UiO © Department of Mathematics
University of Oslo

Recommender systems
analysis by compressed
sensing

Kristofer Munsterhjelm
Master’s Thesis, Spring 2018

A0 L TS S LSRR
e Z = =) i3 YRS
S LT 7 <0 R0
RS PNEFY, S
2 ¥ i
N AW
£ \/
AT A\ i
1 i
AN s S =
WY X 7 3 i X
%\ J = 8%
7 p T A
N = o I 0
TSRS\ i 97 7% o
’\n)‘i@‘w/ Wi _ A
G =7, Z D si 2 S
T > - 5y
: WiiN
; 15979 % 0, ;
0N b I i)
N i W
) R i \!
AN 0 "
SN anrsls)
> NG ey
i ORI Z 7 ais s S | !
A SSerge=s 2T 2
L) x LAY B
_ < . i
Y A : T]
= i % 2
c = = S N
P \ X
= - ¥
fa =

This master’s thesis is submitted under the master’s programme Computational
Science and Engineering, with programme option Computational Science, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60
credits.

The front page depicts a section of the root system of the exceptional Lie group FEg,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842-1899) to express symmetries in differential equations and today
they play a central role in various parts of mathematics.

Abstract

Recommender systems are algorithms that suggest content or products
to users on the internet. These are becoming ever more important due to
the massive growth of content on popular web sites, yet their design is often
only guided by empirical results. This has two drawbacks: mathematical
analysis lags behind the use of the methods, and the methods may focus too
much on immediate results instead of taking a wider perspective, leading to
unintended consequences such as social media polarization.

To help offset those drawbacks, this thesis considers both how one may
analyze recommender systems more rigorously, as well as how they may be
improved by optimizing not just for short-term results. The thesis approaches
recommender systems from a compressed sensing perspective, starting with
an explanation of compressed sensing as the study of how to approximate the
cardinality minimization problem. It then proceeds to give a review of how
compressed sensing can be generalized to approximate two matrix-valued prob-
lems, called matrix sensing and matrix completion. The application of matrix
completion to the bilinear factorization model used in recommender systems
follows, and we finish by investigating improvements to the basic bilinear
factorization model, as well as suggesting other directions of improvement.

Acknowledgements

I would like to thank my advisors: Jyvind Ryan and Anders Hansen. My frequent
review meetings with Jyvind have been of great help, and he has always been quick to
respond to any questions by mail. Both of my advisors also contributed to me choosing
compressed sensing as the subject of this thesis: yvind, through his applications of
linear algebra course; and Anders, through his lecture series on compressed sensing.

Thanks also to my friends and family, for their support and for giving me much needed
breaks from academic matters, so that I could recover and keep going without exhausting
myself.

Kristofer
May 2018

il

Contents

(1 Introduction|

(I Compressed sensing on vectors|

[2 Introduction to compressed sensing on vectors|

[3 Sparse signal theory|
3.1 The name ¢p minimization|.

[4 Complexity and hardness results|
4.1 Concepts from complexity theory| L.
[4.1.1 Abstract computers and Boolean tunctions]
|4.1.2 Implicit encoding of decision problems|
4.1.3 Algorithms and runtime| L.
4.1.4 Complexity classes| oL
4.1.5 Complexity class hardness|
4.2 Complexity of £y optimization|.

5 Convex relaxationl

5.1 Recovery of sparse vectors| oL

[6 Handling noisy signals|
6.1 Compressible signals| o oo
6.2 Robust optimization| oo oo
6.3 Bounds on recovery|.
6.3.1 Recovery of compressible vectors|
6.3.2 Robust recovery] o
6.3.3 A tractable approximation to the N5P|
6.4 A note on the restricted isometry property{.

[7 Other convex relaxations of robust recovery|
[7.1 Relations between robust recovery methods|

(II' Matrix sensing and completion|

[8 Generalizing compressed sensing to unknown matrices|

9__Hardness results|
[9.1 Matrix sensing|o e e e e

10

11
11
11
12
13
14
15
15

17
20

22
22
23
24
24
24
26
27

28
28

30
30

32

9.2 Matrix completion|

(10 Convex relaxation|

[11 Matrix sensing problems and results|
[11.1 Bounds on recovery|.o
[11.1.1 Recovery of exactly low rank matrices|
[11.1.2 Recovery of approximately low rank matrices|
[11.2 Other nuclear norm problems|
[11.2.1 Robust null space property for linear operators|

(12 Matrix completion and variable A(X)|

(II1 Matrix completion in recommender systems|

[13 Introduction to recommender systems|
[13.1 Matrix factorization as a recommender system model.

[14 Solving matrix completion recommender problems|
[14.1 Limitations of semidefinite programming|.
[14.2 A fast algorithm for matrix completion|.

[15 Bounds on exact recovery using SDP and ALS|
[15.1 Prerequisite definitions|. L oo
[15.2 Matrix sensingl
[15.2.1 Alternating least squares|,
D522 Proofl
[15.2.3 Proof using theorem 4.2
[15.3 Matrix completion|

[15.3.2 Generalized alternating least squares|
[15.3.3 Alternating least squares|,
(15.3.4 Observations and commentsl

(IV Extending recommender systems|

16 G Tizat & Tal

|16.1 Local low rank approximation|.,

(17 Problems due to the application|
[17.1 Adding an exploration component|

33
35

38
38
39
42
43
43

44

45

46
47

48
48
49

50
50
52
52
52
53
95
55
56
o7
58

58

59
59

62

(18 Future work ideas 66

[L8.1 Search for other tractable subproblems of £, p <1 optimization| 66
[T8.2 Balance recommender system exploitation in other ways| 67
[18.3 Harden recommender systems against adversarial noise/. 71
(19 Summary and conclusion| 73
[19.1 Summary|o e 73
[19.2 Concluding remarks| oo 74
[References] 75

Notation and notes

A rectangular matrix is by default M € R™*"™ so that m is consistently the number of
rows and n is the number of columns. We're interested in underdetermined systems, so
m<n.

If the matrix is square, I use M € R™*™,

Vectors (but not matrices, matrix rows or columns) are denoted by boldface, like this:
Ax =y, and are column vectors unless otherwise specified. Here x € R™" and y € R™.
Not denoting matrix rows or columns by boldface might be a bit inconsistent in retrospect,
as they can be considered vectors, but I chose not to do it.

Index sets [k] are defined as follows:
k] = {zeN:1<z<k}

and a vector restriction xp where P is a set of integers, is defined as

(xp)i _ {Sﬂl 1€ P

0 otherwise

and a vector x for which x = xp is said to be supported on P.
T use | X | for a set X to denote the cardinality of X.

I have restricted myself to the case of real numbers, as it makes more sense given my
subject. Some of the results given in the thesis hold in the complex domain as well (e.g.
the null space property (deﬁnition is identical for A € C™*" and in this case, theorem
holds for all x € C™). To stay consistent, I have only considered real variables for these
results, e.g. real matrices for the NSP.

The null space of a matrix A or operator A is consistently denoted ker(A) or ker(A) in
this thesis even though some papers use ker and other papers use Null.

When I refer to particular page numbers of papers, these numbers are of the publication
in question. E.g. [Vandenberghe and Boyd [1996| is pages 49-95 of SIAM review 38. A
reference to Vandenberghe and Boyd| [1996] p. 49| refers to the first page of the paper
proper, which is page 49 of SIAM review 38, rather than to the 49th page of the paper.

I use both X; ; and X;; to index the element at the ¢th row and jth column of a matrix
X. T usually use the latter notation unless it would be ambiguous.

1 Introduction

The internet is growing at an extraordinary rate. In 1994 there were around 2800 web
sites on the internet [Gray, 1996]; now there are around 170 million active sites |[Netcraft]
2018|. This rapid growth has led to an information explosion. The very first video on
YouTube was uploaded on April 2005; and now, YouTube serves a billion hours of video
to its users a day [YouTube, 2018|.

With this kind of information explosion, it becomes increasingly harder to decide what
web pages to visit, what music to listen to, or what videos to watch. In 1994, Yahoo
worked by manually cataloging web pages in a hierarchy; but this is clearly impractical
with 170 million active sites. Instead, the manual approach, which doesn’t scale with the
information explosion, has to a great degree been replaced by the use of algorithms.

One of these types of algorithm is the recommender system. A recommender system
suggests items to users based on the users’ past behavior: what items they have visited
in the past, and how they’ve rated those items. The purpose of the system is to direct a
user’s attention towards a few recommended items of generally good quality from the
point of view of that user, instead of leaving him to manually choose from thousands or
millions of items, some of which he might not even know exists. Recommender systems
can be used to increase sales in an online store, or to improve users’ experience on
publishing sites (like YouTube) and on social networks.

While algorithms scale better than the manual approach, they only do what they’ve
been constructed to do. Thus, they are limited by their assumptions and can fail to take
indirect effects into account. As recommender systems are being used by increasingly
larger stores and publishing sites, this becomes a more serious matter. For instance,
recommender systems might assume honesty in the data given to them, and thus be
vulnerable to manipulation. Furthermore, since the algorithms are often the result of
empirical rather than analytical design, we may not know under what conditions they
produce a good result. We usually know that they give good results on standard datasets,
but we can’t ensure that the results generalize unless we have worst-case bounds.

Fortunately, a particular type of recommender system model, the bilinear or low rank
matrix model, lends itself to analysis based on compressed sensing. Compressed sensing,
as a field, started with the observation that sparse signals x can be recovered from

observations y under the assumption that Ax = y for a known matrix A, if A obeys
certain properties, by relaxing a hard problem to an easier one. This strategy was later
generalized to the case of matrices, where we instead face the problem of recovering an
unknown matrix X under the condition that

for a known linear operator A; and the generalization produced similar results for the
matrix domain as was found for the vector domain. The results were further generalized
to the case where one might not be able to control A precisely, which is just the situation
we have in recommender systems.

In the recommender system setting, we have ratings of items by users, but naturally,
not every item has been rated by every user. We want to extrapolate the ratings to the
unknown user-item pairs to make a good guess as to what items a user would like, so
we can present those items to that user. The ratings we alredy know form Y, and the
operator A zeroes out the unrated user-item pairs.

By using the generalized compressed sensing results, we can get some analytical bounds
on when it is possible to get a full matrix X that’s close to Y. The algorithms most often
used in practice have weaker bounds.

1.1 Purpose and structure of the thesis

I started with some knowledge of compressed sensing and a wish to investigate recom-
mender systems from a more formal mathematical perspective. Most web pages about
collaborative filtering and recommender systems are written from an implementation
perspective, giving information about how to implement particular algorithms, or what
libraries to use; but there’s relatively speaking fewer articles approaching recommender
systems from a formally theoretical angle.

Since I'm interested in finding out how to improve recommender systems without making
alterations ad hoc, I have focused on the theory in this thesis. I have, however, not
let entirely go of the practical: it turns out that the type of algorithm that gives the
best formal bounds also is impractical to run on large scale data as is produced by the
information explosion, hence I have also considered the (weaker) bounds that have been
found for more practical algorithms.

The thesis as such has four parts. In the first part, I go through compressed sensing on
vectors, starting with the ideal problem we’d like to solve, and then showing the difficulty
of solving this problem on a computer. I then investigate how the problem can be relaxed,
and what bounds exist for recovery on the relaxed problem.

In the second part, I consider two generalizations of compressed sensing, focusing on
matrix sensing: the situation where A is known, Y partially so, and we want to recover

a low rank X so that A(X) = A(Y). I also give a definition of matrix completion, which
is the case where A is not entirely known in advance.

In the third part, I investigate matrix completion in a recommender systems setting.
Matrix completion is more realistic because, if A retains the known user-item pairs, we
don’t have complete control of A; it depends on which users rate which items. Two
algorithms end up being of interest: the semidefinite programming problem, which exactly
solves the relaxation of the minimum rank problem, but is very slow; and the alternating
least squares algorithm, which is practical (and was used in e.g. the Netflix challenge),
but for which the analytical bounds are looser.

In the fourth part, I explain two ways to extend recommender systems: one to make
the bilinear matrix model more accurate, and another to help keep the system from
developing blind spots by focusing too much on the information it already knows. I give
a summary of an article relevant to each type of extension, and then finish by suggesting
future directions of research; one regarding compressed sensing in general, and two on
improving recommender systems.

1.2 Code

I have not written much code for this thesis. I have written code to construct a few
figures, as well as to attempt an empirical test of an eigenvalue-based function f detailed
in section These pieces of code may be found at this GitHub repository.

Part I

Compressed sensing on vectors

2 Introduction to compressed sensing on vectors

Signals from physical processes are often compressible. The existence of compression
software and multimedia codecs shows this to be the case: lossless compression can
reduce the storage space of audio signals to 50%-70% [van Beurden, [2013|, while lossy
compression can be near-transparent at compression rates in excess of 1:6 for musicE]
and 1:40 for speech [Hoene et al. [2013|. Image and video compress even further: JPEG
encoded pictures can attain compression rates of 1:25 with very low distortionﬂ while
DVD video is usually compressed at 3-9 Mbit/s at a resolution of 720x576 at 25 frames
per second, which if stored uncompressed would amount to 248 Mbit /s.

'MP3 format, see |Pan| [1995]
2JPEG quality 80

https://github.com/kristomu/recosys-code

In a linear system, compressibility takes the form of the signal in question being expressible
in some basis, with a few of the basis vectors contributing to a large proportion of that
signal. When the change of basis moves more of the contribution to a few vectors, the
effect is called energy compaction.

An example of energy compaction can be seen below. Here we run the standard Lena
picture through a discrete cosine or wavelet transform, observe the distribution of the
coefficient magnitudes after the change of basis, and then set 98% of the coefficients to
zero. The inverse transformation produces pictures that are still of reasonable quality.

Distribution of coefficients, Lena

250 A — DCT-lI

Haar wavelet
200 A

150 -

100 A

50 A

0 50000 100000 150000 200000 250000
Distribution of coefficients, Lena, log plot

2501 —— DCT-Il

Haar wavelet
200 A

150 A

100 ~

50 A

100 10! 107 103 104 10°

As the pictures and plots show, both the DCT and the Haar wavelet show energy
compaction.

However, even though compression provides great reduction of storage space once a
signal has been recorded, an ordinary change of basis still requires that we have all the
data before we perform the transform. Thus, the vast majority of implementations take
the seemingly paradoxical approach of first sampling a very detailed signal, and then

throwing most of it away.

In some cases, this is no problem: sound equipment can record audio sufficiently quickly
for the acquisition itself to work, cameras have sufficient resolution, and modern computers
have enough space to store either the raw sampled audio signal or image.

But in other cases, acquiring all the data can take a lot of time or be outright impossible.
An example of the former is magnetic resonance imaging for medical purposes, where the
sampling process is slow and the patient may not be able to keep still throughout. And
in a recommender system, the data to be acquired consists of users rating items (movies
or products, say); and it’s clearly unreasonable to expect every user to rate every item in
advance.

This naturally motivates the question of whether it’s possible to perform both the sample
acquisition and the basis change as one step, if all we know is that the target basis would
concentrate most of the information in just a few coefficients. In the words of |Candes
and Plan| [2010, we would like to reconstruct a signal by sampling only a number of times
nearly proportional to its information content, rather than to its bandwidth.

It turns out that compressed sensing lets us do just that, if a few more conditions hold.

3 Sparse signal theory

Suppose we have a signal that we suspect is the sum of a small number of contributions;
for instance, a time-domain signal that is the sum of a few distinct frequencies, but we
do not know which ones. The signal can be represented as a vector, y € R™, and by our
assumptions, it is the sum of a few basis vectors in the space of contributions. Going by
our example of a time-domain signal, y is our sampled intensities over time and the basis
is the Fourier space, since each basis vector in the Fourier domain encodes a different
frequency.

Formally, if we let x1,X32,...,X, be the basis vectors for the space in question, we have

that for the signal y,
Ax =y (3.1)

for an unknown x, where the basis matrix A is defined as

A = X1 | X2 | X3 |...|Xn

If the number of basis vectors n is greater than the vector length m, we have an
underdetermined system. If the system is consistent (has any solution at all), it has an

infinite number of them. We thus can’t single out any one solution without adding more
preconditions.

If the signal y is indeed a sum of only a few distinct basis vectors, then the number of
nonzero elements of x is also limited, which gives us an additional criterion we can use
to narrow down the number of solutions to (3.1)).

We would like to more generally deal with the concept of the number of nonzero elements
being bounded, so we define the support set supp(x) of a vector as follows:
Definition 1. The support set of x, supp(x) is defined as:

supp(x) = {j € [n]: z; # 0}

This is the set of indices j where x; is nonzero.

This definition lets us formalize the concept of sparsity: we say that x is k-sparse if
supp(x) < k, i.e. x contains at most k nonzero elements.

If y indeed is the sum of a few distinct basis vectors, then when we’re given Ax =y,
we would prefer to find x so that | supp(x) | is minimized. We can restate this as an
optimization problem:

min | supp(x) | st. Ax=y

In the optimization problem, we’re interested in the optimal solution x! rather than the
value of the objective function at that optimum. This problem is called ¢y minimization
or cardinality minimization |[Recht et al., [2010].

3.1 The name {; minimization

The cardinality of the support set, | supp(x) |, is usually denoted || x ||9. This is somewhat
of an abuse of notation. The use of this term arises from that if || x ||, is the £, norm
defined by

then we have that

Ixlf = > Jail

3 Y 3 .| P
lig || x 7 = > lim [|

10

When z; = 0, we get that | x; |P converges to 0 if z; = 0 since

lim 0P =0

p—0

and when x; # 0, lim, ¢ | 2; [P=| ; |°= 1. Hence

n

1%‘,‘7&0
.
sty = 3

P 0 otherwise

Properly speaking, || x ||3=| supp(x) | in the limit.

In compressed sensing literature, lim,_,o || x ||} is usually referred to as || x ||o even
though it is not a proper norm. For instance, the || x [|p “norm” violates the absolute
homogeneity property of | « ||| x ||=|| ax ||

Armed with this concept and notation, we arrive at the following notation for cardinality
minimization:
min || x [|p subject to Ax =y (3.2)

The problem also admits a decision formulation, which will be useful later for proving
complexity properties:

given A€ Q™" ye Q™ keN

does there exist anxso that | x o<k, Ax =y7? (3.3)

We’ll get to why the decision formulation is defined on the rationals, next.

4 Complexity and hardness results

We next consider whether the optimization problem can be efficiently solved in practice.
While having a formalized notion of what we’re trying to accomplish can be useful, it is
still of limited practical purpose if the problem itself turns out to be intractable.

4.1 Concepts from complexity theory
4.1.1 Abstract computers and Boolean functions

To do so, we first need some concepts from complexity theory. In particular, we need to
quantify how long time an algorithm takes to run on a computer. As actual computers
would be hard to formalize, we start with an idealized computer. Since complexity theory
isn’t the main subject of this thesis, the definitions will be somewhat brief; more detailed
definitions can be found in [Arora and Barak, [2009).

11

A Turing machine is an idealized computer, and consists of one or more infinitely long
tapes and a state machine that can move a tape left, right, read or write to a current
tape position, as well as transition to a halting state where no further state transitions
are possible. We’ll assume for convenience that our Turing machines have one input tape
and one output tape each.

Next we need concepts of what it is we want to calculate, and how we may calculate it.
The important part is to distinguish the abstract concept of a function or mapping, which
doesn’t go into the matter of implementation, from an algorithm, which is a particular
implementation that realizes one of these functions or mappings.

The Boolean set B is defined as B = {0, 1}. A Boolean function may take as input
a string of n Boolean values B", or the set of all possible strings of Boolean values,
B* = U2, B; and returns a single Boolean value, i.e. f:B" — B and g : B* — B are
Boolean functions.

A decision problem is a problem of the form of a yes/no question. This is what we want
to calculate: it takes some input and provides an answer (either yes or no). One example
of a decision problem is the decision problem for ¢y optimization for that decision
problem, the inputs are the matrix A and observed vector y.

However, since we want to analyze how a Turing machine might calculate a decision
problem, decision problems are often defined to only take Boolean inputs and to return
some Boolean output. In other words, they’re represented by a Boolean function f, or
alternatively as a set of values for which f =1 (i.e. Ly = {z: f(z) = 1}).

4.1.2 Implicit encoding of decision problems

Since I've been using the term “decision problem” in a more indirect sense, to refer to
the problem or question itself, I'll give a definition that fits that more indirect meaning.
This may be nonstandard with respect to formal computer science terminology.

That the direct definition of a decision problem only refers to Boolean functions means we
have a problem if we want to answer questions about, for instance, whether there exists
a vector x so that for given A,y and k, Ax =y and || x |[o< k. We need an encoding, in
this case from (A,y, k) to a sequence of Boolean values. Then the decision problem itself
can be considered a Boolean function taking this encoding of (A,y, k) and returning
either “yes” or “no”.

To specify this encoding directly would sidetrack from the complexity analysis, so in my
indirect use of the term “decision problem”, I have omitted specifying such an encoding
function. A decision problem in this thesis is thus a mapping from a set Y — B, where
Y depends on the question at hand, so that the encoding function is implicit: there’s a
ef: Y — B* and f: B* — B, where the formal computer science decision problem is f,
and the indirect use here refers to ey o f.

12

There is however, one aspect to the Boolean encoding that we’ll have to specify directly.
We want to analyze the time complexity for algorithms that calculate f on a Turing
machine. For the time complexity to be finite for every finite input y € Y, ey must
encode finite y to B™ for some finite n (usually depending on y). Thus Y cannot be an
uncountably infinite set; otherwise n could be infinite for some choices of finite y. The
problems we’ll consider take arguments that are either real numbers or based on them
(e.g. for the ¢y optimization problem, A is a matrix of real numbers, y is a vector, and k
is an integer). For the implicit e; to map finite cardinality inputs to finite cardinality
outputs, it can only take arguments from some countable subset of the reals rather than
from the reals themselves, as R is uncountably infinite.

Which countable subset we choose may influence the complexity of the problemﬂ Thus
I’ll specify the subsets of the reals used as inputs to the decision problems when defining
those problems.

4.1.3 Algorithms and runtime

A particular Turing machine can be defined by its initial tapes, initial state, and the
state transition machine that acts as rules for how the Turing machine proceeds to work.
A particular Turing machine can be designed to calculate a particular problem in this
way: different state machine and initial settings, different results.

An algorithm computing f is a Turing machine so that for any x € B*, if the machine is
initialized with the start of its input state set to x, it will reach the halting state in a
finite number of steps, with the output tape set to f(x). The runtime of the algorithm is
the number of steps it takes, as a function of n.

We also need a concept of runtime that’s not unduly influenced by the particular nature of
the computer. Suppose that we have a function f that we want to find out the runtime of.
We want a measure of runtime that is not affected by different hardware or by hard-coded
speedups for a small subset of the inputs (e.g. a lookup table). Thus we arrive at the
following concepts:

We say that f(z) is O(g(z)) if there exist constants M > 0 and zp > 0 so that for all
x >z, f(z) < Mg(z).

Let then Ths(x) be equal to the number of steps required for the Turing machine M to
reach a halting state if given x as input. The algorithm represented by M has runtime
Q(n) if Ty (z) is O(Q(] = |); and a function f has runtime Q(n) if there exists an
algorithm calculating f whose associated Turing machine has runtime Q(n).

3For instance, numerically determining if | 1 4 --- 4 x,, |> k is easy if x € N",k € N, but if we
consider algebraic numbers instead of natural numbers, doing so is much harder. [Allender et al.l [2009]
thm 1.4]

13

4.1.4 Complexity classes

With the above in mind, we can then define two complexity classes.

Definition 2. The complexity class P (for “polynomial time”) is the set of functions
that can be computed by a Turing machine in time 7'(n) where 7" is a polynomial of n.
In simpler terms, it’s the set of functions that have runtime T(n).

This class is usually considered to contain problems that are tractable, i.e. can be
computed in reasonable time, although strictly speaking, one could argue that polynomial
time does not exactly correspond to reasonable time. Section 1.5.1 of [Arora and Barak
[2009] discusses polynomial time and tractability, and to what degree they correspond.

Next, we need to define a more general class that is about whether we can verify solutions
quickly, rather than whether we can solve problems quickly. To do so, we have to establish
some other concepts first.

Let p(n) mean that a function that is a polynomial of n. Let a verifier of a decision
problem f, g7 : B*, B* — B be a function that takes an input of B*, which is the Boolean
encoding of the input to a decision problem, and another also of B*, which is called a
certificate.

For gs to be a verifier of f, it must furthermore satisfy the following properties:
o If f(a) = 1, then there exists a certificate b € BP(9)) so that g(a,b) =1
e If f(a) # 1, then for every possible b € B*, g(a,b) = 0.
® gsisin P.

We can then proceed with the definition:

Definition 3. The complexity class NP (for “non-deterministic polynomial time”) is the
set of decision problems whose outputs can be verified in polynomial time. That is, a
decision problem f(a): B* — B is in NP iff there exists a verifier gy for it.

We also need to introduce the complexity class coN P. coN P can most easily be defined
by reference to NP. A decision problem g(a) : B* — B is in coNP iff there exists
another decision problem f in NP so that

J = 0 iff(a)
9(@) {1 if f(a)

1
0

for all a € B*.

Informally, a problem f is in NP if it’s easy to verify a “yes” answer, and in coN P if
it’s easy to verify a “no” answer. Yet coNP and NP are not disjoint, since there are
problems in both NP and coN PE]

4One such example can be produced from factoring: is input integer prime? If yes, a primality
certificate proves this, otherwise, a list of the prime factors of = certifies that = is composite.

14

4.1.5 Complexity class hardness

We next proceed to define classes that consist of the most difficult problems in some
class, in the sense that if we can solve one of those most difficult problems, we can solve
every problem in that class.

First, we need a way of showing that f is at least as difficult to solve as g:
Definition 4. A polynomial-time transformation from a decision problem f € NP to
another problem g € NP is a function t_,, : B* =B* in P so that for all z, f(z) = 1 iff

9(tjg(@)) = 1.

If there exists such a transformation from f to g, then that implies that if we can use
g to solve every problem in f with only a polynomial time penalty. This lets us define
particularly hard problems:

Definition 5. A decision problem ¢ is N P-hard if, for every problem f in NP, there
exists a polynomial-time transformation from f to g.

Solving an N P-hard problem in polynomial time is equivalent to solving every problem
in NP in polynomial time. Finally, we have the hardest possible problems still in N P:
Definition 6. A decision problem f is N P-complete if it is in NP and is N P-hard.

Solving any N P-complete problem in polynomial time would be sufficient to show
P=NP.

4.2 Complexity of /y optimization

We thus have a foundation for determining whether a given problem (in the sense of a
question) can be solved (i.e. answered) in reasonable time.

The ¢y optimization decision problem (3.3) is in NP: if r € B* is a binary encoding of
the arguments, then the verifier

1 if b encodes z, a encodes A and y, || x [[o< k, and Ax =y
gla, b) = .
0 otherwise

can be evaluated in polynomial time. Determining whether || x ||o< &k can be done in a
number of steps proportional to the length of x times the max number of bits required
to encode an element in x, and Ax can be calculated in O(n?) multiplications.

However, the £y problem is also IV P-hard, and thus N P-complete.

To prove that the £y decision problem is N P-hard, I'll construct a use a reduction from
another N P-hard problem, the partition problemﬂ

5This proof is Exercise 2.10 from [Foucart and Rauhut| 2013

15

The partition problem is that of determining whether, given a multiset (set with repetitions
allowed) of rationals S = {s1,...,s,}, if there exist disjoint S, Sz with S; U S = S and
D owes, T= Zye s, Y- The decision problem returns 1 if this is the case, 0 otherwise. The
partition problem is in VP since given candidates S; and S3, one can simply compare
sums. We can also find a proof that the partition problem is N P-hard in [Karp|[1972].

We’ll show a reduction to any /¢, decision problem with 0 < p < 1. This produces a more
general result with p = 0 as a special case, and will later be useful for eliminating a large
number of problems as potential worst-case tractable approximations to the £y problem.

We want to show that given a set .S and p with 0 < p < 1, we can construct A, y, k so
that the analogous decision problem

given A € Q™*", y € Q™,and k € N, does there exist anxso that ||z [P<k, Ax =y?

is true iff the partition problem has a solution (i.e. there exist Sp, So satisfying the
criteria given for the partition problem for that particular S). Note here that I have
used || z ||b since || z ||o is somewhat of an abuse of notation and it makes more sense to
consider it as || z ||9.

Let S = {s1,---s,} as before and let the variables to the ¢, optimization problem be

[51 s2 83 +++ Sp | —S1 —S2 —83 - _Sn-
A =
I, I,
y = (011 .. 1)f
k = n

We first want to show that the only valid solutions to the ¢, optimization problem for
| z ||p< n with 2 = (21,--- ,x2,) must have z; € {0, 1}. First note that due to the
identity matrix components of A, we have that z; + x,4; = 1 for all 0 < ¢ < n.

Since the £,-norm is concave when p < 1, the minimum attained for | z; |P + | zp44 [P
subject to x; + p4; = 1 is at either x; = 0 or x,4; = 0. Thus, if every z; € {0, 1},
|z |b=>"r | @i [P + | Zpyi [P=n. Since each | z; [P + | zpy; [P is at its minimum in
this case, any x; ¢ {0, 1} would increase the objective value above n and so would not
be a valid solution.

Now suppose that we have a solution to the partition problem. We can define indicator
variables a1,--- ,a, and by, - ,b, € {0,1} so that S; = {s; | 0 < j < m,a; = 1}
and So = {s; | 0 < k < n, b; = 1}. Since every member of S is either in S; or So,
a; +b; =1 for all 0 < k < n, and since S and S solve the partition problem, we have
D ores, T = D yes, Y OF Yo aisi —bis; =0. x = (a1, -+ ,an,b1,---by) is thus a valid
solution to the ¢y decision problem, since || z ||o=| z |[b=n < k and Az = y.

16

In the other direction, any = that solves the ¢, optimization problem gives a partition of
S into Sy and Ss. Since || z ||b= n subject to x; + x4+, = 1, we know that every element
of must be either 0 or 1. Then, since y; = 0, we have that > " | siz; — $;%iyn = 0.
Thus

n n
Z Sily = Z Silitn
i=1 i=1
and with multisets

Sl = {SZ|0§ZSH,$Z:1}
Sy = {5i+n|0§i§nami+n:1}

that is equivalent to

2w = Dy

TESY yESo

which is the constraint for the partition problem, and thus S; and S5 solve this instance
of the partition problem.

5 Convex relaxation

We have thus determined that the decision form of ¢,-minimization is /N P-complete for
0 <p < 1. Any algorithm that can exactly answer the ¢, decision problem can also be
used to solve the partition problem, which is also N P-complete.

The key ingredient of the proof is that the £, quasinorm is concave. This is what forces
the nonzero values of the optimal vector towards 41, thus solving the partition problem.
For p > 1, this forcing no longer works, as the norm is a proper norm and thus convex.

We might then consider using ¢, minimization with p > 1 as a proxy for solving ¢
minimization. The convex relaxation should be significantly easier to solve since convexity
implies that all local minima are global minima. We’re still left with the question of
which p to use, however. Fortunately, there is a result that excludes every choice but
p = 1 for sparse recovery purposes.

Suppose we choose to replace (3.2)) by
min || x ||, subject to Ax =y

with p > 1. Then for any A € R™*"™ with m < n, we can choose y so that Ae; =y, with
e; some unit vector, but where e; is not an optimal solution to ¢, minimization. This
implies that the ¢, minimization problem will, in the worst case, fail to recover even a
1-sparse solution and so is not suited to perform sparse recovery.

17

Proof. Since m < n, the set ker(A) \ 0 is non-empty. So choose a vector v € ker(A4) \ 0
and some ¢ so that v; # 0, and then let y = Ae;. For contradiction, suppose that e; will
be an optimal solution to the ¢, optimization problem for p > 1 with this choice of y.
Now consider linear combinations e; + tv of e; with ¢t > 0.

First note that all such combinations also pass the equality constraint of Ax =y since
Atv = 0.

Then consider the £, norm of such a combination:

lei+tvlf = |L+tv 94> | toy |
ki
= | Lto [T [t]7) v |

ki

If €; is to be an optimum, then ¢ = 0 must be the minimum for || e;+tv ||2. If || e; +tv ||d
is differentiable with respect to t at ¢ = 0, then its derivative must be equal to 0 there.

Suppose |t |< %, which is possible since v; # 0 by definition. Define

F) = Q) Y ol

kot
Fr) = (+to)? =10 v |9
kot
/@) t=0
o = {50z

and we see that if [¢ |[< 1, then f(t) = e; + tv ||2.

The derivatives of f are

i) = quil+to) ™ + gty o |9
ki

S = quill 4 tw)? = gty |
ki

and
. / . . /
tg%}i’ f+(t) N tlﬁl%’lﬁ 7=
= qy

The limits agree, so f/(0) = qu;. Since we chose v so that v; # 0, f/(0) # 0 and thus
t = 0 is not a minimum. O

18

Remark. Note that if we try to do this proof for ¢ = 1, we get

frt) = T4toi+t> |v |

ki
) = 1+to—tS ol
ki
and
Fot) = v+ S vl
ki
O = u=3lul
ki

In this case, limy_o4 f (t) # lim;_o— f' (¢) and the proof fails. We’ll later see that ¢,
with p = 1 can work.

Every p > 1 is disqualified in the sense that there are some 1-sparse solutions that ¢,
minimization can’t recover no matter what matrix A happens to be. We have also seen
that all p < 1 are worst-case intractable unless P = N P, due to the reduction from the
partition problem.

We are left with the option of p = 1, which is the closest we can get to ¢y without losing
convexity. The corresponding optimization problem becomes

min || x [|; subject to Ax =y (5.1)
with the decision problem

Given A € Q™*", y € Q™, k € N,

does there exist anx so that |x|1<k, Ax =y? (5-2)

The ¢; optimization problem is called basis pursuit.

Basis pursuit is a bit more difficult to handle than for p > 1 because the absolute
value function is not differentiable. This is not insurmountable, however, and linear
programming yields a simple formulation:

n
min Z T; + 25
i=1
subject to A(x—2z)=y
x>0
z>0

19

where the inequality constraints on the vectors x and z are element-wise[f| The main
drawback to linear programming is that it is slow, and so other algorithms have been
developed to solve (5.1]) more quickly. We won’t go into detail here, but rather proceed
to investigate what kind of signals can be recovered by ¢; optimization.

5.1 Recovery of sparse vectors

We can then proceed to determine when ¢; optimization will recover the same vector
as fy optimization. Broadly, the results are that there are tight bounds on when the
solutions agree, but the results depend on a matrix property that is difficult to calculate.
Thus, one uses more loose bounds in practice.

First, let v be a vector of n elements, S C [n] is a set of indices with S C [n] its
complement, and vg is the restriction of v to .S.

Then the null space property of a matrix A is defined as follows:
Definition 7. A matrix A € R™*" gatisfies the null space property relative to some
S C [n] if

[vs i<l vs i Vve ker(A)\{0}

and the matrix satisfies the null space property of order s if the above holds for every S
with cardinality at most s.

We can then use the null space property to prove when the ¢; minimizer coincides with
the £y minimizer. To do so, we first need an auxiliary theorem:

Theorem 8. Given A € R™*™ if the null space property relative to S holds for A, then
whenever the £1-optimal solution is supported on S, it is the only solution. When the {1
solution is unique whenever it is supported on S, then A satisfies the null space property
relative to S.

Proof. This is an expansion of the proof of |[Foucart and Rauhut| [2013, thm 4.4]. Suppose
that the null space property holds relative to S and that we have two different solutions
to Ax =y, i.e. Ax = Az =y with x # z. Let v = x — z and note that v € ker(4)\{0}.
We have the following:

Ixf < [[x—zsh+zslh
by the reverse triangle inequality. Continuing:

= lvslh+1lzslx
< lvsli+1lzs

SThis is a fairly common way of minimizing absolute value terms in linear programming, but note
that it doesn’t work for mazimization.

20

by the null space property relative to S, so

A

Iva i+l zs
= [[x=2)sli+1zslh
I =25 1 + [l zs [l

= lzlh

(RS

Thus for any other z satisfying Ax = Az =y, || x |1<|| z ||1. Thus || z ||; can’t be
another optimal solution to the £; optimization problem.

In the other direction, suppose that whenever x is supported on S and Ax =y, it is the
unique solution to ([5.1)). Since it holds across all different y, it also holds if y is chosen
so that Avg =y, where v is an arbitrary vector in ker(A)\{0}.

Since Avg =y, then by the assumption we started with, vg is the unique solution to
(5.1) due to being supported on S. But since v € ker(A)\{0}, we have

A(vs + Vg) =0

Avsg = —Avg

so X = — Vg is also a solution to (.1])) with this particular choice of y. Since vg is the
unique solution, we must have that

[vslhi < [[=vsih

= lvslh

and since v was chosen arbitrarily from ker(A4)\{0},

| vs i<l vg [[1 VvE ker(A)\{0}
which is the NSP relative to S. O]

The auxiliary theorem then admits a simple generalization:

Given A € R™*" let y € R™ be arbitrary. Suppose an s-sparse vector x € R" is a
solution to Ax = y. Then x is the only solution to (5.1)) iff A satisfies the null space
property of order s, and x is also the optimal solution to (3.2]).

Suppose otherwise. Then we have some z so that Ax = Az = y. Since x is s-sparse, and
the null space property of order s holds for A, x is supported on some S, card(S) < s.
An argument completely analogous to the first proof for the auxiliary theorem suffices to
show || x ||1<]| z ||1-

To show that in this case, the £y optimizer coincides with the ¢ optimizer, let x be the ¢;
optimizer and z the ¢y optimizer. Then since || z ||o<|| x ||o, z must also be s-sparse. Let
x be supported on S and z be supported on T. If x # z, then the null space property
relative to S implies that || x ||1<|| z ||;. But the null space property relative to 7" implies
| z [[1<]|| x ||1. This is clearly impossible, so x = z.

21

6 Handling noisy signals

We’ve looked at exactly sparse signals: vectors y that are sparse when transformed to
the basis provided by A, i.e. for which supp(x) < n and Ax =y. But real world signals
will rarely be exactly sparse. There are multiple factors that can keep a signal from being
sparse, such as:

e Fundamental properties of the signal in question: the signal x isn’t exactly s-sparse
but the energy falls off rapidly, e.g. when the signal is the result of an energy
compaction transformation like the picture examples in the introduction.

e Sampling and sensor noise: any random small-magnitude contribution to our input
signal y. This can either be modeled as statistical noise (e.g. additive Gaussian
random noise), or in a worst case sense, as being arbitrary within the constraints
given by small magnitude, usually y = yo + n with || n || less than some fixed noise
magnitude t.

e Limited precision of the A matrix, either due to physical effects or computer repre-
sentation problems such as floating point quantization error, as in approximating a
Fourier matrix in Q.

We'll be considering the first and second points here.

In the first case, if we’re using a model where x isn’t exactly s-sparse but close to it, we
call the signal x compressible. In the second case, a slight noise contribution to y, as
in y = Az + e, may perturb solutions x to Ax =y to not be s-sparse for any s, even if
|| e || is bounded arbitrarily close to zero. Thus we have to directly alter the optimization
problem, and an optimization problem that takes noise into account is called robust.

The robust setting is also useful where our model is strictly speaking wrong, e.g. where
both linear and nonlinear effects contribute to the signal y, but where the nonlinear
contribution is small compared to the linear contribution. In such a case, we can treat
the nonlinear contribution as some noise term e, and bound its magnitude even though
we don’t know the statistical properties of the nonlinear process that generates e.

6.1 Compressible signals

Since a compressible signal is nearly s-sparse, it makes sense to define an error measure
of how far a signal is from exact sparsity. Let

os(x)p = inf{||x—2z|,, z€ R", zs-sparse}

give the error, in £,-norm, of the best possible s-sparse approximation to x. The infimum
is attained by letting z equal x for the s elements of x with greatest absolute values, and
zero everywhere else. One way of formalizing that is as follows:

22

Define the non-increasing rearrangement of x as x* where

x]>ax5>-->any>0

Then let 7 : [n] — [n] be a permutation so that

i = [o |

We can then define o equivalently as
US(X)P = H <$:+1, x;+27) l‘;) HP

The exact value of o4(x), may vary depending on p, but for any given x and s, the best
approximation z is the same no matter the particular p value. |Foucart and Rauhut,
2013|

The function o4(x), will become useful once we start discussing recovery bounds on the
recovery of signals that aren’t exactly sparse. We'll find that the degree to which ¢;
optimization can recover the exact £y result depends on og(x)p.

6.2 Robust optimization

Suppose that we’re dealing with a noisy observation ¥y =y + e where e is a noise term
with 0 <|| e ||< . We might hope that we could employ the same strategy as in and
ensure recovery for sparsity £ with noise as long as we have recovery for sparsity s > k
without noise. However, that is impossible for a large class of A.

Suppose that for A and a noise-free y (that we’re not given access to), Ax =y has a
unique s-sparse solution x%.

If A is surjective, then in the worst case, there exists an e so that even though Ax =y has
an s-sparse solution, Ax = y has no ¢-sparse solution for any g < n, where y =y + e.

To show this, define v so that it satisfies

1 Xﬂk =0
Avi =3 . g
sign(x*y) x*p # 0

Then letting y = y+er—”, there is no g-sparse solution to Ax =y, and we can’t use exact
sparse recovery to undo the noise and recover x*, as the noise perturbs the corresponding
solution to no longer be sparse for any g < n.

Since most candidate matrices A for compressed sensing are surjective, this is a serious
drawback to exact recovery in the presence of noisy y. We have to change the optimization
problem itself to circumvent the result.

23

6.3 Bounds on recovery
6.3.1 Recovery of compressible vectors

For a compressible signal, we would expect to pay some penalty to recover the signal as
it is no longer exactly sparse. Our intuition would in that case be correct, as we’ll see.

The analogous null space property for a compressible signal is called the stable null space
property in Foucart and Rauhut| [2013]. It is defined as follows:

A matrix A € R™*"™ satisfies the stable null space property relative to some S C [n] and
constant 0 < p < 1if

Ivsli<pllvslh Vve ker(A)\{0}

The matrix satisfies the null space property of order s if this holds relative to all S for
which | S |< s.

We then have the following result (again from Foucart and Rauhut|[2013)]):

Theorem 9. Suppose that a matriz A € R™*"™ satisfies the stable null space property of
order s and with constant 0 < p < 1, with arbitrary y € R™ as before. For any x so that
Ay = x, the {1 optimal solution z (with Ay = Az = x) approximates X with a bound on
the ¢1 error

2(1+ p)

=~ 1_/) Us(x)l

Ix—z|1
and if there are multiple solutions with the same €1 norm, then the bound holds for all of
them.

Here the compressibility of the unknown target vector x comes into play in the o4(x);
term; the further away from exact sparsity x is, the greater the worst case error becomes.

6.3.2 Robust recovery

In we found that we need to alter the optimization problem in case of arbitrary
bounded additive noise. We can do that by relaxing the equality constraint.

The robust recovery model is that we observe y =y + e. For any solution xg satisfying
Ax =y, we have || e |=|| Axs — ¥ ||. We can thus ensure X is a feasible solution in the
face of noise if we generalize the constraint Ax =y to || Ax —y ||<|| e ||. Doing so gives
quadratically constrained basis pursuit or QCBP:
min || x ||; subject to || Ax —y [|2<7n (6.1)
x€ER™
with 7 being an upper bound on || e ||2. While we know xs will be a feasible solution
to QCBP, we don’t know if it will still be the optimum. In full generality, it may not

24

be. The following definition and result from Foucart and Rauhut| [2013| shows how close
QCBP optima can get to xg:

Definition 10. A matrix A € R™*" satisfies the robust null space property with respect
to the norm || - | and set S C [n] with constants 0 < p < 1 and 7 > 0 if

| vs 1i<p | vg |1 +7 || Av || for all v e R"

and satisfies the robust null space property of order s with the same constants if the
robust null space property holds for A for any S C [IN] with cardinality at most s.

Note that the robust null space property implies the stable null space property since if
v € ker(A)\{0}, then the 7 || Av || term disappears as Av = 0 by definition of ker(A).
So the robust null space property implies the stable null space property of the same
constant p.

We then have [Foucart and Rauhut, 2013, thm. 4.20| that A satisfies the robust null
space property with constants 0 < p < 1 and 7 > 0 relative to S C [n] iff

=2 h< 7202 =l +2 1 xs)+ 7
for all vectors x, z € R™. Furthermore, we have the following theorem:
Theorem 11. Suppose A € R™*™ satisfies the robust null space property of order s with
constants p and 7. For the problem y = Ax+e and || e || < n, no matter what x € R™ is,
the optimal solution (or solutions) x! to approximate x to within
2(1+p) ity

_xt < 22T
Ix=xlh < 2o+

I Az —x) ||

Ui

Proof. We prove this by letting z = x* and applying theorem 4.20 of Foucart and Rauhut
with the robust null space holding for order s, i.e. for all S C [N] with | S |< s:

1+ 2T
Ix—x 1 < L2 1 — [x |1 +205(x)) + T

e | AGE =) |

Since x! is an ¢; minimum, we have that || x* [|<|| x ||, and from the constraint that’s
part of QCBP, we also have that || Ax* —y ||< n. It follows that

Ixoxt [y < ig(y w1 = || x |l +205(x)) + 12_Tp | A —x) |
_ Was(x)+12_7—p | Ax! —y +e ||
gﬂﬁf%@+f;ww—w+wn
< WJS(X) + 12_7—[)277
— 2(11_+pp)as(x) + 14_7—p77
as desired. i

25

6.3.3 A tractable approximation to the NSP

Unfortunately, determining whether any given matrix A satisfies the null space property
or stable null space property of order s is coN P-complete |Tillmann and Pfetschl 2014].

1

This understandably makes it difficult to determine whether we can usefully employ basis
pursuit with some given A. Instead we have to use a more computationally practical
property. The standard property to use for this purpose is coherence.

Coherence is defined as follows:
Definition 12. Suppose A € R™*" is a matrix where every column vector a; are
normalized in the #5-norm. Then the coherence of that matrix is defined as

wA) = 1§rlr.1?gj.><§n!(auaj>l

i.e. the absolute value of the inner product with greatest such value.

Determining the coherence of a matrix can be done in polynomial time by just trying
every combination %, j.

Coherence can both be used to probabilistically bound the number of samples required
to reconstruct a signal by using basis pursuit, and to determine sufficient criteria for the
£y optimum to coincide with the 1 optimum.

Adcock et al., 2017 refer to a sampling result:

Theorem 13. Suppose U € R™*™ is an isometry defined by u;j = (i, ¢;), and suppose
X s s-sparse in the basis given by {¢; 7_y. Let the rows of A be m rows from U chosen
uniformly at random, and y € R™ be given by Ax =y. Then x can be recovered from 'y
with probability exceeding 1 — € if

m > Co-p(U)n-s-(1+1og()) - log(n)

= €
where Cy is a numerical constant independent of the parameters. |§|

This is useful in a sampling situation where a sensor can be set to record a sample along a
specified dimension of the vector space 1) = {1); };L:l. By randomly varying the dimension
to sample from, if the matrix U has coherence of order %, we can recover the target signal
(no matter what it is) by taking a number of samples nearly proportional to the sparsity

of the target signal. We only have to a constant factor independent of the parameters,

"Even determining whether A satisfies the null space property relative to a given set S is tricky. I
was unable to find the complexity of solving that problem; we end up getting a set of linear absolute
value equations of the form “find v so that >, o | vi | +> ;.5 | vi |= 1 subject to Av = 0”. The general
problem “solve Ax + B | x |= ¢” is N P-complete: see Mangasarian| [2007].

8The phrasing of this theorem in |Adcock et al| is reminiscent of the matrix completion problem we’ll
investigate later, but I have given it in a cardinality minimization form here.

26

and a further logarithmic factor log(n), in excess of the number of observations needed if
we knew in advance which elements of x were zerol]

Deterministic bounds linking the NSP and incoherence are weaker, but we have from
Fuchs|, [2003:

Theorem 14. If for a vector x satisfying Ax =y, with A € R™*™ composed of n column
vectors of unit £9 norm, the following holds:

[xlo < s(1+—F%
([

then z is the unique £y and €1 minimum and can thus be recovered by solving (5.1)).

Since every such x must be 3(1 + ﬁ)—sparse (by definition of || - [|o), A must satisfy
the null space property of order %(1 + ﬁ)

6.4 A note on the restricted isometry property

Besides the null space property, the restricted isometry property is frequently used in the
compressed sensing literature. As we will later encounter a linear operator analog of this
property, I will define the restricted isometry property for vectors here:

Definition 15. Suppose A € R™*™ and let 1 < s < n. A satisfies the restricted isometry
property (or RIP) of order s with constant 4y if

(1=0) I x[3< I Ax [3< (1 +06) [x |3

for all s-sparse vectors x € R™.

When one refers to just “the restricted isometry constant d;”, this is usually taken to
mean the smallest 05 so that A satisfies the RIP of order s with that constant. [Tillmann
and Pfetsch| 2014]

While the restricted isometry property can be useful for proving other results in compressed
sensing, it is not as directly useful. Deciding whether d; < 1 for some given A € Q"*"™
and s is coN P-complete [Tillmann and Pfetsch, [2014]. This means that the RIP can’t
be used as a quick worst-case approximation the way incoherence can be.

For theoretical purposes, the NSP and the RIP each have their benefits and drawbacks.
Given any matrix A with d; = k for some s and k, it’s possible to construct another
matrix with the same null space, but no longer satisfying the RIP with that constant. On
the other hand, RIP can be used to give bounds on robust recovery that don’t depend
on the magnitude of the true solution || x ||; see |Cahill et al., 2016,

9A drawback of this analysis is that some basis matrices are coherent. E.g. in MRI with U = Uy V),
modeling sparsity in the wavelet transform Vg,,+ domain based on observations in the discrete Fourier
domain Ugs:, U has constant coherence. By changing the distribution of the random draws from U, it’s
possible to circumvent this problem in many cases; see |Adcock et al.| for details.

27

7 Other convex relaxations of robust recovery

Before we extend the compressed sensing framework to matrix recovery, we’ll note other
convex relaxations for performing robust recovery. These are useful for algorithmic
purposes, e.g. if the solver being used only solves unconstrained problems.

We'’ve already seen quadratically constrained basis pursuit:

min || x || subject to || Ax —y |[2<7n
x€R?

In statistics, we may encounter the lasso [Tibshirani, [1996]:

min || Ax —y |2 s.t. || x]:1<¢
xeR”

with A > 0. Adopting a Lagrangian approach to the lasso gives us basis pursuit denoising
or BPDN [Chen et al., 2001]:

1
in A | Ax —y |3
min A x [l +5 [l Ax —y [l2

7.1 Relations between robust recovery methods

The three formulations are equivalent in the sense that for each formulation’s solution of
a particular problem, if there’s a unique solution, there exist parameter choices for the
other two formulations so that the unique solution is part of their solution set (though
possibly not unique).

However, this equivalence may fail to hold for solution sets as a whole. We can motivate
the relationship with an illustration:

I

| Ax =y |2

Suppose the squares indicate the three possible solutions to Ax =y for some given A and
y. The axis arrows point in the direction of increasing values. Since QCBP’s objective
value only depends on || x ||1, its set of optimal solutions will either include at least the
two solutions to the left, or will be empty. Similarly, the lasso’s objective value depends

28

only on || Ax —y ||2 and so the set of optimal solutions is either empty or contains at
least the two bottom solutions of the illustration.

The BPDN objective function considers all solutions lying along a line to be equally good,
where the slope of the line depends on \. For finite positive values of A, BPDN will pick
the solution at the lower left of the above illustration since its objective function will
always consider moving closer to the origin along both axes to be an improvement.

Formally, we have the following relations:

e If x is an optimal solution to BPDN for some A > 0, then there exists a 7 > 0 so
that x is also an optimal solution to QCBP.

e If x is a unique optimal solution to QCBP for some n > 0, then there exists a 7 > 0
so that x is also the unique optimal solution to the Lasso.

e If x is an optimal solution to Lasso for some 7 > 0, then there exists a A > 0 so
that x is also an optimal solution to BPDN.

I'll prove the first two of these relations and give a brief overview of the proof to the
third, since proving it fully requires machinery from duality theory. The proofs are due
to |[Foucart and Rauhut|[2013], prop 3.2]@

Basis pursuit denoising = quadratically constrained basis pursuit Let x be
an optimal solution to basis pursuit denoising for some A > 0. Let ny =|| Ax! —y ||2 and
consider some other candidate solution z # x* to QCBP with 1 = ny. Since x? is the
optimal solution to BPDN, we have that

1 1
A +5 |l A~y |3 < Xlzlh +5 I Az =y |13

Since z is a candidate solution to QCBP, we also have

lAz—y [} < | Ax —y |3

hence
1 9 1 § 9
Alzlli+5 1Az -y [l2 < Allz i +5 1A =y |3
1 1
A % It +35 | Ax* —y 3 < Azl +5 | Ax* —y |3
Ix* [l < [zl

so x' is an optimal solution to QCBP.

0Note that the authors omit the scaling factor of % in their definition of basis pursuit denoising.

29

Unique QCBP solution = unique Lasso solution Let x be the optimal solution
to QCBP for some 7. Let t; =|| x* ||1, and consider another candidate vector z # x*.
For z to be a solution to the Lasso with t = t;, || z |1 <|| x* ||1. Since x* is the unique
optimum of QCBP, || Az —y [[2>] Ax —y ||2 (otherwise z would also have been an
optimal solution to QCBP). Thus x? is also the unique optimal solution to the Lasso.
Lasso = BPDN The Lasso is equivalent to

min || Ax —y ||3 st. || x [o< T (7.1)

since any optimal solution set X to the Lasso can be turned into the optimal solution set
to this problem by letting 7 = maxyxex || X [|2-

The Lagrangian form of (7.1)) is
min || Ax —y |3 +&(]| x [l2 —7) (7.2)

This problem exhibits strong duality, so there exists a dual optimal & > 0 for this
problem that gives the same optimal solution set as (|7.1)) with a given 7.

By expanding terms and removing the resulting constant —£7, we can rewrite (7.2)) as

min || Ax —y |3 +€ || x |2 (7.3)

This is equivalent to BPDN by a similar trick as for (7.1)): if X is the optimal solution set
for then setting ¢t = maxxex || x |1 will suffice to make X the solution set for BPDN.

Part 11

Matrix sensing and completion

8 Generalizing compressed sensing to unknown matrices

The matrix sensing and completion problems are generalizations of the cardinality
minimization problem which the field of compressed sensing started off investigating.
While the cardinality minimization problem,

min || x |0 subject to Ax =y
X

involves recovering a vector, matrix sensing and completion involve recovering a matrix.

30

The difference between matrix sensing and completion problems is that matrix sensing
considers a fully general linear operator A : R™*"™ — RP_ giving the following problem:

m)}n rank(X)s.t. A(X) = A(®Y) (8.1)

for a given matrix Y € R™*".

The matrix completion problem replaces A with a projection operator Pg : R™*™ —
R™*™ Tt is defined based on a set €2, as follows:

0 otherwise

Po(X),; = {

The matrix completion problem is otherwise similar:
n}gn rank(X) s.t. Po(X) = Pa(Y)

As is the case for cardinality minimization, both matrix sensing and completion have
corresponding decision problems, namely

given A: Q™" - QP,Y e Q""" r € N

does there exist an X € Q"*" rank(X) < r so that A(X) = A(Y)? (8.2)
for matrix sensing and
given Py : Q™" — Q™™ Y e Q" re N (8.3)

does there exist an X € Q™*", rank(X) < r so that Pq(X) = Po(Y)?

for matrix completion, with maximum rank r given as an additional input to the problem.

Without additional restrictions on Y or A, matrix completion is a subset of matrix sensing,
because for any Pq, one can easily create a flattened linear operator Agq : R™*"™ — R™™"
by letting Aq(X)antb = Pa(X)ap. However, in practice, the setting differs: in matrix
sensing, the structure of A is usually known in advance, whereas in matrix completion,
) might not be known in advance, or may be random. We’ll later be considering
matrix completion in the context of recommender systems, where) contains the indices
corresponding to known observations, and thus depends upon user behavior.

Note that the (in some sense) degenerate case of matrix completion with all entries
of Y known is easy to solve: we can find the optimal rank k& approximation to Y by
decomposing Y into ULV by the SVD, setting the k-1 smallest diagonal values of ¥ to
0, thus getting Y7 (for truncated) and letting X = USpV7.

Let us next determine whether minimum rank matrix sensing is hard to solve.

31

9 Hardness results

9.1 Matrix sensing

Just as (3.3)) is NV P-complete, it also turns out that (8.2)) is. In addition, the way this is

shown indicates where cardinality minimization is hiding in the matrix sensing problem.

To show that the decision problem is N P-complete, we need to show that it is in NP
and that it is IV P-hard.

It’s relatively easy to show that (8.2) is in NP: if we're given a candidate matrix
X, it’s possible to verify the rank of X in polynomial time (e.g. by a singular value
decomposition), and it’s also possible to calculate A(X) — A(Y) in polynomial time.

Showing that is NP-hard can be done by a reduction from cardinality minimization.
I will use functions that operate on R for this reduction even though the decision problems
are defined on QQ to show that the reduction is not an artifact of choosing Q as the
domain for the decision problems.

The reduction goes as follows:

Let A = (ay,...,ay), k, y be the inputs to the cardinality minimization decision problem,
and define the diagonal functions as follows:

diag(X): RV 5 R* = (X11,..., Xnn)
diag(x) : R" - R sothat diag(x);; = .
0 otherwise

Let Y = diag(y), i.e. the n x n matrix with y along the diagonal, and define the linear
mapping A : R™*" — R"™ as

Adiag(X); a=b
Xij otherwise

-A(X)m+j = {

Then we want to show that we have X € R™" of rank < k with A(X) =Y iff || x [[p< k
subject to Ax =y.

Suppose that X is a solution to with » = k. Then by the definition of the decision
problem, rank(X) < k and A(X) =Y. Since Y is a diagonal matrix and A preserves
off-diagonal elements of X, X must also be a diagonal matrix. Hence A(X) =Y is
equivalent to Ax =y for y defined above and x = diag(X). Since the rank of a diagonal
matrix is equal to the number of non-zero elements along the diagonal, rank(X) < k is
equivalent to || x ||[o< k. We thus have a solution to the vector decision problem

does there exist anxso that || x [[p< k, Ax =y?

32

since x satisfies the criteria.

The other direction is analogous: Suppose x is a solution to the vector decision problem
with 7 = k. Then X = diag(x) has rank < k due to the aforementioned equivalence
between rank and zero norm. Since all off-diagonal elements of X are zero and Ax =y,
A(X) =Y for Y = diag(y) given.

This implies that solving (8.2) is at least as hard as solving (3.3)), and since the latter is
N P-hard, so is the former.

Intuition of the result I’ll later give results that correspond to the null space property
results for cardinality minimization, but where the singular values of all matrices M €
ker A take the place of the values of all vectors x € ker A of the results in compressed
sensing. On an intuitive level, then, matrix sensing consists of finding some solution to
A(X) = A(Y) and then adding a weighted combination of matrices from ker A so as to
minimize the rank of the solution. The cardinality minimization problem is embedded
in this problem since a low rank matrix necessarily must have the vector of its singular
values be minimal cardinality among all possible solutions.

In the case of the reduction above, the analogy is more clear, since all diagonal matrices
have SVD with U and V being permutation matrices. Thus the singular value vector
diag(X) is simply x in the vector compressed sensing problem, albeit with its elements
rearranged.

9.2 Matrix completion

Proving that matrix sensing is at least as hard as cardinality minimization still leaves
open the possibility that the more restricted matrix completion problem would be exempt.
The proof as shown does not apply to matrix completion since the construction of P does
not allow any multiplication by the matrix A, which we need to perform the reduction.

However, |Gillis and Glineur| [2011] give references to a proof that matrix completion is
N P-hard, and provide proofs of their own for robust recovery generalizations of matrix
sensing and completion.

10 Convex relaxation

In the previous part of the thesis, we found that £y optimization was N P-hard. We then
examined the closest convex relaxation, namely basis pursuit, finding that we could still
recover the ¢y optimum in certain cases.

Since we’ve determined that the minimum rank optimization problem is N P-hard, it
seems natural to attempt the same strategy here.

33

To do so, we first need to find two matrix norms where the first gives the rank of the
matrix, and the second, a convex relaxation of the first, gives the £1 norm of the diagonal
vector when given a diagonal matrix. Then we can use the former norm where we used
the £y norm in compressed sensing, and the latter norm where we used the #; norm, and
see where that gets us.

Motivated by the hardness reduction in subsection we can rewrite (8.1) as
min ||diag(X) [|o subject to A(X) = A(Y)

where ¥ is the diagonal matrix in the singular value decomposition X = ULV,

More generally, define

min(m,n) .
IAlls,=(Y oi(A)P)? (10.1)
the Schatten p-norm on a matrix A € R™" where o; is the i-th singular value. Then let

(in a similar nonstandard use to the vector case) || A [jo=lim_o || 4 ||s,-

The p-norm matrix sensing problem
min [|X]|g, subject to A(X) = A(Y)
contains the ¢, optimization problem
min || x ||, subject to Ax =y

as a special case, so the former is at least as hard as the latter, complexity wise. This
can be shown by an analogous argument to the hardness result. The singular values of a
diagonal matrix consists of the absolute values of the vector on the diagonal, and the
choice of A in the hardness result forces all candidate matrices to be diagonal.

It is thus natural to consider the following convex relaxation of (8.1)):
min ||X]|«subject to A(X) =Y (10.2)

where || X ||« is the nuclear norm, equivalent to the p-Schatten norm with p = 1. As long
as we're dealing with actual norms, which is the case for p > 1, convexity follows from
the triangle inequality. Thus we know that the nuclear norm minimization problem is
convex.

Another way of seeing that the nuclear norm minimization problem is convex is to express
it as a semidefinite programming problem; if this is possible, the problem is convex since
semidefinite programs are convex. Furthermore, a semidefinite program gives a way to
solve the problem, albeit with prohibitive runtime for anything beyond small problem
instances.

34

Theorem 16. The following semidefinite programming problem, due to|Vandenberghe
and Boyd (19906, p. 66/, is equivalent to (10.2)):

min
X e R™" Y e R™™ Z € R™ Trace(Y)+ Trace(Z) subject to A(X) = A(Y)
and
yoX =0
xt z|”

Here A > 0 means A € RP*P for some p is positive semidefinite, i.e. that x*Ax > 0 for
all x € CP.

10.1 Proof of SDP formulation

The proof strategy broadly follows [Vandenberghe and Boyd.

For simplicity’s sake, let’s disregard the constraint A(X) = A(Y) for the time being. Our
objective is then to prove that

min Trace(Y) + Trace(Z)

XeRmzn7 Y'E[R'm,z’m7 Z cRnxn
. Y X
subject to [XT Z} =0

is equivalent to
min || X |,

This is a strictly more general claim and so if we can prove it for all X, we automatically
have that it also holds for all X where A(X) = A(Y).

The next step of our strategy is to show that for every matrix X € R™*" there exist

Y X .
[XT Z] = 0and Trace(Y)+Trace(Z) = aiff || X [, < §. If we
can show this, then any decrease in the trace term implies a decrease in the nuclear norm.
Thus minimizing the trace terms under the constraints given is equivalent to minimizing

the nuclear norm of X.

matrices Y, Z so that

To prove the claim, we need to prove the implication in both directions. We first start
with

Y X

EVE [XT Z

} = 0and Trace(Y) + Trace(Z) =a = || X |< %

Let the singular value decomposition of X be given by X = UXV7T. ¥ is a diagonal p x p
matrix, where p = min(m, n). Furthermore, Trace(X) =|| X |..

35

Furthermore let

vut —pvT

-vut vyvyT
Y X

=

A = [UT V7]

W is positive semidefinite since W = AT A, and P is positive semidefinite by constraint.
We thus have that Trace(W) > 0 and Trace(P) > 0, and we would like to show that
Trace(WP) > 0 follows.

To do so, we need an auxiliary result, that Trace(A) > 0 and Trace(B) > 0 implies
Trace(AB) > 0 for any positive semidefinite matrices A, B. Let L4 and Lp be the
Cholesky decomposition of A and B respectively. Since A and B are both positive
semidefinite, such decompositions exist. Then we have

trace(AB) = Trace(LaLYLpLk)
= Trace(L5LALLLp)
= Trace((L4Lp)" (L Lp))

which is on the form CTC with C = LY Lg. Thus trace(AB) > 0 as well, and in
particular, trace(W P) > 0. Now we have that

WP — [UUT —UVT][Y X]

-vur vvt | |XT Z
vuty —uvrtxT putx -uvtz
—vUury —vvTx?T —vur'x+4+vvTz
and since the trace of a matrix is the sum of its diagonal elements, Trace(WP) > 0
implies Trace(UUTY — UVTXT) + Trace(—VUTX +VVTZ) > 0. Rewriting,
Trace(UUTY —UVTXT) 4+
Trace(—VU'X +VVTZ)

Trace(UUTY) — Trace(UVTXT)

~Trace(VUT X) + Trace(VV' Z)

Trace(UUTY) + Trace(VVTZ) — 2 - Trace(UVT XT)
0

v

and we can simplify further by

Trace(UVTXT) = Trace

I
~
3
Q
S
&

I
~
3
IS
S
s

so we have

Trace(UUTY) + Trace(VVTZ) —2-Trace(¥X) > 0

Since UUT is a projection, Trace(I — UUT) > 0 and so Trace((I — UUT)Y) > 0. By
the constraint of the SDP, P is positive semidefinite, which implies T'race(Y) > 0. Hence

Trace(Y —UUTY) > 0
Trace(Y) — Trace(UUTY) > 0
Trace(Y) > Trace(UUTY)

so we can further simplify to
Trace(Y) + Trace(Z) —2-Trace(¥) > 0

(showing Trace(Z) > Trace(UUT Z) is completely analogous). Finally, making use of
Trace(Y) + trace(Z) = a and Trace(X) =|| X ||, we get

a=2[X[= 0
i.e.

X <

| e

as desired.

In the other direction, we want to show that

Y X

| Q

= 3Y,Z: [] = 0and Trace(Y) 4+ Trace(Z) = «

Let X = USV7T be the SVD of X as before, and

a—2| X [
n+m

= USUT 441

Z = VeVl 441

~

Note that
y a—25
n-—+m
= 0

37

SO

Trace(Y)+ Trace(Z) = 2-Trace(X)+ (n+m)y
= 2| X[+ =2 X .
= «

satisfying the second constraint.
Furthermore, we have that
Y X [USUT + A1 X
Xt z X7 VEVT 41
_ [uzut vzv? AT
~ |vsuT vsvT| T

_ [v o]z o)[u" o],
~ o v]|o |0 vT|T7

= 0

0o v|jlo x]|l0o VT
is of the form MT DM with D a diagonal matrix of nonnegative entries, and so positive
semidefinite, and since v > 0, v/ is positive semidefinite as well.

T
The last step holds since we have a sum of two positive semidefinite matrices. {U O} [E 0] [U !]

11 Matrix sensing problems and results

We have determined a close analog and generalization to the norm minimization problem
of compressed sensing, which reduces to the vector problem for diagonal matrices. The
next thing to do is to find out when we can recover the hard problem (low rank recovery)
by using the easy problem (nuclear norm minimization).

We proceed in a manner analogous to the vector recovery case, first considering situations
where the desired matrix X is exactly low rank, and then when it is approximately low
rank. We then consider the case where we cannot determine the linear operator A ahead
of time, which is of interest for recommender systems where A depends on which items
have been rated by which users.

11.1 Bounds on recovery

For A(X) and Y known, we have the following bounds:

38

11.1.1 Recovery of exactly low rank matrices

Here I provide two results that generalize the results for compressed sensing on vectors.
The first uses a null space property for linear operators analogous to the null space
property for matrices in the vector case, while the second uses the spherical section

property.

By the null space property We first need to define the null space.
Definition 17. For a linear operator A, define its null space as

ker(A) = {X:AX)=0}

where 0 € RP is the zero vector.

Oymak and Hassibi [2010] give a generalization of the null space property to the case
of matrix sensing. The result is for square matrices, but can easily be extended to
rectangular ones to give the following theorem:

Theorem 18. Let A : R™ ™ — RP be a linear map. Any matriz X of rank at most r
that satisfies A(X) = A(Y') is the unique optimal solution to for that choice of A
and Y iff, for all Z € ker(A) \ {0}, its singular values o;(Z) satisfy

r N
Y oiz) < > oiZ)
i=1 i=r+1

or equivalently

where N = min(m,n).

Proof. Suppose the property above holds and the optimal solution X has rank < r.
Consider a possible other solution X; that satisfies A(X) = Y, Xy # X;. Since
rank(Xo) <, 0;(Xo) =0 for all i > r. Let Xg — X1 =W € ker(A) \ {0}.

From lemma A.18 in [Foucart and Rauhut| [2013], we have that

k
(X -Y) = > |oi(X)—oi(Y) |

i—1 i=1
for any X € R™*" Y € R™*" and k < min(m,n), which in our case implies

N
I Xo+W [l > > |ou(Xo) —ou(W) |
=1

39

It then follows that

T

N
> (0i(Xo) —o(W)) + D | ou(Xo) — ou(W) |

N
Z | O'i(XO) — O’Z(W) | 2
i=1 i=1 i=r+1
, N
= Z (UZ(XO) - O'l(W)) + Z UZ(W)
i=1 i=r+1

= Y oi(Xo) + Y (W) =2 ai(W) + 0n (W)
i=1 i=1 i=1

> | Xoll+ W [l =23 ou(W)
i=1

> || Xo [«

Thus || X1 [l«=|| X + W |l.>|| Xo ||«- Since X is an arbitrary solution to A(X) =Y
different from Xy, X(must be the unique optimal solution to (10.2).

In the other direction, suppose the property above isn’t satisfied, i.e. that there exists at
least one W € ker(A) \ {0} so that

r N
o) =) ai(W) (11.1)
i=1 i=r+1

Choose Y in so that X = —W, satisfies A(X) = Y, where W, is the matrix
produced by setting all but the largest r singular values of W to zero. Then X + W =
W — W, has only the r largest singular values set to zero, and because W € ker(.A) \ {0},
X + W is also a solution. We have

[X+W o = 3 aw)

IX e = > (W)

and (|11.1)) implies
[X+W i < [X].

even though rank(X) < r < rank(X +W). Thus either (10.2)) has both X + W and X as
optimal solutions, or only X + W. In neither case is X the unique optimal solution. [J

By the spherical section property This generalization follows|Dvijotham and Fazel
[2010] and |Oymak et al.|[2011].

Define the null space of A as above, and the spherical section property as follows:

40

Definition 19. ker(A) satisfies the spherical section property with constant A if

A
1Z s ~

VAY Z € ker(A)\ 0

Then theorem 2.1 of|[Dvijotham and Fazel [2010] states that if ker(.A) satisfies the spherical
section property with constant A, then X is the unique optimal solution to (8.1)) if
A(Xo) =Y and rank(Xy) < 5.

Proof. Suppose for contradiction that there is another solution, X to , and Xy # X,
rank(X1) < rank(Xo) < 5. Let
Z = Xo—Xi
and since A(Xp) = A(X1) =Y, we have Z € ker(A) \ 0.
By the spherical section property,

1Zl. > I Zllr VA

and for all real matrices A we have

Vrank(A)-[[Allr = Al [Alr

which implies

1

Z > —= || Z ||«
1Z1r 2 s 7]
or
VA
1 Zr VA > ———=Z].
rank(Z)
hence
VA
1zl =2 =12l
rank(Z)
> YA
(2)

v rank(Z
A

rank(Z)

Y

However, we also have that

rank(Z) < rank(Xo)+ rank(X;)
< A

hence a contradiction. So no such X7 can exist.]

41

From Oymak et al|[2011] we further have that if A(X() =Y and rank(Xy) < £, Xo is
the only optimal solution to ((10.2)). See the paper for proof.

Together, these results imply that if ker(.4) satisfies the spherical section property with
constant A, then if there exists at least one X for which A(X) =Y and rank(X) < %,
then this X is the unique optimal solution to the low rank matrix recovery problem, and
if we furthermore have rank(X) < %, then nuclear norm minimization will recover that
X.

11.1.2 Recovery of approximately low rank matrices

By the null space property |Foucart and Rauhut [2013] provide a stable generaliza-
tion of the matrix null space property.

Definition 20. A linear operator A : R™*™ — RP satisfies the stable rank null space
property of order r with constant 0 < p < 1 if

S oi(M) < pXN, . 0i(M) VM € ker(A)\{0}
=1

Note the similarity of the stable null space property for matrices with that for vectors:

[vs h<pllvsll Vveker(A)\{0}

Since the convention for singular values is that they are sorted by magnitude (i.e.
k < j= o > 0j), we don’t need to consider every possible index set S as in the vector
case: it’s sufficient to consider the case where S =1,...,r for order r.

If the stable rank null space property holds, we have a bound on the distance of
every nuclear norm minimization optimum X* from every other matrix X satisfying
A(X) = A(Y). Since the minimum rank matrix satisfying A(X) = A(Y) is also one of
those, the result gives a bound on the distance between the nuclear norm minimum and
the minimum rank solution.

Theorem 21. If a linear operator A satisfies the stable rank null space property of order
r with constant p, then for every nuclear norm minimization optimum X and every

matriz X satisfying A(X) = A(Y),

N
2(1
1 x-xt), < 2 S
1=r+1

The bound is essentially the same as in Theorem [0 with | - ||, taking the place of || - |1,
and Zfirﬂ 0;(X) taking the place of o4(x);. The proof is similar as well; lemma A.18
in [Foucart and Rauhut| makes it possible to use the same strategy.

42

11.2 Other nuclear norm problems

In a similar way to how we generalized basis pursuit in section Section |8, we can generalize
the nuclear norm minimization problem . These generalizations are necessary to
handle robust recovery problems where the output A(Y') may be contaminated by additive
noise of bounded magnitude. They can also be used to balance between multiple criteria
of consideration, like simplicity versus accuracy.

We can generalize the problems as follows, for some vector norm || - ||
e The quadratically constrained basis pursuit analog:

min || X ||, subject to || AX)—AY)|<d

e The lasso analog;:

min | A(X) — A(Y) || subject to || X |[.<t
e The basis pursuit denoising analog;:

) 1
min A | X [, + 5” A(X) — AY) |17

If we choose the fo9-norm for the inaccuracy penalty, i.e. || - [|=|| - ||2, we get something
very close to the robust vector recovery problems of section [7, apart from that linear
operators take the place of matrices, and the nuclear norm takes the place of the #; norm.

It is possible to impose a || A(X) — A(Y) || constraint as a semidefinite program, or
to assign the value of this expression to a variable in such a program; thus all of these
generalizations can also be expressed as semidefinite programs. I omit these for the sake
of brevity, but see |de Azevedo|[2017] for an example of modeling a norm constraint as an
SDP.

For these robust problems, we next need some bounds on recovery.

11.2.1 Robust null space property for linear operators

In we saw that the stable null space property for matrix sensing was quite similar
to that for compressed sensing. This suggests that it is also possible to generalize the
robust null space property for compressed sensing to the matrix sensing domain. That
turns out to be the case, as shown in [Foucart and Rauhut. First define the matrix sensing

analog:
Definition 22. A linear operator A : R™*™ — RP satisfies the robust rank null space
property of order r with constant 0 < p < 1 and 7 > 0 for some norm || - || if

S o)< pXY, L oi(M)+7 | AM) || VM € R

=1

43

where N = min(m,n).

The robust recovery theorem comparable to theorem [11] becomes:

Theorem 23. Suppose the linear operator A satisfies the robust rank null space property
of order r with constants p and 7. Let'y = A(Xo)+e be the observed vector contaminated
by additive noise with || e ||2< 6. Then for any optimum X* to the QCBP nuclear norm
optimization problem

min || X ||« subject to || A(X)—y |l2<d

and any other feasible solution X to this problem, we have

N

21+p ity
| x -xt < 222 S o+
L —e} P

As with the recovery result from robust compressed sensing, we’re particularly interested
in the case where X is the unknown low rank matrix Xj.

To prove this, we need the following theorem
Theorem 24. For all X,7Z € R™*™, iff A satisfies the robust rank null space property
of order r with constants p and T, it holds that

2T
I—p

N
1+
I X=Z]. < fﬁ(”ZH*_HXH*'fQ Y ailX)) + I A(Z = X)) |

i=r+1

The proof of that theorem is exercise 4.20 in [Foucart and Rauhutl Given the theorem,
proving theorem [23|is completely analogous to proving theorem we let Z = X* and
use the linearity of A as well as the triangle inequality to get

N

L+p 21
| X=X < 72) aX) + 7 — A —y [+]e]l
L g P

and since both || A(X#) —y || and || e || are bounded by &, the result follows.

12 Matrix completion and variable A(X)

The previous cases have all considered the linear operator A, which corresponds to the
matrix A in ordinary compressed sensing, to be known in advance. If we're trying to
recover a recover a sparse signal x by an observation y of that signal in another basis, we
usually know what kind of domain our observation apparatus uses, and we either know
the space where x is sparse, or can make a good guess of one based on energy compaction
properties.

44

However, in some matrix sensing situations, we might not know the exact nature of A(X)
ahead of time. In matrix completion, we have a projection Pp that can be flattened into
A. If the known entries are based on user input, as in a recommender system, we don’t
know the exact nature of () in advance. In an explicit rating recommender system, €2
is the set of user and item pairs where the user has rated that item; and that could be
anything. Some users might not have rated anything, and some items might not have
been rated at all.

In an implicit rating recommender system, we don’t even have ratings, we just know
whether a user has shown interest in an item or not, and so .A becomes something to the
effect of

-A(X)an—i-b = C’ab)(ab

where C' € R™*" is a confidence matrix so that C;; roughly corresponds to the precision
(inverse variance) of our belief in the observation Xj;.

In either case, the linear operator A is chosen by nature: the users decide its construction
when they choose what items to provide feedback on.

We would thus like to know whether the nuclear norm minimization problem can recover
the minimum rank matrix over a whole class of linear operators A. For a recommender
system, this class could be Agq j, containing all flattened Py operators with | [< k.

For unknown /variable linear operators, we have both possibility and impossibility results.

In the general case where A is an arbitrarily weighted generalization Agq of the flattened
Pq, ie.

Cij X5 (i,)) € Q

0 otherwise

Ao(X)ine; = {

for some matrix of constants C, low rank matrix completion is N P-hard. This holds
even if C' € {0,1}"™*™, which implies that low rank matrix completion for the whole class
of linear operators Aq is N P-hard if the set is adversarially chosen |Gillis and Glineur}
2011]. There is thus no algorithm for low rank matrix completion that is poly-time for
recommender systems in the worst case, unless P = NP.

On the other hand, if each user-item combination is revealed with a fixed probability
p, and the probability that any one user-item combination is revealed is independent of
every other, then we have the random orthogonal model, and nuclear norm minimization
can recover the optimal low rank matrix. See part [ITI}

45

Part 111

Matrix completion in recommender
systems

13 Introduction to recommender systems

In many situations, users of a service find themselves having to decide what items of
some sort to pay attention to, and where the sheer amount of items makes it impossible
to go through all of them. The most obvious example is digital media of any form: what
videos to watch, what music to listen to, which users to follow on social media; but users
can find themselves in a similar situation when having to decide what product, if any,
they want to buy from an internet store.

Service providers might thus want to help the user decide. As the number of items
(videos, music, products) increase, it becomes increasingly difficult for users to find the
items they in retrospect would want to have seen. Manual recommendation, where the
service provider goes through the items and finds particularly good items, can work, but
such an effort becomes more difficult as the number of items increase, as well. Other,
more automated methods, are needed.

A recommender system is one such method. Recommender systems attempt to predict
what items an user might be interested in, given data about what items other users
have shown interest in, and potentially external information, like music genre or actors
participating in a movie. I'll here be using “recommender system” as another name for
collaborative filtering, which strictly speaking are recommender systems that don’t make
use of external information.

In a recommender systems setting, we're given a number of users and a number of items,
and we wish to predict the preferences of the users for the different items based on the
users’ past behavior. By providing personalized recommendations, the system would help
users arrive at interesting items with less effort.

Recommender systems have been employed both for digital content and for product
suggestions. Netflix held a well known competition to create a better recommender
system for its movie service, and many web stores (like Amazon: Smith and Linden,
2017) use recommender systems to suggest products to their customers. Less obvious
uses for recommender systems include suggesting jokes |Gupta et al., [1999|.

In some systems, users and items can coincide, such as in a social network where we
might want to recommend interesting people to follow. Thus, in some settings, an item
is a user. Strictly speaking, the items would be what the users produce (e.g. posts or
notifications), but the sites usually don’t let users subscribe or follow individual posts or

46

notifications; instead, a user can follow another user and indirectly be notified of events
produced by that user.

The common features where it makes sense to use a recommender system are:

e There are many users and items, too many items for the users to manually go
through in feasible time.

e The users prefer the different items to differing degrees; they’re not ambivalent to
what they’re looking at.

e The users can provide feedback on what items they prefer or don’t prefer. The
feedback may be explicit, as in rating a movie, or implicit, as in stopping the movie
playback before it’s done.

e It’s possible to provide customized recommendations (e.g. not a traditional TV
broadcast, where the only option is whether to watch what programming is running).

13.1 Matrix factorization as a recommender system model

A model used by a recommender systems should ideally satisfy both of the following
properties:

e It should have a relatively small state space, or there should be regularization
options, so that it doesn’t overfit.

e [t should be useful: it should provide relatively good precision.

It’s also an beneficial if the model can be interpreted, as such a capability can aid the
store or service in predicting what may be well-liked in the future, even if the items don’t

exist yetF_r]

The matrix factorization model appeared relatively quickly during the Netflix Prize
challenge and was a part of the winning entry |Koren et al., |2009]. In its simplest form,
the matrix factorization model (called “SVD” by the Netflix Prize contestants) predicts a
user u’s rating of an item 4, 7,; as a sum of interaction terms or latent factors:

f
Tui = 5 au,x'bi,x
=1

with f being the number of factors, which is a parameter that needs to be set ahead of
time. Training the system then consists of solving the following optimization problem:

f
min Z (Tu,i - Z au,zbi,x>2
=1

a1,1," s8m, £,01,1, ,bn, f (D)e

1 See for instance Netflix’s use of its data to predict that the series House of Cards would be a success.

47

where 2 is the set of indices (u, i) where 7 ; is already known, and m and n are the
number of users and items respectively.

This is a rather simple model, but the users behaved close enough to something linear
for it to prove useful[”]

It is also relatively interpretable, since each item variable b; ; can be seen as the degree
to which item 7 exhibits feature z, and a,,, how much user u likes feature x.

The matrix factorization model is also interesting to us because it can be cast as a matrix
completion problem. Let U, = a4, and V,, = b, . The rating prediction becomes

T
Tui = Uu‘/z
or

R = UvVT

Denote the matrix of observed ratings as M, and Po(X) defined as in section Section
The optimization problem ends up being

min | Po(UVT) = Po(M) |[r (13.1)
with U € R™*f| V € R™f. As we’ll find out, a regularized version of this problem can
be shown as equivalent to nuclear norm minimization.

14 Solving matrix completion recommender problems

14.1 Limitations of semidefinite programming

Many libraries exist for solving semidefinite programsp—_g] However, references to the
asymptotic complexity of semidefinite programming algorithms is usually scarce in the
literature, so it is hard to compare the algorithms’ performance. Kulis et al.| [2007] state
that general purpose semidefinite programming solvers have O(N?) performance or worse
(depending on the solver), where X € RY¥*V is the matrix that is constrained to be
positive semidefinite. For the nuclear norm minimization program, N = n + m, thus the
sum of the number of items and users in a recommender system. As both n and m can
be of the order 10* or greater, semidefinite programming is not a practical method for a
recommender system.

We thus need more practical algorithms to perform matrix completion if we’re to use
the matrix factorization model in a recommender system. From the practical side of

12Less simple variants introduced regularization analogous to robust recovery; and time preference,
where products rated recently count more than those rated a long time ago.
13 An incomplete list is CVX, CVXOPT, DSDP, CSDP, SDPNAL, and SDPNAL-+.

48

things, recommender systems designers have used gradient descent or an algorithm called
alternating least squares, which we’ll talk about later. The use of these algorithms in the
Netflix competition was motivated by performance rather than any analytical results.
This thus raises the question of how we can characterize fast algorithms beyond just
“works well in practice”.

14.2 A fast algorithm for matrix completion

An algorithm often used to find a good matrix factorization in a recommender system is
the alternating least squares method. Consider the following problem [Mazumder et al.,
2010]:

o1 A
min o S0 (¥~ @V + 51U IE+ 1V 1) (14.1)
’ (,5)EQ

or in short,

min || Po(Y) = Po(UVE) 7 +2(1 U 17+ 1V I1F)

)

where X = UVT, U € R™" | V € R™" and the maximum rank » < min(n,m). Without
loss of generality, we’ll let » = min(n,m), although r can be reduced for computational

purposes if the actual rank of X (or an upper bound for the rank) is known for a particular
A

Mazumder et al.| further show
Lemma 25.

1
X |, = min —NU I+ V2
IX0 = min SO+ VI

when U and V are defined as above.

Vv xt vyt
Subsection ([10.1)) then gives that Trace(UUT) + Trace(VVT) =2 || X |s.
Recognizing Trace(UUT) =|| U ||% and Trace(VVT) =|| V ||% completes the proof. [

T
Proof. Let M = (U> (UT VT) = (UU X) By construction, M > 0.

Thus the minimization problem of ((14.1]) is equivalent to

o1
min - > (Vi = Xi) + A X |

(4,7)€Q

The optimization problem is not convex when minimizing over both U and V', but
if we fix either U or V, optimizing for the other is a convex problem. This observation
leads to the alternating squares method. As suggested, it consists of alternating between
optimizing U with V fixed and optimizing V with U fixed.

49

Suppose U is fixed. Our problem becomes

min %(2(1])69((UV Z H Vi H2

v

We have a linear regression - the 3~ ; yco(Yi —(UVT);;)?) term - and an /5 regularization

term - 5 >, || V; |%. So the problem is an /s-regularized linear regression, i.e. a ridge
regression problem.

The presence of unknown values (i, 7) ¢ €2 makes expressing the problem in matrix form
tougher than an ordinary ridge regression. First, define a matrix C so that

1 (4, 75) €
0y = { (i, §) €

0 otherwise
diag(C;)
C; = diag(C]T)
and a zero-completed extension of Y,
Y/z'j _ {Yzj (i7 J) €

0 otherwise

Let U,V be the previous iteration’s approximations to U and V respectively, and U 1%
be this iteration’s approximations to U and V. In other words, using our notation, for
iteration k, U = Uy_1, V = Vi1, U= Us, V= Vi.. 1 do this to avoid otherwise very
messy notation when indexing a matrix that itself has a subscript giving its iteration
number.

Then [Hu et al.| [2008| give that
U, = (VTCi,:V +)\I)_lvTci,yi
Vj = (UTC;J‘U +)\I)ilﬁTC%j?jT

In practice, implementations of the method use multiple speedups, some of which are
given in [Hu et al.l

The benefit of the alternating least squares method is that it is practical for large matrices,
as opposed to solving a semidefinite program. However, the best known bounds on when
we will recover the minimum rank solution are weaker than for nuclear norm minimization.

15 Bounds on exact recovery using SDP and ALS

15.1 Prerequisite definitions

We’ll need some definitions first. First two different types of coherence:

50

Definition 26. Coherence

Let the coherence of a matrix U € R™" with respect to rank k be defined as

n
U) = max — Tu 12 15.1
n(U) ie[alﬁ L e Ul ()

Jain et al.|[2013] definition 2.4] define a different type of coherence:
Definition 27. A matrix M € R™*™ is p-incoherent with parameter pu = pg if

MO\/E
\/ﬁ

where M = UXV7T is the singular value decomposition of M.

| Ui lI< B2=vi € [m), | Vi |I< 2248 € [n) (15.2)

Next is the restricted isometry for linear operators, which is completely analogous to

definition [I5k
Definition 28. A : R™*" — R? satisfies the k — RIP with constant ¢, if, for all
X € R"™" where rank(X) < k, the following holds:

(1= 60) | X <[l AX) 1B (1+60) | X I

To prove a matrix sensing result for alternating least squares, we also need a notion of
distance between subspaces:

Definition 29. Let X ,Y € R™*™ be given matrices and let X, Y be orthonormal
basis matrices of respectively Sp(m(X) and Span(f’). Let X |, Y| be orthonormal basis
matrices of the perpendicular spaces Span(X)+ and Span(f/)L respectively.

The principal angle distance dist between subspaces is defined as
dist(X,Y) = || X7Y |2
= [1Y/X |2
with || - ||]2 being the spectral norm.

If A and B span the same space, then (A,); - B; = 0 for all (4,7) by definition of
perpendicularity, and thus dist(A, B) = 0. If the ranks of A and B are not equal,
dist(A, B) = 1.

Proof. Without loss of generality let rank(B) > rank(A). Choose orthonormal bases

A, B so that there exists a basis vector b; also in A . Then since ||A|l2 = maxx ”Ax”2,
. lIxI[2
AT B||s > ||AT Bej||o = 1. Since the bases are orthonormal, 143 Bxllz <1 for all x, so
1 1P€; lIxIl2

AT Bl = 1. m

o1

15.2 Matrix sensing
Let M € R™*" with singular values o1,...,0; be the unknown rank k matrix to be

recovered, and define N = max(m,n). As semidefinite programming exactly solves
nuclear norm minimization, see [I1.1] for the relevant bounds for SDP.

15.2.1 Alternating least squares

Jain et al. [2013] give the following bound for the alternating least squares algorithm:

If A satisfies the 2k — RI P with constant

o2 1
) < k-
2k o2 100k

and the ALS algorithm has a properly prepared first estimate UOE it converges geomet-
rically to the optimal solution to (8.1)).

15.2.2 Proof

We first need some decompositions.

Let M = U.pS.pV, with M € R™" U,p € R™™ S,p € R™™ V,p € R™" be
the singular value decomposition of M. Since M has rank k& < min(m,n), some of
the entries along the diagonal of 3,p will be zero. We can thus truncate these and
remove the extraneous corresponding columns of U,p and Vip to get M = U,p3, FVﬂ7
with Uyp € REX™ .0 € RF¥E V. € R¥*™. The latter is called the singular value
factorization of M.

Jain et al) thm 2.2 show that if A satisfies the 2k-RIP, the alternating least squares
algorithm (with a particular first step), produces a series of approximations Ut, V; whose
product converges geometrically towards M. Its formal statement is

Theorem. Let M be a rank k matrix with nonzero singular values o1 > --- > 0.
Let the linear measurement operator A(-) : R™*" — RY satisfy 2k-RIP with constant

Oor, < % . ﬁ. Then using the AltMinSense algom'th for all iterations t > T =

210g(%), we have that the iterates Uy, V; satisfy | M — U VL ||p< e.

Analysis makes use of theorem 4.2 of the paper, which states that the distance between
the subspaces covered by U; and V; (again my notation), which are the outputs after time
step t in ALS, and the subspaces U,r, Vir covered by the factorization M = U,p3, FVEI;,

14See the paper for details on how Uy is prepared.
15 AltMinSense is alternating minimization with properly prepared Uy

592

diminishes geometrically given appropriate starting points. More formally [Jain et al.,
2013} p. 8], we have:

dist(Vig1, Vir) < -dist(Upt1, Usr)

N N

dist(Ups1, Usp) <~ - dist(Vig1, Var)

with the distance between subspaces defined belowm I won’t go into detail in proving
theorem 4.2. itself, but I'll show how it can be used to show that for a given ¢, then after

T = 21og(1Me) steps, | M — UpVE |[2< .

15.2.3 Proof using theorem 4.2

Let Ut,Wt € R™** he matrices generated by ALS at iteration ¢, and let U, W; be
orthonormal basis matrices of Span(U;) and Span(W;). Let Uy, , Wy, be orthonormal
basis matrices of the perpendicular spaces Spcm(Ut)L and Span(Wt)L, and dist the
distance measure between subspaces defined previously.

RIP says that if
(L=0) 1 X |7 <A I3 < (@+6 I X [

holds for all X of rank k for some 0 < §; < 1, we say k-RIP is satisfied with constant
0r. Recall that M satisfies the 2k-RIP with constant d9x, and consider a particular

X:M—[fT‘fTT. We get
(1= 0) | M = UrV{ |7 < | AM = UrV{) |13

Dividing by 1 — 91, gives that the following holds since M satisfies the 2k-RIP with dog:

PO 1 PO
| M=UrVE < o o I A(M — UrVE) |3
We get
. 1 -
M= UrVE |7 < = " I AM = VrVE) |13
1 A
= 5 AWMU = VeV I

This follows because Uz was the optimal solution for miny || A(M —Y V) |13, so anything
else inserted as Y must either keep the spectral norm value the same, or increase it.

Note that we have a convergence between subspaces, not a convergence between matrices. So
even though U1 covers increasingly more of the subspace that U,r does, this does not imply that
UrVE = Uurp Vs,

93

Inserting the result into the RIP Using the RIP again, with the rearranged term
in the middle,
1 — o,
1 — dgp

. . - 1+ 6oy .
| M =VeVi | < =g TAM = VeV [< 1 M= VeV 1%

and we thus get

2 1 4 0oy, .
| M —UrVE |7 < | M —VpVE I3

1=

and factoring out M and subsequently inserting M = U, 3, FVE;,

14 ok

< | Usr Sup Vi (I — Ve VE) |1
1 — dop,

Making use of dist By definition of dist,

dist(Uy, W) = || U Wi, |2

The Frobenius norm is consistent, so we have

| UsrSar VIR = VeVE) 1B < || UsrSar 3] VIR = VeVE) |
= | UnZep Bl ViEU = Ve VE) |13
then by unitary invariance of the Frobenius norm,
= | UZn Vil Bl VIR = VeVE) |17
= || M |7 Vi = VeVE) |I%

then equivalence || A ||[p< y/rank(A) || A ||2 along with rank(A) > 1 implies || A ||%<]|
A3, so

< N MFI VR = VeVE) 13

Now note that (I — VTV;T)W will project W down on Vp, . Let W = [VTL VT]. Then,
since the spectral norm is also unitary invariant, we have

IV =VeVE) I3 = || ViR = VeVEW |3
= | Vip V2, 0] 113
= | VirVr. |13
= | VirVr. |13

= dist(Vip, V7)?

54

so we arrive at the conclusion that

| U VI VeV 11
| M || dist(Vir, Vr)?

I M~ UrV{ |I%

VARVAN

Finally, by theorem 4.2. we have that
| M \|% dist(Vip, Vr)? < e

15.3 Matrix completion

In section [I2] the fully general matrix completion problem was shown to be N P-hard.
Unless P = NP, nuclear norm minimization can’t possibly recover the hidden low rank
matrix X in every possible case of P. In addition, under some 2 sets, we simply can’t
recover the matrix as there’s not enough information.

Suppose (2 fails to contain any observation from column j, and M has rank one, M;; =
x;y;. Then there’s no way to recover y;, because the information simply isn’t there
[Candés and Recht), 2008.

Thus we need additional assumptions on both M and Pq.

One common assumption is that M is incoherent in some way (e.g. (M) or max(u(U), u(V))
being small with M = UXV” being the SVD), and that each entry of M is known with
independent probability p so that | Q |= O(pmn). Call this the incoherent uniform model.
The exact type of incoherence may differ; in some situations, we use standard incoherence

of (15.1); in others, u-incoherence of ([15.2)).

15.3.1 Nuclear norm minimization

Candés and Recht| [2008] introduces the random orthogonal model, where the coherence
of M is not explicitly stated, but M is said to have rank k and M = USVT with {U;}¥_,
and {V;}¥_, is chosen uniformly at random from all families of k orthonormal vectors.

For the random orthogonal model, they prove that there exist constants C; and c so that
the nuclear norm minimization problem, ({8.1]), recovers the minimum rank matrix with
probability 1 — eN 73 if

|Q| > Oy N*klog N

If the rank is particularly low compared to the matrix dimensions, i.e. &k < N¥/5, then
we get an even better bound of

| Q> Cy N9k log N (15.3)

95

The authors then generalize this to (a restriction of) the incoherent uniform model.
Consider a matrix M € R™*" of rank k with M = USVT, W = UVT and N =
max(m,n), and let o and p; be defined so that

o max (u(U), (V) < po
® max; j | Wij |§ M1/ %S
® (> 1

Then there exist constants C' and ¢ so that for all 8 > 2, nuclear norm minimization can
recover the minimum rank matrix with probability 1 — ¢N—# if

| Q] > Cmax(ui, v/op, poN"*)Nk(Blog N)

and for particularly low rank, k < iN %, we get a better bound of

Q| > CpoN%"k(Blog N)

If we let = 3, then we get essentially the same result as (15.3)), except for the i factor
in the particularly low rank constraint, and the pg factor in the bound itself.

Since this bound does not contain any w1 terms, it holds for the incoherent uniform
model in general, not just the one where there’s a restriction on the magnitude of the
W;; elements. The particularly low rank constraint might be too hard, however: for a
recommender system matrix of 10000 users and items, N'/5 = 6.3. Even for a Netflix-scale
dataset with 10% users and items, N'/® is still only around 15.85.

We can generalize the restricted bound to hold for the general incoherent uniform
model by making use of Candés and Recht/s observation that u; = vk always holds.
Inserting and letting 5 = 3 gives that there exist constants D and c so that nuclear norm
minimization can recover the minimum rank matrix with probability 1 — cN =3 if

Q| > Dmax(uk, iy *Vk, noN'*)Nk(log N)

15.3.2 Generalized alternating least squares

Hardt| [2014], p. 3| provides an ALS-based algorithm that outputs matrices X and Y so
that |[M — XY7T||r < €| M||r for the unknown rank k& matrix M, with high probability if

pN > k(k—i-log(]Z)M(U)(HMHF

)2

Ok

for symmetric matrices M = UAUT where A is a diagonal matrix, and also gives a way
to generalize this to any matrix (rectangular nonsymmetric).

o6

Note that unlike the bounds for nuclear norm minimization, the bound above does not
just involve the incoherence u(U), size N and rank k, but also the desired accuracy e
and Frobenius norm of M. Unlike nuclear norm minimization, we don’t either recover
fully or not at all; whether we recover to some accuracy € depends on € itself. Of course,
the bounds may not be tight, and the acutal situation may be better than it seems here.

15.3.3 Alternating least squares

For the standard ALS algorithm, we have the following bounds and proof from [Jain et al.
[2013]:

We assume here that we want to recover a p-incoherent matrix M € R™*" of rank k.

In the incoherent uniform model, With M having singular values o1, - - - , o, if M satisfies
the 2k-RIP with constant dg, < then theorem 2.5 of [Jain et al [2013] gives the
following result:

12ko’ ’

There exist constants C' and C” so that if the probability p of observing a random element
satisfies

(Uk) 2k2510gn10g k”M”F

2
mog

p = C

then after T' = C’log 1Ml ”F steps of the alternating least squares algorithm, supposing
the initial estimates are prepared in a particular manner, the error between the true

matrix M and the approximation will be reduced to || M — UTVJT |r< e

This is equivalent to saying that, in the incoherent uniform model, if M is k-incoherent
and satisfies the 2k-RIP with 09, = 122—’;{, then | Q |= O((%)4u2k4 ®nlognlog k”M”F)
will suffice to recover M within e distance by Frobenius norm. O(), being an order-of
operation, hides the dependence on the unknown global constant C.

Proof of this equivalence We start with the initial bound from [Jain et al.,

(ok) 2k25lognlog k”M”F

2
moy,

p =2 C
We then multiply by mn on both sides to get the expected number of elements on the
left (E[| 2 |] = pmn):

(Uk) 2]€2 5 lognlog k”M”F

2
62]{?

pmn > Cn

o7

Since we're assuming 2k-RIP holds with constant dof = T we can replace the former
with the latter:

(Uk) 2k2510gnlog k”M”F

> Cn 2 2,172
(%) (%) (%)

— (?)Qn(;i)4u2k4'5 log nlog L 1M |l
12

Now let D be another global constant, D = 122C, and we get that

k|| M
pmn > D(ﬂ)zl,qu‘L‘r’nlognlogu
Ok €

o1\ 4 k| Mg
— O((U—;) ,u2/~c4'5nlognlog7” ; I)

which was what was wanted.

15.3.4 Observations and comments

For nuclear norm minimization, we found that it’s impossible to ensure recovery in full
generality (over all Py). We then considered the incoherent uniform model, where it’s
possible to give bounds that ensure recovery with high probability if the unknown matrix
M is incoherent and we are given distinct elements drawn uniformly at random from M.

The bounds for nuclear norm minimization depend on how many such elements we’re
given, the rank of the unknown matrix M, and the coherence of M, as well as a bound
on the singular vectors of M if rank is not very low. On the other hand, for alternating
least squares, we see also dependence on || M ||, on the accuracy we want for the recovery,
and on either o, or the condition number g—l Thus, while semidefinite programming is
slow, we can’t get an exact solution from alternatlng least squares, and its bounds are

more complex.

Part IV

Extending recommender systems

While matrix factorization can be employed to quite a good effect in collaborative filtering,
there are still limitations to what it can do. There are broadly speaking two types of
limitations:

e Prediction accuracy limits to the model, e.g. users behave in a nonlinear fashion
whereas matrix factorization is explicitly linear (or bilinear if we consider both the
user feature and item feature spaces as distinct linear spaces).

o8

e Limits to the application: even if the model were to have perfect prediction accuracy,
it would lack certain desirable features, and could possibly lead to undesirable
consequences when used on its own.

In simpler terms, the first limitation arises when the system gives a wrong answer, and
the second arises when the system gives a right answer - but to the wrong question.

I’ll give an example of both of these, and how a practical collaborative filtering method
might be improved by addressing these limitations.

16 Generalizations of the model

It is not entirely realistic to suppose that people’s preferences are the result of a bilinear
process such as it is modeled in ordinary matrix factorization. Matrix factorization still
has predictive power, because the users’ behavior can be approximated by a linear model,
but we could get closer by a more complex choice of model.

16.1 Local low rank approximation

The idea behind local low rank approximation One way of generalizing the low
rank assumption is to suppose it only holds in certain neighborhoods, as is done in |Lee
et al. [2013].

In the article, the authors combine matrix factorization and nonparametric statistics.
Their more general model supposes that there exists some distance metric d((u,), (u',4"))
between pairs of users and items, so that groups of user-item pairs that have mutually
short distance behave similarly. Under that assumption, the users and items in a particular
neighborhood (area of short mutual distances) are considered to behave in a low-rank
manner, though taken as a whole, the predicted ratings matrix the recommender system
generates is not low rank.

The idea of combining many functions with simple structure to obtain a more complex
structure can be illustrated by kernel density estimation, which is a generalization of a
histogram.

Kernel density estimation concerns itself with estimating a probability density function
based on a number of observations drawn from that distribution. Instead of grouping
the observations into distinct bins and estimating the same density for every point in a
certain bin, like a histogram does, kernel density estimation centers a function on each
observation and lets the sum of these functions constitute the estimated density. The
following illustration from [Wicklin/ [2016] shows the principle:

99

Kernel Density Estimate as Weighted Sum of Component Densities

0.04
0.03
=
@
[=
i)
o 02
0.0
/fé/ ,5??&\ AN
///u A ‘\\\ o
V274 N\ et
0.00 === == [TV = 4
0 20 40 60 80
X
Components KDE

The component function (or kernel) in the KDE above is a Gaussian probability distribu-
tion function. In local low rank approximation (LLORMA), the kernel is a weighting

matrix, called K ,(Za’b) in the paper, which gives a high weight to user-item pairs in the

neighborhood of user a and item b. As neighborhoods differ, the K ,(La’b) matrices also
differ based on what user-item pairs are most like (a, b) according to the distance function

d.

The weight matrices are used to solve weighted nuclear norm minimization problems of
the form

min || X |« st || K\ Po(X = M) |p<6

where M is the matrix of observed entries, A - B is the element-wise multiplication
operator, and P is the projection upon the observed pairs we’ve seen earlier. This
gives one local low-rank matrix T(a,b) for each (a,b) pair chosen for the minimization
problem. Thus each T(a,b) matrix is a low rank matrix that’s accurate in the vicinity of
the neighborhood where (a,b) is the center.

Computational problems Suppose M € R™*" ie. we have m users and n items in
our recommender system. Then if we had unlimited computing power and a distance
function d specified beforehand, we could determine 7},) for all m - n possible choices
of (a, b); Then we could let the predicted recommendations matrix M be defined by
Mij = (Tt 3))i-

60

However, this is computationally impractical, and the authors give another approach.
Instead of calculating a T{,) for each possible pair, they suggest choosing a limited

number - on the order of 10 - anchor points, calculate T, (a,p) Only for these anchor points,

and interpolating between them to get the full predicted recommendations matrix M.

Required parameters To perform the low rank matrix approximation for a given
observations matrix M, we need a distance function d between user-item pairs, the choice

7b)

of error 9, the bandwidth h used for computing K ,(La , and a choice of anchor points.

The paper authors suggest the following:

e For d, first decompose the function into something that is more intuitive, a product
of user similarity and item similarity. That is, for users a and ¢, and items
c,d, d((a,b),(c,d)) = dy(a,c) - di(b,d). Then factorize M into M = UVT by
ordinary nuclear norm minimization, and let d,,(a, c) = arccos (%), di(b,d) =

V-V
arccos (||‘vb||~|\vzu)

e For the locality parameter or bandwidth h, the authors show the performance of
the method for different choices of h, but do not give a particular choice. This
parameter, as well as §, could probably be found by cross-validation.

e For the anchor points, page 19 of the paper gives results for different selection
strategies, and the simple strategy of choosing randomly at uniform from all possible
pairs (a,b), or from Q, do just as well as more complex strategies.

Performance and observations [Lee et al.| run their implementation of local low
rank approximation on several datasets, and compare the results to “SVD” method, which
consists of solving the non-regularized problem of . The paper does not refer to the
algorithm used to solve or approximately solve , but it’s reasonable to assume by
the name of “SVD?”, that it is alternating least squares. The paper also includes results for
some other approaches I have not investigated, such as Accelerated Proximal Gradient
(APG) and Divide-and-Conquer Matrix Factorization (DFC).

On each of the tested datasets, local low rank approximation shows lower RMS error
compared to the other methods, although not every alternate method was tried on every
dataset. For the Netflix dataset, local low rank approximation with rank r = 20 attained
an RMSE of 0.834 compared to the winner of the Netflix contest at 0.857.

Thus, according to the paper, local low rank approximation seems to produce quite
respectable results. If it had been submitted to the Netflix contest, it would have won
the grand prize.

17Tt would be interesting to investigate whether we could iteratively refine d in a setting where local
low rank matrix approximation would be run multiple times. One could imagine defining d on the k + 1th
run of LLORMA as a function of the T{,) matrices from the kth run.

61

The drawback is that interpretability suffers: since local low rank approximation uses
many individually low-rank matrices, it’s no longer as easy to determine what the matrices
mean. For a bilinear model, we can think of the rows of U as user preferences for various
factors, and the rows of V' as to what degree each item contains the different factors, each
factor being a property like “percussive music” or “movie with outdoors scenes”. However,
when we’re predicting based on a weighted combination of many low-rank matrices, what
the factors for each low rank matrix means is no longer as clear.

In addition, if the anchor points are chosen at random, that reduces interpretability
further. For an interpretable model, perhaps it would be better to choose anchor points
according to side data (such as music genre). Then each local low rank matrix consists of
features important to the center where the anchor point is placed. As an example, if the
anchor point is placed at a user who is a fan of classical music (as the user component of
the tuple defining an anchor point), and a well known piece of classical music (as the item
component of the pair), then the low rank matrix based on this center would contain
features that fans of classical music consider to be of particular interest. Many of these
features would differ from those of fans of black metal music.

17 Problems due to the application

When used as a recommender system, matrix completion methods have a significant flaw:
they take the observations as given, instead of using the recommendations to actively
acquire more information about the user who receives those recommendations. There are
three particular settings where the limitations of this strategy are evident:

e The so-called “cold start” problem, where the system has no information about
users who have just joined, or items that have just been produced, and thus doesn’t
know what items it should suggest to the new user, or who it should suggest the
new item to.

e Self-reinforcing situations where a user has only expressed interest in some type of
item (e.g. heist movies), but would enjoy some other type of item (say, political
thrillers) if it were recommended to him. The system doesn’t know what it doesn’t
know, and so can’t experiment with providing the user more diverse suggestions to
gain more information.

e Saturation or time preference problems, where a user may have recently made use
of many items of one type, but is now bored and would like greater variety, but
the system keeps recommending the same type of item. A common example is
a shopping site that keeps recommending refrigerators even after a customer has
purchased one. Another is a music site that recommends loud music even past the
point where the user gets exhausted and would prefer something more quiet.

The flaw arises when the matrix completion methods are used directly to form recom-

62

mendations. Since the data we use to generate recommendations is based on observation,
there’s some uncertainty as to how much the observations represent the users’ behavior;
the less data we have, the greater the uncertainty. But a plain matrix completion method
doesn’t know about this uncertainty, as it takes the data at face value. Showing a user
the items with greatest predicted rating is the best move short term (knowing what
we already know), but can lead to a self-reinforcing situation where the system stays
ignorant about data that would otherwise lead it to give better predictions later.

17.1 Adding an exploration component

In reinforcement learning, there is a trade-off between doing what the current data
suggests is the best move, and exploring uncertainty to get a better idea of what might
be best in the future. The two extremes (only doing what seems best at any given point,
or only reducing uncertainty) is called exploitation and exploration, respectively.

In that light, the problem with directly using a matrix completion method is that it
employs too much exploitation. The problem can be reduced by introducing exploration,
with the idea that balancing the two leads to better outcomes than focusing on either
alone. And since exploration involves reducing uncertainty, it’s natural to adopt a
statistical approach for modeling that uncertainty.

Xing et al. [2014] set up a statistical model based on matrix completion and a forgetting
model, and compare the results of using a greedy strategy entirely focused on exploitation
to one that balances exploration and exploitation. The experiment shows that while the
exploitation-only strategy starts off nearly as good as the balanced model, the users tire
of the recommendations and the average rating for the recommended items suffer.

For simplicity, Xing et al.| use a sequential recommendation setting: the user is given an
item to consider (in their particular case, a song to listen to), and is then asked to rate
that item before proceeding to the next. Such a setting may be useful for an internet
radio or dynamic music playlist service, which serves one song at a time; or it may be
used as the basis for something more complex.

Modeling the uncertainty of ratings To incorporate exploration, the authors start
with a bilinear matrix factorization model of the type we’ve seen can be fitted by low
rank matrix completion. They add a forgetting term to model how users may get tired
of seeing the same item all the time, ending up with the following, in our notation:

E[Rul = Xui = (0u,V;)(1— e twi/o)

where R,; is a random variable predicting the rating by user u for item i. Suppose
M = UVT is the matrix factorization from ALS or nuclear norm minimization. Then
0, is a vector of random variables with a role analogous to U,, so that 6, is a random
variable giving how much user u likes factor f, while V7' is the (deterministic) vector

63

giving how much item 4 exhibits each factor (Vy; gives how much item ¢ exhibits factor
f). tui is the number of seconds since user u visited item ¢, while s, is a random variable
giving the forgetting factor of user u: a higher forgetting factor means that the user
doesn’t have to stop listening to a song for very long before he starts liking it again,
while a smaller forgetting factor implies that the user tires easily.

The authors’ uncertainty model is thus user-focused: it implicitly says that we can’t be
sure of how much a given user likes a given factor f, but we are entirely sure of how
much some item ¢ exhibits f. This limits the model, but it seems the reason they do this
is to not make the system too complex.

Determining the random variables The authors first use alternating least squares,
solving to obtain a matrix factorization M = UV, U € R™" V € R™" and
after this they treat V' as known. If we didn’t have a forgetting term and 6 was also to
be deterministic, regularized linear regression would suffice to determine 6. But because
0 is random and there is a forgetting term, things become considerably more complex.

To determine the random variables, the authors use Bayesian statistics with the following
model:

Rui | Vistuis Ou, Suy 02~ N((0,V;1)(1 — e7twi/su) o2)
0. |02 ~ N(0,a002I,)
su ~ Gamma(by,cg)

g Gamma(dy, eo)

Here I, is the r x r identity matrix, and ag, by, co, do, eg are global parameters to be
decided by some other process (e.g. cross-validation). o2 is a random variable specific to
the user.

0, starts off with no information about what features the user likes, so the next step is
for the system to have a way of updating this vector based on user behavior. The user’s
behavior is recorded in an ordered history set, one for each user. Let D, be the ordered
set for user u up to the Ath item. It is defined as follows:

Dun = {(VZ'Ty s 7”ui)}?:l

where V;T is the feature vector for the item being used at time t,; by user u, and rated
r4i by that user afterwards. The incorporation of history then takes the form of posterior
probability rules:

p((auasu) ’ Duh) X p((auasu))p(Duh ’ (eu’su))

and estimate R,; by integrating over all possible (0, s,):

p(Rui | Duh) = /p(Rm | (eu,su))p((auﬂsu) | Duh)

64

The authors first try to use MCMC for this purpose, but the method is too slow and
they find another Gibbs-based approach that’s much quicker.

Strategies and results With random variables R,; in hand, the authors can now test
two strategies:

e Pure exploitation: When the user is to be shown a new song to rate, choose the
one with maximum expected rating.

e Balanced: Use a multi-armed bandit algorithm to balance exploration and exploita-
tion, and choose the song it selects.

The authors also test an earlier balanced content-based strategy, but as that is not as
relevant to the kind of recommendation system I’'m investigating, I’ve chosen to omit
that strategy here.

The multi-armed bandit algorithm (Bayes-UCB) in essence chooses items with greater
variance (more uncertainty about ratings) more often, thus incorporating exploration
into the method. The name comes from the imagined “multi-armed bandit” setting: a
person, wishing to maximize return, is facing a row of slot machines that pay out at
different rates. He has to determine which slot machine (“one-armed bandit”) to play,
taking into account both the known payouts so far (exploitation) and the uncertainty of
the estimates (exploration). Details about how the Bayes-UCB algorithm works can be
found in the paper.

Xing et al., p. 450 shows the results: the balanced strategies get consistently positive
feedback from the users, while that of the greedy algorithm declines with time as it
focuses too much on early good results. As the authors put it, the greedy algorithm “is
quickly trapped at a local optima, repeatedly recommending the few songs with initial
good ratings”.

Like local low rank approximation, the balanced strategy thus appears to be an improve-
ment upon plain matrix factorization, but for another reason. The balanced strategy
escapes self-reinforcing situations and manages time preference better than the pure
exploitation strategy.

However, it still has limitations. Since it only models users stochastically, it presumably
would not do as well in a new item or cold-start setting. If a new song is released, we
don’t know the song’s feature vector ViT until at least a few users have started rating that
song; and it might make sense to recommend the song to more users than a user-based
balanced strategy would, just to become more certain of what the feature vector is.

In statistical terms, that would entail modeling not just 8, as random variables, but also,
say v; analogous to ViT the way 60, is analogous to U,,. However, the simple bootstrapping
strategy of first using an ordinary matrix completion algorithm to obtain V', and then
estimate 6, based on that V', would fail, since the item feature vectors would depend on
the user feature vectors and vice versa. It is thus understandable why the authors didn’t

65

stochastically model both users and items. Instead of using the bootstrapping strategy, a
Bayesian analog of nuclear norm minimization would be needed.

18 Future work ideas

18.1 Search for other tractable subproblems of /, p < 1 optimization

While the /¢, optimization problem is NP-hard for p < 1, this only bounds its worst case
complexity (assuming P # NP). This implies that there might exist subsets of problem
instances for which /¢, optimization is easy, even though the optimization problem is
NP-hard in full generality, and if we can determine such subsets, we can solve the ¢y
optimization problem with greater success.

The compressed sensing results for £1-optimization can be considered to determine a set
of problem instances for which solving the £y optimization problem is easy in this manner.
Thus, research that extends the domain of compressed sensing (e.g. |[Adcock et al.|[2017)
could be considered progress in this area, as it discovers characteristics of more problem
instances where £y optimization is easy.

However, beyond this direct approach, we might make use of that the decision variant of
the £y optimization problem is in NP, so it can be reduced to any other N P-complete
problem. A program that solves an NN P-complete problem such as 3-CNF-SAT or
Hamiltonian circuit often does better than its worst-case performance would suggest, and
sometimes very much so: |Applegate [2006] lists exact solution records for the traveling
salesman problem, including a 24978 node instance that would have taken on the order
of 249782 - 224978 operations using the simple Held-Karp algorithm.

We could thus explore potential feasible subsets by reducing the generally NP-complete
{p-optimization problem with p < 1 into an INP-complete problem for which general
solvers exist, and then investigate the performance of these solvers on the reduced problem.
Possible things to investigate could include:

e Do the solvers do well on instances where the null space property holds or coherence
is low? L.e. do they in some sense detect that these problems are easy to solve, as
we know they are from compressed sensing theory?

e Do the solvers do well on instances where plain compressed sensing fails, but more
recent results like [Adcock et al.|2017| show that the problem instances can still be
efficiently solved?

e Are there other unusual instances where the solvers do well but no theoretical
results yet exist to indicate that the instances should be easy to solve?

Such investigation could be done both directly on £y and on ¢,, p < 1. There might,
for instance, be problem instances where {p-optimization is hard, but £,, 0 < p <1 is

66

easy. Although the approach of solving /,-optimization would fail to ensure the optimally
sparse solution in that case, we could still approach such a solution better than if we
were limited to £1 optimization.

One problem with this approach is that we would have to know the ¢y optima beforehand.
Otherwise, solving the decision problem for £y on some particular Ax =y could appear
to be easy down to, say || x [|o= 20, and then the solvers fail to find any lower value for
| x [|o in reasonable time. If we don’t already know the minimum, we can’t tell whether
|| x |Jo= 20 is the true minimum or whether there is a better minimizer that the solver
approach just doesn’t find. This is due to that £y optimization is in NP but not in coN P
unless NP = coNP.

Some work roughly along these lines can be found in Ge et al.[[2011]. The paper gives
an algorithm for finding a local optimum to the ¢, optimization problem for p < 1, and
through numerical experiments, shows how often the local minima coincide with the £,
minimum.

Finally, according to Mazumder et al.|[2010, p. 2290], the ¢; optimum might be preferred
to the ¢y solution in certain statistical applications.

18.2 Balance recommender system exploitation in other ways

In we investigated a collaborative filtering system that balanced exploration and
exploitation to provide suggestions that the users wouldn’t tire of as easily. This system
shows that it’s possible to balance the objectives of a recommender system away from an
exclusive focus on short-term accuracy.

We also know that recommender systems can have an effect on the network structure,
such as which users or items become popular |[Su et al. 2016]. In light of concerns that
personalized systems increase polarization, it could be fruitful to investigate whether rec-
ommender systems can be debiased to counter unintended dynamics while still providing
high quality recommendations.

One general approach would be to, instead of maximizing accuracy, maximize a com-
bination of accuracy and some other goal, reminiscent of how basis pursuit denoising
balances minimizing the 1 norm of the solution x, and the error term || Ax —y [|3.

A most clear parallel to BPDN would be a denoising problem of the type:
min o f(X)+ 5 || AX) = AY) [+] X [l
with the associated hard constraint problem being

min o f(X)+ [X .
subject to | A(X)—AY) || <6

in either case, with f(X) being a measure that we want to minimize.

If we want to counteract polarization, f(X) could be the degree to which there exist
distinct groups of users, each of whom share only a few preferred item with other such
groups of users; and if we want to balance out the dynamic that popular items get more
popular, f(X) could be an inequality measure on the items. In the former case, the
parameter « lets us balance between emphasizing cross-cutting items (i.e. items that
otherwise disparate groups like) and short-term accuracy; while in the latter, increasing
« would promote less known items to users to reduce the rich-get-richer effect.

Jaggi and Sulovsky| [2010] gives an algorithm for minimizing a Lasso-type constraint for
any convex loss function, i.e

min f(X)+A] X .

for any convex f. This gives considerable freedom as to how to design a debiasing term,
as long as f itself is convex.

I’ll give two examples of using Markov matrices to counter unintended dynamics:

Rich-get-richer effect Suppose we have a collaborative publishing system with m
users and n items, with each item having an author (user) associated with it. Users also
rate items on a scale from 0 to r inclusive. We thus have a (partially observed) ratings
matrix Y € R™*" that we want to extrapolate into a fully known matrix X using a
recommender system.

We also have a fully observed authorship matrix A € B"*" where A;; = 1 if user ¢
produced item j, 0 otherwise. Let a(j) be the i so that A;; =1, i.e. a(j) denotes the
index of the author of j.

To analyze the dynamics, we can then create a simple statistical model of a user that acts
somewhat similar to how most users do in aggregate. Drawing from Page et al.|[1998],
we create a random surfer model. While no particular user acts like a random surfer
(either ours or Google’s), the random surfer may, in the vicinity of any user u, locally
emulate behavior of users who are interested in what u produces. Thus, in aggregate
(over all users), general traffic may behave similar to such a model.

When starting at some user 4, our random surfer visits one of ¢’s recommendations with
probability proportional to the value the recommender system assigns that item, then
visits one of the author’s recommendations, then one of that recommendation’s author’s
recommendations and so on. The Markov chain produced by this model is

Xa(i)

pi+1=d1t=0) = o o
=1 “Ya(2),

68

We may add a slight offset to this in order to make the Markov chain easier to analyze,
so that with some probability p,qnq, the user just chooses at random. This gives

DPrand

X
plt+1=jlt=i) = 24 (1=) a(0).j

> k=1 Xa(i)k

The Markov chain has an associated matrix representation, which by convention is right
stochastic. Let M € R™*™ be this matrix, defined so that M;; = p(t+1=j |t =1).
The convention in Markov chain analysis in statistics is to assume that vectors are row
vectors, but here I will, to be consistent with the rest of the thesis, keep using column
vectors.

The stationary probabilities of the Markov chain defined by M will be less even the
more inherent popularity exists. If we want to moderate the influence of popularity upon
recommendations, we then need a function that measures this unevenness or dispersion.

Since the stationary probabilities are indeed probabilities, we can use information theory
entropy: H(mw) = —> . | m;log(m;). This measures surprise, so it’s maximized when we
have a flat distribution. Thus, if we’re minimizing o f(X)+ 8 || AX)—AY) || + || X ||+,
we need to negate H for our f.

As the stationary probabilities of the chain are given by the principal eigenvector (with
eigenvalue 1), we end up with f(X) being —H (v1), where v is the principal eigenvector
of the Markov matrix for X and the model above.

Some problems with this, which would have to be investigated, include:

e f(X) might not be convex. The easiest way of recovering vy is probably to solve the
equation for a stationary distribution: vi7 M = v;7. But since we’re optimizing
over both M (indirectly by optimizing X) and vy, this turns into a set of quadratic
constraints and may not be convex.

e MM is not linearly derived from X - the problem is the normalizing term) ;_; X, ali) k-
This might introduce another nonconvexity.

If that doesn’t work, a much simpler model would be to nudge recommendation values
down according to popularity. Let p € N™ be a count of the number of times each item
has been viewed so far, then let D € R™*" be defined by D;; = Xj; - %. We can then
set f(X)=3_; > ; Dij as the additional component to incorporate into the objective to
minimize.

Since p only uses known values, the optimization problem should be much easier than
the one involving Markov matrices. Nonlinear transformations of p (e.g. centering,
normalizing) are also possible without making the optimization problem any harder. The
two models mainly differ in that using the stationary probabilities as an objective would
not only deweight popular items, but also serve less popular items to more popular users,
so that when the popular users tell other users what they’ve seen, this gives an additional
boost to otherwise less popular items.

69

Community polarization Suppose we have a social network with n users who are
also items, with a follow set Q = {(,7) : i follows j}, and the partially observed follow
matrix Y € R™*™ defined by
1 (1,j) €Q
v, = { (i.5)

0 otherwise

This is an implicit recommender setting, as given in section we know whether user ¢
follows user j, but if user ¢ doesn’t follow j, we don’t know if that’s because they don’t
know of one another or i dislikes j. So let A(K)qntb6 = CapKap for a matrix K, and C
defined as C' = 7Y for an uncertainty constant 7 which gives how much ¢ not following j
should count as ¢ disliking j.

The recommender system is meant to extrapolate from Y to a fully known matrix X.
For any such completed X we can define a Markov matrix M similar to above, but the
model is simpler than in the last example: the notional random surfer picks a random
user according to how likely it is that the current user would follow that user, i.e.

. . Prand ‘<2 J

The Markov model could then be used to measure polarization, by reasoning that it’ll
take a longer time for the random surfer to visit every user if there’s a lot of polarization
in the network. Another way of saying this is that if groups keep mostly to themselves,
there will be bottlenecks between the groups. Formally, we would expect the mixing time

of the Markov chain to be longer if there are few between-group links than if there are
many.

A standard way of determining the stationary distribution of a Markov chain is to use the
power method. Let 7 be the stationary probability vector (vy in the previous example).
If M is diagonalizable and positive, we have that

lim 1TMmt =7
t—o0

with 1 the vector of all ones.

Suppose M is diagonalizable. Let Aq,. .., A, be the eigenvalues of M with \; =1 >| Ay |>
-+ >| An |, and the associated eigenvectors be vy, ..., vy. Then there exist c,..., ¢, so
that 1 =>"}_, cxvk. Hence

n
1TMt = ZCiViTMt
=1

n

= g civil AL

=1

n
= cl7rT+E civiT)\§
i=2

70

which is a combination of the desired stationary probability vector vi = 7 and some
error term Y1 o c;vil AL < Ao [P 300, ¢ivi. Since | A2 |< 1, the error term converges to
zero as t — 0o, and how quickly it does so depends on the magnitude of \s.

Hence | Az | is directly related to the rate of convergence of the power method, with
the intuition above being that for polarized networks, this rate is slower than for evenly
mixed ones. So we can use f(X) =| Ay | as a measure of polarization, or equivalently
F(X) =X |+]|A2|. As A1 =1 for all Markov matrices, this doesn’t change anything
as far as optimization goes.

I have not been able to verify that f(X) is convex over all right stochastic matrices X,
but I haven’t been able to find any counterexamples either. The second issue above, that
M is not linearly derived from X, still remains, and I haven’t proven that the Markov
matrices we're considering are always diagonalizable either. If they’re not, some other
approach has to be done to show that convergence time still depends on | Ay |. It is
known that not all positive Markov matrices are diagonalizable, see e.g. [Myerson| [2013] .

The study of properties of a graph by eigenvalues and eigenvectors is called spectral
graph theory. There may be results within spectral graph theory that would permit us
to use X directly, or use some transformation of X that would be convex, if the Markov
chain transformation turns out to be nonconvex. Boyd [2006] gives some results for
undirected graphs; however, social network graphs are not undirected. Furthermore,
the extrapolated matrix X provides us with uncertain edges: if Y;; = 1 whenever user
i follows user j, then 0 < Xj; < 1 implies that the system thinks there’s some chance
that user j would follow user k if made aware of k. As standard graph theory does not
consider uncertain edges, it may have to be adapted to our setting.

Another approach to reducing polarization can be found in [Musco et al, 2017 Their
approach is based on a concrete opinion dynamics model, and they construct an opti-
mization problem that balances disagreement (analogous to the lack of accuracy) and
polarization. However, the problem is only convex for a particular balance of the two.

18.3 Harden recommender systems against adversarial noise

The use of recommender systems in settings where the same users consume and provide
content may induce undesirable incentives that distort the data. For instance, a publisher
on a video sharing site might create a fake user who highly rates videos a particular
group likes, and then in addition highly rates the publisher’s own videos. Under a simple
user-user similarity recommender system, this would lead the system to recommend
the publisher’s videos to that group, if the group is not too large. Matrix factorization
methods might be susceptible to more advanced strategies.

To discourage tactical rating in a matrix factorization context, we could consider the
matrix to not only be incomplete, but to consider some proportion of its revealed entries
to also be arbitrarily corrupted, i.e. be adversarially chosen as to minimize the accuracy

71

of the recommender system itself. Assuming the corrupted entries are chosen that way
works as a worst case assumption, since any other strategy will (by definition) not degrade
the system as much.

A simple, yet potentially impractical approach is to run the recommender system ((1fp)r)
times, each time excluding pr of the r known entries, and choosing the final predicted
matrix to be the returned matrix that minimizes the sum of distances to every other
predicted matrix, according to some metric d(A, B), e.g. d(A, B) =|| A— B ||. More
formally, that can be cast as an optimization problem for the final predicted matrix M
based on the observed set of ratings €2 and partial matrix A. Let A be specified ahead of
time and

& = {XCQX|=|pr]}
J(P,X) = argmin | P(X) =X || +A]| X |l

and then the optimal solution is

Gopr = argmin Y || f(Pags A) = f(Pygs A) |
ped\{¢}
M = [(Pog: 4)

However, this might be completely impractical: there may not be any good ways to
simplify the problem to a poly-time algorithm; and we don’t know the robustness
guarantees analogous to the breakdown point of a robust estimator.

Another approach is to minimize the rank or nuclear norm subject to that a finite
number of observations can be attenuated or discarded. This approach is sometimes used
in background extraction problems in image processing, where the assumption is that
the background can be represented by a low rank matrix, whereas the foreground will
interrupt the natural regularity of that background and thus will be discarded by the
algorithm. See for instance Xiong et al. [2011]. Background extraction rarely involves
missing values, however, and so focuses on just finding outlier points, not on both finding
outliers while completing missing values. The closest I've found is |Shang et al.| [2015],
which investigates the optimization problem

Iiligl | S|t +X || L« subject to AL+ S)=A(X)

for a given observed matrix X, where || - ||; is the entrywise ¢; norm. This problem
handles a small number of corrupted entries by creating an “adjustment matrix” L that
cancels out these entries, but it assumes that L + S is exactly low rank. As mentioned
earlier, this may not be a good assumption for real world data, and so a natural extension
would be to introduce approximate matching, e.g.

Iilig | S+ || L[« +X2 | AL+ S) — A(X) ||

72

Note that unless there is some way of limiting the number of users that a real person can
create, or unless we can make each user creation costly, all recommender systems are
arbitrarily manipulable in the worst case. A malicious user can simply create as many
users as he desires, so that the real uncorrupted users constitute a vanishingly small
proportion of the total number of users. The malicious user can then fill the fake users
with information to make the recommender output what he wants it to output.

19 Summary and conclusion

19.1 Summary

In the first part of this thesis, we reviewed the basic theory of compressed sensing,
focusing on the fundamental problems: cardinality minimization and basis pursuit. We
investigated complexity theory to get the tools required to say whether a problem is
asymptotically easy or hard to calculate on a computer, and then continued by proving a
necessary and sufficient property for compressed sensing recovery, namely the null space
property. Finally, we considered how to handle noise, and found tractable approximations
to the null space property.

The second part continued where the first left off, by taking compressed sensing into
the matrix domain in the form of low rank matrix sensing and completion. We used
the complexity theory tools to show that the nonconvex matrix problems are at least as
worst-case hard as the analogous vector problems, which motivated a convex relaxation
by using the same strategy as for vectors: relaxing a nonconvex operator to a norm.
We showed how the relaxed problem could be written as a semidefinite program, and,
following the layout of the first part, investigated generalizations of the null space property.
We then moved onto matrix completion by giving hardness results for that setting in
particular.

In the third part, we focused on matrix completion and gave a connection between this
setting and a model used for recommender systems: the bilinear matrix factorization (or
latent factor model). Even though that is a simple model, it’s been useful in recommender
systems. After doing so, we compared the analytical elegance of exact nuclear norm
minimization to the more pragmatic world of actual recommender systems, the former
exemplified by semidefinite programming and the latter by the alternating least squares
algorithm. We found the former easier to analyze but the latter faster in practice.

The fourth part moved beyond matrix factorization and latent factor models to consider
how recommender systems might be improved by extending its scope. We investigated two
papers with different suggestions: the very well performing local low rank approximation
system, and the balanced exploration system that used statistical modeling to provide
novel recommendations. Finally we saw some ideas for future work: to use solvers of
computer science problems to guide the search for other easy problems in compressed

73

sensing, and ideas for discouraging unintended consequences that may otherwise result
from the use of recommender systems. The latter contained ideas of how to measure,
and counter, polarization in social networks.

19.2 Concluding remarks

I have learned quite a bit of compressed sensing while writing this thesis. There are some
results, however, that are lurking just beneath the surface, that I have not been able to
draw fully out into the open.

For instance, there seems to be a parallel between the matrix completion problem and
statistical recovery in compressed sensing. These are results similar to , which involve
observing x - ¢; with j chosen at random according to some distribution. In that setting,
we don’t know ahead of time which 9, are going to be the bases for our observations, in
a similar way that we can’t pin down the exact structure of Py in advance for matrix
completion. Since I've focused on deterministic compressed sensing and thus on the null
space property rather than on the RIP, I can’t draw the parallel as well as I would like.

There is also still a gap between empirical results and analytical bounds. To quote
Mazumder et al.| [2010], “We note however that the conditions under which the nuclear-
norm regularization is theoretically meaningful are not met on the Netflix data set”.
Hence we should be aware that more research is needed before we can accurately predict
the performance of recommender systems algorithms on real datasets, or even how well
the methods can capture the linear component of user behavior.

74

References

Ben Adcock, Anders C Hansen, Clarice Poon, and Bogdan Roman. Breaking the
coherence barrier: A new theory for compressed sensing. In Forum of Mathematics,
Sigma, volume 5. Cambridge University Press, 2017.

Eric Allender, Peter Biirgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On
the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987-2006,
2009.

David L Applegate. The traveling salesman problem: a computational study. Princeton
university press, 2006.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

Stephen Boyd. Convex optimization of graph laplacian eigenvalues. In Proceedings of the
International Congress of Mathematicians, volume 3, pages 1311-1319, 2006.

Jameson Cahill, Xuemei Chen, and Rongrong Wang. The gap between the null space
property and the restricted isometry property. Linear Algebra and its Applications,
501:363-375, 2016.

Emmanuel J. Candés and Yaniv Plan. A probabilistic and ripless theory of compressed
sensing. CoRR, abs/1011.3854, 2010. URL http://arxiv.org/abs/1011.3854.

Emmanuel J. Candés and Benjamin Recht. Exact matrix completion via convex opti-
mization. CoRR, abs/0805.4471, 2008. URL http://arxiv.org/abs/0805.4471.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition
by basis pursuit. SIAM review, 43(1):129-159, 2001.

Rodrigo de Azevedo. Spectral norm minimization via semidefinite programming. Mathe-
matics Stack Exchange, 2017. URL https://math.stackexchange.com/q/2137408.
URL:https://math.stackexchange.com/q/2137408 (version: 2017-04-26).

Krishnamurthy Dvijotham and Maryam Fazel. A nullspace analysis of the nuclear norm
heuristic for rank minimization. In Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, pages 3586-3589. IEEE, 2010.

Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing,
volume 1. Birkhauser Basel, 2013.

Jean Jacques Fuchs. More on sparse representations in arbitrary bases. IFAC Proceedings
Volumes, 36(16):1315-1320, 2003.

Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on the complexity of Ip minimization.
Mathematical programming, 129(2):285-299, 2011.

75

http://arxiv.org/abs/1011.3854
http://arxiv.org/abs/0805.4471
https://math.stackexchange.com/q/2137408

Nicolas Gillis and Francois Glineur. Low-rank matrix approximation with weights or
missing data is np-hard. STAM Journal on Matriz Analysis and Applications, 32(4):
1149-1165, 2011.

Matthew Gray. Measuring the growth of the web. http://wuw.mit.edu/people/mkgray/
growth/, 6-Aug 1996. |Online; accessed 26-May-2018|.

Dhruv Gupta, Mark Digiovanni, Hiro Narita, and Ken Goldberg. Jester 2.0 (poster
abstract): Evaluation of an new linear time collaborative filtering algorithm. In
Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’99, pages 291-292, New York,
NY, USA, 1999. ACM. ISBN 1-58113-096-1. doi: 10.1145/312624.312718. URL
http://doi.acm.org/10.1145/312624.312718.

Moritz Hardt. Understanding alternating minimization for matrix completion. In
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on,
pages 651-660. [EEE, 2014.

Christian Hoene, Jean-Marc Valin, Koen Vos, and Jan Skoglund. Summary of opus
listening test results. Internet-Draft draft-ietf-codec-results-03, IETF Secretariat, May
2013. URL https://tools.ietf.org/html/draft-ietf-codec-results-03.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In Data Mining, 2008. ICDM’08. Fighth IEEFE International Conference on,
pages 263-272. Teee, 2008.

Martin Jaggi and Marek Sulovsky. A simple algorithm for nuclear norm regularized
problems. In Proceedings of the 27th International Conference on International Con-
ference on Machine Learning, ICML’10, pages 471-478, USA, 2010. Omnipress. ISBN
978-1-60558-907-7. URL http://dl.acm.org/citation.cfm?id=3104322.3104383.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion
using alternating minimization. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 665—-674. ACM, 2013.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85—103. Springer, 1972.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8), 2009.

Brian Kulis, Arun C. Surendran, and John C. Platt. Fast low-rank semidefinite pro-
gramming for embedding and clustering. In Marina Meila and Xiaotong Shen, editors,
Proceedings of the Eleventh International Conference on Artificial Intelligence and
Statistics, volume 2 of Proceedings of Machine Learning Research, pages 235-242, San
Juan, Puerto Rico, 21-24 Mar 2007. PMLR. URL http://proceedings.mlr.press/
v2/kulis07a.htmll

76

http://www.mit.edu/people/mkgray/growth/
http://www.mit.edu/people/mkgray/growth/
http://doi.acm.org/10.1145/312624.312718
https://tools.ietf.org/html/draft-ietf-codec-results-03
http://dl.acm.org/citation.cfm?id=3104322.3104383
http://proceedings.mlr.press/v2/kulis07a.html
http://proceedings.mlr.press/v2/kulis07a.html

Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. Local low-rank matrix
approximation. In International Conference on Machine Learning, pages 82—90, 2013.

OL Mangasarian. Absolute value programming. Computational Optimization and
Applications, 36(1):43-53, 2007.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algo-
rithms for learning large incomplete matrices. Journal of machine learning research,
11(Aug):2287-2322, 2010.

Cameron Musco, Christopher Musco, and Charalampos E Tsourakakis. Minimizing
polarization and disagreement in social networks. arXiv preprint arXiv:1712.09948,
2017.

Gerry Myerson. Example of a markov chain transition matrix that is not diagonalizable?
Mathematics Stack Exchange, 2013. URL https://math.stackexchange.com/q/
332700. URL:https://math.stackexchange.com/q/332700 (version: 2015-04-10).

Netcraft. April 2018 web server survey. https://news.netcraft.com/archives/2018/
04/26/april-2018-web-server-survey.html, 24—Apr 2018. |[Online; accessed 26-
May-2018].

Samet Oymak and Babak Hassibi. New null space results and recovery thresholds for
matrix rank minimization. arXiv preprint arXiv:1011.6326, 2010.

Samet Oymak, Karthik Mohan, Maryam Fazel, and Babak Hassibi. A simplified approach
to recovery conditions for low rank matrices. In Information Theory Proceedings (ISIT),
2011 IEEE International Symposium on, pages 2318-2322. IEEE, 2011.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. 1998.

Davis Pan. A tutorial on mpeg/audio compression. IEEE MultiMedia, 2(2):60-74, June
1995. ISSN 1070-986X. doi: 10.1109/93.388209. URL http://dx.doi.org/10.1109/
93.388209.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52
(3):471-501, 2010.

Fanhua Shang, Yuanyuan Liu, Hanghang Tong, James Cheng, and Hong Cheng. Robust
bilinear factorization with missing and grossly corrupted observations. Information
Sciences, 307:53-72, 2015.

Brent Smith and Greg Linden. Two decades of recommender systems at amazon. com.
IEEE Internet Computing, 21(3):12-18, 2017.

77

https://math.stackexchange.com/q/332700
https://math.stackexchange.com/q/332700
https://news.netcraft.com/archives/2018/04/26/april-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/04/26/april-2018-web-server-survey.html
http://dx.doi.org/10.1109/93.388209
http://dx.doi.org/10.1109/93.388209

Jessica Su, Aneesh Sharma, and Sharad Goel. The effect of recommendations on network
structure. In Proceedings of the 25th International Conference on World Wide Web,
pages 1157-1167. International World Wide Web Conferences Steering Committee,
2016.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267-288, 1996.

Andreas M Tillmann and Marc E Pfetsch. The computational complexity of the restricted
isometry property, the nullspace property, and related concepts in compressed sensing.
IEEE Transactions on Information Theory, 60(2):1248-1259, 2014.

Martijn van Beurden. Lossless audio codec comparison, August 2013. URL https:
//xiph.org/flac/comparison.pdf.

Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review, 38
(1):49-95, 1996.

Rick Wicklin. How to visualize a kernel density estimate. The DO Loop, SAS
blog, 27 July 2016. URL https://blogs.sas.com/content/iml/2016/07/27/
visualize-kernel-density-estimate.html.

Zhe Xing, Xinxi Wang, and Ye Wang. Enhancing collaborative filtering music rec-
ommendation by balancing exploration and exploitation. In Ismir, pages 445-450,
2014.

Liang Xiong, Xi Chen, and Jeff Schneider. Direct robust matrix factorizatoin for anomaly
detection. In Data Mining (ICDM), 2011 IEEFE 11th International Conference on,
pages 844-853. IEEE, 2011.

YouTube. Press - youtube. https://www.youtube.com/intl/en-GB/yt/about/press/,
2018. [Online; accessed 26-May-2018|.

78

https://xiph.org/flac/comparison.pdf
https://xiph.org/flac/comparison.pdf
https://blogs.sas.com/content/iml/2016/07/27/visualize-kernel-density-estimate.html
https://blogs.sas.com/content/iml/2016/07/27/visualize-kernel-density-estimate.html
https://www.youtube.com/intl/en-GB/yt/about/press/

	Introduction
	Purpose and structure of the thesis
	Code

	I Compressed sensing on vectors
	Introduction to compressed sensing on vectors
	Sparse signal theory
	The name 0 minimization

	Complexity and hardness results
	Concepts from complexity theory
	Abstract computers and Boolean functions
	Implicit encoding of decision problems
	Algorithms and runtime
	Complexity classes
	Complexity class hardness

	Complexity of 0 optimization

	Convex relaxation
	Recovery of sparse vectors

	Handling noisy signals
	Compressible signals
	Robust optimization
	Bounds on recovery
	Recovery of compressible vectors
	Robust recovery
	A tractable approximation to the NSP

	A note on the restricted isometry property

	Other convex relaxations of robust recovery
	Relations between robust recovery methods

	II Matrix sensing and completion
	Generalizing compressed sensing to unknown matrices
	Hardness results
	Matrix sensing
	Matrix completion

	Convex relaxation
	Proof of SDP formulation

	Matrix sensing problems and results
	Bounds on recovery
	Recovery of exactly low rank matrices
	Recovery of approximately low rank matrices

	Other nuclear norm problems
	Robust null space property for linear operators

	Matrix completion and variable A(X)

	III Matrix completion in recommender systems
	Introduction to recommender systems
	Matrix factorization as a recommender system model

	Solving matrix completion recommender problems
	Limitations of semidefinite programming
	A fast algorithm for matrix completion

	Bounds on exact recovery using SDP and ALS
	Prerequisite definitions
	Matrix sensing
	Alternating least squares
	Proof
	Proof using theorem 4.2

	Matrix completion
	Nuclear norm minimization
	Generalized alternating least squares
	Alternating least squares
	Observations and comments

	IV Extending recommender systems
	Generalizations of the model
	Local low rank approximation

	Problems due to the application
	Adding an exploration component

	Future work ideas
	Search for other tractable subproblems of p p<1 optimization
	Balance recommender system exploitation in other ways
	Harden recommender systems against adversarial noise

	Summary and conclusion
	Summary
	Concluding remarks

	References

