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Abstract

The field of compressive sensing is a modern field in applied
mathematics which receives a lot of attention. In this thesis, we will give
some insight into the iterative algorithms used in compressive sensing.
We will study in particular the primal-dual algorithm, as proposed by
Chambolle and Pock, and Nesterov’s algorithm, NESTA. In general,
the primal-dual algorithm is a more traditional algorithm than NESTA.
Nesterov proved that for general convex functions, the primal-dual
algorithm cannot achieve a better convergence rate than O(1/k), where
k is the number of iterations, whereas Nesterov’s algorithm with general
convex functions achieves a convergence rate of O(1/k2).
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CHAPTER 1

Introduction

In many different fields, we need to reconstruct a signal from measured
data. For instance, when working with image processing, we would like to
reconstruct an image to its original form, from some measurement points.
The measurements, or samples, are often done linearly, and we reconstruct
the signal by formulating the linear system of the form,

Ax = y.

Here, y ∈ Cm is the measured data, x ∈ CN is the vector we wish
to reconstruct and A ∈ Cm×N is the measurement matrix that we
need to construct. Shannon and Nyquist’s sampling theorem states
that the sampling rate must be at least twice the highest frequency of
a continuous-time signal, to ensure reconstruction and avoid aliasing.
Similarly, for the linear system, we need at least as many measurements,
m, as the length of the vector x, N . If however m < N , the system becomes
underdetermined and unsolvable with infinite possible solutions, making it
impossible to reconstruct x from y. So how do we proceed when the number
of measurements does not match the length of our original signal? This is
where we meet the idea in which the entire field of compressive sensing is
built on, namely sparsity. It shows, that under the assumption of sparsity
we can reconstruct signals, even when the system is underdetermined. A
vector or matrix is sparse if most of its components are zero. If at most s of
the components are non-zero, we say that it is s-sparse. In mathematical
terms: the vector x ∈ CN is s-sparse if,

∥x∥0 ∶= card(supp(x)) ⩽ s.

We use the notation of the `0-“norm”. ∥x∥0 is not a true norm, but commonly
used for counting the number of non-zero elements in a vector x.

The reconstruction is performed by minimizing the vector x with respect to
some constraints. The constraints are usually the measurements, that is,
the linear system Ax = y. We formulate this as the `0-minimization,

min ∥x∥0 subject to Ax = y.

What we are trying to accomplish with the `0-minimization, is to find the
vector x with the least amount of non-zero elements. In other words, we are
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1. Introduction

trying to find the sparsest solution of the linear system Ax = y. In fact, we
can construct the measurement matrix A such that `0-minimization always
finds the unique, exact solution. However, the general challenge here is
that the location of the non-zero elements are often unknown. Therefore,
the algorithm must try for all possible locations of the non-zero elements,
which becomes (

N
s
) for an s-sparse vector of length N .

Let us consider an example for a quite standard image size of 1024 × 1024
pixels, and a 10-sparse vector x. The algorithms would have to solve the
system Ax = y, (

1024
10

) ⩾ ( 1024
10

)
10

> 1020 times. With the 10-sparse vector
x, the system will require 10 ⋅ 10 = 100 iterations. Consider running this
minimization on UiO’s supercomputer, Abel, with a computational power of
just above 200 teraFLOPS (number of floating point operations per second).
The minimization would still use nearly two years of computations. The
author’s MacBook Pro, on the other hand, with less than 200 gigaFLOPS,
would need more than 1500 years. We can safely say that this is impractical
and NP-hardness is proven in Chapter 2. The approximation we rather
perform is the `1-minimization, which is the convex relaxation of hte
`0-minimization, and can be solved efficiently. We can often reformulate
the minimization to a linear program and use interior point methods or the
traditional simplex method, which we will introduce in Chapter 4. Since
these methods and algorithms are designed for general linear programs,
they may be slower than algorithms explicitly developed for `1-minimization.
Algorithms such as the primal-dual algorithm and Nesterov’s algorithm are
specifically developed for `1-minimization.

1.1 Outline

The thesis is organized as follows:

Chapter 2 derives the `1-minimizer to be the best choice for optimization.
Here we also present most of the background theory that constitutes
the foundation of the remainder of the thesis.

Chapter 3 introduces necessary conditions for the algorithms in
compressive sensing, such as the null space property, coherence and
the restricted isometry property.

Chapter 4 gives an overview of the general algorithms associated with
compressive sensing and some results from Chapter 3.

Chapter 5 introduces the concept of duality before deriving the primal-dual
algorithm. Next, we prove convergence of the sequences computed in
the algorithm.

Chapter 6 follows Nesterov’s development of the algorithm known as
NESTA and show that its general form works with both `1- and
TV-minimization. Lastly, we introduce continuation, a method of
speeding up the algorithm for some problems.

Chapter 7 summarizes the thesis.
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CHAPTER 2

Optimization

When working with optimization, the problems we face require a high
number of numerical computations. Some of the problems need too many
numerical computations to compute within a reasonable time, and therefore,
we start by introducing the topic of computational complexity, before moving
on and showing why `1-minimization is such a widely used approach in
minimization.

2.1 Computational Complexity

Figure 2.1: Representation of complexity classes.

First of all, a polynomial-time algorithm is an algorithm whose number of
steps is bounded by a polynomial expression. The size of the polynomial
is shortened to its dominating part and denoted O(nk), where nk is
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2. Optimization

the dominating part. The classes of problems we are interested in are:
P-problems (polynomial time), NP-problems (non-deterministic polynomial
time), NP-hard and NP-complete.

P-problems are decision problems where there exists a polynomial-time
algorithm.
NP-problems are all decision problems where there exists a
polynomial-time algorithm that certifies a solution.
NP-hard problems are all problems (note: not only decision problems)
that are at least as hard as any NP-problem.
NP-complete problems are all problems that are both NP and NP-hard.
Thus, all NP-problems that are at least as hard as any other NP-problem.

2.2 `1-Minimization

When working with optimization, there are several possible approaches,
but we will mainly consider `1-minimization as this is the main problem
considered. But why `1? Why not `0 or `∞? Well, it turns out that
`p-minimization with 0 ⩽ p < 1 is NP-hard in general, and for p > 1, even
1-sparse vectors are not guaranteed to be a minimizer. We are now left with
the problem p = 1, that is, `1-minimization which is a convex problem of the
form:

min ∥x∥1 subject to Ax = y. (P1)

This problem is also known as (P1), `1-minimization or basis pursuit. In
the following propositions we prove NP-hardness of `p-minimization for
0 ⩽ p < 1 and that we are not guaranteed a solution for p > 1. We start by
proving NP-hardness of `0-minimization.

Proposition 2.1 ([11]). `0-minimization is NP-hard.

Proof. First, we introduce the 3-sets problem that is known to be
NP-complete. [N] denotes the set of natural number {1,2, . . . ,N}.
Given a collection {Ci, i ∈ [N]} of 3-element subsets of [m], does there exist a
partition of [m], a set J ⊂ [N] such that ∪j∈JCj = [m] and Cj ∩ Cj′ = ∅ for all
j, j′ ∈ J with j ≠ j′?
We wish to reduce this problem to `0-minimization in polynomial time
and thereby showing NP-hardness of `0-minimization. Let the collection
{Ci, i ∈ [N]}, be defined as in the problem. We now define vectors
a1, . . . ,aN ∈ Cm as,

(ai)j =

⎧⎪⎪
⎨
⎪⎪⎩

1, j ∈ Ci,

0, j ∉ Ci.

The vectors make up the matrix A ∈ Cm×N ,

A = [a1 ∣ . . . ∣ aN ] , y = [1, . . . , 1]
⊺
.

Since N ⩽ (
m
3
), we can construct the matrix in polynomial time. Now, if the

vector z ∈ Cm obeys ∥Az − y∥2 ⩽ η, then all m components of z are at most
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2.2. `1-Minimization

η distant to 1 and non-zero, making ∥Az∥0 = m. As each of the vectors ai
has 3 non-zero components, the product Az = ∑

N
i=1 zjai has at most 3∥z∥0

non-zero components, meaning that ∥Az∥0 ⩽ 3∥z∥0, which again implies
that a vector z satisfying the constraint must also satisfy ∥z∥0 ⩾ m/3. If we
now take the `0-minimization, we can separate the results into two cases:
Let x ∈ CN be the output.

1. ∥x∥0 = m/3. The collection {Ci, i ∈ supp(x)} forms an exact cover of [m].

2. ∥x∥0 > m/3. No exact cover can exist, as z would satisfy Az = y and
∥z∥0 = m/3 which contradicts the minimization of x.

This shows that by solving `0-minimization, one can also solve the 3-sets
problem, and thus concluding the proof.

The technique of reduction used in this proof is a transformation between
problems. Consider a problem A that can be solved by an algorithm for
solving another problem B, then A is no harder than B, and we can say
that A reduces to B. For a simple example, let us consider the problem of
multiplying two numbers. As should be well known, multiplication can be
solved by adding, and we can reduce the problem of multiplication to the
problem of adding. Also, note that the reduction must be done in polynomial
time in order for this to be possible.

Proposition 2.2. Every `p-minimization is NP-hard when 0 < p < 1.

Proof. To help us prove this, we introduce the partition problem. The
partition problem is deciding whether, with given integers a1, . . . , an, there
exists two sets I and J such that I ∩ J = ∅, I ∪ J = [N] and ∑i∈I ai = ∑j∈J aj .
Then, by assuming NP-completeness of the partition problem, we prove
NP-hardness of `p-minimization by reducing the partition problem to
`1-minimization. Let x and z be the first and second half of the vector
w to A. We want to show that the partition problem has a solution, if and
only if, the minimum of ∥w∥p subject to Aw = y is N . First, we need to
formulate the partition problem.

Aw = y ⇒ ∑
N
i=1 aixi = ∑

N
i=1 aizi and xi + zi = 1 ∀ i. So, what we seek to

minimize is ∑Ni=1(x
p
i + z

p
i ), under these constraints. The function ∣x∣p + ∣y∣p is

concave in the first quadrant, so the minimum must be in one of the end
points, (1,0) and (0,1). As we are interested in the minimum, we will only
use zeros and ones. Then, if the minimum of the partition problem, ∥w∥p
subject to Aw = y is N , it will also be N when only xi + zi = 1 are considered,
as either xi or zi must be equal to 1, for all i. If we let I be the set of indices
where xi = 1 and J for zi = 1, we have formulated the partition problem on
the form we seek, I ∩ J = ∅, I ∪ J = [N] and the constraints

N

∑
i=1

aixi =∑
i∈I
ai,

N

∑
j=1

ajzj = ∑
j∈J

aj .

So, we have ∑i∈I ai = ∑
N
i=1 aizi and the partition problem has a solution with

minimum N . By defining the vector x as xi = 1 when i ∈ I and similar for
z, we obtain the vector w where all the constraints are fulfilled and the
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2. Optimization

minimum is N . We can now conclude that `p-minimization with 0 < p < 1 is
NP-hard.

Now that we have proved NP-hardness of `p-minimization for 0 ⩽ p < 1, we
prove that we are not guaranteed a solution for p > 1.

Proposition 2.3 ([11]). Let A ∈ Rm×N with m < N and p > 1. Then there
exists a 1-sparse vector which is not a minimizer of

min ∥x∥p subject to Ax = y. (Pp)

Proof. Assume by contradiction that every standard basis vectors, ej , are
minimizers. Since m < N the kernel of A is not trivial, so ∃ v ≠ 0 with
Av = 0, we have,

∥ej + tv∥
p
p = ∣1 + tvj ∣

p
+∑
k≠j

∣tvk ∣
p
= ∣1 + tvj ∣

p
+ ∣t∣p∑

k≠j
∣vk ∣

p

Consider the two functions, g+(t) and g−(t):

g+(t) = (1 + tvj)
p
+ tp∑

k≠j
∣vk ∣

p

g−(t) = (1 + tvj)
p
+ (−t)p∑

k≠j
∣vk ∣

p.

For ∣t∣ < 1
vj

, ∥ej + tv∥
p
p coincides with g+ when t ⩾ 0 and g− for t ⩽ 0. The

derivatives of g+ and g−:

g′+(t) = pqvj(1 + tvj)
p−1

+ ptp−1
∑
k≠j

∣vk ∣
p

g′−(t) = pvj(1 + tvj)
p−1

− p(−t)p−1
∑
k≠j

∣vk ∣
p.

For p > 1:

lim
t→0+

g′+(t) = lim
t→0−

g′−(t) = pvj

The last part means that near 0, ∥ej + tv∥pp has derivative pvj ≠ 0, and since
ej corresponds to t = 0, it cannot be a minimizer of (Pp). A linear function
with derivative pvj has no minimum near 0.

Based on Propositions 2.1 to 2.3, we see that we are left with the `1-norm
as the natural choice of minimizer. The `1-norm is known as the convex
relaxation of the `0-norm.

The following theorem from [11, thm. B.26] states a strong duality property
that we use when proving Proposition 2.5.

Theorem 2.4. Assume that F0, F1, . . . , FM are convex functions with
dom(F0) = RN . If there exists x ∈ RN such that Ax = y and F`(x) < b`
for all ` ∈ [M], then strong duality holds for the optimization problem (P1).
In the absence of inequality constraints, strong duality holds if there exists
x ∈ RN where Ax = y is feasible.

6



2.2. `1-Minimization

Proof. This is known as Slater’s constraint or Slater’s condition. See [10,
Sect. 5.3.2] for proof.

We will now introduce some optimization methods where their connection
is showed in Proposition 2.5. The following optimization methods are called
quadratically constrained basis pursuit (2.1), basis pursuit denoising (2.2)
and least absolute shrinkage and selection operator, or LASSO for short,
(2.3).

min
x∈Cn

∥x∥1 subject to ∥Ax − y∥2 ⩽ η (2.1)

min
x∈Cn

λ∥x∥1 + ∥Ax − y∥2
2 (2.2)

min
x∈Cn

∥Ax − y∥2 subject to ∥x∥1 ⩽ τ (2.3)

Proposition 2.5. The following holds:

(a) if x is a minimizer of (2.2) with λ > 0, then ∃ η ⩾ 0 such that x is a
minimizer of (2.1).

(b) if x is a unique minimizer of (2.1) with η ⩾ 0, then ∃ τ ⩾ 0 such that x
is a unique minimizer of (2.3).

(c) if x is a minimizer of (2.3) with τ > 0, then ∃ λ ⩾ 0 such that x is a
minimizer of (2.2).

Proof.

(a) Set η ∶= ∥Ax − y∥2 and consider z ∈ Cn such that ∥Az − y∥2 ⩽ η. Since
x is a minimizer for (2.2), we have

λ∥x∥1 + ∥Ax − y∥2
2 ⩽ λ∥z∥1 + ∥Az − y∥2

2 ⩽ λ∥z∥1 + ∥Ax − y∥2
2

⇒ ∥x∥1 ⩽ ∥z∥1,

hence, x is a minimizer for (2.1).

(b) Set τ ∶= ∥x∥1 and consider z ∈ Cn with z ≠ x such that ∥z∥1 ⩽ τ . Since
x is the unique minimizer of (2.1), z cannot satisfy the constraint
∥Az − y∥2 ⩽ η. So, ∥Az − y∥2 > η ⩾ ∥Ax − y∥2. This implies that x is a
unique minimizer of (2.3).

(c) (2.3) is equivalent to

min
z∈Cn

∥Az − y∥2
2 subject to ∥z∥1 ⩽ τ

The Lagrangian of this problem is

L(x,ξ) = ∥Ax − y∥2
2 + ξ(∥x∥1 − τ)

Since τ > 0, there exists a vector x with ∥x∥1 < τ , and by Theorem 2.4,
we have strong duality. From the strong duality we know that there
exists a dual optimal ξ♯ ⩾ 0, and the saddle point property implies
that L(x♯,ξ♯) ⩽ L(x,ξ♯) for all x ∈ RN . Then, x♯ is also a minimizer of
L(x,ξ♯). Since the term −ξ♯τ does not affect the minimizer, λ must be
equal to ξ♯.
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2. Optimization

While possible, it is important to note that finding λ, τ and η that satisfies
the conditions above is very difficult. In Section 4.3 we see how the
SPGL1 algorithm uses the equivalence of the LASSO and the quadratically
constrained pursuit to calculate τ and η.

Lipschitz continuity

Lipschitz continuity is a form of continuity that is stronger than continuous,
but not as strong as continuously differentiable. The changes in the function
are bounded by a real constant. A typical visualization of this property
is a double cone being translated along the graph by its vertex without
overlapping, as illustrated in Figure 2.2.

Figure 2.2: Lipschitz continuity.

Definition 2.6. A function is said to be a Lipschitz function, if

∥f(x) − f(y)∥2 ⩽ L∥x − y∥2.

The constant L is called the Lipschitz constant.

We will revisit Lipschitz continuity when examining Nesterov’s algorithm,
where the general function f is assumed to be Lipschitz continuous.

2.3 Convexity

In optimization, we prefer to work with convex problems and functions.
This is because a convex optimization problem has only one optimal solution.
By this, we mean that a local optimal solution is also the global optimal
solution. For non-convex optimization problems, there may be several local
optimal solutions, and therefore, requires many more computations to find
the global optimal solution. The following definition defines the convex set,
and the next defines convex functions.

Definition 2.7. A subset C ⊆ Rn is called convex, if ∀x,y ∈ C, the line
segment connecting x and y is entirely contained in C, that is,

λx + (1 − λ)y ∈ C ∀λ ∈ [0,1].

8



2.3. Convexity

Figure 2.3: Illustration of convex set (left) and concave set (right).

Definition 2.8. A function f ∶C → R, where C ⊆ Rn is convex if x,y ∈ C, 0 ⩽
λ ⩽ 1 and,

f((1 − λ)x + λy) ⩽ (1 − λ)f(x) + λf(y)

f is called strictly convex if x ≠ y and 0 < λ < 1 and,

f((1 − λ)x + λy) < (1 − λ)f(x) + λf(y)

f is called strongly convex with parameter γ > 0 if, ∀x,y ∈ Rn and t ∈ [0,1]

f((1 − λ)x + λy) ⩽ (1 − λ)f(x) + λf(y) −
γ

2
λ(1 − λ)∥x − y∥2

2

An alternate definition of strong convexity is, if f(x)− γ
2
∥x∥2

2 is convex, then
the function f(x) is strongly convex.

Figure 2.4: Illustration of convex function (left) and concave function (right).

Strong convexity ⇒ strict convexity ⇒ convexity. Strict convexity to
convexity is evident from the definition, as the main difference is strict
inequality. For the other implication, strong to strict, we have to notice
that the last term in the strongly convex definition is always positive which
means that by removing this term, strict convexity still holds while the
converse does not. The following theorem from [7, thm. 12.10] shows
some equivalent results regarding convex functions, which are useful when
exploring how Nesterov’s algorithm works in Section 6.2.

9



2. Optimization

Theorem 2.9 (Convex Functions). Let f ∶ C → R be a differentiable function
defined on an open convex set C ⊆ Rn. Then the following conditions are
equivalent:

1. f is convex

2. f(x) ⩾ f(x0) +∇f(x)
⊺(x −x0) ∀x,x0 ∈ C

3. (∇f(x) −∇f(x0))
⊺(x −x0) ⩾ 0 ∀x,x0 ∈ C

Proof. First, lets assume n = 1 and f is convex. By the definition of convex
functions we can rewrite as follows by letting λ→ 0:

f(x) ⩾ f(x0) +
f(x0 + λ(x − x0)) − f(x0)

λ

= f(x0) +
f(x0 + λ(x − x0)) − f(x0)

λ(x − x0)
(x − x0)

= f(x0) +∇f(x0)
⊺
(x − x0).

We continue to show that 2.⇒ 3. by adding the following equations (which
also hold for n > 1):

f(x) ⩽ f(x0) +∇f(x0)
⊺
(x −x0)

f(x0) ⩽ f(x) +∇f(x)
⊺
(x0 −x)

⇒ (∇f(x) −∇f(x0))
⊺
(x −x0) ⩾ 0.

Now, 3. ⇒ 1. Consider x1 < x2 < x3, then the mean value theorem states
that there exists two numbers a and b such that, x1 ⩽ a ⩽ x2, x2 ⩽ b ⩽ x3, so

f(x2) − f(x1)

x2 − x1
= f ′(a), and

f(x3) − f(x2)

x3 − x2
= f ′(b).

By 3. we know that f ′(a) ⩽ f ′(b), which means that the slope is increasing
and the function must be convex. This concludes the proof for n = 1.

For n > 1, we define the general function g(t) and its derivative

g(t) = f(tx + (1 − t)x0)

g′(t) = ∇f(tx + (1 − t)x0)
⊺
(x −x0).

If f is convex, then g is also convex, and this can be shown by the definition
of convexity. From 2. we have g(1) ⩾ g(0) + g′(0), which holds for n > 1 by
replacing f and g, f(x) ⩾ f(x0) +∇f(x0)

⊺(x − x0). Final part of the proof,
3.⇒ 1., we let 0 ⩽ t1 ⩽ t2 < 1 and y1 = t1x + (1 − t1)x0 with y2 defined in the
same way, and we notice that y2 − y1 = (t2 − t1)(x − x0). Rewriting 3., we
see that it can take the form,

(∇f(x) −∇f(x0))
⊺
(x −x0) ⩾ 0

⇒ ∇f(x0)
⊺
(x −x0) ⩾ ∇f(x)

⊺
(x −x0).

10



2.3. Convexity

From this we find,

g′(ti) = ∇f(yi)
⊺
(x −x0) = ∇f(yi)

⊺ (y2 − y1)

(t2 − t1)
.

This will also hold if we use x and x0 instead of y1 and y2, and it follows
that g′(t1) ⩽ g′(t2). From this 1. follows,

g(t) = f(tx + (1 − t)x0) = g(t ⋅ 1 + (1 − t) ⋅ 0)

⩽ tg(1) + (1 − t)g(0)

= tf(x) + (1 − t)f(x0),

completing the proof.

Later in the thesis we will go through a proof that requires that the
maximum of convex function is convex as well, and this is shown in the
following proposition.

Proposition 2.10. If f and g are convex functions, then max{f(x), g(x)}
are convex as well.

Proof. Let h(x) ∶= max{f(x), g(x)}. We want to show:

h((1 − λ)x + λy) ⩽ (1 − λ)h(x) + λh(y).

Thus,

h((1 − λ)x + λy) = max{f((1 − λ)x + λy), g((1 − λ)x + λy)}

⩽ max{(1 − λ)f(x) + λf(y), (1 − λ)g(x) + λg(y)}

⩽ max{(1 − λ)f(x), (1 − λ)g(x)} +max{λf(y), λg(y)}

= (1 − λ)max{f(x), g(x)} + λmax{f(y), g(y)}

= (1 − λ)h(x) + λh(y),

as we wanted to show.

In Definition 2.8, we defined strongly convex functions and in this
proposition, we prove strong convexity of a given function that is widely
used in optimization, as we’ll notice when we introduce the proximal
mapping and prox-functions.

Proposition 2.11. f(x) = 1
2
∥x − xc∥

2, where x,xc ∈ RN , is strongly convex
with parameter γ = 1.

Proof. We want to show:

f((1 − λ)x + λy) − (1 − λ)f(x) − λf(y) ⩽ −
γ

2
λ(1 − λ)∥x − y∥2

2.

First, lets rewrite f(x) = 1
2
∥x − xc∥

2 = 1
2
∥x∥2 + ∥xc∥

2 − ⟨x,xc⟩. We start by
writing out the different parts of the left hand side of the inequality:

11



2. Optimization

f((1 − λ)x + λy) =
1

2
∥(1 − λ)x + λy∥2

+
1

2
∥xc∥

2
− ⟨(1 − λ)x + λy,xc⟩

=
1

2
(1 − λ)2

∥x∥2
+

1

2
λ2

∥y∥2
+ λ(1 − λ)⟨x,y⟩ +

1

2
∥xc∥

2

− (1 − λ)⟨x,xc⟩ − λ⟨y,xc⟩,

(1 − λ)f(x) =
1

2
(1 − λ)∥x∥2

+
1

2
(1 − λ)∥xc∥

2
− (1 − λ)⟨x,xc⟩,

λf(y) =
1

2
λ∥y∥2

+
1

2
λ∥xc∥

2
− λ⟨y,xc⟩.

Setting these back together and rewriting we find,

−
1

2
λ(1 − λ)∥x − y∥2

⩽ −
γ

2
λ(1 − λ)∥x − y∥2.

Where the inequality holds when 0 ⩽ γ ⩽ 1.

The subdifferential is a set of subgradients of a function at a given point.
The subgradients are gradients for non-differential functions. For example,
lets consider the function f(x) = ∣x∣. The subdifferential of f(x) at any
point x < 0 is the set {−1} and for x > 0 it is {1}. For the origin, the
gradient is not defined for this function. The subdifferential is therefore
all possible subgradients, making it the set [−1,1]. In mathematical terms,
the subdifferential is defined as follows.

Definition 2.12. The subdifferential of a convex function F ∶RN → (−∞,∞]

at a point x ∈ RN is defined by,

∂F (x) = {v ∈ RN ∣ F (z) ⩾ F (x) + ⟨v,z −x⟩ ∀z ∈ RN}.

From the definition, we can immediately derive the following result which
we will use when proving convergence of the primal-dual algorithm in
Theorem 5.3.

Proposition 2.13 ([11]). x ∈ RN is a minimum of a convex function F if
and only if 0 ∈ ∂F (x).

Proof. If x is a minimum of F , then the term ⟨v,z −x⟩ from the definition
of the subdifferential must be 0, which can only happen when v = 0. The
proof the other way is equally easy to notice, if v = 0, x must be a minimizer
of F .

Next, we introduce the proximal mapping and the correlated prox-function.
The proximal mapping is an approximation of a function, and is mostly
used in optimization when the function at hand is not convex. The mapping
is defined as presented below.

12



2.3. Convexity

Definition 2.14. The proximal mapping associated with a function F is
defined as,

PF (x) ∶= argmin
z∈RN

F (z) +
1

2
∥z −x∥2

2.

The function we use for smoothing in the proximal mapping is a
prox-function. In short, a prox-function is a continuous and strongly convex
function on a closed set. As we showed in Proposition 2.11, the function we
use for the proximal mapping is a strongly convex function.

Definition 2.15. p is a prox-function for a closed convex set Q if

• p is continuous on Q

• p is strongly convex on Q

If the prox-function vanishes at the prox-center, xc, then we get the
boundary

p(x) ⩾
σ

2
∥x −xc∥

2
2,

where σ is a convexity parameter. We may refer to a prox-function as pp(x),
when it’s associated with, for instance, a primal set Qp. The convexity
parameter, σ, also takes the subscript, in this case, σp. The primal-dual
algorithm and Nesterov’s algorithm both uses proximal mappings and
prox-functions.

The following proposition shows a useful connection for how to rewrite
the proximal mapping as the subdifferential. The proposition will help us
proving convergence of the primal-dual algorithm.

Proposition 2.16 ([11]). Let F ∶RN → (−∞,∞] be a convex function, then
x = PF (z) if and only if z ∈ x + ∂F (x).

Proof. From Proposition 2.13 we know that if x is a minimum of a convex
function F , then 0 ∈ ∂F (x). Based on this, we can find that x is the proximal
mapping PF (z) if and only if,

0 ∈ ∂(
1

2
∥ ⋅ −z∥2

2 + F )(x).

From the proximal mapping we have the function 1
2
∥x − z∥2

2 with gradient
∇( 1

2
∥ ⋅ −z∥2

2)(x) = x−z. We can now insert this in the expression above such
that,

0 ∈ x − z + ∂F (x)⇔ z ∈ x + ∂F (x),

as we wanted to show.

Another useful connection regarding the proximal mapping is Moreau’s
identity. This identity shows the relation between the proximal mapping of
F and its convex conjugate F ∗. Before presenting the identity, we need to
define the convex conjugate.

13



2. Optimization

Definition 2.17. Given a function F ∶RN → (−∞,∞], the convex conjugate
function of F is, F ∗∶RN → (−∞,∞] defined as,

F ∗
(y) ∶= sup

x∈RN
{⟨x,y⟩ − F (x)}.

The convex conjugate function is widely used in the primal-dual algorithm,
where we will also revisit Moreaus’s identity which reads as follows.

PF (z) + PF ∗(z) = z. (2.4)

For proximal mappings where the function takes the form τF , the identity
reads,

PτF ∗(z) + τPτ−1F (z/τ) = z. (2.5)

Both identities are proved in [11, thm. B.24], by using the relation between
the subdifferential and the proximal mapping and some more identities for
the mapping.

2.4 Lagrangian and KKT

The Lagrangian is a widely used strategy in mathematical optimization for
finding the maximum and minimum of functions with constraints. Consider
the following optimization problem,

min f(x) subject to hi(x) = 0 (i ⩽m), (2.6)

where f and hi (∀ i) are continuously differentiable functions from RN to R.
We let h be the vector containing each hi, h = {h1, . . . , hm}, and before we
formulate the Lagrangian theorem we show how the gradient of a linear
system is computed.

Proposition 2.18. Let A be a positive definite matrix, then the gradient of
the function f becomes,

f(x) = 1
2
x⊺Ax + b⊺x,

∇f(x) =Ax + b.

Proof. For easier notation we will let y =Ax.

∇( 1
2
x⊺Ax + b⊺x) = ∇( 1

2
x⊺y) +∇(b⊺x)

=
1

2

δ(x⊺y)

δx
+
δ(b⊺x)

δx

=
1

2

δ(x⊺y)

δx
+

1

2

δy⊺

δx

δ(x⊺y)

δy
+
δ(b⊺x)

δx

= 1
2
Ax + 1

2
Ax + b

=Ax + b.
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2.4. Lagrangian and KKT

Theorem 2.19 (Lagrange [7]). Let x∗ be a local minimum of the
optimization problem (2.6) and assume it is a regular point. Then there is a
unique vector λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m) ∈ Rm such that,

∇f(x∗) +
m

∑
i=1

λ∗i∇hi(x
∗
) = 0.

If f and each hi are twice continuously differentiable, then the following also
holds,

h⊺(∇2f(x∗) +
m

∑
i=1

λ∗i∇
2hi(x

∗
))h ⩾ 0,

for all h ∈ T (x∗), where T (x∗) = {h ∈ Rm ∣ ∇hi(x
∗) ⋅h = 0 (i ⩽m)}.

The λi’s in this theorem are called the Lagrangian multipliers. From the
theorem we can formulate the Lagrangian function, L∶RN ×Rm → R, with
x ∈ RN and λ ∈ Rm,

L(x,λ) = f(x) +
m

∑
i=1

λihi(x)

= f(x) +λ⊺h(x).

We can choose to either add or subtract the term λ⊺h(x). Now we have,

∇xL(x,λ) = ∇f(x) +
m

∑
i=1

λi∇hi(x)

∇λL(x,λ) = h(x).

Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker conditions are often shortened as KKT-conditions.
The KKT-conditions are an essential result in non-linear optimization that
gives optimality conditions. We will not go in depth on how these results
were achieved, but to present them accurately, we need the Lagrangian
function. The Lagrangian will be in three variables, because of the
additional constraints. First, consider the optimization problem,

min f(x) subject to hi(x) = 0 (i ⩽m), (2.7)
gj(x) ⩽ 0 (j ⩽ r).

The Lagrangian function where we also include the inequality constraints,
g = {g1, . . . , gr}, becomes L∶RN ×Rm ×Rr → R,

L(x,λ,µ) = f(x) +
m

∑
i=1

λi + hi(x)
r

∑
j=1

µigj(x)

= f(x) +λ⊺h(x) +µ⊺g(x).

And we also have,

∇xL(x,λ,µ) = ∇f(x) +
m

∑
i=1

λi∇hi(x) +
r

∑
j=1

µj∇gj(x).
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2. Optimization

The indices of the active inequalities at x is denoted A(x) = {j ⩽ r ∣ gj(x) =
0}. A point x is called regular if {∇h1(x), . . . ,∇hm(x)}∪ {∇gj(x) ∣ i ∈ A(x)}
are linearly independent.

Theorem 2.20 (KKT). Consider the optimization problem (2.7). Let x∗ be
a local minimum and assume it is a regular point. Then there are Lagrange
multiplier vectors λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m) and µ∗ = (µ∗1, µ

∗
2, . . . , µ

∗
r) such that

∇xL(x
∗,λ∗,µ∗) = 0,

µ∗j ⩾ 0, (j ⩽ r),

µ∗j = 0, (j ∉ A(x∗)).

In this chapter, we have presented necessary background theory for
understanding and justifying the remainder of the thesis. We have derived
`1-minimization to be the best choice for the algorithms that will be further
investigated. We have introduced convexity and showed the advantages
it have in optimization and derived the Lagrangian of a function. In the
following chapter, we will discuss some necessary conditions for algorithms
performing `1-minimization.
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CHAPTER 3

Recovery Guarantees and Quality
Measures

In this chapter, we present a recovery guarantee called the null space
property, and two different quality measures: coherence and restricted
isometry property. The guarantee and quality measures are both found
from the measurement matrix, A. These are necessary conditions for most
of the algorithms in compressive sensing.

3.1 Null Space Property

The null space property is a condition that needs to be fulfilled to achieve
exact recovery of sparse vectors and is defined as follows.

Definition 3.1. A matrix A ∈ Cm×N satisfies the null space property
relative to a set S ⊂ [N] if

∥vS∥1 < ∥vS̄∥1 ∀ v ∈ kerA/{0}.

A satisfies the null space property of order s if card(S) ⩽ s, or, equivalently,
if the vector supported on S is s-sparse.

The following theorem from [11, thm. 4.4] proves evidence that the null
space property guarantees exact recovery of sparse vectors.

Theorem 3.2 (Null Space Property). Given a matrix A ∈ Cm×N every vector
x ∈ CN supported on a set S is the unique solution of (P1) with y =Ax if and
only if A satisfies the null space property relative to S.

Proof. Let us begin with a fixed index set S, and assume that every vector
x ∈ CN supported on S is the unique minimizer of ∥z∥1 subject to Az =Ax.
Then we know that for every v ∈ kerA/{0}, vS is the unique minimizer of
∥z∥1 subject to Az =AvS . Since v = vS + vS̄ , Av = 0 and v ≠ 0 we have that
vS ≠ −vS̄ and A(−vS̄) =AvS . We can therefore conclude that the null space
property relative to S holds, ∥vS∥1 < ∥vS̄∥1.
For the other way, we assume the null space property relative to S holds,
and consider the vectors x,z ∈ CN where x is supported on S, satisfying

17



3. Recovery Guarantees and Quality Measures

Az = Ax. We define the vector v ∶= x − z ∈ kerA/{0}, which gives us
vS = x − zS and vS̄ = −zS̄ . From this, we have:

∥x∥1 ⩽ ∥x − zS∥1 + ∥zS∥1

= ∥vS∥1 + ∥zS∥1

< ∥vS̄∥1 + ∥zS∥1

= ∥ − zS̄∥1 + ∥zS∥1

= ∥z∥1

which establishes the minimality of ∥x∥1.

Proposition 3.3. If the vector x in Theorem 3.2 is s-sparse, then A is said
to satisfy the null space property of order s.

Moreover, we have two more definitions: the stable null space property
and robust null space property, which are both extensions of Definition 3.1.
The stable null space property takes into consideration that for real-world
signals, the vectors we are working with are not guaranteed to be sparse,
only close to sparse. The definition are as presented:

Definition 3.4. A matrix A ∈ Cm×N satisfies the stable null space property
with constant 0 < ρ < 1 relative to a set S ⊂ [N] if

∥vS∥1 ⩽ ρ∥vS̄∥1 ∀ v ∈ kerA/{0}.

With this definition, we are not guaranteed a unique solution of (P1), but
otherwise the same result as Theorem 3.2 holds. The robust null space
property is a further strengthening of the null space property and allows
for the measurement vector y to be an approximation of Ax. The new
definition is as follows:

Definition 3.5. A matrixA ∈ Cm×N satisfies the robust null space property
with constant 0 < ρ < 1 and τ > 0 relative to a set S ⊂ [N] if

∥vS∥1 ⩽ ρ∥vS̄∥1 + τ∥Av∥ ∀ v ∈ CN

For the robust null space property, we are not guaranteed a solution for
(P1), but rather the similar convex problem with noise,

min ∥x∥1 subject to ∥Ax − b∥2 ⩽ η (P1,η)

Unfortunately, the computations required to see if a matrix A satisfies the
null space property are NP-hard.

3.2 Coherence

When working with recovery algorithms, it is natural to include some
measure of quality. Coherence is a measure of this, where smaller is better.
Coherence is a property we find in the measurement matrices, and it is
defined as presented below.
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3.3. Restricted Isometry Property

Definition 3.6. A ∈ Cm×N is a matrix with `2-normalized columns. The
coherence, µ = µ(A), of the matrix is defined as

µ ∶= max
i≠j

∣⟨ai,aj⟩∣,

where the ai’s are the columns of A.

A more general way of using the coherence is the `1-coherence function.
This function also considers the sparsity, and is defined in the following
definition.

Definition 3.7. A ∈ Cm×N is a matrix with `2-normalized columns. The
`1-coherence function µ1 of the matrix A is defined for s ∈ [N − 1] by

µ1(s) ∶= max
i∈[N]

max{∑
j∈S

∣⟨ai,aj⟩∣, S ⊂ [N], card(S) = s, i ∉ S}.

Notice that µ1(1) = µ, and

µ ⩽ µ1(s) ⩽ sµ.

This theorem from [11, Sect. 5.3] for orthogonal matching pursuit,
guarantees exact recovery of s-sparse vectors when µ < 1/(2s − 1)

Theorem 3.8. A ∈ Cm×N is a matrix with `2-normalized columns. If,

µ1(s) + µ1(s − 1) < 1,

then every s-sparse vector x ∈ CN is exactly recovered from the measurement
vector y =Ax after at most s iterations of orthogonal matching pursuit.

Previously we saw that the coherence is a measure of the quality of the
measurement matrix. The coherence is often sufficient, but when a more
delicate measure is needed, we have the restricted isometry property that
we will introduce next.

3.3 Restricted Isometry Property

Similar to coherence, the restricted isometry property is a measure of the
quality of the measurement matrix. The measure is given by the restricted
isometry constant, δs. δs is said to be of order s and involves all s-tuples
of the columns of the measurement matrix, whereas coherence is easier to
compute as it only uses pairs of columns. The restricted isometry property
is therefore a finer measure of quality and is defined as follows.

Definition 3.9. The s’th restricted isometry constant δs = δs(A) of a matrix
A ∈ Cm×N is the smallest δ ⩾ 0 such that

(1 − δ)∥x∥2
2 ⩽ ∥Ax∥2

2 ⩽ (1 + δ)∥x∥2
2

for all s-sparse vectors x ∈ CN . Equivalently, it is given by

δs = max
S⊂[N],card(S)⩽s

∥A∗
SAS − I∥.
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3. Recovery Guarantees and Quality Measures

The restricted isometry property provides a theorem that guarantees exact
s-sparse recovery in 12s iterations. The theorem reads as follows, from [11,
thm. 6.25].

Theorem 3.10. Suppose A ∈ Cm×N has restricted isometry constant,

δ13s <
1

6
.

Then there exists a constant C, depending only on δ13s such that for any x ∈

CN , the target vector generated by the algorithm for orthonormal matching
pursuit with y =Ax satisfies,

∥y −Ax12s
∥2 ⩽ C∥AxS̄∥2

for any S ⊂ [N] with card(S) ⩽ s.

The null space property, coherence and restricted isometry property are all
helpful tools in compressive sensing. These conditions are not applicable for
the specialized `1-algorithms, but rather for the algorithms in compressive
sensing for general linear programs. In the following chapter, we will take
a closer look at these general algorithms.
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CHAPTER 4

Algorithms for `1-Minimization

Among the algorithms in the field of compressive sensing, we find
three main categories: optimization methods, greedy methods and
thresholding-based methods. In this chapter we will give a short
introduction to these categories and some algorithms related to compressive
sensing and optimization.

Optimization Methods

For the optimization methods, we have algorithms known as basis pursuit
and quadratically constrained basis pursuit, which we know from Chapter 2.
These are the problems we wish to solve using the primal-dual algorithm
and the NESTA algorithm, witch we will inspect in Chapters 5 and 6.

Greedy Methods

What greedy methods have in common is that they find the local optimal
solution at each step and approximate a global optimal solution. The greedy
algorithms work iteratively by first updating the support set with a new
index and updating the target vector on the new support set. Among the
greedy algorithms, we find: orthogonal matching pursuit (OMP), which we
will examine later on, and compressive sampling matching pursuit.

Thresholding-Based Methods

Further, we have the thresholding-based methods. These algorithms have
in common that they rely on the finding the s largest entries of the adjoint
of the measurement matrix, A, namely A∗. After the largest entries have
been located, it proceeds to update the target vector so that it best fits of
the measurements. Among the thresholding algorithms, we find: basic
thresholding, iterative hard thresholding and hard thresholding pursuit.
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4. Algorithms for `1-Minimization

4.1 Simplex Method

The simplex method is an older algorithm for optimizing linear programs.
We can visualize the algorithm geometrically, by considering a convex
polytope generated by the constraints of the problem, and move along its
edges in search of the optimal solution, which is a vertex in the polytope. A
more formal presentation of the simplex method can be viewed as follows,
by [12, sect. 6.1].

maxc⊺x subject to Ax = y,

x ⩾ 0.

Where c is the vector containing the coefficients of the objective function,
x. The vector x contains both the basic variables of the function and the
non-basic variables, also called slack variables. The matrix A and the
vector y make up the constraints of the program.

The algorithm starts with a feasible solution and works iteratively to find
a better solution until the optimal solution is found. In the initialization,
we set the basic variables to zero and the non-basic are chosen, so that the
equalities in the constraints are met. Then, iteratively interchange basic
and non-basic variables to improve the objective function.

4.2 Orthogonal Matching Pursuit

Algorithm 1 Orthogonal Matching Pursuit
Input: measurement matrix A and vector y
Initialization: S0 = ∅, x0 = 0
Iteration: repeat until stopping criterion is met at n = n̄:

Sn+1
= Sn ∪ {jn+1}, jn+1 ∶= argmax

j∈[N]
{∣(A∗

(Axn − y))j ∣}, (4.1)

xn+1
= argmin

z∈CN
{∥Az − y∥2, supp(z) ⊂ Sn+1

} (4.2)

Output: the n̄-sparse vector x♯ = xn̄.

The algorithm for orthogonal matching pursuit is given as above from [11,
sect. 3.2].

The first step (4.1) finds the new index, j, that reduces the residual Axn −y.
This is done greedily, that is, as much as possible at each iteration. With
some clever calculations we can find that minimizing ∥Ax− y∥2 is the same
as maximizing ∣(A∗

(Axn − y))j ∣. Once the index is found, it is included in
the support set.

For the second step (4.2), the target vector, x, is updated as the best fit of
the measurements with the new support set. This is the step that requires
the most calculations as it performs a projection. We can increase the speed
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4.2. Orthogonal Matching Pursuit

of this step, by using a QR-decomposition of A.

The two steps run until the stopping criterion, n̄, is met. This stopping
criterion can be chosen in a few different ways. For instance, the most
natural choice would be Axn̄ = y, but since we often either cannot achieve
a perfect solution or do not need one, we may use the approximation
∥Axn̄ − y∥2 ⩽ η. However, if the coherence of A is small and satisfies
Theorem 3.8, we know that we have exact recovery after at most s iterations
and we can set n̄ = s. Similarly, if the restricted isometry constant of A
satisfies Theorem 3.10, we have recovery after 12s iterations and can set
n̄ = 12s.

From the coherence and the restricted isometry property, we can see that
OMP works very well with sparse vectors, as the sparsity, s, defines the
number of iterations. As mentioned in Chapter 1, algorithms designed for
`1-minimization may be much faster than general algorithms. Hence, for
larger s the primal-dual algorithm can be quite a lot faster than OMP.

In Figure 4.1, we have reconstructed a signal using Algorithm 1 for two
different sparsities, 10 % and 20 %. As expected, the algorithm performs
significantly better with smaller sparsity. We have used the sparsity as the
stopping criterion in both examples.

Figure 4.1: Reconstruction using OMP with sparsity of 10 % (top) and 20 %
(bottom).
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4. Algorithms for `1-Minimization

4.3 Spectral Projected Gradient for `1

The spectral projected gradient method for `1-minimization, or SPGL1 for
short, from [3], is an iterative algorithm widely used when working with
`1-minimization problems. The algorithm has shown to scale well to large
problems and only depends on matrix-vector operations. SPGL1 mainly
solves the quadratically constrained optimization problem (2.1),

min
x∈Cn

∥x∥1 subject to ∥Ax − y∥2 ⩽ η.

One of the reasons SPGL1 is set aside from the algorithms above is the
approach. The algorithm solves the problem by solving a sequence of the
LASSO problem (2.3) for varying values of τ ,

min
x∈Cn

∥Ax − y∥2 subject to ∥x∥1 ⩽ τ.

We recall from Proposition 2.5 that the two problems are equivalent. The
intermediate LASSO problems are solved by using the spectral gradient
(SPG) method. The SPG approach starts with an initial point x0 and
iteratively updating the iterate xn with the next point xn+1 found on the
projected gradient path defined as,

α ↦ Pτ(x
n
− α∇f(xn)).

Here, f(x) = 1
2
∥Ax − y∥2

2 and its gradient becomes, ∇f(x) = A∗
(Ax − y).

The projection is an orthogonal projection onto the unit `1-ball,

Pτ(x) = argmin{∥z −x∥2 ∣ ∥z∥1 ⩽ τ}.

This projection can be computed efficiently and is closely related to the
proximal mapping. This can be showed by considering the `∞-norm and an
identity for the proximal mapping.

Once the intermediate LASSO problem is solved, what remains is to find the
η such that we can find the optimal solution of the quadratically constrained
problem. From the sequence of optimal solutions of the LASSO problem,
SPGL1 provides the Pareto curve defined by the residual of LASSO,

φ(τ) = ∥Axτ − y∥2,

where xτ is the optimal solution of LASSO with the corresponding τ . It
is proved that the Pareto curve is convex and continuously differentiable
at all points of interest. The algorithm uses Newton-based root finding
methods for solving the equation φ(τ) = η and finding the value of η and a
minimizer of the quadratically constrained problem.

Now that we have presented some of the more general algorithms, in
addition to SPGL1, we move on the algorithms specifically constructed to
perform `1-minimization.
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CHAPTER 5

Primal-Dual Algorithm

In this chapter, we will investigate the primal-dual algorithm. In Section 5.1
we introduce the concept of duality and derive the algorithm that will be
further investigated in Section 5.2, where we also prove convergence.

5.1 Duality Theory

We will now introduce a concept in optimization known as duality. The
idea is that for every optimization problem, there is a dual of the problem,
and another perspective with which one can investigate the optimization
problem. We will refer to the different problems as the primal and the dual.
We note that the dual of the dual is the primal. Let us consider the general
optimization problem,

min f(x) subject to hi(x) = 0, (5.1)
gj(x) ⩽ 0.

In order to derive the dual problem, we use the Lagrange function that will
take the form,

L(x,λ,µ) = f(x) +λ⊺h(x) +µ⊺g(x).

We define a new function d,

d(λ,µ) ∶= inf
x
L(x,λ,µ).

Note that this function is unbounded below and may therefore be equal
to −∞. d is a concave function because it is an infimum of a family of
affine functions, one for each x. From this function d, we can formulate an
important result, called weak duality,

Theorem 5.1 (Weak Duality). Assume x is feasible in the general
optimization problem (5.1) and λ ∈ Rm, µ ⩾ 0 ∈ Rr, then

d(λ,µ) ⩽ f(x).

Proof.

d(λ,µ) ⩽ L(x,λ,µ)

= f(x) +λ⊺h(x) +µ⊺g(x)

⩽ f(x).
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5. Primal-Dual Algorithm

What Theorem 5.1 says, is that the function d(λ,µ) is a lower bound for
the function f(x). In order to find the best lower bound, that is, the largest
lower bound, for f(x), we formulate the problem,

maxd(λ,µ) subject to µ ⩾ 0.

This is the problem we refer to as the dual problem. Before the introduction
of the primal-dual algorithm, we need to formulate the general form of the
primal and dual problem, as the algorithm uses. Then we will show that
we can formulate it from the `1-norm. We recall that the convex conjugate
function is defined as,

F ∗
(y) ∶= sup

x∈RN
{⟨x,y⟩ − F (x)}.

The general form of the primal problem is,

min
x∈CN

F (Ax) +G(x), (5.2)

and for the dual problem we use the form,

max
ξ∈Cm

−F ∗
(ξ) −G∗

(−A∗ξ). (5.3)

From this, the saddle-point problem takes the form,

min
x∈CN

max
ξ∈Cm

Re⟨Ax,ξ⟩ +G(x) − F ∗
(ξ). (5.4)

We will now show that for a quadratic constrained `1-minimization problem
(the procedure is similar for `1-minimization problems with Ax = y), we
can formulate (5.2) and (5.3).

min
x∈CN

∥x∥1 subject to ∥Ax − y∥2 ⩽ η (5.5)

This translates to the general primal problem by letting G(x) = ∥x∥1 and
F (x) as,

F (x) = χB(y,η)(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0, ∥x − y∥2 ⩽ η

∞, else,

where χ is the characteristic function of the set B(y, η), which is the closed
ball defined as,

B(y, η) = {x ∈ RN ∣ d(x,y) ⩽ η}.

With these functions, we see that (5.2) satisfies (5.5). For the dual, we first
formulate the equivalent problem of (5.2) by substituting z =Ax.

min
x∈Rn,z∈Rm

F (z) +G(x) subject to Ax − z = 0.
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5.1. Duality Theory

With this problem, we follow the standard approach for finding the dual.
This is done by finding the infimum of the Lagrangian of the primal problem.

inf
x,z

{F (z) +G(x) − ⟨A∗ξ,x⟩ − ⟨ξ,z⟩}

= − sup
x,z

{−F (z) −G(x) + ⟨A∗ξ,x⟩ + ⟨ξ,z⟩}

= − sup
z

{⟨ξ,z⟩ − F (z)} − sup
x

{⟨A∗ξ,x⟩ −G(x)}

= − F ∗
(ξ) −G∗

(−A∗ξ),

where F ∗ and G∗ are the convex conjugates as defined in Definition 2.17,
which have the form,

F ∗
(ξ) = sup

x∈RN
{⟨x,ξ⟩ − χB(y,η)(ξ)}

= sup
x∶∥x−y∥2⩽η

Re⟨x,ξ⟩

= Re⟨y,ξ⟩ + η∥ξ∥2.

For G∗, we first notice that ⟨x,y⟩ ⩽ ∥x∥1∥y∥∞, which yields,

G∗
(y) = sup

x∈RN
{⟨x,y⟩ − ∥x∥1}

⩽ sup
x∈RN

{∥x∥1(∥y∥∞ − 1)}.

The supremum of the expression when ∥y∥∞ ⩽ 1 is 0, as we can see by
letting x = 0, otherwise the expression would become negative. We notice
the function is unbounded above when ∥y∥∞ > 1, so we can rewrite G∗ to be
the characteristic function,

G∗
(y) = χB(y,η)(y) =

⎧⎪⎪
⎨
⎪⎪⎩

0, ∥y∥∞ ⩽ 1,

∞, else.

We have now formulated both the primal and dual general problems from
the quadratically constrained problem, (5.5), and we proceed to formulate
the primal-dual algorithm. For this algorithm to be efficient, it requires that
the proximal mappings are easy to evaluate. We start with the following
proposition that states that a fixed point of the algorithm is an optimal
point of the primal and dual problem.

Proposition 5.2. (x♯,ξ♯) is a fixed point of the primal-dual algorithm if
and only if it is a saddle point of (5.4), implying that it is an optimal point
of (5.2) and (5.3).

Proof. From Proposition 2.16, we see that a fixed point (x♯,ξ♯) satisfies,

ξ♯ + σAx♯ ∈ ξ♯ + σ∂F ∗
(ξ♯)

x♯ − τA∗ξ♯ ∈ x♯ + τ∂G(x♯).

From Proposition 2.13 we also see that this implies,

0 ∈ −Ax♯ + ∂F ∗
(ξ♯) and 0 ∈A∗ξ♯ + ∂G(x♯),
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5. Primal-Dual Algorithm

which again implies that ξ♯ is a maximizer of (5.6) and x♯ is a minimizer of
(5.7).

Re⟨Ax♯,ξ⟩ +G(x♯) − F ∗
(ξ) (5.6)

Re⟨x,A∗ξ♯⟩ +G(x) − F ∗
(ξ♯). (5.7)

We notice that this is equivalent to (x♯,ξ♯) being a saddle point of (5.4), that
is, an optimal solution. We have now proved one way of the equivalence,
the other way, saddle point ⇒ fixed point, takes similar arguments and we
will not go through the steps.

We recall that Moreau’s identity, (2.5), is,

PτF ∗(z) + τPτ−1F (z/τ) = z.

From this identity we see that the proximal mapping of F ∗ is easy to
compute once the mapping of F is computed, and vice versa. The proximal
mapping of our primal function F takes the form,

PF (σ;ξ) = argmin
z∈CN

σF (z) +
1

2
∥z − ξ∥2

2

= argmin
z∈CN

χB(y,η)(z) +
1

2
∥z − ξ∥2

2

= argmin
z∈CN ∶∥z−y∥2⩽η

∥z − ξ∥2.

The final transition before we get a precise expression for the proximal
mapping of F , we find graphically. We wish to find the shortest path from
z, contained in a ball around y with radius η, to ξ. ξ is given, and we need
to find z. If ξ is contained in the same ball, z = ξ. If ξ is not contained in
the ball, z must lie on the line connecting ξ and the center of the ball, y,
and on the edge of the ball. From this, we can derive the expression,

argmin
z∈CN ∶∥z−y∥2⩽η

∥z − ξ∥2 =

⎧⎪⎪
⎨
⎪⎪⎩

ξ, ∥ξ − y∥2 ⩽ η,

y + η
∥ξ−y∥2 (ξ − y), else.

Using (2.5) we find the proximal mapping of F ∗ to b,

PF ∗(σ;ξ) = ξ − σPF (σ−1;ξ/σ)

=

⎧⎪⎪
⎨
⎪⎪⎩

0, ∥ξ − σy∥2 ⩽ ση,

ξ − (σy + ησ
∥ξ/σ−y∥2 (ξ/σ − y)), else.

=

⎧⎪⎪
⎨
⎪⎪⎩

0, ∥ξ − σy∥2 ⩽ ση,

(1 − ησ
∥ξ−σy∥2 )(ξ − σy), else.

Now we have an expression of the proximal mapping of the function F ∗,
and we move on to finding the mapping of the function, G(x) = ∥x∥1.

PG(τ ;z) = argmin
x∈CN

τ∥x∥1 +
1

2
∥x − z∥2

2.
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5.2. Primal-Dual Algorithm

This problem is separable and we can find an expression by solving the
following problem,

P ′
G(τ ; zi) = argmin

xi∈C
τ ∣xi∣ +

1

2
(xi − zi)

2.

We will now investigate the three possibilities, xi > 0, xi < 0 and xi = 0. By
setting the derivative equal to zero we find

xi > 0,

xi = zi − τ, zi > τ.

xi < 0,

xi = zi − τ, zi < τ.

The derivative when xi = 0, the subdifferential of the absolute value at 0
are, as we recall from the example of subdifferential on Page 12, the set
[−1,1]. We can now piece together an alternate expression for the proximal
mapping,

P ′
G(τ, zi) =

⎧⎪⎪
⎨
⎪⎪⎩

sgn(zi)(∣zi∣ − τ), ∣zi∣ ⩾ τ,

0, else.

Since we started by separating the problem, we find that the proximal
mapping can be written as,

PG(τ ;z)j = P
′
G(τ ; zj), j ∈ [N].

Now that we have formulated both of the proximal mappings, we find from
Proposition 5.2 and Proposition 2.16 that the primal-dual algorithm reads,

ξn+1
= PF ∗(σ;ξn + σAx̄n)

=

⎧⎪⎪
⎨
⎪⎪⎩

0, ∥σ−1ξn +Ax̄n − y∥2 ⩽ η,

(1 − ησ
∥ξn+σ(Ax̄n−y)∥2 )(ξ

n
+ σ(Ax̄ − y)), else.

xn+1
= PG(τ ;xn − τA∗ξn+1

).

When updating the solutions, the best and most natural choice would be
to let ȳ = yn+1 and x̄ = xn+1. This is not a feasible solution, as we require
solutions that are not yet computed. An alternate feasible choice is to keep
ȳ = yn+1, and let x̄ = xn. However, choosing x̄ = xn + θ(xn − xn−1), using
both current and previous iterates has shown good results. The last step of
the algorithm with this update becomes,

x̄n+1
= xn+1

+ θ(xn+1
−xn)

5.2 Primal-Dual Algorithm

In the following section, we have the algorithm that we just derived,
formulated as in [11, sect. 15.2].
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5. Primal-Dual Algorithm

Algorithm 2 Primal-Dual Algorithm
A ∈ Cm×n, F,G are convex functions.
θ ∈ [0,1], τ, σ > 0 such that στ∥A∥2 < 1
Initial values: x0 ∈ CN , ξ0

∈ Cm, x̄0 = x0.
Iterations: repeat until the stopping criterion is met, n = n̄

ξn+1
∶= PF ∗(σ;ξn + σAx̄n)

xn+1
∶= PG(τ ;xn − τA∗ξn+1

)

x̄n+1
∶= xn+1

+ θ(xn+1
−xn)

Output:
Approximation, ξ♯ = ξn̄, to a solution of the dual problem.
Approximation, x♯ = xn̄, to a solution of the primal problem.

The norm, ∥A∥, used here is the standard operator norm that finds the
largest singular value of the matrix A on `2. We will now go through the
theorem that guarantees convergence of the primal-dual algorithm. We
will consider the algorithm with parameter θ = 1 as, in this case, it is
easier to find convergence estimates of the algorithm. Other values of θ
have different advantages, for smooth cases, θ = 0 has shown to provide
good solutions. For θ = 0, the algorithm is known as the Arrow-Hurwicz
algorithm. The theorem from [11, thm. 15.8] reads as follows.

Theorem 5.3. Assume that the problem (5.4) has a saddle point. Choose
θ = 1 and σ, τ > 0 such that στ∥A∥2 < 1. Let (xn, x̄n,ξn) be the sequence
generated by the primal dual algorithm. Then the sequence (xn,ξn)
converges to a saddle point (x♯,ξ♯) of (5.4). In particular, (xn) converges to
a minimizer of (5.2).

The proof of this theorem is quite long and contains many calculations. We
will not cover the entire proof in detail, but merely the important parts. For
starters, we will be using the Lagrangian,

L(x,ξ) = Re⟨Ax,ξ⟩ +G(x) − F ∗
(ξ).

In order to make parts of the proof simpler, notation-wise at least, we
introduce the two expressions called the divided difference and the discrete
derivative respectively,

∆τu
n
=
un −un−1

τ
,

∆τ∥u
n+1

∥
2
2 =

∥un+1∥2
2 − ∥un∥2

2

τ
.

From these expressions, we derive two identities that will be useful later in
the proof. First,

2Re⟨∆τu
n,un −u⟩ = ∆τ∥u −u

n
∥
2
2 + τ∥∆τu

n
∥
2
2. (5.8)
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5.2. Primal-Dual Algorithm

This can easily be showed by using the properties of the inner product and
using the divided difference and discrete derivative. The second identity is
called discrete integration by parts,

τ
M

∑
n=1

(⟨∆τu
n,vn⟩ + ⟨un−1,∆τv

n
⟩) = ⟨uM ,vM ⟩ − ⟨u0,v0

⟩. (5.9)

This is proved similarly as the first identity, in addition to using the
telescopic identity for proving that the sum can be written as,

τ
M

∑
n=1

∆τ ⟨u
n,vn⟩ = ⟨uM ,vM ⟩ − ⟨u0,v0

⟩.

Next, we have another inequality that will further help us with the proof. If
we have a sequence (xn, x̄n,ξn)n⩾0 generated by the primal-dual algorithm,
then we have for any n ⩾ 1,

1

2
∆σ∥ξ − ξ

n
∥
2
2 +

1

2
∆τ∥x −x

n
∥
2
2 +

σ

2
∥∆σξ

n
∥
2
2 +

τ

2
∥∆τx

n
∥
2
2

⩽L(x,ξn) −L(xn,ξ) +Re⟨A(xn − x̄n−1
),ξ − ξn⟩. (5.10)

To show this, we use a property of proximal mappings shown in
Proposition 2.16, the subdifferentials ∂F ∗ and ∂G, as defined in
Definition 2.12. The use of this together with equation (5.8), we find the
desired result.

Further, we use yet another inequality that we derive from summing over
(5.10) and reformulating the expression we get by using (5.9), we find

M

∑
n=1

(L(x,ξn) −L(xn,ξ)) +
1

2τ
∥x −xM∥

2
2 +

1 −
√
στ∥A∥2

2σ
∥ξ − ξM∥

2
2

+
1 −

√
στ∥A∥

2τ

M−1

∑
n=1

∥xn −xn−1
∥
2
2 +

1 −
√
στ∥A∥

2σ

M

∑
n=1

∥ξn − ξn−1
∥
2
2

⩽
1

2τ
∥x −x0

∥
2
2 +

1

2σ
∥ξ − ξ0

∥
2
2. (5.11)

We will include some important parts of the proof where we see that,

τ2
M

∑
n=1

Re⟨A∆2
τx

n,ξ − ξn⟩

=στ
M

∑
n=1

Re⟨A∆τx
n−1,∆σξ

n
⟩ + τRe⟨∆τx

M ,A∗
(ξ − ξM)⟩. (5.12)

Here we have used (5.9) and the fact that ∆τx
0 = 0 (because we define x−1

to be equal to x0). Furthermore, we find the inequality,

στRe⟨A∆τx
n−1,∆σξ

n
⟩

⩽

√
στ∥A∥

2τ
∥xn−1

−xn−1
∥
2
2 +

√
στ∥A∥

2σ
∥ξn − ξn−1

∥
2
2. (5.13)
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Finally, before we start with the actual proof, we will find a boundary for the
iterates (xn,ξn). In order to do so, we need to see that, given a saddle point
(x♯,ξ♯), the sums L(xn,ξ♯) − L(x♯,ξn) are all non-negative. We can show
this by writing out the Lagrangian function for each of the expressions. We
find the boundary,

1

2σ
∥ξ♯ − ξM∥

2
2 +

1

2τ
∥x♯ −xM∥

2
2 ⩽ C(

1

2σ
∥ξ♯ − ξ0

∥
2
2 +

1

2τ
∥x♯ −x0

∥
2
2),

where the constant C = (1 − στ∥A∥2)
−1

.

We are now ready to dive into the proof of Theorem 5.3.

Proof. Since the sequence (xn,ξn) is bounded, there must exist a
convergent subsequence, (xnk ,ξnk) → (x○,ξ○) as k → ∞. From the fact
that the sum of the Lagrangians are non-negative when (x♯,ξ♯) is a saddle
point, we can make all terms non-negative in (5.11) by choosing a saddle
point. Now, since all terms are non-negative we find that,

1 −
√
στ∥A∥

2τ

M−1

∑
n=1

∥xn −xn−1
∥
2
2 ⩽

1

2τ
∥x −x0

∥
2
2 +

1

2σ
∥ξ − ξ0

∥
2
2.

Here, the right-hand side does not depend on M , and the term
√
στ∥A∥ < 1,

this implies that ∥xn −xn−1∥2 → 0 as n→∞. We can do similar calculations
and show the same for ∥ξn − ξn−1

∥2 → 0. Based on this, we see that also the
subsequence (xnk ,ξnk)→ (x○,ξ○), meaning (x○,ξ○) must be a fixed point of
the algorithm. By Proposition 5.2, it is a saddle point and an optimal point.
We choose (x,ξ) = (x○,ξ○) for saddle point qualities, and sum over (5.10)
from nk to M . Since L(xn,ξ○)−L(x○,ξn) ⩾ 0⇒ L(x○,ξn)−L(xn,ξ○) ⩽ 0 and
we find,

1

2σ
(∥ξ○ − ξM∥

2
2 − ∥ξ○ − ξnk∥2

2) +
1

2τ
(∥x○ −xM∥

2
2 − ∥x○ −xnk∥2

2)

+
1

2σ

M

∑
n=nk

∥ξn − ξn−1
∥
2
2 +

1

2τ

M

∑
n=nk

∥xn −xn−1
∥
2
2

⩽τ2
M

∑
n=nk

Re⟨A∆2
τx

n,ξ○ − ξn⟩.

Similar to (5.12), we use (5.9) and find,

τ2
M

∑
n=nk

Re⟨A∆2
τx

n,ξ○ − ξn⟩

=στ
M

∑
n=nk

Re⟨A∆τx
n−1,∆σξ

n
⟩ + τRe⟨A∆τx

M ,ξ○ − ξM ⟩

− τRe⟨A∆τx
nk−1,ξ○ − ξnk⟩.
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Finally, with all our findings we can rewrite (5.13) and get,

1

2σ
∥ξ○ − ξM∥

2
2 +

1

2τ
∥x○ −xM∥

2
2 +

1 −
√
στ∥A∥

2σ

M

∑
n=nk

∥ξn − ξn−1
∥
2
2

+
1 −

√
στ∥A∥

2τ

M−1

∑
n=nk

∥xn −xn−1
∥
2
2

+
1

2τ
(∥xM −xM−1

∥
2
2 −

√
στ∥A∥∥xnk−1

−xnk−1
∥
2
2)

−Re⟨A(xM −xM−1
),ξ○ − ξM ⟩ +Re⟨A(xnk−1

−xnk−2
),ξ○ − ξnk⟩

⩽
1

2σ
∥ξ○ − ξnk∥2

2 +
1

2τ
∥x○ −xnk∥2

2.

We already know that ∥xn − xn−1∥2 = 0 as n →∞, ∥x○ − xnk∥2 = 0 as k →∞,
and the same for ξ. We now see that ∥x○ − xM∥2 = ∥ξ○ − ξM∥2 = 0 as
M → ∞, which means that (xn) in fact converges to a minimizer of (5.2)
and completing the proof.

This version of the primal-dual algorithm was proposed by Chambolle and
Pock in [1], for problems with known saddle-point structure. For general
convex functions F ∗ and G, Nesterov proved in [6] thatO(1/k) is the optimal
convergence rate. For a special case where we have strong convexity with
known convexity parameter, γ, for either F ∗ or G, the convergence can
reach a rate of O(1/k2). Moreover, if both functions are strongly convex, the
convergence rate O(1/ek) can be achieved.
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CHAPTER 6

Nesterov’s Algorithm

6.1 Minimization of Non-Smooth Functions

In [5], Nesterov formulated an algorithm for minimizing smooth convex
functions with convergence rate of O(1/k2), where k is the number of
iterations. Nesterov looked at problems of the form,

min
x∈Qp

f(x).

Where f(x) is a smooth function and Qp is a convex set, called the primal
feasible set. Later, he further developed his algorithm to non-smooth convex
functions in [6]. This is the algorithm we refer to as NESTA. The algorithm
assumes f(x) to be on the general form

f(x) = max
u∈Qd

⟨u,Wx⟩,

where x ∈ RN , u ∈ Rm and W ∈ Rm×N . Qd is the dual feasible set, also
a convex set. He introduced the prox-function, pd(u), and a smoothing
parameter, µ, we find the smoothed approximation to the general problem
that Nesterov introduced in [6],

fµ(x) = max
u∈Qd

⟨u,Wx⟩ − µpd(u).

We denote uµ(x) as the optimal value of fµ. It is precisely this general form
that is the advantage of the NESTA algorithm. Minimizing the function on
its general form is formulated as the saddle point problem,

min
x∈Qp

max
u∈Qd

⟨u,Wx⟩ − µpd(u).

From this, we will show that `1-minimization and total variation
minimization (TV-minimization) are particular cases of this form. For
these problems, the primal feasible set is the same and is based on the
constraints of the problem. Depending on whether or not there is noise in
the data, which there usually is in real-world problems, the constraints and
their feasible sets read

Qp = {x ∣Ax = b},

Qp = {x ∣ ∥Ax − b∥2 ⩽ η}.

We will now explore the two types of problems, first `1-minimization and
then TV-minimization.
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6. Nesterov’s Algorithm

`1-Minimization

The `1-norm is on the form,

∥x∥1 = max
u∈Qd

⟨u,x⟩,

where, for this problem, the dual feasible set, Qd is the `∞ ball and defined
as,

Qd = {u ∣ ∥u∥∞ ⩽ 1}.

In [9] Candès, Becker and Bobin found pd(u) = 1
2
∥u∥2

2 to be a good choice for
a prox-function for this problem and our function now becomes the Huber
function. We wish to find an expression for the gradient. We do so by first
considering fµ(x) to be of the form fµ(x) = maxu∈Qd g(u) and finding the
maximum of g(u).

g(u) = ⟨u,x⟩ −
µ

2
∥u∥2

2

=∑
i

(uixi −
µ

2
u2
i )

gi(u) = uixi −
µ

2
u2
i

g′i(u) = xi − µui = 0

⇒ ui =
xi
µ
.

gi is a quadratic function with a global maximum in xi/µ. Since ui must
be in the interval [−1,1], we find that the function is split into two cases,
whether the maximum is contained in the interval or not. If the maximum
is not contained in the interval, the larges value ui can reach is ±1, based on
where the maximum is, so the maximum becomes sgn(xi). If the maximum
is contained in the interval, it is the maximum value of ui.

max
ui∈[−1,1]

ui =

⎧⎪⎪
⎨
⎪⎪⎩

xi
µ
, ∣xi∣ < µ,

sgn(xi), ∣xi∣ ⩾ µ.

From this we find an expression for fµ with a maximizing u and can
compute the gradient.

fµ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

∑i
x2
i

2µ
, ∣xi∣ < µ,

∑i ∣xi∣ −
µ
2
, ∣xi∣ ⩾ µ.

[∇fµ(x)]i =

⎧⎪⎪
⎨
⎪⎪⎩

µ−1xi, ∣xi∣ < µ,

sgn(xi), ∣xi∣ ⩾ µ.
(6.1)

In Figure 6.1 below we can see the smoothness of fµ and that it converges
to the `1-norm as µ tends to zero.
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6.1. Minimization of Non-Smooth Functions

Figure 6.1: Plot of fµ with decreasing µ’s and the `1-norm.

Total Variation Minimization

Total variation minimization, or total variation denoising, was first
introduced in 1992 in [4], as a method to remove noise from images. Today
it is still mostly used for recovering noisy or under-sampled data. The
TV-norm is defined as,

∥x∥TV ∶=∑
i,j

∥∇x[i, j]∥1, ∇x[i, j] = [
(D1x)[i, j]
(D2x)[i, j]

] .

Where D = [D1,D2]
∗ is a linear and often a very sparse matrix of the

horizontal and vertical differences,

(D1x)[i, j] = x[i + 1, j] − x[i, j],

(D2x)[i, j] = x[i, j + 1] − x[i, j].

Thanks to the framework of NESTA, we can solve these minimizations as
well, but we have to rewrite the TV-norm to the general function NESTA
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6. Nesterov’s Algorithm

works with,

∥x∥TV =∑
i,j

∥∇x[i, j]∥1

=∑
i,j

XXXXXXXXXXX

[
(D1x)[i, j]
(D2x)[i, j]

]

XXXXXXXXXXX1

= ∥Dx∥1

= max
u∈Qd

⟨u,Dx⟩.

From this general form, the dual feasible set is the same as for
`1-minimization,

Qd = {u ∣ ∥u∥∞ ⩽ 1}.

The smoothed version will take the general form,

max
u∈Qd

⟨u,Dx⟩ − µpd(u).

As for `1-minimization, the prox-function, pd(u) = 1
2
∥u∥2

2, is a good choice.
The smoothed function fµ for this problem becomes,

fµ(x) = max
u∈Qd

⟨u,Dx⟩ −
µ

2
∥u∥2

2.

This problem is no known function like the function we found for
`1-minimization, but the gradient is computed similarly and takes the
form,

∇fµ(x) =D
∗uµ(x).

6.2 Smoothness of fµ and Lipschitz Constant

The following theorem is from [6], where Nesterov proves smoothness and
the Lipschitz constant of the general smoothed function fµ, where uµ(x)
is the optimal value of fµ, as we recall. The operator norm we are using is
defined in general as,

∥W ∥p,q ∶= sup
∥x∥p=1

∥Wx∥q. (6.2)

Theorem 6.1. fµ(x) is well defined and continuously differentiable at any
x ∈ RN . Moreover, this function is convex and its gradient

∇fµ(x) =W
∗uµ(x)

is Lipschitz continuous with constant

Lµ =
1

µσd
∥W ∥

2
1,2.
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6.2. Smoothness of fµ and Lipschitz Constant

Proof. We start by proving ∇fµ(x) =W
∗uµ(x). First, we need to see that

fµ is in fact convex and continuously differentiable. fµ(x) is defined as:

fµ(x) = max
u∈Qd

⟨u,Wx⟩ − µpd(u).

From Proposition 2.10, we know that the maximum of convex functions
are convex, so we need to show that the functions defining fµ(x) are
convex. pd(u) is the prox-function and we know from Definition 2.15 that
all prox-functions are strongly convex and ⟨u,Wx⟩ is the `1-norm we know
to be convex. With this we can conclude that fµ(x) is convex. The function
is continuously differentiable since uµ is unique. Note that uµ must satisfy

Wx − µ∇pd(u) = 0,

as it is the optimal value of the maximum in fµ. We can now calculate the
gradient of fµ(x):

∇fµ(x) = ∇⟨Wx, uµ(x)⟩ −∇(µpd(uµ(x)))

=W ∗uµ(x) +Wx∇uµ(x) − µ∇pd(uµ(x))∇uµ(x)

=W ∗uµ(x) +∇uµ(x)(Wx − µ∇pd(uµ(x)))

=W ∗uµ(x).

This concludes the first part of the theorem.

As we recall from Definition 2.6, the Lipschitz constant of a function f , is
the constant L such that:

∥f(x1) − f(x2)∥ ⩽ L∥x1 −x2∥.

Before we find an expression for L, we do some calculations that will help
us on the way. From the first-order optimality conditions (first-order term
of the Taylor series of fµ), we have:

⟨Wx1 − µ∇pd(uµ(x1)), uµ(x2) − uµ(x1)⟩ ⩽ 0,

⟨Wx2 − µ∇pd(uµ(x2)), uµ(x1) − uµ(x2)⟩ ⩽ 0.

We want to rewrite this by adding the two equations. For simpler notation,
let x1 =Wx1, y1 = µ∇pd(uµ(x1)) and z = uµ(x1)−uµ(x2), equivalent for x2

and y2.

⟨x1 − y1,−z⟩ + ⟨x2 − y2,z⟩ ⩽ 0

⟨−x1 + y1,z⟩ + ⟨x2 − y2,z⟩ ⩽ 0

⟨(−x1 +x2) + (y1 − y2),z⟩ ⩽ 0

−⟨x1 −x2,z⟩ + ⟨y1 − y2,z⟩ ⩽ 0

⟨x1 −x2,z⟩ ⩾ ⟨y1 − y2,z⟩.

39



6. Nesterov’s Algorithm

Using Theorem 2.9, we have

⟨W (x1 −x2), uµ(x1) − uµ(x2)⟩ ⩾⟨µ(∇pd(uµ(x1)) −∇pd(uµ(x2))),

uµ(x1) − uµ(x2)⟩

⩾µ⟨∇pd(uµ(x1)) −∇pd(uµ(x2)),

uµ(x1) − uµ(x2)⟩.

The prox-function and its gradient is bounded by,

pd(u) ⩾
σd
2

∥u −u0∥
2
2,

∇pd(u) ⩾σd(u −u0).

Thus,

µ⟨∇pd(uµ(x1)) −∇pd(uµ(x2)),

uµ(x1) − uµ(x2)⟩ ⩾ µ⟨σd(uµ(x1) − uµ(x2)), uµ(x1) − uµ(x2)⟩

= µσd∥uµ(x1) − uµ(x2)∥
2
2.

These minor calculations will help us through the last step of the proof,

∥W ∗u∥∗1 = max
x

{⟨W ∗u,x⟩ ∣ ∥x∥1 = 1}

⩽ max
x,u

{⟨Wx,u⟩ ∣ ∥x∥1 = 1, ∥u∥2 = 1}

⩽ ∥W ∥1,2 ⋅ ∥u∥2. (6.3)

Finally, by (6.3), ⟨u,Wx⟩ = ⟨x,W ∗u⟩1, Cauchy-Schwarz inequality and
what we just calculated,

(∥W ∗uµ(x1) −W
∗uµ(x2)∥

∗
1)

2
⩽ ∥W ∥

2
1,2 ⋅ ∥uµ(x1) − uµ(x2)∥

2
2

⩽
1

µσd
∥W ∥

2
1,2⟨W

∗
(uµ(x1) − uµ(x2)),x1 −x2⟩

⩽
1

µσd
∥W ∥

2
1,2 ⋅ ∥W

∗uµ(x1) −W
∗uµ(x2)∥

∗
1

⋅ ∥x1 −x2∥1,

concluding the proof altogether.
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6.3. The Steps in NESTA for Compressive Sensing Problems

6.3 The Steps in NESTA for Compressive Sensing
Problems

As mentioned in the beginning of the chapter, Nesterov introduced an
algorithm for minimizing any smooth convex function in [5], which was
later improved to handle non-smooth functions as well. The algorithm
estimates two sequences, {yk} and {zk}, and combines them in a weighted
average to update the will-be solution, {xk}. The algorithm makes use
of two scalar sequences as well, {αk} and {τk}, that we will discuss when
exploring the algorithm.

Algorithm 3 NESTA as formulated in [9]
Initialize x0. For k ⩾ 0

1. Compute ∇fµ(xk)

2. Compute yk
yk = argminx∈Qp

Lµ
2
∥x −xk∥

2
2 + ⟨∇fµ(xk),x −xk⟩

3. Compute zk
zk = argminx∈Qp

Lµ
σp
pp(x) +∑

k
i=0 αi⟨∇fµ(xi),x −xi⟩

4. Update xk
xk = τkzk + (1 − τk)yk

Stop when a given criterion is met.

We start by choosing an initial guess of the optimal solution, x0. When
nothing is known, a good choice can be x0 =A

∗b.

Step 1. Compute ∇fµ(xk)

Compute ∇fµ(xk), the gradient of the smoothed function at xk. From [9],
we know that a convenient choice of the dual prox-function is pd(u) = 1

2
∥u∥2

2.
This applies for both `1-minimization and TV-minimization. With this
prox-function, the gradient of fµ, as we recall from (6.1),

[∇fµ(x)]i =

⎧⎪⎪
⎨
⎪⎪⎩

µ−1xi, ∣xi∣ < µ,

sgn(xi), ∣xi∣ ⩾ µ.

Step 2. Update yk
Update yk,

yk = argmin
x∈Qp

Lµ

2
∥x −xk∥

2
2 + ⟨∇fµ(xk),x −xk⟩.

In order to compute yk, we can use the Lagrangian of the problem to help
us find the minimum. We recall that Lagrangian is defined as,

L(x,λ) = f(x) +λg(x),
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6. Nesterov’s Algorithm

and for our problem it becomes,

L(x,λ) =
Lµ

2
∥x −xk∥

2
2 + ⟨∇fµ(xk),x −xk⟩ +

λ

2
(∥b −Ax∥2

2 − η
2).

From our problem, we see that the KKT-conditions can be written like this,
at the primal-dual solution (yk,λη)

∥b −Ax∥2
2 ⩽ η

2
(primal feasibility),

λη(∥b −Ax∥
2
2 − η

2) = 0 (complementary slackness),

λη ⩾ 0 (dual feasibility),
Lµ(yk −xk) +ληA

∗
(Ayk − b) +∇fµ(xk) = 0 (stationary).

We rewrite the stationary condition and solve for yk,

Lµyk −Lµxk +ληA
∗Ayk −ληA

∗b +∇fµ(xk) = 0

Lµyk +ληA
∗Ayk = ληA

∗b −∇fµ(xk) +Lµxk ∣ ⋅L−1
µ

(I +
λη

Lµ
A∗A)yk =

λη

Lµ
A∗b +xk −

1

Lµ
∇fµ(xk)

yk = (I +
λη

Lµ
A∗A)

−1

(
λη

Lµ
A∗b +xk −

1

Lµ
∇fµ(xk)).

Where we can rewrite again the inverse term,

(I +
λη

Lµ
A∗A)

−1

= ( −
Lµ

λη
)
⎛

⎝
( −

Lµ

λη
)I +

λη

Lµ
A∗A

⎞

⎠

−1

= ( −
Lµ

λη
)
⎛

⎝
( −

λη

Lµ
)I +

1

(−
Lµ
λη

)(−
Lµ
λη

− 1)
A∗A

⎞

⎠

= I −
λη

Lµ +λη
A∗A.

So, our final expression for yk is,

yk = (I −
λη

Lµ +λη
A∗A)(

λη

Lµ
A∗b +xk −

1

Lµ
∇fµ(xk)).

From the stationary conditions, we can find an explicit expression for λη as
well,

Lµyk −Lµxk +ληA
∗Ayk −ληA

∗b +∇fµ(xk) = 0 ∣ ⋅L−1
µ

yk −xk +L
−1
µ ληA

∗
(Ayk − b) +L

−1
µ = 0

L−1
µ ληA

∗
(Ayk − b) + yk = xk +L

−1
µ ∇fµ(xk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=q

∣ ⋅A

L−1
µ λη(Ayk − b) +Ayk − b =Aq − b ∣ ⋅Lµ

(λη +Lµ)(Ayk − b) = Lµ(Aq − b)

(λη +Lµ)η = Lµ∥Aq − b∥2

λη = Lµ(η
−1

∥Aq − b∥2 − 1).
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Step 3. Update zk
Update zk,

zk = argmin
x∈Qp

Lµ

σp
pp(x) + ⟨

k

∑
i=0

αi∇fµ(xi),x −xi⟩.

The prox-function is chosen based on Qp, it is strongly convex and
smooth, as we recall. In the NESTA article, [9], the following function
has been found to work well, which we know to be strongly convex by
Proposition 2.11:

pp(x) =
1

2
∥x −x0∥

2
2.

Making similar calculations as in step 2, we find that zk can be expressed
as,

zk = (I −
λη

Lµ +λη
A∗A)(

λη

Lµ
A∗b +x0 −

1

Lµ
∑
i⩽k

∇αifµ(xi)).

For the Lagrange multiplier, we find the expression, as in step 2,

λη = Lµ(η
−1

∥Aq − b∥2 − 1), q = x0 −L
−1
µ ∑
i⩽k
αi∇fµ(xi).

Step 4. Update xk
Update xk,

xk = τkzk + (1 − τk)yk.

xk becomes the weighted average of z and yk. Nesterov showed in [6, thm.
2] that with αk = 1/2(k + 1) and τk = 2/(k + 3), the algorithm converges with
the rate L

k2
.

6.4 Continuation

Continuation is a way to speed up the convergence. The idea is quite simple,
instead of running the algorithm with only the chosen µ, which we will
denote µf , we make a sequence of µ’s. Algorithm 4 computes the sequence
of µ’s, T is the number of continuation steps, t is the iterator from 1 to T , γ
is the step factor based on T , µ0 and µf and is defined as γ = (µf/µ0)

1/T . So
why does this speed up the convergence? The idea of computing a sequence
of decreasing µ’s is based on a technique from [2], for solving least squares
problems where λ is in the range 0 < λ < ∥A∗b∥∞. It was shown to be
faster to compute the algorithm several times while using the intermediate
solution as the initial guess of the optimal solution until the chosen µf
is reached, and the desired accuracy is acquired. Continuation has been
observed to have a particularly good effect on large problems. In [9], it
was observed that more steps are not necessarily better. Below we see two
graphs computed using the NESTA algorithm in MATLAB from [8], and a
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6. Nesterov’s Algorithm

Algorithm 4 Continuation algorithm from [9]
Initialize µ0, x0 and number of continuation steps T .
For 1 ⩽ t ⩽ T

1. Apply NESTA with µ = µ(t) and x0 = xµ(t−1)

2. Decrease µ∶µ(t+1) = γµ(t)

Stop when µf is reached.

bar chart. The left graph shows how the algorithm converges to the desired
solution with five continuation steps and without any continuation steps.
We see that continuation have a huge impact on the number of iterations
to find the optimal solution. The left graph shows the convergence with
different number of continuation steps. The bar chart shows the number of
iterations for different number of continuation steps. As we would expect,
no continuation steps requires the most iterations. However, for this case,
2 loops, or 3 steps, require the least amount of iterations. The MATLAB
program has been run on an image with dynamic range of 60 dB.

Figure 6.2: Top left: NESTA without continuation and with five
continuation steps. Top right: NESTA with different number of
continuation steps. Bottom: Number of iterations for varying number
of continuation loops.
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Convergence of Continuation

Theorem 6.2 from [9, thm. 3.1], states that each continuation step converges
to the local optimal solution, which is denoted by x∗

µ(t) . The global optimal
solution is found by setting t = T .

Theorem 6.2. At each continuation step, limk→∞ yk = x
∗
µ(t) , and

fµ(t)(yk) − fµ(t)(x
∗
µ(t)) ⩽

2Lµ(t)∥x
∗
µ(t) −xµ(t−1)∥

2
2

k2
.

Proof. By [6, thm. 2]

From this theorem, we can find the number of iterations necessary to
achieve the desired accuracy, γtδ0. We want,

fµ(t)(yk) − fµ(t)(x
∗
µ(t)) ⩽ γ

tδ0,

which we can rewrite in the following way,

γtδ0 ⩽
2Lµ(t)∥x

∗
µ(t) −xµ(t−1)∥

2
2

k2

k ⩽

√
2Lµ

γtδ0
∥x∗µ(t) −xµ(t−1)∥2.

By rewriting with the following: Lµ with 1/µf and µf with γtµ0, and
summing over the continuation steps, we find

Nc =

√
2

µ0δ0

T

∑
t=1

γ−t∥x∗µ(t) −xµ(t−1)∥2.

We have denoted Nc, as the number of iterations with continuation and
N , as the number of iterations without continuation. When we do not use
continuation, the number of iterations is found from,

N =

√
2

µ0δ0
γ−T ∥x∗f −x0∥2.

A significant result we can derive from the number of iterations is whether
the solution path is smooth or not, which again will tell us if continuation is
profitable. Meaning that if all intermediate solutions are part of a segment
[x0,xµf ] in order, then

T

∑
t=1

∥x∗µ(t) −xµ(t−1)∥2 = ∥x∗µf −x0∥2,

and continuation requires fewer iterations than the regular algorithm. If
the intermediate solutions do not lie on the segment, we can think of it as
being a “detour” in search of the optimal solution.
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CHAPTER 7

Summary

In this thesis, we started by introducing the field of compressive sensing
in Chapter 1 and proving NP-hardness of `0-minimization in Chapter 2.
We continued to find that the convex relaxation, `1-minimization, is a good
substitute and in fact the only minimizer that both guarantees a solution
and is not NP-hard to compute. In Chapter 3, we defined the recovery
guarantee, null space property, and the quality measures, coherence and
restricted isometry property. These measures are essential when working
with the algorithms associated with compressive sensing, for which we gave
a brief overview of in Chapter 4.

In Chapter 5, we derived the well-established primal-dual algorithm
proposed by Chambolle and Pock in [1] and proved that convergence is
guaranteed by Theorem 5.3. The primal-dual algorithm may achieve a
convergence rate of O(1/k2), for a special case of the convex functions F ∗

and G, and a slight modification of the algorithm. Whereas Nesterov proved
in [6], that the convergence rate O(1/k), is optimal for this algorithm with
general convex functions.

In Chapter 6, we followed Nesterov’s development of the algorithm
for minimizing non-smooth convex functions in [6], which achieves the
same convergence rate of O(1/k2), as his algorithm for smooth convex
functions introduced in [5]. We formulated the general function both for
`1-minimization and for total variation minimization. In Section 6.4, we
introduced the concept of continuation, which, for some problems, speeds
up the convergence considerably. It is difficult to give some exact rate of
convergence with continuation, as it depends heavily on the problem at
hand. For the example we observed in Figure 6.2, we see that continuation
can improve the convergence by a factor of about 4.4, for this dynamic
range.
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