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Abstract

Given a non-principal ultrafilter, we define and prove properties of ultra-
limits of measure spaces (including σ-algebras, filtrations and measures),
random variables and discrete-time stochastic processes. Among other
things, considering Brownian motion as the ultralimit of random walks,
we define the stochastic integral as the ultralimit of sums involving the
random walk and we show that solutions to stochastic differential equa-
tions can be written as the ultralimit of solutions to difference equations.
We also show that the ultralimit of the Cox-Ross-Rubinstein model is the
Black Scholes model.
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CHAPTER 1

Introduction

1.1 The purpose of this master’s thesis

When it comes to convergence of stochastic variables and stochastic processes, a
great deal of work has been done on weak convergence. A sequence of stochastic
variables {Xn}n∈N, where eachXn is defined on a probability space (Ωn,Fn, Pn),
is said to converge weakly (or converge in distribution) to a stochastic variable
X defined on a probability space (Ω,F , P ) if En[f(Xn)] → E[f(X)] for all
bounded continuous functions f . A disadvantage of weak convergence is that
a given sequence of random variables {Xn}n∈N may not converge weakly at
all. Furthermore, even though we have weak convergence of random variables,
we do not have a concept of weak convergence of measure spaces, only weak
convergence of measures (and the measures may not weakly converge even if
{Xn}n∈N converges with respect to these measures).

In this thesis we will focus on what is called ultrafilter convergence. This allows
us to define, given a sequence of probability spaces (Ωn,Fn, Pn), a limiting prob-
ability space (Ω,F , P ), which is such that for a sequence of random variables
{Xn}n∈N, with each Xn defined on (Ωn,Fn, Pn), given some weak assumptions,
we have En[Xn]→ E[X] with respect to the ultrafilter, where X is the ultralimit
of {Xn}n∈N. This gives us the framework to define certain continuous-time
stochastic processes living on the measure space (Ω, {Ft}t∈I ,F , P ) as limits
of discrete time processes living on measures spaces (Ωn, {Fntn}tn∈In ,Fn, Pn),
where (Ω, {Ft}t∈I ,F , P ) is the ultralimit of the spaces (Ωn, {Fntn}tn∈In ,Fn, Pn).
We can then define the stochastic integral (with respect to Brownian motion) as
a limit of sums of discrete-time stochastic processes and solutions to stochastic
differential equations as limits of solutions to difference equations.

The notion of ultrafilter convergence of measure spaces, which relies on The
Axiom of Choice, is not new and has been used in non-standard analysis
(which is reliant on ultrafilter convergence), in particular in the treatment of
Loeb-measures. Further work has been done within the field of non-standard
stochastic analysis including (but not limited to) stochastic integrals and stochas-
tic differential equations. Nonstandard analysis deals with what is called the
extended real number line. In layman’s terms this means that we define a
number (or equivalently, a point) for each sequence of real numbers and let
these “sequences” constitute the extended real number line, making room for
infinitesimals (“infinitely small” numbers) that is used to derive analytic results.



1. Introduction

What is new in this thesis is that we will use the notion of ultrafilter con-
vergence within the standard universe only. That is, we will not make use of the
extended real number line. We have tried to make this thesis as self-contained
as possible. Only a prior knowledge of introductionary standard analysis and
some basic knowledge of stochastic analysis is assumed.

1.2 An overview

The thesis is divided into six chapters, the first chapter being this introduction.
In chapter two we first give the definitions of a non-principal ultrafilter and
of ultrafilter convergence. We then present some basic properties of ultrafil-
ter convergence before we define the ultralimit of measure spaces and show
some properties of this measure space. We define the ultralimit of a sequence
{Xn}n∈N of random variables and show that under some weak assumptions
we have En[Xn] → E[X] and En[Xn | Gn] → E[X | G] with respect to the
ultrafilter (where G ⊆ F is the “ultralimit” of the Gn’s, where Gn ⊆ Fn).

In chapter three we extend the notion of ultrafilter convergence of random
variables to ultrafilter convergence of discrete-time stochastic processes. We
call these discrete processes, for which there exists a continuous-time ultra-
limit, skeleton processes. In section one, we show that given our definition of
ultrafilter convergence of skeleton processes, such an ultralimit must necessarily
be continuous. We next define an ultralimit filtration and derive some basic
properties of ultralimits of martingale (or sub-/supermartingale) skeleton pro-
cesses before we show that we can define Brownian motion as the ultralimit of
random walks. In section two we define a stochastic integral of an ultralimit
X to {Xn}n∈N (with respect to Brownian motion) as the ultralimit of discrete
time stochastic integrals involving random walks given that {Xn}n∈N satisfies
some weak assumptions. Both the construction of Brownian motion and the
construction of the stochastic integral is inspired by [And76].

Chapter four, which is focused on stochastic differential equations, is divided
into two sections. In section one we use what we derived in chaper three to give
conditions for which a stochastic differential equation has a strong solution in
our given measure space. This section is inspired by [Kei84]. In section two
we show that there exists weak solutions to some given stochastic differential
equations.

In chapter five we give an overview of the terminology of mathematical fi-
nance and give a short description of mathematical modelling of a financial
market in discrete time and in continuous time before we show that the Cox-
Ross-Rubinstein models converges with respect to an ultrafilter to a Black
Scholes model and prove the Black Scholes fair price of a European call option.

The last chapter, chapter six, is devoted to discussion. We summarize our
work and express some afterthoughts.
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1.3. My work

1.3 My work

My work on this thesis has been as follows: Some times my advisor would give
me problems to solve. These would be either specific or in the form of more
loosely formulated questions. Other times, especially during the last semester, I
would find problems on my own to solve. For some of the problems I was given
by my advisor in the beginning, there already existed a solution in some book
(although I never read these solutions myself), but mostly the problems had not
been solved before. As already mentioned, some of the problems I was given
to solve by my advisor were inspired by work in non-standard analysis, much
of which I was not aware of before the end of writing this thesis. Also, for a
few of the results that I chose to prove myself in my thesis there already ex-
ists a proof (although the proof is different since it’s proved in a different setting).

In order to come up with problems and give proofs I had to study some
(new to me) theory. At times my advisor would provide me with reading
material, other times I would find reading materials on my own. Although most
of this thesis is my own work, chapter two section one contains results and
proofs that are well-known while a considerate portion of chapter two section
two is based on [War12] (this bachelor thesis is a work in non-standard analysis
and contained multiple errors). Although some of the results in chapter two
section two is not completely my own work, I spent a considerable amount
of time adapting the results to a standard universe, as well as correcting mis-
takes and filling out details. It is unfortunate that this thesis ([War12]) is no
longer available online, but I have a copy should anyone be interested in seeing it.

For a full list of my work in this thesis, see the appendix.
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CHAPTER 2

Preliminaries

2.1 Ultrafilter convergence of real numbers

Definition 2.1.1. An ultrafilter (on N) is a family U of subsets of N such that
the following holds true:

(i) If F ∈ U and G ⊇ F , then G ∈ U .

(ii) If F,G ∈ U , then F ∩G ∈ U .

(iii) If F ⊆ N, then precisely one of the subsets F, F c is in U .

We get a simple example of an ultrafilter by picking an n ∈ N and letting
Un = {F ⊆ N | n ∈ F}. This is called a principal ultrafilter. All other
ultrafilters are called non-principal. It follows by Zorn’s lemma that there exist
non-principal ultrafilters on N (see [Alb+09]). We will in this thesis assume
that U is a non-principal ultrafilter.

Proposition 2.1.2. Assume that U is an ultrafilter.

(i) N ∈ U , ∅ /∈ U .

(ii) If F /∈ U and G ⊆ F , then G /∈ U

(iii) If F /∈ U , G /∈ U , then F ∪G /∈ U

(iv) If F and G are disjoint, and F ∪ G ∈ U , then precisely one of the sets
F,G is in U .

(v) If the sets F1, F2, ..., Fn are disjoint, and F1 ∪ F2 ∪ ... ∪ Fn ∈ U , then
precisely one of the sets F1, F2, ..., Fn is in U

Proof. The proofs are direct consequences of Definition 2.1.1. The proof of
(iii) follows from De Morgan’s law, while the proof of (v) is just an induction
argument that applies (iv). �

Lemma 2.1.3. If U is a non-principal ultrafilter, and I ⊆ N is finite, then
I /∈ U .

Proof. For each n ∈ I, {n} /∈ U and so I = ∪n∈I{n} /∈ U by Proposition 2.1.2
(iii). �



2. Preliminaries

Definition 2.1.4. Let {xn}n∈N be a sequence of real numbers. We say that
{xn}n∈N U-converges to a ∈ R if for all ε > 0, the sets

Fε = {n ∈ N | |xn − a| < ε}

are in U . In that case we write limU xn = a.

Proposition 2.1.5. A sequence {xn}n∈N cannot U-converge to more than one
point a ∈ R.

Proof. Suppose that {xn}n∈N U-converges to a1, a2 ∈ R and that a1 6= a2.
Let ε = |a1−a2|

2 and for i = 1, 2, let

F aiε = {n ∈ N | |xn − ai| < ε}.

By Definition 2.1.1 (i), F a1
ε ∪ F a1

ε ∈ U , but by Proposition 2.1.2 (iv), since the
sets F a1

ε , F a2
ε are disjoint, only one of the sets F a1

ε , F a2
ε is in U , a contradiction

by Definition 2.1.4. �

Definition 2.1.6. A sequence {xn}n∈N is called U-bounded if there exists an
M ∈ R such that

{n ∈ N | |xn| ≤M} ∈ U .

Theorem 2.1.7. Assume that {xn}n∈N is a U-bounded sequence. For each
x ∈ R, we set

Gx = {n ∈ N | xn ≤ x}.
Then there is an a ∈ R such that Gx /∈ U when x < a and Gx ∈ U when x > a.
Furthermore, a = limU xn.

Proof. Let I = {x ∈ R | Gx ∈ U}. Since {xn}n∈N is U-bounded, there is an
M ∈ R such that {n ∈ N | |xn| ≤ M} ∈ U , so M ∈ I. Since M ∈ I, I is
non-empty. Since {xn}n∈N is U-bounded, inf I > −∞. Indeed, if {xn}n∈N
is U-bounded by M, {n ∈ N | |xn| ≤ M} ∩ Gx = ∅ for all x < −M . Let
a = inf I ∈ [−M,M ] and notice that Gx ∈ U for x > a (since there by definition
of I is m ∈ I such that a ≤ m < x so that Gx ⊃ Gm, and thus x ∈ I for x > a)
and Gx /∈ U for x < a (by definition of I). Now let ε > 0. Then

Fε = {n ∈ N | |xn − a| < ε}
= {n ∈ N | xn < a+ ε} ∩ {n ∈ N | xn > a− ε}
⊇ Ga+ ε

2
∩ (Ga−ε)c ∈ U ,

hence Fε ∈ U . So limU xn = a. �

Definition 2.1.8. We set limU xn =∞ if there is no x ∈ R such that Gx ∈ U ,
and we set limU xn = −∞ if Gx ∈ U for all x ∈ R.

Corollary 2.1.9. For any sequence {xn}n∈N there is an a ∈ R ∪ {−∞,∞}
such that limU xn = a.

Proposition 2.1.10. Suppose that limU xn = a and that

{n ∈ N | xn = yn} ∈ U .

Then limU yn = a.

6



2.1. Ultrafilter convergence of real numbers

Proof. Let ε > 0. Then

F yε = {n ∈ N | |yn − a| < ε}
⊇ F yε ∩ {n ∈ N | xn = yn}
= F xε ∩ {n ∈ N | xn = yn} ∈ U .

�

Proposition 2.1.11. Suppose that {xn} is a sequence of real numbers such
that limn→∞ xn = x ∈ R. Then limU xn = x.

Proof. Suppose that x ∈ R. Let ε > 0. Since limn→∞ xn = x, there is an
N ∈ N such that |xn − x| < ε for all n ≥ N . By Lemma 2.1.3, any finite subset
of N is not in U , hence the complement of a finite subset of N is in U . So
{n ∈ N | |xn − x| < ε} ⊇ {1, .., N − 1}c ∈ U . Suppose that x = ∞. Then
for each M ∈ R, there is an N ∈ N such that xn ≥ M for all n ≥ N . Thus
GM = {n ∈ N | xn ≤ M} /∈ U for each M ∈ R, hence limU xn = x. Similarly,
if x = −∞, GM ∈ U for each M ∈ R, hence limU = x. �

The converse to Proposition 2.1.11 need not be true. Consider the sequence
1,−1, 1,−1, ... in R. This sequence does not converge in the ordinary sense, but
has a U-limit, which is either 1 or −1 (depending on the ultrafilter U).

Proposition 2.1.12. Suppose that {xn}n∈N and {yn}n∈N are sequences of
real numbers such that limU xn = x ∈ and limU yn = y. Suppose that either

x, y ∈ R
x ∈ R, y ∈ {−∞,∞}
x, y =∞
x, y = −∞.

Then
lim
U

(xn + yn) = x+ y.

Proof. Suppose x, y ∈ R. Let ε > 0. Then

F x+y
ε = {n ∈ N | |xn + yn − (x+ y)| < ε}

⊇ {n ∈ N | |xn − x| <
ε

2} ∩ {n ∈ N | |yn − y| <
ε

2}

= F xε
2
∩ F yε

2
∈ U .

Suppose that x ∈ R and that y =∞. Then

GcN = {n ∈ N | xn + yn > N}
⊇ {n ∈ N | yn > N + 1− x} ∩ {n ∈ N | |xn − x| < 1}
= (GyN+1−x)c ∩ F x1 ∈ U ,

hence limU (xn+yn) = x+y =∞. The proofs of the other cases are similar. �
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2. Preliminaries

Proposition 2.1.13. Suppose that {xn}n∈N and {yn}n∈N are sequences of real
numbers such that limU xn = x and limU yn = y. Suppose that either x, y ∈ R
or x ∈ R \ {0} and y ∈ {−∞,∞} or x, y =∞ or x, y = −∞. Then

lim
U
xnyn = xy.

Proof. Suppose that x, y ∈ R. Let ε > 0. Let

F x 1
2(1+|y|)

= {n ∈ N | |xn − x| <
ε

2(1 + |x|)},

F y 1
2(1+|x|)

= {n ∈ N | |yn − y| <
ε

2(1 + |y|)}

and
F x1 = {n ∈ N | |xn − x| < 1}.

Then, since

|xnyn − xy| ≤ |xnyn − xny|+ |xny − xy| = |xn||yn − y|+ |y||xn − x|

we have that for n ∈ F x 1
2(1+|y|)

∩ F y 1
2(1+|x|)

∩ F x1 ,

|xnyn − xy| ≤ (1 + |x|)|yn − y|+ (1 + |y)||xn − x| < ε.

Thus

F xyε = {n ∈ N | |xnyn − xy| < ε}
⊇ F x 1

2(1+|y|)
∩ F y 1

2(1+|x|)
∩ F x1 ∈ U .

Suppose that x ∈ R, x > 0 and y =∞. Then

xnyn = (xn − x)yn + xyn,

so that

GcN = {n ∈ N | xnyn > N}

⊇ {n ∈ N | |xn − x| <
x

2 } ∩ {n ∈ N | yn >
2N
x
}

= F xx
2
∩G 2N

x
∈ U .

The proofs of the other cases are similar. �

Proposition 2.1.14. Suppose that f : R → R is continuous and that we
have a sequence {xn}n∈N of real numbers such that limU xn = x ∈ R. Then
limU f(xn) = f(x).

Proof. Suppose f(x) ∈ R. Let ε > 0. Since f is continuous in x, there is a
δ > 0 such that |f(x)− f(y)| < ε whenever |x− y| < δ. Then

F f(x)
ε = {n ∈ N | |f(x)− f(xn)| < ε}

⊇ {n ∈ N | |xn − x| < δ}
= F xδ ∈ U .
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2.2. Ultralimits of measure spaces

Suppose f(x) = ∞ and let N ∈ N. Then there is δ > 0 such that f(y) > N
whenever |x− y| < δ. Then

GcN = {n ∈ N | f(xn) > N}
⊇ {n ∈ N | |xn − x| < δ}
= F xδ ∈ U .

The proof of the case f(x) = −∞ is similar.
�

Proposition 2.1.15. Suppose that f : R → R is continuous and that we
have a sequence {xn}n∈N of real numbers such that limU xn = x ∈ R. Then
limU f(xn) = f(x).

Proof. Suppose x ∈ R. As is Proposition 2.1.14 we get that limU f(xn) = f(x).
So suppose x =∞ and f(x) ∈ R. Let ε > 0. Since f is continuous, there is an
M ∈ R such that |f(xn) − f(x)| < ε whenever xn > M . Since limU xn = ∞,
there is an (GxM )c ∈ U such that xn > M whenever n ∈ (GxM )c. Hence

{n ∈ N | |f(xn)− f(x)| < ε} ⊇ {n ∈ N | xn > M} = (GxM )c ∈ U .

The other cases are similar. �

2.2 Ultralimits of measure spaces

Suppose that we for each n ∈ N have a measure space (Ωn,Fn, µn) and let∏∞
n=1 Ωn be the space of all sequences (ω1, ω2, ..., ωn, ...) where ωn ∈ Ωn for all

n ∈ N . We define an equivalence relation ∼ on
∏∞
n=1 Ωn by

ω ∼ ω′ ⇔ {n ∈ N | ωn = ω′n} ∈ U .

We let Ω be the set of all equivalence classes of ∼, and we let [wn] denote
the equivalence class of {ωn}n∈N. Suppose that we for each n ∈ N have a
function Xn : Ωn → R. Then we can define a function [Xn] : Ω → R (where
R = R ∪ {−∞,∞}) by

[Xn]([ωn]) = lim
U
Xn(ωn).

By Corollary 2.1.9, the product functions [Xn] are well-defined.

We have a similar construction for sets: Suppose we have a set An ∈ Fn
for each n ∈ N. Then we construct the ultraproduct [An] ⊂ Ω by

[ωn] ∈ [An]⇔ {n ∈ N | ωn ∈ An} ∈ U .

We let A be the set of all ultraproducts, which are easily seen to be well-defined.

Proposition 2.2.1. Let [An], [Bn] ∈ A.

(i) [An]c = Ω \ [An] = [Anc]

(ii) [An] ∩ [Bn] = [An ∩Bn]

9



2. Preliminaries

(iii) [An] ∪ [Bn] = [An ∪Bn]

Proof. (i)

[ωn] ∈ [An]c ⇔ {n ∈ N | ωn ∈ An} /∈ U
⇔ {n ∈ N | ωn /∈ An} ∈ U
⇔ {n ∈ N | ωn ∈ Anc} ∈ U
⇔ [ωn] ∈ [Anc] ∈ A

(ii) We first prove that [An ∩ Bn] ⊆ [An] ∩ [Bn]: Suppose [ωn] ∈ [An ∩ Bn].
Then, since

{n ∈ N | ωn ∈ An ∩Bn} ⊆ {n ∈ N | ωn ∈ An} and
{n ∈ N | ωn ∈ An ∩Bn} ⊆ {n ∈ N | ωn ∈ Bn},

[ωn] ∈ [An] ∩ [Bn].

We next prove that [An] ∩ [Bn] ⊆ [An ∩Bn] : Suppose ωn ∈ [An] ∩ [Bn].
Then

{n ∈ N | ωn ∈ An ∩Bn} = {n ∈ N | ωn ∈ An} ∩ {n ∈ N | ωn ∈ Bn} ∈ U ,

hence [ωn] ∈ [An ∩Bn].

(iii) This follows from De Morgan’s law, using (i) and (ii).

�

Proposition 2.2.2. A is an algebra, that is

(i) ∅ ∈ A

(ii) If A ∈ A, then Ac = Ω \A ∈ A

(iii) If C,D ∈ A, then C ∪D ∈ A.

We define a function µ : A → R by

µ([An]) = lim
U
µn(An).

By Corollary 2.1.9, µ is well-defined.

Proposition 2.2.3. µ is a finitely additive measure, that is

(i) µ(∅) = 0

(ii) µ(A ∪B) = µ(A) + µ(B) for all disjoint sets A,B ∈ A

Proof. (i) µ(∅) = limU µn(∅) = 0

10



2.2. Ultralimits of measure spaces

(ii) Assume that A ∩ B = ∅. We have that there for each n ∈ N are
An, Bn ∈ Fn such that A = [An] and B = [Bn].

We argue that G = {n ∈ N | An ∩ Bn = ∅} ∈ U . Suppose G /∈ U .
Then Gc = {n ∈ N | An ∩ Bn 6= ∅} ∈ U . We can then pick [ωn] ∈
[An] ∩ [Bn] = [An ∩Bn] by letting ωn ∈ An ∩Bn for n ∈ Gc, a contradic-
tion since [An] ∩ [Bn] is empty.

We can finally prove the assertion. Let ε > 0. Then (remember that
each µn is a measure)

{n ∈ N | |µn(An +Bn)− (µ(A) + µ(B))| < ε}
⊇ {n ∈ N | |µn(An +Bn)− (µ(A) + µ(B))| < ε} ∩G
= {n ∈ N | |µn(An) + µn(Bn)− µ(A)− µ(B)| < ε} ∩G

⊇ {n ∈ N | |µn(An)− µ(A)| < ε

2} ∩ {n ∈ N | |µn(Bn)− µ(B)| < ε

2} ∩G ∈ U .

�

We want to extend µ to a measure. In order to do this we need to show that
any countable union of ultraproducts that lies in A is actually a finite union of
ultraproducts. To do this we need the following Theorem.

Theorem 2.2.4 (Countable Saturation Theorem). Suppose {Ak}k∈N is a
sequence of ultraproducts such that

N⋂
k=1

Ak 6= ∅

for all N ∈ N. Then ⋂
k∈N

Ak 6= ∅.

Proof. We will construct an [ωn] ∈ Ω such that [ωn] ∈
⋂N
k=1Ak for each N ∈ N

using a “diagonal” argument.

First we notice that, for N ∈ N,
⋂N
k=1Ak =

⋂N
k=1[Ak,n] =

[⋂N
k=1Ak,n

]
,

where Ak = [Ak,n], and that{
n ∈ N |

N⋂
k=1

Ak,n 6= ∅
}
∈ U .

For each n ∈ N, let `n = sup{` ∈ {1, ..., n} |
⋂`
k=1Ak,n 6= ∅} and pick

ωn ∈
⋂`n
k=1Ak,n. Then for N ∈ N, by Lemma 2.1.3,

{n ∈ N | ωn ∈
N⋂
k=1

Ak,n} ⊇ {1, ..., N − 1}c ∩ {n ∈ N |
N⋂
k=1

Ak,n 6= ∅} ∈ U ,

hence [ωn] ∈
⋂N
k=1Ak. �

Corollary 2.2.5. Any countable union of ultraproducts in A is actually a finite
union of ultraproducts.

11



2. Preliminaries

Proof. Suppose that
⋃
k∈NAk ∈ A. Let Bk =

⋃
i∈NAi \

⋃k
j=1Aj . Then each

Bk is an ultraproduct, B1 ⊃ B2 ⊃ ... and
⋂
k∈NBk = ∅. By Countable

Saturation Theorem, there is an N ∈ N such that BN =
⋂N
k=1Bk = ∅. But

then
⋃
k∈NAk =

⋃N
k=1Ak. �

Next we will need Caratheodory’s Extension Theorem, which we will state
here without proof (which can be found in [Lin18]). We will also use the notion
of a premeasure.

Definition 2.2.6 (Premeasure). A premeasure on A is a function
µ : A → [0,∞] such that

(i) µ(∅) = 0

(ii) if A1, A2, ... is a countable collection of disjoint sets in A and if their union
is contained in A, then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Theorem 2.2.7 (Caratheodory’s Extension Theorem). Assume that A is an
algebra and that µ is a premeasure on A. Then the measure µ̄ generated by the
outer measure construction is a complete measure extending µ. If µ is σ-finite,
the extension is unique.

Theorem 2.2.8. µ can be extended to a (complete) measure µ̄.

Proof. By Proposition 2.2.3, µ is a finitely additive measure. By Corollary 2.2.5,
µ is a premeasure. By Caratheorody’s Extension Theorem, µ can be extended
to a (complete) measure µ̄ on F , where F is the completion of the σ-algebra
generated by A. �

(In a non-standard analysis setting this measure is called a Loeb measure.)

Definition 2.2.9. We call the measure space that we have constructed in this
section for (Ω,F , µ̄).

We will from now on assume that each µn is a probability measure, making
µ̄ a probability measure.

Lemma 2.2.10. Let {Ak}k∈N be an increasing family of sets, with each Ak ∈ A,
and let A =

⋃
k∈NAk. Then there is a set B ∈ A such that

(i) A ⊆ B

(ii) µ̄(B) = limk→∞ µ̄(Ak)

(iii) µ̄(B \A) = 0

Proof. We will find a sequence {Bn}n∈N, with each Bn ∈ Fn such that B = [Bn].
We may assume that if Ak = [Ak,n] ⊂ [A`,n] = A`, then Ak,n ⊂ A`,n for each
n ∈ N. For each k ∈ N, let

Fk = {n ∈ N | |µn(Ak,n)− µ(Ak)| < 1
k
}.

12



2.2. Ultralimits of measure spaces

If n /∈ F1, let Bn = Ωn. If n ∈
⋂k
j=1 Fj for some k ∈ N, let

Bn =
⋃m
k=1Ak,n = Am,n, where m = sup{k ≤ n | n ∈

⋂k
j=1 Fj}.

Since (iii) follows from (i) and (ii), we only have to prove the first two as-
sertions.

(i)

{n ∈ N | Ak,n ⊆ Bn} ⊇
k⋂
j=1

Fj ∩ {1, ..., k − 1}c ∈ U ,

which implies that Ak ⊆ B for each k ∈ N. So A ⊆ B.

(ii) Pick nk ∈
⋂k
j=1 Fj∩{1, ..., k−1}c∩{n ∈ N | |µn(Bn)− µ̄(B)| < 1

k}. Then
|µnk(Bnk)− µ̄(B)| < 1

k , so we get that

lim
k→∞

µnk(Bnk) = lim
U
µn(Bn) = µ̄(B).

Furthermore, µnk(Bnk) = µnk(Amk,nk), where k ≤ mk ≤ nk. We have
that limk→∞ µ̄(Amk) = limk→∞ µ̄(Ak). Since

|µnk(Bnk)− µ̄(Amk)| = |µnk(Amk,nk)− µ̄(Amk)| < 1
k
,

we must have limk→∞ µ̄(Ak) = µ̄(B).

�

Proposition 2.2.11. Suppose that F ∈ F and that ε > 0. Then there are
ultraproducts A,B such that A ⊆ F ⊆ B and

µ̄(F \A) < ε and µ̄(B \ F ) < ε.

Proof. Let F ∈ F and cover F with a countable covering {Ak}k∈N of elements
of A such that

µ̄

( ∞⋃
k=1

Ak

)
≤
∞∑
k=1

µ̄(Ak) < µ̄(F ) + ε.

By the outer measure construction, such a covering exists. By Lemma 2.2.10,
there is A ∈ A such that

⋃∞
k=1Ak ⊆ A and A \

⋃∞
k=1Ak has measure zero.

Then

A \ F =
(( ∞⋃

k=1
Ak

)
\ F

) ⋃ ((
A \

∞⋃
k=1

Ak

)
\ F

)

⊆

(( ∞⋃
k=1

Ak

)
\ F

) ⋃ (
A \

∞⋃
k=1

Ak

)
,

hence µ̄(A \ F ) ≤ µ̄ ((
⋃∞
k=1Ak) \ F ) + µ̄(A \

⋃∞
k=1Ak) < ε.

Now cover F c with a countable covering {Ck}k∈N of elements of A such that

µ̄

( ∞⋃
k=1

Ck

)
≤
∞∑
k=1

µ̄(Ck) < µ̄(F c) + ε.

13



2. Preliminaries

By Lemma 2.2.10 there is C ∈ A such that
⋃∞
k=1 Ck ⊆ C and C \

⋃∞
k=1 Ck has

measure zero. Then Cc ∈ F and Cc ⊆ (
⋃∞
k=1 Ck)c ⊆ F . Let B = Cc. Then

B ⊆ F and

F \B = F \ Cc

= F ∩ C
= C \ F c

=
(( ∞⋃

k=1
Ck

)
\ F c

) ⋃ ((
C \

( ∞⋃
k=1

Ck

))
\ F c

)

⊆

(( ∞⋃
k=1

Ck

)
\ F c

) ⋃ (
C \

( ∞⋃
k=1

Ck

))
,

hence µ̄(F \B) ≤ µ̄((
⋃∞
k=1 Ck) \ F c) + µ̄(C \

⋃∞
k=1 Ck) < ε.

�

Corollary 2.2.12. Suppose that F ∈ F . Then there is an ultraproduct A ∈ A
such that µ̄(F4A) = 0.

Proof. For each k ∈ N, using Proposition 2.2.11, pick Ak ∈ A such that Ak ⊆ A
and µ̄(F \Ak) < 1

k . Then

µ̄(F \
∞⋃
k=1

Ak) ≤ µ̄(F \An) < 1
n

for each n ∈ N, hence µ̄(F \
⋃∞
k=1Ak) = 0. By Lemma 2.2.10, there is an

A ∈ A such that A ⊇
⋃∞
k=1Ak and µ̄(A \

⋃∞
k=1Ak) = 0. Then

µ̄(F4A) = µ̄(F \A) + µ̄(A \ F )

≤ µ̄(F \
∞⋃
k=1

Ak) + µ̄(A \
∞⋃
k=1

Ak) = 0.

�

We will next turn our attention towards integration theory.

Proposition 2.2.13. Suppose that we for each n ∈ N have a probability space
(Ωn,Fn, µn). Suppose furthermore that we for each n ∈ N have a random
variable Xn : In × Ωn → R that is measurable with respect to Fn. Then
X = [Xn] is measurable with respect to F .

Proof. Since X = X+ −X−, it suffices to assume that X ≥ 0. For each n ∈ N
and m ∈ N, let gm,n : Ωn → R be defined by

gm,n(ωn) =
22m−1∑
k=1

k

2m 1Akm,n(ωn) + 2m1Bm,n(ωn),

14



2.2. Ultralimits of measure spaces

where Akm,n = X−1
n ([ k2m ,

k+1
2m )) and Bm,n = X−1

n ([2m,∞]). Then each Akm,n ∈
Fn and Bm,n ∈ Fn. Let gm : Ω→ R be defined by

gm([ωn]) = lim
U
gm,n(ωn) =

22m−1∑
k=1

k

2m 1[Akm,n]([ωn]) + 2m1[Bm,n]([ωn]).

Then for all ω ∈ Ω, limm→∞ gm(ω) = X(ω). Since X is the pointwise limit of
a sequence of F-measurable variables, X is F-measurable. �

Theorem 2.2.14. Suppose that Y : Ω→ R is F-measurable. Then there exists
a sequence {Xn}n∈N of Fn-measurable functions such that X = [Xn] is equal
to Y µ̄-almost everywhere.

Proof. Let Y + and Y − denote the positive and negative part of Y respectively.
Since Y = Y + − Y −, it suffices to prove the theorem for Y ≥ 0. For each
m ∈ N, let gm : Ω→ R be defined by

gm(ω) =
22m−1∑
k=0

k

2m 1Ekm(ω) + 2m1{ω∈Ω | Y (ω)≥2m}(ω),

where Ekm = Y −1([ k2m ,
k+1
2m ). Then {gm}m∈N is a sequence of simple functions

converging pointwise to Y . Using Proposition 2.2.12, we can for each Ekm find
an ultraproduct [Akm,n] ∈ A such that µ̄(Ekm4[Akm,n]) = 0. For each m ∈ N, let
hm : Ω→ R be defined by

hm(ω) =
22m−1∑
k=1

k

2m 1[Akm,n](ω) + 2m1
Ω\
⋃22m−1
k=0

[Akm,n]
(ω).

Then, since a countable union of measure-zero sets has measure zero, {hm}m∈N
is a sequence of measurable functions that converges pointwise to a function
Z : Ω→ R that is equal to Y µ̄-almost everywhere.

Since we may disregard sets of measure zero, for fixed m, we may assume
that [Akm,n] ∩ [A`m,n] = ∅ for all k, ` ∈ N with k 6= `. If Ekm = E2k

m+1 ∪ E2k+1
m+1 ,

we may assume that [Akm,n] = [A2k
m+1,n] ∪ [A2k+1

m+1,n]. Moreover, if [Akm,n] =
[A2k
m+1,n] ∪ [A2k+1

m+1,n] we may assume that Akm,n = A2k
m+1,n ∪ A2k+1

m+1,n for each
n ∈ N. We also note that if [Aj`,n] ⊆ [Akm,n], then we may assume that
Aj`,n ⊆ Akm,n for each n ∈ N.

Notice that for [An] ∈ Ω, 1[An]([ωn]) = limU 1An(ωn) for all [ωn] ∈ Ω, so
that 1[An] = [1An ]. Hence hm = [hm,n] is a product function. For each n ∈ N,
let Xn : Ωn → R be defined by Xn = hn,n. We will show that X = [Xn] is
equal to Z µ̄-almost everywhere.

Suppose Z([ωn]) ∈ R and let ε > 0. Pick N1 ∈ N large enough such that
gm([ωn]) < 2N1 for all m ∈ N such that m ≥ N1. Pick N2 ∈ N such that

1
2N2 <

ε
2 . Let N = max{N1, N2} and let

F =
{
n ∈ N | |hN , n(ωn)− hN ([ωn])| < 1

2N

}
∈ U .

15



2. Preliminaries

Then for all m ∈ N and all n ∈ F , |hm,n(ωn)−hm([ωn])| < ε
2 . Indeed, if m ≤ N

and n ∈ F , then |hN,n(ωn) − hN ([ωn])| < 1
2N , which means that hN,n(ωn) =

hN ([ωn]), which implies that hm,n(ωn) = hm([ωn]). If m > N and n ∈ F , then,
since AkN,n = A2k

N+1,n ∪ A
2k+1
N+1,n and so on, |hm,n(ωn) − hm([ωn])| < 1

2N < ε
2 .

So pick M ∈ N such that |hm([ωn])− Z([ωn])| < ε
2 for all m ≥M . Then

{n ∈ N | |Xn(ωn)− Z([ωn])| < ε}

⊇
{
n ∈ N | |Xn(ωn)− hn([ωn])| < ε

2

}
∩
{
n ∈ N | |hn([ωn])− Z([ωn])| < ε

2

}
⊇ F ∩ {1, 2, ...,M − 1}c ∈ U .

Since hm = gm for almost all ω ∈ Ω, by the definition of gm, Z(ω) < ∞ for
almost all ω ∈ Ω. Hence we need not check that limU Xn(ωn) = Z([ωn]) when
Z([ωn]) =∞.

�

Theorem 2.2.15. Suppose {Xn}n∈N is a sequence of µn-integrable functions
such that X = [Xn] is bounded. Then X is µ̄-integrable and∫

Ω
X dµ̄ = lim

U

∫
Ωn
Xn dµn.

Proof. Let X+ and X− denote the positive and negative parts of X, respectively.
Since X is integrable if and only if both X+ and X− is integrable, is suffices to
assume that X ≥ 0. Suppose that X is bounded. Then there is M ∈ N and
G ∈ U such that |Xn| ≤M for all n ∈ G. Pick m ∈ N such that 2m > M and
define, for each n ∈ N, hm,n : Ωn → R by

hm,n(ωn) =
22m−1∑
k=0

k

2m 1Akm,n(ωn) + 2m1{ωn | Xn(ωn)≥2m}(ωn),

where Akm,n = Xn
−1([ k2m ,

k+1
2m )). Then |hm,n| ≤ |Xn| for all n ∈ N and

|hm,n −Xn| ≤ 1
2m for all n ∈ G. We have that∣∣∣∣∫

Ωn
hm,n dµn −

∫
Ωn
Xn dµn

∣∣∣∣ ≤ 1
2m

for all n ∈ G, hence∣∣∣∣limU
∫

Ωn
hm,n dµn − lim

U

∫
Ωn
Xn dµn

∣∣∣∣ =
∣∣∣∣limU

∫
Ωn

(hm,n −Xn) dµn
∣∣∣∣ ≤ 1

2m .

Also, ∣∣∣∣∫
Ω

[hm,n] dµ̄−
∫

Ω
X dµ̄

∣∣∣∣ =
∣∣∣∣∫

Ω
[hm,n −Xn] dµ̄

∣∣∣∣ ≤ 1
2m .

We shall show that ∫
Ω

[hm,n] dµ̄ = lim
U

∫
Ωn
hm,n dµn. (2.1)

Since we can construct [hm,n] for m as large as we would like, this proves the
theorem.
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2.2. Ultralimits of measure spaces

Notice that [hm,n] is a simple function. Indeed,

[hm,n]([ωn]) =
22m−1∑
k=0

k

2m 1[Akm,n]([ωn]).

Since [hm,n] is a simple function, by linearity, it is enough to show (2.1) for
characteristic functions. But this is just the definition of µ̄:∫

Ω
1[An] dµ̄ = µ̄([An]) = lim

U
µ(An) = lim

U

∫
Ω

1An dµn.

�

Lemma 2.2.16. Suppose {Xn}n∈N is a sequence of µn-integrable functions
and suppose X = [Xn] is real-valued and Xn ≥ 0 for each n ∈ N. Then X is
µ̄-integrable and ∫

Ω
X dµ̄ ≤ lim

U

∫
Ωn
Xn dµn. (2.2)

Proof. For each n,m ∈ N, construct the simple function hm,n : Ωn → R as in
Theorem 2.2.15. Then hm,n(ωn) ≤ Xn(ωn) for each n ∈ N and hm : Ω → R

defined by hm = [hm,n] converges pointwise to X. We then have that for each
m ∈ N,

hm,n(ωn) ≤ Xn(ωn) for all n ∈ N⇒
∫

Ωn
hm,n dµn ≤

∫
Ωn
Xn dµn for all n ∈ N

⇒ lim
U

∫
Ωn
hm,n dµn ≤ lim

U

∫
Ωn
Xn dµn

⇒
∫

Ω
hm dµ̄ ≤ lim

U

∫
Ωn
Xn dµn,

where the last inequality stems from the fact that hm is bounded. By the
Monotone Convergence Theorem,∫

Ω
X dµ̄ =

∫
Ω

lim
m→∞

hm dµ̄ = lim
m→∞

∫
Ω
hm dµ̄ ≤ lim

U

∫
Ωn
Xn dµn.

�

We may not always have equality in (2.2) as the following example shows.

Example 2.2.17. For each n ∈ N, let Ωn = [0, 1] and define Xn : Ωn → R by
Xn(ωn) = n1[1− 1

n ,1](ωn). Let Ωn be equipped with the Lebesgue σ-algebra and
let µn denote the Lebesgue measure on [0, 1]. Then

lim
U

∫
Ωn
Xn dµn = lim

U
nµn([1− 1

n
, 1]) = 1.

Let A = [ [1− 1
n , 1] ]. Then

µ̄(A) = lim
U
µn([1− 1

n
, 1]) = 0.

17
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Since

X([ωn]) = lim
U
Xn(ωn) =

{
0 if [ωn] ∈ Ω \A
∞ otherwise,

we have that
∫

ΩX dµ̄ =
∫

Ω\AX dµ̄ = 0.

We want to find sufficient constraints on {Xn}n∈N so that we can prove
Theorem 2.2.15 for a broader class of functions X on Ω.

Definition 2.2.18 (A-integrability). Let {Xn}n∈N be a sequence of µn-integrable
functions. We call this sequence A-integrable if the following two conditions
hold:

(i) limU
∫

Ωn |Xn| dµn <∞

(ii) If [An] ∈ A and µ̄([An]) = 0, then limU
∫
An
|Xn| dµn = 0

Theorem 2.2.19. Suppose {Xn}n∈N is a sequence of µn-integrable functions.
Consider the following two statements:

(i) The sequence {Xn}n∈N is A-integrable

(ii) X = [Xn] is µ̄-integrable and∫
Ω
X dµ̄ = lim

U

∫
Ωn
Xn dµn

We always have (i) ⇒ (ii). If Xn ≥ 0 for each n, the two statements are
equivalent.

Proof. (i) ⇒ (ii):
Let X+

n and X−n denote the positive and negative parts of Xn, respectively.
Then {Xn}n∈N is A-integrable if and only if both {X+

n }n∈N and {X−n }n∈N are
A-integrable. It therefore suffices to assume that Xn ≥ 0 for each n ∈ N.

Suppose limU
∫

Ωn Xn dµn < ∞. Then, by Lemma 2.2.16,
∫

ΩX dµ̄ < ∞.
For each k ∈ N we have that limU

∫
Ωn Xn ∧ k dµn =

∫
ΩX ∧ k dµ̄ ≤

∫
ΩX dµ̄.

Let ε > 0 and notice that for each k ∈ N,{
n ∈ N |

∫
Ωn
Xn ∧ k dµn ≤

∫
Ω
X dµ̄+ ε

}
∈ U .

Construct the sequence {kn}n∈N of integers as follows:
If
∫

Ωn Xn ∧ k dµn ≤
∫

ΩX dµ̄+ ε for some k ∈ N, let

kn = sup
{
k ∈ {1, ..., n} |

∫
Ωn
Xn ∧ k dµn ≤

∫
Ω
X dµ̄+ ε

}
.

Otherwise, let kn = 1. Then {n ∈ N |
∫

Ωn Xn ∧ kn dµn ≤
∫

ΩX dµ̄+ ε} ∈ U ,
hence limU

∫
Ωn Xn ∧ kn dµn ≤

∫
ΩX dµ̄+ ε. Furthermore, for N ∈ N,

{n ∈ N | kn ≥ N}

=
{
n ∈ N |

∫
Ωn
Xn ∧N dµn ≤

∫
Ω
X dµ̄+ ε

}⋂
{1, 2, .., N − 1}c ∈ U ,

18



2.2. Ultralimits of measure spaces

hence limU kn =∞.

For each n ∈ N, let An = {ωn ∈ Ωn | Xn(ωn) > kn}. By measurability,
each An ∈ Fn, so that [An] ∈ A. We have that

lim
U

∫
Ωn
Xn dµn ≤ lim

U

∫
An

Xn dµn + lim
U

∫
Ωn
Xn ∧ kn dµn

Since X < ∞ µ̄-almost everywhere (since
∫

ΩX dµ̄ < ∞), µ̄([An]) = 0. By
A-integrability,

lim
U

∫
An

Xn dµn = 0.

So we get that
lim
U

∫
Ωn
Xn dµn ≤

∫
Ω
X dµ+ ε.

Since this holds for all ε > 0, limU
∫

Ωn Xn dµn ≤
∫

ΩX dµ, which combined
with Lemma 2.2.16 gives the desired equality.

(ii) ⇒ (i) if Xn ≥ 0 for each n:
Suppose that (ii) holds. Then limU

∫
Ωn Xn dµn =

∫
ΩX dµ̄ < ∞. Suppose

A = [An] ∈ A and µ̄([An]) = 0. Then, by Lemma 2.2.16,∫
Ω
X dµ̄ =

∫
Ω\A

X dµ̄ ≤ lim
U

∫
Ωn\An

Xn dµn ≤ lim
U

∫
Ωn
Xn dµn =

∫
Ω
X dµ̄,

hence
lim
U

∫
Ωn\An

Xn =
∫

Ω
X dµ̄.

Also,

lim
U

∫
Ωn\An

Xn dµn + lim
U

∫
An

Xn dµn = lim
U

∫
Ωn\An

Xn dµn +
∫
An

Xn dµn

= lim
U

∫
Ωn
Xn dµn

=
∫

Ω
X dµ̄.

Combined we get that limU
∫
An

Xn dµn = 0. �

Proposition 2.2.20. Suppose there is a real number p > 1 such that
limU

∫
Ωn |Xn|p dµn <∞. Then {Xn}n∈N is A-integrable.

Proof. Let q ∈ R be such that 1
p + 1

q = 1. By Hölder’s inequality,

lim
U

∫
Ωn
|Xn| dµn ≤ lim

U

(∫
Ωn

1q dµn
) 1
q
(∫

Ωn
|Xn|p dµn

) 1
p

= lim
U

(∫
Ωn
|Xn|p dµn

) 1
p

<∞.
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Suppose [An] ∈ A and µ̄([An]) = limU µn(An) = 0. Then, by Hölder’s inequal-
ity,

lim
U

∫
An

|Xn| dµn = lim
U

∫
Ωn

1An |Xn| dµn

≤ lim
U

(∫
Ωn

1qAn dµn
) 1
q
(∫

Ωn
|Xn|p dµn

) 1
p

= lim
U
µn(An)

1
q

(∫
Ωn
|Xn|p dµn

) 1
p

= 0.

�

Theorem 2.2.21. Suppose Y : I × Ω→ R is F-measurable and that∫
Ω
|X|p dµ̄ <∞

for some p ∈ [1,∞). Then there exists a sequence {Xn}n∈N of Fn-measurable
functions such that X = [Xn] is equal to Y µ̄-almost everywhere and such that

lim
U

∫
Ωn
|Xn|p dµn =

∫
Ω
|Y |p dµ̄n.

Proof. By Theorem 2.2.14, there exists a sequence {Zn}n∈N of Fn-measurable
functions such that Z = [Zn] is equal to Y µ̄-almost everywhere. For each
k ∈ N, let Zk : Ω→ R be given by

Zk(ω) =


k if Z(ω) ≥ k
−k if Z(ω) ≤ −k
Z(ω) else .

For each k ∈ N, for each n ∈ N, let Zk,n : Ωn → R be given by

Zk,n(ωn) =


k if Z(ωn) ≥ k
−k if Z(ωn) ≤ −k
Zn(ωn) else .

Then for each k ∈ N we have Zk = [Zk,n]. Furthermore, for each ω ∈ Ω, we
have

Z(ω) = lim
k→∞

Zk(ω).

By dominated convergence theorem (since Y and thus Z is in Lp(µ̄)),

lim
k→∞

∫
Ω
|Zk|p dµ̄ =

∫
Ω
|Z|p dµ̄ =

∫
Ω
|Y |p dµ̄.

Moreover, by boundedness of {Zk,n}n∈N, for each k ∈ N we have

lim
U

∫
Ωn
|Zk,n|p dµn =

∫
Ω
|Zk|p dµ̄.
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We wish to construct a sequence {Xn}n∈N such that X = [Xn] = Z and such
that

lim
U

∫
Ωn
|Xn|p dµn =

∫
Ω
|Z|p dµ̄.

For each n ∈ N, we choose Xn as follows: if∣∣∣∣∫
Ωn
|Z1,n|p dµn −

∫
Ω
|Z1|p dµ̄

∣∣∣∣ ≥ 1,

let Xn = Z1,n. Otherwise, let Xn = Zkn,n, where

kn = sup
{
k ∈ {1, .., n} |

∣∣∣∣∫
Ωn
|Zj,n|p dµn −

∫
Ω
|Zj |p dµ̄

∣∣∣∣ < 1
j
for all j ≤ k

}
.

Then
lim
U

∫
Ωn
|Xn|p dµn =

∫
Ω
|Z|p dµ̄.

Indeed, let ε > 0. Choose K ∈ N such that∣∣∣∣∫
Ω
|Zk|p dµ̄−

∫
Ω
|Z|p dµ̄

∣∣∣∣ < ε

2

for all k ≥ K and such that 1
K < ε

2 . Let

F =
K⋂
k=1

{
n ∈ N |

∣∣∣∣∫
Ωn
|Zk,n|p dµn −

∫
Ω
|Zk|p dµ̄

∣∣∣∣ < 1
k

}
∈ U .

Then for all n ∈ F , ∣∣∣∣∫
Ω
|Z|p dµ̄−

∫
Ωn
|Xn|p dµn

∣∣∣∣ < ε.

It remains to show thatX = [Xn] = Z. Let [ωn] ∈ Ω and suppose |Z([ωn])| <∞.
Let ε > 0. Choose K ∈ N such that |Z([ωn])| < K − ε. Let

F1 =
K⋂
k=1

{
n ∈ N |

∣∣∣∣∫
Ωn
|Zk,n|p dµn −

∫
Ω
|Zk|p dµ̄

∣∣∣∣ < 1
k

}
∈ U

and
F2 = {n ∈ N | |Zn(ωn)− Z([ωn])| < ε}.

Then for all n ∈ F1 ∩ F2, Xn = Zkn,n for some kn ≥ K and we have

|Xn(ωn)− Z([ωn])| = |Zkn([ωn])− Zkn,n(ωn)| = |Zn(ωn)− Z([ωn])| < ε.

Now suppose Z([ωn]) =∞. Let M ∈ N. Let

F =
M⋂
k=1

{
n ∈ N |

∣∣∣∣∫
Ωn
|Zk,n|p dµn −

∫
Ω
|Zk|p dµ̄

∣∣∣∣ < 1
k

}
∈ U

and
G = {n ∈ N | Zn(ωn)| ≥M} ∈ U .
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Then for all n ∈ F ∩G, Xn = Zkn,n for some kn ≥M and we have

|Xn(ωn)| = |Zkn,n(ωn)| ≥M.

A similar argument shows that Z([ωn]) = limU Xn(ωn) when Z([ωn]) = −∞.
�

Suppose that we have two measures P̄ , Q̄ on (Ω,F). Then P̄ is called
absolutely continuous with respect to Q̄, and we write P̄ � Q̄, if P̄ (E) = 0
whenever Q̄(E) = 0, E ∈ F . If P̄ � Q̄ and Q̄� P̄ , we say that P̄ and Q̄ are
equivalent measures.

Suppose that we for each n ∈ N have two measures Pn, Qn on Ωn such that
Qn � Pn. Then the ultralimit Q̄ need not be absolutely continuous with respect
to the ultralimit P̄ as the following example shows.

Example 2.2.22. For each n ∈ N, let Ωn = [0, 1] be equipped with the
Lebesgue σ-algebra Fn and let µn denote the Lebesgue measure on Ωn. Let
Xn : Ωn → [0,∞) be defined by Xn(ωn) = n

2n−11[0,1− 1
2n ](ωn) + n1[1− 1

2n ,1](ωn).
Define the measure λn on Ωn by

λn(E) =
∫
E

Xn dµn

for E ∈ Fn. Then µn and λn are equivalent for each n. For each n ∈ N,
let An = [1 − 1

2n , 1] ∈ Fn. Then µ̄([An]) = limU µn(An) = 0, but λ̄([An]) =
limU λn(An) = 1

2 .

In order to find sufficient constraints on {Qn}n∈N so that Q̄ is absolutely
continuous with respect to P̄ , we will need the notion of a Radon-Nikodym
derivative.

Definition 2.2.23 (Radon-Nikodym derivative). Let Pn, Qn be probability
measures on (Ωn,Fn) such that Qn � Pn. The (unique up to Pn-null sets)
nonnegative measurable function Xn such that

Qn(E) =
∫
E

Xn dPn

for all E ∈ Fn is called the Radon-Nikodym derivative of Qn with respect to
Pn and is denoted by dQn

dPn
.

As long as the measures Pn, Qn are σ-finite, which is the case for probability
measures, such a function exists (see [Ran02]).

Proposition 2.2.24. Suppose that we for each n ∈ N have a probability space
(Ωn,Fn) and that we for each n have two probability measures Pn, Qn on Ωn

such that Qn � Pn. Let dQn
dPn

denote the Radon-Nikodym derivative of Qn with
respect to Pn. Then the ultralimit Q̄ of {Qn}n∈N is absolutely continuous with
respect to the ultralimit P̄ of {Pn}n∈N if and only if {dQndPn

}n∈N is A-integrable.
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2.2. Ultralimits of measure spaces

Proof. Suppose {dQndPn
}n∈N is A integrable. For all [An] ∈ A,

Q([An]) = lim
U
Qn(An) = lim

U

∫
An

dQn
dPn

dPn.

Since {dQndPn
}n∈N is A-integrable,

Q([An]) =
∫

[An]

dQ

dP
dP̄ ,

where dQ
dP = [ dQndPn

]. By Caratheodory’s extension theorem (by finiteness of Q),
the extension of the measure Q on A to F is unique, hence

Q̄(E) =
∫
E

dQ

dP
dP̄

for all E ∈ F . Thus if P̄ (E) = 0, then Q̄(E) = 0. So Q̄� P̄ .

Conversely, suppose Q̄ � P̄ . Then {dQndPn
}n∈N is A integrable: Suppose

{dQndPn
}n∈N is not A-integrable. Then there exists [An] ∈ A such that P̄ ([An]) =

0, but
Q̄([An]) = lim

U

∫
An

dQn
dPn

dPn 6= 0,

a contradiction. So {dQndPn
}n∈N is A-integrable. �

It follows from Proposition 2.2.24 that is we for each n ∈ N have two
equivalent measures Pn, Qn on Ωn, then the ultralimits P̄ , Q̄ are equivalent if
and only if both { dPndQn

}n∈N and {dQndPn
}n∈N are A-integrable.

We will end this section with a result about conditional expectation.

Proposition 2.2.25. Suppose that we for each n ∈ N have a probability space
(Ωn,Fn, Pn) and that we have used ultraproducts to construct a limit space
(Ω,F , P̄ ). Suppose that we for each n have a sub-sigma-algebra Gn ⊂ Fn and
let B be the algebra consisting of all ultraproducts [Bn] such that Bn ⊂ Gn for
each n ∈ N. Let G be the completion of the σ-algebra on Ω generated by B.
Suppose that we have an A-integrable function X = [Xn]. Then

E[X|G]([ωn]) = lim
U
En[Xn|Gn](ωn)

for almost all [ωn] ∈ Ω.

Proof. For each n ∈ N, let Yn = En[Xn|Gn] and let Y : Ω→ R be defined by
Y (ω) = limU Yn(ωn). We first show that Y is G measurable. Let gm,n : Ωn → R

be defined by

gm,n(ωn) =
22m−1∑
k=1

k

2m 1Akm,n(ωn) + 2m1Bm,n(ωn),
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where Akm,n = Y −1
n ([ k2m ,

k+1
2m )) and Bm,n = Y −1

n ([2m,∞]). Let gm : Ω→ R be
defined by

gm([ωn]) = lim
U
gm,n(ωn) =

22m−1∑
k=1

k

2m 1[Akm,n]([ωn]) + 2m1[Bm,n]([ωn]).

Then for all ω ∈ Ω, limm→∞ gm(ω) = Y (ω) Since Y is the pointwise limit of a
sequence of G-measurable functions, Y is G-measurable.

We now show that
∫
G
Y dP̄ =

∫
G
X dP̄ for all G ∈ G. Let G ∈ G. Then,

by Corollary 2.2.12, there is [Bn] ∈ B such that P̄ ([Bn]4G) = 0. Let ε > 0 and
let

FYε
2

= {n ∈ N |
∫

[Bn]
Y dP̄ −

∫
Bn

Yn dPn| <
ε

2}

and
FXε

2
= {n ∈ N |

∫
[Bn]

X dP̄ −
∫
Bn

Xn dPn| <
ε

2},

which both are in U since {Xn}n∈N is A-integrable. Indeed, since {Xn}n∈N is
A-integrable it follows by Jensen’s inequality for conditional expectation (the
absolute value function is convex - see [Doo12]) that

E[|E[Xn | Gn]|] ≤ E[E[|Xn| | Gn]] = E[|Xn|]

and for any Bn ∈ Gn we have∫
Bn

|En[Xn | Gn]| dPn ≤
∫
Bn

En[|Xn| | Gn] dPn =
∫
Bn

|Xn| dPn.

Pick n ∈ FXε
2
∩ FYε

2
. Then we get that

∣∣∣∣∣
∫

[Bn]
Y dP̄ −

∫
[Bn]

X dP̄

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[Bn]
X dP̄ −

∫
Bn

Xn dPn

∣∣∣∣∣+
∣∣∣∣∣
∫

[Bn]
Y dP̄ −

∫
Bn

Yn dPn

∣∣∣∣∣ < ε.

So
∫

[Bn] Y dP̄ =
∫

[Bn]X dP̄ and thus
∫
G
Y dP̄ =

∫
G
X dP̄ . �
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CHAPTER 3

Construction of the skeleton
approximations

3.1 Skeleton processes

We assume that I ⊆ [0,∞) is a closed interval that can be either [0,∞) or a
finite subinterval [a, b]. An approximation sequence I to I is a sequence {In}n∈N
of discrete subsets of I such that there for each a ∈ I is a sequence {an}n∈N
where an ∈ In and a = limU an.

We let T be the set of all sequences {an}n∈N such that an ∈ In for all n ∈ N,
and we let T = T /U . If [an], [bn] ∈ T , we write [an] ≈ [bn] if limU an = limU bn.

Definition 3.1.1. If {fn}n∈N is a sequence of functions fn : In → R, we can
define a function f : T → R by

f([an]) = lim
U
fn(an).

Definition 3.1.2. Assume that {fn}n∈N is a sequence of functions fn : In → R

and let f : T → R be as in Definition 3.1.1. If [an] ≈ [bn] implies that
f([an]) = f([bn]), we can define a function f̄ : I → R by

f̄(s) = lim
U
fn(an)

for all sequences {an}N ∈ T such that limU an = s.

Proposition 3.1.3. The function f̄ : I → R in Definition 3.1.2 is continuous.

Proof. Suppose that {sk}k∈N is a sequence of numbers in R such that
limk→∞ sk = s ∈ R. We show that lim supk→∞ f̄(sk) = f̄(s). The proof that
lim infk→∞ f̄(sk) = f̄(s) is similar.

Let r = lim supk→∞ f(sk) and suppose r ∈ R. For each k ∈ N, there is
s∗k ∈ {sm | m ≥ k} such that

|f̄(s∗k)− sup
m≥k

f̄(sm)| < 1
k
.
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Furthermore, for each k ∈ N and for each n ∈ N, there is an s∗k,n ∈ In such
that s∗k = limU s∗k,n and thus f̄(s∗k) = f([s∗k,n]). For each n ∈ N, define an as
follows: if{

k ∈ {1, .., n} | |fn(s∗k,n)− f̄(s∗k)| < 1
k

}⋂{
k ∈ {1, .., n} | |s∗k,n − s∗k| <

1
k

}
is non-empty, let an = s∗k,n, where

k = sup
{
m ∈ {1, .., n} | |fn(s∗j,n)− f̄(s∗j )| <

1
j

and |s∗j,n − s∗j | <
1
j
for all j ∈ {1, ...,m}

}
.

Otherwise, let an = s∗1,n. We will show that limU fn(an) = r and that
limU an = s, so that lim supk→∞ f̄(sk) = f([an]) = f̄(s).

Let ε > 0. Pick N1 ∈ N such that | supm≥k f̄(sm)− r| < ε
3 for all k ≥ N1. Pick

N2 ∈ N such that 1
N2

< ε
3 . Pick N3 ∈ N such that |sk − s| < ε

2 for all k ≥ N3.
Let N = max{N1, N2, N3} and let

F = {1, .., N − 1}c
N⋂
k=1

{
n ∈ N | |fn(s∗k,n)− f̄(s∗k)| < 1

k

}
⋂{

n ∈ N | |s∗k,n − s∗k| <
1
k

}
,

which is in U . If n ∈ F , then an = s∗k,n for some k ∈ N, N ≤ k ≤ n, so that

|fn(an)− r| = |fn(s∗k,n)− r|
≤ |fn(s∗k,n)− f̄(s∗k)|+ |f̄(s∗k)− sup

m≥k
f̄(sm)|+ | sup

m≥k
f̄(sm)− r|

< ε.

Hence {n ∈ N | |fn(an)− r| < ε} ⊇ F . Furthermore, if n ∈ F , for some k ≥ N
we have an = s∗k,n so that

|an − s| ≤ |an − s∗k|+ |s∗k − s| < ε,

and thus {n ∈ N | |an − s| < ε} ⊇ F .

Now suppose that r = ∞. For each k ∈ N there is s∗k ∈ {sm | m ≥ k}
such that f(s∗k) ≥ k. Define an as before and define F as before, only this time
omitting N1. We have that

f̄(s) = f([an]) = lim
U
fn(an) = lim

U
fn(s∗k,n),

for some k ∈ {1, .., n}. Since

fn(s∗k,n) ≥ f(s∗k,n)− 1
k
≥ k − 1

k

on a set F ′ ∈ U and we have that k →∞ when n→∞, f̄(s) = r. The proof of
the case r = −∞ is similar. �
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Example 3.1.4. For each n ∈ N, let In = { kn | k = 0, 1, 2, 3, ...}, and let
fn : In → R be defined by

fn

(
k

n

)
=
(

1 + k

n2

)n
.

Then {In}n∈N is an approximation sequence for [0,∞) and f̄ is defined by
f̄(x) = ex.

We will from now on assume that I = [0, T ] is a bounded interval and that
In is finite for each n ∈ N.

Definition 3.1.5. Suppose that we for each n have a stochastic process
Xn : In × Ωn → R. Then we define a stochastic process X : T × Ω→ R by

X([an], [ωn]) = lim
U
Xn(an, ωn).

Definition 3.1.6. Suppose that we for each n have a stochastic process
Xn : In × Ωn → R and let X : T × Ω → R be defined as in Definition 3.1.5.
Suppose that we for almost all ω ∈ Ω have that [an] ≈ [bn] implies that
X([an], ω) = X([bn], ω). Then we can define a stochastic process X̄ : I×Ω→ R

such that for almost all [ωn] ∈ Ω,

X̄(s, [ωn]) = lim
U
Xn(an, ωn)

for all sequences {an}n∈N ∈ T with limU an = s for all s ∈ I.

Notice that it follows by Proposition 3.1.3 that if we for each n ∈ N have
a stochastic process Xn : In × Ωn → R and the ultralimit X̄ : I × Ω → R to
{Xn}n∈N exists for almost all ω ∈ Ω, then X̄ is continuous for almost all ω ∈ Ω.

Next we want to define a filtration on Ω.

Definition 3.1.7. Suppose that we for each n ∈ N have an approximation
sequence In to I and a filtered probability space (Ωn, {Fntn}tn∈In ,Fn, Pn). Sup-
pose we have constructed Ω as previously. For each t ∈ I, define a sequence
{tn}n∈N ∈ T , where each tn = inf{rn ∈ In | rn ≥ t}. Let At denote the algebra
consisting of ultraproducts [An], where each An ∈ Ftn . We define the filtration
{Ft}t∈I on Ω by letting Ft be the completion of the σ-algebra generated by
At. We let F be the completion of the σ-algebra generated by the algebra A
consisting of ultraproducts [An], where each An ∈ Fn. Thus we get a filtered
probability space (Ω, {Ft}t∈I ,F , P̄ ). We let {Ft+}t∈I be the augmented right
continuous filtration of {F}t∈I (i.e. Ft+ =

⋂
ε>0 Ft+ε).

Proposition 3.1.8. Suppose that we for each n ∈ N have an approximation se-
quence In to I and a filtered probability space (Ωn, {Fntn}tn∈In ,Fn, Pn). Suppose
furthermore that we for each n ∈ N have a stochastic process Xn : In×Ωn → R

that is adapted to the filtration {Fntn}tn∈In . If the ultralimit X̄ : I × Ω→ R to
{Xn}n∈N exists (and is continuous) for almost all ω ∈ Ω, then X̄ is adapted to
the filtration {Ft}t∈I .
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Proof. Since X̄ = X̄+ − X̄−, it suffices to assume that X̄ ≥ 0. We have
to show that for each t ∈ I, X̄t is Ft-measurable. For each n ∈ N, let
tn = inf{rn ∈ In | rn ≥ t}. For each n ∈ N and m ∈ N, let gm,n : Ωn → R be
defined by

gm,n(ωn) =
22m−1∑
k=1

k

2m 1Akm,n(ωn) + 2m1Bm,n(ωn),

where Akm,n = (Xn(tn))−1([ k2m ,
k+1
2m )) and Bm,n = (Xn(tn))−1([2m,∞]). Then

each Akm,n ∈ Fntn and Bm,n ∈ Fntn . Let gm : Ω→ R be defined by

gm([ωn]) = lim
U
gm,n(ωn) =

22m−1∑
k=1

k

2m 1[Akm,n]([ωn]) + 2m1[Bm,n]([ωn]).

Then for all ω ∈ Ω, limm→∞ gm(ω) = X̄(t, ω). Since X̄t is the pointwise limit
of a sequence of Ft-measurable variables, X̄t is Ft-measurable. �

Definition 3.1.9 (Stopping times in continuous time). In continuous time, we
say that τ : Ω→ I ∪ {∞} is a (strong) stopping time for {Ft}t∈I if

{ω ∈ Ω | τ(ω) ≤ t} ∈ Ft (3.1)

for all t ∈ I. If (3.1) holds with < instead of ≤, τ is said to be a weak stopping
time.

A (strong) stopping time is a weak stopping time, but the converse is not
necessarily true. The following result can be found with proof in [Wei13].

Proposition 3.1.10. τ : Ω→ I ∪ {∞} is a weak stopping time with respect to
the filtration {Ft}t∈I if and only if τ is a strong stopping time with respect to
the right continuous filtration {Ft+}t∈I .

Definition 3.1.11 (Stopping time in discrete time). In discrete time, we say
that τn : Ωn → In ∪ {∞} is a stopping time if

{ωn ∈ Ωn | τn(ωn) ≤ tn} ∈ Fntn

for each tn ∈ In.

Proposition 3.1.12. Suppose that we for each n ∈ N have a probability space
(Ω, {Fntn}tn∈In ,Fn, Pn) and a stopping time τn : Ωn → In ∩ {∞} with respect
to the filtration {Fntn}tn∈In . Then τ = [τn] is a weak stopping time with respect
to the filtration {Ft}t∈I .

Proof. By Proposition 3.1.10 it suffices to prove that τ is a strong stopping
time with respect to {Ft+}t∈I . Let t ∈ I. For each n ∈ N and each m ∈ N,
define gm,n : Ωn → N by

gm,n(ωn) =
22m−1∑
k=1

1Akm,n(ωn) + 1Bm,n(ωn),
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where Akm,n = (τn)−1([ k2m ,
k+1
2m )) and Bm,n = (τn)−1([2m,∞]). Let gm = [gm,n].

We shall now prove that for each M ∈ N,

{τ ≤ t} =
∞⋂

m=M
g−1
m ([0, t]).

First we prove that {τ ≤ t} ⊆
⋂∞
m=M g−1

m ([0, t]). Suppose τ([ωn]) ≤ t. For each
n ∈ N, for each m ∈ N, gm,n ≤ τn. Thus gm([ωn]) ≤ τ([ωn]) ≤ t for all m ∈ N,
in particular for all m ≥M .

The inclusion {τ ≤ t} ⊇
⋂∞
m=M g−1

m ([0, t]) follows from the defintion of the gm’s.
Suppose gm(ω) ≤ t for all m ≥M . Then τ(ω) = limm→∞ gm(ω) ≤ t.

Now choose M ∈ N such that 2M > t. For m ≥ M , let Km = sup{k ∈
N | k

2m < t}. Then

g−1
m ([0, t]) =

Km⋃
k=0

[Akm,n] = [
Km⋃
k=0

Akm,n].

For each n ∈ N, let tm,n = inf{rn ∈ In | rn ≥ t+ 1
2m }. For each k ≤ Km, we

have that Akm,n ∈ Fntm,n for each n ∈ N so that [Akm,n] ∈ Ft+ 1
2m

. So for M ∈ N
high enough we have {τ ≤ t} ∈ Ft+ 1

2M
, Since this holds for each M ∈ N high

enough, {τ ≤ t} ∈ Ft+. �

Proposition 3.1.13. Suppose we have an interval I with an approximation
sequence {In}n∈N. Suppose for each n ∈ N we have a filtered probability space
(Ωn, {Fntn}tn∈In ,F , Pn) and a process Xn : In × Ωn → R that is adapted to
{Fntn}tn∈In . Suppose furthermore that the ultralimit X̄ : I×Ω→ R to {Xn}n∈N
exists (and is continuous) for almost all ω ∈ Ω. Let s, t ∈ I with s < t. For
each n ∈ N, let tn = inf{rn ∈ In | rn ≥ t} and sn = inf{rn ∈ In | rn ≥ s}. If
{Xn(tn)}n∈N is At-integrable, then

E[X̄(t)|Fs]([ωn]) = lim
U
En[Xn(tn)|Fnsn ](ωn)

for almost all [ωn] ∈ Ω

Proof. This follows from Definition 3.1.7 and Proposition 2.2.25. �

It follows by Proposition 3.1.13 that if we have a sequence of martingales
(or supermartingales or submartingales, respectively) Xn : In × Ωn → R with
respect to the filtrations {Fntn}n∈N, if the ultralimit X̄ : I × Ω→ R exists for
almost all [ωn] ∈ Ω and {Xn(tn)}n∈N is A-integrable for any {tn}n∈N ∈ T ,
then X̄ is a martingale (or supermartingale or submartingale, respectively) with
respect to the filtration {Ft}t∈I . But if we do not have A-integrability, X̄ need
not be a martingale. We do however have the following results. First we will
give the following definition.

Definition 3.1.14 (Local martingale). An Ft-adapted stochastic process X̄ :
I × Ω→ R is called a local martingale with respect to the filtration {Ft}t∈I if
there exists an increasing sequence of stopping times {τk}k∈N (with respect to
{Ft}t∈I) such that τk →∞ for almost all ω ∈ Ω as k →∞ and X̄(· ∧ τk) is a
martingale with respect to the filtration {Ft}t∈I for each k ∈ N.
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Proposition 3.1.15. Suppose that we for each n ∈ N have a martingale
Xn : In × Ωn → R and suppose that the U-limit X̄ : I × Ω→ R exists for all
points t ∈ I for almost all ω ∈ Ω. Suppose furthermore that E[|X̄(t)|] < ∞
for all t ∈ I. For each k ∈ N and each n ∈ N define the stopping times
τk,n : Ωn → In ∪ {∞} by τk,n = inf{tn ∈ In | |Xn| ≥ k}. If

lim
U
En[ sup

tn∈In
0<tn≤τk,n

(Xn(tn)−Xn(tn −∆tn))2] <∞

for each k ∈ N, and if limU En[Xn(0)] <∞, then X̄ is a local martingale with
respect to the filtration {Ft+}t∈I .

Proof. Let τk = [τk,n]. By Proposition 3.1.12, τk is a weak stopping time with
respect to the filtration {Ft}t∈I and we have that X̄(· ∧ τk) is the ultralimit
to {Xn(· ∧ τk,n)}n∈N for almost all [ωn] ∈ Ω. Then for each k ∈ N, for any
{tn}n∈N ∈ T ,

En[ sup
tn∈In

Xn(tn ∧ τk,n)2]

≤ En[Xn(0)] + 2k2 + 2En[ sup
tn∈In

0<tn≤τk,n

(Xn(tn)−Xn(tn −∆tn))2],

hence {|Xn(t ∧ τk,n)|}n∈N is A-integrable by Proposition 2.2.20. By the same
argument as in Proposition 3.1.13, X̄(· ∧ τk) is a martingale with respect to
the filtration {Ft+}t∈I . Indeed, given s, t ∈ I with s < t, for any k ∈ N high
enough we have ∫

G

X̄(t ∧ τk) dP̄ =
∫
G

X̄((s+ 1
k

) ∧ τk) dP̄

for all G ∈ Fs+. Since X̄(s ∧ τk) is dominated by supt∈I X̄(t ∧ τk) for all s ∈ I
and since

sup
t∈I

X̄(t ∧ τk) = lim
U

sup
tn∈In

Xn(tn ∧ τk,n),

by Lemma 2.2.16 we have

E[sup
t∈I

X̄(t ∧ τk)] ≤ lim
U
En[ sup

tn∈In
Xn(tn ∧ τk,n)] <∞.

So by dominated convergence theorem,∫
G

X̄(t ∧ τk) dP̄ =
∫
G

X̄(s ∧ τk) dP̄ .

Now we have that {τk}k∈N is an increasing sequence of stopping times (with
respect to the filtration {Ft+}t∈I) such that τk →∞ for almost all ω ∈ Ω as
k →∞. So X̄ is a local martingale with respect to the filtration {Ft+}t∈I . �

Proposition 3.1.16. Suppose that we for each n ∈ N have a martingale
Xn : In × Ωn → R and suppose that the U-limit X̄ : I × Ω→ R exists for all
points t ∈ I for almost all ω ∈ Ω. Suppose furthermore that E[|X̄(t)|] < ∞
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3.1. Skeleton processes

for all t ∈ I. For each k ∈ N and each n ∈ N define the stopping times
τk,n : Ωn → In ∪ {∞} by τk,n = inf{tn ∈ In | |Xn| ≥ k}. If

lim
U
En[ sup

tn∈In
0<tn≤τk,n

(Xn(tn)−Xn(tn −∆tn))2] <∞

for each k ∈ N, if limU En[Xn(0)] <∞ and limU En[|Xn(T )| ln+ |Xn(T )|] <∞,
then X̄ is a martingale with respect to the filtration {Ft+}t∈I .

Proof. By Proposition 3.1.15, X is a local martingale. Since supt∈I |X̄(t)| =
limU suptn∈In |Xn(tn)| and since by Doobs martingale inequality (see [Doo53])
we have

En[ sup
tn∈In

|Xn(tn)|] ≤ e

e− 1(1 + En[|Xn(T )| ln+ |Xn(T )|])

for each n ∈ N, it follows by Lemma 2.2.16 that

E[sup
t∈I
|X̄(t)|] ≤ lim

U
En[ sup

tn∈In
|Xn(tn)|] <∞.

Since we have |X̄(s ∧ τk)| ≤ supt∈I |X̄(t)| for any s ∈ I for all τk, and since
τk →∞, by dominated convergence theorem for conditional expectation, since
X̄ is a local martingale, X̄ is a martingale. Indeed for any s, t ∈ I with s < t
we have

En[X̄(t) | Fs] = En[ lim
k→∞

X̄(t ∧ τk) | Fs] = lim
k→∞

En[X̄(t ∧ τk) | Fs] = X̄(s).

�

It follows by Fatou’s lemma for conditional expectation (see [Doo12]) that
if X̄ is a local martingale (with respect to {Ft+}n∈N) and X̄ ≥ 0 for almost
all ω ∈ Ω, then X̄ is a supermartingale with respect to {Ft+}n∈N. Similarly,
if X̄ ≤ 0 for almost all ω ∈ Ω, then X̄ is a submartingale with respect to
{Ft+}n∈N. A related result is given below.

Proposition 3.1.17. Suppose that we for each n ∈ N have a supermartingale
Xn : In × Ωn → R and suppose that the U-limit X̄ : I × Ω→ R exists for all
points t ∈ I for almost all ω ∈ Ω. Suppose furthermore that E[|X̄(t)|] < ∞
for all t ∈ I. If there is a constant K ∈ N such that X̄ ≥ −K, then X̄ is a
supermartingale with respect to the filtration {Ft}t∈I . Similarly, suppose that
we for each n ∈ N have a submartingale Xn : In×Ωn → R and suppose that the
U-limit X̄ : I ×Ω→ R exists for all points t ∈ I for almost all ω ∈ Ω. Suppose
furthermore that E[|X̄(t)|] <∞ for all t ∈ I. If there is a constant K ∈ N such
that X̄ ≤ K, then X̄ is a submartingale with respect to the filtration {Ft}t∈I .

Proof. We first show the supermartingale argument. Suppose n ∈ N, Xn is a
supermartingale and suppose there is a constant K ∈ N such that X̄ ≥ −K.
For each k ∈ N, by Jensen’s inequality for conditional expectation (since the
minimum function is concave - see [Doo12]), we have

En[Xn(tn) ∧ k|Fnsn ] ≤ Xn(sn) ∧ k
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3. Construction of the skeleton approximations

for each n ∈ N and each sn, tn ∈ In such that sn < tn. For each k ∈ N there is
an F ∈ U such that |Xn(tn) ∧ k| is bounded by max{K + 1, k} for all n ∈ F ,
hence {Xn(tn) ∧ k}n∈N is A-integrable for any {tn}n∈N. So by Proposition
3.1.13, X̄ ∧ k is a supermartingale for each k ∈ N. By dominated convergence
theorem for conditional expectation (see [Doo12]), since X̄ ∧ k is dominated by
X̄ for any k ∈ N, X̄ is a supermartingale. Indeed, for any s, t ∈ I with s < t
we have

En[X̄(t) | Fs] = En[ lim
k→∞

X̄(t) ∧ k | Fs]

= lim
k→∞

En[X̄(t) ∧ k | Fs]

≤ lim
k→∞

X̄(s) ∧ k = X̄(s).

Now suppose that for each n ∈ N, Xn is a submartingale and suppose there is
a constant K ∈ N such that X̄ ≤ K. Using the argument above for −X̄ shows
that X̄ is a submartingale.

�

We will next construct skeleton processes (namely random walks) that
converge to Brownian motion on a bounded interval with respect to an ultrafilter.

Theorem 3.1.18. Let In = {0, 1
n ,

2
n , ...,

n−1
n , 1} and let Ωn consist of all func-

tions ωn : In → {−1, 1}. Let Pn be the probability measure on Ωn, which gives
each ωn the same weight. For each n ∈ N we define a random walk
Xn : In × Ωn → R by setting Xn(0, ω) = 0 and

Xn(kn
n
, ωn) =

kn−1∑
i=0

ωn( in )
√
n

for kn > 0. Then X̄ exists and is a Brownian motion under P̄ with respect to
the filtration {Ft}t∈I .

Proof. We need to show that X̄ : I × Ω → R as defined in Definition 3.1.6
exists so that X̄t : Ω→ R defined by X̄t(ω) = X̄(t, ω) is well-defined and that
the following properties hold:

(i) X̄0 = 0.

(ii) The increment X̄t − X̄s is normally distributed with mean 0 and variance
t− s for t ≥ s.

(iii) The process {X̄t}t∈[0,1] has stationary increments, where each increment
X̄t − X̄s (where t > s) is independent of Fs.

(iv) With probability 1, the function t→ X̄t is continuous.

We will show all but the last part of (iii) in three steps, where we, given two
sequences {k1,n

n }n∈N, {
k2,n
n }n∈N ∈ T with limU k1,n

n ≤ limU k2,n
n , determine the

distribution of the variables X([k1,n
n ]) and X([k2,n

n ])−X([k1,n
n ]).
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3.1. Skeleton processes

Step 1: Let t ∈ I and suppose kn
n ∈ In for each n ∈ N and limU kn

n = t.
Suppose that limU kn = ∞. Pick a subsequence {knmnm }m∈N of {knn }n∈N
such that limm→∞

knm
nm

= t and limm→∞ knm = ∞. For each i ≤ n, let
Yi,n : Ωn → {−1, 1} be defined by Yi,n(ωn) = ωn( in ). Let X kn

n
: Ωn → R be

defined by

X kn
n

(ωn) = Xn(kn
n
, ωn) =

kn−1∑
i=0

ωn( in )
√
n

=
kn−1∑
i=0

Yi,n(ωn)√
n

.

We have that the characteristic function

φX knm
nm

(u) = E[e
iuX knm

nm ]

= E[eiu(
∑knm−1

j=0
Yj,nm )]

= E[
knm−1∏
j=0

e
iu
Yj,nm√
nm ]

=
knm−1∏
j=0

E[eiu
Yj,nm√
nm ] by independence of the Yj,n

= (φY0,nm
( u
√
nm

))knm since the Yj,n are identically distributed

= (1− u2

2nm
+ o(n))knm by Taylor approximation.

Let 0 < ε < t and pick N large enough so that |knmnm − t| < ε for all m ≥ N .
Then for m ≥ N ,

(1−(t+ε) u2

2knm

+o(n))knm ≤ (1−knm

nm

u2

2knm

+o(n))knm ≤ (1−(t−ε) u2

2knm

+o(n))knm .

Using a similar argument for the term o(n), we have that

lim
m→∞

(1− (t− ε) u
2

knm
+ o(n))knm = e−(t−ε)u2

2 .

Similarly,

lim
m→∞

(1− (t+ ε) u
2

knm
+ o(n))knm = e−(t+ε)u2

2 .

Hence we get that

lim
m→∞

(1− u2

2nm
+ o(n))knm = e

1
2 tu

2
.

A random variable Z with the normal distribution has characteristic function
eiuµ−

1
2σ

2u2 , where µ = E[Z] and σ2 = V ar(Z). Thus the sequence {X knm
nm

}m∈N
converges weakly to a random variable Z ∼ N(0, t).

Suppose that {kn}n∈N is U-bounded by M . Then limU kn
n = 0 and
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3. Construction of the skeleton approximations

limU |X kn
n

(ωn)| ≤ limU M√
n

= 0.

Step 2: Suppose we have a sequence {knn }n∈N as in Step 1 such that
limU kn = ∞ and limU kn

n = t. We want to show that X[ knn ] = X([knn ]) is
normally distributed with mean 0 and variance t. We show that the cumulative
distribution function to X[ knn ] is the cumulative distribution function for the
normal distribution with mean 0 and variance t.

Let a ∈ R and ε > 0. We have that

[X−1
kn
n

([−∞, a])] ⊆ X−1
[ knn ]

([−∞, a]) ⊆ [X−1
kn
n

([−∞, a+ ε])].

Pick a subsequence {knmnm }m∈N as in Step 1 such that limm→∞
knm
nm

= t,
limm→∞ knm =∞,

lim
m→∞

Pnm(X knm
nm

≤ a) = P̄ ([X kn
n
≤ a])

and
lim
m→∞

Pnm(X knm
nm

≤ a+ ε) = P̄ ([X kn
n
≤ a+ ε]).

We then have that

P̄ (X[ knn ] ≤ a)− P̄ ([X kn
n
≤ a]) ≤ P̄ ([X kn

n
≤ a+ ε])− P̄ ([X kn

n
≤ a])

= FZ(a+ ε)− FZ(a)
< ε

where FZ is the cumulative distribution function to Z ∼ N(0, t). Here we
have used that {Xnm}m∈N converges weakly to Z if and only if the cumulative
distribution to Xnm converges pointwise to the cumulative distribution function
to Z and that the cumulative distribution function to Xnm in a ∈ R is given
by Pnm(X knm

nm

≤ a).

Since this is true for all ε > 0,

FX
[ kn
n

]
(a) = P̄ (X[ knn ] ≤ a) = P̄ ([X kn

n
≤ a]) = lim

U
Pn(X kn

n
≤ a) = lim

U
FX kn

n

(a).

We can now pick a subsequence again as in Step 1, only this time ensuring
that limm→∞ FX knm

nm

(a) = FX
[ kn
n

]
(a). It then follows that FX

[ kn
n

]
(a) = FZ(a).

Since this holds for all a ∈ R, X[ knn ] ∼ N(0, t). Notice that we have proved that
for a ∈ R, P̄ (Xt ≤ a) = P̄ ([X kn

n
≤ a]). This will be useful later.

Step 3: Suppose that we have two sequences {k1,n
n }n∈N and {k2,n

n }n∈N such
that [k1,n

n ], [k2,n
n ] ∈ T and that limU k1,n

n = t ≥ limU k2,n
n = s. Since

X([k1,n

n
], ω)−X([k2,n

n
], ω) = lim

U
(Xn(k1,n

n
, ωn)−Xn(k2,n

n
, ωn))
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3.1. Skeleton processes

for almost all ω ∈ Ω, notice that Xn(k1,n
n )−Xn(k2,n

n ) has the same distribution
as

|k1,n−k2,n|−1∑
i=0

Yi,n√
n

= Xn( |k1,n − k2,n| − 1
n

)

if we assume that |k1,n − k2,n| > 0. If we can show that X̄ exists, then Step
1 and Step 2 shows that (ii) and the first part of (iii) holds. If we define
X̄(0, ω) = 0 for all ω ∈ Ω, we have also proved (i).

We first need to show that X̄ exists for almost all ω ∈ Ω. First we show
that

{ω ∈ Ω | lim
U
Xn(tn) = lim

U
Xn(sn) for all

[sn], [tn] ∈ T such that lim
U
tn = lim

U
sn = t}

is measurable and has measure 1 for all t ∈ I. We have that

{ω ∈ Ω | ∃[tn], [sn] ∈ T with lim
U
tn = lim

U
sn = t

such that lim
U
Xn(tn) 6= lim

U
Xn(sn)}

⊆
⋃
m∈N
{ω ∈ Ω | ∃[tn], [sn] ∈ T with lim

U
tn = lim

U
sn = t

such that lim
U
|Xn(tn)−Xn(sn)| ≥ 1

m
}

For each k ∈ N we have

{ω ∈ Ω | ∃[tn], [sn] ∈ T with lim
U
tn = lim

U
sn = t

such that lim
U
|Xn(tn)−Xn(sn)| ≥ 1

m
}

⊆ {ω ∈ Ω | lim
U

sup
rn∈[t− 1

k ,t+
1
k ]∩In

|Xn(rn)−Xn(un)| ≥ 1
2m},

where un = min{sn ∈ In | sn ≥ t − 1
k}. Let vn = max{sn ∈ In | sn ≤ t + 1

k}.
By Doob’s martingale inequality (see [Doo53]),

P̄ (lim
U

sup
rn∈[t− 1

k ,t+
1
k ]∩In

|Xn(rn)−Xn(un)| ≥ 1
2m )

≤ lim
U
Pn( sup

rn∈[t− 1
k ,t+

1
k ]∩In

|Xn(rn)−Xn(un)| ≥ 1
4m )

≤ 16m2 lim
U
En[(Xn(vn)−Xn(un))2]

= 16m2E[(X([vn])−X([un]))2]

= 16m2 2
k

by Step 1,2 and 3. Hence

{ω ∈ Ω | ∃[tn], [sn] ∈ T with lim
U
tn = lim

U
sn = t

such that lim
U
|Xn(tn)−Xn(sn)| ≥ 1

m
}
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3. Construction of the skeleton approximations

is contained in a set of measure 0 and is thus measurable with measure 0. Hence

P̄ (∃[tn], [sn] ∈ T with lim
U
tn = lim

U
sn = t such that lim

U
Xn(tn) 6= lim

U
Xn(sn)) = 0,

(3.2)

which is what we wanted to show. For [rn], [tn] ∈ T , we will write [rn] ≤ [tn] to
mean that limU rn ≤ limU tn. Similarly, we will write k1 ≤ [tn] ≤ k2 to mean
that k1 ≤ limU tn ≤ k2. For m, k ∈ N, let

Ωm,k =

ω ∈ Ω | ∀i ∈ {0, 1, ..., k − 1}

 sup
[rn]≤[sn]≤ i+1

k

limU rn= i
k

| X([sn], ω)−X([rn], ω)| < 1
m


 .

In order to show that X̄ exists and is continuous with probability 1, it suffices
to show that the set

Ω′ =
⋂
m∈N

⋃
k∈N

Ωm,k

has measure 1. We have that

Ω′ ={[ωn] ∈ Ω | for all [tn], [rn] ∈ T, [tn] ≈ [rn]
implies that lim

U
Xn(tn, ωn) = lim

U
Xn(rn, ωn)}.

Indeed, if [ωn] ∈ Ω is such that for all [tn], [rn] ∈ T , [tn] ≈ [rn] implies
that limU Xn(tn, ωn) = limU Xn(rn, ωn), then by Proposition 3.1.3 X([ωn]) is
uniformly continuous (since it’s defined on a closed interval) and so [ωn] ∈ Ω′.
Conversely, if [ωn] ∈ Ω′, then for each m ∈ N, there is k ∈ N such that

sup
[rn]≤[sn]≤ i+1

k

limU rn= i
k

|X([sn], [ωn])−X([rn], [ωn])| < 1
m

for all i ∈ {0, 1, ..., k − 1}. Thus limU Xn(tn, ωn) = limU Xn(rn, ωn) for all
[rn], [tn] ∈ T such that [rn] ≈ [tn]. We will show that

Ω′c =
⋃
m∈N

⋂
k∈N

Ωcm,k

has measure 0 (we will soon show that these sets are measurable). Suppose
that P (Ω′c) > 0. Then there is m0 ∈ N such that P̄ (

⋂
k∈NΩc

m0,k
) > 0. We

show that limk→∞ P (Ωcm0,k
) = 0, which leads to a contradiction.

We have that

Ωc
m0,k =

ω ∈ Ω | ∃i ∈ {0, 1, ..., k − 1} such that sup
[rn]≤[sn]≤ i+1

k

limU rn= i
k

|X(s, ω)−X( i
k
, ω)| ≥ 1

m0


=

k−1⋃
i=0

ω ∈ Ω | sup
[rn]≤[sn]≤ i+1

k

limU rn= i
k

|X(s, ω)−X( i
k
, ω)| ≥ 1

m0

 .
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3.1. Skeleton processes

For each i ∈ {0, ..., k}, let [sn,i] ∈ T be such that limU sn,i = i
k . By (3.2),

sup
[rn]≤[tn]≤ i+1

k

limU rn= i
k

|X([tn], [ωn])−X([rn], [ωn])| = lim
U

sup
sn,i≤tn≤sn,i+1

|Xn(tn, ωn)−Xn(sn,i, ωn)|

for almost all [ωn] ∈ Ω (this shows that the sets are measurable). We have

P̄ (Ωc
m0,k) = P̄

k−1⋃
i=0

ω ∈ Ω | sup
[rn]≤[sn]≤ i+1

k

limU rn= i
k

|X([sn], ω)−X([rn], ω)| ≥ 1
m0




≤
k−1∑
i=0

P̄


ω ∈ Ω | sup

[rn]≤[sn]≤ i+1
k

limU rn= i
k

|X([sn], ω)−X([rn], ω)| ≥ 1
m0




≤
k−1∑
i=0

lim
U
Pn

({
ωn ∈ Ωn | sup

sn,i≤sn≤sn,i+1

|Xn(sn, ωn)−Xn(sn,i, ωn)| ≥ 1
2m0

})
by (3.2)

≤
k−1∑
i=0

lim
U

2Pn

({
ωn ∈ Ωn | |Xn(sn,i+1, ωn)−Xn(sn,i, ωn)| ≥ 1

2m0

})
by the reflection principle for random walks (see [MP10])

≤
k−1∑
i=0

2P̄
({

ω ∈ Ω | |X([sn,i+1], ω)−Xn([sn,i], ω)| ≥ 1
2m0

})
≤ 4m0

√
2
kπ
e
− k

8m2
0 → 0 as k →∞

where the last inequality follows from a tail inequality for the normal distribution
(see [Fel68]), which states that if Z ∼ N(0, σ2), then

P (|Z| ≥ t) ≤
√

2
π

σ

t
e−

t2
2σ2 .

So X̄ exists for almost all ω ∈ Ω. By Proposition 3.1.3, X is t-continuous with
probability one.

We are now ready to prove the last part of (iii). Let t, s ∈ I with t > s.
Suppose a ∈ R and G ∈ Fs. We want to show that

P̄ ({X̄t − X̄s ≤ a} ∩G) = P̄ ({X̄t − X̄s ≤ a})P̄ (G).

For each n ∈ N, let tn = infrn∈In | rn≥t and sn = infrn∈In | rn≥s. By Corollary
2.2.12, there is [An] ∈ As such that P̄ (G4[An]) = 0. By a previous observation
we have that

[{Xn(tn)−Xn(sn) ≤ a}] ⊆ {X̄t − X̄s ≤ a}

and
P̄ ({X̄t − X̄s ≤ a}) = P̄ [{Xn(tn)−Xn(sn) ≤ a}].
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3. Construction of the skeleton approximations

Thus we have

P̄ ({X̄t − X̄s ≤ a} ∩G) =
∫

Ω
1{X̄t−X̄s≤a}1G dP̄

=
∫

Ω
1[{Xn(tn)−Xn(sn)≤a}]1[An] dP̄

= lim
U

∫
Ωn

1{Xn(tn)−Xn(sn)≤a}1An dPn

= lim
U
Pn({Xn(tn)−Xn(sn) ≤ a} ∩An)

= lim
U
Pn({Xn(tn)−Xn(sn) ≤ a})Pn(An)

= P̄ ([{Xn(tn)−Xn(sn) ≤ a}])P̄ ([An])
= P̄ ({X̄t − X̄s ≤ a})P̄ (G),

which is what we wanted to show. So X̄t − X̄s is independent from Fs, i.e. the
second part of (iii) holds.

�

Note that we can, by the same construction as above, construct Brownian
motion on any interval [0, T ]. Note also that we, by the same construction as
above, doing some small adjustments, can define several different random walks
on Ωn, giving us different Brownian motions on Ω.

Proposition 3.1.19. For each n ∈ N, let Bn denote the process in Theorem
3.1.18 defined on the interval In = {kTn | k ∈ {0, ..., n}}. Then, for d ∈ N, for
each { jnTn }n∈N ∈ T , {Bn( jnTn )d}n∈N and {edβBn( jnn )}n∈N (where β > 0) are
A-integrable.

Proof. Let { jnTn }n∈N ∈ T be a sequence of numbers. Showing that {e
dβB jnT

n }n∈N
is A-integrable is equivalent to showing that {e

βB jnT
n }n∈N is A-integrable (since

we assume that β > 0 is arbitrary). By Proposition 2.2.20, it suffices to show
that there is a real number p > 0 such that

lim
U

∫
Ωn
e
pβB jnT

n dPn <∞.

Let p = 2. We will need the following useful inequality which we derive from
Taylor series representation:

1
2(e−x + ex) =

∞∑
i=0

x2i

(2i)! ≤
∞∑
i=0

(x2

2 )i

i! = e
x2
2 . (3.3)
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3.2. Stochastic integrals

We have that

En[e
2βB jnT

n ] = En[e
∑jnT

in=0
2β∆B inT

n ]

=
jn∏
in=0

En[e
2β∆B inT

n ] by independence of the ∆B inT
n

’s

= (1
2e

2β
√

T
n + 1

2e
−2β
√

T
n )jn

≤ e
2β2Tjn

n by (3.3).

so that limU En[e
2βB jnT

n ] ≤ e2β2T , which is what we wanted to show. To show
that {Bn( jnTn )d}n∈N is A-integrable, notice that by symmetry of random walks,

En[|Bn(jnT
n

)|d+1] = 2En[1AnBn(jnT
n

)d+1],

where An = {ωn ∈ Ω | Bn( jnTn ) ≥ 0}. Thus

En[|Bn(jnT
n

)|d+1] = 2En[1AnBn(jnT
n

)d+1]

≤ 2En[1Ane(d+1)Bn( jnTn )]

≤ 2En[e(d+1)Bn( jnTn )]

which proves that {Bn( jnTn )d}n∈N is A-integrable. �

3.2 Stochastic integrals

Let In = {0, 1
n ,

2
n , ..., 1} and let Bn : In × Ωn → R be the usual random walk

Bn(k
n
, ωn) = 1√

n

k−1∑
i=1

ωn( i
n

).

We will from now on use a different notation for this expression, namely

Bn(tn, ωn) = 1√
n

tn∑
sn=0

ωn(sn).

Notice that sn = tn is not included in the last sum. We shall also use the
notation

∆Bn(tn, ωn) = Bn(tn + 1
n
, ωn)−B(tn, ωn).

This is the increment of Bn into the future.

If Xn : In × Ωn → R is another process, we define the stochastic integral∫
Xn dBn to be the process given by(∫

Xn dBn

)
(tn, ωn) =

tn∑
sn=0

Xn(sn, ωn)∆Bn(sn, ωn).
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3. Construction of the skeleton approximations

We use the same summation convension as above: sn = tn is not included in
the sum.

Remark: To make notation easier, we will from now on omit the bar over the
(well-defined) measures and processes that we construct on the measure space.

Proposition 3.2.1. If rn, tn ∈ In, rn < tn, then

Bn(tn)2 −Bn(rn)2 = 2
∫ tn

rn

Bn(sn) dBn(sn) + (tn − rn)

Proof. We have that

Bn(tn)2 =(Bn(tn)−Bn(tn −∆tn) +Bn(tn −∆tn))2

=(Bn(tn)−Bn(tn −∆tn))2 +Bn(tn −∆tn)2

+ 2(Bn(tn)−Bn(tn −∆tn))Bn(tn −∆tn)
=∆tn +Bn(tn −∆tn)2 + 2Bn(tn −∆tn) ∆Bn(tn −∆tn).

Thus,

Bn(tn)2 −Bn(tn −∆tn)2 = ∆tn + 2Bn(tn −∆tn) ∆Bn(tn −∆tn).

Summing over we get

Bn(tn)2 −Bn(rn)2 = 2
∫ tn

rn

Bn(sn) dBn(sn) + (tn − rn).

�

In general, the stochastic integral
∫
Xn dBn is not particularily well-

mannered, so we will constrict ourself to the case where Xn is an adapted process.
That Xn is adapted means that Xn(tn, ωn) only depends on the coin tosses
that has happened before tn, that is ωn(0), ωn(∆tn), ωn(2∆tn), ..., ωn(tn−∆tn),
where ∆tn = 1

n , and not by the future coin tosses ωn(tn), ωn(tn+∆tn), ..., ωn(1).
Mathematically this can be expressed by saying that if ωn, ω′n ∈ Ωn with

ωn(0) = ω′n(0), ωn(∆tn) = ω′n(∆tn), ... , ωn(tn −∆tn) = ω′n(tn −∆tn),

then Xn(tn, ωn) = Xn(tn, ω′n).

Proposition 3.2.2. Suppose that Xn is adapted. If rn, tn ∈ In and rn < tn
then

En

[(∫ tn

rn

Xn dBn

)2]
=
∫ tn

rn

En[Xn(sn)2] dsn,

where
∫ tn
rn
E[Xn(sn)2] dsn =

∑tn
sn=rn E[Xn(sn)2]∆tn.
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3.2. Stochastic integrals

Proof.

En

[(∫ tn

rn

Xn dBn

)2]
= En

[
tn∑

un=rn

tn∑
vn=rn

Xn(un)Xn(vn)∆Bn(un)∆Bn(vn)
]

=
tn∑

sn=rn

En[Xn(sn)2(∆Bn(sn))2]

since the increments of a random walk are independent

=
tn∑

sn=rn

En[Xn(s)2]∆sn

=
∫ tn

rn

En[Xn(sn)2] dsn.

�

Proposition 3.2.3. Suppose that φ is twice continuously differentiable. If
rn, tn ∈ In and rn < tn, then

φ(Bn(tn, ωn))− φ(Bn(rn, ωn))

=
∫ tn

rn

φ(Bn(sn, ωn)) dBn(sn, ωn) + 1
2

∫ tn

rn

φ′′(θn(sn, ωn))dsn,

where θn(sn, ωn) lies in the interval between Bn(tn, ωn) and Bn(tn + ∆tn, ωn).

Proof.

φ(Bn(tn + ∆tn, ωn))− φ(Bn(tn, ωn))

= φ′(Bn(tn, ωn))(Bn(tn + ∆tn, ωn)−Bn(tn, ωn) + 1
2φ
′′(ξ)∆sn (3.4)

by Taylor series representation, where ξ lies in the interval between Bn(tn, ωn)
and Bn(tn + ∆tn, ωn). Hence

φ(Bn(tn, ωn))− φ(Bn(rn, ωn))

=
tn∑

sn=rn

φ(Bn(sn + ∆sn, ωn))− φ(Bn(sn, ωn))

=
tn∑

sn=rn

φ′(Bn(sn, ωn))(Bn(sn + ∆sn, ωn)−Bn(sn, ωn))

+ 1
2

tn∑
sn=rn

φ′′(θn(sn, ωn))∆sn by (3.4)

=
∫ tn

rn

φ(Bn(sn, ωn)) dBn(sn, ωn) + 1
2

∫ tn

rn

φ′′(θn(sn, ωn)) dsn,

where θn(sn, ωn) lies in the interval between Bn(tn, ωn) and Bn(tn + ∆tn, ωn).
�
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3. Construction of the skeleton approximations

Theorem 3.2.4. Let {Xn}n∈N be a sequence of adapted processes
Xn : In×Ωn → R such that {Xn(sn)2}n∈N is A-integrable for all {sn}n∈N ∈ T .
Suppose the ultralimit X to {Xn}n∈N exists for almost all ω ∈ Ω for all but
a finite number of t ∈ I = [0, T ].Then we may define the stochastic integral∫
X dB to be the ultralimit of {

∫
Xn dBn}n∈N.

Proof. For simplicity, we will let I = [0, 1] and show that

lim
U

∫ 1

0
Xn(sn) dBn(sn) =

∫ 1

0
X(s) dB(s).

We first show the equality for simple functions. The simple functions on
the form

∑N
j=0 ej1[tj ,tj+1), where the ej ’s are random variables, are dense in

L2(I × Ω,B(I)⊗F , µ× P ) (see [Øks03]). By linearity, it suffices to show the
equality for functions of the form e1[r,t), where e is a random variable and
r, t ∈ I with r < t. We have that the stochastic integral∫ 1

0
e1[r,t) dB =

∫ t

r

e dB = e(Bt −Br).

Let [rn], [tn] ∈ T such that limU rn = r and limU tn = t. For each n ∈ N, let
en be an Frn-adapted random variable such that [en] is equal to e P -almost
everywhere (by Theorem 2.2.21 such variables exist). Then, for u ∈ I \ {r, t},
for all [un] ∈ T such that limU un = u we have limU en(ωn)1[rn,tn)(un) =
[en]([ωn])1[r,t)(u) for all [ωn] ∈ Ω. Then the ultralimit∫ 1

0
e1[r,t) dB = lim

U
en

∫ 1

0
1[rn,tn) dBn

= lim
U
en

tn∑
sn=rn

∆Bsn

= lim
U
en(Btn −Brn)

= [en](Bt −Br).

for almost all [ωn] ∈ Ω, which is equal to e(Bt − Br) P -almost everywhere.
Now suppose that {Xn}n∈N is a sequence of adapted processes Xn : Ωn ×
In → R such that {Xn(sn)2}n∈N is A-integrable for each [sn] ∈ T . To avoid
confusion we will let U −

∫ 1
0 X dB denote the “ultralimit integral” and we will

let I −
∫ 1

0 X dB denote the Ito integral. Since the simple functions are dense
in L2(I × Ω,B(I)⊗F , µ× P ), for ε > 0, by Ito isometry (see [Øks03]), there is
a simple function φ such that

E

[(
I −

∫ 1

0
X dB −

∫ 1

0
φ dB

)2]
=
∫ 1

0
E[(X − φ)2] ds < ε.

Consider now the ultralimit U −
∫ 1

0 X dB. For each n ∈ N there is a simple
function φn : [0, 1]× Ωn → R such that φ is the ultralimit of {φn}n∈N for all
but a finite number of t ∈ [0, 1] and such that the ultralimit

∫ 1
0 φ dB exists and

is equal to the Ito integral. Indeed, by Theorem 2.2.21 such a sequence exists
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3.2. Stochastic integrals

and we may find such a sequence such that {φn(tn)2}n∈N is A-integrable for
all {tn}n∈N ∈ T . We want to show that

E

[(
U −

∫ 1

0
X dB −

∫ 1

0
φ dB

)2]
= lim
U
En

[(∫ 1

0
Xn dBn −

∫ 1

0
φn dBn

)2]
(3.5)

and that

lim
U
En

[(∫ 1

0
Xn dBn −

∫ 1

0
φn dBn

)2]
=
∫ 1

0
E[(X − φ)2] ds.

By Proposition 3.2.2,

En

[(∫ 1

0
Xn dBn −

∫ 1

0
φn dBn

)2]
=
∫ 1

0
En[(Xn − φn)2] dsn.

ByA-integrability of {Xn(sn)2}n∈N and of {φn(sn)2}n∈N for each {sn}n∈N ∈ T ,(∫ 1
0 Xn dBn −

∫ 1
0 φn dBn

)2
is A-integrable and so (3.5) holds. Indeed, since

lim
U

sup
sn∈In

En[(Xn(sn)− φn(sn))2] <∞,

limU En[(
∫ 1

0 Xn dBn −
∫ 1

0 φn dBn)2] < ∞. Furthermore, if [An] ∈ A and
limU Pn(An) = 0, then

lim
U

sup
sn∈In

En[1An(Xn(sn)− φn(sn))2] = 0

and so limU En[1An(
∫ 1

0 Xn dBn −
∫ 1

0 φn dBn)2] = 0.

Let fn : In → R be defined by

fn(tn) = En[(Xn(tn)− φn(tn))2]

and let f : [0, 1]→ R be defined by

f(t) = E[(X(t)− φ(t))2].

Let ε′ > 0. By Proposition 3.1.3, f is continuous in all but a finite number of
points t ∈ [0, 1]. Hence f is Riemann integrable. So there is an N ∈ N such
that ∣∣∣∣∣

∫ 1

0
f ds−

1∑
sn=0

f(sn)∆sn

∣∣∣∣∣ < ε′

2

for all n ≥ N . Suppose that t1, t2, ..., tk−1 are the points of discontinuity
of f and let t0 = 0 and tk = 1. Since f is continuous for all but a finite
number of points, and since f(t) < ∞ for all t ∈ [0, 1], there is an M1 ∈ N
such that f ≤ M1. By A-integrability, there is an M2 ∈ N and a GM2 ∈ U
such that fn ≤ M2 for all n ∈ GM2 . Choose m ∈ N large enough so that
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3. Construction of the skeleton approximations

2(k+1)(M1+M2)
m < ε′

4 and so that 2
m < |ti+1 − ti| for each i ∈ {0, 1, ...,m − 1}.

Then for each interval (ti + 1
m , ti+1 − 1

m ), for i = 0, 1, ..., k − 1,{
n ∈ N | |fn(sn)− f(sn)| < ε′

4 for all sn ∈ In ∩ (ti + 1
m
, ti+1 −

1
m

)
}
∈ U .

Suppose not. Then there is an interval (ti + 1
m , ti+1 − 1

m ) and an Fi ∈ U such
that for each n ∈ Fi there is rn ∈ In ∩ (ti + 1

m , ti+1 − 1
m ) such that

|fn(rn)− f(rn)| ≥ ε′

4 .

We have that limU rn = r for some r ∈ [ti + 1
m , ti+1 − 1

m ] and
limU fn(rn) = f(r). Since Y is continuous in r, limU f(rn) = f(r). But now we
arrive at a contradiction, since there is a G ∈ U such that

|fn(rn)− f(rn)| ≤ |fn(rn)− f(r)|+ |f(r)− f(rn)| < ε′

4

for all n ∈ G. So we get that there is an F ∈ U such that

|E[(X(sn)− φ(sn))2]− En[(Xn(sn)− φn(sn))2]| < ε′

4

for all sn ∈
⋃m
i=0(ti + 1

m , ti+1 − 1
m ) ∩ In for all n ∈ F . So for

n ∈ F ∩ {1, 2, ..., N − 1}c ∩GM2 ,∣∣∣∣∫ 1

0
E[(X − φ)2] ds−

∫ 1

0
En[(Xn − φn)2] dsn

∣∣∣∣ < ε′.

So

lim
U

∫ 1

0
En[(Xn − φn)2] dsn =

∫ 1

0
E[(X − φ)2] ds,

hence

E

[(
U −

∫ 1

0
X dB −

∫ 1

0
φ dB

)2]
< ε.

�

Note that the proof above generalizes: IfXn is as above, {tn}n∈N, {sn}n∈N ∈
T and limU tn = t > limU sn = s, then limU

∫ tn
sn
Xn dBn =

∫ t
s
X dB. Note also

that the proof above also shows that, given a sequence of skeleton processes
Xn : In×Ωn → R with ultralimit X : I×Ω→ R such that X is continuous in all
but a finite number of points for each ω ∈ Ω, limU

∫ tn
sn
Xn(rn) drn =

∫ t
s
X(r) dr,

where t = limU tn and s = limU sn.

Theorem 3.2.5. Let {Xn}n∈N be a sequence of adapted processes
Xn : In×Ωn → R such that {Xn(sn)4}n∈N is A-integrable for all {sn}n∈N ∈ T .
Suppose the ultralimit X to {Xn}n∈N exists for almost all ω ∈ Ω for all but a
finite number of t ∈ [0, 1].Then the ultralimit process

∫
X dB to the discrete-time

processes {
∫
Xn dBn}n∈N exists (and is continuous).
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3.2. Stochastic integrals

Proof. First we show that

P (lim
U

∫ tn

0
Xn(sn) dBn(sn) = lim

U

∫ rn

0
Xn(sn) dBn(sn)

for all [tn], [rn] ∈ T such that lim
U
rn = lim

U
tn = t) = 1

for all t ∈ I. We have that

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
Xn(sn) dBn(sn)−

∫ rn

0
Xn(sn) dBn(sn))| 6= 0}

⊆
⋃
m∈N
{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim

U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
Xn(sn) dBn(sn)−

∫ rn

0
Xn(sn) dBn(sn))| ≥ 1

m
}.

For each k ∈ N we have

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
Xn(sn) dBn(sn)−

∫ rn

0
Xn(sn) dBn(sn))| ≥ 1

m
}

⊆ {ω ∈ Ω | lim
U

sup
rn∈[t− 1

k ,t+
1
k ]∩In

|(
∫ rn

0
Xn(sn) dBn(sn)

−
∫ t− 1

k

0
b(sn, Xn(sn)) dBn(sn))| ≥ 1

2m}.

By Doob’s martingale inequality (see [Doo53]),

P (lim
U

sup
rn∈[t− 1

k ,t+
1
k ]∩In

|(
∫ rn

0
Xn(sn) dBn(sn)

−
∫ t− 1

k

0
Xn(sn) dBn(sn))| ≥ 1

2m )

≤ lim
U
Pn( sup

rn∈[t− 1
k ,t+

1
k ]∩In

|(
∫ rn

0
Xn(sn) dBn(sn)

−
∫ t− 1

k

0
Xn(sn) dBn(sn))| ≥ 1

4m )

≤ lim
U

16m2En[(
∫ t+ 1

k

t− 1
k

Xn(sn) dBn(sn))2]

≤ lim
U

32m2 sup
sn∈In

En[Xn(sn)2] 1
k

= 32m2 sup
s∈I

En[X(s)2] 1
k
.

Since this is true for each k ∈ N,

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
Xn(sn) dBn(sn)−

∫ rn

0
Xn(sn) dBn(sn))| ≥ 1

m
}
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3. Construction of the skeleton approximations

is measurable and has measure 0, since it is the subset of a set of measure 0.
Hence

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
Xn(sn) dBn(sn)−

∫ rn

0
Xn(sn) dBn(sn))| 6= 0}

is measurable and has measure 0. We want to show that

P (lim
U

∫ tn

0
b(sn, Xn(sn)) dBn(sn) = lim

U

∫ rn

0
b(sn, Xn(sn)) dBn(sn)

whenever [tn] ≈ [rn] for all [tn], [rn] ∈ T ) = 1.

We will use the following notation: For [tn], [rn] ∈ T , we will write [rn] ≤ [tn]
to mean that limU rn ≤ limU tn. Similarly, we will write k1 ≤ [tn] ≤ k2 to mean
that k1 ≤ limU tn ≤ k2. Let Y : T × Ω→ R be defined by

Y ([tn], [ωn]) = lim
U
Yn(tn, ωn),

where
Yn(tn, ωn) =

(∫ tn

0
Xn(sn) dBn(sn)

)
(ωn).

We will proceed in a similar way to the proof of Theorem 3.1.18. For m, k ∈ N,
let

Ωm,k = {[ωn] ∈ Ω | ∀i ∈ {0, 1, ..., k − 1} sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| < 1
m


 .

In order to show that Ȳ exists as in Definition 3.1.6, it suffices to show that

Ω′ =
⋂
m∈N

⋃
k∈N

Ωm,k

has measure 1, since

Ω′ ={[ωn] ∈ Ω | lim
U
Yn(tn, ωn) = lim

U
Yn(rn, ωn)

whenever [tn] ≈ [rn] for all [tn], [rn] ∈ T}.

We show that
Ω′c =

⋃
m∈N

⋂
k∈N

Ωcm,k

has measure 0 (we will soon show that these sets are indeed measurable).
Suppose that P (Ω′c) > 0. Then there is m0 ∈ N such that

P (
⋂
k∈N

Ωcm0,k) > 0.
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3.2. Stochastic integrals

We show that limk→∞ P (Ωcm0,k
) = 0, which leads to a contradiction. We have

that

Ωcm0,k = {[ωn] ∈ Ω | ∃i ∈ {0, 1, ..., k − 1} such that

sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0


=
k−1⋃
i=0

[ωn] ∈ Ω | sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0

 .

For each i ∈ {0, ..., k}, let {sn,i}∈N ∈ T be such that limU sn,i = iT
k . Then, by

the previous observation that

P ({[ωn] ∈ Ω | ∃[tn], [sn] ∈ T with lim
U
tn = lim

U
sn = t

such that lim
U
Yn(tn, ωn) 6= lim

U
Yn(sn, ωn)}) = 0,

sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])−Y ([rn], [ωn])| = lim
U

sup
sn,i≤tn≤sn,i+1

|Yn(tn, ωn)−Yn(sn,i, ωn)|

for almost all [ωn] ∈ Ω (this shows that the sets are measurable). Then

P (Ωc
m0,k) = P

k−1⋃
i=0

[ωn] ∈ Ω | sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0




≤
k−1∑
i=0

P


[ωn] ∈ Ω | sup

[rn]≤[tn]≤ (i+1)T
k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0


 ,

where we have used the old summation convention. We have that

P


[ωn] ∈ Ω | sup

[rn]≤[tn]≤ (i+1)T
k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0




≤ lim
U
Pn

({
ωn ∈ Ωn | sup

sn,i≤tn≤sn,i+1

|Yn(tn, ωn)− Yn(sn,i, ωn)| ≥ 1
2m0

})
by (4.3)

≤ lim
U

16m4
0En

[(
sup

sn,i≤tn≤sn,i+1

|Yn(tn, ωn)− Yn(sn,i, ωn)|
)4
]

by Markov’s inequality (see [Bil08]).
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3. Construction of the skeleton approximations

Next we will use the Burkholder-Davis-Gundy inequality for martingales (see
[BDG72]), which gives us that

En

( sup
sn,i≤tn≤sn,i+1

|Yn(tn, ωn)− Yn(sn,i, ωn)|
)4


≤ CEn[[Yn(tn)− Yn(sn,i)]2tn=sn,i+1
],

for some C ∈ R, where

[Yn(tn)− Yn(sn,i)]tn=sn,i+1 =
sn,i+1∑
sn=sn,i

Xn(sn)2∆sn

is the quadratic variation of Yn(sn,i+1)− Yn(sn,i). Thus

En

( sup
sn,i≤tn≤sn,i+1

|Yn(tn, ωn)− Yn(sn,i, ωn)|
)4


≤ C sup
tn∈In

En[Xn(sn)4]|sn,i+1 − sn,i|,

Hence

P (Ωcm0,k) ≤ lim
U

16m0kC sup
tn∈In

En[Xn(sn)4]|sn,i+1 − sn,i|2

= 16m4
oC sup

s∈I
E[X(s)4]T 2 1

k
→ 0 as k →∞,

which is what we wanted to show. By Proposition 3.1.3, the ultralimit
∫
X dB

to {
∫
Xn dBn}n∈N exists and is continuous for almost all ω ∈ Ω. �

Corollary 3.2.6. Suppose that {Bn}n∈N is a series or random walks. Let B
denote the a Brownian motion we get by taking the ultralimit. Suppose that
r, t ∈ I and that r < t. Then

B(t)−B(r) = 2
∫ t

r

B(s) dB(s) + (t− r).

Proof. This follows from Proposition 3.2.1 and Theorem 3.2.4. �

Corollary 3.2.7 (Simple Version of Ito’s Formula). Suppose that φ is a twice
continuously differentiable function. Suppose that {Bn}n∈N is a series of random
walks and let B denote the Brownian motion we get by taking the ultralimit.
Suppose that r, t ∈ I and that r < t. Furthermore suppose that {φ′(Bn(tn))2}n∈N
is A-integrable for for each {tn}n∈N ∈ T . Then

φ(B(t)) = φ(B(r)) +
∫ t

r

φ′(B(s)) dB(s) + 1
2

∫ t

r

φ′′(B(s)) ds.

Proof. This follows from Proposition 3.2.3 and Theorem 3.2.4. �
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CHAPTER 4

Stochastic differential equations

4.1 Strong solutions to stochastic differential equations

In thi section we will focus on strong solutions to stochastic differential equations,
namely we will find criteria for when there exists a strong solutions to a stochastic
differential equation. First we have the following result, which might look a
little impractical at first, but will be useful later on.

Proposition 4.1.1. Suppose that a : I × R → R and b : I × R → R are
continuous functions and that we have a stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dB(t), X(0) = x0. (4.1)

Suppose that for each n ∈ N, Xn is the solution to the difference equation

∆Xn(tn) = a(tn, Xn(tn)))∆tn + b(tn, Xn(tn))∆Bn(tn), Xn(0) = xn0 , (4.2)

where limU xn0 = x0, and that the ultralimit X to {Xn}n∈N exists and is con-
tinuous for almost all ω ∈ Ω. If {b(tn, Xn(tn))2}n∈N is A-integrable for all
{tn}n∈N ∈ T , then X is a solution to (4.1).

Proof. Suppose that Xn is the solution to (4.2) for each n ∈ N, and that the
ultralimit X of {Xn}n∈N exists and is continuous for almost all ω ∈ Ω. Suppose
that {tn}n∈N ∈ T and limU tn = t ∈ I. We have that

Xn(tn)−Xn(0) =
∫ tn

0
a(sn, Xn(sn)) dsn +

∫ tn

0
b(sn, Xn(sn)) dBn(sn)

By an argument similar to the one in Theorem 3.2.4,

lim
U

∫ tn

0
a(sn, Xn(sn)) dsn =

∫ t

0
a(s,X(s)) ds

and by Theorem 3.2.4, since {b(tn, Xn(tn))2}n∈N isA-integrable for all {tn}n∈N ∈
T ,

lim
U

∫ tn

0
b(sn, Xn(sn)) dBn(sn) =

∫ t

0
b(s,X(s)) dB(s).

Hence X is a solution to (4.1). �



4. Stochastic differential equations

We want to find constraints on a and b such that the solution to (4.1)
exists. Suppose that a : I ×R→ R and b : I ×R→ R are continuous, bounded
functions and that we have a stochastic differential equation as in (4.1). Suppose
that for each n ∈ N, Xn is the solution to the difference equation (4.2). First
we show that, given t ∈ I,

P (lim
U
Xn(sn) = lim

U
Xn(tn) for all [tn], [sn] ∈ T such that

lim
U
sn = lim

U
tn = t) = 1.

Since a and b are bounded, there is an M ∈ R such that |a| ≤M and |b| ≤M .
Since

|
∫ tn

rn

a(sn, Xn(sn)) dsn| ≤M |tn − rn|,

lim
U

∫ tn

0
a(sn, Xn(sn)) dsn = lim

U

∫ rn

0
a(sn, Xn(sn)) dsn

for all [sn], [tn] ∈ T such that limU tn = limU rn for all ω ∈ Ω. Hence it suffices
to check that

P (lim
U

∫ tn

0
b(sn, Xn(sn)) dBn(sn) = lim

U

∫ rn

0
b(sn, Xn(sn)) dBn(sn)

for all [tn], [rn] ∈ T such that lim
U
rn = lim

U
tn = t) = 1

for all t ∈ I. We have that

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
b(sn, Xn(sn)) dBn(sn)−

∫ rn

0
b(sn, Xn(sn)) dBn(sn))| 6= 0}

⊆
⋃
m∈N
{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim

U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
b(sn, Xn(sn)) dBn(sn)−

∫ rn

0
b(sn, Xn(sn)) dBn(sn))| ≥ 1

m
}.

For each k ∈ N we have

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
b(sn, Xn(sn)) dBn(sn)−

∫ rn

0
b(sn, Xn(sn)) dBn(sn))| ≥ 1

m
}

⊆ {ω ∈ Ω | lim
U

sup
rn∈[t− 1

k ,t+
1
k ]∩In

|(
∫ rn

0
b(sn, Xn(sn)) dBn(sn)

−
∫ t− 1

k

0
b(sn, Xn(sn)) dBn(sn))| ≥ 1

2m}.
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4.1. Strong solutions to stochastic differential equations

By Doob’s martingale inequality (see [Doo53]),

P (lim
U

sup
rn∈[t− 1

k ,t+
1
k ]∩In

|(
∫ rn

0
b(sn, Xn(sn)) dBn(sn)

−
∫ t− 1

k

0
b(sn, Xn(sn)) dBn(sn))| ≥ 1

2m )

≤ lim
U
Pn( sup

rn∈[t− 1
k ,t+

1
k ]∩In

|(
∫ rn

0
b(sn, Xn(sn)) dBn(sn)

−
∫ t− 1

k

0
b(sn, Xn(sn)) dBn(sn))| ≥ 1

4m )

≤ lim
U

16m2En[(
∫ t+ 1

k

t− 1
k

b(Xn(sn), sn) dBn(sn))2] ≤ 32m2M2 1
k
.

Since this is true for each k ∈ N,

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
b(sn, Xn(sn)) dBn(sn)−

∫ rn

0
b(sn, Xn(sn)) dBn(sn))| ≥ 1

m
}

is measurable and has measure 0, since it is the subset of a set of measure 0.
Hence

{ω ∈ Ω | ∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
b(sn, Xn(sn)) dBn(sn)−

∫ rn

0
b(sn, Xn(sn)) dBn(sn))| 6= 0}

is measurable and has measure 0. Thus

P (∃ [tn], [rn] ∈ T with lim
U
tn = lim

U
rn = t such that

| lim
U

(
∫ tn

0
b(sn, Xn(sn)) dBn(sn)−

∫ rn

0
b(sn, Xn(sn)) dBn(sn))| = 0) = 1.

(4.3)

We want to show that X exists and is continuous for almost all ω ∈ Ω. Since a
is bounded,

lim
U

∫ tn

0
a(Xn(sn)) dsn = lim

U

∫ rn

0
a(Xn(sn)) dsn

whenever limU tn = limU rn. Hence it suffices to check that

P (lim
U

∫ tn

0
b(sn, Xn(sn)) dBn(sn) = lim

U

∫ rn

0
b(sn, Xn(sn)) dBn(sn)

whenever [tn] ≈ [rn] for all [tn], [rn] ∈ T ) = 1.
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4. Stochastic differential equations

We will use the following notation: For [tn], [rn] ∈ T , we will write [rn] ≤ [tn]
to mean that limU rn ≤ limU tn. Similarly, we will write k1 ≤ [tn] ≤ k2 to mean
that k1 ≤ limU tn ≤ k2. Let Y : T × Ω→ R be defined by

Y ([tn], [ωn]) = lim
U
Yn(tn, ωn),

where
Yn(tn, ωn) =

(∫ tn

0
b(sn, Xn(sn)) dBn(sn)

)
(ωn).

We will proceed in a similar way to the proof of Theorem 3.1.18. For m, k ∈ N,
let

Ωm,k = {[ωn] ∈ Ω | ∀i ∈ {0, 1, ..., k − 1} sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| < 1
m


 .

In order to show that Ȳ exists as in Definition 3.1.6, it suffices to show that

Ω′ =
⋂
m∈N

⋃
k∈N

Ωm,k

has measure 1, since

Ω′ ={[ωn] ∈ Ω | lim
U
Yn(tn, ωn) = lim

U
Yn(rn, ωn)

whenever [tn] ≈ [rn] for all [tn], [rn] ∈ T}.

We show that
Ω′c =

⋃
m∈N

⋂
k∈N

Ωcm,k

has measure 0 (we will soon show that these sets are indeed measurable).
Suppose that P (Ω′c) > 0. Then there is m0 ∈ N such that

P (
⋂
k∈N

Ωcm0,k) > 0.

We show that limk→∞ P (Ωcm0,k
) = 0, which leads to a contradiction. We have

that

Ωcm0,k = {[ωn] ∈ Ω | ∃i ∈ {0, 1, ..., k − 1} such that

sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0


=
k−1⋃
i=0

[ωn] ∈ Ω | sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0

 .

52



4.1. Strong solutions to stochastic differential equations

For each i ∈ {0, ..., k}, let {sn,i}∈N ∈ T be such that limU sn,i = iT
k . Then, by

(4.3),

sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])−Y ([rn], [ωn])| = lim
U

sup
sn,i≤tn≤sn,i+1

|Yn(tn, ωn)−Yn(sn,i, ωn)|

for almost all [ωn] ∈ Ω (this shows that the sets are measurable). Then

P (Ωc
m0,k) = P

k−1⋃
i=0

[ωn] ∈ Ω | sup
[rn]≤[tn]≤ (i+1)T

k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0




≤
k−1∑
i=0

P


[ωn] ∈ Ω | sup

[rn]≤[tn]≤ (i+1)T
k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0


 ,

where we have used the old summation convention. We have that

P


[ωn] ∈ Ω | sup

[rn]≤[tn]≤ (i+1)T
k

limU rn= iT
k

|Y ([tn], [ωn])− Y ([rn], [ωn])| ≥ 1
m0




≤ lim
U
Pn

({
ωn ∈ Ωn | sup

sn,i≤tn≤sn,i+1

|Yn(tn, ωn)− Yn(sn,i, ωn)| ≥ 1
2m0

})
by (4.3)

≤ lim
U

16m4
0En

[(
sup

sn,i≤tn≤sn,i+1

|Yn(tn, ωn)− Yn(sn,i, ωn)|
)4
]

by Markov’s inequality (see [Bil08]).

Next we will use the Burkholder-Davis-Gundy inequality for martingales (see
[BDG72]), which gives us that

En

( sup
sn,i≤tn≤sn,i+1

|Yn(tn, ωn)− Yn(sn,i, ωn)|
)4


≤ CEn[[Yn(tn)− Yn(sn,i)]2tn=sn,i+1
],

for some C ∈ R, where

[Yn(tn)− Yn(sn,i)]tn=sn,i+1 =
sn,i+1∑
sn=sn,i

b(sn, Xn(sn))2∆sn ≤M2|sn,i+1 − sn,i|

is the quadratic variation of Yn(sn,i+1)− Yn(sn,i). Hence

P (Ωcm0,k) ≤ lim
U

16m0CkM
4|sn,i+1 − sn,i|2 = 16m4

oCM
4T 2 1

k
→ 0 as k →∞,
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4. Stochastic differential equations

which is what we wanted to show. By Proposition 3.1.3, the ultralimit X to
{Xn}n∈N exists and is continuous for almost all ω ∈ Ω. Hence X is a solution
to (4.1). We will formulate this as a lemma.

Lemma 4.1.2. Suppose that a : I ×R → R and b : I ×R → R are bounded,
continuous functions and that we have a stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dB(t), X(0) = x0. (4.4)

Suppose that for each n ∈ N, Xn is the solution to the difference equation

∆Xn(tn) = a(tn, Xn(tn)))∆tn + b(tn, Xn(tn))∆Bn(tn), Xn(0) = xn0 ,

where limU xn0 = x0, Then the ultralimit X to {Xn}n∈N exists, is continuous
and is a solution to (4.4) for almost all ω ∈ Ω.

Theorem 4.1.3. Suppose that a : I×R→ R and b : I×R→ R are continuous
functions with at most linear growth, i.e. there is a C ∈ R such that

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|).

Suppose we have a stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dB(t), X(0) = x0. (4.5)

and suppose that for each n ∈ N, Xn is the solution to the difference equation

∆Xn(tn) = a(tn, Xn(tn)))∆tn + b(tn, Xn(tn))∆Bn(tn), Xn(0) = xn0

where limU xn0 = x0, Then the ultralimit X to {Xn}n∈N exists, is continuous
and is a solution to (4.5) for almost all ω ∈ Ω.

Proof. Let

Ω′ ={ω ∈ Ω | X(ω) exists and satisfies

X(t, ω) = x0 +
∫ t

0
a(s,X(s)) ds+

∫ t

0
b(s,X(s)) dB(s) for all t ∈ I}.

For m ∈ R+, let am : I ×R and bm : I ×R be defined by

am(s, x) =


a(s, x) if |a(s, x)| ≤ m
m if a(s, x) ≥ m
−m if a(s, x) ≤ −m

and

bm(s, x) =


b(s, x) if |b(s, x)| ≤ m
m if b(s, x) ≥ m
−m if b(s, x) ≤ −m

For each N ∈ N, let

ΩN ={ω ∈ Ω | XN (ω) exists and XN (t, ω)

= x0 +
∫ t

0
aC(1+N)(s,XN (s, ω)) ds+

∫ t

0
bC(1+N)(s,XN (s, ω)) dB(s, ω)

for all t ∈ I}.
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4.1. Strong solutions to stochastic differential equations

Then for each N ∈ N,

Ω′c ⊆{ω ∈ Ω | sup
[tn]∈T

|X([tn], ω)| ≥ N} ∪ ΩcN .

Indeed, if
sup

[tn]∈T
|X([tn], ω)| < N,

then
|a|, |b| ≤ C(1 +N)

so that either ω ∈ ΩcN or X(ω) exists and

X(ω, t) = x0 +
∫ t

0
aC(1+N)(s,X(s, ω)) ds+

∫ t

0
bC(1+N)(s,X(s, ω)) dB(s, ω)

= x0 +
∫ t

0
a(s,X(s, ω)) ds+

∫ t

0
b(s,X(s, ω)) dB(s, ω)

by Lemma 4.1.2. We have that

P ( sup
[tn]∈T

|X([tn], ω)| ≥ N) = P (lim
U

sup
tn∈In

|Xn(tn)| ≥ N)

≤ lim
U
Pn( sup

tn∈In
|Xn(tn)| ≥ N

2 ).

Furthermore, by Markov’s inequality (see [Bil08]),

Pn( sup
tn∈In

|Xn(tn)| ≥ N

2 ) ≤ 4
N2En[ sup

tn∈In
Xn(tn)2].

We have that for each un ∈ In,

En[ sup
tn∈In∩[0,un]

Xn(tn)2]

≤ 2(En[ sup
tn∈In∩[0,un]

(
∫ tn

0
a(sn, Xn(sn)) dsn)2] + En[ sup

tn∈In∩[0,un]
(
∫ tn

0
b(sn, Xn(sn)) dB(sn))2]),

where

En[ sup
tn∈In∩[0,un]

(
∫ tn

0
a(sn, Xn(sn)) dsn)2] ≤ un

∫ un

0
En[a(sn, Xn(sn))2]dsn

by Hölder’s inequality (see [Doo12]) and

En[ sup
tn∈In∩[0,un]

(
∫ tn

0
b(sn, Xn(sn)) dB(sn))2] ≤ 2

∫ un

0
En[b(sn, Xn(sn))2] dsn

by Doob’s martingale inequality (see [Doo53]). Since

a(sn, Xn(sn))2, b(sn, Xn(sn))2 ≤ 2C2+2C2Xn(sn)2 ≤ 2C2+2C2 sup
rn∈In∩[0,sn]

Xn(rn)2

we have

En[ sup
tn∈In∩[0,un]

Xn(tn)2] ≤ C2(4T (T+2)+C2(4(T+2)
∫ un

0
En[ sup

rn∈In∩[0,sn]
Xn(rn)2] dsn.
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4. Stochastic differential equations

By Gronwall’s inequality (see [Øks03]),

En[ sup
tn∈In

Xn(tn)2] ≤ C24T (T + 2)eC
24T (T+2).

Hence

P ( sup
[tn]∈T

|X([tn], ω)| ≥ N) ≤ 16C2

N2 T (T + 2)eC
24T (T+2) → 0 as N →∞.

Since (by Lemma 4.1.2) P (ΩcN ) = 0 for all N ∈ N, we get that Ω′c is contained in
a set of measure 0 and is thus measurable with measure zero. Hence P (Ω′) = 1,
which is what we wanted to show. �

Below is a widely known stochastic differential equation, whose (unique)
solution is called geometric Brownian motion, which we will use later in this
thesis.

Proposition 4.1.4. Consider the stochastic differential equation

dX(t) = αdt+ βdB(t), X(0) = x0, (4.6)

where α, β ∈ R. Define a process Xn : In × Ωn → R by Xn(0) = x0 ∈ R and

∆Xn(tn, ωn) = Xn(tn, ωn)(α∆tn + β∆Bn(tn, ωn)) for all t ∈ In.

Then

Xn(tn, ωn) = x0

tn−∆tn∏
sn=0

(1 + α∆tn + β∆Bn(sn, ωn)).

Furthermore, when n is large, then

Xn(tn, ωn) ≈ x0e
(α− 1

2β
2)tn+βBn(tn,ωn)

so that X : I × Ω→ R given by X(t) = x0e
(α− 1

2β
2)tn+βBn(tn) is a solution to

(4.6).

Proof. We have that

∆Xn(tn, ωn) = Xn(tn, ωn)(α∆tn + β∆Bn(tn, ωn)) for all tn ∈ In

and that
∆Xn(tn, ωn) = Xn(tn + ∆tn, ωn)−Xn(tn, ωn),

hence

Xn(tn + ∆tn) = Xn(tn, ωn)(1 + α∆tn + β∆Bn(tn, ωn))
= Xn(tn −∆tn, ωn)(1 + α∆tn + β∆Bn(tn, ωn))
× (1 + α∆tn + β∆Bn(tn −∆tn, ωn))
= ...

= x0

tn∏
sn=0

(1 + α∆tn + β∆Bn(sn, ωn)).
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Let Yn : In × Ωn → R be defined by

Yn(tn, ωn) = ln(Xn(tn, ωn)) = ln(x0) +
tn∑

sn=0
ln(1 + α∆tn + β∆Bn(sn, ωn)).

By Taylor series representation ln(1 + x) ≈ x− x2

2 when x is close to 0. So

ln(1 + α∆tn + β∆Bn(sn, ωn)) ≈ α∆tn + β∆Bn(sn, ωn)

− 1
2(α∆tn − β∆Bn(sn, ωn))2

= α∆tn + β∆Bn(sn, ωn))− 1
2α

2(∆tn)2

− 1
2β

2(∆Bn(sn, ωn))2 − α∆tnβ∆Bn(sn, ωn)

≈ (α− 1
2β

2)∆tn + β∆Bn(sn, ωn)

since the last two terms are of higher order and can be omitted. So we get that

Yn(tn, ωn) = ln(x0) +
tn∑

sn=0
ln(1 + α∆tn + β∆Bn(sn, ωn))

≈ ln(x0) +
tn∑

sn=0
(α− 1

2β
2)∆tn + β∆Bn(sn, ωn)

= ln(x0) + (α− 1
2β

2)tn + βBn(tn, ωn).

Therefore, when n is large,

Xn(tn, ωn) ≈ x0e
(α− 1

2β
2)tn+βBn(tn,ωn).

If t = limU tn, then limU ln(Xn(tn, ωn)) = ln(x0) + (α − 1
2β

2)t + βB(t, [ωn])
and thus limU Xn(tn, ωn) = x0e

(α− 1
2β

2)t+βB(t,[ωn]), where B is a Brownian
motion. �

4.2 Weak solutions to stochastic differential equations

In this section we will look at weak solutions to stochastic differential equations.
We will use Girsanov’s theorem, which we will state here without proof (which
can be found in [Øks03]).

Theorem 4.2.1 (Girsanov’s theorem for stochastic differential equations). Let
a, a′ : I ×R→ R and b : I ×R→ R. Let X be an Ito process of the form

dXt = a′(t,X(t))dt+ b(t,X(t))dBt, X(0) = x0,

and suppose there exists functions a : I ×R→ R and θ : I × Ω→ R such that

b(t,X(t))θ(t) = a′(t,X(t))− a(t,X(t)).

Put
M(t) = e

−
∫ t

0
θ(s) dBs− 1

2

∫ t
0
θ(s)2 ds
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4. Stochastic differential equations

and
dQ = MT dP

on F . Assume that M is a martingale (with respect to F and P ). Then Q is a
probability measure on F , the process B̂ defined by

B̂(t) =
∫ t

0
θ(s) ds+B(t)

is a Brownian motion with respect to Q and in terms of Q, the process X has
the stochastic integral representation

dXt = a(t,X(t))dt+ b(t,X(t))dB̂t.

Suppose we have two differential equations

dXt = a(X(t))dt+ b(X(t))dBt, X(0) = x0 (4.7)

and

dX ′t = a′(X ′(t))dt+ b(X ′(t))dBt, X ′(0) = x0 (4.8)

and that we know the solution to (4.8) and that we wish to find out whether
there exists a solution to (4.7). Girsanov’s theorem says that if

θ(s) = a′(X ′(s))− a(X ′(s))
b(X ′(s))

is well-defined and
M(t) = e

∫ t
0
θ(s)− 1

2

∫ t
0
θ(s)2ds

is a martingale, then a weak solution to (4.7) exists.

We will consider stochastic differential equations of the form

dXt = X(t)(α+ γ lnX(t))dt+ βX(t)dBt, X(0) = x0 (4.9)

for some constants α, β, γ ∈ R with β 6= 0 and x0 > 0. We will show that there
exists a weak solution to (4.9) even though it does not satisfy the linear growth
assumptions in Theorem 4.1.3.

First we solve the stochastic differential equation

dXt = αX(t)dt+ βX(t)dBt, X(0) = x0,

which has the solution

X(t) = x0e
βBt+(α− 1

2β
2)t.

For each n ∈ N define θn : In × Ωn → R by

θn(tn) = γ

β
(ln(x0) + βBn(tn) + (α− 1

2β)tn)
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4.2. Weak solutions to stochastic differential equations

and θ′n : In × Ωn → R by

θ′n(tn) =


θn(tn) if |θn(tn)| ≤ 1

2
√
n

1
2
√
n if θn(tn) ≥ 1

2
√
n

− 1
2
√
n if θn(tn) ≤ − 1

2
√
n.

We then have that there is a constant C such that

θ′n(tn)2 ≤ θn(tn)2 ≤ C(1 +Bn(tn)2)

for all tn ∈ In. Let Mn : In × Ωn → N be defined by

Mn(tn) =
tn−∆tn∏
sn=0

(1 + θ′n(sn)∆Bn(sn)).

and let M : I × Ω→ R denote the ultralimit. Then by Taylor approximation
(using the same argument as in Proposition 4.1.4),

M(t) = e

∫ t
0
θ(s) dBs− 1

2

∫ t
0
θ(s)2 ds

for almost all ω ∈ Ω, where θ is the ultralimit of {θn}n∈N which satisfies

θ(s) = αX(s)−X(s)(α+ γ lnX(s))
βX(s) (4.10)

for almost all [ωn] ∈ Ω (note that we can use the Taylor series argument since
θ exists and is continuous for almost all [ωn] ∈ Ω). Indeed, since the ultralimit
θ of {θn}n∈N exists for almost all [ωn] ∈ Ω, for almost all [ωn] ∈ Ω, θ([ωn]) is
continuous for almost all [ωn] ∈ Ω. If [ωn] ∈ Ω is such that θ is continuous, then
|θ([ωn])| is bounded (since it’s defined on a compact interval and since B takes
values in R) and so there is G ∈ U and K ∈ N such that |θn(ωn)| ≤ K for all
n ∈ F . Then for all n ∈ F ∩ {1, .., 4K2 − 1}c, θ′n(ωn) = θn(ωn). So θ is the
ultralimit of θ′n. Since θn(tn)4 is A-integrable for any {tn}n∈N, so is θ′n(tn)4 for
any {tn}n∈T . So we have that the ultralimit to {

∫ tn
0 θ′n(sn) dBn(sn)} (which is∫ t

0 θ(s) dBs, where t = limU tn) exists and is continuous for almost all [ωn] ∈ Ω.
Again, since the ultralimit to {θ′n}n∈N exists for almost all [ωn] ∈ Ω, by the
same argument as in Proposition 4.1.4 (since {θn(ωn)′}n∈N is U-bounded for
almost all [ωn] ∈ Ω) we have that

lim
U

tn−∆tn∏
sn=0

(1 + θ′n(sn)∆Bn(sn)) = e

∫ t
0
θ(s) dBs+ 1

2

∫ t
0
θ(s)2 ds

for any {tn}n∈N such that limU tn = t. Furthermore, since θn satisfies

θn(sn) = αXn(sn)−Xn(sn)(α+ γ lnXn(sn))
βXn(sn) ,

where Xn is given is given in Proposition 4.1.4, we have that equation (4.10)
holds.
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4. Stochastic differential equations

By Proposition 3.1.15, since each Mn is a local martingale, we have that
M is a local martingale. Indeed,

En[ sup
tn∈In 0<tn≤τk,n

(Mn(tn)−Mn(tn −∆tn))2]

≤ k2En[θ′n(tn −∆tn)2(∆Bn(tn −∆tn))2] ≤ 1
4k

2

and En[Mn(0)] = 1 for each n ∈ N. We want to show that

lim
U
En[Mn(T ) ln+Mn(T )] <∞.

It then follows by Proposition 3.1.16 thatM is a martingale. Let ln− : (0,∞)→
R be defined by

ln−(x) = ln(x)− ln+(x).

Then we have

En[Mn(T ) ln+(Mn(T ))] = En[Mn(T ) ln(Mn(T ))]− En[Mn(T ) ln−(Mn(T ))].

Since |x ln(x)| ≤ 1 for x < 1, it suffices to check that

lim
U
En[Mn(T ) ln(Mn(T ))] <∞.

Letting Qn be the probability measure defined by dQn = Mn(T )dPn, we
consider the term

EQn [ln(1 + θ′n(rn)∆Bn(rn))]

for some rn ∈ In, rn ≤ T −∆tn. By Jensen’s inequality, since ln is a concave
function, we have

EQn [ln(1 + θ′n(rn)∆Bn(rn))] ≤ ln(1 + EQn [θ′n(rn)∆Bn(rn)]).

We will next use the following theorem, which we will state here without proof
(which can be found in [Øks03]):

Theorem 4.2.2 (Bayes’ rule). Let Gn ⊆ Fn be any sub-σ-algebra. For any
Fn-measurable random variable Xn, we have

EQn [Xn | Gn]En
[
dQn
dPn

| Gn
]

= En

[
Xn

dQn
dPn

| Gn
]
.

Lemma 4.2.3.

EQn [θ′n(rn)∆Bn(rn)] | Fnrn ] = θ′n(rn)2∆tn.
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4.2. Weak solutions to stochastic differential equations

Proof. This follows by Theorem 4.2.2. Indeed, we have that

En[Mn(T ) | Fnrn ] = En[
T−∆tn∏
sn=0

(1 + θ′n(sn)∆Bn(sn)) | Fnrn ]

=
(
rn−∆tn∏
sn=0

(1 + θ′n(sn)∆Bn(sn))
)

× En

[
T−∆tn∏
sn=rn

(1 + θ′n(sn)∆Bn(sn)) | Fnrn

]

=
rn−∆tn∏
sn=0

(1 + θ′n(sn)∆Bn(sn)) = Mn(rn).

Furthermore,

En[θ′n(rn)∆Bn(rn)Mn(T )] = En[θ′n(rn)∆Bn(rn)
T−∆tn∏

sn=0

(1 + θ′n(sn)∆Bn(sn)) | Fn
rn ]

=

(
rn−∆tn∏

sn=0

(1 + θ′n(sn)∆Bn(sn))

)

× En

[
θ′n(rn)∆Bn(rn)

T−∆tn∏
sn=rn

(1 + θ′n(sn)∆Bn(sn)) | Fn
rn

]

=

(
rn−∆tn∏

sn=0

(1 + θ′n(sn)∆Bn(sn))

)
× En[(θ′n(rn)∆Bn(rn) + θ′n(rn)2∆tn)]

× En

[
T−∆tn∏

sn=rn+∆tn

(1 + θ′n(sn)∆Bn(sn)) | Fn
rn

]

=

(
rn−∆tn∏

sn=0

(1 + θ′n(sn)∆Bn(sn))

)
θ′n(rn)2∆tn.

Hence

EQn [θ′n(rn)∆Bn(rn)] =
En[θ′n(rn)∆Bn(rn)Mn(T ) | Fnrn ]

En[Mn(T ) | Fnrn ] = θ′n(rn)2∆tn.

�

By Lemma 4.2.3 we have

EQn [θ′n(rn)∆Bn(rn)] = EQn [θ′n(rn)2]∆tn ≤ C(1 + EQn [Bn(rn)2])∆tn

for some constant C by definition of θn. By Proposition 3.2.1 we have

Bn(rn)2 =
rn∑
sn=0

2Bn(sn)∆Bn(sn) + rn.
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4. Stochastic differential equations

Again (using an argument similar to the one in Lemma 4.2.3), for high enough
n, by conditional expectation, we have

EQn [2Bn(sn)∆Bn(sn)] ≤ C ′(1 + EQn [Bn(sn)2])∆tn

for some constant C ′. To summarize,

EQn [θ′n(rn)∆Bn(rn)] = EQn [θ′n(rn)2]∆tn
≤ C(1 + EQn [Bn(rn)2])∆tn.

Since we have

EQn [Bn(rn)2] ≤
rn∑
sn=0

C ′(1 + EQn [Bn(sn)2])∆tn + rn),

by Gronwall’s inequality,

EQn [Bn(rn)2] ≤ (C ′ + T )eC
′T .

(where T is the endpoint of the interval [0, T ]) and so

EQn [θ′n(rn)∆Bn(rn)] ≤ C(1 + (C ′ + T )eC
′T )∆tn

So

EQn [ln(1 + θ′n(rn)∆Bn(rn))] ≤ ln(1 + C(1 + (C ′ + T )eC
′T )∆tn).

By Taylor approximation (using an argument similar to the one in Proposition
4.1.4),

lim
U

T∑
rn=0

EQn [ln(1 + θ′n(rn)∆Bn(rn))] ≤ lim
U

T∑
rn=0

ln(1 + C(1 + (C′ + T )eC′T )∆tn)

= C(1 + (C′ + T )eC′TT <∞

So M is a martingale. By Girsanov’s theorem, a solution to (4.9) exists. We
have thus proved the following result:

Proposition 4.2.4. There exists a weak solution to the stochastic differential
equation

dXt = X(t)(α+ γ lnX(t))dt+ βX(t)dBt, X(0) = x0,

where α, β, γ ∈ R with β 6= 0 are constants and x0 > 0 is constant.

Proposition 4.2.4 also follows from Beněs condition, for which a proof can
be found in [KL14].

Sometimes it can be useful to model a certain phenomenon in discrete time
and take the limit to get a model for the behavior in continuous time. We
will consider a particle moving along an axis and find a stochastic differential
equation describing the position of the particle in continuous time. We start by
discretizing the process. For each square number n ∈ N we let ∆xn = 1√

n
and

Sn = {0,∆xn, ..., 1−∆xn, 1} be a discretzation of the interval [0, 1]. As usual
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4.2. Weak solutions to stochastic differential equations

we let In = {0,∆tn, 2∆tn, ..., 1}, where ∆tn = 1
n , be a discretization of the time

interval. We assume that there is a function α : R→ R independent of n such
that if the particle is in an inner point xn of the interval at time tn ∈ In, then
the particle will be at the point xn + ∆xn at time tn + ∆tn with probability
1
2 (1 + α(xn)∆xn) and at the point xn −∆xn at time tn + ∆tn with probability
1
2 (1− α(xn)∆xn). We assume that if the particle is at the point 0 at time tn,
then the particle with be at the point ∆xn at time tn + ∆tn. Similarly, we
assume that if the particle is at the point 1 at time tn, then the particle will
be at the point 1−∆xn at time tn + ∆tn. We will model the particle through
a stochastic process Xn. At time t = 0 we assume that the process is at one
of the points x ∈ Sn with probability ρn(x), that is Xn(0) = Zn is a random
variable (taking values in Sn) distributed according to the probabilities given
by ρn.

First we assume that the particle can move in the interval {−
√
n,−
√
n +

∆xn, ...,
√
n − ∆xn,

√
n, ...,

√
n + 1} and that α is defined for all these point

(this will make sense later on). For each path the particle may take there is a
corresponding path the random walk Bn with starting value Zn takes and vice
versa. Both the particle xn and the random walk Bn can either move up or
down a distance of

√
∆tn during the time interval ∆tn. The only thing that

separates them is the probability of going up and down. While the probability
of going up for a random walk is the same as the probability of going down,
namely 1

2 , the probability of the particle moving up is not necessarily the same
as the probability of the particle moving down. Furthermore, the probability
of the particle moving up or down is dependent on the current position of the
particle. We want to find a measure Qn such that the probability of Bn taking
a certain path under Qn is equal to the probability of xn taking that path. We
find Qn by finding the Radon Nikodym derivative of Qn with respect to Pn.
We see that the Radon Nikodym derivative of Qn with respect to Pn is

dQn
dPn

=
∏T−∆tn
tn=0

1
2 (1 + α(Bn(sn))∆Bn(tn))

( 1
2 )n

=
T−∆tn∏
tn=0

(1 + α(Bn(tn))∆Bn(tn)).

Then under Qn the position of the particle is a solution to the difference equation

∆Xn(tn) = ∆Bn(tn),

that is, Xn(tn) = Bn(tn). If we can show that {dQndPn
}n∈N is A-integrable, then

by Proposition 3.1.13 dQ
dP = [ dQndPn

] is a martingale and so by Girsanov’s theorem,
if we let Q = dQ

dP dP , then B̂ : I × Ω→ R given by

B̂(t) = B(t)−
∫ t

0
α(X(s))ds

is a Brownian motion under Q (since we may define an ultrafilter on the square
numbers) and so the ultralimit X to {Xn}n∈N is a weak solution the stochastic
differential equation

dXt = α(Xt)dt+ dB̂t X(0) = Z,

where Z = [Xn(0)]. Now, given α defined on the interval [0, 1], we extend α to
the entire real number line by letting α on an interval [k, k + 1] for k ∈ Z \ {0}
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4. Stochastic differential equations

be the negative of the reflection of α of the adjoining interval closest to the
interval [0, 1]. Then on the entire real number line, X “will behave like the
particle on the interval [0, 1]”. We then say that the particle at time t is at the
point g(X(t)), where g reflects X back to the original interval [0, 1].

Now given a probability density f for the position of the particle on the
interval (0, 1), we would like to find α. We will assume that there exists a
constant K > 0 such that f ≥ K, and that f is differentiable on (0, 1) with
bounded derivative. Now let ρn(x, t) denote the probability of the particle being
in the point x, that is xn = x, at time tn = t. For tn ∈ In and xn ∈ Sn we have

ρn(xn, tn + ∆tn) = 1
2(1 + α(xn −∆xn)∆xn)ρn(xn −∆xn, tn)

+ 1
2(1− α(xn + ∆xn)∆xn)ρn(xn + ∆xn, tn).

If we assume that ρn(·, tn) = ρn(·, sn) for tn, sn ∈ In, we say that ρn is an
equilibrium state. In that case we write ρn(xn) instead of ρn(xn, tn) and we
have

ρn(xn) = 1
2(1 + α(xn −∆xn)∆xn) + 1

2(1− α(xn + ∆xn)∆xn).

Rearranging this equation we have

α(xn + ∆xn)ρn(xn + ∆xn) = α(x−∆xn)ρn(x−∆xn)

+ ρn(x+ ∆xn)− 2ρn(xn) + ρn(xn −∆xn)
∆xn

.

If we let u(xn) = α(xn)ρn(xn) this can be written as

u(xn + ∆xn) = u(x−∆xn) + ρn(x−∆xn)− 2ρn(xn) + ρn(xn −∆xn)
∆xn

.

Summing over from 0 to xn = kn∆xn we have

u((kn + 1)∆xn) + u(kn∆xn)− u(∆xn)− u(0)

= ρn((kn + 1)∆xn)− ρn(kn∆xn)− ρn(∆xn) + ρn(0)
∆xn

. (4.11)

Now we know that

ρn(0) = 1
2(1− α(∆xn)∆xn)ρn(∆xn) + 1

2(1 + α(−∆xn)∆xn)ρn(−∆xn)

= (1− α(∆xn)∆xn)ρn(∆xn)

(since we have reflected α). Rearranging this yields

u(∆xn) = ρn(∆xn)− ρn(0)
∆xn

,

which substituted into (4.11) gives us

u((kn + 1)∆xn) + u(kn∆xn)− u(0) = ρn((kn + 1)∆xn)− ρn(kn∆xn)
∆xn

.
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If we further assume that α(0) = α(1) = 0, we get

u((kn + 1)∆xn) + u(kn∆xn) = ρn((kn + 1)∆xn)− ρn(kn∆xn)
∆xn

.

Now we would like to have an approximation to ρn. A natural choice for ρn on
the inner points of Sn is

ρn(xn) =
∫ xn+ 1

2 ∆xn

xn− 1
2 ∆xn

f(t) dt,

where f is the probability density of the particle’s position. Now (4.11) can be
written as

u((kn + 1)∆xn) + u(kn∆xn)

=
F ((kn + 3

2 )∆xn)− 2F ((kn + 1
2 )∆xn) + F ((kn − 1

2∆xn)∆xn)
∆xn

,

where F is the cumulative distribution function. We see that if {xn}n∈N is a
sequence of points in Sn such that limU xn = x ∈ (0, 1), then if we divide (4.11)
by ∆xn, we get that the U-limit of this equation (using the approximation to
the second derivative) is

2α(x)f(x) = f ′(x),

which gives us that
α(x) = f ′(x)

2f(x)
for all x ∈ (0, 1). Since f ′ is bounded on (0, 1) and since there exists a K > 0
such that f ≥ K by assumption, since α(0) = α(1) = 0, α is bounded. By an
argument similar to the one in Proposition 3.1.19, {dQndPn

}n∈N is A-integrable.
So we have found a stochastic differential equation (with a solution) to our
problem, namely

dXt = α(Xt)dt+ dB̂t, X(0) = Z,

where Z has the probability density function f .
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CHAPTER 5

Mathematical Finance

5.1 Terminology

An asset is a resource with economic value that is owned by an entity with the
expectation that it will provide future benefit. A financial asset is a non-physical
asset, an investment that derives value because of a contractual claim of what
it represents. Examples of financial assets are stock shares, bonds and bank
accounts. A financial market is an environment in which a range of financial
assets are traded. A security is a tradable financial asset.

A shareholder in the stock of a company owns a part of the company in-
cluding its assets and earnings. The value of a share will vary over time and
cannot be determined in advance. We say that shares are risky, meaning their
value may rise or fall in the future. The share price of a given stock is modelled
mathematically by a stochastic process.

A bond is an investment in which the investor loans money to an entity. Bonds
are issued by companies, governments or banks as a way to borrow money.
The owner of a bond is entitled to receive from the issuer a fixed sum at the
maturity date of the bond. In addition the bond will yield interest over its
lifetime. Bonds (especially government bonds) tend to be less risky than stock,
although they are not entirely risk free since a company or government may go
bankrupt. We may make the assumption that a bond price is deterministic, i.e.
risk-free.

A derivative, sometimes called a derivative security, is a financial asset whose
value depends on one or more other more basic assets, called the underlying se-
curities. It is a financial contract whose value at expiration date T is determined
exactly by the price of the underlying financial assets at time T . Examples of
derivatives are call and put options.

A call option is a contract giving the owner the right, but not the obliga-
tion, to buy a share of a given stock at a specified date at a specified strike
price K. A put option is a contract giving the owner the right, but not the
obligation, to sell a share of a given stock at a specified date at a specified
strike price K. An American option give the owner the right to buy/sell at any
time prior to or at expiry, while an European option give the owner the right to
buy/sell at the expiry date.
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A portfolio is a collection of financial assets such as stocks and bonds. We may
call a portfolio a trading strategy. These terms will be interchanged throughout
this chapter depending on the subject. A trading strategy is called self-financing
if all trades are financed by selling or bying assets in the portfolio.

An arbitrage opportunity is a self-financing strategy for bying and selling
shares and bonds at any times in the period [0, T ], with zero initial outlay,
that provides a positive probability of profit, and no risk of loss. Since many
wish to exploit arbitrage opportunities, if they exist in real markets, they must
yield very small profit margins and be available for a very short time before
the market prices adjust to eliminate them. We make the assumption that in
a realistic market, no-one can guarentee a riskless profit, that is, there is no
possibility of arbitrage. A model is said to be viable if there are no arbitrage
opportunities.

5.2 Modelling a financial market

We will model a continuous-time financial market by an (m+ 1)-dimensional
Ft-adapted stochastic process X : I × Ω → Rm+1, X(t) = (X0(t), ..., Xm(t))
for t ∈ I, where X0(t) denotes the value of the riskless asset at time t ∈ I and
Xi(t), i ∈ {1, ..,m}, denotes the price of the risky asset i at time t ∈ I. A price
process {Xi(t)}t∈I is called adapted if Xi(t) is Ft-measurable for each t ∈ I.
We will assume that the market is of the form

dX0(t) = ρ(t, ω)X0(t)dt,

X0(0) = 1, and
dXi(t) = µi(t, ω)dt+ σi(t, ω)dBi.

A portfolio in the continuous-time market {X(t)}t∈I is an (m+ 1)-dimensional
Ft-adapted process θ : I × Ω→ Rm+1, where θ(t) = (θ0(t), ..., θm(t)) for t ∈ I.
A portfolio θ is called self-financing if∫ T

0
|θ0(s)ρ(s)X0(s) +

m+1∑
i=1

θi(s)µi(s)|+ (
m+1∑
i=1

θi(s)σi(s))2 ds <∞

almost surely and the value process satisfies

V θ(t) = V θ(0) +
∫ t

0
θ(s) · dX(s)

for t ∈ I. A derivative with payoff D at time T is called attainable if there is
a self-financing trading strategy θ such that V θ(T, ω) = D(ω) for ω ∈ Ω. The
trading strategy θ is then called a replicating strategy for D. A market model is
called complete if every derivative is attainable.

The discounted asset price X̃i(t) at time t of an asset is the price of the
asset, Xi(t), at time t divided by the risk-less asset, X0(t), at time t, where
X0(0) = 1. A risk-neutral measure is a probability measure Q, equivalent to the
real-world measure P , under which the discounted asset price is a martingale,
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5.3. Cox-Ross-Rubinstein Model

i.e. {Xi(t)X0(t)}t∈I is a Q-martingale for all i ∈ {1, ..,m}. A market is arbitrage
free if and only if there exists a risk-neutral measure and a market is complete
if and only if the risk-neutral measure is unique.

Analogously to the continuous-time case, we will model a discrete-time financial
market by an (m+1)-dimensional Fntn -adapted stochastic processXn : In×Ωn →
Rm+1, Xn(tn) = (X0,n(tn), ..., Xm,n(tn)) for tn ∈ In, where X0,n(tn) denotes
the value of the riskless asset at time tn ∈ In and Xi,n(tn), i ∈ {1, ..,m}, denotes
the price of the risky asset i at time tn ∈ In. A discrete process {θ(tn)}tn∈In
is called predictable if each θ(tn) is Ftn−∆tn-measurable. A portfolio in the
discrete-time market {Xn(tn)}tn∈In is a predictable (m+1)-dimensional process
θn : In × Ωn → Rm+1, where θn(tn) = (θ0,n(tn), ..., θm,n(tn)) for tn ∈ In. A
portfolio is called self-financing if the value process satisfies

V θnn (tn) = V θnn (0) +
m+1∑
i=0

tn∑
sn=0

θi,n(sn)∆Xi(sn).

The definitions of attainable derivatives, replicating strategies, complete markets
discounted asset prices and risk neutral measures are the same for discrete-time
as in continuous-time.

The goal of this chapter is to define continuous-time markets as limits of
discrete-time markets.

5.3 Cox-Ross-Rubinstein Model

Let I be the interval [0, T ] and let In = {kTn | k ∈ N, k ≤ n}. We con-
sider a discrete-time multi-period financial market model called the Cox-Ross-
Rubinstein model. Suppose we have a (riskless) bond or bank account with
initial value 1 and that the value at time tn = knT

n ∈ In is B0,n(tn) = (1+rn)kn ,
where the interest rate rn > −1 is fixed and known at time 0. The model has a
single (risky) stock with initial price X1,n(0) > 0 and price process

X1,n(t+ ∆tn) =
{
unX1,n(t) with probability p
dnX1,n(t) with probability 1− p,

where t ∈ In, t < T , and the parameters un and dn are fixed and known at time
0, with 0 < dn < un. The underlying probability space is (Ωn,Fn, Pn), where

Ωn = {dn, un}n

Pn({ωn}) = P̃n({ωn
t1})× ...× P̃n({ωn

T }) (where P̃n({un}) = pn , P̃n({dn}) = 1− pn)
Fn

0 = {∅,Ωn}
Fn

tn = σ(X1,n(t1), ..., X1,n(tn))
Fn

T = Fn = P(Ωn) (class of all subsets of Ωn).

The following results can be found with proofs in [CR12]:

Proposition 5.3.1. The following statements are equivalent for the Cox-Ross-
Rubinstein model with parameters T, rn, X1,n(0), un and dn.
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(i) The model is viable

(ii) dn < 1 + rn < un.

Proposition 5.3.2. If a Cox-Ross-Rubinstein model is viable, then it admits a
unique equivalent martingale measure Qn. The one-step conditional risk-neutral
probabilities are given by

(qn, 1− qn) =
(

1 + rn − dn
un − dn

,
u− (1 + rn)
un − dn

)
,

where qn is the Qn-probability of going up and 1− qn is the probability of going
down. For any ωn ∈ Ωn, if X1,n(T, ωn) = X1,n(0)usndn−sn for some s ≤ n, then
Qn(ωn) = qsn(1− qn)n−s, which depends only on X1,n(T, ωn) and not the full
price history of ωn.

Proposition 5.3.3. If a Cox-Ross-Rubinstein model is viable, then it is com-
plete. The unique fair price Dtn at time tn = knT

n ∈ In of any derivative with
payoff D at time T is

Dtn = V Φ
n (tn) = (1 + rn)kn−nEQn(D|Fntn),

where V Φ
n (tn) is a random variable describing the value of the the unique

replicating strategy Φ for D at time tn and Qn is the unique equivalent martingale
measure given in Proposition 5.3.2.

Note that in a continuous time market, if the bond price function is
X0, then the value of a derivative at time t with payoff D at time T is
Dt = X0(t)

X0(T )EQ[D|Ft]. We will use this later on.

A derivative D is called path-independent is there exists a payoff function
D̂ such that D = D̂(X1,n(T )). Suppose that D is a path-independent deriva-
tive. For any time s there are

(
n
s

)
scenarios ωn with the same final stock price

X1,n(T, ωn) = X1,n(0)usndn−sn , and that each of the scenarios has risk-neutral
probability Qn(ωn) = qsn(1 − qn)n−s. Thus the Qn-probability that the final
stock price is equal to X1,n(0)usndn−sn can be written as

Qn({ωn ∈ Ωn | X1,n(T, ωn) = X1,n(0)usndn−sn }) =
(
n

s

)
qsn(1− qn)n−s. (5.1)

Hence we get that

Dn
0 = (1 + rn)−n

n∑
s=0

(
n

s

)
qsn(1− qn)n−sD̂(X1,n(0)usdn−s).

We will use the Cox-Ross-Rubinstein model to approximate the Black-
Scholes model. The Black Scholes model is a continuous-time market model
wih one bond and one stock over the interval [0, T ]. The bond price at any
time s is X0(s) = ers where r is the rate of continuous compounding. The stock
price at any time s > 0 is

X1(s) = X1(0)e(α− 1
2β

2)s+βBs ,
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5.3. Cox-Ross-Rubinstein Model

where β > 0 is the volatility of the stock, the initial stock price X1(0) > 0
is constant, and the process Bs is a Brownian motion. X1(s) is given by the
differential equation

dX1(s) = αX1(s)ds+ βX1(s)dB(s).

We will discretize this differential equation. Divide the interval [0, T ] into n
intervals of length ∆tn = T

n . Let this be the time-steps of the n-th Cox-Ross-
Rubinstein model. Let X1,n be given by

∆X1,n(t) = αX1,n(t)∆tn + βX1,n(t)∆Bn(t).

with X1,n(0) = X1(0). This gives

un = 1 + α∆tn + β
√

∆tn

and
dn = 1 + α∆tn − β

√
∆tn.

Let the risk-free obligation be modelled by X0,n(kTn ) = (1 + rT
n )k for kT

n ∈ In,
i.e. let the interest rate be rn = r∆tn.

Proposition 5.3.4. Let N be the smallest integer such that N > (r−α)2

β2 .

(i) The n-th Cox-Ross-Rubinstein model i viable if and only if n ≥ N .

(ii) For n ≥ N the unique one-step conditional risk-neutral probabilities for
the n-th Cox-Ross-Rubinstein model are (qn, 1− qn), where

qn = 1 + rn − dn
un − dn

= 1
2 −

α− r
2β

√
∆tn.

(iii) For n ≥ N , the unique equivalent martingale measure Qn in the n-th
Cox-Ross-Rubinstein model satisfies

Qn({ωn ∈ Ωn | X1,n(T ) = X1,n(0)ukndn−kn }) =
(
n

k

)
qkn(1− qn)n−k

for k ≤ n.

Proof. By Proposition 5.3.1, the n-th Cox-Ross-Rubinstein model is viable if
and only of

dn < 1 + rn < un,

which is equivalent to

1 + α∆tn − β
√

∆tn < 1 + r∆tn < 1 + α∆tn + β
√

∆tn,

which is equivalent to −β
√

∆tn < (r − α)∆tn < β
√

∆tn, which holds true if
and only if n > (r−α)2

β2 . This gives (i). (ii) follows from Proposition 5.3.2 and
(iii) follows from (5.1) �

71
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We have that X0 and X1 are the ultralimits of {X0,n}n∈N and {X1,n}n∈N,
respectively, with respect to the measure P . Notice that B is not a Brownian
motion under Q unless α = r, but that B(t) is normally distributed for each
t ∈ I.

Suppose that Dn is a path-independent derivative with payoff function D̂
in a viable Cox-Ross-Rubinstein model. By Proposition 5.3.3, its fair price at
any time tn = knT

n is

Dn
tn = (1 + rn)kn−nEQn [Dn|Fntn ].

Suppose that {Dn}n∈N is A-integrable, with U-limit D = [Dn] and that
{tn}n∈N, with tn = knT

n , is such that limU tn = t ∈ I. Then

lim
U

(1 + rn)kn−nEQn [Dn|Fntn ] = e−r(T−t)EQ[D|Ft]. (5.2)

Since X1,n
X0,n

is a martingale under Qn for each n > (r−α)2

β2 , we know that X1
X0

is a
martingale under Q. If we can show that Q is equivalent to P , we know that
Q is the unique (the Black Scholes model is complete) equivalent martingale
measure and the fair price of D is given by (5.2).

Proposition 5.3.5. Suppose that for each n ∈ N, the measure Pn has proba-
bilities pn = 1

2 and 1− pn = 1
2 . Let P denote the ultralimit of {Pn}n∈N and let

Q denote the ultralimit of {Qn}n∈N. Then P and Q are equivalent.

Proof. Suppose that ωn has sn ≤ n ups and n− sn downs. Then the Radon-
Nikodym derivatives of Qn with respect to Pn in ωn and of Pn with respect to
Qn in ωn are, respectively,

dQn
dPn

(ωn) =
(
qn
pn

)sn (1− qn
1− pn

)n−sn
and

dPn
dQn

(ωn) =
(
pn
qn

)sn (1− pn
1− qn

)n−sn
.

Using that qn = 1
2−

α−r
2β
√
tn and 1−qn = 1

2 + α−r
2β
√
tn, this gives the expressions

dQn
dPn

(ωn) =
∏
t∈In

(1− α− r
β

∆Bn(ωn, t)) = e

∑
t∈In

ln(1−α−rβ ∆Bn(ωn,t))

and

dPn
dQn

(ωn) =
∏
t∈In

1
(1− α−r

β ∆Bn(ωn, t))
= e
−
∑

t∈In
ln(1−α−rβ ∆Bn(ωn,t))

for ωn ∈ Ωn. Using Taylor series expansion of the expressions ln(1−α−rβ ∆Bn(ωn, t))
as in Proposition 4.1.4, by the proof of Proposition 3.1.19, dQndPn

and dPn
dQn

are
A integrable. It then follows by Proposition 2.2.24 that P and Q are equiva-
lent. �
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Theorem 5.3.6. The unique fair price at time t ∈ I of a European call option
with strike K and expiry T in the Black Scholes model is

Dt = N(d1)X1(t)−N(d2)Ke−r(T−t),

where N is the cumulative distribution function to the standard normal distri-
bution and

d1 =
ln X1(t)

K + (r + 1
2β

2)(T − t)
β
√
T − t

and

d2 =
ln X1(t)

K + (r − 1
2β

2)(T − t)
β
√
T − t

.

Proof. Suppose that {knTn }n∈N ∈ T and that limU knT
n = t. Let

An(ωn) = min{i ∈ N0 | X1,n(knT
n

, ωn)uidn−kn−i > K}.

Since the payoff function of the call option is X1,n(T )−K, we have that

Dn
knT
n

(ωn)

= (1 + rn)kn−nEQn [Dn|Fntn ](ωn)

= (1 + rn)kn−n
n−kn∑

i=An(ωn)

(
n− kn
i

)
qi(1− q)n−kn−i(X1,n(knT

n
, ωn))uidn−kn−i −K)

= X1,n(ωn,
knT

n
)

n−kn∑
i=An(ωn)

(
n− kn
i

)
q̂in(1− q̂n)n−kn−i

−K(1 + rn)kn−n
n−kn∑

i=An(ωn)

(
n− kn
i

)
qin(1− qn)n−kn−i,

where q̂n = qn
un

1+rn and 1− q̂n = (1− qn) dn
1+rn . Thus we have that

Dn
knT
n

(ωn) = X1,n(ωn,
knT

n
)Q̂n(X1,n(ωn,

knT

n
)Y > K)

−K(1 + rn)kn−nQn(X1,n(ωn,
knT

n
)Y > K),

where Y is binomially distributed with up un and down dn, with parameters
n− kn and qn with respect to Q and parameters n− kn and q̂n with respect to
Q̂n. Hence

Dn
knT
n

(ωn) = X1,n(ωn,
knT

n
)Q̂n( 1

Y
<
X1,n(ωn, knTn )

K
)

−K(1 + rn)kn−nQn( 1
Y
<
X1,n(ωn, knTn )

K
)

= X1,n(ωn,
knT

n
)Q̂n(− ln(Y ) < ln(

X1,n(ωn, knTn )
K

))

−K(1 + rn)kn−nQn(− ln(Y ) < ln(
X1,n(ωn, knTn )

K
)).
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By Proposition 4.1.4, ln(Y ) = (α − 1
2β

2)(T − knT
n ) + βBn(T − knT

n ) + o(n).
Thus we get
Dn
knT
n

(ωn)

= X1,n(ωn,
knT

n
)Q̂n

(
−Bn(T − knT

n
) + o(n) <

ln( X1,n(ωn,
knT
n

)
K

) + (α− 1
2β

2)(T − knT
n

)
β

)

−K(1 + rn)kn−nQn

(
−Bn(T − knT

n
) + o(n) <

ln( X1,n(ωn,
knT
n

)
K

) + (α− 1
2β

2)(T − knT
n

)
β

)
.

By the argument given before Proposition 5.3.5, we have that
Dt([ωn]) = lim

U
Dn

knT
n

(ωn)

= X1([ωn], t)Q̂n

(
−B(T − t) <

ln(X1([ωn],t)
K ) + (α− 1

2β
2)(T − t)

β

)

−Ke−r(T−t)Qn

(
−B(T − t) <

ln(X1([ωn],t)
K ) + (α− 1

2β
2)(T − t)

β

)
.

It follows by the proof of Theorem 3.1.18 that B(T − t) is normally distributed
with respect to Q and Q̂. By Proposition 5.3.5, {dQndPn

p
}n∈N and {dQ̂ndPn

p
}n∈N

are A-integrable for any p > 1. Thus {Bn(T − KnT
n )d}n∈N is A-integrable with

respect to Q and Q̂ for any d > 1. Since B(T − t) is normally distributed with
respect to Q and Q̂ with means

EQ[B(T − t)] = lim
U
EQn [Bn(T − knT

n
)] = −α− r

β
(T − t)

and

EQ̂[B(T − T )] = lim
U
EQ̂n [Bn(T − knT

n
)] = β(T − t)− α− r

β
(T − t)

and variances

V arQ(B(T − t)) = lim
U
V arQn(Bn(T − knT

n
)) = T − t

and
V arQ̂(B(T − t)) = lim

U
V arQ̂n(Bn(T − knT

n
)) = T − t,

(these values can also be found by going through the proof of Theorem 3.1.18)
since a standard normal distributed variable is symmetric, we get that

Dt([ωn]) = N(d1)X1([ωn], t)−N(d2)Ke−r(T−t),
where N is the cumulative distribution function to the standard normal distri-
bution and

d1 =
ln X1([ωn],t)

K + (r + 1
2β

2)(T − t)
β
√
T − t

and

d2 =
ln X1([ωn],t)

K + (r − 1
2β

2)(T − t)
β
√
T − t

.

�

74



CHAPTER 6

Discussion

6.1 Summary

The purpose of this master thesis (as the title suggests) was to explore ultrafilter
convergence in stochastic analysis and mathematical finance. In chapter one we
introduced the topic and gave some motivations. In chapter two we focused on
preliminaries (namely ultrafilter convergence of measure spaces and stochastic
variables) in order to build the foundation of ultrafilter convergence of stochastic
processes in chapter three. In chapter four we showed some applications to
stochastic differential equations, while in chapter five we gave a proof of ultrafilter
convergence of the Cox-Ross-Rubinstein models to the Black Scholes model in
mathematical finance.

6.2 Afterthoughts and regrets

Working on this master thesis has been a fun and interesting experience. It
has been challenging at times, but I have learned a lot during the year of
working on this thesis. As I mentioned in the introduction, I sometimes had to
come up with ideas on my own, but not all of them were fruitful. Transferring
certain results from our probability space to other probability spaces proved
to be challenging. Furthermore, on the probability space that we have created
in this thesis, processes can “have a life of their own” and may not be the
limit of discrete processes (in addition to the fact that a sequence of discrete
processes may not have any ultralimit). This made some possible applications
cumbersome. For example, chapter five originally consisted of one additional
section that my advisor and I decided to omit since it did not add anything
meaningful to the thesis. Even if I was able to come up with results in chapter
five, they were restricted and only valid for our measure space. Furthermore,
there were a few results in chapter three that I chose not to prove because I did
not think they were interesting or useful.

As I finish this master thesis I do have a few regrets. I regret choosing to use
some notation, but once it occured to me that I should have chosen differently,
it was to late. For instance there is the unfortunate notion of “A-integrability”.
I chose this notation as it was close to the notion used in [Cut04] (which uses
“S-integrability“, where S stands for standard - a convention I was not aware
of), but it soon (although not soon enough) occured to me that I should have
chosen differently. A more appropriate notion would be one that incorporated



6. Discussion

the measure to which the sequence of variables is “A-integrable“, such as
”P -integrability“, or better, one that incorporated both the measure and the
algebra such as ”(A, P )-integrability“.

Another regret is the fact that I eventually stopped using a ”bar“ over the
stochastic processes in continuous time that were well-defined (defined on the
regular real number line and not just the extended one). To be honest, I
stopped using the ”bar“ because I forgot after a while to include it since I never
included it in my own calculations done in my notes. Once I discovered that
I had throughout chapter three section two omitted the notation, I decided
to continue doing so. This solution works just fine since I believe the reader
by then has grown accustomed to ultralimit processes, but I still feel that the
thesis would be slightly more uniform had I chosen not to skip the extra notation.

Notation in general in this thesis has been difficult. I struggled for a long
while to find a suitable notation with all those indices that I had to keep track
of. I ended up changing my chosen notation a few times during the early stages
of writing the thesis (when extra indices just kept popping up!), but I eventually
settled on the one present today. I am not sure if it is the best choice, but I
have not found any better alternative.

In the last stage of writing my thesis I discovered some weaknesses and gaps
that I had to fill out. For example, one of the results that I have included is
a product of some last minute work, namely Theorem 3.2.5. I chose to use
the condition that {Xn(tn)4}n∈N is ”A-integrable” ((A, P )-integrable!) for all
{tn}n∈N ∈ T , but it is possible (and more natural) that the result should
hold as well if {Xn(tn)2}n∈N is ”A-integrable” for all {tn}n∈N ∈ T . However,
showing this would take time (time that I unfortunately did not have).
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APPENDIX

A detailed list of my work

In the sections that follows I will list my work on this thesis (that I have done
under guidance of my advisor). If I have come up with a result on my own, I
will list it. If my advisor has given me a specific problem to solve or if I have
found the result elsewhere, I will just list its proof.

My work in chapter 2

These are the results that I have proved for which I believe that a similar (or
more or less identical) proof exists:

• The proof of Proposition 2.1.2

• The proof of Lemma 2.1.3

• The proof of Proposition 2.1.5

• The proof of Theorem 2.1.7

• The proof of Proposition 2.1.10

• The proof of Proposition 2.1.11

• Proposition 2.1.12 and its proof

• Proposition 2.1.13 and its proof

• Proposition 2.1.14 and its proof

• Proposition 2.1.15 and its proof

• The proof of Proposition 2.2.1

• The proof of Proposition 2.2.2

• The proof of Proposition 2.2.3

• The proof of Theorem 2.2.4

• The proof of Corollary 2.2.5

• The proof of Theorem 2.2.8



. A detailed list of my work

The following is my own work (for which I believe there does not exists a similar
of identical proof):

• The proof of Proposition 2.2.10: I was inspired by a proof in [War12]

• The proof of Proposition 2.2.11

• The proof of Corollary 2.2.12

• Proposition 2.2.13 and its proof

• The proof of Theorem 2.2.14

• The proof of Theorem 2.2.15: I have corrected a proof in [War12], adapted
it from a non-standard universe to a standard universe and filled in some
details

• The proof of Lemma 2.2.16

• Example 2.2.17

• Definition 2.2.18: I was inspired by a definition in [Cut04]

• The proof of Theorem 2.2.19: I have corrected a proof in [War12], adapted
it from a non-standard universe to a standard universe and filled in some
details

• Proposition 2.2.20 and its proof

• Theorem 2.2.21 and its proof

• Example 2.2.22

• Proposition 2.2.24 and its proof

• Proposition 2.2.25 and its proof

My work in chapter 3

These are the results that I have proved for which I believe that a similar (or
more or less identical) proof exists:

• The proof of Proposition 3.2.1

• The proof of Proposition 3.2.2

• The proof of Proposition 3.2.3

The following is my own work (for which I believe there does not exists a similar
of identical proof):

• The proof of Proposition 3.1.3

• Definition 3.1.7

• Proposition 3.1.8 and its proof

• Proposition 3.1.12 and its proof

78



. My work in chapter 4

• Proposition 3.1.13 and its proof

• Proposition 3.1.15 and its proof

• Proposition 3.1.16 and its proof

• Proposition 3.1.17 and its proof

• The proof of Theorem 3.1.18

• The proof of Theorem 3.2.4

• Theorem 3.2.5 and its proof

• Corollary 3.2.6 and its proof

• Corollary 3.2.7 and its proof

My work in chapter 4

These are the results that I have proved for which I believe that a similar (or
more or less identical) proof exists:

• The proof of Proposition 4.1.4

The following is my own work (for which I believe there does not exists a similar
of identical proof):

• Proposition 4.1.1 and its proof

• The proof of Lemma 4.1.2

• The proof of Theorem 4.1.3

• Lemma 4.2.3 and its proof

• The proof of Proposition 4.2.4

• The remaining part (after Proposition 4.2.4) of chapter 4 section 2 (with
some help from my advisor).

My work in chapter 5

Section 1 and 2: These have been written by me after reading texts referenced
in the bibliography.

These are the results that I have proved for which I believe that a similar
(or more or less identical) proof exists:

• The proof of Proposition 5.3.4

The following is my own work (for which I believe there does not exists a similar
of identical proof):

• Proposition 5.3.5 and its proof

• The proof of Theorem 5.3.6

79





Bibliography

[Alb+09] Sergio Albeverio et al. Nonstandard Methods in Stochastic Analysis
and Mathematical Physics. Dover, 2009.

[And76] Robert M Anderson. “A non-standard representation for Brownian
motion and Itô integration”. In: Israel Journal of Mathematics 25.1-2
(1976), pp. 15–46.

[BDG72] DL Burkholder, BJ Davis, and RF Gundy. “Integral inequalities
for convex functions of operators on martingales”. In: Proc. Sixth
Berkeley Symp. Math. Statist. Prob. Vol. 2. 1972, pp. 223–240.

[Bil08] Patrick Billingsley. Probability and measure. John Wiley & Sons,
2008.

[BK13] Nicholas H Bingham and Rüdiger Kiesel. Risk-neutral valuation:
Pricing and hedging of financial derivatives. Springer Science &
Business Media, 2013.

[CK90] Chen Chung Chang and H Jerome Keisler. Model theory. Vol. 73.
Elsevier, 1990.

[CR12] Nigel J Cutland and Alet Roux. Derivative Pricing in Discrete Time.
Springer Science & Business Media, 2012.

[Cut04] Nigel J Cutland. Loeb Measures in Practice: Recent Advances: EMS
Lectures 1997. Springer, 2004.

[Doo12] Joseph L. Doob.Measure Theory. Springer Science & Business Media,
2012.

[Doo53] Joseph L. Doob. Stochastic Processes. John Wiley & Sons New York,
1953.

[Fel68] William Feller. An introduction to probability theory and its applica-
tions: volume I. Vol. 3. John Wiley & Sons New York, 1968.

[Kei84] H Jerome Keisler. An infinitesimal approach to stochastic analysis.
Vol. 297. American Mathematical Soc., 1984.

[KL14] F Klebaner and R Liptser. “When a stochastic exponential is a
true martingale. Extension of the Beněs method”. In: Theory of
Probability & Its Applications 58.1 (2014), pp. 38–62.

[Lin18] Tom L. Lindstrøm. Spaces. Amer Mathematical Society, 2018.



Bibliography

[Loe75] Peter A Loeb. “Conversion from nonstandard to standard measure
spaces and applications in probability theory”. In: Transactions of
the American Mathematical society 211 (1975), pp. 113–122.

[MP10] Peter Mörters and Yuval Peres. Brownian motion. Vol. 30. Cam-
bridge University Press, 2010.

[Øks03] Bernt Øksendal. Stochastic differential equations. Springer, 2003.
[Ran02] Inder K Rana. An introduction to measure and integration. Vol. 45.

American Mathematical Soc., 2002.
[War12] Evan Warner. “Ultraproducts and the Foundations of Higher Order

Fourier Analysis”. Bachelor Thesis. Princeton University, 2012.
[Wei13] Heinrich v. Weizsäcker. Probability II: Processes in Continuous Time.

http://www.mathematik.uni- kl.de/fileadmin/AGs/stoch/skripte/
Weizsaecker/probII_2010.pdf. Dec. 2013.

82

http://www.mathematik.uni-kl.de/fileadmin/AGs/stoch/skripte/Weizsaecker/probII_2010.pdf
http://www.mathematik.uni-kl.de/fileadmin/AGs/stoch/skripte/Weizsaecker/probII_2010.pdf

	Abstract
	Acknowledgements
	Contents
	Introduction
	The purpose of this master's thesis
	An overview
	My work

	Preliminaries
	Ultrafilter convergence of real numbers
	Ultralimits of measure spaces

	Construction of the skeleton approximations
	Skeleton processes
	Stochastic integrals

	Stochastic differential equations
	Strong solutions to stochastic differential equations
	Weak solutions to stochastic differential equations

	Mathematical Finance
	Terminology
	Modelling a financial market
	Cox-Ross-Rubinstein Model

	Discussion
	Summary
	Afterthoughts and regrets

	A detailed list of my work
	My work in chapter 2
	My work in chapter 3
	My work in chapter 4
	My work in chapter 5

	Bibliography

