix(inspec)) { 

  inspec <- t(as.matrix(inspec)); #if input is only one spectrum: coerce into a 

one-row matrix 

 } 

 ppm <- as.numeric(colnames(inspec)); 

 maxminppm <- c(max(ppm),min(ppm)); 

 for (i in 1:nrow(inspec)) { 

  if (i>1) {par(new=TRUE);} 

  plot(ppm, inspec[i,], type="l", xlim=maxminppm, ylim=ylim, col=col[((i-

1)%%length(col))+1], xlab=xlab, ylab=ylab, xaxs=xaxs, ... ); 
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 } 

} 

#Plot density profiles by factor. X-axis is taken from colnames() and inverted. Color-coded 

cylically 

#Removes NA values automatically 

facdensiplot <- function(var, fac, xlim=c(min(var,na.rm=TRUE),max(var,na.rm=TRUE)), 

col=c("red","green","blue","magenta","black"), bw=(xlim[2]-xlim[1])/100, ... ) { 

 #ufac=sort(unique(fac)); 

 ufac=sort(unique(fac),na.last=NA); #this removes "NA" as a factor 

 for (i in 1:length(ufac)) { 

  if (i>1) {par(new=TRUE);} 

  plot(density(var[fac==ufac[i]&!is.na(var)],bw=bw,na.rm=TRUE), xlim=xlim, 

col=col[((i-1)%%length(col))+1], xlab=deparse(substitute(var)), ylab="Density (not 

normalized)" , main=paste("Density Plot factored by",deparse(substitute(fac))) , ... ) 

 } 

 #make a legend: 

 coor = par("usr"); 

 legend( x=(coor[1]+0.1*(coor[2]-coor[1])),y=(coor[4]-0.1*(coor[4]-coor[3])) 

,legend=ufac,col=col,lwd=1,bty="n") 

} 

 

#Function that plots correlation matrices with proper axes 

#Parameters: the correlation matrix (corm), the correlation cutoff and the number of colors 

(ccut and ncol). 

#            Further: The colormap function (must have same ncol as stated before) 

plotcorm <- function(corm, projX=NULL, projY=NULL, ccut=0.7, ncol=17, col=danielcm.cols(ncol), 

widths=c(6,1), bounce=TRUE, Xrange=NULL, Yrange=NULL, ...) { 

 #general settings: 

 Xppm=as.numeric(rownames(corm)) 

 Yppm=as.numeric(colnames(corm)) #for some reason, "image" plots matrices sideways 

 mamix=c(max(Xppm),min(Xppm)) 

 mamiy=c(max(Yppm),min(Yppm)) 

 if (bounce) { 

  bounce=0.5*((mamix[1]-mamix[2])/length(Xppm)); # bounce out plot limits to 

avoid "half pixels" in "image". assummes evenly- 

  mamix=c(mamix[1]+bounce,mamix[2]-bounce);  # spaced axis (not necessarily true, 

see clipped water), may therefore overestimate the necessary bounce... which is OK. 

  bounce=0.5*((mamiy[1]-mamiy[2])/length(Yppm)); # bounce out plot limits to 

avoid "half pixels" in "image". assummes evenly- 

  mamiy=c(mamiy[1]+bounce,mamiy[2]-bounce);  # spaced axis (not necessarily true, 

see clipped water), may therefore overestimate the necessary bounce... which is OK. 

 } 
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 colb=c( seq(from=-1,to=-ccut,length.out=(ncol+1)/2) , 

seq(from=ccut,to=1,length.out=(ncol+1)/2) ) 

  

 #Case A: if no projections specified, just plot the correlation matrix: 

 if (is.null(projX) && is.null(projY)) { 

  image(Xppm,Yppm,corm,col=col,breaks=colb,xlim=mamix, ylim=mamiy, ... ) 

  box() 

 #Case B: if *either* of the projections is set, make a 2-by-2 layout (even if maybe 

only one projection is defined) 

 } else { 

  #some settings and calculations: 

  pr.ax.col = "gray"; 

  projCol = "black"; 

  if (is.null(projX)) {projX=rep(0,length(Xppm))} 

  if (is.null(projY)) {projY=rep(0,length(Yppm))} 

  #save figure parameters to reset later 

  def.par <- par(no.readonly = TRUE) # save default, for resetting... 

  # make a layout matrix like this:   1 - 

  #                                   3 2    which means that the top will be 

processed first, then the right, then the left bottom (the central correlation plot) 

  nf <- layout( matrix(c(1,0,3,2),2,2,byrow=TRUE), widths=widths, 

heights=rev(widths), respect=FALSE) 

  layout.show(nf) 

  # subfigure 1: top projection. set margins (bottom, left, top, right) to 

(0,5,0,.1) 

  par(mar=c(0,5,0,.1)) 

 

 plot(Xppm,projX,type="l",xlim=mamix,ylim=Yrange,xaxs="i",yaxs="i",xaxt="n",col.axis=pr.

ax.col,fg=pr.ax.col,col=projCol) 

  # subfigure 2: right projection. set margins to (5,0,.1,0) 

  par(mar=c(5,0,.1,0)) 

 

 plot(projY,Yppm,type="l",ylim=mamiy,xlim=Yrange,xaxs="i",yaxs="i",yaxt="n",col.axis=pr.

ax.col,fg=pr.ax.col,col=projCol) 

  # subfigure 3: correlation matrix. set margins to (5,53,.1.,1) 

  par(mar=c(5,5,.1,.1)) 

  image(Xppm,Yppm,corm,col=col,breaks=colb,xlim=mamix, ylim=mamiy, ... ) 

  abline(0,1,col="gray") 

  box(); #redraw the box around the matrix. 

  #reset figure parameters. 

  #par(def.par)   
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 } 

} 

 

# Function that measures the area under the curve in a specified region of a plot. 

# - Assumes that a spectrum (or any other graph) has already been drawn, expects the very same 

spectrum as its input argument 

# - Lets the user pick two points (the end points of the region) 

# - Calculates the area in that region in three different ways: 

#    - naive: altitude over zero line times width 

#    - baseline from spectrum (auto.baseline): assumes x/y coordinates of spectrum closest to 

user-selected points to define a baseline, subtracts that from area 

#    - baseline from user (user.baseline): assumes the points chosen by the user to define the 

baseline and subtracts it (no, even better: only takes what lies ABOVE it) 

measurepeak <- function(spec) { 

 spec=t(as.matrix(spec)); 

 if (nrow(spec)!=1) { warning("Expecting a one-row matrix as input.\n"); } else { 

 cat("measurepeak(): Please locate a peak or group to be measured: Click two positions 

at the \"foot\" of the signal.\n"); 

 #get 2 points from user: 

 co=locator(n=2,type="o",col="red") 

 #find nearest integer indices of spectrum 

 index.x=sort(sclv(spec,co$x)); 

 #find autobaseline 

 base.y=spec[index.x] 

 scal=as.numeric(colnames(spec)) 

  

 # calculate areas: 

 an <- sum( (spec[index.x[1]:(index.x[2]-1)]+spec[(index.x[1]+1):index.x[2]]) * 

abs(scal[index.x[1]:(index.x[2]-1)]-scal[(index.x[1]+1):index.x[2]]) / 2 ) 

  

 m.a <- (spec[index.x[2]]-spec[index.x[1]]) / (scal[index.x[2]]-scal[index.x[1]]); n.a 

<- spec[index.x[1]]-m.a*scal[index.x[1]]; 

 bl.a <- m.a*(scal[index.x[1]:index.x[2]])+n.a; 

 aa <- sum( ( (spec[index.x[1]:(index.x[2]-1)]+spec[(index.x[1]+1):index.x[2]]) - 

(bl.a[-1]+bl.a[-length(bl.a)]) ) * abs(scal[index.x[1]:(index.x[2]-1)]-

scal[(index.x[1]+1):index.x[2]]) / 2 ) 

  

 m.u <- (co$y[2]-co$y[1]) / (co$x[2]-co$x[1]); n.u <- co$y[1]-m.u*co$x[1]; 

 bl.u <- m.u*(scal[index.x[1]:index.x[2]])+n.u; 

 au <- sum( danielclip( (spec[index.x[1]:(index.x[2]-

1)]+spec[(index.x[1]+1):index.x[2]]) - (bl.u[-1]+bl.u[-length(bl.u)]) ) * 

abs(scal[index.x[1]:(index.x[2]-1)]-scal[(index.x[1]+1):index.x[2]]) / 2 ) 
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 #return output list 

 list( x=co$x, y=co$y, index.x=index.x, base.y=base.y, area.naive=an, 

area.auto.baseline=aa, area.user.baseline=au ) 

  

 } #end if(nrow(spec)!=1) 

} 

 

#function that plots color-coded, rescaled loading weights with a color legend. 

#Parameteres: lw is the K vector from (a uv-scaled) O2-PLS or the loading weights / 

coefficients from a (uv-scaled) PLS; scalfac is the scaling factor from the uv scaling 

#Note: color scale will be adjusted between the minimal and maximal absolute correlation (i.e. 

value in variable "lw"). Otherwise you can set colscal=c(0,1) and get a "true" correlation 

scale 

lwplot <- function (lw, scalfac=1, colscal=c(min(abs(lw)),max(abs(lw))), ncol=32, 

widths=c(10,1), ... ) { 

 #prepare splitscreen layout for plot and legend 

 nf <- layout(matrix(c(2,1),1,2,byrow=TRUE), widths=widths, heights=c(1), respect=FALSE) 

 layout.show(nf) 

  

 #plot legend: 

 par(mar=c(3,0,2,2.5)) #margins in subplot: down, left, up, right 

 mima=matrix(seq(colscal[1],colscal[2],length.out=ncol),nrow=1) 

 #plot legend w/o axes 

 image(1,seq(colscal[1],colscal[2],length.out=ncol),mima,col=danieloplscols(ncol),xaxt="

n",yaxt="n",xlab="",ylab="Correlation") 

 axis(4); #4=on right 

 box(); 

  

 #plot rescaled loading weights, color coded by their original values:  

 par(mar=c(3,2.5,2,0.5)) 

 x=as.numeric(names(lw)); 

 mamix=c(max(x),min(x)); 

 plot(x,lw*scalfac, type="n", xlim=mamix,xaxs="i",yaxs="i",...); #type="n" produces an 

empty plot, which plotrix uses to draw lines into 

 color.scale.lines(x,lw*scalfac,xlim=mamix, 

col=danieloplscols.mapped(abs(lw),scale=colscal),colvar=lw,lwd=2) 

 box(); 

} 
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8.12  Nuclear magnetic resonance spectroscopy pulse 
program scripts  

Pulse program code obtained from the software TopSpin. Code denoted with .nn was written 

for this specific study by Nils Nyberg from Bruker.  

Pulse program code for noesygppr1d.comp 

;noesygppr1d.comp 

;avance-version (06/11/09) 

;1D version of noesyprtp 

;with presaturation during relaxation delay and mixing time 

;   and spoil gradient 

; 

;$CLASS=HighRes 

;$DIM=1D 

;$TYPE= 

;$SUBTYPE= 

;$COMMENT= 

 

;$OWNER=stsc 

#include <Avance.incl> 

#include <Grad.incl> 

 

"d12=20u" 

 

"acqt0=-p0*2/3.1416" 

 

1 ze 

2 30m 

  4u BLKGRAD 

  d12 pl9:f1 

  d1 cw:f1 ph29 

  4u do:f1 
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  50u UNBLKGRAD 

  p16:gp1 

  d16 pl1:f1 

  p1 ph1 

  4u 

  p1 ph2 

  d12 pl9:f1 

  d8 cw:f1 

  4u do:f1 

  p16:gp2 

  d16 pl1:f1 

  ;4u BLKGRAD 

  p0 ph3 

  go=2 ph31 

  30m mc #0 to 2 F0(zd) 

exit 

 

ph1=0 2  

ph2=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 

ph3=0 0 2 2 1 1 3 3 

ph29=0 

ph31=0 2 2 0 1 3 3 1 2 0 0 2 3 1 1 3 

 

;pl1 : f1 channel - power level for pulse (default) 

;pl9 : f1 channel - power level for presaturation 

;p0 : for any flip angle 

;p1 : f1 channel -  90 degree high power pulse 

;p16: homospoil/gradient pulse 

;d1 : relaxation delay; 1-5 * T1 

;d8 : mixing time 

;d12: delay for power switching                      [20 usec] 

;d16: delay for homospoil/gradient recovery 

;NS: 8 * n, total number of scans: NS * TD0 
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;DS: 4 

 

;use gradient ratio:    gp 1 : gp 2 

;                         50 :  -10 

 

;for z-only gradients: 

;gpz1: 50% 

;gpz2: -10% 

 

;use gradient files: 

;gpnam1: SINE.100 

;gpnam2: SINE.100 

 

;$Id: noesygppr1d,v 1.3.2.1 2006/11/10 11:02:26 ber Exp $  

 

Pulse program code for zgesgp.dp 

;zgesgp 

;avance-version (07/10/04) 

;1D sequence 

;water suppression using excitation sculpting with gradients 

;T.-L. Hwang & A.J. Shaka, J. Magn. Reson., 

;   Series A 112 275-279 (1995) 

; 

;$CLASS=HighRes 

;$DIM=1D 

;$TYPE= 

;$SUBTYPE= 

;$COMMENT= 

 

prosol relations=<triple> 

 

#include <Avance.incl> 
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#include <Grad.incl> 

#include <Delay.incl> 

 

"p2=p1*2" 

"d12=20u" 

 

1 ze 

2 30m 

  d12 pl1:f1 BLKGRAD 

  d1 

  p1 ph1 

   

  50u UNBLKGRAD 

  p16:gp1 

  d16 pl0:f1 

  (p12:sp1 ph2:r):f1 

  4u 

  d12 pl1:f1 

 

  p2 ph3 

 

  4u 

  p16:gp1 

  d16  

  50u 

  p16:gp2 

  d16 pl0:f1 

  (p12:sp1 ph4:r):f1 

  4u 

  d12 pl1:f1 

 

  p2 ph5 
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  4u 

  p16:gp2 

  d16 

 

  go=2 ph31 

  30m mc #0 to 2 F0(zd) 

  4u BLKGRAD 

exit 

 

ph1=0 

ph2=0 1 

ph3=2 3 

ph4=0 0 1 1 

ph5=2 2 3 3 

ph31=0 2 2 0  

 

;pl0 : 120dB 

;pl1 : f1 channel - power level for pulse (default) 

;sp1 : f1 channel - shaped pulse 180 degree 

;p1 : f1 channel -  90 degree high power pulse 

;p2 : f1 channel - 180 degree high power pulse 

;p12: f1 channel - 180 degree shaped pulse (Squa100.1000)   [2 msec] 

;p16: homospoil/gradient pulse 

;d1 : relaxation delay; 1-5 * T1 

;d12: delay for power switching                             [20 usec] 

;d16: delay for homospoil/gradient recovery 

;NS: 8 * n, total number of scans: NS * TD0 

;DS: 4 

 

;use gradient ratio:    gp 1 : gp 2 

;                         31 :   11 

 

;for z-only gradients: 
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;gpz1: 31% 

;gpz2: 11% 

 

;use gradient files: 

;gpnam1: SINE.100 

;gpnam2: SINE.100 

 

;$Id: zgesgp,v 1.5.6.1 2007/10/04 16:52:07 ber Exp $  

 

Pulse program code for zgesgp.nn 

;zgesgp 

;avance-version (12/01/11) 

;1D sequence 

;water suppression using excitation sculpting with gradients 

;T.-L. Hwang & A.J. Shaka, J. Magn. Reson., 

;   Series A 112 275-279 (1995) 

; 

;$CLASS=HighRes 

;$DIM=1D 

;$TYPE= 

;$SUBTYPE= 

;$COMMENT= 

 

prosol relations=<triple> 

 

#include <Avance.incl> 

#include <Grad.incl> 

#include <Delay.incl> 

 

"p2=p1*2" 

"d12=20u" 

 

"TAU=de+p1*2/3.1416+50u" 
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"acqt0=0" 

baseopt_echo 

 

 

1 ze 

2 30m 

  d12 pl1:f1 BLKGRAD 

  d1 

  p1 ph1 

   

  50u UNBLKGRAD 

  p16:gp1 

  d16 pl0:f1 

  (p12:sp1 ph2:r):f1 

  4u 

  d12 pl1:f1 

 

  p2 ph3 

 

  4u 

  p16:gp1 

  d16  

  TAU 

  p16:gp2 

  d16 pl0:f1 

  (p12:sp1 ph4:r):f1 

  4u 

  d12 pl1:f1 

 

  p2 ph5 

 

  4u 

  p16:gp2 

  d16 

 

  go=2 ph31 
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  30m mc #0 to 2 F0(zd) 

  4u BLKGRAD 

exit 

 

ph1=0 

ph2=0 1 

ph3=2 3 

ph4=0 0 1 1 

ph5=2 2 3 3 

ph31=0 2 2 0  

 

;pl0 : 0W 

;pl1 : f1 channel - power level for pulse (default) 

;sp1 : f1 channel - shaped pulse 180 degree 

;p1 : f1 channel -  90 degree high power pulse 

;p2 : f1 channel - 180 degree high power pulse 

;p12: f1 channel - 180 degree shaped pulse (Squa100.1000)   [2 msec] 

;p16: homospoil/gradient pulse 

;d1 : relaxation delay; 1-5 * T1 

;d12: delay for power switching                             [20 usec] 

;d16: delay for homospoil/gradient recovery 

;ns: 8 * n, total number of scans: NS * TD0 

;ds: 4 

 

;use gradient ratio:    gp 1 : gp 2 

;                         31 :   11 

 

;for z-only gradients: 

;gpz1: 31% 

;gpz2: 11% 

 

;use gradient files: 

;gpnam1: SMSQ10.100 

;gpnam2: SMSQ10.100 

 

;$Id: zgesgp,v 1.9 2012/01/31 17:49:32 ber Exp $ 
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;cpd2: decoupling according to sequence defined by cpdprg2 

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 

 

;use gradient ratio: gp 1 : gp 2 : gp 3 : gp 4 

;     80 : 20.1 :   11 :   -5    for C-13 

;     80 :  8.1 :   11 :   -5    for N-15 

 

;for z-only gradients: 

;gpz1: 80% 

;gpz2: 20.1% for C-13, 8.1% for N-15 

;gpz3: 11% 

;gpz4: -5% 

 

;use gradient files:    

;gpnam1: SMSQ10.100 

;gpnam2: SMSQ10.100 

;gpnam3: SMSQ10.100 

;gpnam4: SMSQ10.100 

 

;cnst17: Factor to compensate for coupling evolution during a pulse 

;       (usually +1). A positive factor indicates that coupling  

;       evolution continues during the pulse, whereas a negative  

;       factor is necessary if the coupling is (partially) refocussed. 

 

;$Id: hsqcedetgpsisp2.2,v 1.10 2012/01/31 17:49:26 ber Exp $ 

 

Pulse program code for jresgppraf 

;jresgpprqf 

;avance-version (12/01/11) 

;homonuclear J-resolved 2D correlation 

;with presaturation during relaxation delay 

;using gradients 

; 

;$CLASS=HighRes 
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;$DIM=2D 

;$TYPE= 

;$SUBTYPE= 

;$COMMENT= 

 

#include <Avance.incl> 

#include <Grad.incl> 

 

"p2=p1*2" 

"d11=30m" 

"d12=20u" 

 

"in0=inf1/2" 

 

"d0=3u" 

 

1 ze 

2 d11  

3 d12 pl9:f1 

  d1 cw:f1 ph29 

  4u do:f1 

  d12 pl1:f1 

  50u UNBLKGRAD 

  p1 ph1 

  4u 

  d0 

  p16:gp1 

  d16 

  p2 ph2 

  4u 

  p16:gp2 

  d16 

  d0 BLKGRAD 

  go=2 ph31 

  d11 mc #0 to 2 F1QF(caldel(d0, +in0)) 

exit 
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ph1=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

ph2=0 2 1 3 1 3 2 0 1 3 2 0 2 0 3 1 

ph29=0 

ph31=0 0 2 2 1 1 3 3 

 

;pl1 : f1 channel - power level for pulse (default) 

;pl9 : f1 channel - power level for presaturation 

;p1 : f1 channel -  90 degree high power pulse 

;p2 : f1 channel -  180 degree high power pulse 

;p16: homospoil/gradient pulse                       [1 msec] 

;d0 : incremented delay (2D)                         [3 usec] 

;d1 : relaxation delay; 1-5 * T1 

;d11: delay for disk I/O                             [30msec] 

;d12: delay for power switching                      [20 usec] 

;d16: delay for homospoil/gradient recovery 

;inf1: 1/w, w = max. width of multiplet 

;in0: 1/(2 * w), w = max. width of multiplet 

;nd0: 2 

;ns: 4 * n 

;ds: 16 

;td1: number of experiments 

;FnMODE: QF 

 

;use gradient ratio:    gp 1 : gp 2 

;                         10 :   10 

;for z-only gradients: 

;gpz1: 10% 

;gpz2: 10% 

;use gradient files: 

;gpnam1: SMSQ10.100 

;gpnam2: SMSQ10.100 

;$Id: jresgpprqf,v 1.4 2012/01/31 17:49:26 ber Exp $ 
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Pulse program code for dipsi2esgpph 

;dipsi2esgpph 

;avance-version (12/01/11) 

;homonuclear Hartman-Hahn transfer using DIPSI2 sequence 

;   for mixing 

;phase sensitive 

;water suppression using excitation sculpting with gradients 

; 

;A.J. Shaka, C.J. Lee & A. Pines, J. Magn. Reson. 77, 274 (1988) 

;T.-L. Hwang & A.J. Shaka, J. Magn. Reson., 

;   Series A 112 275-279 (1995) 

; 

;$CLASS=HighRes 

;$DIM=2D 

;$TYPE= 

;$SUBTYPE= 

;$COMMENT= 

 

prosol relations=<triple> 

 

#include <Avance.incl> 

#include <Delay.incl> 

#include <Grad.incl> 

 

"p2=p1*2" 

"d11=30m" 

"d12=20u" 

"d13=4u" 

 

"in0=inf1" 

 

"d0=in0*0.5-p1*4/3.1416" 

 

"TAU=de+p1*2/3.1416+4u" 

 

"FACTOR1=(d9/(p6*115.112))/2" 
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"l1=FACTOR1*2" 

 

 

"acqt0=0" 

baseopt_echo 

 

1 ze  

2 d11 

3 d12 pl32:f1 

  d1 cw:f1 ph29 

  d13 do:f1 

  d12 pl1:f1 

  p1 ph1 

  d0 

  p1 ph2 

 

  50u UNBLKGRAD 

  p16:gp1 

  d16 pl10:f1 

      ;begin DIPSI2 

4 p6*3.556 ph23 

  p6*4.556 ph25 

  p6*3.222 ph23 

  p6*3.167 ph25 

  p6*0.333 ph23 

  p6*2.722 ph25 

  p6*4.167 ph23 

  p6*2.944 ph25 

  p6*4.111 ph23 

 

  p6*3.556 ph25 

  p6*4.556 ph23 

  p6*3.222 ph25 

  p6*3.167 ph23 

  p6*0.333 ph25 

  p6*2.722 ph23 
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  p6*4.167 ph25 

  p6*2.944 ph23 

  p6*4.111 ph25 

 

  p6*3.556 ph25 

  p6*4.556 ph23 

  p6*3.222 ph25 

  p6*3.167 ph23 

  p6*0.333 ph25 

  p6*2.722 ph23 

  p6*4.167 ph25 

  p6*2.944 ph23 

  p6*4.111 ph25 

 

  p6*3.556 ph23 

  p6*4.556 ph25 

  p6*3.222 ph23 

  p6*3.167 ph25 

  p6*0.333 ph23 

  p6*2.722 ph25 

  p6*4.167 ph23 

  p6*2.944 ph25 

  p6*4.111 ph23 

  lo to 4 times l1 

      ;end DIPSI2 

  4u 

  p16:gp2 

  d16 pl1:f1 

 

  p1 ph3 

 

  p16:gp3 

  d16 pl0:f1 

  (p12:sp1 ph4:r):f1 

  4u 

  d12 pl1:f1 
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  p2 ph5 

 

  4u 

  p16:gp3 

  d16 

  TAU 

  p16:gp4 

  d16 pl0:f1 

  (p12:sp1 ph6:r):f1 

  4u 

  d12 pl1:f1 

 

  p2 ph7 

 

  4u 

  p16:gp4 

  d16 

  4u BLKGRAD 

 

  go=2 ph31 

  d11 mc #0 to 2 F1PH(calph(ph1, +90) & calph(ph29, +90), caldel(d0, +in0)) 

exit  

   

ph1=0 2 

ph2=0 0 0 0 2 2 2 2 

ph3=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 

ph4=0 0 1 1 

ph5=2 2 3 3 

ph6=0 0 0 0 1 1 1 1  

ph7=2 2 2 2 3 3 3 3 

ph23=3 

ph25=1 

ph29=0 

ph31=0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 
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;pl0 : 0W 

;pl1 : f1 channel - power level for pulse (default) 

;pl10: f1 channel - power level for TOCSY-spinlock 

;pl32: f1 channel - power level for low power presaturation 

;sp1 : f1 channel - shaped pulse 180 degree 

;p1 : f1 channel -  90 degree high power pulse 

;p2 : f1 channel - 180 degree high power pulse 

;p6 : f1 channel -  90 degree low power pulse 

;p12: f1 channel - 180 degree shaped pulse (Squa100.1000)   [2 msec] 

;p16: homospoil/gradient pulse 

;d0 : incremented delay (2D) 

;d1 : relaxation delay; 1-5 * T1 

;d9 : TOCSY mixing time 

;d11: delay for disk I/O                             [30 msec] 

;d12: delay for power switching                      [20 usec] 

;d13: short delay                                    [4 usec] 

;d16: delay for homospoil/gradient recovery 

;l1: loop for DIPSI cycle: ((p6*115.112) * l1) = mixing time 

;inf1: 1/SW = 2 * DW 

;in0: 1/(1 * SW) = 2 * DW 

;nd0: 1 

;ns: 8 * n 

;ds: 16 

;td1: number of experiments 

;FnMODE: States-TPPI, TPPI, States or QSEQ 

 

;use gradient ratio: gp 1 : gp 2 : gp 3 : gp 4 

;              1 :    3 :   31 :   11 

 

;for z-only gradients: 

;gpz1: 1% 

;gpz2: 3% 

;gpz3: 31% 

;gpz4: 11% 

 

;use gradient files:    
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;gpnam1: SMSQ10.100 

;gpnam2: SMSQ10.100 

;gpnam3: SMSQ10.100 

;gpnam4: SMSQ10.100 

 

;set pl32 to 0W when presaturation is not required 

;   use pl1 + 75 to 80dB to reduce radiation damping 

 

;Processing 

;PHC0(F1): 90 

;PHC1(F1): -180 

;FCOR(F1): 1 

 

;$Id: dipsi2esgpph,v 1.14 2012/01/31 17:49:22 ber Exp $ 

 

Pulse program code for hsqcdietgpsisp.2 

;hsqcedetgpsisp2.2 

;avance-version (12/01/11) 

;HSQC 

;2D H-1/X correlation via double inept transfer 

;   using sensitivity improvement 

;phase sensitive using Echo/Antiecho-TPPI gradient selection 

;with decoupling during acquisition 

;using trim pulses in inept transfer 

;with multiplicity editing during selection step 

;using shaped pulses for all 180degree pulses on f2 - channel 

;with gradients in back-inept 

; 

;A.G. Palmer III, J. Cavanagh, P.E. Wright & M. Rance, J. Magn. 

;   Reson. 93, 151-170 (1991) 

;L.E. Kay, P. Keifer & T. Saarinen, J. Am. Chem. Soc. 114, 

;   10663-5 (1992) 

;J. Schleucher, M. Schwendinger, M. Sattler, P. Schmidt, O. Schedletzky, 

;   S.J. Glaser, O.W. Sorensen & C. Griesinger, J. Biomol. NMR 4, 

;   301-306 (1994) 

;W. Willker, D. Leibfritz, R. Kerssebaum & W. Bermel, Magn. Reson. 



186 

 

;   Chem. 31, 287-292 (1993) 

; 

;$CLASS=HighRes 

;$DIM=2D 

;$TYPE= 

;$SUBTYPE= 

;$COMMENT= 

 

#include <Avance.incl> 

#include <Grad.incl> 

#include <Delay.incl> 

 

"p2=p1*2" 

"d4=1s/(cnst2*4)" 

"d11=30m" 

 

"d0=3u" 

 

"in0=inf1/2" 

 

"DELTA=d21-cnst17*p24/2-p16-d16-p2-d0*2" 

"DELTA1=p16+d16-p1*0.78+de+8u" 

"DELTA2=d4-larger(p2,p14)/2" 

"DELTA3=d24-cnst17*p24/2-p19-d16" 

"DELTA4=d4-larger(p2,p14)/2-p16-d16" 

"DELTA5=d21-cnst17*p24/2" 

 

"acqt0=0" 

baseopt_echo 

 

1 ze 

  d11 pl12:f2 

2 d1 do:f2  

3 (p1 ph1) 

  DELTA2 pl0:f2 

  4u 
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  (center (p2 ph1) (p14:sp3 ph6):f2 ) 

  4u 

  DELTA2 pl2:f2 UNBLKGRAD 

  p28 ph1 

  4u 

  (p1 ph2) (p3 ph3):f2 

  d0  

  (p2 ph7) 

  d0 

  p16:gp1*EA 

  d16 

  DELTA 

  4u 

  (center (p2 ph1) (p24:sp7 ph4):f2 ) 

  4u 

  DELTA5 pl2:f2 

  (center (p1 ph1) (p3 ph4):f2 ) 

  p19:gp3 

  d16 

  DELTA3 

  (center (p2 ph1) (p24:sp7 ph1):f2 ) 

  DELTA3 

  p19:gp3 

  d16 pl2:f2 

  (center (p1 ph2) (p3 ph5):f2 ) 

  p16:gp4 

  d16 

  DELTA4 pl0:f2 

  (center (p2 ph1) (p14:sp3 ph1):f2 ) 

  DELTA4 

  p16:gp4 

  d16 

  (p1 ph1) 

  DELTA1 

  (p2 ph1) 

  4u 
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  p16:gp2 

  d16 pl12:f2 

  4u BLKGRAD 

  go=2 ph31 cpd2:f2 

  d1 do:f2 mc #0 to 2  

     F1EA(calgrad(EA) & calph(ph5, +180), caldel(d0, +in0) & calph(ph3, +180) & calph(ph6, +180) 

& calph(ph31, +180)) 

exit    

 

ph1=0  

ph2=1 

ph3=0 2 

ph4=0 0 2 2 

ph5=1 1 3 3 

ph6=0 

ph7=0 0 2 2 

ph31=2 0 0 2 

 

;pl0 : 0W 

;pl1 : f1 channel - power level for pulse (default) 

;pl2 : f2 channel - power level for pulse (default) 

;pl12: f2 channel - power level for CPD/BB decoupling 

;sp3: f2 channel - shaped pulse (180degree inversion) 

;spnam3: Crp60,0.5,20.1 

;sp7: f2 channel - shaped pulse (180degree refocussing) 

;spnam7: Crp60comp.4 

;p1 : f1 channel -  90 degree high power pulse 

;p2 : f1 channel - 180 degree high power pulse 

;p3 : f2 channel -  90 degree high power pulse 

;p14: f2 channel - 180 degree shaped pulse for inversion 

;     = 500usec for Crp60,0.5,20.1 

;p16: homospoil/gradient pulse 

;p19: gradient pulse 2                                 [500 usec] 

;p24: f2 channel - 180 degree shaped pulse for refocussing 

;     = 2msec for Crp60comp.4 

;p28: f1 channel - trim pulse 

;d0 : incremented delay (2D)                           [3 usec] 
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;d1 : relaxation delay; 1-5 * T1 

;d4 : 1/(4J)XH 

;d11: delay for disk I/O                               [30 msec] 

;d16: delay for homospoil/gradient recovery 

;d21: set d21 according to multiplicity selection 

;        1/(2J(XH))  XH, XH3 positive, XH2 negative 

;d24: 1/(8J)XH for all multiplicities 

;     1/(4J)XH for XH 

;cnst2: = J(XH) 

;cnst17: = -0.5 for Crp60comp.4 

;inf1: 1/SW(X) = 2 * DW(X) 

;in0: 1/(2 * SW(X)) = DW(X) 

;nd0: 2 

;ns: 1 * n 

;ds: >= 16 

;td1: number of experiments 

;FnMODE: echo-antiecho 

;cpd2: decoupling according to sequence defined by cpdprg2 

;pcpd2: f2 channel - 90 degree pulse for decoupling sequence 

 

;use gradient ratio: gp 1 : gp 2 : gp 3 : gp 4 

;     80 : 20.1 :   11 :   -5    for C-13 

;     80 :  8.1 :   11 :   -5    for N-15 

 

;for z-only gradients: 

;gpz1: 80% 

;gpz2: 20.1% for C-13, 8.1% for N-15 

;gpz3: 11% 

;gpz4: -5% 

 

;use gradient files:    

;gpnam1: SMSQ10.100 

;gpnam2: SMSQ10.100 

;gpnam3: SMSQ10.100 

;gpnam4: SMSQ10.100 
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;cnst17: Factor to compensate for coupling evolution during a pulse 

;       (usually +1). A positive factor indicates that coupling  

;       evolution continues during the pulse, whereas a negative  

;       factor is necessary if the coupling is (partially) refocussed. 

 

;$Id: hsqcedetgpsisp2.2,v 1.10 2012/01/31 17:49:26 ber Exp $ 


