
Explicit Time Stepping

Schemes for the

Bidomain Model

Christian Bjørland

Masteroppgave, våren 2018

Denne masteroppgaven er levert inn under masterprogrammet Anvendt matematikk og

mekanikk, studieretning Computational Science, ved Matematisk institutt, Universitetet

i Oslo. Oppgaven er normert til 30 studiepoeng.

Forsiden viser et utsnitt av rotsystemet til den eksepsjonelle liegruppen E8, projisert ned

i planet. Liegrupper ble oppfunnet av den norske matematikeren Sophus Lie (1842–1899)

for å uttrykke symmetriene til differensiallikninger og spiller i dag en sentral rolle i flere

deler av matematikken.

Abstract

The bidomain and monodomain models describing cardiac electrophysiology are

computationally demanding to solve. Employing efficient numerical methods is

therefore important for the practical use of these models. In this thesis we have

explored the efficiency of numerical methods based on finite elements in space

and explicit and semi-implicit finite differences in time. The explicit scheme

which solves the bidomain equations uses a fixed number of Jacobi-iterations to

solve the stationary, elliptic part of the model. The results show that an explicit

scheme based on Jacobi iterations can give comparable and, in some cases, better

computational efficiency than semi-implicit schemes based on operator splitting.

Acknowledgements

I want to thank my advisors Joakim Sundnes and Kent-Andre Mardal for their

help and inspiration during my work on this thesis. Especially thanks to Joakim

for always being available for discussions. I would also like to thank my family,

my friends and my dear Veronica for their support.

Contents

1 Introduction 3

2 Mathematical Models 6

3 Numerical Methods 9

3.1 The Finite Element Method . 9

3.2 Finite Differences . 10

3.3 Numerical Schemes for the Monodomain Model 12

3.3.1 Spatial Discretization . 12

3.3.2 Explicit Scheme . 14

3.3.3 Operator Splitting Scheme 14

3.4 Numerical Schemes for the Bidomain Model 16

3.4.1 Spatial Discretization . 16

3.4.2 Explicit Scheme . 17

3.4.3 Operator Splitting Scheme 19

4 Results 22

4.1 Description of the Test Cases . 22

4.2 Error Analysis . 27

4.3 Results for the Monodomain Model 28

4.3.1 Convergence rates in 1D 28

4.3.2 Efficiency in 1D . 30

4.3.3 Convergence Rates in 2D 30

4.3.4 Efficiency in 2D . 32

4.4 Results for the Bidomain Model 33

1

4.4.1 Convergence Rates in 1D 33

4.4.2 Efficiency in 1D . 35

4.4.3 Convergence Rates in 2D 37

4.4.4 Efficiency in 2D . 38

5 Conclusion 40

Appendix 43

2

Chapter 1

Introduction

Many heart problems are linked to disturbances in the electrical activity. An

increased understanding of the electrical activity in the heart could therefore

improve our ability to diagnose and treat heart problems.

At the organ-level, the electrical activity is the result of how billions of small-

scale processes in the cells interact. We have detailed knowledge of these small-

scale processes, but our knowledge of how the processes interact is more limited.

Mathematical modelling and computer simulations is an approach to gain in-

sight into this area. By formulating quantitative models of small-scale processes

and combining them, we can achieve a model at the organ-level.

The bidomain model, first introduced by Tung [11], can be considered as the

benchmark model for studying the flow of current in the heart. The model

consists of two coupled partial differential equations, which we will describe in

more detail in section 2. Unfortunately, it is in general not possible to solve the

bidomain equations analytically. Therefore, we will solve the bidomain model

on a computer using numerical methods to obtain an approximate solution.

Realistic models of the heart will typically involve spatial grids with 40-50 mil-

lion computational nodes. Such a high resolution is computationally demanding

and since changes in electrical current in the model happen in small time in-

3

tervals, we need to use small time steps, which increases the computational

complexity further. The computational burden is therefore an important bot-

tleneck for physically realistic simulations based on the bidomain model. By

using a non-physiological assumption, we can simplify the bidomain model to

the monodomain model. Previous research indicates that the CPU requirements

can be reduced by a factor of ten when using the monodomain model [10]. Al-

though computationally less demanding to solve, the monodomain model comes

at the cost of being physiologically less accurate. An alternative way of reducing

the computational burden is to implement efficient numerical schemes. The lat-

ter approach has the advantage of reducing the computational burden without

sacrificing physiological accuracy. Implementing efficient numerical schemes is

therefore an important avenue for research.

Explicit difference methods in time and space have proven to be popular for

solving the monodomain model, due to their simplicity and efficiency. However,

finite differences are not suitable for more complex geometries, and they can-

not be applied to the bidomain equations due to the stationary, elliptic part

of the model. Previous work [9], [12], [2] have preferred semi-implicit schemes

for solving the bidomain model, since these methods enable us to split complex

problems into smaller and simpler parts.

The purpose of this thesis is to implement and analyze numerical schemes for

solving the monodomain and bidomain models. Throughout this thesis we use

a "method of lines" approach, i.e. we first apply the finite element method

for a spatial discretization of the models, to obtain continuous time-dependent

systems of equations. These systems will in turn be discretized in time using dif-

ferent numerical methods. We will implement semi-implicit schemes which use

operator splitting methods for time discretization, as well as explicit schemes

which apply forward differences for time discretization. However, as mentioned

above, the bidomain equations have a stationary, elliptic part, for which the for-

ward differences used in the explicit scheme are not applicable. We will therefore

use a fixed number of Jacobi iterations to solve this part of the bidomain equa-

tions. The implementation and analysis of an explicit scheme based on Jacobi

4

iterations is an important contribution of this thesis.

After implementing the numerical schemes for both the monodomain and bido-

main models, we explore how the explicit schemes compares to the semi-implicit

schemes in terms of efficiency and accuracy. We will also investigate how the

number of Jacobi iterations for solving the elliptic part of the bidomain equa-

tions affects efficiency and accuracy.

The thesis is organized as follows. Chapter 2 introduces the Jacobi iteratiomon-

odomain and bidomain models. In the same chapter we will also look at nu-

merical methods relevant for solving these models. Chapter 3 derive numerical

schemes for solving the monodomain and bidomain models. In chapter 4 we

will explore how the explicit schemes compares to the semi-implicit schemes in

terms of efficiency and accuracy, while Chapter 5 summarizes the thesis and

looks at potential extensions and limitations of our analysis.

5

Chapter 2

Mathematical Models

We divide the heart tissue into two separate domains: the intracellular and the

extracellular. The cell membrane separates these domains and acts as an elec-

tric insulator, which allows for a potential difference between the two domains.

This potential difference is called the transmembrane potential. Even though

the resistance across the membrane is high, it is possible for ions to pass through

specific channels in the membrane. The ionic current across the membrane will

be captured by the term Iion in the equations below.

The large number of cells in the heart makes it computationally difficult to

model each cell as a separate unit. To achieve a model which is computa-

tionally feasible and physiological accurate, the bidomain models is based on

volume-averaging techniques. Such techniques involve viewing a quantity at a

point as an average of that quantity over a small neighborhood around that

point. A consequence is that each point in the heart is in both the intra- and

extracelluar domain.

Using a quasi-static condition, we have the following current densities in each

domain

Ji = −Mi∇ui, (2.1)

Je = −Me∇ue, (2.2)

6

where Ji and Je are the current densities in the domains, Mi and Me are

the conductivities in the domains. ui is the intracellular potential and ue is

the extracellular potential. Hence, the transmembrane potential v is defined as

v = ui - ue. We also assume that following conservation equations are satisfied

−∇ · Ji =
∂qi
∂t

+ κIion, (2.3)

−∇ · Je =
∂qe
∂t
− κIion, (2.4)

where qi is the intracellular and qe is the exctracellular charge. Iion is the

ionic current across the membrane. From (2.1) - (2.4) and some additional

assumptions [8], we can derive the bidomain equations

∂s

∂t
= f(s, v, t), (2.5)

∂v

∂t
+ Iion(s, v, t) = ∇ · (Mi∇v) +∇ · (Mi∇ue) , (2.6)

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0, (2.7)

where (2.5) is a system of ODEs that describes the electrophysiological ac-

tivity in the heart cells. Note that we have introduced the scaled conduc-

tivities Mi = M∗i /(Cmχ) Me = M∗e/(Cmχ), and the scaled ionic current

Iion = I∗ion/Cm. M∗i , M∗e and I∗ion are, respectively, the standard bidomain

conductivities and ionic current.

We need boundary conditions for ue and v to solve the model. For the present

study we assume that the heart is surrounded by an insulating material, which

we express as

n · Ji = 0, (2.8)

n · Je = 0, (2.9)

Using (2.1) - (2.2) and (2.8) - (2.9), we can eliminate ui and get

n · (Mi∇v +Mi∇ue) = 0 (2.10)

n · (Me∇ue) = 0 (2.11)

7

The bidomain model can be simplified by assuming equal anisotropy rates,

which implies Mi = λMe, where λ is a constant scalar. Using this simplifying

assumption, one can derive the monodomain equation

∂v

∂t
+ Iion(s, v, t) = ∇ · (σ∇v) , (2.12)

∂s

∂t
= f(s, v, t), (2.13)

with boundary conditions

n · (σ∇v) = 0. (2.14)

As for the bidomain model, we scale the ionic current and the conductiv-

ity. The monodomain model is easier to analyse and solve numerically than the

bidomain model. However, the monodomain model has some caveats. Firstly,

measurements of the conductivities indicate that the assumption of equal con-

ductivity rates is wrong [8]. In addition, there are some electrophysiological

phenomena which are not captured by the monodomain model [8].

I used Fenics with high-level scripting in Python to solve the monodomain and

bidomain equations. Fenics is open source software, and it aims at being "an

easy, intuitive, efficient and flexible software for solving partial differential equa-

tions (PDEs) using the finite element method" [4, p. 3] .

8

Chapter 3

Numerical Methods

We have several options for discretization in time and space, including, but not

limited to, finite differences and the finite element method. Previous work [7] on

numerical methods for the bidomain model has pointed out that the finite ele-

ment method are more suitable than finite differences for spatial discretization.

We will use finite differences for temporal discretization and the finite element

method for spatial discretization.

3.1 The Finite Element Method

When using the finite element method, we must choose the geometry of the

elements and basis functions for the trial and test spaces. These choices are

important determinants of spatial accuracy and CPU-time. In this thesis, we

will use 1D and 2D models with P1 elements and Lagrange polynomials as basis

functions. In other words, we will use a uniformly partitioned mesh. One can

argue that a more complex geometry with basis functions of a higher degree

would give higher spatial accuracy and a more accurate representation of the

geometry of the heart. But this thesis focuses on differences in accuracy and

efficiency between different numerical schemes, rather than having a physiolog-

ical accurate representation of the heart. In addition, as we will discuss in the

next section, the explicit schemes use a "lumped" mass matrix, which reduces

the spatial convergence to one. Thus, we have little to gain in accuracy by

using quadratic elements for the explicit schemes. Previous research which have

9

applied the finite element method for spatial discretization have also used linear

elements [2].

3.2 Finite Differences

We will use finite differences for temporal discretization. Which finite difference

methods we use will have an impact on accuracy, computational complexity and

stability. To investigate the accuracy and complexity of these methods, consider

the following system of ODEs.

dy

dt
= f(y, t) (3.1)

Let the time domain [0, T] be partitioned into N equal-sized sub-intervals,

i.e. 0 = t0 < t1 < ... < tN = T , ti− ti−1 = ∆t ∀i. Let yn = y(tn). The explicit

forward Euler method involves using the following approximation for yn+1.

yn+1 = yn + ∆tf(yn, tn) (3.2)

We can motivate this approximation by using the following Taylor-expansion

of yn+1 around tn.

yn+1 = yn +
dyn

dt
(tn+1 − tn) +O(∆t2) (3.3)

Inserting for (3.1) in (3.3) and re-arranging, we get

yn+1 − (yn + ∆tf(yn, tn)) = O(∆t2) (3.4)

Hence, we get a local error of order two for the forward Euler method. Since

N = ∆t−1, we get an accumulated error proportional to ∆t. Thus, an explicit

time-stepping scheme using the forward Euler method is of order one.

The backward Euler method uses the following approximation for yn+1

yn+1 = yn + ∆tf(yn+1, tn+1) (3.5)

10

The backward Euler method can be derived from the Taylor-expansion of

yn around tn+1

yn = yn+1 −∆tf(yn+1, tn+1) +O(∆t2) (3.6)

From (3.6), we see that the backward Euler method is of order one. (3.6)

is in general a system of nonlinear algebraic equations. To summarize, both

methods are of order one, and the the forward Euler method is less computa-

tional demanding. However, a caveat with using a forward Euler method is its

strict stability requirements. [6] derives the following stability criterion for the

forward Euler method for an anisotropic bidomain model in 2D when ∆x = ∆y.

∆t ≤ κCm

(
1

trace(Mi)
+

1

trace(Me)

)
∆x2 (3.7)

In our test cases, we will use scalar values for Mi and Me. We will also use

scaled conductivities and scaled ionic current, see section 4.1 for more details

on parameter values. We have to keep in mind that the stability criterion above

is derived when using finite differences in time and space, whereas we will use

finite differences in time and the finite element method for spatial discretization.

Earlier works have consider both implicit methods [5] and explicit methods [1]

for temporal discretization. Operator splitting methods is another alternative.

The motivation behind using operator splitting methods is to use split complex

system of equations to more manageable parts. After splitting the problem to

smaller pieces, we can apply efficient numerical methods. When we derive semi-

implicit schemes later in this thesis, we will use explicit methods for computing

the non-linear part of the problem, an we will use implicit methods for solving

the linear part of the problem. Because of the desirable properties of an opera-

tor splitting method, several works [9], [12], [2] have used an operator splitting

approach to solve the bidomain model.

When we derive the explicit schemes in section 3.3.2 and section 3.4.2 we ap-

proximate the mass matrix by a diagonal matrix. This method is referred to

as mass lumping. Common ways of lumping a mass matrix involve using each

11

row sum as a diagonal element, or to use numerical integration with quadrature

points at the nodes [3, p. 187]. Another way of lumping the mass matrix involves

scaling each diagonal element in the mass matrix by the row sum divided by

the sum of all the elements in the mass matrix. This latter method was most

successfull, and was therefore used for the explicit schemes for the monodomain

and bidomain models.

3.3 Numerical Schemes for the Monodomain Model

3.3.1 Spatial Discretization

The monodomain model is given by (2.12) - (2.13) with boundary condition

(2.14). We want to discretize this system with a method of lines approach, i.e.,

we first apply the finite element method for a spatial discretization of the sys-

tem, to obtain a system of of ODEs in time.

To apply the finite element method, we introduce an appropriate function space

Vh, with basis functions φj , j = 1, . . . , N . The unknown field v is then approxi-

mated as linear combinations of the basis functions

v =

N∑
j=1

vjφj , s =

N∑
j=1

sjφj , (3.8)

where vj , sj are time-dependent coefficients and φj are appropriate (spatial)

basis functions. Note that each vj is a scalar value (since v is a scalar field),

while each sj is a vector with the same number of components as the vector

field s. For simplicity, we will consider the case where s is a scalar field, which

corresponds to a Fitzhugh-Nagumo type of model. Specifically, we will use the

following cubic polynomial for the ionic term

Iion = c1v(v − a)(1− v)− c2vs (3.9)

and the following functional form for f

f = b(v − c3s) (3.10)

12

To simplify the notation, we introduce the bilinear form

a(η, ψ) =

∫
Ω

σ∇η · ∇ψ dx,

A weak form of (2.12)-(2.13) is

d

dt

∫
Ω

v ψ dx = −a(v, ψ)−
∫

Ω

Iion(s, v)ψ dx (3.11)

d

dt

∫
Ω

sψ dx =

∫
Ω

f(s, v, t)ψ dx (3.12)

and is to be satisfied for all choices ψ ∈ V , where V is some suitable function

space. By inserting the approximation (3.8) into (3.11)-(3.12) and using the

basis functions φj , j = 1, . . . , N as test functions ψ, we get a non-linear ODE

system

M
dv

dt
= −Av −MIion, (3.13)

M
ds

dt
= Mf, (3.14)

Here Iion, f are the vectors of nodal values for Iion(v, s) and f(v, s, t), respec-

tively. We have used a standard finite element interpolation to approximate the

fields by their nodal values:

Iion ≈
N∑
j=1

Ijionφj , f ≈
N∑
j=1

fjφj . (3.15)

The matrices are given by

Mjk =

∫
Ω

φj φk dx,

Ajk =

∫
Ω

σ∇φj · ∇φk dx,

(3.13) - (3.14) is an ODE system, for which we can explore different time dis-

cretizations.

13

3.3.2 Explicit Scheme

We use the forward Euler method because of its simplicity. One could argue that

we could have used explicit methods with a higher degree of accuracy, such as

a Runge-Kutta method. However, since the temporal resolution is governed by

the stability requirement in (3.7), we expect that the spatial error will dominate

the error for the explicit scheme. If we apply the Forward Euler method to

(3.13) - (3.14), we get

Mvn+1 = −∆tAvn −MInion +Mvn, (3.16)

sn+1 = ∆tfn + sn, (3.17)

where vn is a vector of the nodal values of v at time step n in the numerical

scheme. Inion, fn and sn are defined similarly. We observe from (3.16) that we

need to solve a system of equations for each time step. To reap the potential

benefits of an explicit method, we can apply mass lumping, by approximating

M ≈Mdiag, whereMdiag is a diagonal matrix. A caveat of this approach is that

the spatial convergence is reduced from second-order to first-order. Inserting the

approximated mass matrix, we get the system to be computed at each time step

for the explicit scheme

vn+1 = −M−1
diag∆tAvn − Inion + vn, (3.18)

sn+1 = ∆tfn + sn, (3.19)

Since M−1
diag is diagonal, (3.18) is less computationally demanding to solve

than (3.16).

3.3.3 Operator Splitting Scheme

If we apply Godunov splitting to (3.13) - (3.14), we get the following two sys-

tems to solve at each time step of the algorithm

14

Step 1 Solve

M
dv

dt
= −Av s(tn) = sn, v(tn) = vn, (3.20)

for tn ≤ t ≤ tn+1. We denote the solution at tn+1 as vn1 .

Step 2 Solve

dv

dt
= −Iion, v(tn) = vn1 , s(t

n) = sn, (3.21)

ds

dt
= f, (3.22)

for tn ≤ t ≤ tn+1. We denote the solution at tn+1 as vn+1.

We apply the backward Euler scheme to (3.20) due to its stability properties

and simplicity. It can be shown that Godunov splitting gives first-order con-

vergence [8, p. 71-75]. Hence, there are no benefits to using an implicit scheme

with higher accuracy than the Backward Euler method for temporal discretiza-

tion. We apply the Forward Euler method to the systems of ODEs given by

(3.21) and (3.22). Using the temporal discretizations outlined above, we get the

following operations to perform at each time step for the splitting-algorithm

Step 1 Solve

M(vn1 − vn) = −∆tAvn1 (3.23)

Step 2 Compute

vn+1 = −∆tInion + vn1 , (3.24)

sn+1 = ∆tfn + sn, (3.25)

15

3.4 Numerical Schemes for the Bidomain Model

3.4.1 Spatial Discretization

The bidomain equations are given by (2.5) - (2.7) with boundary conditions

(2.10) - (2.11). In the following, we use a "methods of lines" approach, i.e. we

first use the finite element method for spatial discretization, which gives us a

system of differential-algebraic equations.

Let Vh be a suitable function space with basis functions φj , j = 1, . . . , N .

We make the following ansatz

v =

N∑
j=1

vjφj , s =

N∑
j=1

sjφj , I =

N∑
j=1

Ijφj (3.26)

where vj , sj and Ij are time-dependent coefficients and φj are appropriate (spa-

tial) basis functions. We will use the same functional forms as we used for the

monodomain model, which are given by

Iion = c1v(v − a)(1− v)− c2vs (3.27)

f = b(v − c3s) (3.28)

For notational convenience, we use the bilinear forms

aI(η, ψ) =

∫
Ω

Mi∇η · ∇ψ dx, (3.29)

aI+E(η, ψ) =

∫
Ω

(Mi +Me)∇η · ∇ψ dx, (3.30)

We choose Vh as the test space of the variational problem. Let ψ ∈ Vh be a

test function. A weak form of (2.5) - (2.7) is

d

dt

∫
Ω

sψ dx =

∫
Ω

f ψ dx (3.31)

−aI(v, ψ)− aI(ue, ψ) =
d

dt

∫
Ω

v ψ dx+

∫
Ω

Iion(s, v)ψ dx (3.32)

−aI(v, ψ)− aI+E(ue, ψ) = 0 (3.33)

16

which must be satisfied ∀ψ ∈ V. Inserting the approximations from (3.26)

into (3.31)-(3.33) and using the basis functions φj , j = 1, . . . , N as test functions

ψ, we get the following differential-algebraic system of equations

ds

dt
= f (3.34)

M
dv

dt
+MIion = −A1(v + ue) (3.35)

A1v +A2ue = 0 (3.36)

where

Mjk =

∫
Ω

φj φk dx,

A1jk =

∫
Ω

Mi∇φj · ∇φk dx,

A2jk =

∫
Ω

(Mi +Me)∇φj · ∇φk dx

In (3.34) - (3.36), Iion, f, v and s are the vectors of nodal values for Iion(v, s),

f(v, s, t), v and s, respectively. We have used a standard finite element interpo-

lation to approximate the fields by their nodal values:

Iion ≈
N∑
j=1

Ijionφj , f ≈
N∑
j=1

fjφj . (3.37)

3.4.2 Explicit Scheme

If we use the forward Euler method, we get the following discretized system of

equations

sn+1 = ∆tfn + sn (3.38)

Mvn+1 = −∆tA1(vn + une)−MInion +Mvn (3.39)

A1v
n+1 +A2u

n+1
e = 0 (3.40)

where vn is a vector of the nodal values of v at time step n in the numerical

scheme. Inion, fn and sn are defined similarly. To reduce the computational

burden when we solve (3.39), we can apply mass lumping

17

sn+1 = ∆tfn + sn (3.41)

vn+1 = −M−1
diag∆tA1(vn + une)−∆tInion + vn (3.42)

A1v
n+1 +A2u

n+1
e = 0 (3.43)

where Mdiag is a diagonal matrix. (3.41) and (3.42) are straightforward to

compute. (3.43) is a system of equations which need to be solved at each time

step. As previously mentioned, we use the Jacobi method to find an approximate

solution to (3.43). One Jacobi iteration involves the following operation

une,k = D−1(Rune,k−1 −A1v
n), (3.44)

where une,k is the value of une at the k’th iteration for the Jacobi method. D

is a diagonal matrix with the same diagonal as A1. R is given by the relation

A2 = D+R. We can choose the number of iterations for the Jacobi method to

be the smallest integer for which

||une,k − une,k−1||< ε (3.45)

where ||.|| is the L2-norm and ε is a chosen tolerance. Alternatively, we can

use a fixed number of Jacobi iterations for each time step. The latter approach

has the advantage of being simple to implement and potentially computationally

less demanding for a given number of timesteps. An undesirable property of

using a fixed number of Jacobi iterations is that we have less control of the

error for each timestep, which can be especially problematic when we only use

a few iterations per time step. However, this problem can be alleviated making

a good initial guess. Since ||une −un−1
e || decreases in ∆t if une converges towards

the true solution1, the solution from the previous time step will be a good initial

guess for the Jacobi method. If we use a fixed number of iterations, which we

denote by K, and use the solution at the previous time step as an initial guess,

we get the following algorithm for using Jacobi iterations to solve the elliptic

part of the bidomain model

1un
e is a Cauchy-sequence if un

e is convergent

18

une,1 = −D−1(A1v
n +Run−1

e)

For k = 2, ...,K

une,k = −D−1(A1v
n +Rune,k−1)

We are faced with a trade-off when choosing the number of Jacobi iterations

to solve the elliptic part. On one hand, an increased number of Jacobi iterations

for a given resolution in time and space increases the accuracy of the numerical

solution. On the other hand, the CPU-time increases in the number of Jacobi

iterations. Since our explicit scheme poses a strict stability requirement on the

size of the time step, numerical solutions from this scheme typically have a high

temporal resolution. Thus, it is not unreasonable to expect that the time steps

which ensures stability for the explicit scheme are sufficiently small to ensure a

satisfactory spatial accuracy when we only use one or a few Jacobi iterations.

Ideally, we can achieve both a high accuracy and a low CPU-time for our ex-

plicit scheme by choosing only one or a few Jacobi iterations. This prediction

is an important motivation for the analysis done in this thesis.

We can summarize the computations for each time step for an explicit scheme

based on K Jacobi iterations in the following algorithm

sn+1 = ∆tfn + sn

vn+1 = −M−1
diag∆tA1(vn + une)−∆tInion + vn

un+1
e,1 = −D−1(A1v

n+1 +Rune)

For k = 2, ...,K

un+1
e,k = −D−1(A1v

n+1 +Run+1
e,k−1)

un+1
e = un+1

e,K

3.4.3 Operator Splitting Scheme

If we apply Godunov splitting to (3.34) - (3.36), we get the following two systems

to solve at each time step of the splitting-algorithm

19

Step 1: Solve

dv

dt
= −Iion, v(tn) = vn, s(tn) = sn, (3.46)

ds

dt
= f, (3.47)

for tn ≤ t ≤ tn+1. We denote the solution at tn+1 as vn1 and sn+1.

Step 2: Solve

M
dv

dt
= −A1(v + ue) v(tn) = vn1 ,ue(tn) = une , (3.48)

A2ue +A1v = 0 (3.49)

for tn ≤ t ≤ tn+1.We denote the solutions at tn+1 as vn+1 and un+1
e .

We apply the forward Euler method to the time derivatives in (3.46) and

(3.47). We use a Backward Euler method for temporal discretization of (3.48).

If we apply the methods outlined above, we get the following discretized version

of the splitting-algorithm

Step 1: Compute

vn1 = −∆tInion + vn (3.50)

sn+1 = ∆tfn + sn, (3.51)

Step 2: Solve

M(vn+1 − vn1) = −∆tA1(vn+1 + un+1
e) (3.52)

A2u
n+1
e +A1v

n+1 = 0 (3.53)

Step 1 in the splitting-algorithm involves only explicit formulas, and is therefore

straightforward to compute. The linear systems in Step 2 in the splitting-

algorithm can be written as the following block structured linear system

20

M + ∆tA1 ∆tA1

A1 A2

vn+1

un+1
e

 =

Mvn1

0

 (3.54)

which can be solved by direct or iterative methods. I was unfortunately

not able to formulate and solve a block-linear system of equations of the form

(3.54) in Fenics. Instead, I used a high-level call to assemble and solve the weak

formulation with Newtons method for each time step. Assemblig for each time

step is not the fastest way to solve the linear parts of the bidomain model for the

operator splitting scheme. We must keep this point in mind when we compare

the efficiency of the two different schemes for the bidomain model.

21

Chapter 4

Results

4.1 Description of the Test Cases

The tests for convergence and efficiency are computed on P1 elements, see sec-

tion 3.1 for the reasoning behind using this geometry. The spatial domain in

1D is the unit interval, i.e.

Ω = {x ∈ R : 0 ≤ x ≤ 1} (4.1)

with initial condition

v = 1 for x ≤ 0.5 (4.2)

v = 0 for x > 0.5 (4.3)

In 2D, the spatial domain is the unit square

Ω = {x ∈ R2 : 0 ≤ x, y ≤ 1} (4.4)

with initial condition

v = 1 for ||x||2≤ 0.5 (4.5)

v = 0 for ||x||2> 0.5 (4.6)

where ||.|| is the Euclidian norm. The time-domain [0, T] is partitioned into

N equal-sized sub-intervals, i.e. 0 = t0 < t1 < ... < tN = T , ti − ti−1 = ∆t ∀i.

22

Table 4.1 and table 4.2 shows the values of the parameters for the monodomain

and bidomain model, respectively. The parameters values were chosen to give

a reasonable shape of the action potential. For simplicity, we have used scalar

values for Mi and Me both in 1D and in 2D for the bidomain model.

Table 4.1: Parameter values for the monodomain model

Parameters Values

a 0.1

b 1

c1 200

c2 200

c3 1

σ 0.1

Table 4.2: Parameter values for the bidomain model

Parameters Values

a 0.1

b 1

c1 200

c2 200

c3 1

Mi 0.1

Me 0.1

Figure 4.1 and Figure 4.2 show a numerical solution of the transmembrane

potential for the monodomain model in 2D at t = 0.1. The latter figure is a

3D-plot.

23

Figure 4.1: Numerical solution of the transmembrane potential for the bidomain

model in 2D at t = 0.1. The solution is computed with an operator splitting

scheme with resolution ∆x = 0.01 and ∆t = 0.00025. The spatial domain is the

unit box.

24

Figure 4.2: Numerical solution of the transmembrane potential for the mon-

odomain model in 2D at t = 0.1. The solution is computed with an operator

splitting scheme with resolution ∆x = 0.01 and ∆t = 0.00025. The spatial

domain is the unit box.

25

Figure 4.3 and Figure 4.4 show a numerical solution of the transmembrane

potential for the monodomain model in 2D at t = 0.1. The latter figure is a

3D-plot.

Figure 4.3: Numerical solution of the transmembrane potential for the bidomain

model in 2D at t = 0.1. The solution is computed with an operator splitting

scheme with resolution ∆x = 0.01 and ∆t = 0.00025. The spatial domain is the

unit box.

26

Figure 4.4: Numerical solution of the transmembrane potential for the bidomain

model in 2D at t = 0.1. The solution is computed with an operator splitting

scheme with resolution ∆x = 0.01 and ∆t = 0.00025. The spatial domain is the

unit box.

4.2 Error Analysis

We will use a reference solution when we compute the error of our numerical

solution. Using a reference solution instead of a analytic solution has some po-

tential problems. Firstly, the computed errors in the numerical experiments is

incorrect. However, this problem may be remedied by requiring a high resolu-

tion for the reference solution. On the other hand, these resolution requirements

may pose a computational challenge. Another problem can be that our numeri-

cal method converges to a wrong solution, which is problematic regardless of the

27

resolution of the reference solution. Based on the discussion above, we should

keep in mind potential problems which could arise when using this approach.

We use the discrete L2-norm to compute the error. The error of a numeri-

cal solution u at time t is

E =
∥∥∥ut − utr∥∥∥ =

∑
j∈Ix

(utj − utr,j)2

1/2

(4.7)

where Ix is the index set of the spatial nodes for the numerical solution u,

utj is the numerical solution at time t at node j, and utr is the reference solution

at time t at node j.

We assume the following relation between the error of the numerical solution

and the discretization parameters in time and space

E = Kxdx
rx +Kt∆t

rt (4.8)

where Kx and Kt are constants, rx is the convergence rate in space and rt

is the convergence rate in time. If we use a common discretization parameter

∆, we get the following estimate of the convergence rate

ri = log(Ei−1/Ei)/log(∆i−1/∆i) (4.9)

where ∆i is the discretization in experiment i and Ei is the error in experi-

ment i.

4.3 Results for the Monodomain Model

4.3.1 Convergence rates in 1D

Since we "lump" the mass matrix, we expect that the spatial convergence for

the explicit scheme is reduced to order one. We also expect first-order conver-

28

gence in time, since we use the forward Euler method for temporal discretiza-

tion. Table 4.3 shows convergence results for the explicit scheme applied to

the FitzHugh-Nagumo model. The errors are computed at time t = 0.1. Since

the epxlicit scheme is considerable faster than the semi-impilcit scheme for high

resolutions, we used the former scheme to compute the reference solution. The

reference solution has resolution ∆x = 1/10000 and ∆t = 1/21000000. We ob-

serve that computed convergence rates are close to our theoretical predictions.

Table 4.3: Convergence rates for the explicit scheme for the monodomain model

in 1D

∆x ∆t error r

0.025000 0.000192 0.0362

0.012500 0.000096 0.0160 1.1801

0.006250 0.000048 0.0074 1.1047

0.003125 0.000024 0.0035 1.0718

Convergence results for the explicit scheme for the monodomain model in 1D. The

reference solution is computed with the explicit scheme and it has resolution ∆x =

1/10000 and ∆t = 1/21000000. The error is computed at t = 0.1

We expect first-order convergence in time and second-order convergence in

space for our semi-implicit scheme. Table 4.4 shows convergence results for

the semi-implicit scheme applied to the FitzHugh-Nagumo model. We use a

reference solution computed with the explicit scheme with spatial resolution

∆x = 1/10000 and temporal resolution ∆t = 1/21000000. The reference solu-

tion is computed with the explicit scheme. The errors are computed at time

t = 0.1. We observe that the convergence is approximately second-order in

space and first-order in time for the second and third experiments, which is as

expected.

29

Table 4.4: Convergence rates for the operator splitting scheme for the mon-

odomain model in 1D

∆x ∆t error r

0.001923 0.002500 0.0198

0.000962 0.001250 0.0101 0.9724

0.000481 0.000625 0.0051 0.9929

0.000240 0.000313 0.0025 1.0034

Convergence results for the operator splitting scheme for the monodomain model in

1D. The reference solution is computed with the explicit scheme and it has resolution

∆x = 1/10000 and ∆t = 1/21000000. The error is computed at t = 0.1.

4.3.2 Efficiency in 1D

Table 4.5 shows the efficiency for both the explicit and semi-implicit scheme

applied to the FitzHugh-Nagumo model. We observe that both schemes achieve

an error of less than one percent in less than one second. We also observe that

the explicit scheme is slightly more efficient.

Table 4.5: Efficiency tests for the numerical schemes for the monodomain model

in 1D.

Numerical scheme CPU-time (seconds) ∆x ∆t error

Operator splitting 0.91 0.00800 0.000250 0.97

Explicit 0.69 0.007692 0.000182 0.99

Efficiency tests for the numerical schemes for the monodomain model in 1D. The

reference solution is computed with the explicit scheme and it has resolution ∆x =

1/10000 and ∆t = 1/21000000. The error is computed at t = 0.1 and it is measured

in percent.

4.3.3 Convergence Rates in 2D

Table 4.6 and Table 4.7 shows convergence results for the numerical scheme

applied to the monodomain model in 2D. The errors are computed at time

30

t = 0.1. The reference solution is computed with the explicit scheme, and it has

resolution ∆x = 1/600 and ∆t = 1/160000. As commented above, the spatial

resolution of ∆x = 1/600 is relatively coarse. However, we see from Table 4.6

and Table 4.7 that the convergence rates are almost as expected. We also

observe that the difference between the computed and predicted convergence

rates is larger for the 2D cases. This was most likely caused by the relatively

coarse spatial resolution of the reference solutions in 2D.

Table 4.6: Convergence rates for the explicit scheme for the monodomain model

in 2D

∆x ∆t error r

0.028571 0.005000 0.0101

0.014286 0.000250 0.0030 1.7470

0.0007143 0.000125 0.0017 0.8421

Convergence results for the explicit scheme for the monodomain model in 2D. The

reference solution is computed with the explicit scheme and it has resolution ∆x =

dy = 1/600 and ∆t = 1/160000. The error is computed at t = 0.1.

Table 4.7: Convergence rates for the operator splitting scheme for the mon-

odomain model in 2D

∆x ∆t error r

0.016667 0.010000 0.0637

0.083333 0.002500 0.0176 0.9288

0.004167 0.000625 0.0045 0.9754

Convergence results for the operator splitting scheme for the monodomain model in

2D. The reference solution is computed with the explicit scheme and it has resolution

∆x = 1/600 and ∆t = 1/160000. The error is computed at t = 0.1.

31

4.3.4 Efficiency in 2D

Table 4.8 shows the efficiency for both the explicit and semi-implicit scheme ap-

plied to the monodomain-model. We observe that the operator splitting scheme

is more efficient than the explicit scheme. However, we also observe that both

schemes achieve an error of less than one percent in less than one second.

Table 4.8: Efficiency tests for the operator splitting scheme for the monodomain

model in 2D.

Numerical scheme CPU-time (seconds) ∆x ∆t error

Operator splitting 0.21 0.028571 0.002778 0.99

Explicit 0.48 0.022727 0.000556 0.98

Efficiency tests for the numerical schemes for the monodomain model in 2D. The

reference solution is computed with the explicit scheme and it has resolution ∆x =

1/600 and ∆t = 1/160000. The error is computed at t = 0.1 and it is measured in

percent.

32

4.4 Results for the Bidomain Model

We used the explicit scheme to compute the reference solution for the mon-

odomain model. This choice was motivated by the fact that the explicit scheme

is significantly faster than the semi-implicit scheme for a given resolution. But

for the explicit scheme for the bidomain model, we use a fixed number of Ja-

cobi iterations for each time step. Since we do not use Jacobi iterations until

convergence, this error could potentially become large. This is an undesirable

property for a reference solution. We therefore prefer the operator splitting

scheme to compute a reference solution for the bidomain model. However, this

scheme is more computationally demanding than the explicit scheme for a given

resolution, especially for 2D problem with a high spatial resolution. I managed

to compute a reference solution with ∆x = 1/500 and ∆t = 1/5000. One could

argue that this resolution is too low for a reference solution. However, as we

will see below, the convergence rate tests indicate that this reference solution

has a satisfactory resolution.

4.4.1 Convergence Rates in 1D

We expect spatial convergence of order two and convergence in time of order

one for the operator splitting scheme. Table 4.9 shows convergence tests for

the operator splitting scheme for the bidomain model. The reference solution is

computed with the operator splitting scheme and it has resolution ∆x = 1/10000

and ∆t = 1/400000. We observe that the convergence rates are close to one in

time and two in space, which is as expected.

33

Table 4.9: Convergence rates for the operator splitting scheme for the bidomain

equations in 1D

∆x ∆t error r

0.001961 0.010000 0.0819

0.000980 0.002500 0.00256 0.8402

0.000490 0.000625 0.0071 0.9232

0.000245 0.000156 0.0020 0.9137

Convergence results for the operator splitting scheme for the bidomain model in 1D.

The reference solution is computed with the operator splitting scheme and it has

resolution ∆x = 1/10000 and ∆t = 1/400000. The error is computed at t = 0.1

It is less obvious which convergence rates we should expect for the explicit

scheme for the bidomain model. As for the monodomain model, we have spatial

errors from the finite element discretization and the use of a lumped mass ma-

trix, as well as errors for the temporal discretization. In addition, we have an

error from not solving the linear system to convergence, but instead applying a

fixed number of Jacobi iterations. It is likely that it will depend on the time step

∆t, since a smaller time step will lead to a better start value of the iterations.

However, we have not analyzed this error in detail, but it is reasonable to expect

a spatial convergene less than one.

Table 4.10 shows results of the convergence tests for the explicit scheme for

the bidomain model when we use only one Jacobi iteration to solve the elliptic

part. The reference solution has resolution ∆x = 1/10000, ∆t = 1/400000, and

it is computed using the operator splitting scheme. The error is computed at

t = 0.1. When we use only one Jacobi iteration to solve the elliptic part of the

problem, we observe that the scheme does not converge, i.e. the error grows as

the temporal and spatial resolution is increased by the same factor. Although

we expected a reduced convergence rate for this scheme, the observed behavior

is somewhat non-intuitive. Due to time limitations, we have not performed an

analysis to identify the cause of this behaviour.

34

Table 4.10: Convergence rates for the explicit scheme for the bidomain equations

in 1D

∆x ∆t error r

0.020000 0.000235 0.0248

0.001000 0.000118 0.0296 -0.2578

0.000500 0.000059 0.0903 -1.6097

0.000250 0.000029 0.1476 -0.7091

Convergence results for the explicit scheme for the bidomain model in 1D when we

use only one Jacobi iteration to solve the elliptic part. The reference solution is

computed with the operator splitting scheme and it has resolution ∆x = 1/10000 and

∆t = 1/400000. The error is computed at t = 0.1.

4.4.2 Efficiency in 1D

Our starting point was to find a resolution for the explicit scheme which gives

an error less than one percent when we solve the elliptic part of the problem

with an error smaller than 1e-15 1. In Table 4.11, we observe that we achieve an

error less than one percent with the resolution ∆x = 0.007142,∆t = 0.000143,

in 1.90 seconds.

1When we find the solution to the elliptic part of the problem with an error smaller than

1e-15, we use a conjugate gradient method implemented in Fenics.

35

Table 4.11: Efficiency tests for the numerical schemes for the bidomain equations

in 1D

Method for solving elliptic part CPU-time ∆x ∆t error

Conjugate gradient method until convergence 1.90 0.007142 0.000143 0.97

One Jacobi iteration 1.18 0.007142 0.000143 10.22

Three Jacobi iterations 1.60 0.007142 0.000143 2.13

One Jacobi iteration 3.02 0.007142 0.000040 1.43

Operator splitting 8.63 0.004762 0.000357 0.94

Efficiency tests for the numerical schemes for the bidomain equations in 1D. The

reference solution is computed with the operator splitting scheme and it has resolution

∆x = 1/10000 and ∆t = 1/400000. The error is computed at t = 0.1 and it is measured

in percent.

Then we investigate how the explicit scheme performs when we use only one

Jacobi iteration to solve the elliptic part. We computed a numerical solution us-

ing the explicit scheme with the same resolution as above (∆x = 0.007142,∆t =

0.000143), but this time using only one Jacobi iteration to solve the elliptic part.

Table 4.11 row two shows that the error in this case is 10.22 percent and the

CPU-time is 1.18 seconds. As expected, the error is larger and the CPU-time

is lower when we use only one Jacobi iteration compared to when we solve the

elliptic part until convergence. However, the error is about 10 times larger when

we use only one Jacobi iteration, which is not a desirable property for the ex-

plicit scheme.

To explore the impact of increasing the number of Jacobi iterations on the

accuracy and efficiency, we also computed the CPU-time and error for the same

resolution (∆x = 0.007142,∆t = 0.000143), but this time using three Jacobi

iterations to solve the elliptic part. If we compare row two to row three in

Table 4.11, we observe that the CPU-time is increased by approximately 25

percent when the number of Jacobi iterations is increased by a factor of three.

We also observe that the error has decreased by about 80 percent. Both these

observations are qualitatively as we expected.

36

We will now explore how the accuracy and efficiency of the explicit scheme

is affected by a change in the temporal resolution. We expect that an increase

in the temporal resolution should decrease the error arising from using a fixed

number of Jacobi iterations. Table 4.11 row four shows the results if we use

one Jacobi iteration, hold the spatial resolution fixed at ∆x = 0.007142, and

increase the temporal resolution to ∆t = 0.00004. Comparing row two to row

four, we see that the error has decreased by approximately 85 percent. We also

see that the CPU time has increased by more than 100 percent.

The next step is to compare the efficiency of the explicit scheme to the effi-

ciency of the operator splitting scheme. Table 4.11 row five shows that the

operator splitting scheme achieves an error of less than one percent in 8.63 sec-

onds. Comparing row two and four to row five in Table 4.11, we observe that

the operator splitting scheme performs better in terms of efficiency than the

explicit scheme which uses only one Jacobi iteration. Comparing all different

cases, we observe that solving the explicit part of the scheme until convergence

performs best in terms of efficiency. These result indicates that using a fixed

number of Jacobi iterations for solving the elliptic part of the problem is not

the most efficient way of solving the bidomain equations in 1D.

4.4.3 Convergence Rates in 2D

Table 4.12 shows convergence tests for the semi-implicit scheme for the bido-

main model. The error is computed at t = 0.1. The reference solution is

computed with the operator splitting scheme and it has resolution ∆x = 1/500,

and ∆t = 1/5000. A spatial resolution of ∆x = 1/500 is relatively coarse. How-

ever, we observe that the convergence rates are close to one in time and two in

space, which is almost as expected. Thus, this convergence test indicate that

our operator splitting scheme is correctly implemented, and that the resolution

∆x = 1/500, and ∆t = 1/5000 is sufficient for a reference solution.

37

Table 4.12: Convergence rates for the operator splitting scheme for the bidomain

equations in 2D

∆x ∆t error r

0.016667 0.012500 0.0858

0.008333 0.003125 0.0254 0.8776

0.004167 0.000781 0.0054 1.1127

Convergence results for the operator splitting scheme for the bidomain model in 2D.

The reference solution is computed with the operator splitting scheme and it has

resolution ∆x = 1/500 and ∆t = 1/5000. The error is computed at t = 0.1

Table 4.13 shows convergence tests for the explicit scheme for the bidomain

model. The error is computed at t = 0.1. We see that the convergence rates are

negative, which was also the case in 1D.

Table 4.13: Convergence rates for the explicit scheme for the bidomain equations

in 2D

∆x ∆t error r

0.050000 0.001538 0.0340

0.025000 0.000769 0.0572 -0.7053

0.012500 0.000385 0.1191 -1.0568

Convergence results for the explicit scheme for the bidomain model in 2D. The ref-

erence solution is computed with the operator splitting scheme and it has resolution

∆x = 1/500 and ∆t = 1/5000. The error is computed at t = 0.1

4.4.4 Efficiency in 2D

Table 4.14 shows the results from the efficiency tests. The tests for the bidomain

model in 2D are the same as the tests done for the 1D case. We observe that the

explicit scheme is significantly more efficient than the operator splitting scheme.

We also see that increasing the number of Jacobi iterations and increasing the

temporal resolution for a given spatial resolution had a positive impact on the

38

accuracy. In contrast to the 1D case, the explicit scheme using three Jacobi

iterations almost achieves an error less than one percent with a CPU-time of

only 0.41 seconds. Since realistic models of the electrical activity in the heart

are multidimensional, these results indicate that we can achieve speedups when

solving a physiologically accurate bidomain model using an explicit scheme with

a fixed number of Jacobi iterations.

Table 4.14: Efficiency tests for the numerical schemes for the bidomain equations

in 2D

Method for solving elliptic part CPU-time ∆x ∆t error

Conjugate gradient method until convergence 1.32 0.027778 0.001429 0.93

One Jacobi iteration 0.34 0.027778 0.001429 8.34

Three Jacobi iterations 0.41 0.027778 0.001429 1.68

One Jacobi iteration 0.84 0.027778 0.000040 1.16

Operator splitting 4.53 0.025000 0.001429 0.95

Efficiency tests for the numerical schemes for the bidomain equations in 2D. The

reference solution is computed with the operator splitting scheme and it has resolution

∆x = 1/500 and ∆t = 1/5000. The error is computed at t = 0.1 and it is measured

in percent.

39

Chapter 5

Conclusion

In this thesis we have studied efficient numerical methods for the bidomain

and monodomain equations, which describe the electrophysiology in the heart.

We used a "methods of line" approach, i.e. we first applied the finite element

method for a spatial discretization of the models. Then we implemented both

semi-implicit and explicit schemes for temporal discretization. We used a fixed

number of Jacobi iterations for the explicit scheme to solve the stationary, el-

liptic part of the bidomain model.

Since the operator splitting schemes use P1 elements and Godunov splitting

for both the monodomain and bidomain models, we expect spatial convergence

of order two and convergence in time of order one. Since the explicit scheme for

the monodomain model applies mass lumping and employs the forward Euler

method for temporal discretization, we expect first order convergence in time

and space. The computed convergence rates mostly confirmed these theoreti-

cal predictions. However, we found that the difference between the computed

and predicted convergence rates is larger for the 2D cases. This was most likely

caused by the relatively coarse spatial resolution of the reference solutions in 2D.

We argued that it was reasonable to expect a spatial convergence of less than or-

der one for the explicit scheme applied to the bidomain model, see section 4.4.1

for a discussion. However, the explicit scheme based on Jacobi iterations di-

40

verged when we increased the temporal and spatial resolution by the same fac-

tor, which is not a desirable property of a numerical scheme. Due to time

limitations, we have not analyzed this behavior further. However, we also found

that increasing the temporal resolution for given spatial resolution for the ex-

plicit scheme based on Jacobi iterations increased the accuracy.

We used the CPU-time for a numerical scheme to achieve an error less than

one percent as a measure of efficiency. We found that the explicit scheme per-

formed better than the operator splitting scheme in 1D, and that the operator

splitting scheme performed better than the explicit scheme in 2D. However,

since both schemes in 1D and 2D achieved an error less than one percent in less

than one second, one can for practical purposes say that the schemes for the

monodomain model performed comparably.

For the bidomain model in 1D, the explicit scheme which solved the elliptic

part until convergence had the best efficiency. The operator splitting scheme

performed better than the explicit scheme based on Jacobi iterations. For the

2D case however, the explicit scheme based on Jacobi iterations performed bet-

ter than the operator splitting scheme. Since realistic models of the electrical

activity in the heart are multidimensional, these results indicate that we can

achieve speedups when solving a physiologically accurate bidomain model using

an explicit scheme based on a fixed number of Jacobi iterations. We also found

that increasing the number of Jacobi iterations and increasing the temporal

resolution for a given spatial resolution had a positive impact on the accuracy

of the explicit scheme based on Jacobi iterations both in 1D and in 2D. When

interpreting the results regarding computational efficiency, we have to keep in

mind that the operator splitting for the bidomain model is not optimally imple-

mented, see section 3.4.3 for a discussion.

The parameter values were chosen to achieve a reasonable shape of the ac-

tion potential. However, the parameter values are not physiologically accurate.

The test cases were computed on simple geometries rather than physiologically

accurate geometries. Hence, it is possible that more realistic parameter values

41

and spatial grids could have produced different empirical results.

We will now discuss extensions that could improve the efficiency and accu-

racy for the explicit solvers. As mentioned above, the explicit scheme based on

a fixed number of Jacobi iterations diverged when we performed convergence

tests. Further work could possibly investigate the source of this behavior. The

forward Euler method, which was used for temporal discretization for the ex-

plicit schemes, has only first-order accuracy. A way of improving the explicit

schemes is to use forward differences with a higher order of accuracy. Further, we

only considered lumped mass matrices for our explicit scheme. Although mass

lumping reduces the computational burden for a given resolution, it comes at

the cost of reduced spatial convergence. Using a consistent mass matrix instead

could influence the results. Finally, we only tried Jacobi iterations for solving

the elliptic part of the bidomain model. A different iterative method or a direct

method could also have produced different results.

42

Appendix

The scripts which can reproduce the results in this thesis are in the following

repository: https://github.com/chrbjorl/master.git.

43

https://github.com/chrbjorl/master.git

Bibliography

[1] Yves Bourgault, Marc Ethier, and Victor G LeBlanc. Simulation of electro-

physiological waves with an unstructured finite element method. ESAIM:

Mathematical Modelling and Numerical Analysis, 37(4):649–661, 2003.

[2] Marc Ethier and Yves Bourgault. Semi-implicit time-discretization schemes

for the bidomain model. SIAM Journal on Numerical Analysis, 46(5):2443–

2468, 2008.

[3] Hans Petter Langtangen. Computational partial differential equations: nu-

merical methods and diffpack programming, volume 2. Springer Science &

Business Media, 2013.

[4] Hans Petter Langtangen and Anders Logg. Solving pdes in minutes-the

fenics tutorial volume i, 2016.

[5] Maria Murillo and Xiao-Chuan Cai. A fully implicit parallel algorithm for

simulating the non-linear electrical activity of the heart. Numerical linear

algebra with applications, 11(2-3):261–277, 2004.

[6] Steffan Puwal and Bradley J Roth. Forward euler stability of the bido-

main model of cardiac tissue. IEEE transactions on biomedical engineering,

54(5):951–953, 2007.

[7] Jack M Rogers and Andrew D McCulloch. A collocation-galerkin finite

element model of cardiac action potential propagation. IEEE Transactions

on Biomedical Engineering, 41(8):743–757, 1994.

44

[8] Joakim Sundnes, Glenn Terje Lines, Xing Cai, Bjørn Frederik Nielsen,

Kent-Andre Mardal, and Aslak Tveito. Computing the electrical activity

in the heart, volume 1. Springer Science & Business Media, 2007.

[9] Joakim Sundnes, Glenn Terje Lines, and Aslak Tveito. An operator split-

ting method for solving the bidomain equations coupled to a volume con-

ductor model for the torso. Mathematical biosciences, 194(2):233–248, 2005.

[10] Joakim Sundnes, Bjørn Fredrik Nielsen, Kent Andre Mardal, Xing Cai,

Glenn Terje Lines, and Aslak Tveito. On the computational complexity of

the bidomain and the monodomain models of electrophysiology. Annals of

biomedical engineering, 34(7):1088–1097, 2006.

[11] Leslie Tung. A bi-domain model for describing ischemic myocardial dc

potentials. PhD thesis, Massachusetts Institute of Technology, 1978.

[12] Edward J Vigmond, Felipe Aguel, and Natalia A Trayanova. Computa-

tionally efficient methods for solving the bidomain equations in 3d. In En-

gineering in Medicine and Biology Society, 2001. Proceedings of the 23rd

Annual International Conference of the IEEE, volume 1, pages 348–351.

IEEE, 2001.

45

	Introduction
	Mathematical Models
	Numerical Methods
	The Finite Element Method
	Finite Differences
	Numerical Schemes for the Monodomain Model
	Spatial Discretization
	Explicit Scheme
	Operator Splitting Scheme

	Numerical Schemes for the Bidomain Model
	Spatial Discretization
	Explicit Scheme
	Operator Splitting Scheme

	Results
	Description of the Test Cases
	Error Analysis
	Results for the Monodomain Model
	Convergence rates in 1D
	Efficiency in 1D
	Convergence Rates in 2D
	Efficiency in 2D

	Results for the Bidomain Model
	Convergence Rates in 1D
	Efficiency in 1D
	Convergence Rates in 2D
	Efficiency in 2D

	Conclusion
	Appendix

