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Abstract

A Heron triangle is a triangle with integer sides and integer area. A rational triangle is a
triangle with rational sides and area. We will set out to prove van Luijks Theorem, that there
exist infinitely many non-similar rational triangles with the same area and perimeter. Unlike
the original proof, we will not use elliptic surfaces, using instead only elliptic curves. Hope-
fully making the proof a bit more accessible to readers without a background in algebraic
geometry. We will also prove, as a corollary, that there exist arbitrarily many Heron triangles
having the same area and perimeter, and construct a method for generating such triangles.
This thesis will also provide a fix to a minor flaw in the original proof of the theorem.
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1 Introduction

In this thesis, we will have a look at the main Theorem in van Luijks paper [8]. We will attempt
to recreate the proof, only using elliptic curves, rather than taking the step up to elliptic sur-
faces, as is the case in the original paper. Hopefully, this will make the proof somewhat more
accessible to the average reader. The main Theorem will be formally stated later in the thesis.
For now, let us state (and later prove) an important corollary following directly from van Luijks
Theorem. It involves Heron triangles, which are triangles with integer sides and integer area,
and goes as follows:

Corollary 1.1. For every positive integer N there exists an infinite family of N-tuples of Heron triangles
with the same area and perimeter such that no two triangles will be similar regardless of whether the
triangles are in the same N-tuple or not.

1.1 Historical context

Heron triangles are named after Heron of Alexandria, the man who is credited with the proof
of Herons formula. A formula which expresses the area A of a triangle using the sides a, b and c

A2 =
p
2
(

p
2
− a)(

p
2
− b)(

p
2
− c). (1)

Where p = a + b + c is the perimeter of the triangle.

Figure 1: The (3,4,5) triangle has integer sides and integer area A = 6, making it a Heron triangle. This is
the smallest Heron triangle, meaning no Heron triangle has a smaller area or perimeter.

Heron triangles are a field of study, both in geometry and number theory, and over time, many
interesting properties of Heron triangles have been found.

It was proven early on that there exist an infinite number of non-similar Heron triangles. Proofs
that there exists an infinite number of non-similar Pythagorean triangles (right-angled triangles
with integer sides) date back to the days of Euclid, approximately 300 years before Heron. And
it turns out that:

Theorem 1.2. Every Pythagorean triangle is also Heron.

Proof. All Pythagorean triangles are right-angled, so their area is given by A = c1c2/2 where
c1, c2 are the lengths of the catheti (or legs) of the triangle. Hence the only way for the area to
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Figure 2: The triangles (17,25,28) and (20,21,29) both have area A = 210 and perimeter p = 70,
making them the smallest pair of Heron triangles having the same area and perimeter.

not be an integer is if both the catheti have odd length.

So let us assume that c1, c2 are odd, in other words that c1 ≡ 1 (mod 4) or c1 ≡ 3 (mod 4), and
same for c2. Either way c2

1 ≡ 1 (mod 4), and c2
2 ≡ 1 (mod 4). It follows that the hypotenuse h

must be such that h2 = c2
1 + c2

2 ≡ 2 (mod 4), but if h2 ≡ 2 (mod 4) it can not be a square number
(square numbers are congruent to either 1 or 0 (mod 4)), so h is not an integer, so the triangle
(c1, c2, h) is not Pythagorean.

From this it follows that for any Pythagorean triangle, at least one of the catheti must have even
length, making the area an integer. Thus any Pythagorean triangle is also Heron.

There also exist an infinite number of Heron triangles that are not Pythagorean. In the 7th cen-
tury, a parametric solution was found by Brahmagupta, who showed that every Heron triangle
would have sides on the form [1]:

a = n(m2 + k2),

b = m(n2 + k2),

c = (m + n)(mn− k2).

The next question (leading up to van Luijks Theorem) was on the number of Heron triangles
having the same area and perimeter. For example, the triangles (17,25,28) and (20,21,29) share
the same area and perimeter (see Figure 2), so pairs of Heron triangles with common area and
perimeter do indeed exist. However, finding out how many such triangles there are, took a long
time.

It was not until the year 2000 that Kramer and Luca [4] proved that there exist an infinite family
of such pairs, having the same area and perimeter. They were, however, unable to find a triple
of Heron triangles where all three have the same area and perimeter. It was left as an unan-
swered question, and this is where van Luijks Theorem comes in.

Before van Luijk found the solution in 2006, computer searches had provided not only triples
but gone as far as finding a 9-tuple of Heron triangles, all having the same area and perimeter.
But the question remained: how big an N-tuple of Heron triangles can be found? Van Luijks
Theorem proved that we, for any integer N, can find an infinite family of N-tuples of Heron
triangles with the same area and perimeter [Corollary 1.1]. Not only that, but the paper also
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provided an explicit method for generating such triangles. A method for generating N-tuples
will be given later in this thesis, in section 3.3, after the necessary theory has been introduced.

1.2 Our approach

A rational triangle is a triangle with rational sides and rational area. We are looking for Heron
triangles, but it turns out that it is far easier to search for rational triangles. These can always
be scaled up to form a Heron triangle, so we will try to find a method for generating rational
triangles with the same area and perimeter instead, and then simply scale these up to Heron
triangles.

Van Luijks proof uses elliptic K3 surfaces to find these triangles. In this thesis, however, we will
aim to prove the theorem without the use of elliptic surfaces and fibers, instead relying simply
on elliptic curves to prove the theorem. This will hopefully make the proof somewhat more
accessible to readers without a background in algebraic geometry.

The thesis will start with a brief introduction to elliptic curves, providing the reader with all
the theory needed to follow the proof. Next, we will construct an elliptic curve such that the
rational points on the curve correspond to rational triangles and use this to prove van Luijks
Theorem. Lastly, we will compute some examples of such tuples of triangles.

2 Elliptic curves

Many of the properties of Heron triangles can be proven by using arguments that rely on little
more than high school geometry and algebra. Van Luijks Theorem, however, uses elliptic curves
as a means of finding Heron triangles. Given the importance of elliptic curves in the proof of
van Luijks Theorem, this section will contain a short introduction to elliptic curves.

Elliptic curves can be defined in several ways. Our definition will be that an elliptic curve E is
a plane, projective, non-singular curve given by the zeros of a homogeneous equation on the
form

y2z = x3 + ax2z + bxz2 + cz3. (2)

The curve being non-singular means that it has no cusps or self-intersections. Figure 3 shows an
example of a singular curve, with a self-intersection at (1,0). Over some fields, we might need
a more general definition, where the equation will not be as simple as equation (2), but for the
fields we are working over, like R and Q, all elliptic curves can be written on the form above [6,
p. 45].

The affine part of this curve, where z = 1, will be the curve given by

y2 = x3 + ax2 + bx + c. (3)

This equation describing the curve is called a Weierstrass equation. This is a curve in the affine
plane, but not the whole elliptic curve, as we are missing the part where z = 0. Substituting
z = 0 into equation (2), we get

x3 = 0.

4



This means that we are missing the point (0:1:0) on the curve. But how can we interpret this
point in the affine plane?

If we take a vertical line x = k for some k ∈ R, this line will correspond to the line given by the
homogeneous equation x = kz in the projective plane. However, we know that this line will
intersect the elliptic curve E in the point (0:1:0) for any k. So in the affine plane, we are missing
a point where all vertical lines intersect. This point, which we call O, is the only point on E that
is not in the affine plane z = 1. We think of this point as the point at infinity on the y-axis. And
because it is generally easier to visualize curves in the affine plane than in the projective plane,
we will throughout this thesis, consider elliptic curves to be curves is the affine plane, on the
form (3), plus this point O at infinity.

Figure 3: The curve given by y2 = x3 − 3x + 2. Despite the equation being on the form (3), it is not an elliptic curve.
This is because it has discriminant ∆ = 0, meaning that it is singular. In this case, the singular point is a self

intersection at (1,0).

2.1 Group structure of elliptic curves

One nice property of elliptic curves is that under the right operation their points will form a
group with identity O. The group operation + is defined as follows (use Figure 4 for reference):

Given two points P and Q on the elliptic curve

E = {(x, y)|y2 = x3 + ax2 + bx + c} ∪ {O}. (4)

Take l to be the straight line through these two points. This line will intersect the curve E at a
third point R (this is not obvious, but will be proven as Lemma 2.4). Next, take a vertical line
through R, this line will intersect E at a new point −R. We define P + Q to be the point −R. In
the event where one wishes to add a point to itself, take l to be the tangent line of E through P.

Theorem 2.1. (E,+) is an abelian group with identity O.

Proof. One can easily check that the operation is indeed commutative, that O is the identity and
that the group is closed under +. Also if P has coordinates (x, y) then the inverse,−P, will have
coordinates (x,−y), and because of symmetry around the x-axis, this point will also lie on E.
Hence, every element will have an inverse. The only remaining group axiom is associativity.
It is not obvious that + is associative, but it turns out that it is. Proof of this can be found in
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Figure 4: Illustrating the group operation on an elliptic curve. The sum of P and Q will be the point −R.

Silvermans book [6, p. 53].

An explicit formula for the sum of two points can easily be derived, using regular algebra. It
can also be found in Silvermans book [6, p. 54]. The formula is as follows: given P = (xP, yP)
and Q = (xQ, yQ), the coordinates of −R = P + Q, will be:

−R = (x−R, y−R),

where
x−R = λ2 − xP − xQ − a,
y−R = −λ(x−R − xP)− yP.

(5)

Where λ is the slope of the line l, given by

λ =


yP − yQ

xP − xQ
if xP 6= xQ,

3xP
2 + 2axp + b

2yP
if P = Q.

There is one more possibility. One can have xP = xQ but P 6= Q, in this case, you will not have
a slope, because the line is vertical. Then you have Q = −P, so P + Q = P− P = O.

Having a look at these formulas, we observe that the sum of two points with rational coordi-
nates will itself have rational coordinates. Thus E(Q) = {(x, y) ∈ E|x, y ∈ Q} forms a subgroup
of E. Not only that, but we also have the following theorem:

Theorem 2.2 (Mordell-Weil Theorem). The group E(Q) is finitely generated.

Proof. See the original proof by Weil [5, p. 179–192], or for the general theorem over any field,
see the proof in Silvermans book [6], starting on page 207.

The Mordell–Weil Theorem dates back to 1922, and is one of the fundamental theorems on the
arithmetic of elliptic curves.
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2.2 Positive discriminants

Next, we want some information about the shape of the elliptic curve. The discriminant ∆ pro-
vides us with the information we need. An elliptic curve given by the equation

y2 = x3 + ax2 + bx + c,

will have discriminant

∆ = a2b2 − 4b3 − 4a3c− 27c2 + 18abc.

This is the same as the discriminant of the polynomial

f (x) = x3 + ax2 + bx + c.

The sign of ∆ tells us much about the shape of the curve. The discriminant being zero means
that the curve is singular, and thus not an elliptic curve. See Figure 3 for a curve with ∆ = 0.
Hence all elliptic curves have ∆ 6= 0.

Lemma 2.3. Let E be an elliptic curve given by an equation on the form y2 = x3 + ax2 + bx + c, and
let E have discriminant ∆. Then the following is true:

1. If ∆ > 0, then E will consist of two separate components, one bounded and one unbounded.

2. If ∆ < 0, then E will consist of one unbounded component.

Figure 5 shows two examples of elliptic curves, one with ∆ < 0 and one with ∆ > 0.

Proof. We define

f (x) = x3 + ax2 + bx + c.

From the equation for E, it is clear that for every x such that f (x) ≥ 0, there will be points on E
with x as first coordinate, and vice versa. In mathematical terms:

f (x) is non-negative⇔ There exists a point on E with first coordinate x.

With this, we can move on to looking at the zeros of f (x).

1. The discriminant being positive means that f (x) has three distinct roots. Let us call these
x0, x1 and x2, and let them be such that x0 < x1 < x2.

Because f (x) tends to +∞ as x increases, f (x) is positive where x ∈ [x0, x1] ∪ [x2, ∞).
Hence this is also the two intervals in which E lies, and as such, E must consist of two
separate parts. The part lying where x ≥ x2 is clearly unbounded, because it has no
bound in x. The part lying where x0 < x < x1 must be bounded because f (x) is bounded
on this interval[1].

[1]Boundedness Theorem: a continuous function on a closed interval is always bounded.
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Figure 5: Two examples of elliptic curves. ∆ = −671 for the left one, and ∆ = 500 for the one to the right. The right
curve consists of two parts, the bounded part in blue, and the unbounded part in red.

2. The discriminant being negative means that f (x) has exactly one zero, let the zero be at
x = x0.

Then f (x) will be positive for all x ≥ x0, so this is the interval in which E lies. Because
there is only one interval, E will now consist of one component. This component cannot
be bounded, because it is not bounded in x.

When we later use elliptic curves to find Heron triangles, we will be using curves with ∆ > 0,
so we will focus a bit more on them. As mentioned before, these curves will consist of two
separate components. One will be unbounded and thus contain O, while the other one will be
bounded, and form a closed curve. One of the properties we will use is that when we have
a bounded part, that part of the curve will be a convex curve, that is, it will be the boundary
of a convex set. No litterature stating this could be found, so it will be proven here. This can
be proven in several ways, for example using calculus, by computing the double derivative of
g(x) =

√
f (x). We will, however, give a geometric argument. For this, we first need a lemma

that, on its own, is very useful in the study of elliptic curves.

Lemma 2.4. For every elliptic curve E, any line l will intersect E in exactly one or three points.

Note here that a tangent line to the curve is counted as intersecting twice.

Proof. Let us first deal with the special case, when l is vertical. Let us assume that l is given
by the equation x = x0. First off, all vertical lines intersect E at O, thus giving us one point
of intersection between E and l. If f (x0) ≥ 0 we get two more points of intersection, namely
(x0,±

√
f (x0)). If f (x) < 0, we only have O as a point of intersection. Meaning that a vertical

line does indeed intersect E exactly once or thrice.

Now, let’s consider the case where l is non-vertical, and instead given by an equation on the
form y = αx + β. If we substitute this into equation (3) we get a third-degree equation in one
variable. From calculus, we know that such an equation will have either one or three real roots,
each of them corresponding to a point of intersection. Meaning that non-vertical lines also in-
tersect E exactly once or thrice. Hence, all lines do indeed intersect an elliptic curve in exactly
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one or three points.

This result is used, among other things, when defining the group operation on E. For the op-
eration to make sense, we need to be sure that any line going through two points, also goes
through a third one. This follows directly from Lemma (2.4).

Now we can move on to prove the convexity of the bounded part.

Proposition 2.5. An elliptic curve E with ∆ > 0 will consist of two parts, one of these parts will be a
closed curve that is bounded and convex.

Proof. Let E be an elliptic curve with ∆ > 0. From Lemma (2.3) we know that E will consist of
two parts, where one is bounded and one is unbounded. Let us call the bounded part EB.

Figure 6: Illustration of the proof of Proposition 2.5, the curve is given by y2 = x3 − 5x. It is not clear from the figure
that the lines will cut the unbouded part of E, but from Lemma (2.4) it follows that they will.

Next, we wish to prove that EB is convex. Take any two points A and B on EB, and let L be
the line through these points. If we can show that L will not intersect EB in any other points
than A and B we will have shown that EB is convex. Take two new lines L′ and L′′ parallel to L
but not intersecting EB, such lines will exist since EB is bounded. From Lemma (2.4) we know
that these two lines will intersect the curve, and will hence do so at the unbounded part. But
because the unbounded part is connected, and L lies between L′ and L′′, L too must intersect
the unbounded part, and because it can intersect the curve no more than three times, it will not
intersect EB more than twice. Hence EB must be convex.

With this, we have covered the properties of elliptic curves that we will be using in this thesis.
We can now move on to the main part: van Luijks Theorem and the existence of an infinite
number of Heron triangles.
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3 An infinite number of Heron triangles

In this section, we will aim to prove van Luijks Theorem, as well as Corollary 1.1. We do this
by first constructing an elliptic curve on which the points correspond to solutions to Herons
equation. Then we develop a method for finding an infinite number of points on the curve that
correspond to actual Heron triangles. With this method in place, we will see that van Luijks
Theorem follows rather straightforwardly.

Proving that the method actually gives us Heron triangles will be the main part of this section.
But first, let us state van Luijks Theorem, and prove Corollary 1.1.

3.1 van Luijks Theorem

In his paper [8], van Luijk proves the following Theorem:

Theorem 3.1. (van Luijks Theorem) There exists a sequence {(an(s), bn(s), cn(s))}n≥1 of triples of
elements in Q(s) such that

(1) for all n≥1 and all s ∈ R with s > 1 there exists a triangle 4n(s) with sides an(s), bn(s) and
cn(s), inradius s− 1, perimeter 2s(s + 1) and area s(s2 − 1), and

(2) for all m, n ≥ 1 and s1, s2 ∈ Q with s1, s2 > 1, the rational triangles 4m(s1) and 4n(s2) are
similar if and only if m = n and s1 = s2.

This theorem tells us, among other things, that there exists an infinite number of non-similar
rational triangles, with the same area and perimeter. We can use these rational triangles to
produce Heron triangles, thus proving Corollary 1.1.

Corollary 1.1. For every positive integer N there exists an infinite family of N-tuples of Heron triangles
with the same area and perimeter such that no two triangles will be similar regardless of whether the
triangles are in the same N-tuple or not.

Proof. First off, take some integer s, for example s = 3. Then according to Theorem 3.1 there
exist a sequence of rational triangles with area s(s2− 1) and perimeter 2s(s+ 1). Take the first N
triangles in the sequence and multiply them with the common denominator to get a collection
of N Heron triangles, all having the same area and perimeter.

The same thing can be done for (s = 4, 5, 6, ...), each time giving a new N-tuple. Hence we
get an infinite family of N-tuples of triangles with integer sides, with each family consisting of
triangles with the same area and perimeter. Furthermore, because we chose integer values of s,
the area is an integer, making the triangles Heron. Finally, it follows from part 2 of Theorem 3.1
that no two triangles are similar, meaning our proof is complete.

With the proof of Corollary 1.1 in place we can now move on to the main part of this section,
namely proving van Luijks Theorem. Note again that the proof we will provide, is largely based
upon the original proof by van Luijk.

3.2 Constructing the curve

First, we aim to find an elliptic curve on which each point corresponds to a solution to Herons
formula
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A2 =
p
2
(

p
2
− a)(

p
2
− b)(

p
2
− c), (1)

where a, b and c are the sides of the triangle, and A and p are its area and perimeter, respectively.
The search for rational triangles is the search for rational solutions (a, b, c, A) to this equation.
Let us make some changes to make it easier to solve. First of, we set:

x =
p
2
− a, y =

p
2
− b, z =

p
2
− c. (6)

This gives us p = a + b + c = 2(x + y + z). Putting this into Herons formula, we get

A2 = (x + y + z)xyz.

We can also use the relation A = rp/2 = r(x + y + z) where r is the inradius of the triangle.
This allows us to write Herons formula as

r2(x + y + z) = xyz.

Now we are looking for rational solutions (x, y, z, r) to this equation, an infinite number of
such solutions in fact. But even with this change of variables, there is no obvious way to find
an infinite number of solutions[2]. If we can rewrite it to be the equation of an elliptic curve,
however, we get a method for generating solutions. In order to do this, let us first set r =
τ(x + y + z), so that we get the equation

τ2(x + y + z)3 = xyz, (7)

where τ = r
(x+y+z) =

4A
p2 , so for any non-degenerate triangle (x, y, z, r) we can find a τ. Hence,

we have not lost any interesting solutions by making this change of variables. Let us consider
τ as a fixed positive value. Then we get a family of equations in three variables, with one equa-
tion for each choice of τ. We take τ to be positive in order to keep the ratio between area and
perimeter positive.

Since equation (7) is homogeneous, we can look for solutions [x : y : z] ∈ P2 instead of solutions
(x, y, z) ∈ R3. This is the same as saying that two solutions where one is simply a scaling of
the other are equivalent. Which is exactly what we want, because we are looking for non-
similar solutions. Now, because we chose to work in the projective plane we can fix one of the
coordinates. Let us try with z = 1, then we get

τ2(x + y + 1)3 = xy.

We are now missing the solutions where z = 0, but these solutions correspond to degenerate
triangles with zero area, and are not the solutions we were looking for anyway. We also observe

[2]This is not, in fact, true, if (x, y, z, r) is a rational solution, so is (nx, ny, nz, nr) for any n ∈ Q. This is the same as
saying that if we scale a triangle is remains a triangle. But since we are looking for an infinite number of non-similar
triangles, scaling triangles will get us nowhere.
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that for each choice of τ, this turns out to be the equation for an elliptic curve. It might not
be obvious that this is the case, considering we have, among other things, cross-terms. But an
equation on this form can always be rewritten to the form

y2 = x3 + ax2 + bx + c, (3)

with a simple change of variables [6, p. 42]. We will soon give such a change of variables. We
will also fix z at a different value than 1 and set τ(s) = s−1

s(s+1)
[3], thus changing the parameter

for the curves from τ to s. We do this to make the computations we do later easier, and to get
the same Weierstrass equation as the one van Luijk uses in his proof.

Now, we change coordinates to (α, β), by applying the following change of variables

x = −s(s + 1)α + β,
y = −s(s + 1)α− β, (8)

z = 8(s− 1)2s(s + 1),

to equation (7), then we get the Weierstrass equation:

β2 = (α− 4(s− 1)2)3 + (s(s + 1)α)2. (9)

This is still not on the form β2 = α3 + aα2 + bα + c, but now we can get there by simply ex-
panding the parentheses. Doing this will give us a longer and more confusing equation, so
we will stick to the form above. Here we can again consider s to be a fixed variable, meaning
that for each choice of s we get an elliptic curve Es, given by equation (9). In order to keep
0 < τ = s−1

s(s+1) we need to set the condition that s > 1.

Now we have constructed a family of elliptic curves, with one curve for each s. The points
on these curves correspond, under the change of variables (8) and (6), to solutions to Herons
equation. The next step will be to find an infinite number of rational points on this curve. Recall
that the rational points on an elliptic curve form a group, so if we can find a rational point of
infinite order, we can use this point to generate the points we need. The point we will use as a
generator will be the point R(s) = (8− 8s, 8s2 − 8), which is rational if we take s to be rational.

Lemma 3.2. The point R(s) = (8− 8s, 8s2 − 8) is a point of infinite order on Es.

Proof. One can easily check that R(s) satisfies equation (9), and thus lies on the curve Es. Fur-
thermore, form van Luijks article, we have that for any s, R(s) will always lie in a subgroup of
Es that is isomorphic to Z×Z/3Z [8, Theorem 5.6.]. Hence R(s) must either have order 1, 3 or
have infinite order. Knowing this, we only need to show that it does not have order 1 or 3. It
can not have order 1, because it is not the identity. Computation also shows that

2R(s) = (s6 − 4s5 + 3s4 + 4s3 − s2 − 8s + 5, s9 − 6s8 + 11s7 + s6 − 21s5 + 11s4 + 9s3 − 5s2 − 1)

which is definitely not −R(s) = (8− 8s, 8− 8s2). Hence, R(s) does not have order 3 either, and
must therefore have infinite order.

[3]Note that this function is not injective, so two different values of s can give us the same elliptic curve. We will
come back to this problem in section 3.3.
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Now that we have found an elliptic curve on which the points correspond to solutions to Herons
equation, and a rational point of infinite order, we have all that we need to start generating
triangles.

3.3 An explicit method for generating rational triangles

In this subsection, we will construct a method for generating solutions to Herons equation, and
prove that the solutions correspond to non-similar rational triangles.

Method 3.3. First of all we choose some rational s > 1, and look at the curve Es given by

β2 = (α− 4(s− 1)2)3 + (s(s + 1)α)2. (9)

From Lemma (3.2) we know that R(s) = (8− 8s, 8s2 − 8) lies on Es and has infinite order.

Next, compute (3R(s), 5R(s), 7R(s), ...)[4], and let (αn, βn) be the coordinates of (2n − 1)R(s),
this will give us an infinite number of points lying on Es . Now that we have N points on Es, we
can change their coordinates from (αn, βn)[5] to (xn, yn, zn) using

xn = −s(s + 1)αn + βn,
yn = −s(s + 1)αn − βn, (8)

zn = 8(s− 1)2s(s + 1).

And finally, apply

an =
yn + zn

xn + yn + zn
, bn =

xn + zn

xn + yn + zn
, cn =

xn + yn

xn + yn + zn
(10)

to change coordinates to (an, bn, cn).

The triples (an, bn, cn) generated by this method will sometimes be referred to as 4n(s), when
we are talking about the triangle with sides an, bn and cn. In section 5.1 we will demonstrate the
method step-by-step, by computing a 4-tuple of rational triangles.

Now we have a method that will generate triples (an, bn, cn) satisfying Herons equation. But
for all we know these triples might not even satisfy the triangle inequality, far less correspond
to rational triangles. So the next step is to prove that the method does indeed produce rational
triangles.

Proposition 3.4. Let s > 1 be a rational number and let the triples (an, bn, cn) be generated by method
3.3. Then for every n ∈ N there is a rational triangle 4n(s) with sides an, bn, cn. All these triangles
will have perimeter p = 2 and area A = s−1

s(s+1) .

[4]We choose to use the odd multiples because it turns out that only they produce triangles, the reason behind this
will become clear in the proof of Proposition 3.4.

[5]Seeing as we are now working with a specific value of s, we will write αn, βn, xn, yn, zn, an, bn, cn instead of
αn(s), βn(s), xn(s), yn(s), zn(s), an(s), bn(s), cn(s) despite the fact that they depend on the choice of s, this is done to
make the expressions here, and later, less messy.
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Proof. Before we show that the triangles we produce are rational, we must first show that
method 3.3 actually produces triangles 4n. Specifically, we want to show that an, bn and cn
are positive, and that they satisfy the triangle inequality.

Starting with the triangle inequality for an, we get:

an < bn + cn

m
yn + zn

xn + yn + zn
<

xn + zn

xn + yn + zn
+

xn + yn

xn + yn + zn

m
yn + zn < xn + zn + xn + yn

m
0 < 2xn

Doing the same for bn and cn we get 0 ≤ 2yn and 0 ≤ 2zn respectively. That means that if we can
prove that xn, yn and zn are positive, we will have shown that an, bn and cn satisfy the triangle
inequality. Furthermore, if xn, yn and zn are positive, so are an, bn and cn, because of how they
are defined in (10).

Next, we want to find out what points (αn, βn) on Es we can use to make xn, yn, zn > 0. We
know that the value of zn does not depend on αn or βn, and will always be positive for s > 1.
On the other hand, xn and yn might not be positive. However, if we take the points on Es where
αn < 0 and therefore also αn < 4(s− 1)2 and substitute into equation (9), we get

(s(s + 1)αn)
2 = β2

n − (αn − 4(s− 1)2)3 > β2
n

⇓
−s(s + 1)αn > |βn|

⇓
xn = −s(s + 1)αn + βn > 0,
yn = −s(s + 1)αn − βn > 0.

This means that the points on Es that have first coordinate α < 0 will make xn, yn, zn > 0, and
hence produce triangles. Now it remains to show that the odd multiples of R(s) (those are the
ones we use to generate triangles) lie on the part where α < 0.

Now, for the next step, we will need to use some of the properties of elliptic curves. Our elliptic
curve, Es has discriminant

∆(s) = 212(s− 1)6s4(s + 1)4(s4 + 2s3 − 26s2 + 54s− 27). (11)

For s > 1, the discriminant will be positive, meaning that according to Lemma (2.3), the elliptic
curve will consist of two separate components, one that is bounded, and one that is not (see
Figure 7 for reference). Our starting point R(s) (R1 on Figure 7) lies on the bounded part. We
call this part B (for bounded), and the other part, the unbounded one, U (for unbounded).

14



Figure 7: The curve Es for s = 7/4, with the first 23 multiples of R. The bounded part B is coloured blue,
and the unbounded part U is coloured red. Note that the the graph tool we use, uses the notation Rn for

nR(s).

From Proposition 2.5 we know that part B is convex, so any line intersecting B will intersect it
in exactly two points (recall that tangents are counted as intersecting Es twice). This, combined
with the fact that any non-vertical line intersects Es either once or thrice [Lemma 2.4], gives us
the following results:

• Any line through two points on B will intersect U. This is because it has already inter-
sected B twice, so it can not do so again. It follows that the sum of two points on B will lie
on U.

• Any line through one point on B and another one on U will intersect Es in a third point
lying on B. This is because any line intersecting B does so twice. It follows that the sum
of two points, one on B and one on U, will lie on B.

Combining these two results, we get this useful property of points on B:

• When taking the multiples of any point on B, all the odd multiples will be lying on B, and
all the even ones will be on U.

Now, because R lies on B, we know that all its odd multiples do so as well. We wanted to show
that all odd multiples of R had first coordinate α < 0, so now, for the final step, we need to
show that B lies entirely in the half-plane where α < 0.

Recall the equation defining Es:

β2 = (α− 4(s− 1)2)3 + (s(s + 1)α)2. (9)

If we set α = 0, we get β2 = −64(s− 1)6 < 0, meaning that no point on Es has α-coordinate
equal to zero. Hence, the line α = 0 either lies between B and U, or to the left of both. Or, equiv-
alently: either the whole curve Es will lie in the half plane where α > 0, or the entire connected
component B will lie where α < 0. We do, however, know that the point R = (8− 8s, 8s− 8)
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has α < 0, and that it lies on B meaning that all of B does indeed lie where α < 0.

Thus, because all the odd multiples of R(s) lie where α < 0, we know that xn, yn and zn are all
positive. And because they are all positive, the triple (an, bn, cn) does indeed form a triangle.

Next, we need to show that the triangle is, in fact, rational.

First, we want to show that an, bn, cn are rational, in order to prove this, it suffices to show that
xn, yn, zn ∈ Q. Recall from section 2.1 that the rational points on Es form a subgroup of Es, hence
adding two points with rational coordinates will yield a new point with rational coordinates.
Our starting point R(s) has coordinates (8− 8s, 8s2 − 8). We have chosen s to be rational, so
R(s), will have rational coordinates, and only generate points with rational coordinates. In turn
xn, yn, zn will be rational, and so will an, bn, cn. Thus, the triangle, will indeed have rational
sides.

In order for 4n to be a rational triangle, we also need to show that it has rational area. We can
do this by simply computing the area A, using Herons formula:

A2 =
p
2
(

p
2
− an)(

p
2
− bn)(

p
2
− cn), (1)

where p is the perimeter of the triangle. We substitute p = an + bn + cn = 2 into equation (1),
and get:

A2 = (1− an)(1− bn)(1− cn)

Changing variables to x, y, z using (6), and then to α, β using (8) gives us:

A2 =
xnynzn

(xn + yn + zn)3

A2 =
(s2(s + 1)2α2

n − β2
n)(8(s− 1)2s(s + 1))

(−2s(s + 1)αn + 8(s− 1)2s(s + 1))3

A2 =
(s2(s + 1)2α2

n − β2
n)(8(s− 1)2s(s + 1))

(2s(s + 1))3(4(s− 1)2 − αn)3

A2 =
(s− 1)2

s2(s + 1)2
s2(s + 1)2α2

n − β2
n

4(s− 1)2 − αn)3 .

Now, because αn and βn satisfy equation (9), we have s2(s+1)2α2
n−β2

n
4(s−1)2−αn)3 = 1, we are left with
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A2 =
(s− 1)2

s2(s + 1)2

⇓

A =
s− 1

s(s + 1)
.

Now, it is easy to see that A is rational when s ∈ Q. We have already shown that the sides are
rational, so the triangle with sides an, bn and cn is indeed a rational triangle.

At the same time, we have shown that all the triangles have the same area A = s−1
s(s+1) , and the

same perimeter p = 2, regardless of the choice of n. With this, our proof is finally complete.
Method 3.3 does indeed produce rational triangles, all having the same area and perimeter.

Before we move on to the next proposition, let us have a closer look at A. We have found that
the area of our triangles is

A =
s− 1

s(s + 1)
= τ(s). (12)

The graph of τ is shown in Figure 8. It has a maximal point at (s0, τ(s0)) where

s0 = 1 +
√

2,

τ(s0) = (
√

8 + 3)−1.

This means that none of the triangles we generate will have an area greater than τ(s0) ≈ 0.172,
but we know the largest area a triangle with perimeter 2 can have is when it is equilateral,
then it will have area A = (3

√
3)−1 ≈ 0.192. Method 3.3 will hence generate far from all ra-

tional triangles, as it is missing out on, for example, the (6/8, 5/8, 5/8) triangle, which has area
A = 3/16 ≈ 0.188.

Figure 8: The function τ(s), with its maximal point at s = s0. It is clearly not injective for s > 1.
It is however, injective on both sides of s0.
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Figure 8 also shows that, as we briefly mentioned in section 3.2, τ(s) is not injective for s ∈
[1, ∞), meaning that two different choices of s can generate triangles with the same area. Hence,
we can not know whether method 3.3 generates a unique family of triangles for each s. In his
paper, van Luijk seems to overlook this fact, which in turn causes a flaw in his proof. We will
return to this once we complete the proof of our main theorem. For now, all we need to note is
that the function τ(s) is injective for s > s0, as this will be an important point in the proof of
Proposition 3.6 later.

From Proposition 3.4 it is clear that there exists a sequence of Heron triangles, all with the same
area and perimeter. Meaning that we are well on our way to proving van Luijks Theorem: "for
each s > 1, there exist a sequence of Heron triangles, all having the same area and perimeter, and all
being non-similar". We only need to show that the triangles will be non-similar. In order to do
this, we first need a lemma:

Let us define a point P on Es given by P = (4(s− 1)2, 4s(s + 1)(s− 1)2).

Lemma 3.5. For any odd multiple R′ of R with corresponding triangle (an, bn, cn)

1. −R′ will correspond to the triangle (bn, an, cn), and

2. R′ + P will correspond to the triangle (bn, cn, an).

These two operations generate all possible permutations of (an, bn, cn).

Figure (9) shows these operations applied to R.

Proof. Let R′ have coordinates (αn, βn), and let that correspond to (xn, yn, zn), under the change
of variables in (8). We prove 1. and 2. separately.

1. The coordinates of−R′ will be (αn,−βn), corresponding to (yn, xn, zn) under (8). So taking
the inverse of a point will be the same as switching around xn and yn, which, under (10)
will correspond to switching the sides an and bn of the triangle, giving us (bn, an, cn).

2. From van Luijks paper [8], the automorphism induced by the 3-cycle (xyz) corresponds
to translation by P [8, see Lemma 5.5]. In other words, adding P to R′ will give us a point
that corresponds to (zn, xn, yn), which in turn corresponds to the triangle (cn, an, bn).

There exist 6 possible permutations of (an, bn, cn), it is simple to check that these two operations
generate all of them.

With this lemma, we can move on to prove that the triangles given by method 3.3 will indeed
be non-similar, not only for different n, but also for different s.

Proposition 3.6. Let the triangles 4n(s) be given by method 3.3 described in the beginning of the
chapter. Then for all n1, n2 ∈N and s1, s2 ∈ Q with s1, s2 > s0 the triangles4n1(s1) and4n2(s2) are
similar if and only if n1 = n2 and s1 = s2.

Proof. If n1 = n2 and s1 = s2 the triangles will obviously be similar, no proof of this will be
given. The implication the other way, however, is less trivial.

Let us first assume that s1 6= s2. Because s1, s2 > s0 we know that τ(s1) 6= τ(s2) because τ(s)
is injective for s > s0. Hence the two triangles will have different areas (recall that A = τ(s)).
We already know that they will have the same perimeter because our method only produces
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Figure 9: This shows the 6 point we get by applying the operations in Lemma 3.5 to R, on the curve Es for s = 2.1

triangles with p = 2, but then they can not be similar, because a scaling that makes the areas
equal will make the perimeters different. As such, the two triangles will be similar only if they
have the same s.

For the next part, we assume that s1 = s2 and that the triangles are similar, and use this to show
that n1 = n2. Because s1 = s2, the two triangles will have the same area and perimeter. But if
two triangles with the same area and perimeter are similar, they must be congruent. Hence, we
know that the sides of4n1(s1) are just a permutation of the sides of4n2(s2).

From Lemma 3.5 we have that any permutation can be obtained by inversions and translations
by P. So we can write

(2n1 − 1)R = ±(2n2 − 1)R + kP

for some k ∈ {0, 1, 2}. We multiply by 3 on both sides to get

3(2n1 − 1)R = ±3(2n2 − 1)R + 3kP.

Because P has order 3, we know that 3kP = O, and we get

3(2n1 − 1)R = ±3(2n2 − 1)R.

Because R has infinite order, nR = mR⇒ n = m, so

3(2n1 − 1) = ±3(2n2 − 1)

Since n1, n2 ≥ 1, and we only have positive multiples of R, we get

6n1 − 3 = 6n2 − 3
⇓

n1 = n2
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This means that if4n1(s1) and4n2(s2) are similar, then n1 = n2 and s1 = s2.

3.4 Our main theorem, and the error in the original proof

With these two propositions in place, we can construct a theorem of our own, analogue to the
main theorem in van Luijsks paper [8].

Theorem 3.7 (Main Theorem). There exists a sequence {(an(s), bn(s), cn(s))}n∈N of triples of ele-
ments in Q(s) such that

(1) for all n∈ N and all s ∈ Q with s > 1 there exists a triangle 4n(s) with sides an(s), bn(s) and
cn(s), perimeter 2, and area s−1

s(s+1) , and

(2) for all n1, n2 ∈ N and s1, s2 ∈ Q with s1, s2 > s0, the rational triangles 4n1(s1) and 4n2(s2)
are similar if and only if n1 = n2 and s1 = s2.

Proof. We want to show the existence of such a sequence with these properties. If we take
{(an(s), bn(s), cn(s))}n∈N to be the sequence generated by method 3.3, then by Proposition 3.4
and 3.6 it will satisfy (1) and (2) respectively.

Now, that we have proven our main theorem, let us compare it to the main theorem in van
Luijks paper:

Theorem 3.1. (van Luijks Theorem) There exists a sequence {(an(s), bn(s), cn(s))}n≥1 of triples of
elements in Q(s) such that

(1) for all n≥1 and all s ∈ R with s > 1 there exists a triangle 4n(s) with sides an(s), bn(s) and
cn(s), inradius s− 1, perimeter 2s(s + 1) and area s(s2 − 1), and

(2) for all m, n ≥ 1 and s1, s2 ∈ Q with s1, s2 > 1, the rational triangles 4m(s1) and 4n(s2) are
similar if and only if m = n and s1 = s2.

Remark. Van Luijks proof of this theorem is, as we will soon see, flawed. He only proves it for
s1, s2 > s0, not for s1, s2 > 1. The theorem itself will, however, turn out to be true.

Van Luijks method for generating triangles is similar to ours, the main difference is the final
step, when going from x, y, z to a, b, c. Whereas we choose to scale the triangles so that they
have p = 2, van Luijks scaling is a bit different. This is the reason why the two theorems give
triangles with different areas and perimeters. It is simple to check that if we scale our triangles
up by a factor of s(s + 1) we get the same areas and perimeters as van Luijk.

Secondly, and more importantly, we require s > s0 in order to avoid similar triangles, while van
Luijks Theorem only requires s > 1, and here the theorems are somewhat less compatible. It
turns out that neither mine nor van Luijks method is sure to generate non-similar triangles if
we don’t require s > s0. In his paper [8, Remark 1.2.], van Luijk gives an example of a sequence
of triangles parameterized by s and states that all the triangles will be non-similar. However,
both the triangle (3, 4, 5) and the triangle (6, 8, 10) appear in the sequence, for s = 2 and s = 3
respectively, and these two triangles are obviously similar.

Indeed, not only the example but also the proof itself is flawed, as it fails to recognize that
τ(s) = s−1

s(s+1) is not injective. Van Luijk himself stated, in an email [7], that
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Figure 10: The function τ(s), with its maximal point at s = s0. For each value of s, there will be
another value s′ = s+1

s−1 such that τ(s) = τ(s′).

"The idea was that the ratio 2s(s+1)/(s-1) between the perimeter and the inradius
depends on s and is therefore different for different values, but I somehow over-
looked the fact that there are usually two values that give the same, namely s and s’
= (s+1)/(s-1). Or phrased differently, when (s-1)(s’-1) = 2."

Figure 10 illustrates the point in the e-mail, that there are usually two values of s giving the
same area. This, however, does not mean that the theorem is false, in fact, it turns out that such
a sequence still exists and that the theorem remains true. Even better, we can still find such a
sequence explicitly, based on our current method. Let us construct this new sequence in order
to prove van Luijks Theorem.

Proof. (van Luijks Theorem)
We simply define a new sequence Nn(s) for n ∈N and s > 1:

Nn(s) =

{
42n(s) if s < s0,
42n−1(s) if s > s0,

where4n(s) are the triangles generated by method 3.3.

Now, two triangles Nn1(s1) and Nn2(s2) will be similar only if n1 = n2 and s1 = s2, because
even if we take s1 and s2 such that they have the same area, they will be non-similar because
they correspond to 4n(s) with different n which we know to be non-similar from Proposition
3.6.

As such, van Luijks Theorem remains true. In the next section we will see what this implies,
and what problems on Herons triangles that still remain to be solved .

4 The next step - rational medians

Since we concluded that van Luijks Theorem was indeed true, it follows that one can find an
N-tuple of non-similar Heron triangles all having the same area and perimeter for any N ∈N[6].

[6]see section 3.1 if you forgot why this follows from van Luijks Theorem.
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Figure 11: By combining two Pythagorean triangles, one can obtain a Heron triangle with one integer median.

Now that this problem on Heron triangles has been solved, what will be the next step? Some
might wonder whether it is possible to find an infinite (not just an arbitrarily large) number of
non-similar Heron triangles having the same area and perimeter. But it is simple to show that
this is impossible. Given any natural number, there exists only a finite number of ways to write
it as the sum of three natural numbers. Equivalently, for any finite perimeter, there exist only a
finite number of triangles with integer sides, having this perimeter. Even fewer of these will be
Heron triangles, so we cannot find infinitely many having the same area and perimeter

We can also start looking for Heron triangles with integer altitudes or medians. But because the
altitude ha is given by ha = A

a for side a and similar for the other sides, the altitude of a Heron
triangle is always rational, and can be scaled up to be an integer. The medians however, are
more interesting.

Now, first of all, does there even exist Heron triangles with integer medians? The triangle (5,5,6)
will have one median of length 4, so the answer is yes. This is because the triangle (5,5,6) can
be formed by joining two (3,4,5) triangles along the side with length 4. So, because (3,4,5) is
Pythagorean, the resulting triangle must be Heron, and have median 4 (see Figure 11). This
process can be done with any Pythagorean triple, and because we know there exist infinitely
many primitive Pythagorean triples, we know that there also exists an infinite number of Heron
triangles with one integral median.

There also exists an infinite number of Heron triangles with two rational medians, this was
proven in 1997, by Buchholz and Rathbun [2]. However, a Heron triangle with three rational
medians has not yet been found. Several "proofs" have been given that no such triangle can
exist, but they have all turned out to be flawed [3]. This remains an open problem to this day
(see D21 in [3]).

In this thesis we have found an infinite number of integer solutions (A, a, b, c) to Herons equa-
tion

A2 =
p
2
(

p
2
− a)(

p
2
− b)(

p
2
− c), (1)

where p = a + b + c. If we are to find a Heron triangles with rational medians, we will also
need to find integer solutions to the equations

4m2
a = 2b2 + 2c2 − a2, 4m2

b = 2a2 + 2c2 − b2, 4m2
c = 2a2 + 2b2 − c2,

22



where ma, mb, mc is the length of the medians from the midpoints of a, b and c respectively. Un-
der the same changes of variables we used on Herons formula in section 3.2, these equation do
not turn out to be elliptic curves, but rather to be quadratic equations, which are generally eas-
ier to work with. We also know that each of these equations have a countably infinite number
of rational solutions. Still, finding a 7-tuple of integers (A, a, b, c, ma, mb, mc) that solves all four
equations simultaneously is difficult, if not impossible, as finding integer solutions to even one
of these equations is far from trivial.

We will not seek to find a triangle with rational medians, sides, and area, as this is beyond the
scope of this thesis, but to give an idea of how rare these triangles are: The next section contains
examples of Heron triangles computed using method 3.3, and among these only one triangle
(up to similarity) has one rational median, while the others have only irrational medians. So
among the solutions to Herons equation, very few will also be solutions to even one of the three
other equations.

5 Computing examples

Now that we have constructed a method and proven that it works, the reader is probably eager
to see the actual Heron triangles generated by it. In this section, we will use the method to
generate some examples of triangles sharing the same area and perimeter. We will start with a
simple example where we do every step in method 3.3, in order to clarify how it works. Then
we will see what happens with bigger tuples of triangles. Finally, we prove the result of Kramer
and Luca, that there exists an infinite parameterized family of pairs of Heron triangles with the
same area and perimeter, by giving an example of such a family.

5.1 Applying the method for s = 2 and N = 4

In this example we will try to find N = 4 Heron triangles, all having the same area and perime-
ter. We start of by setting s = 2[7] into (9) to get the curve E2: β2 = (α− 4)3 + 36α2, we also get
the point R2 = (−8, 24) lying on the curve.

Next we want to compute the first (2n− 1) multiples of R. In section 2.1 we gave the formula
for addition of points on an elliptic curve. Recall equation (5):

Given P = (xP, yP) and Q = (xQ, yQ), the coordinates of −R = P + Q, will be:

−R = (x−R, y−R),

where
x−R = λ2 − xP − xQ − a,
y−R = −λ(x−R − xP)− yP,

(5)

Here λ is the slope of the line l, given by

[7]Here we choose s < s0. But this does not cause any problems with similarity because we are only looking at one
4-tuple of triangles, and not a family of such.
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Figure 12: This shows E2 with the the seven first multiples of R.

λ =


yP − yQ

xP − xQ
if xP 6= xQ,

3xP
2 + 2axp + b

2yP
if P = Q.

We proceed use equation (5) over and over to compute the first 7 multiples of R. The odd mul-
tiples are given in Table (1).

Remark. The values given from now on, have been computed using Python. The script we use
can be found in appendix A.

n (2n− 1)R

1 (-8,24)

2 (− 104
9 ,− 872

27 )

3 (− 70760
12769 , 22205688

1442897 )

4 (− 1367100104
86136961 ,− 27943556883288

799437135041 )

Table 1: The first 4 odd multiples of R for s = 2.

Now we have 4 points on E2 that will correspond to rational triangles. first of, we apply equa-
tion

x = −s(s + 1)α + β,
y = −s(s + 1)α− β, (8)

z = 8(s− 1)2s(s + 1),
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to change coordinates to x, y, z and then apply

an =
yn + zn

xn + yn + zn
, bn =

xn + zn

xn + yn + zn
, cn =

xn + yn

xn + yn + zn
(10)

to change to a, b, c. By doing this we get the four rational triangles in Table (2).

a b c A

1
2

5
6

2
3

1
6

101
126

41
90

26
35

1
6

27689
48138

27277
32318

17690
30459

1
6

226180525
302690534

221167193
487085442

341775026
427911987

1
6

Table 2: Four rational triangles with sides a, b, c and area A. Note that the first
triangle is similar to (3,4,5), the smalle st Heron triangle.

With this we have completed every step in method 3.3, but because we are looking to find
Heron triangles, and not rational triangles, we want to multiply with the lowest common de-
nominator[8] in order to make the sides integers . We find this to be 956844466195327139430,
and multiplying with this gives us the following Heron triangles:

a′ b′ c′

478422233097663569715 797370388496105949525 637896310796884759620

766994373696254294305 435895812377871252407 710798746316528732148

550377382202883650415 807594730627202747145 555716819560567881300

714986295895873126125 434467110856505321595 764235525638275831140

Table 3: Four Heron triangles with sides a′, b′, c′, each of them will have area and perimeter:
A = 152591888748103423480760746692984443454150,

p = 956844466195327139430.

We have now generated a quadruple of Heron triangles having the same area and perimeter.
These are shown in Figure 13.

Now we have shown how method 3.3 works step by step. We will move on to finding some
bigger tuples soon. But first, let us return to the problem with τ(s) not being injective.

[8]We multiply with the lowest common denominator of the sides in ALL the triangles, rather than simply scaling
up each triangle. We do this to ensure all the triangles have the same area and perimeter.
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Figure 13: The first four triangles on the elliptic curve E2.

5.2 When different values of s give the same τ

As we have discussed before, there are usually two different values of s that give the same value
of τ and hence the same elliptic curve. Earlier we chose to only use s > s0 to be certain to avoid
similar triangles. We have, however, not checked whether this was actually necessary. For all
we know, the triangles produced will still be non-similar, despite having the same area. After
all, the starting point R will have different coordinates, and so will all its multiples. In this sec-
tion, we will see what happens when we take two different values of s that give the same τ.

In the previous section, we were using using s = 2. Seeing as s < s0 there should exist some
s′ > s0 that will give triangles similar to these. In this case s′ = 3 is such that τ(s′) = τ(s) = 1/6.
So let us have a look at the first four triangles generated by method 3.3 when we choose s = 3,
and see whether these are the same as the ones we generated with s = 2. The first four odd
multiples of R(s′) turn out to be:

n (2n− 1)R

1 (-16,64)

2 (− 416
9 , 6976

27 )

3 (− 436432
5041 , 2458432

357911 )

4 (− 3618888400
76510009 ,− 175197095447104

669233048723 )

Table 4: The first 4 odd multiples of R for s = 3.

These are not at all similar to the first four multiples we got when we chose s = 2. However,
after applying (8) and (10) to change coordinates back to (a, b, c) we get the following rational
triangles:
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a b c

2
3

5
6

1
2

41
90

101
126

26
35

27689
48138

17690
30459

27277
32318

341775026
427911987

221167193
487085442

226180525
302690534

Table 5: The first four rational triangles given by method 3.3 for s = 3. Note that
these are just permutations of the values in Table 2.

These rational triangles are not only similar to the ones generated when s = 2, they are con-
gruent. While this is the case, the sides do seem to have been permuted, it is not as simple as
two of the columns (a, b, c) simply having been switched either. For example, n = 1, s = 2 gave
(1/2, 5/6, 2/3), while n = 1, s = 3 gave (2/3, 5/6, 1/2) meaning a and c has been switched. For n = 2
however, it is a and b that have been switched. It seems to be a pattern that for each n, one of
the values a, b and c will always be unchanged, while the other two are switched around. This
means that the triangles generated when s = 2 will have opposite orientation of those gener-
ated when s = 3.

This example shows that we can not take families of triangles generated by s < s0 and s > s0
without running a risk of generating similar triangles. Having shown this, we move on to com-
puting some more examples.

5.3 Larger examples

In theory, method 3.3 can provide us with arbitrarily many Heron triangles with the same area
and perimeter. But when we actually try to use the method, we quickly encounter a problem
as the number of triangles N increases. Namely that the sides of the triangles start to become
increasingly large. While this is hardly a surprise, the numbers of digits needed to represent
each of the sides quickly increase beyond what can fit on this page. The least number of digits
needed to represent the sides in each triangle, when we generate N triangles, can be found in
Table 6.

We can attempt to reduce the number of digits needed by picking the right value of s, as the
number of digits needed is largely dependent on both s and N. For example, if we had used
s = 4 instead of s = 2 when computing our 4-tuple in the previous section, we would have
gotten 38 digits for each side length, instead of 21. In an attempt to find the optimal s we have
tested all rational values of s on the form s = a

b with b ≤ 60 and a < 4b as well as for integral
s up to s = 100. The s that gave the least number of digits are given in Table 6. But even after
trying all these values of s we still seem unable to push the number of digits down to a man-
ageable amount for the larger N. As such, we will not give examples of N-tuples of triangles
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N Digits needed Optimal s
1 1 2
2 3 2
3 9 2
4 21 2
5 38 2
6 49 2
7 64 2
8 78 2
9 92 2
10 108 2
11 124 2
12 152 3

N Digits needed Optimal s
13 167 2
14 182 2
15 195 2
16 210 2
17 224 3
18 239 2
19 254 2
20 269 3
30 418 111/32

40 563 103/32

50 709 11
100 1429 67/32

Table 6: This table shows the number of digits we need to represent each of the sides in the
triangle, when we generate N Heron triangles with the same area and perimeter, as well as

showing what s minimizes the number of digits needed.

for N > 6, simply because my pages are not large enough to contain numbers with more than
40-50 digits. We will, however, give an example of a 6-tuple. This can be found in appendix B.

The values of s in Table 6 are the ones minimizing digits among the s that we have checked, but
it is quite possible that there exists some value of s making the number of digits far lower. In
fact, van Luijk gives an example of a 20-tuple of such triangles, where each of the sides are 22-
digit numbers. Luckily, we know that τ = s−1

s(s+1) = 4A
p2 , so we can use this to compute s when

the area and perimeter is known. It turns out that van Luijk has used τ = 28/195 when com-
puting the triangles, this does not, however, correspond to a rational value of s. Unfortunately,
irrational numbers are always prone to round-off errors, and all of our attempts to implement
the script with τ = 28/195 ends up giving triangles that don’t have the same area and perimeter,
although being very close. This is most likely due to round off errors.

Even when s is rational we get some round-off errors. In fact, the 6-tuple given in the appendix
does not contain only Heron triangles. Due to round off errors, only the first four are Heron.
Using Herons formula

A2 =
p
2
(

p
2
− a)(

p
2
− b)(

p
2
− c)

to compute A2 and then checking whether A2 is a perfect square, shows that the last two tri-
angles given in the 6-tuple are not Heron, because their A2 is not a perfect square. Their area
is very close to being a square though, but for our purpose, approximations are not sufficient,
as we are working with a problem in number theory. So while method 3.3 does give us an
arbitrarily large number of Heron triangles, the actual triangles it produces are not that easy
to compute. It is, however, likely that a reader with more computational experience can do a
better job than me on this problem.

Finally, we will use method 3.3 to give a proof of the result of Kramer and Luca [4]:

Theorem 5.1 (Kramer and Luca). There exists an infinite family, parametrized by s, of pairs of Heron
triangles.
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This actually follows from Corollary 1.1, by taking N = 2. But because we are in the computa-
tional section of the thesis, we will instead give proof by example.

Proof. To prove this we simply use method 3.3 without choosing a value of s, and compute the
first two triangles. We get

a1 =
s− 1

s
, b1 =

s2 + 1
s(s + 1)

, c1 =
2

s + 1

a2 =
s10 − 8s9 + 21s8 − 8s7 − 46s6 + 48s5 + 26s4 − 40s3 + 29s2 + 8s + 1

s(s9 − 7s8 + 16s7 − 4s6 − 26s5 + 10s4 + 16s3 + 20s2 + 9s− 3)
,

b2 =
s10 − 6s9 + 13s8 − 16s7 + 26s6 − 20s5 − 46s4 + 48s3 + 37s2 − 6s + 1

s(s9 − 5s8 + 4s7 + 16s6 − 22s5 − 14s4 + 12s3 + 16s2 + 21s + 3)
,

c2 =
2(s7 − 7s6 + 21s5 − 31s4 + 19s3 + 3s2 − s− 5)

s8 − 6s7 + 10s6 + 10s5 − 40s4 + 14s3 + 30s2 − 2s− 1
.

Let41(s) have sides (a1, b1, c1), and let42(s) have sides (a2, b2, c2). Then41(s) and42(s) are
rational triangles having the same area and perimeter. If we multiply with the common denom-
inator and substitute integral s > 2 we will get a family of pairs of Heron triangles having the
same area and perimeter with no triangles being similar to one another. Hence such a family
does indeed exist.

This concludes the computational part of the thesis.
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A Script used to compute examples

This is the script used to generate the triangles given in section 5. We have used Python, rather
than MATLAB, because Python appears to be better at handling large integers.

This script can be somewhat hard to understand for readers without computational experience,
and any reader with experience, will probably frown upon such a needlessly complicated script.
As such we recommend any reader to create their own script based on method 3.3, rather than
trying to use or understand this one.

Python code
1 from pylab import*

2 import numpy as np

3 from fractions import gcd #We import the gcd function

4
5 #First off , we define som function we will need later

6
7 #A function to compute the least common multiple of two numbers

8 def lcm(x,y):

9 g=gcd(long(x),long(y))

10 prod=long(x)*long(y)

11 lcm=prod/g

12 return lcm

13
14 #A function for adding fractions

15 def add(a,b):

16 if type(a)==long:

17 a=(a,1)

18 if type(a)==int:

19 a=(a,1)

20 if type(b)==long:

21 b=(b,1)

22 if type(b)==int:

23 b=(b,1)

24 D=lcm(abs(long(a[1])),abs(long(b[1])))

25 N=a[0]*(D/a[1])+b[0]*(D/b[1])

26 G=gcd(abs(N),abs(D))

27 n=N/G

28 d=D/G

29 add=(n,d)

30 return add

31
32 #A function for subtracting b from a (fractions)

33 def sub(a,b):

34 if type(a)==long:

35 a=(a,1)

36 if type(a)==int:

37 a=(a,1)

38 if type(b)==long:

39 b=(b,1)

40 if type(b)==int:

41 b=(b,1)

42 D=lcm(abs(long(a[1])),abs(long(b[1])))

43 N=a[0]*(D/a[1])-b[0]*(D/b[1])

44 G=gcd(abs(N),abs(D))

45 n=N/G

46 d=D/G

47 sub=(n,d)

48 return sub

49
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50 #A function for multiplying fractions

51 def mult(a,b):

52 if type(a)==long:

53 a=(a,1)

54 if type(a)==int:

55 a=(a,1)

56 if type(b)==long:

57 b=(b,1)

58 if type(b)==int:

59 b=(b,1)

60 D=b[1]*a[1]

61 N=long(a[0])*long(b[0])

62 G=gcd(abs(N),abs(D))

63 n=N/G

64 d=D/G

65 mult=(n,d)

66 return mult

67
68 #A function for dividing a by b (fractions)

69 def div(a,b):

70 if type(a)==long:

71 a=(a,1)

72 if type(a)==int:

73 a=(a,1)

74 if type(b)==long:

75 b=(b,1)

76 if type(b)==int:

77 b=(b,1)

78 D=long(a[1])*long(b[0])

79 N=long(a[0])*long(b[1])

80 G=gcd(abs(N),abs(D))

81 n=N/G

82 d=D/G

83 mult=(n,d)

84 return mult

85
86 #Now we can start the actual computation

87 #Most of the values here are fractions represented by 2-tuples on the form

(nominator ,denominator)

88
89 n=4 #Number of triangles we want to generate

90 s=(2,1) #Choose s>1 (nominator ,denominator)

91
92 #Define variables

93 Rx = zeros((2*n-1,2)) #The x values of nR

94 Ry = zeros((2*n-1,2)) #The y values of nR

95 lambdaa = zeros((2*n-1,2)) #The lambda used when adding polongs on the curve

96 x= zeros ((n,2),dtype=long)

97 y= zeros ((n,2),dtype=long) #x,y and z as in the thesis

98 z= zeros ((n,2),dtype=long)

99 p_2 = zeros((n,2),dtype=long) #the sum of x,y and z, for scaling

100 an= zeros((n,2),dtype=long)

101 bn= zeros((n,2),dtype=long) #an ,bn,cn are the sides of a rational triangle

102 cn= zeros((n,2),dtype=long)

103 l= [0] * n #helping variable when computing common divisor

104 aa= [0] * n

105 bb= [0] * n #aa ,bb,cc are the sides of a Heron triangle

106 cc= [0] * n

107
108 #Define R

109 Rx[0,:]=sub(8,mult(8,s))

110 Ry[0,:]=sub(mult(mult(8,s),s),8)
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111
112 #Define a and b in the polynomial y^2=x^3+ax^2+bx+c

113 a= sub(mult(mult(s,s),mult(add(s,1),add(s,1))),mult(12,mult(sub(s,1),sub(s,1))))

114 b= mult(48,mult(mult(mult(sub(s,1),sub(s,1)),sub(s,1)),sub(s,1)))

115
116 #Computing (2n -1)R by repedeatley adding R

117 for i in range(0,2*n-2):

118 if i==0:

119 lambdaa[i,:]=div(add(add(mult(3,mult(Rx[0,:],Rx[0,:])),mult(mult(2,a),\

120 Rx[0,:])),b),mult(2,Ry[0,:]))

121 Rx[i+1,:]=sub(mult(lambdaa[i,:],lambdaa[i,:]),add(mult(2,Rx[0,:]),a))

122 else:

123 lambdaa[i,:]=div(sub(Ry[i,:],Ry[0,:]),sub(Rx[i,:],Rx[0,:]))

124 Rx[i+1,:]=sub(sub(sub(mult(lambdaa[i,:],lambdaa[i,:]),Rx[i,:]),Rx[0,:]),a)

125
126 Ry[i+1,:]=sub(0,add(mult(lambdaa[i,:],sub(Rx[i+1,:],Rx[0,:])),Ry[0,:]))

127 i = i+1

128
129 #Changing the odd multiples of R to (x,y,z) and then to (an ,bn,cn)

130 for i in range(0,n):

131 x[i,:]=add(mult(mult(mult(-1,s),add(s,1)),Rx[2*i,:]),Ry[2*i,:]) #computing

x

132 y[i,:]=sub(mult(mult(mult(-1,s),add(s,1)),Rx[2*i,:]),Ry[2*i,:]) #computing

y

133 z[i,:]=mult(mult(mult(8,mult(sub(s,1),sub(s,1))),s),add(s,1)) #computing

z

134 p_2[i,:]=add(add(x[i,:],y[i,:]),z[i,:]) #computing x+y+z for scaling

135 an[i,:]=div(sub(p_2[i,:],x[i,:]),(p_2[i,:])) #computing an

136 bn[i,:]=div(sub(p_2[i,:],y[i,:]),(p_2[i,:])) #computing bn

137 cn[i,:]=div(sub(p_2[i,:],z[i,:]),(p_2[i,:])) #computing cn

138
139 #Compute the common divisor of all an,bn and cn.

140 for i in range(0,n):

141 l[i]=lcm(lcm(an[i,1],bn[i,1]),cn[i,1])

142 L=1

143 for i in range(0,n):

144 L=lcm(L,l[i])

145 L=long(L)

146
147 #Multiplying the rational sides (an,bn ,cn) with the common divior to get

integer sides (aa ,bb,cc)

148 for i in range(0,n):

149 aa[i]=long(an[i,0])*(L/long(an[i,1]))

150 bb[i]=long(bn[i,0])*(L/long(bn[i,1]))

151 cc[i]=long(cn[i,0])*(L/long(cn[i,1]))
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B An example of a 6-tuple

This table shows us the Heron triangles generated by our script for s = 2. Only the first four are actually Heron, while the last two have irrational area. This is due to round off
errors when using a script for computing the triangles. This page has a sideways layout, so that the table can fit on a single page. Our script can be used to generate larger tuples,
but then the the results will no longer fit on this page. It is also likely that the round-off errors will only get larger as we generate larger tuples.

a b c
227923701560191955421494599620372336899202081323306385 379872835933653259035824332700620561498670135538843975 303898268746922607228659466160496449198936108431075180
365401489802847420596364358121549302013006511327840395 207663816977063781606250635209672573619273007427901373 338629499460856619483363405150267471964528806537483772
262203638393790978173823755406892252956167951712203685 384743784111476945852596583566117719759857365694401155 264747383735499897659558059508479374880783007886620700
340624477399927779558578761678755476742714384552231375 206983173569114288255624328278308984512195083284929705 364087155271725753871775308524424886341898857456064460
301370687544486355257600240988786205307804281116146510 380481399370835746272657477547085501071562437514931510 229842719325445720155720679945617641217441606662147520
306405002032704575981208756247674685967399162572168050 226067242569808406851646604197087346342525084868131570 379222561638254838853123038036727315286884077852925920
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