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Abstract

Compressed sensing is the study of solving underdetermined systems

of linear equations with unique sparse solutions. In addition to this,

applications of compressed sensing require that the number of rows of

the measurement matrix is minimized.

In general, the entries of a measurement matrix can be complex. A

combinatorial measurement matrix narrows this down to just zeros and

ones. These measurement matrices may be obtained from other objects

such as the incidence matrix of a combinatorial design or the bipartite

adjacency matrix of a bipartite graph.

In many applications, a measurement matrix is normally a randomly

constructed matrix. This is because it has been shown that with high

probability, certain classes of random measurement matrices have on the

order of the optimal number of rows required for sparse reconstruction.

Finding deterministically constructed classes of measurement matrices

whose number of rows scale on the same order as classes of random

measurement matrices has been an open problem for at least a decade.

This problem is referred to as the quadratic bottleneck problem.

The quadratic bottleneck problem is important for several di�erent

reasons. A speci�c randomly generated measurement matrix cannot be

checked if it does indeed recover every sparse vector uniquely. An engi-

neer developing a sensor system might �nd it undesirable or not possible

to implement a physical system that can take random measurements.

Recovery algorithms may be developed for a speci�c class of determinis-

tically constructed measurement matrices. Or, it could just be considered

a proof of concept that it can be done.

The goal of this thesis is to de�ne the su�cient compressed sens-

ing theory, graph theory, and combinatorial design theory to attempt

an answer at the quadratic bottleneck problem with combinatorial mea-

surement matrices. After this, an attempt to de�ne a solution to the

quadratic bottleneck problem and describe a valid argument that could

be used to demonstrate this is made. Finally, a selection of common

compressed sensing recovery algorithms are selected and optimized for

these explicit constructions.
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Part I

The General Approach to

Compressed Sensing and the

Quadratic Bottleneck Problem
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1 The Compressed Sensing Problem and its

Variations

1.1 Introduction

Compressed sensing is the study of solving underdetermined linear systems
of equations with unique sparse solutions. More precisely, consider a matrix
A ∈ Cm×N with m < N and a sparse vector x ∈ CN . That is, a vector where
most of the entries are zero. De�ne the vector y = Ax ∈ Cm. Then the
system of linear equations Az = y is underdetermined and consistent. Thus,
an in�nite number of solutions exist and uniquely recovering x from the matrix
A and the vector y seems impractical. However, in some situations the sparsity
assumption of x allows us to e�ciently obtain x as the only sparse solution of
Az = y. These situations are the study of compressed sensing.

Applications. The main application of compressed sensing is as a signals
processing technique. In this setting the measurement matrix A corresponds
to a measurement scheme of a signal x, where the signal is sparse in some
basis. The measurement vector y contains the measurements obtained from
the measurement scheme. We will only focus on the mathematical problems
of compressed sensing. Questions on whether an engineer can design a sensor
that achieves a measurement scheme which corresponds to the measurement
matrix A are important, but will not be addressed here.

Notation. We �rst start o� with some notation that will be used throughout
this thesis. Let A ∈ Cm×N be a matrix and z ∈ CN . Whenever we refer to
a matrix A as a measurement matrix, we assume that m < N . The column
vectors of A will be denoted by a1, . . . ,aN . We denote [N ] as the set of integers
{1, . . . , N}. Let S ⊂ [N ]. Then denote AS by the submatrix of A with the
columns of A indexed by the set S and denote zS by the subvector of z with
the entries of z indexed by the set S. In some situations, we zero out the other
entries rather then delete them. It should be clear from the context which
meaning of AS and zS is used. Since in the second part of this thesis we use
binary matrices, it helps to have a way to easily visualize a binary matrix. We
do this by creating a corresponding black and white image to the binary matrix
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1.2. SPARSITY 3

in the following way. Consider the matrix
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1


If we let the ones correspond to white rectangles and the zeros correspond to
black rectangles, then we will denote this matrix with the following image.

If B is a square matrix of order n, then we denote the eigenvalues of B by
λ1, . . . , λn. If B is a normal matrix, then we order the eigenvalues by

λmin := λ1 ≤ . . . ≤ λn =: λmax

Format To avoid getting distracted with smaller lemmas that we use in
proofs to theorems more relevant to this thesis, we will only cite where to
�nd the proof of the lemma. This is done to keep the thesis moving at a decent
pace. Since the focus of this thesis is compressed sensing, we aim to do a full
survey of the foundational results in this theory. When we do introductions
to graph theory, combinatorial design theory, and numerical linear algebra, we
will only introduce the relevant material to this thesis. Summary sections will
be used at the end of each part to describe in more detail the references that
were used and how they were used, but it will not act as a history of the pro-
gression of the theory. In addition to this, when a theorem is used which was
obtained from a di�erent author, the citation will be placed in parentheses as
well as the where to locate it in their work.

1.2 Sparsity

First, we make the notion of a sparse vector precise by de�ning a measure for
how sparse it is.

De�nition 1 (support). The support of a vector x ∈ CN , denoted supp(x), is
the set of indices of the nonzero entries of x.

De�nition 2 (`0-norm). The `0-norm of a vector x ∈ CN is de�ned to be
‖x ‖0 := |supp(x)|, the number of nonzero entries of x.
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CHAPTER 1. THE COMPRESSED SENSING PROBLEM AND ITS

VARIATIONS

The `0-norm is not actually a norm. To see this, consider an arbitrary
scalar a and arbitrary vector x. Then ‖ ax ‖0 = ‖x ‖0 6= |a| ‖x ‖0 in general.
The reason for the name and notation of the `0-norm follows from taking the
limit of the p-norm as p approaches zero. We have

lim
p→0
‖x ‖pp = lim

p→0

N∑
j=1

|xj |p =
∑
xj 6=0

1j = | 1 | = ‖x ‖00 .

De�nition 3 (Sparsity). Let s ∈ [N ]. Then the vector x ∈ CN is s-sparse if
‖x ‖0 ≤ s.

Using this measure, we can formally de�ne the compressed sensing problem.

Problem 1 (Compressed Sensing). Let A ∈ Cm×N be a measurement matrix.
For any s-sparse x ∈ CN , does there exist an algorithm such that x is the
unique s-sparse solution of Az = y, where y = Ax is the measurement vector
of x?

1.3 Compressible Vectors

In many applications, the vectors to be recovered are not sparse but are "al-
most" sparse. These almost sparse vectors are called compressible vectors and
are characterized by having a small number of entries that have relatively large
absolute values compared to the rest of the entries. Thus, compressible vectors
can be related to sparse vectors by measuring its minimum distance to a closest
sparse vector, where the distance is measured by any p-norm.

De�nition 4 (Compressible Vectors). Let p > 0, x ∈ CN , and s ∈ [N ]. Then
the `p-error of best s-term approximation, denoted by σs(x)p, is de�ned by

σs(x)p = inf{‖x− z ‖p | z ∈ C
N is s-sparse}.

By choosing z = xS , where S is an index set of the s largest absolute values
of x, we obtain the in�mum. However, if the s and s + 1 largest absolute
entries of x are equal, then the vector z is not unique. This non-uniqueness
does not change the value of σs(x)p. Using this notion of compressible vectors,
we can de�ne the slightly more complicated problem of compressed sensing
with compressible vectors.

Problem 2 (Compressed Sensing with Compressible Vectors). Let A ∈ Cm×N
be a measurement matrix and let b be a positive real number. For any com-
pressible vector x ∈ CN , does there exist an algorithm such that every s-sparse
solution x] of Az = y satis�es

∥∥x− x] ∥∥
1
≤ b, where y = Ax is the measure-

ment vector of x?

We quickly observe that a compressible vector can be a sparse vector. To
see this, observe that if σs(x)p = 0, then ‖x− z ‖p = 0 where z is s-sparse.
Therefore x = z, so x is s-sparse. This shows that the compressed sensing
problem with compressible vectors is the compressed sensing problem with
sparse vectors if σs(x)p = 0.

Since a best s-term approximation to compressible vector x is not unique,
we cannot guarantee that a solution to the compressed sensing problem with
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compressible vectors is unique. However, if we can �nd a small upperbound b
on the `1-error, then this is not to much of a problem.

1.4 Measurement Error

In many applications, exact measurement precision of a sparse or compressible
signal is unlikely. When precision is not exact, we have measurement error.

De�nition 5 (Measurement Error). Let x ∈ CN be a compressible vector and
let A ∈ Cm×N be a measurement matrix. Then the measurement vector y has
a measurement error e ∈ Cm if y = Ax+ e and ‖ e ‖ ≤ η for some η > 0.

If we assume we have measurement error when measuring compressible
vectors, then we arrive at the following version of the problem.

Problem 3 (Compressed sensing with Compressible Vectors and Measurement
Error). Let A ∈ Cm×N be a measurement matrix and let b be a positive real
number. For any compressible vector x ∈ CN , does there exist an algorithm
such that every s-sparse solution x] of Az = y satis�es

∥∥x− x] ∥∥
1
≤ b, where

y = Ax+e is the measurement vector of x with measurement error e controlled
by ‖ e ‖ ≤ η?

Because of the ubiquity of measurement error in applications, the com-
pressed sensing problem with compressible vectors and measurement error is
the most realistic variation.

As a last note, observe that if η = 0, then ‖ e ‖ ≤ 0. This implies e = 0

which gives us y = Ax + e = Ax. This shows that the compressed sensing
problem with measurement error η = 0 is the compressed sensing problem with
compressible vectors. The connections between the versions of the compressed
sensing problem provide us with some intuition that each of these problems
are handled in a similar way. In fact, we will see in future sections that this is
indeed true.



2 `0-minimization, Basis Pursuit, and Other

Approximation Methods

In this chapter we discuss two approaches to solving the compressed sensing
problems de�ned in the �rst chapter. The �rst section discusses a naive ap-
proach and the second section discusses an approach that is widely applied in
compressed sensing.

2.1 `0-Minimization

A �rst approach to solving the compressed sensing problem usually begins with
considering the `0-minimization problem.

minimize
z∈CN

‖ z ‖0 s.t. Az = y (P0)

The solution of the combinatorial optimization problem (P0) is related to the
solution of the compressed sensing problem in the following way.

Theorem 1 ([18]). Let x ∈ CN be an s-sparse vector. Let A be a measurement
matrix and y = Ax be the measurement vector of x. Then x is the unique s-
sparse solution of the compressed sensing problem if and only if x is the unique
s-sparse solution of (P0).

Proof. First, suppose x is the unique s-sparse solution of the compressed sens-
ing problem. That is, x is the unique s-sparse solution of Az = y. Let x] be a
solution of (P0). Then Ax

] = y and x] is s-sparse since
∥∥x] ∥∥

0
≤ ‖x ‖0. But

by the assumption, the uniqueness of x as an s-sparse solution implies x] = x.
Therefore x is the unique solution to (P0).

Next, suppose x] is the unique solution of (P0). Then x] is the unique
s-sparse solution to Az = y. Therefore x] is the unique solution to the com-
pressed sensing problem.

By theorem 1, to compute the solution of the compressed sensing problem,
it su�ces to �nd an e�cient algorithm for computing the combinatorial opti-
mization problem (P0). We start by naively trying to �nd the sparsest solution
by solving every system ASz = y over every subset S ⊂ [N ] with |S| ≤ s. If
we �nd an S such that this system of linear equations is consistent, then we
have obtained the correct solution. However, this is not a practical approach
for large N and large s since this requires us to solve

(
N
s

)
systems of linear

6



2.1. `0-MINIMIZATION 7

equations. This naive approach raises concerns over the complexity of (P0).
Indeed, it is known from [25] that (P0) is NP-Hard.

There are several known equivalent conditions to the solution of the com-
pressed sensing problems via (P0) which are summarized in the following the-
orem. We will occasionally use these later in the thesis.

Theorem 2 ([18], Theorem 2.13). Let A ∈ Cm×N be a measurement matrix
and x be an s-sparse vector. Let y = Ax be the measurement vector of x. Then
the following are equivalent.

1. x is the unique s-sparse solution of Az = y.

2. The only 2s-sparse vector in the null space N (A) of A is the zero vector.

3. For any S ⊂ [N ] with |S| ≤ 2s, the matrix AS is an injective matrix.

4. Every 2s-column vectors of A is a set of linearly independent columns.

Proof. (1 ⇒ 2). Suppose x is the unique s-sparse solution to the underdeter-
mined system Az = y. Let v ∈ N (A) be a 2s-sparse vector with v = x− z for
some s-sparse vector z with a disjoint support set to x. This implies

Av = A(x− z) = Ax−Az = 0

and it follows from the last equality that Ax = Az. Since the supports of x
and z are disjoint, it follows that x = z = 0. Thus, v = 0 and the null space
of A does not contain any other 2s-sparse vectors other then the zero vector.

(2 ⇒ 1). Suppose the only 2s-sparse vector in N (A) is the zero vector.
Let z be an s-sparse vector with Az = y = Ax. Then A(z − x) = 0 and
z − x ∈ N (A). Since z − x is 2s-sparse, the assumption implies z − x = 0.
Thus z = x. Therefore, x is the unique s-sparse solution of Az = y.

(2⇒ 3). Suppose that the only 2s-sparse vector in N (A) is the zero vector.
Consider an arbitrary vector v. Let S ⊂ [N ] with |S| ≤ 2s be arbitrary. Then
AvS = ASvS = 0 implies vS = 0 since vS is 2s-sparse. Thus, N (AS) = {0},
so AS is injective.

(3 ⇒ 4). Suppose that for any S ⊂ [N ] with |S| ≤ 2s, the matrix of AS is
injective. Then ASv = ASvS = 0 if and only if vS = 0. Thus every 2s-columns
of A are linearly independent.

(4 ⇒ 2). Suppose every 2s-columns of A are linearly independent. Let
S ⊂ [N ] be an arbitrary subset with |S| ≤ 2s. Then AvS = ASvS = 0 if and
only if v = 0. Thus, the only 2s-sparse vector in N (A) is the zero vector.

Even though these equivalent conditions are nice to have for theoretical
purposes, they do not provide a tractable approach of solving the compressed
sensing problem. This is because each of these equivalent conditions involves
doing

(
N
2s

)
checks, which is not practical.

The following de�nition is very similar to the conditions of the previous
theorem. This will allow us to put upperbounds on the sparsity s of all of the
equivalent conditions in the previous theorem.

De�nition 6 (Spark). Let A ∈ Cm×N be a measurement matrix. Then the
spark of A, denoted spark(A) is de�ned by

spark(A) := min { ‖ x ‖0 | Ax = 0 with x 6= 0 }.
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CHAPTER 2. `0-MINIMIZATION, BASIS PURSUIT, AND OTHER

APPROXIMATION METHODS

Notice that conditions 2, 3, and 4 in theorem 2 hold if and only if

spark(A) > 2s.

2.2 Basis Pursuit

Since solving the problem (P0) is NP-hard, we look for a way to relax the
problem so we can obtain an approximate solution to (P0). This can be handled
in a variety of ways. Perhaps the most known approximation method is `1-
minimization, which is de�ned as

minimize
z∈CN

‖ z ‖1 s.t. Az = y. (P1)

This approach is normally referred to as basis pursuit. At this point, it is not
clear that basis pursuit does indeed provide a good approximation for (P0).
We clear this up in next chapter, where we will prove a necessary and su�cient
condition on the measurement matrix. When measurement error is involved,
basis pursuit is insu�cient. Because of this, we introduce a variation of basis
pursuit called quadratically constrained basis pursuit, which is de�ned by

minimize
z∈CN

‖ z ‖1 s.t. ‖Az− y ‖2 ≤ η. (P1,η)

Basis pursuit and quadratically constrained basis pursuit are not algorithms.
However, e�cient algorithms that solve these problems exist and are classi�ed
as optimization algorithms. In many cases, linear programming can be used
as well as other optimized algorithms such as the homotopy method (or the
least-angle regression algorithm [15]) and the iteratively reweighted least squares
algorithm [12]. Many of the theorems throughout parts 1 and 2 of this thesis
are developed with the intent of answering the compressed sensing problems
with algorithms that solve (P1) and (P1,η).

Other Approximation Algorithms Other common families of approxima-
tion algorithms for (P0) can be classi�ed as combinatorial algorithms, greedy
algorithms, and iterative thresholding algorithms. A selection of algorithms will
be presented in part 3.



3 The Null Space Properties

In the �rst chapter, we claimed that the primary focus of compressed sensing
is situations where the sparsity assumption allows us to e�ciently obtain x as
the only s-sparse solution. We make this vague notion clear in this chapter
by introducing on a necessary and su�cient condition for basis pursuit and
quadratically constrained basis pursuit called the null space property.

3.1 The Null Space Property

De�nition 7 (Null Space Property). A measurement matrix A ∈ Cm×N sat-
is�es the null space property of order s if, for all S ⊂ [N ] with |S| ≤ s,

‖vS ‖1 < ‖vS̄ ‖1 for all v ∈ N (A) \ {0}.

The fact that the null space property of a measurement matrix is a necessary
and su�cient condition for a unique solution to the compressed sensing problem
is proved in theorem 3.

Theorem 3 ([18], Theorem 4.4). Let A ∈ Cm×N be measurement matrix.
Then every s-sparse vector x ∈ CN is the unique solution of

minimize
z∈CN

‖ z ‖1 s.t. Az = y, (P1)

where y = Ax is the measurement vector, if and only if A satis�es the null
space property of order s.

Proof. Suppose every s-sparse vector x ∈ CN is the unique solution of (P1)
with the measurement vector y = Ax. Let v ∈ N (A) \ {0} be an arbitrary
vector and let S be an arbitrary s-subset of [N ]. Then vS is the unique solution
of (P1) with the measurement vector y = Av. That is,

‖vS ‖1 < ‖ z ‖1 for all z ∈ CN \ {vS} with Az = AvS .

Since A(vS + vS̄) = Av = 0 implies A(−vS̄) = AvS , the assumption gives us
‖vS ‖1 ≤ ‖vS̄ ‖1. Since vS 6= vS̄ , we have ‖vS ‖1 < ‖vS̄ ‖1. Therefore, the
measurement matrix A satis�es the null space property of order s.

Next, suppose A satis�es the null space property of order s. Let x ∈ CN be
an s-sparse vector with S = supp(x). Let z ∈ CN be an arbitrary vector that

9



10 CHAPTER 3. THE NULL SPACE PROPERTIES

satis�es Az = Ax and z 6= x. De�ne v := x− z ∈ N (A) \ {0}. Then we have

‖x ‖1 = ‖xS − zS + zS ‖1
≤ ‖xS − zS ‖1 + ‖ zS ‖1
= ‖vS ‖1 + ‖ zS ‖1
< ‖vS̄ ‖1 + ‖ zS ‖1 (NSP)

= ‖xS̄ − zS̄ ‖1 + ‖ zS ‖1
= ‖ zS̄ ‖1 + ‖ zS ‖1
= ‖ z ‖1 .

Therefore ‖x ‖1 < ‖ z ‖1 for any z ∈ CN , so x is the unique s-sparse solution
of (P1).

Theorem 4 proves that if the measurement matrix satis�es the null space
property, then the solution of the intractable problem (P0) is approximated by
the solution of basis pursuit.

Theorem 4 ([18]). Let A ∈ Cm×N be a measurement matrix that satis�es the
null space property of order s. If x is s-sparse and y = Ax is the measurement
vector of x, then the solution of (P1) is the solution of (P0).

Proof. Let x be an s-sparse vector and y = Ax be its measurement vector.
Then the previous theorem implies that x is the unique s-sparse solution of
(P1) with y = Ax. Let z be the solution to (P0). Then ‖ z ‖0 ≤ ‖x ‖0, so this
implies z is s-sparse as well. However, x is the unique s-sparse solution of (P1),
so z = x. Therefore the solution of (P1) is the solution of (P0).

By taking the theorems 1 and 4 together, we have proven that if A satis�es
the null space property of order s, then an algorithm solves (P1) solves the
compressed sensing problem.

3.2 The Stable Null Space Property

In chapter 1, several versions of the compressed sensing were de�ned. We
hinted at the fact that since the problems were so closely related, they could
be handled in similar ways. We now address the compressed sensing problem
with compressible vectors by introducing a very similar property to the previous
section.

De�nition 8 (Stable Null Space Property). Ameasurement matrixA ∈ Cm×N
satis�es the stable null space property of order s with 0 < ρ < 1 if, for any
S ⊂ [N ] with |S| ≤ s, we have,

‖vS ‖1 ≤ ρ ‖vS̄ ‖1 for all v ∈ N (A) \ {0}.

Since the proofs for the stable null space property in the next two theorems
follow immediately from the proofs in the next section, we will not dwell on
this section.
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Theorem 5 ([18], Theorem 4.14). Let A ∈ Cm×N be a measurement matrix.
Then A satis�es the stable null space property of order s with 0 < ρ < 1 if and
only if for all x, z ∈ CN with Az = Ax, we have

‖ z− x ‖1 ≤
1 + ρ

1− ρ
(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖1)

Recall from problem 2 that when the vector to be recovered is only com-
pressible, we want to �nd a small bound b on the `1-error of a solution of an
algorithm. Theorem 6 provides such bound.

Theorem 6 ([18], Theorem 4.12). Let A ∈ Cm×N be a measurement matrix
that satis�es the stable null space property of order s with 0 < ρ < 1. Let
x ∈ CN . Then any solution x

] of (P1) approximates x with error bound

∥∥x− x
]
∥∥

1
≤ 1 + ρ

1− ρ
2σs(x)1.

3.3 The Robust Null Space Property

In this �nal section, we introduce a property for the compressed sensing prob-
lem with compressible vectors and measurement error.

De�nition 9 (Robust Null Space Property). A measurement matrix A ∈
Cm×N satis�es the robust null space property of order s with 0 < ρ < 1, τ > 0,
and with respect to the norm ‖ · ‖ if, for all subsets S ⊂ [N ] with |S| ≤ s, we
have

‖vS ‖1 ≤ ρ ‖vS̄ ‖1 + τ ‖Av ‖ for all v ∈ CN .

The next theorem demonstrates that if we want to demonstrate that a
matrix satis�es the robust null space property, then all we need to show is that
the inequality holds for the s largest absolute entries of v. This is useful for
theoretical purposes, since we only have to show the inequality holds for one
case rather then for all cases.

Theorem 7 ([18]). Let v ∈ CN and let S ⊂ [N ] be the index set of the s largest
absolute entries of v. If the inequality

‖ vS ‖1 ≤ ρ ‖ vS̄ ‖1 + τ ‖Av ‖

holds for some 0 < ρ < 1 and τ > 0, then A satis�es the robust null space
property order s with 0 < ρ < 1 and τ > 0.

Proof. Suppose ‖vS ‖1 ≤ ρ ‖vS̄ ‖1 + τ ‖Av ‖ holds for some 0 < ρ < 1 and
τ > 0. Since S is the index set of the s largest elements of v, we have ‖vS′ ‖1 ≤
‖vS ‖1 and ‖vS̄ ‖1 ≤ ‖vS̄′ ‖1 for any other subset S′ ⊂ [N ] with |S′| ≤ s. This
gives us

‖vS′ ‖1 ≤ ‖vS ‖1 ≤ ρ ‖vS̄ ‖1 + τ ‖Av ‖1 ≤ ρ ‖vS̄′ ‖1 + τ ‖Av ‖ .

Therefore, A satis�es the robust null space property of order s with 0 < ρ < 1
and τ > 0.
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The next theorem and proof is the most complicated situation we have
to handle, but it is the most common in practice. Due to its complicated
nature, when we prove results that are not central to thesis in later chapters
we will normally only prove the result for the standard basis pursuit. However,
theorem 12 will prove that the robust null space property holds for a certain
class of matrices which will be de�ned in part 2.

Theorem 8 ([18], Theorem 4.20). Let A ∈ Cm×N be a measurement matrix.
Then A satis�es the robust null space property of order s with 0 < ρ < 1 and
τ > 0 if and only if for all x, z ∈ CN , we have

‖ z− x ‖1 ≤
1 + ρ

1− ρ
(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖1) +

2τ

1− ρ
‖A(z− x) ‖

Proof. Suppose, for all x, z ∈ CN , we have

‖ z− x ‖1 ≤
1 + ρ

1− ρ
(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖1) +

2τ

1− ρ
‖A(z− x) ‖

Let v ∈ CN be an arbitrary vector. Then, for any S ⊂ [N ] with |S| ≤ s, we
can apply this inequality with z = vS and x = −vS to obtain

‖v ‖1 ≤
1 + ρ

1− ρ
(‖vS̄ ‖1 − ‖vS ‖1) +

2τ

1− ρ
‖Av ‖

⇔(1− ρ) ‖v ‖1 ≤ (1 + ρ)(‖vS̄ ‖1 − ‖vS ‖1) + 2τ ‖Av ‖

⇔ ‖vS ‖1 ≤ ρ ‖vS̄ ‖1 + τ ‖Av ‖ .

Therefore, A satis�es the robust null space property of order s with 0 < ρ < 1
and τ > 0.

Next, suppose A satis�es the robust null space property of order s with
0 < ρ < 1 and τ > 0. Let x, z ∈ CN be arbitrary vectors. Consider the
inequalities

‖x ‖1 = ‖xS̄ ‖1 + ‖xS ‖1
= ‖xS̄ ‖1 + ‖xS − zS + zS ‖1
≤ ‖xS̄ ‖1 + ‖xS − zS ‖1 + ‖ zS ‖1 ,
and

‖xS̄ − zS̄ ‖1 ≤ ‖xS̄ ‖1 + ‖ zS̄ ‖1 .

If we add these inequalities together and subtract ‖x ‖1 from both sides,
we obtain

‖xS̄ − zS̄ ‖1 ≤ ‖ z ‖1 − ‖x ‖1 + ‖xS − zS ‖1 + 2 ‖xS̄ ‖1 .

De�ne v := z− x. Then

‖vS̄ ‖1 ≤ ‖ z ‖1 − ‖x ‖1 + ‖vS ‖1 + 2 ‖xS̄ ‖1 .



3.3. THE ROBUST NULL SPACE PROPERTY 13

By applying this inequality to the robust null space property, we have

‖vS ‖1 ≤ ρ ‖vS̄ ‖1 + τ ‖Av ‖

≤ ρ(‖ z ‖1 − ‖x ‖1 + ‖vS ‖1 + 2 ‖xS̄ ‖1) + τ ‖Av ‖

⇔(1− ρ) ‖vS ‖1 ≤ ρ(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖1) + τ ‖Av ‖

⇔ ‖vS ‖1 ≤
1

1− ρ
(ρ(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖1) + τ ‖Av ‖).

By again applying the robust null space property, we have

‖v ‖1 = ‖vS ‖1 + ‖vS̄ ‖1

≤ (ρ ‖vS̄ ‖1 + τ ‖Av ‖) + ‖vS̄ ‖1

= (1 + ρ) ‖vS̄ ‖1 + τ ‖Av ‖

≤ (1 + ρ)(‖ z ‖1 − ‖x ‖1 + ‖vS ‖1 + 2 ‖xS̄ ‖1) + τ ‖Av ‖

≤ (1 + ρ)(‖ z ‖1 − ‖x ‖1 + (
1

1− ρ
(ρ(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖1)+

τ ‖Av ‖)) + 2 ‖xS̄ ‖1) + τ ‖Av ‖

=

(
1 + ρ

1− ρ
ρ+ 1 + ρ

)
(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖) +

(
1 + ρ

1− ρ
+ 1

)
τ ‖Av ‖

=
1 + ρ

1− ρ
(‖ z ‖1 − ‖x ‖1 + 2 ‖xS̄ ‖) +

2τ

1− ρ
‖Av ‖ .

This is the inequality we originally set out to prove.

Theorem 9 provides a bound b on the error for quadratically constrained ba-
sis pursuit, as discussed in problem 3. This error bound is larger than the error
bound in theorem 6, which is to be expected because of the added measurement
error.

Theorem 9 ([18], Theorem 4.19). Let A ∈ Cm×N be a measurement matrix
that satis�es the robust null space property of order s with 0 < ρ < 1 and
τ > 0. Let x ∈ CN . Then any solution x

] of (P1,η) with the measurement
vector y = Ax+ e and ‖ e ‖ ≤ η approximates x with error bound

∥∥x− x
]
∥∥

1
≤ 1 + ρ

1− ρ
2σs(x)1 +

4τ

1− ρ
η.
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Proof. Let x] be a solution of (P1,η) so that
∥∥x] ∥∥

1
≤ ‖x ‖1 and

∥∥Ax] − y∥∥ ≤
η. Let S be a subset of [N ] with |S| ≤ s and xS contains the s largest absolute
entries of x so that ‖xS̄ ‖1 = σs(x)1. Using the upperbound from the previous
theorem with z := x], we obtain∥∥x] − x∥∥

1
≤ 1 + ρ

1− ρ
(
∥∥x] ∥∥

1
− ‖x ‖1 + 2 ‖xS̄ ‖1) +

2τ

p− 1

∥∥Ax] −Ax∥∥
=

1 + ρ

1− ρ
(
∥∥x] ∥∥

1
− ‖x ‖1 + 2σs(x)1) +

2τ

p− 1

∥∥Ax] − (y− e)
∥∥

≤ 1 + ρ

1 + ρ
(‖x ‖1 − ‖x ‖1 + 2σs(x)1) +

2τ

ρ− 1
(
∥∥Ax] − y∥∥+ ‖ e ‖)

≤ 1 + ρ

1− ρ
2σs(x)1 +

4τ

ρ− 1
η.



4 The Coherence, the Restricted Isometry

Property, and the Quadratic Bottleneck

Problem

In the previous chapter, we showed that if a measurement matrix satis�es the
null space property, then the compressed sensing problem is solved by an algo-
rithm that computes the solution to (P1). However, the null space property is
di�cult to check in general. In this chapter, we develop measures on the mea-
surement matrix that allow us to avoid checking any of the variations of the null
space property directly. We de�ne two of these measures in the �rst section. In
the second section, we show that measurement matrices with certain values for
these measures satisfy the null space property. In the third section, we discuss
the optimal values measurement matrices can obtain. In the fourth section, the
optimal values of the previous section are used to deduce lowerbounds on the
number of rows a measurement matrix must have to guarantee sparse recovery
from basis pursuit. In the �nal section, a more complicated measure, called
restricted isometry property is de�ned.

Before starting, we note that all of the measures in this chapter require us
to use a measurement matrices with `2-normalized columns. This is in direct
con�ict with the measures and the measurement matrices used in part 2 of
this thesis, but they are still worth mentioning because of their ubiquity in
compressed sensing theory.

4.1 Coherence and `1-Coherence Function

The coherence and the `1-coherence function are easy to compute measures for
determining the quality of a measurement matrix. However, we will see that
these measures are limited. Even with these limitations, the coherence and
the `1-coherence function measures are still worth discussing because they are
computable and the restricted isometry constant (de�ned in section 4.5) of a
measurement matrix is a generalization of the coherence.

De�nition 10 (Coherence). Let A ∈ Cm×N be a measurement matrix with
`2-normalized columns. Then the coherence µ(A) of A is de�ned by,

µ(A) := max
1≤i<j≤N

|〈ai ,aj 〉|.

De�nition 11 (`1-Coherence Function). Let A ∈ Cm×N be a measurement
matrix with `2-normalized columns. Then the `1-coherence function µ1(A, s)

15
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of A is de�ned by,

µ1(A, s) := max
i∈[N ]

max{
∑
j∈S
|〈ai ,aj 〉| : S ⊂ [N ] with |S| = s and i 6∈ S}.

It will be shown in theorem 10 that a measurement matrix with a small
`1-coherence function is a higher quality measurement matrix. Since it follows
directly from the de�nitions of µ and µ1 that

µ(A) ≤ µ1(A, s) ≤ sµ(A),

we also have that a matrix with small coherence is also a higher quality mea-
surement matrix.

4.2 Coherence Recovery Guarantees

This section demonstrates the connection between the `1-coherence function
and basis pursuit.

Theorem 10 ([18], Theorem 5.15 ). Let A ∈ Cm×N be a measurement matrix
with `2-normalized columns. If A satis�es

µ1(A, s) + µ1(A, s− 1) < 1,

then any s-sparse vector x ∈ Cm×N is the unique solution of basis pursuit with
measurement vector y = Ax.

Proof. The strategy of this proof is to prove that A satis�es the null space
property of order s. Let the vector v ∈ N (A) \ {0} and the subset S ⊂ [N ]
with |S| ≤ s both be arbitrary. Then

Av =
∑
j∈[N ]

vjaj = 0.

This implies that for any i ∈ S, we have

viai = −
∑

j∈[N ]\{i}

vjaj .

Using this and the assumption that the columns of A are `2-normalized implies,

vi = vi ‖ai ‖22

= 〈 viai ,ai 〉

= −
∑

j∈[N ]\{i}

〈 vjaj ,ai 〉

= −
∑
l∈S

〈 vlal ,ai 〉 −
∑

j∈S\{i}

〈 vjaj ,ai 〉.
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By taking the absolute value of this equation and the triangle inequality, we
obtain

|vi| ≤ |
∑
l∈S

〈 vlal ,ai 〉|+ |
∑

j∈S\{i}

〈 vjaj ,ai 〉|.

Therefore, by summing over all i, we obtain

‖vS ‖ =
∑
i∈S
|vi|

≤
∑
l∈S

(
|vl|
∑
i∈S
|〈al ,ai 〉|

)
+
∑
j∈S

|vj | ∑
i∈S\{j}

|〈aj ,ai 〉|


≤
∑
l∈S

|vl|µ1(A, s) +
∑

j∈S\{i}

|vj |µ1(A, s− 1)

= µ1(A, s) ‖vS ‖1 + µ1(A, s− 1) ‖vS ‖1 .

By subtracting ‖vS ‖1 µ1(A, s−1) from both sides of this inequality and using
the assumption µ1(A, s) < 1− µ1(A, s− 1), we have

µ1(A, s) ‖vS ‖1 < (1− µ1(A, s− 1)) ‖vS ‖1 ≤ µ1(A, s) ‖vS ‖1 .

Finally, by dividing both sides of this inequality by µ1(A, s), we arrive at

‖vS ‖1 < ‖vS ‖1 .

Thus, A satis�es the null space property of order s and basis pursuit recovers
every s-sparse vector x from its measurement vector y = Ax.

This theorem does not address the connection between the `1-coherence
function and quadratically constrained basis pursuit. We do not dwell on this
because a stronger version will be proven for a di�erent measure in part 2 of
this thesis.

4.3 Optimal Coherence

Now that we have demonstrated that a matrix with a small µ and µ1 recovers
less sparse vectors, we turn our attention to how small can we make µ and
µ1 and what class of measurement matrices satisfy these values. Again, we do
not dwell to much on the details of either of these question because only their
existence is of interest to us in the next section.

First we consider the range of values the coherence can have. Observe that
µ(A) ≤ 1 follows from the Cauchy-Schwartz inequality,

|〈ai ,aj 〉| ≤ ‖ai ‖2 ‖aj ‖2 = 1.

Similarly, µ(A) = 0 if and only if |〈ai ,aj 〉| = 0 for all distinct i, j ∈ [N ]. This
occurs precisely when A is square and unitary. Since we have assumed that
measurement matrices are not square, we have µ(A) > 0. Therefore,

µ(A) ∈ (0, 1],
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and it follows immediately from the de�nition of the `1-coherence function that

µ1(A, s) ∈ (0, s].

Because the coherence and the `1-coherence function of a matrix cannot be
equal to zero, a sharp lower bound is desirable as well as the class of ma-
trices that satisfy this bound. With that being said, the following classes of
measurement matrices are relevant.

De�nition 12 (Equiangular Tight Frames). Let A ∈ Cm×N be a measurement
matrix with `2-normalized columns. Then A is equiangular if there exists c > 0
such that |〈ai ,aj 〉| = c for all distinct i, j ∈ [N ]. The matrix A is a tight frame
if there exists λ > 0 such that AA∗ = 1

λI. The matrix A is an equiangular tight
frame if it is both equiangular and a tight frame.

It is known that the coherence of measurement matrix A satis�es the Welch
bound,

µ(A) ≥

√
N −m
m(N − 1)

.

Similarly, the Welch bound on the `1-coherence function is

µ1(A, s) ≥ s

√
N −m
m(N − 1)

for any s ∈ [N − 1]. In theorems 5.7 and 5.8 of [18] it is shown that equality
holds in both of these inequalities if and only if A is an equiangular tight frame.

4.4 The Quadratic Bottleneck Problem

Minimizing the Number of Rows of the Measurement Matrix Let
A ∈ Cm×N be a measurement matrix. Recall that in the applications paragraph
of chapter 1, we said that a measurement matrix corresponds to a measurement
scheme of a sparse signal. We motivate this section by elaborating on this.

Each row of the measurement matrix corresponds to a single measurement
of the sparse signal. Therefore, minimizing the number of rows m of the mea-
surement matrix minimizes the number of measurements taken of the signal.
Intuitively, we cannot take an arbitrarily small amount of measurements and
expect to reconstruct the signal at the same time. From this, we can de-
duce that there must exist a lower bound on the minimum number of rows
a measurement matrix must have in order to recover a sparse vector from its
measurement vector.

Minimum Number of Rows Required for Basis Pursuit Now that we
have cited that the Welsh bound is the sharp lowerbound for the `1-coherence
function, we can use the Welsh bound to obtain a lowerbound on the minimum
number of rows a measurement matrix must have so that any s-sparse vector
can be proven to be the unique solution of basis pursuit. Recall that the Welch
bound on the `1-coherence function for any measurement matrix A ∈ Cm×N is

µ1(A, s) ≥ s

√
N −m
m(N − 1)

.
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Since measurement matrices satisfy N � m, we have N−m
n−1 ≈ 1. Thus,

µ1(A, s) ≥ s

√
N −m
m(N − 1)

≈ s√
m
.

Suppose there exists a small constant c > 0 such that A satis�es

µ1(A, s) = c

(
s√
m

)
.

This implies A is close to satisfying the Welch bound. By theorem 10, every
s-sparse vector is the unique solution basis pursuit if

1 > µ1(A, s) + µ1(A, s− 1) = c
s√
m

+ c
s− 1√
m

= c
2s− 1√

m
.

Reordering this inequality gives us

√
m ≥ Cs,

or equivalently
m ≥ Cs2, (4.1)

for some constant C > 0 that depends only on c. This is known as the square
root bottleneck or quadratic bottleneck in compressed sensing. There are many
classes of matrices that require the number of rows to scale quadratically with
respect to sparsity, such as equiangular tight frames and a few others that we
will introduce in part 2. The quadratic bottleneck earns its name because it is
an open problem to explicitly construct matrices that can be proven to recover
s-sparse vectors that scale smaller then (4.1). A solution to the quadratic
problem is not unique, so many explicitly constructed classes of measurement
matrices may exist. It is known that there exist measurement matrices such
that

m ≥ Cs log (N/s) (4.2)

holds for some positive constant C. It would be preferable to explicitly con-
struct a measurement matrix with the bound (4.2) rather then the bound (4.1).
This is because we can choose the number of rows m to be much smaller as
the sparsity s and the number of rows N becomes arbitrarily large. Certain
classes of random measurement matrices have been shown with high probabil-
ity to recover every s-sparse vector with the lowerbound (4.2) on the number
of rows. We do not go into detail here about these classes of random matrices
because our focus is on explicitly constructed matrices.

With this being said, there are some issues of using random measurement
matrices. One of these issues is that we have to randomly generate the matrix
every time we use it. This requires some extra computation and it may not
be desirable for an engineer to create a physical sensor capable of doing this.
The second issue is that we cannot verify if a given random measurement
matrix satis�es this bound because it is NP-hard to compute this for reasons
discussed in the next section. Even with these shortcomings, the use of random
measurement matrices are a central focus of compressed sensing research and
are still very useful.
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The `1-Coherence Function is Insu�cient We conclude this section with
this �nal remark. If we are limited to only using the `1-coherence function, then
we cannot �nd a solution to the quadratic bottleneck problem. To see this, con-
sider the following proof by contradiction. Let A ∈ Cm×N be a measurement
matrix with

m ≤ (2s− 1)2/2 = Cs2.

Since we know that N is much larger then m, we can assume that N ≥ 2m.
Suppose the sparsity satis�es s <

√
N − 1 and the measurement matrix A

satis�es 1 > µ1(A, s)+µ1(A, s−1). Then, it follows from theorem 10 that every
s-sparse vector is the unique solution of basis pursuit from its measurement
vector and it follows from the Welch bound that

1 > µ1(A, s) + µ1(A, s− 1)

≥ s

√
N −m
m(N − 1)

+ (s− 1)

√
N −m
m(N − 1)

≥ (2s− 1)

√
2(N −m)

(2s− 1)2(N − 1)

≥
√

2N −N
N − 1

=

√
N

N − 1
,

which is a contradiction. Therefore, the condition 1 > µ1(A, s)+µ1(A, s−1) can
only be used to show that a measurement matrix must have at least m ≥ Cs2

rows so that every s-sparse vector is the unique solution of basis pursuit from
its measurement vector.

4.5 The Restricted Isometry Property

The following measure is an alternative to the two measures de�ned in the
previous sections.

De�nition 13 (Restricted Isometry Property). Let A ∈ Cm×N be a measure-
ment matrix with `2-normalized columns. Then the s-th restricted isometry
constant of A, denoted δs, is de�ned as the minimimum δ that satis�es

(1− δ) ‖x ‖22 ≤ ‖Ax ‖
2
2 ≤ (1 + δ) ‖x ‖22 , (4.3)

for all s-sparse vectors x ∈ CN . The equation (4.3) is called the restricted
isometry property.

The restricted isometry constant can be used to prove much stronger re-
covery results than the `1-coherence function. Precisely, a matrix with a small
δs can be used to prove that the number of rows m of a matrix must have at
least

m ≥ Cs log (N/s)

instead of at least
m ≥ Cs2,
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to uniquely recover all s-sparse vectors from basis pursuit, where C > 0 is a
small constant that does not depend on s. Thus, δs can be used to determine if
a matrix with `2-normalized columns is a solution to the quadratic bottleneck.
However, it is known from [2] that computing δs of a given matrix is NP-hard
in general.

It is natural then to ask why we should even bother de�ning the restricted
isometry property when we have the null space property. This appears to be
because that restricted isometry constant is more easily approximated. That
is, if we can prove that there exists a small δ such that δs ≤ δ, then we have
proven δs is small. Unfortunately, bounds for explicitly constructed matrices
usually have to rely on the coherence of a matrix or Gershgorin's circle theo-
rem. From the discussion at the end of the previous section, this approach to
approximating δs is insu�cient for proving stronger bounds then the quadratic
bottleneck.

Another reason the restricted isometry property is used in place of the null
space property is that in many of the convergence theorems of compressed
sensing recovery algorithms, δs is used to prove that the algorithm does indeed
converge. In addition to this, δs is used to determine the rate of convergence
of the algorithm.

It can be veri�ed that δs of a matrix A can be computed from

δs = max
S⊂[N ]
|S|≤s

∥∥ATSAS − I ∥∥2
. (4.4)

Equation (4.4) is still NP-hard to compute in general but it is still a very
common equality to use in the analysis of algorithms.

As stated earlier in this chapter, δs is a generalization of µ. This is made
precise in the next theorem.

Theorem 11 ([18], Prop 6.2). Let A ∈ Cm×N be a measurement matrix with
`2-normalized columns. Then δ2 = µ.

Proof. First observe that for all distinct i, j ∈ [N ], we have

A∗{i,j}A{i,j} − I =

[
0 〈aj ,ai 〉

〈ai ,aj 〉 0

]
.

It follows immediately that the eigenvalues of this matrix are precisely±〈ai ,aj 〉.
Therefore, ∥∥∥A∗{i,j}A{i,j} − I ∥∥∥

2
= 〈ai ,aj 〉.

Using the previous equation and equation (4.4), we have

δ2 = max
1≤i<j≤N

∥∥∥A∗{i,j}A{i,j} − I ∥∥∥
2
= max

1≤i<j≤N
〈ai ,aj 〉 = µ,

which is the equality we set out to prove.

It follows from theorem 10 and theorem 11 that δ2 can be used to recover
sparse vectors from basis pursuit. In fact, if we can prove δ2s < 1/3, then
it is known from theorem 6.9 of [18] that every s-sparse vector is the unique
solution of basis pursuit from its measurement vector. We will not prove this
here since we will prove a similar result in theorem 13 of part 2. The second
part of this thesis builds on the quadratic bottleneck problem and explicitly
constructing of measurement matrices that are solutions to this problem.



5 Summary of Reference for Part One

The the results of this section are foundational to the theory and are well known
to specialists in compressed sensing. Because of this, part 1 can be considered
a survey of the relevant material.

Many of the de�nitions and results from part 1 were obtained from [18],
a textbook of the mathematical theory of compressed sensing. This text was
used in an introductory course to the theory and taught by Øyvind Ryan.
Since the text is a reference work, the original sources are listed here, if they
are available. It should also be noted that [8] was used as a �rst introduction
to compressed sensing.

The quadratic bottleneck problem was introduced to me by the introductory
chapter in [18]. However, Terence Tao informally wrote about this problem
about a decade ago at [26]. Here, he phrases the quadratic bottleneck problem
as a derandomization problem in complexity theory.

It was obtained from [3] that the only solution to the quadratic bottlneck
problem that exists is given in [7]. As suggested by the name of [3], most
approaches to the quadratic bottleneck problem involves using the restricted
isometry property. The discussion for the insu�ciency of the `1-coherence
function was originally obtained from chapter 5 of [18], but variations of this
has shown up in other places such as [3]. Equation 4.4 was also obtained from
chapter 6 in [18].

The spark was obtained from [3], but was �rst de�ned in [14]. The terms
stable and robust null space property were introduce in the text [18], but similar
concepts exist throughout compressed sensing theory. A deeper analysis of
the literature of the topics that we only mentioned in passing can be done.
In particular, the topics of equiangular tight frames, random measurement
matrices, the physical applications of compressed sensing, and the restricted
expansion property. Not much time was spent on these topics when writing
this thesis other than their existence, which, again were obtained from [18].
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6 Lossless Expander Graphs

Up until this chapter we have dealt with compressed sensing in the most general
setting. That is, we have proved results relevant to compressed sensing with
arbitrary complex measurement matrices. From this chapter on, we will only
be dealing with sparse measurement matrices that have entries 0 and 1. We
will �rst start with some preliminary de�nitions. Following this, we will de�ne
the class of graphs that is relevant to compressed sensing.

6.1 Introduction to Graph Theory

Throughout part 2, we will encounter several kinds of discrete structures. We
introduce the �rst one of these now.

De�nition 14 (Graph). A graph G is an ordered pair (V,E), where the set V
is the set of vertices of G and the set E is the set of edges of G. Each edge of
G is de�ned by an unordered pair of vertices of G.

There are many classes of graphs, but we will only require a few of them.
The �rst class of graphs is characterized by partitioning its vertices in the
following way.

De�nition 15 (Bipartite Graph). A graph G is called a bipartite graph if its
vertex set can be partitioned into two subsets, which we call the left vertex set
L and the right vertex set R, so that every edge has one end in L and the other
end in R.

Normally bipartite graphs do not make the distinction between left and
right vertex sets. When an application requires one subset of vertices to have
distinct properties from the other subset of vertices, it is useful to include the
orientation of left and right vertex sets to di�erentiate between the two. The
following classes of graphs will only be used as subgraphs of a bipartite graph.

De�nition 16 (Cycle and Path). A cycle is a graph whose vertices can be
arranged in a cyclic sequence so that if the two vertices are consecutive in
the sequence then there exists an edge between the two vertices. A path is a
graph whose vertices can be arranged in a linear sequence so that if the two
vertices are consecutive in the sequence then there exists an edge between the
two vertices.

The following two de�nitions are measures on paths and cycles.
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De�nition 17 (Length and Distance). Let G be a graph with vertices u and
v. Then the length of the cycle or path in G is the number of edges it contains.
The distance between the vertices u and v is the length of the shortest path
from u to v.

We will always assume that a graph is a simple graph. That is, every graph
we consider does not have a cycle of length 1 or 2. We will use the following
necessary condition for a cycle to exist as a subgraph of a bipartite graph
several times throughout part 2 of this thesis.

Lemma 1 ([6], Ex 1.1.3). If G is a bipartite graph then, G it does not contain
a cycle of odd length.

Proof. Suppose G is a bipartite graph with left vertex set L and right vertex
set R. Suppose there exists a cycle C := (v1, . . . , vn) of odd length. Since
G is a bipartite graph, every edge has ends that lie in distinct vertex sets.
Without loss of generality, we can assume that L contains all the odd indexed
vertices and R contains all the even indexed vertices in the cyclic sequence of
C. However, since n is odd, this implies that there exists an edge e = {v1, vn}
with v1, vn ∈ L. This contradicts the assumption that G is a bipartite graph.
Therefore, G cannot contain a cycle of odd length.

The following two graph properties will be used in future chapters to de-
scribe how connected a graph is.

De�nition 18 (Girth and Diameter). Let G be a graph. If G has at least one
cycle then, the length of the shortest cycle in G is called the girth of G and
is denoted by girth(G). The diameter of G, denoted diam(G), is the greatest
distance between any two vertices of G.

The following lemma will be of use to us in future proofs.

Lemma 2 ([6], Ex 3.1.10). Let G be a graph. If there exists an integer k such
that girth(G) = 2k, then diam(G) ≥ k.

Proof. Suppose girth(G) = 2k, for some integer k. Then there exists a cycle
C = (v1, . . . , v2k) in G of length 2k. This implies that there exists a path
of length k from v1 to vk+1. Suppose there exists a shorter path from v1 to
vk+1. Then there exists a cycle of length less then 2k. But this contradicts the
assumption that girth(G) = 2k. Thus a shorter path from v1 to vk+1 cannot
exist and we have shown that diam(G) ≥ k.

In the next de�nition, we introduce a term that characterizes the local
structure of a graph.

De�nition 19 (Neighborhood). Let G be a graph and let v be a vertex of G.
Then the set of all adjacent vertices to v in G is called the set of neighbors of
v and is denoted by N(v). Similarly, if S is a subset of vertices of G, then the
set of vertices adjacent to vertices in S is the neighborhood of S and is denoted
N(S). The degree d of the vertex v in G is de�ned by d = |N(v)|.

If G is a bipartite graph and we are interested in the neighborhood of a
subset of left vertices, we will denote the set N(S) by R(S) and refer to it as
the set of right vertices of S.
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De�nition 20 (Biregular Graphs). Suppose G be a bipartite graph. If every
left vertex has degree d, then G is called a d-left regular biparite graph. If every
right vertex has degree p, then G is called a p-right regular bipartite graph. If
G is both a d-left vertex graph and a p-right vertex graph, then G is called a
biregular graph and is denoted by Gp,d.

Next, we introduce a speci�c way of obtaining a subgraph of a graph.

De�nition 21 (Induced Graph). Let G be a graph with vertex set V . Let X
and Y := V −X be two subsets of vertices of G. Then the induced subgraph
G[Y ] of G is the subgraph of G obtained by deleting the vertices of X and all
edges with an end in X.

One of the nice properties of graphs is that they can be easily related to
other types of discrete structures, such as matrices.

De�nition 22 (Bipartite Adjacency Matrix). Let G be a bipartite graph with
N left vertices and m right vertices. Then the bipartite adjacency matrix of
the bipartite graph G is the matrix A ∈ {0, 1}m×N such that ai,j = 1 if the
jth left vertex is adjacent to the ith right vertex of G and ai,j = 0 otherwise.

The bipartite adjacency matrix of the class of left regular bipartite graphs
is what will be of primary interest to us. When the number of left vertices
is much larger then the number of right vertices, the number of columns in
the bipartite adjacency matrix is much larger then the number of rows. In this
context, the bipartite adjacency matrix may be able to be used as measurement
matrix.

6.2 De�ning Lossless Expander Graphs

Not every graph in the class of left regular bipartite graphs is necessarily useful
to us. To di�erentiate between the useful matrices and the useless matrices,
we de�ne the following measure.

De�nition 23 (Restricted Expansion Property). Let G be a d-left regular
bipartite graph. If for every subset S of left vertices with |S| ≤ s, the bipartite
graph G satis�es the restricted expansion property

|R(S)| ≥ (1− θ)d|S|,

then G is an (s, d, θ)-lossless expander. The minimum θ ≥ 0 for which the
expansion property holds for all subsets of left vertices S with |S| ≤ s is called
the sth restricted expansion constant θs.

The restricted expansion constant is the measure that we referred to sev-
eral times in chapter 4. An (s, d, θ)-lossless expander graph will sometimes be
referred to as just a lossless expander graph when the parameters aren't neces-
sary for the discussion. It should be noted that when an author talks about an
expander graph, they are usually referring to a general graph where each small
set of vertices have a lot of neighbors [1]. Since we only work with bipartite
graphs here, this shouldn't cause any ambiguity.

By requiring θs to be "small", we can prove that the bipartite adjacency
matrix A satis�es the robust null space property. Unfortunately it is NP-Hard
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to compute θs in general by the same reasoning for which the combinatorial
optimization problem (P0) is NP-hard. A good approach is to de�ne a more
restrictive family of lossless expander graphs with additional properties. We can
then use these additional properties to approximate the restricted expansion
constant θs by a hopefully not much larger θ so that

|R(S)| ≥ (1− θs)d|S| ≥ (1− θ)d|S|

holds. This inequality demonstrates that θs is used to provide a sharp bound
on the minimum number of right vertices any subset of less then s left vertices
can have, whereas the approximation θ just provides a not necessarily sharp
bound.

As a �nal note, observe that since we require θs to hold for all |S| ≤ s, it
follows directly from the de�nition of the restrict expansion property that

0 = θ1 ≤ . . . ≤ θs−1 ≤ θs ≤ θs+1 ≤ . . . θN .

This implies that if we �nd an approximation θ for θs, then we have found an
approximation for all restricted expansion constants of order less then s.



7 Lossless Expander Graphs Satisfy the

Robust Null Space Property

In chapter 3, we proved that a matrix that satis�es the robust null space
property solves the most general compressed sensing problem, where vector to
be recovered is compressible and measurement error exists. In the last chapter,
we introduced the bipartite adjacency matrices of lossless expander graphs. We
will now show that if the restricted expansion constant is small enough, then
these matrices satisfy the robust null space property. Following this, we will
discuss some strategies for approximating the restricted expansion constant.

7.1 Lossless Expander Graphs Satisfy the Robust Null

Space Property

To prove that the bipartite adjacency matrix of a lossless expander graph with
small restricted expansion constant satis�es the robust null space property, we
need to use lemmas 6.10, 13.12, and 13.13 in [18]. The statements of these
lemmas are complicated but their application is simple in that they will all be
called in one line of the proof. We will make it clear when we use them.

Theorem 12 ([18], Theorem 13.11). Let A ∈ {0, 1}m×N be the bipartite ad-
jacency matrix of an (s, d, θ)-lossless expander graph G with θ2s < 1/6. Then
A satis�es the robust null space property of order s with respect to the `1-norm
and the parameters

ρ =
2θ2s

1− 4θ2s
τ =

1

(1− 4θ2s)d
.

That is, for any subset S of [N ] with |S| ≤ s any vector v ∈ CN , we have

‖ vS ‖1 ≤
2θ2s

1− 4θ2s
‖ vS̄ ‖1 +

1

(1− 4θ2s)d
‖Av ‖1 .

Proof. Let v ∈ CN be arbitrary. Partition the index set [N ] of v into the
subsets S0, S1, . . ., where the subset S0 is the s largest absolute elements of v,
the subset S1 is the next s largest absolute elements of v, continuing in this
manner for all the remaining subsets. Since S0 is the s largest elements of v, if

‖vS0
‖1 ≤

2θ2s

1− 4θ2s

∥∥vS̄0

∥∥
1
+

1

(1− 4θ2s)d
‖Av ‖1

28
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holds, then it follows from theorem 7 that the robust null space property holds.
To keep the notation simple, we label each of the left vertices of G with the
column indices [N ] of A. Similarly, we label the right nodes of G with the row
indices [m] of A. This essentially allows us to treat the subsets S0, S1, . . . as
both subsets of left nodes and subsets of column indices.

Next, de�ne the function ` : [m]→ [N ] such that

`(i) := argmax
j∈[N ]

{|vj | : {j, i} is an edge of G}.

For each subset of indices S of [N ], de�ne the subset of edges E(S) by the set
of edges with left vertex in S. Then consider the following equalities, which
follow from the bijective relationships between the degree of a left node, the
edges incident to it, and its adjacent right neighbors.

d ‖vS0 ‖1 = d
∑
j∈S0

| 1 |

=
∑

{j,i}∈E(S0)

| 1 |,

=
∑

i∈R(S0)

∑
j∈S0

{j,i}∈E

| 1 |

=
∑

i∈R(S0)

| 1 | +
∑

i∈R(S0)

∑
j∈S0\{`(i)}
{j,i}∈E

| 1 |. (7.1)

Similarly, for all i ∈ R(S0), we have the following equalities which are conse-
quences of the bijective relationships between the lossless expander graph and
its bipartite adjacency matrix.

(Av)i =
∑
j∈[N ]

ai,jvj

=
∑
j∈[N ]
{j,i}∈E

vj

=
∑
k≥0

∑
j∈Sk

{j,i}∈E

vj

=
∑
j∈S0

{i,j}∈E

vj +
∑
k≥1

∑
j∈Sk

{j,i}∈E

vj

= v`(i) +
∑

j∈S0\{`(i)}
{j,i}∈E

vj +
∑
k≥1

∑
j∈Sk

{i,j}∈E

vj . (7.2)

Isolating the term v`(i) in (7.2) and taking absolute value gives us the following
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inequality.

| 1 | = | −
∑

j∈S0\{`(i)}
{j,i}∈E

vj −
∑
k≥1

∑
j∈Sk

{i,j}∈E

vj + (Av)i|

≤
∑

j∈S0\{`(i)}
{j,i}∈E

| 1 |+
∑
k≥1

∑
j∈Sk

{i,j}∈E

| 1 |+ | 1 |. (7.3)

Substituting the inequality (7.3) into the equality (7.1) and by applying lemmas
6.10, 13.12, and 13.13 in [18] discussed at the start of the chapter in the fourth
line gives us the following inequality.

d ‖vS0
‖1 =

∑
i∈R(S0)

| 1 | +
∑

i∈R(S0)

∑
j∈S0\{`(i)}
{j,i}∈E

| 1 |

≤
∑

i∈R(S0)

 ∑
j∈S0\{`(i)}
{j,i}∈E

| 1 | +
∑
k≥1

∑
j∈Sk

{i,j}∈E

| 1 | + | 1 |


+

∑
i∈R(S0)

∑
j∈S0\{`(i)}
{j,i}∈E

| 1 |

= 2
∑

i∈R(S0)

∑
j∈S0\{`(i)}
{j,i}∈E

| 1 | +
∑
k≥1

∑
i∈R(S0)

∑
j∈Sk

{i,j}∈E

| 1 |

+
∑

i∈R(S0)

| 1 |

≤ 2 (θsd ‖vS0
‖1) + (2θ2sd ‖v ‖1) + ‖Av ‖1

= 2θsd ‖vS0
‖1 + (2θ2sd ‖vS0

‖1 + 2θ2sd
∥∥vS̄0

∥∥
1
) + ‖Av ‖1

≤ 4θ2sd ‖vS0
‖1 + 2θ2sd

∥∥vS̄0

∥∥
1
+ ‖Av ‖1 .

By subtracting the term 4θ2sd ‖vS0 ‖1 from both sides of this inequality,
we obtain

(1− 4θ2s)d ‖vS0
‖1 ≤ 2θ2sd

∥∥vS̄0

∥∥
1
+ ‖Av ‖1 .

Dividing both sides of the inequality by (1− 4θ2s)d gives us

‖vS0
‖1 ≤

2θ2s

1− 4θ2s

∥∥vS̄0

∥∥
1
+

1

(1− 4θ2s)d
‖Av ‖1 .
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Therefore, the robust null space property of order s holds and the proof is
complete.

In the previous theorem, θ2s is chosen to be strictly less then 1/6 so that
the parameter ρ can only take values in the interval (0, 1). More precisely, if
θ2s < 1/6, then

ρ =
2θ2s

1− 4θ2s
<

2(1/6)

1− 4(1/6)
=

(1/3)

(1/3)
= 1.

Since θ2s only makes sense for strictly positive numbers, this implies ρ > 0.
This implies that 0 < ρ < 1, which is the values ρ can take in the de�nition of
the robust null space property. We now prove an upperbound on the `1-error
of a solution of (P1,η).

Theorem 13 ([18], Theorem 13.10). Let A ∈ {0, 1}m×N be the bipartite adja-
cency matrix of an (s, d, θ)-lossless expander G with θ2s < 1/6 and let x ∈ CN .
Then any solution x

] of (P1,η) with the measurement vector y = Ax + e and
measurement error controlled by ‖ e ‖ ≤ η approximates x with error∥∥x− x

]
∥∥

1
≤ 1− 2θ2s

1− 6θ2s
2σs(x)1 +

4

(1− 6θ2s)d
η

Proof. Since θ2s < 1/6, the theorem 12 implies that A satis�es the robust null
space property of order s with parameters

ρ =
2θ2s

1− 4θ2s
and τ =

1

(1− 4θ2s)d
.

By theorem 9, we have the following inequality∥∥x− x] ∥∥
1
≤ 1 + ρ

1− ρ
2σs(x)1 +

4τ

1− ρ
η

=
1 +

(
2θ2s

1−4θ2s

)
1−

(
2θ2s

1−4θ2s

)2σs(x)1 + 4
(

1
(1−4θ2s)d

)
1−

(
2θ2s

1−4θ2s

)η
=

1− 2θ2s

1− 6θ2s
2σs(x)1 +

4

(1− 6θ2s)d
η.

This is the upperbound on the error of the solution of (P1,η) that we set out
to prove.

Unfortunately, if θ2s is close to 1/6 in the previous theorem, then the de-
nominators of the of the error bound is close to 0. This shows that the value
of the error bound becomes arbitrarily larger as θ2s approaches 1/6.

7.2 Approximating θs Using the Bipartite Adjacency
Matrix

A Note on the Restricted Expansion Constant The previous section
demonstrates why the restricted expansion constant θ2s of a lossless expander
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graph is a useful measure in compressed sensing. Now we address some concerns
of how we go about �nding an approximation θ for θ2s. For any d-left regular
bipartite graph, consider a modi�ed version of the restricted expansion property

|R(S)| ≥ (1− θ)ds for all S ⊂ [N ] with |S| = s.

Then, for any S′ ( S, we have |S′| = s′ < s, which implies

|R(S)| ≥ (1− θ)ds > (1− θ)ds′ and |R(S)| ≥ |R(S′)|.

This shows the two inequalities are incomparable. Therefore, we have

|R(S)| ≥ (1− θ)ds for all s ⊂ [N ] with |S| = s

does not in general imply

|R(S)| ≥ (1− θ)ds for all S ⊂ [N ] with |S| ≤ s.

This is a subtle and important point for when we make claims about approxi-
mating the restricted expansion constant of a lossless expander.

Finding θ from the Bipartite Adjacency Matrix Let A be the bipartite
adjacency matrix of a d-left regular graph and let S be an arbitrary subset of s
columns of A. Consider the submatrix AS . Then |R(S)| is equal to the number
of nonzero rows of AS . Thus, to �nd θs it is su�cient to �nd a subset Smin
of s columns of A so that ASmin

contains the minimal number of nonzero rows
that a submatrix of s columns of A can have. Hence, an approximation θ says
that there must be at least (1− θ)ds nonzero rows in AS .

7.3 Graph Properties of Good Lossless Expander

Graphs

Since we require a lossless expander graph to have restricted expansion constant
θ2s < 1/6, it helps to consider what graph properties yield a small θ2s. In this
section, we see that the de�nition of lossless expanders with small θ2s requires
the graph to be both sparse and highly connected. These properties have
a tendency to disagree with each other. Usually increasing the sparsity of
the graph decreases the connectivity and vice versa. Thus constructing large
lossless expander graphs is known to be a di�cult task.

Sparsity of the Graph We �rst give a de�nition of the density of a left
regular bipartite graph.

De�nition 24 (Density of a Graph). Let G be a d-left regular bipartite graph
with m right vertices. Then the density of G is de�ned by

ρ(G) :=
d

m
.

In the next theorem, we show that if the graph is sparse, then the restricted
expansion constant must be small.
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Theorem 14. Let G be an (s, d, θ)-lossless expander with m right nodes. If
the density of the graph ρ(G) is small then θ is small. More precisely, for all
S ⊂ [N ] with |S| ≤ s, we have

1

(1− θ)|S|
≥ ρ(G).

Proof. Since any of subset S of left vertices satis�es |R(S)| ≤ m, it follows
from the restricted expansion property that

m ≥ |R(S)| ≥ (1− θ)d|S|.

This is if and only if
1

(1− θ)|S|
≥ ρ(G)

If the graph is sparse, then ρ(G) is small and this forces θ to be small.

This proves that sparse d-left regular graphs are better quality lossless ex-
pander graphs.

Connectivity of the Graph The fact that highly connected d-left regular
graphs make higher quality measurement matrices follows directly from the
de�nition of the restricted expansion property and some intuition. Observe
that for all S ⊂ [N ] with |S| ≤ s, if θ is small then

|R(S)| ≥ (1− θ)d|S|

requires every subset S of s left vertices to have many neighbors. This occurs
when the graph is highly connected. The property that every small subset of
left vertices has a large set of neighbors is referred to as expansion which is the
motivation for the name lossless "expander" graphs.



8 Combinatorial Design Theory as a Source

of Measurement Matrices

In this chapter, we take a very general approach to the quadratic bottleneck
problem. We do not attempt to explicitly construct any measurement matrices
that can be a solution to the quadratic bottleneck problem here. Rather, we
layout a selection of large classes of discrete objects such as t-designs, Steiner
systems, �nite incidence structures, con�gurations, and generalized polygons.
The incidence matrices of these classes of objects can be used as a bipartite
adjacency matrix of a left regular bipartite graph.

8.1 Introduction to Combinatorial Design Theory

Combinatorial design theory is the study of the intersection properties of sys-
tems of sets. Since in compressed sensing we are working with matrices and
not systems of sets, the applications of combinatorial design theory in com-
pressed sensing is not immediately clear. We address this ambiguity �rst by
introducing one of the most general classes of combinatorial designs and then
de�ne a corresponding matrix.

De�nition 25 (t-designs). A t-(v, k, λ) design, or t-design, is an ordered pair
(V,B), where the v elements of V are called the points and the b elements of
B are called the blocks. The blocks are k-subsets of points. Any t-subset of
points is contained in exactly λ blocks.

De�nition 26 (Incidence Matrix). The incidence matrix of a t-(v, k, λ) design
is the v × b binary matrix A de�ned by ai,j = 1 if the ith point is incident to
the jth block and ai,j = 0 otherwise.

All of the combinatorial designs de�ned throughout this chapter have a
corresponding incidence matrix. It follows from the previous de�nitions that
the incidence matrix of a t-(v, k, λ) design can be viewed as the bipartite ad-
jacency matrix of a k-left regular bipartite graph with v left vertices, b right
vertices, and has the property that every set of t right vertices is contained in
the neighborhood of λ individual left vertices. When an incidence matrix of a
combinatorial design is used in this way, we have the following de�nition.

De�nition 27 (Levi Graph). Let A be the incidence matrix of a combinatorial
design. Then the bipartite matrix G associated with the bipartite adjacency
matrix A is called the Levi graph of the combinatorial design.

34
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We can take a moment to consider an example. De�ne the set of points
V = {0, . . . , 6} and the set B of blocks {0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5},
{1, 4, 6}, {2, 3, 6}, {2, 4, 5}. Then (V,B) is a 2-(7, 3, 1) design. The incidence
matrix of this design is

Figure 8.1: Incidence Matrix of the Fano Plane

This block design known as the Fano plane and is good for building in-
tuition because it is one of the simplest t-designs. Constructing a t-(v, k, λ)
design with large parameters is not trivial. For small parameters, databases
of t-(v, k, λ) designs exist, many of which are in the earlier chapters of [11].
However, many of these are not easy to describe, analyze, and don't o�er much
in the way of generalizing to larger matrices. For t-designs to be useful for
our applications, we will require these parameters to be large, so it helps to
begin by narrowing down what parameters cannot be used for t-designs. We
�rst present a necessary condition for the existence of t-(v, k, λ) designs in the
following theorem.

Theorem 15 ([11], Theorem I 4.8). Let (V,B) be a t-(v, k, λ) design and let
S be an s-subset of points with s ≤ t. De�ne λs to be the number of blocks that
contain S as a subset. Then

λs = λ

(
v−s
k−s
)(

k−s
t−s
) .

Proof. Observe that the number of t-subsets of points that contains the s-subset
S is

(
v−s
t−s
)
. Since every t-subset of points is contained in exactly λ blocks, there

exists at most λ
(
v−s
t−s
)
blocks that contain S. Let B be an arbitrary block that

contains S as a subset. Since B is a k-subset of points and t ≤ k, there exists(
k−s
t−s
)
t-subsets of B which contains the subset S. Since B was arbitrary, we

arrive at

λs = λ

(
v−s
t−s
)(

k−s
t−s
) (8.1)

blocks that contain S as a subset.

Note that the number of blocks in a t-design is precisely b = λ0 and the
number of blocks a single point is contained is r = λ1. The necessary condition
for t-designs that (8.1) must hold for all s ≤ t is sometimes called the divisi-
bility condition. The reasoning for the divisibility condition being a necessary
condition is as follows. If there exists an s ≤ t such that λ

(
v−s
t−s
)
/
(
k−s
t−s
)
is not
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an integer, then λs is not an integer. This implies that a t-design with these
parameters can not exist since the number of blocks that contain an s-set S
must be an integer. With this in mind, we introduce the following de�nition.

De�nition 28 (Admissible Designs). Let (λ, t, v, k) be an ordered quadruple
of positive integers. Then the parameters (λ, t, v, k) are admissible, denoted
t-(v, k, λ), if λ

(
v−s
t−s
)
/
(
k−s
t−s
)
is an integer for every s ≤ t.

Finding a t-(v, k, λ) design for an admissible t-(v, k, λ) is not trivial. A
brute force approach of �lling in 1's in a matrix in a way that builds a t-
(v, k, λ) design takes exponential time to compute, as stated in remark VII 6.5
of [11]. We introduce another de�nition for parameters of a t-design that have
been constructed.

De�nition 29 (Realizable Designs). An admissible t-(v, k, λ) is realizable if a
t-(v, k, λ) design exists.

Since it is hard to construct t-designs in general, many in�nite families
of t-designs arise from other combinatorial, algebraic, or geometric objects
and are usually de�ned by an incidence relation. Otherwise, to �nd if an
admissible t-(v, k, λ) is realizable, heuristics such as backtracking, hill climbing,
and simulated annealing can be used as well as other methods listed in table
VII 6.7 of [11].

The class of t-designs are among the most general class of combinatorial
designs. Since lossless expander graphs are sparse, restricting our attention to
the following subclass of t-designs is useful.

De�nition 30 (Steiner Systems). A t-(v, k, 1) design is called a Steiner system
and is denoted by S(t, k, v).

In our original example at the start of this chapter, the Fano plane is also
an S(2, 3, 7) Steiner system.

8.2 The Incidence matrix of a Steiner System as a

Measurement Matrix

Since the Fano plane is a square matrix, it would not make a good measurement
matrix. However, if we consider a di�erent set parameters for a Steiner system,
we can obtain the rectangular matrices we require for compressed sensing.
Consider a S(2, 5, 125) Steiner system. These parameters are admissible since

λ0 =

(
125
2

)(
125
2

) = 775 and λ1 =

(
125
1

)(
125
1

) = 25

are both integers. Since b = λ0, the incidence matrix of this Steiner system is a
rectangular 125×775 matrix. With this example in mind, we look further into
the details of the incidence matrix of Steiner systems as measurement matrices
by computing the coherence and the `1-coherence function.

Theorem 16. Let A be the incidence matrix of a S(t, k, v) Steiner system.
Then the coherence of A is

µ(A) =
t− 1

k
(8.2)
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and the `1-coherence function of A is

µ1(A, s) =
(t− 1)s

k
= µs (8.3)

for all s ≤
(
k
t−1

)
(λt−1 − 1).

Proof. Since A does not have `2-normalized columns, we use

k · µ(A) = max
1≤i<j≤b

〈ai ,aj 〉

for the coherence and

k · µ1(A, s) = max
i∈[b]

max{
∑
j∈S
|〈ai ,aj 〉| : S ⊂ [b] with |S| = s and i 6∈ S}.

for the `1-coherence function of a binary matrix A with k ones in each column.

First observe that the blocks of a Steiner system correspond to the columns
of its incidence matrix in the following way,

|Bi ∩Bj | = 〈ai ,aj 〉 for all Bi, Bj ∈ B.

Since every t-subset of points is contained in exactly one block, we have |Bi ∩
Bj | < t for all distinct Bi, Bj ∈ B. Let T be an arbitrary (t − 1)-subset of
points. For any pair of distinct points t1 and t2 not contained in T , de�ne the
t-subsets of points T1 = T ∪ {t1} and T2 = T ∪ {t2}. Since every t-subset of
points is contained in exactly one block, there exists blocks B1 and B2 such
that T1 ⊂ B1 and T2 ⊂ B2. Thus T ⊂ B1 ∩B2 which implies

t− 1 = |T | ≤ |B1 ∩B2| < t.

Therefore, we have

k · µ(A) = max
1≤i<j≤b

〈ai ,aj 〉 = max
1≤i<j≤b

|Bi ∩Bj | = t− 1.

Dividing by k, we have

µ(A) =
t− 1

k
,

which completes the proof for the �rst part of the theorem.

Next, observe the second part of the theorem is proved if we show that for
any block B, there exists

(
k
t−1

)
(λt−1 − 1) other blocks that intersect B with

cardinality t − 1. Let T be an arbitrary (t − 1)-subset of B. Since there are
λt−1 blocks that contain T , there are λt−1 − 1 blocks that intersect B with
intersection T . Since there are

(
k
t−1

)
ways to choose the (t− 1)-subset T of B,

there are
(
k
t−1

)
(λt−1 − 1) other blocks that intersect B with cardinality t− 1.

Thus

k · µ1(A, s) = (t− 1)s

for all s ≤
(
k
t−1

)
(λt−1 − 1).
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Using theorem 10 and theorem 16, if the measurement matrix is the inci-
dence matrix of an S(t, k, v) Steiner system then every s-sparse vector is the
unique s-sparse solution of basis pursuit if s satis�es

1 > µ1(A, s) + µ1(A, s− 1) =
(t− 1)s+ (t− 1)(s− 1)

k
=

(t− 1)(2s− 1)

k
.

To see how well this works, we can use the example S(2, 5, 125) Steiner system
above. By substituting in the values for t and k, this implies every s-sparse
vector with s < 3 is the unique solution of basis pursuit. This result is useless
since s is so small, but it does provide a little more motivation as to why we
want to avoid depending on the `1-coherence function and �nd solutions to the
quadratic bottleneck problem.

To improve on this, we need to use an approximation θ for the restricted
expansion constant θ2s of the Levi graph of an S(t, v, k) Steiner system. To
obtain an approximation that yields better results than the quadratic bottle-
neck, we must know more about how every subset of 2s columns behave. This
is very di�cult to analyze in practice because it requires a very convenient in-
cidence relation. Although obtaining an incidence relation that makes analysis
possible, it is not clear that such a class of Steiner systems exist.

The intuition of using Steiner systems is that they minimize the compression
ratiom/N of the class of measurement matrices with coherence µ(A) = (t−1)/k
and A is the bipartite adjacency matrix of a k-left regular bipartite graph.
The approach of minimizing the compression ratio at �rst seems to be the
best approach to take. However, the compression ratio does not take into
consideration the sparsity of the vector which is a very important factor. Thus,
it is not required that the compression ratio m/N of a measurement matrix
needs to be minimized to be a solution to the quadratic bottleneck problem
and obtain the optimal lowerbound on the number of rows required

m ≥ Cs log (N/s)

for a small constant C that does not depend on s. Because of this, Steiner
systems can be considered rigid in their construction without much bene�t in
return.

8.3 Finite Incidence Structures and Con�gurations

In this section, we will turn our attention to classes of combinatorial designs
that are similar to the t-designs and Steiner systems de�ned in the �rst section
of this chapter. However, these combinatorial designs are more �exible in their
de�nition. The classes of combinatorial designs de�ned in this section are also
common in �nite geometry.

De�nition 31 (Finite Incidence Structures). A �nite incidence structure is
an ordered triple (P,L, I), where the elements of the �nite set P are called the
points of the incidence structure, the elements of the �nite set L are called the
lines of the incidence structure, and I is the incidence relation between the
points and the lines.

Since the incidence matrix of a t-design can be an incidence matrix of a �nite
incidence structure, the class of incidence matrices of �nite incidence structures
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are more general then the class of incidence matrices of t-designs. Thus, the
de�nition of the incidence matrix of a �nite incidence structure without any
added constraints is far too general to use as a possible measurement matrix.
The next de�nition narrows things down signi�cantly.

De�nition 32 (Con�gurations). A con�guration (vr, bk) is an incidence struc-
ture (P,L, I) with v = |P | and b = |L| such that each of the lines is incident to
k points, each point is incident to k lines, and any pair of points are incident
to at most one line.

The incidence matrix of a S(2, k, v) Steiner system is a (vr, bk) con�gura-
tion, where b = λ0 and r = λ1 follows from theorem 15. Since we have more
�exibility in the choice of b and r in the de�nition of a con�guration than in
Steiner systems, the class of incidence matrices of con�gurations are a general-
ization of the class of incidence matrices of S(2, k, v) Steiner systems. The fact
that t = 2 in this Steiner system is a useful restriction since this would require
its Levi graph to be more sparse then if t > 2.

In the next theorem, we prove that the Levi graph of a con�guration does
not have small girth.

Theorem 17 ([11], Remark VI 7.9). The matrix A is the incidence matrix of
a (vr, bk) con�guration if and only if A is the bipartite adjacency matrix of the
biregular graph Gr,k with b left vertices, v right vertices, and

girth(Gr,k) ≥ 6.

Proof. Suppose A is the incidence matrix of a (vr, bk) con�guration. Let G be
the Levi graph of A. Then G has v right vertices and b left vertices since A is
a v × b matrix. Since each column of A has k ones and each row of A has r
ones, this implies that the Levi graph G is a biregular graph and we can use
the notation Gr,k. Since every pair of points is incident to at most 1 line in the
con�guration, there cannot exist a submatrix of A of the form[

1 1
1 1

]
.

In terms of the Levi graph Gr,k, this implies that a cycle of length 4 cannot
exist. Lemma 1 and the assumption that G is a simple graph implies that
cycles of odd length and cycles of length 2 cannot exist as a subgraph of G.
Therefore,

girth(Gr,k) ≥ 6.

This proves the �rst direction of the theorem. The proof of the reverse direction
of the theorem can be obtained in a similar manner.

A necessary condition for the parameters of con�gurations, similar to the
divisibility condition of t-designs, exists. We present this in the next theorem

Theorem 18 ([11], Remark VI 7.10). If a (vr, bk) con�guration exists, then
the parameters must satisfy

vr = bk.
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Proof. Let Gr,k be the Levi graph of the con�guration (vr, bk). Since every
edge must have one end in the left vertex set and one end in the right vertex
set, the sum of the degrees of the left vertex set must equal the sum of the
degrees of the right vertex set. This gives us the conclusion

vr = bk.

Notice that the necessary condition of con�gurations in the previous the-
orem is much more �exible then the divisibility condition of t-designs. Intu-
itively, this means that it is much easier to build con�gurations than it is to
build t-designs.

Finally, we note that con�gurations are similar to Steiner systems with
t = 2 in that every pair of points is incident to at most one line (every block).
This and theorem 16 implies that the coherence of the incidence matrix of a
(vr, bk) con�guration satis�es µ = 1/k.

8.4 Finite Generalized Polygons

In the previous section, we claimed that the incidence matrix of a con�guration
is sparse relative to the other classes of combinatorial designs and is relatively
�exible since it can be viewed as a less restrictive Steiner system. However,
the de�nition of a con�guration does not require its Levi graph to have any
connectivity properties. Since a good lossless expander graph is not only sparse,
but also highly connected, we address this problem in this section.

The de�nitions introduced in this section are done so in a way that is
convenient for the rest of this thesis. More technical de�nitions exist for when
the reader is working within the context of �nite geometry.

De�nition 33 (Finite Generalized Polygon). A Finite generalized n-gon of
order (s, t) is an incidence structure (P,L, I) with the following properties.
Every point is incident to exactly t + 1 lines and every pair of distinct points
are incident to at most one line. Every line is incident to exactly s+ 1 points
and ever pair of distinct lines are incident to at most one point. Lastly, the
Levi graph of the generalized n-gon has girth 2n and diameter n.

When the number n is not relevant to the discussion, we will refer to the
�nite generalized n-gon as a �nite generalized polygon

Unfortunately, not every value of n implies that a �nite generalized n-gon
exists. It is known from [16] that we can only work with the values n = 3, 4, 6, 8.
Thus, the intuitive names are assigned to each n-gon. That is, we refer to a
generalized n-gon as a generalized triangle, generalized quadrangle, generalized
hexagon, and generalized octagon for n = 3, 4, 6, and 8, respectively.

The incidence matrices of generalized triangles and of generalized quadran-
gles are of primary interest in the next chapter. However, the incidence matrices
of generalized hexagons and generalized octagons are likely useful and a good
source of future research.

The next de�nition de�nes a subclass of generalized triangles. We will use
the incidence matrix of this subclass of generalized triangles in the next chapter.
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De�nition 34 (Finite Projective Planes). Let q be a prime number. A �nite
projective plane of order q is a generalized triangle of order (q, q).

A �nite projective plane of order q is also a ( q2 + q + 1q+1 , q
2 + q + 1q+1)

con�guration with the property that every two lines are also incident with
exactly one point. Similarly, its incidence matrix is also the incidence matrix
of a S(2, q + 1, q2 + q + 1) Steiner system. The Fano plane is an example of a
�nite projective plane of order 2.

Large Girth is a Su�cient Condition Consider the Levi graph G of a
�nite generalized n-gon. SinceG has girth 2n, we claim this makesG sparse and
highly connected. We make this claim by showing that the local structure of G
is sparse and highly connected and then we conjecture that this must e�ect the
way larger portions of the graph must behave. We take this approach because
it is not obvious on how to do this deterministically. However, in the next
chapter we will present a few ways one might be able to approximate how this
in a more rigorous way for similarly de�ned graphs.

First, we consider the connectivity properties of G by considering its ex-
pansion properties. Consider a subset S of n − 1 left vertices. Then a cycle
cannot exist in the induced subgraph G[S ∪ R(S)], since this would require n
left vertices. Intuitively, this implies that the right vertices of S cannot be too
bunched together. That is, |R(S)| must be large. Even though this is for a
relatively small subset of left vertices, this does have an impact on how the
size of |R(S)| scales as the subset of s left vertices increases. For larger subsets
of left vertices, it is conjectured that the expansion of G is dependent on the
number of cycles that can exist in G[S ∪R(S)].

Next, we consider the sparsity of G. Consider a cycle C of length 2n. Since
girth(G) = 2n, no more edges can exist with both ends in this cycle in the
graph G. Since there are n2 edges that can exist in a bipartite graph with n
left vertices and n right vertices, we have shown

ρ(C) =
2n

n2
=

2

n
.

Thus,

ρ(G) ≤ 2

n
.

This bound is not great because this does not prove that the graph is very
sparse. However, when we consider that the fact that there are many cycles
of length 2n in G, this implies that we end up deleting at most 2/n edges for
each cycle.

Notice that it is not shown here to be necessary here for a left regular graph
to have large girth. It could be possible to build a lossless expander graph with
small restricted expansion constant where the girth of the graph is not a factor.

Finite Generalized Polygons are Still not Desirable. There are some
negative qualities of using the Levi graph of a �nite generalized n-gon as a
lossless expander graph in compressed sensing. The �rst of which is that they
are very rigid in their construction, so they are poor at adapting to di�erent
situations with di�erent sparsity or di�erent vector length. The second being
that many of the constructions of �nite generalized n-gons that exist do not
have m� N . We will handle this problem in the next chapter.



9 Explicit Constructions of Two In�nite

Families of Biregular Graphs

Last chapter we took a very general approach to the quadratic bottleneck
problem and laid out many classes of similar discrete structures whose Levi
graph may be used as a lossless expander graph. In this chapter, we commit to
one of these approaches. The approach used in this chapter has been chosen
for two reasons. The �rst of which is because of its nice algorithmic properties
which will be discussed in the third part of this thesis. The second reason is
because we can de�ne two very similarly de�ned classes of matrices that, after
some numerical testing, we can conjecture have very di�erent reconstruction
guarantees.

In the �rst section, we de�ne these two classes of biregular graphs as well
as present some immediate facts of their immediate properties. In the second
section, we de�ne some of the structure of these graphs. Then, we demonstrate
a necessary condition on the sparsity of a vector for sparse recovery to be
possible. In the third section, we prove the girth of the constructions are not
small and prove that these graphs are the Levi graphs of con�gurations. In the
�nal section, we show the constructions relationship to generalized polygons.

9.1 The Two Constructions

For both of the constructions, we will need to use the following notation. If p
is a prime number, then de�ne the set P := {0, . . . , p− 1}. Similarly, if d is a
natural number, then de�ne the set D := {0, . . . , d− 1}.

First Construction ([23] and [22], Def 1). Let p be a prime number and d

be an integer such that 2 ≤ d ≤ p. De�ne the biregular graph G
[1]
p,d in the

following way. Label the left vertices by the ordered pairs of P × P and label
the right vertices by the ordered pairs of D×P . A left vertex (x, y) is adjacent
to a right vertex (a, b) if and only if

y = ax+ b (mod p).

When the parameters d and p are not relevant to the discussion, we abbreviate
the notation by G[1].

Notice that G
[1]
p,d is indeed a biregular graph. To see this, let (x, y) be an

arbitrary left vertex. Then for any a ∈ D, there exists a unique b ∈ P such
that b = y − ax (mod p). Since the cardinality of D is d, this implies that

42
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every left vertex has degree d. A similar argument can be made for the right
vertices.

Second Construction ([23] and [22], Def 2). Let p be a prime number and

d be an integer such that 2 ≤ d ≤ p. De�ne the biregular graph G
[2]
p,d in the

following way. Label the left vertices by the ordered triples P × P × P and
label the right vertices by the ordered triples D×P ×P . A left vertex (x, y, z)
is adjacent to a right vertex (a, b, c) if and only if

y = ax+ b (mod p) and z = ay + c (mod p).

When the parameters d and p are not relevant to the discussion, we abbreviate
the notation by G[2].

Similarly, we can observe that G
[2]
p,d is indeed a biregular graph. Let (x, y, z)

be an arbitrary left vertex. Then for any a ∈ D, there exists a unique b ∈ P
such that

b = y − ax (mod p).

Solving for y in the previous equation implies that there exists a unique c such
that

c = ay − z (mod p).

Since the cardinality of D is d, this implies every left vertex has degree d. The
same argument holds for the degrees of the right vertices.

The proofs for the G[1] and G[2] usually depend on the linear equations in
their de�nitions. Since the two constructions are so similar in their de�nition,
many of their proofs are identical. In this case, we will not be redundant and
list the same argument twice.

Notice that the parameters 2 ≤ d ≤ p in both the G
[1]
p,d and G

[2]
p,d determine

the number of rows m and the number of columns N of its corresponding

bipartite adjacency matrix. In G
[1]
p,d, we have m = dp since there are dp right

nodes and N = p2 since there are p2 left nodes. In G
[2]
p,d, we have m = dp2

and N = p3 which follows from the same reasoning. When we talk about the

bipartite adjacency matrices of G
[1]
p,d and G

[2]
p,d, we will not mention this fact

every time.
Notice that it follows from the dimensions of the adjacency matrices that

for any given parameters 2 ≤ d ≤ p, the number of vertices in G
[2]
p,d is much

larger than the number of vertices in G
[1]
p,d. This shows that even though the

adjacency conditions of these two constructions are very similar, these two
graphs have very di�erent properties. However, one of their similarities is that
both constructions have the same left and right degrees. Intuitively, this implies

G
[2]
p,d is much sparser then G

[1]
p,d. Indeed, we have

ρ(G
[1]
p,d) =

d

dp
=

1

p
and ρ(G

[2]
p,d) =

d

dp2
=

1

p2
.

9.2 Necessary Condition for Sparse Recovery

Figures 9.1 and 9.2 are examples of the bipartite adjacency matrices of the
�rst and second construction with small parameters p and d. These �gures are
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included because the adjacency conditions alone do not provide much intuition
of the behavior of the graph.

Figure 9.1: Bipartite Adjacency Matrix of G
[1]
7,4

Figure 9.2: Bipartite Adjacency Matrix of G
[2]
3,2

The lines partitioning the matrices demonstrate some of the structure of
the graphs and their bipartite adjacency matrices. The next de�nition makes
these partitions clear.

De�nition 35 (Blocks). Let p be a prime number and d be an integer such

that 2 ≤ d ≤ p. Let G denote the graph G
[1]
p,d or the graph G

[2]
p,d. For any

x ∈ P , the left vertex block Lx of G is the set of left vertices that have x as
its �rst coordinate. If A is the bipartite adjacency matrix of G then the set of
column vectors of A corresponding to the left vertices in the left vertex block
Lx is called the column block corresponding to Lx. Likewise, for any a ∈ D,
the right vertex block Ra of G is the set of all right vertices that have a as its
�rst coordinate. The set of row vectors corresponding to the right vertices in
the right vertex block Ra is called the row block corresponding to Ra.
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In the �gures, the partitioned column vectors denote the column blocks and
the partitioned row vectors denote the row blocks. With these de�nitions, we
can obtain a �rst result that is relevant to compressed sensing.

Theorem 19. Let p be a prime number and d be an integer with 2 ≤ d ≤ p.

If A is the bipartite adjacency matrix of G
[1]
p,d then

spark(A) ≤ 2p.

Similarly, if A is the bipartite adjacency matrix of G
[2]
p,d then

spark(A) ≤ 2p2.

Proof. Let A be the bipartite adjacency matrix of G
[1]
p,d. Denote the column

block corresponding to the left vertex block Lx by Ax, for any x ∈ P . Note
that there are p left vertices in Lx since

{x} × P

has p elements. Denote 1n by the column vector of ones of length n and denote
0n by the column vector of zeros of length n. It can be veri�ed that

Ax1p = 1m.

Next, de�ne the vector

z := [1p;−1p;0p; . . . ;0p].

Then
Az = 0.

Since ‖ z ‖0 = 2p, we have
spark(A) ≤ 2p.

This proves the �rst part of the theorem. A similar argument for the bipartite

adjacency matrix A of G
[2]
p,d can be made with the only change being that every

column block has the length p2 instead of p. This implies that

spark(A) ≤ 2p2,

which proves the second part of the theorem.

Using theorem 2 and theorem 19, we obtain a necessary condition on re-
covery of s-sparse vectors.

Theorem 20. Let p be a prime number and d be an integer with 2 ≤ d ≤ p.
Let x be an s-sparse vector. If A is the bipartite adjacency matrix of the graph

G
[1]
p,d (the graph G

[2]
p,d) and x is the unique s-sparse solution of Az = y where

y = Ax, then the sparsity must satisfy s < p ( s < p2).

Proof. Suppose A is the bipartite adjacency matrix of G
[1]
p,d and x is the unique

s-sparse solution Az = y with y = Ax. Then theorem 2 and theorem 19 implies

2s < spark(A) ≤ 2p.

This implies s < p, which completes the �rst part of the proof. The second
part of the proof follows from the same argument, so the proof is complete.
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This does not imply we obtain unique recovery for all s < p and s < p2,
respectively. That is, we cannot guarantee unique recovery for every s that
satis�es these bounds. Notice that the necessary condition for the second con-
struction is much larger then the necessary condition of the �rst construction.

9.3 Girth of G[1] and G[2]

Next, motivated by the discussion at the end of the previous chapter, we eval-
uate the girth of the two constructions.

Theorem 21 ([23] and [22]). Let p be a prime number and d be an integer

with 2 ≤ d ≤ p. Then girth(G
[1]
p,d) = 6 and girth(G

[2]
p,d) = 8

Proof. First consider the graph G
[1]
p,d. Since G

[1]
p,d is a simple bipartite graph,

only cycles of even length greater then 2 can exist. Suppose there exists a cycle
of 4. Then there exists distinct right vertices (a, b) and (a′, b′) both adjacent to

two distinct left vertices (x, y) and (x′, y′). By the de�nition of G
[1]
p,d, we have

the following equations

y = ax+ b y = a′x+ b′ y′ = ax′ + b y′ = a′x′ + b′ (mod p).

By solving these equations for x and x′, we obtain

x = (a− a′)−1(b′ − b) = x′ (mod p).

Substituting x = x′ into the original equations give us

y = ax+ b = ax′ + b = y′ (mod p).

Therefore, every pair of right vertices have a unique left vertex in common.

This implies a cycle of length 4 can't exist in G
[1]
p,d. Next, consider the left

vertices (0, 0), (3, 0), and (1, 1) and the right vertices (0, 0), (2, 4), and (1, 0).
Substituting these vertices into the adjacency condition of G demonstrates that
this is a cycle of length 6. Therefore,

girth(G
[1]
p,d) = 6.

Next, consider the graph G
[2]
p,d. Since the adjacency condition of G

[2]
p,d is the

adjacency condition of G
[2]
p,d with an additional linear equation to be satis�ed,

this shows that
girth(G

[2]
p,d) ≥ 6.

For the rest of this proof, if two vertices v1 and v2 are adjacent, then we
will denote this by v1 ∼ v2. Let (x, y, z) be an arbitrary left vertex and (a, b, c)
be an arbitrary right vertex such that (x, y, z) � (a, b, c). Suppose that there
exists a path of length 3 in between (x, y, z) and (a, b, c). If we can show that
this path must be the unique path of length 3 in between (x, y, z) and (a, b, c),
then we have shown

girth(G
[2]
p,d) ≥ 8.

This is because a cycle of length 6 would require two paths of length 3 in
between (x, y, z) and (a, b, c). Since we have assumed that there exists a path
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of length 3, we can assume that there exists a right vertex (e, f, g) and a left
vertex (u, v, w) such that

(x, y, z) ∼ (e, f, g) ∼ (u, v, w) ∼ (a, b, c).

By the de�nition of G
[2]
p,d, we have

y = dx+ e and z = dy + f (9.1)

v = du+ e and w = dv + e (9.2)

v = au+ b and w = av + c. (9.3)

We count all of the paths of length 3 that can exist between (x, y, z) and
(a, b, c). The variables x, y, z, a, b, and c must remain �xed and the variables
e, f, g, u, v, and w can take on any set of values that are consistent with the
above equations.

Let e and u vary. Then it follows form equation (9.1) and equation (9.2)
that d is a bijective function of e and v is a bijective function of u. We can
denote these functions by d = ψ(e) and v = ϕ(u). Then it follows from equation
(9.2) that

ϕ(u) = v = du+ e = ψ(e)u+ e

Since the functions ϕ and ψ are bijective, there exists only one choice of e and
u that satis�es this equation. By applying this procedure to the pairs f, v and
g, w of variables, we show that there is only one choice of e, f, g, u, v, and w
that satis�es the equations (9.1), (9.2), and (9.3). Therefore, the path of length
3 in between (x, y, z) and (a, b, c) is unique and we have shown that

girth(G
[2]
p,d) ≥ 8.

By substituting the left vertices (0, 0, 0), (1, 0, 0), (0, 1, 1) and (1, 1, 0) and the
right vertices (0, 0, 0), (1, 1, 1), (0, 1, 1), and (−1, 0, 0), where −1 is the additive
inverse of 1 in mod p, into the adjacency condition of G

[2]
p,d, we see that these

vertices form a cycle of length 8. Thus,

girth(G
[2]
p,d) = 8

and the proof is complete.

Theorem 21 and theorem 17 gives us the following corollary.

Corollary 1. Let p be a prime number and d be an integer with 2 ≤ d ≤ p. If
A is the bipartite adjacency matrix of the graph G

[1]
p,d or the graph G

[2]
p,d, then

A is the incidence matrix of a (mp, Nd) con�guration.

The next theorem follows directly from the previous corollary.

Theorem 22. Let p be a prime number and d be an integer with 2 ≤ d ≤ p.

Let A be the bipartite adjacency matrix of the graph G
[1]
p,d or the graph G

[2]
p,d.

If we `2-normalize the columns of A by multiplying every entry of A by 1/
√
d,

then the coherence satis�es

µ(A) = max
1≤i<j≤N

〈
ai√
d
,
aj√
d

〉
=

1

d
.
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FAMILIES OF BIREGULAR GRAPHS

Theorem 22 will be used in later sections to prove an approximation for
the restricted expansion constant of the bipartite adjacency matrix of both the

graph G
[1]
p,d and the graph G

[2]
p,d.

9.4 G[1] and G[2] Relationship to Generalized Polygons

We now ask the question if either of these constructions are �nite generalized
polygons. In both of these situations, this turns out not to be the case. We
prove this in the next theorem.

Theorem 23. Let p be a prime number and d be an integer with 2 ≤ d ≤ p.

Then the graphs G
[1]
p,d and G

[2]
p,d are not Levi graphs of �nite generalized polygons.

Proof. Let G := G
[1]
p,d. Since girth(G) = 6, it only makes sense to check if

G is the Levi graph of a �nite generalized triangle. We proceed with a proof
by contradiction. Suppose G is the Levi graph of a �nite generalized triangle.
Recall that the Levi graph of a �nite generalized triangle has diameter 3. This
implies that every pair of vertices in G are vertices in a cycle of length 6. Since
d ≤ p, there exists a pair of vertices that are not in a cycle of length 6. This is

a contradiction. Therefore, G is not a �nite generalize triangle. Proving G
[2]
p,d

is not a generalized quadrangle is identical to the proof for the �rst part of the
theorem. This completes the proof.

This theorem actually turns out to be a positive result. Recall the advan-
tages and the disadvantages of using �nite generalized polygons at the end of
the previous chapter. We claimed that a graph with large girth is a su�cient
condition for a good lossless expander graph. Since the girth of G[1] is equal
to the girth of the Levi graph of a generalized triangle, we deduce that the
reconstruction properties of G[1] scale about as well as that of the Levi graph
of a �nite generalized triangle. Similarly, since the girth of G[2] is equal to the
girth of the Levi graph of a generalized quadrangle, we deduce that the recon-
struction properties of G[2] scale about as well as that of the Levi graph of a
�nite generalized quadrangle. Moreover, we conjecture that the reconstruction
properties of G[2] is better then the reconstruction properties of G[1] since

girth(G[2]) > girth(G[1])

The disadvantages of using �nite generalized polygons is that they are rigid
in their construction. However, G[1] and G[2] are very �exible. This is because
we can change the number of rows the bipartite adjacency matrix and keep
the number of columns �xed by just changing the value of the left degree d.
Also recall the disadvantage that generalized n-gons only exist for n = 3, 4, 6,
and 8. It is possible that classes of graphs similar to G[1] and G[2] exist and
have larger girth. This shows that G[1] and G[2] avoids the disadvantages of
generalized polygons while preserving the bene�ts.

Here we will show that the bipartite adjacency matrix of G[1] is the subma-
trix of the incidence matrix of a �nite projective plane. We demonstrate this
in the next theorem by constructing the incidence matrix of a �nite projective
plane from the bipartite adjacency matrix of G[1].
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Theorem 24. Let p be a prime number and d be an integer with 2 ≤ d ≤ p.

Then the bipartite adjacency matrix A of the graph G
[1]
p,d is the submatrix of the

incidence matrix of a �nite projective plane of order p.

Proof. Let B be the bipartite adjacency matrix of Gp,p. If I is the identity
matrix of order p and 1 is the column vector of p ones, then de�ne the matrix

C := I ⊗ 1,

where ⊗ is the Kronecker product. Let E be the square matrix of order p+ 1
de�ned by

ei,j =

{
1, if i = p+ 1 or j = p+ 1

0, otherwise.

Then the matrix

D :=

[
B C
CT E

]
is the incidence matrix of an �nite projective plane of order p. Since A is the
�rst dp rows of B and B is a submatrix of D, it follows that A is a submatrix

of D. Therefore, the bipartite adjacency matrix A of the graph G
[1]
p,d is the

submatrix of the incidence matrix of a �nite projective plane of order p.

We will provide an example of theorem 24. Let p = 5 and d = 3. Then the
following is a �gure of the incidence matrix D of a �nite projective plane of

order 5. Then the bipartite adjacency matrix A of G
[1]
5,3 is the top left submatrix

outlined in red and the submatrices B,C, and E are outlined in green in the
following �gure.

Figure 9.3: Bipartite Adjacency Matrix of G
[1]
5,3
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FAMILIES OF BIREGULAR GRAPHS

The bipartite adjacency matrix of G[2] is likely to be the incidence matrix
of a generalized quadrangle. However, a proof like the one for G[1] in theorem
24 has not yet been obtained. Nevertheless, we make the following conjecture.

Conjecture 1. Let p be a prime number and d be an integer with 2 ≤ d ≤ p.

Then the bipartite adjacency matrix A of the graph G
[2]
p,d is the submatrix of the

incidence matrix of a generalized quadrangle.



10 Computing θs of G
[1] and G[2]

In this chapter, we discuss the restricted expansion constants of the construc-
tions and then derive su�cient conditions on the number of columns required.
We �rst do this by using the coherence. Following this, we consider using the
adjacency conditions to compute the restricted expansion constant. How we
would proceed with an approach like this is not clear, if it is even computable
at all. Because of this, we follow up on the conjectures made in the previous
chapters that the girth of the graph is su�cient for computing the restricted
expansion constant, at least for small order. We then use these results to pro-
vide a strategy for computing larger order restricted expansion constants. This
analysis has not been carried out yet so at this point it is just an approach for
future research. Finally, we provide some empirical results. These empirical
results are not proof, but they do turn out to be interesting.

10.1 Initial Approximation Provided by the Coherence

We start by �nding an approximation θ for θ2s by using the coherence of both
of the constructions.

Theorem 25 ([18], Ex 13.2). Let p be a prime number and d be an integer

with 2 ≤ d ≤ p. Let A be the adjacency matrix of the graph G
[1]
p,d or the graph

G
[2]
p,d. For any sparsity s, the restricted expansion constant θ2s satis�es

θ2s ≤
2s− 1

2
µ(A) =

2s− 1

2d
,

where µ(A) is the coherence of the `-normalized columns of A.

Proof. Recall from theorem 22, that µ(A) = 1/d. In terms of the bipartite
matrix, this implies that every pair of left vertices have at most one right
vertex in common. This gives us,

|R(v1, v2)| ≥ 2d− 1 for any distinct v1, v2 ∈ L.

By generalizing this to every pair of a subset of 2s left vertices, we obtain

|R(S)| ≥ 2sd−
(
2s

2

)
for any S ⊂ L with |S| ≤ 2s.

Using this bound, we solve for an approximation θ of θ2s by solving for θ in
the equation

(1− θ)2sd = 2sd−
(
2s

2

)
.

51
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This is precisely

θ2s ≤ θ =
2s− 1

2d
=

2s− 1

2
µ(A),

which proves the theorem.

Suppose we want to uniquely recover any sparse vector of a given length.
Then, of course, we cannot manipulate the length of the vector or its sparsity.
So the number of columns of the measurement matrix must remain �xed. How-
ever, if we have some knowledge of the sparsity of the vector, then it would be
convenient to be able to easily change the number of rows of the measurement
matrix. The bipartite adjacency matrices of G[1] and G[2] satisfy this property.
In other words, suppose the number of columns N = p2 and the sparsity of the
vector s is �xed. Then p is �xed and the number of rows m = dp is a function
of the left degree d. We formalize this process in the next theorem.

Theorem 26. Let p be a prime number. Suppose x is an arbitrary s-sparse
vector of length N = p2. Then x is the unique solution of basis pursuit with
measurement vector y = Ax if the measurement matrix A is the bipartite adja-

cency matrix of the graph G
[1]
p,d or the graph G

[2]
p,d with the left degree d satisfying

6s− 3 < d ≤ p.

Proof. By the de�nition of the G
[1]
p,d, we have d ≤ p. Recall from theorem 25

that

θ2s ≤
2s− 1

2d
.

Also recall from theorem 13 that every s-sparse vector is the unique solution of
basis pursuit if θ2s < 1/6. Thus, for x to be unique solution of basis pursuit,
we must choose the degree d so that

2s− 1

2d
<

1

6

holds. This is if and only if

6s− 3 < d

which proves the theorem.

Since we always want to minimize the number of rows m, if we are limited
to the bound in the previous theorem then it is always the best choice to pick
the left degree

d = (6s− 3) + 1 = 6s− 2.

The �exibility of the bipartite adjacency matrices of G[1] and G[2] can be com-
pared to the incidence matrix of a �nite generalized polygon, which, as we have
stated several times before, is very rigid in its construction.

The next theorem con�rms the fact that if we are limited to using the
coherence of the bipartite adjacency matrix A of G[1] or G[2], then we cannot
prove that A is a solution to the quadratic bottleneck problem. This result is
not exactly interesting since it comes after discussion in chapter 4. What is
interesting is that G[2] appears to scale terribly if we just look at the coherence.
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Theorem 27. Let p be a prime number, s be a positive integer, and d be an

integer such that d > 6s − 3. If A is the bipartite adjacency matrix of G
[1]
p,d,

then every s-sparse vector is recovered from basis pursuit with the measurement
vector y = Ax if

m ≥ Cs2,

for some constant C > 0. Similarly, If A is the bipartite adjacency matrix

of an G
[2]
p,d, then every s-sparse vector is recovered from basis pursuit with the

measurement vector y = Ax if

m ≥ Cs3,

for some constant C > 0.

Proof. Since we have assumed the left degree d satis�es d > 6s − 3, theorem
26 implies that every s-sparse vector is recovered from basis pursuit with the

measurement vector y = Ax. Since G
[1]
p,d has m = dp rows, m must satisfy

m = dp ≥ d2 ≥ (6s− 2)2 ≥ Cs2,

for some constant C > 0. Since G
[2]
p,d has m = dp2 rows, m must satisfy

m = dp2 ≥ d3 ≥ (6s− 2)3 ≥ Cs3,

for some constant C > 0. This completes the proof.

10.2 Solving Systems of Linear Equations to Find θs

Consider the graph G
[1]
p,d. That is, the left vertex (x, y) is adjacent to the right

vertex (a, b) if and only if

y = ax+ b (mod p).

Technically, we can obtain the smallest set of right vertices of any set of s left
vertices by solving a system of these equations. However, this approach has
many problems. First of all, we can only have integer solutions. Next, these
solutions must all be distinct. Third, we would need to compute a system of(
s
2

)
equations (one for each pair of left nodes to see if they have a right node

in common). Fourth, since both the �rst coordinates a and x are unknown,
it appears we may need matrix completion as well, also with distinct integer
solutions. These problems only get worse when we consider this approach for

the graph G
[1]
p,d.

Even though the simplicity of the adjacency condition seems like it could
provide a way to compute θs, this seems like a misguided approach with a little
bit of thought. By considering the di�culties of this problem, this shows the
di�culties of computing the restricted expansion constant, not just in general,
but also for a speci�c family of graphs. Because of these di�culties, we will
not pursue this approach any further.
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10.3 Explicitly Computing θs for Small s of G
[1] and G[2]

The girth of theG[1] andG[2] is su�cient for computing the restricted expansion
constant of small order. We �rst consider G[1].

Theorem 28. Let A be the bipartite adjacency matrix of the graph G
[1]
p,d with

the parameters 2 ≤ d ≤ p. Then the restricted expansion constant of order 3 is

θ3 =
1

d

Proof. Recall that, for any subset S of left vertices, the value of |R(S)| is
determined by the number of nonzero rows of AS . Since the girth of G

[1]
p,d is

6, this implies that the densest submatrix of 3 columns of A is the bipartite
adjacency matrix of a cycle of length 6. Let the matrix

D :=

1 1 0
1 0 1
0 1 1

 .
be such a matrix. We can use this submatrix to �nd θ3. Let S be a subset of
columns of A so that a matrix similar to D is a submatrix of As. Then there
is exactly 3 + 3(d− 2) = 3d− 3 nonzero rows of AS . Thus

|R(S)| ≥ 3d− 3 for all S ⊂ [N ] with |S| = 3.

Recall that proving

|R(S)| ≥ (1− θ)d|S| for all S ⊂ [N ] with |S| = s

does not imply the restricted expansion property

|R(S)| ≥ (1− θ)d|S| for all S ⊂ [N ] with |S| ≤ s

holds. Thus, at this point we can only conjecture that θ3 satis�es

(1− θ3)3d = 3d− 3.

This is if and only if

θ3 =
1

d
.

However, since θ1 = 0 holds and it follows from theorem 25 that

θ2 =
1

2d

holds, we have

0 <
1

2d
<

1

d
.

This implies that the conjectured value for θ3 satis�es

θ1 < θ2 < θ3.

Therefore, we have shown

|R(S)| ≥
(
1− 1

d

)
d|S| for all S ⊂ [N ] with |S| ≤ 3.

This completes the proof.
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The conclusion of this theorem is not interesting. To see why this is, it
follows from theorem 25 that θ3 satis�es

θ3 ≤
3− 1

2d
=

1

d
.

Thus the only new information we receive from the previous theorem is that
equality holds. The more important result of this theorem is the proof tech-
nique of using the girth of the graph to compute the restricted expansion con-
stant. In the next theorem, we consider this proof technique for G[2] and the
results prove to be much more interesting.

Theorem 29. Let A be the bipartite adjacency matrix of the graph G
[2]
p,d with

the parameters 2 ≤ d ≤ p. Then the restricted expansion constant of order 3 is

θ3 =
2

3d

and the restricted expansion constant of order 4 is

θ4 =
1

d
.

Proof. Since the girth of G
[2]
p,d is 8, this implies that the densest submatrix of

4 columns of A is the bipartite adjacency matrix of a cycle of length 8 such as

D :=


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 .
We use this matrix to �rst �nd θ3 and then �nd θ4. Let S be a subset of 3
columns of A so that any 3 columns of the matrix D is a submatrix of As.
Then there is exactly 4 + 3(d− 2) = 3d− 2 nonzero rows of AS . This implies

|R(S)| ≥ 3d− 2 for all S ⊂ [N ] with |S| = 3.

Thus, we conjecture that θ3 satis�es

(1− θ3)3d = 3d− 2.

This is if and only if

θ3 =
2

3d
.

We now move on to conjecturing the value for θ4. Let S be a subset of 4
columns of A so that any matrix similar to D is a submatrix of AS . Then
there is exactly 4 + 4(d− 2) = 4d− 4 nonzero rows of AS . Thus,

|R(S)| ≥ 4d− 4 for all S ⊂ [N ] with |S| = 4.

We conjecture that θ4 satis�es

(1− θ4)4d = 4d− 4.
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This is if and only if

θ4 =
1

d
.

We now prove that both of the conjectured values of the θs do indeed hold for
all subsets smaller then s. Since

0 <
1

2d
<

2

3d
<

1

d

holds, we have

θ1 < θ2 < θ3 < θ4.

Therefore, the restricted expansion constants hold for these values.

Notice that for even very small sparsities, we see a di�erence between the
bipartite adjacency matrices of G[1] and the bipartite adjacency matrices of
G[2]. What is signi�cant about G[2] is that it appears that it could scales
better then the approximation of θs provided by the coherence in theorem 25.
Precisely, we have

θ3 =
2

3d
<

1

d
=

3− 1

2d

and

θ4 =
1

d
<

3

2d
=

4− 1

2d
.

Counting Cycles Let G denote either the graph G[1] or the graph G[2] and
let g = girth(G). Consider any subset S of s left vertices of G. What is the
maximum number of cycles of length g that can exist in the induced subgraph
G[S ∪ R(S)] with out having any cycles of length less then g? Once we have
this, we have an approximation on the bound of |R(S)|. The reason for this is
because the number of right vertices is reduced as the more cycles exist. Thus,
obtaining the maximum number of cycles gives us a lowerbound on |R(S)|.

Fortunately, this question looks like it is answerable. Tools from extremal
graph theory may prove very useful in this situation.

10.4 Empirical Results of θs for Large s of G
[1] and G[2]

This section does not provide proof of the actual values of θs, nor an approxi-
mation θ. The purpose of this section is to show how the bipartite adjacency
matrix A of G[1] and G[2] work in practice.

How the Procedure is Chosen Recall again that for any subset S of left
vertices, the value of |R(S)| can be obtained from A by counting the number
of nonzero rows of AS . More precisely, we have

|R(S)| = ‖AS1 ‖0 for all S ⊂ [N ].

This provides us with a relatively cheap way of computing the number of right
vertices of a given subset of left vertices. Also recall that the bipartite adjacency
matrix satis�es the robust null space property of order s

2 if θs < 1/6.
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We cannot check every possible subset of s columns of A because that would
take

(
N
s

)
computations of ‖AS1 ‖0. However, we can take a very small set T

of s-subsets of [N ] at random and claim that if there exists an S ∈ T with

‖AS1 ‖0 ≯ (1− 1/6) sd,

then

1/6 ≯ θs > . . . θN .

Thus, A cannot satisfy the robust null space property of order greater than or
equal to s. In this case, we must increment the left degree d and try again.
Otherwise, if we show that

‖AS1 ‖0 > (1− 1/6) sd for every S ∈ T,

then it is still possible that A does not satisfy the robust null space property.
With this in mind, it is still worth pursuing this empirical approach. We can
still �nd out if the bipartite adjacency matrix of G[1] or the bipartite adjacency
matrix of G[2] is not a solution of the quadratic bottleneck problem. We do
this by considering the following.

Suppose we take a random subset T of s-subsets of [N ] and we have

‖AS1 ‖0 > (1− 1/6) sd for every S ∈ T.

With the concerns from the previous paragraph in mind, suppose that for the
choice of parameters 2 ≤ d ≤ p, the matrix does actually satisfy the robust
null space property of order s. Then, we can use these parameters to calculate
the constants C in the quadratic bottleneck

m ≥ Cs2

and the optimal bound

m ≥ Cs log (N/s)

By taking these values over an interval of sparsities s, then we can obtain
empirical results on how the number of rows required scales as s increases.
There are two main cases that can occur:

1. If the constant for the optimal bound becomes arbitrarily large as the
sparsity s increases, then it is likely that the bipartite adjacency ma-
trix of this graph does not satisfy the optimal bound and the quadratic
bottleneck still holds.

2. If the constant for the quadratic bottleneck bound approaches 0 as s
increases and the constant for the optimal bound does not increase to
rapidly, then it is likely that the bipartite adjacency matrix of this graph
is an actual solution of the quadratic bottleneck problem.

Note that if we are convinced that the second case holds for the bipartite
adjacency matrix of either G[1] or G[2], then this does not constitute proof and
we are not claiming this here. We would still need to carry out the analysis
described in the previous sections of this chapter.
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The Procedure We will use the discussion from the �rst part of this section
as a guide and chose concrete parameters to test on. First we choose the length
of the sparse vector to be recovered by selecting prime numbers for both of the

constructions. Note that if we use the same prime p in G
[1]
p,d and G

[2]
p,d, then

the bipartite adjacency matrix of G
[2]
p,d will be much larger then G

[1]
p,d. This

approach does not make much sense so instead we take the vector length N to
be approximately 50000. Then we choose the prime of the �rst construction to
be p1 = 223 and the prime of the second construction to be p2 = 37 since

2232 = 49729 ≈ 50000 ≈ 50653 = 373.

We start with the degree d = 2. For every s = 10, 15, . . ., we take the set T to
be 10000 random s-subsets of the columns of both of the bipartite adjacency
matrices. Notice that since

10000(
N
s

) ≈ 10000(
50000
s

) ≈ 0,

the number of subsets we have chosen is very small in comparison to all the
possible subsets. If there exists an S ∈ T with

‖AS1 ‖0 ≯ (1− 1/6.2) sd,

then
1/6 ≯ θs > . . . θN

so the robust null space property of order s is not satis�ed. In this case we
increment d by one, then iterate this process again. Otherwise, if

‖AS1 ‖0 > (1− 1/6.2) sd for every S ∈ T,

then we store values s and d. Once we obtain d = p, we stop this process
and then compute the constants in the quadratic bottleneck and the optimal
bound. Notice that we chose the denominator to be 6.2 instead of 6. This
provides us with some extra certainty that the robust null space property does
indeed hold. The results are plotted in the �gures on page 59.

Results There are several observations we can make from the plots. First, the
bipartite adjacency matrix of G[1] appears to not be a solution of the quadratic
bottleneck problem. We make this claim because the constant C in the optimal
bound blows up to in�nity as s becomes larger. This is an unfortunate result.

However, the bipartite adjacency matrix of G[2] is shown to likely be a
solution to the quadratic bottleneck problem. Clearly, the constant C for the
quadratic bottleneck approaches 0 as s becomes larger. We also see that the
constant C for the optimal bound does increase a bit as s increases, but not at
a rate where we would conjecture that this bound does not hold.

We also observe that the bipartite adjacency matrix of G[2] is capable of
recovering much denser vectors than the bipartite adjacency matrix of G[1].
However, if the vector is very sparse, then the bipartite adjacency matrix of
G[1] is a better choice since the constant C is smaller. Since we are mostly
concerned with denser vectors, it appears the bipartite adjacency matrix of a
graph with larger girth is the better choice in practice.
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(a) Quadratic Bottleneck

(b) Optimal



11 Summary of Reference for Part Two

The de�nitions and theorems from chapter 6 were obtained from the graph the-
ory textbook [6]. This text covers many of the topics within graph theory and
is a good introduction to the theory. Similarly, the theorems and de�nitions
from chapter 8 were primarily obtained from the reference source for combina-
torial design theory [11]. This text is not a great introduction to combinatorial
design theory but it does have a very large collection of relevant material for
researchers who are familiar with the topics. Øyvind Ryan assisted me with
the proof of theorem 15.

A survey of expander graphs, including some information on lossless ex-
pander graphs, can be found in [20]. More information can be found in chapter
21 of the textbook [1]. This textbook also contains interesting complexity top-
ics such as derandomization, which was mentioned in the previous summary of
references.

The note on the restricted expansion constant in section 7.2 was motivated
by exercise 13.1 of [18]. Similarly, theorem 25 is an instantiation of exercise
13.2 of [18]. The fact that lossless expander graphs satisfy the robust null space
property �rst appeared in [4], but was later improved apon in [18].

Applying generalized polygons to compressed sensing is taken into the con-
sideration in [19]. In this paper, they compared their results to random lossless
expander graphs. Unfortunately, most of the literature that exists for lossless
expander graphs in the context of compressed sensing is for random construc-
tions. However, explicit constructions have been published, for example, in
[13].

The two explicit constructions were motivated by the paper [22], but origi-
nated in [23]. This is a paper written for the error correction coding community.
In the paper, they do not introduce a left degree d and always take the full
square p2 × p2 matrix. The existence of an 8-cycle we used in the proof of 21
was also an example 8 cycle from [22]. The de�nition of the row and column
blocks were also introduced from [22], however, we extended the de�nition to
left vertex blocks and right vertex blocks for our application.
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12 Linear Algebra Algorithms Optimized for

G[1] and G[2]

In Part 3 we will, we will see that the bipartite adjacency matrix of G[1] and the
bipartite adjacency matrix of G[2] have useful algorithmic properties. Specif-
ically, we never need to create the matrix in memory to multiply with it and
the multiplication itself requires few arithmetic operations. In this chapter, we
optimize common linear algebra algorithms, such as matrix-vector multiplica-
tion and the conjugate gradient method for these matrices. The linear algebra
algorithms presented in this chapter are the building blocks of the compressed
sensing recovery algorithms discussed in the next section. Matlab code has
been created in addition to this thesis which can be obtained for the reader if
requested.

12.1 Matrix-Vector Multiplication Algorithms

Due to the simplicity of G[1], we will only explicitly state how we handle matrix-
vector multiplication algorithms with its bipartite adjacency matrix. Since
G[2] is de�ned by applying an additional linear equation to the linear equation
in G[1], it should be clear how the matrix-vector multiplication algorithms
are generalized to the bipartite adjacency matrix of G[2]. We will list the
pseudocode for the algorithms stated in this chapter in Appendix A.

Throughout this section, we will assume the following notation. Let A be

the bipartite adjacency matrix of the graph G
[1]
p,d with parameters 2 ≤ d ≤ p.

Let v ∈ Cm and z ∈ CN be arbitrary vectors. In this section, we de�ne
optimized matrix-vector multiplication algorithms to compute Az, ATv, and
ATAz. If z or v is sparse, then the algorithms we de�ne here exploit the both
the sparsity of the vector and the sparsity of the matrix. Obtaining these
algorithms are of fundamental importance in compressed sensing because most
of the recovery algorithms iterate matrix-vector multiplication.

Computing v = Az.

Let j ∈ [N ] and i ∈ [m] be arbitrary indices. Let (x, y) of be the left vertex of

G
[1]
p,d corresponding with the index j and let (a, b) be the right vertex of G

[1]
p,d

corresponding to the index i. Observe that it follows from the de�nition of
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G
[1]
p,d that the matrix A is de�ned by

ai,j =

{
1, if y = ax+ b (mod p)

0, if y 6= ax+ b (mod p).

This implies the vector v = Az is de�ned by adding together speci�c entries
of z. If z is an s-sparse vector with the support set S, then we compute the
vector v by implementing the following.

Initialize: The vector v = 0.

Iterate: For each index j ∈ S,

1. Compute the corresponding left vertex (x, y) to j.

Iterate: For each (a, b) ∈ R((x, y))
a) Compute the corresponding index (i) to (a, b)

b) Update the vector v(i) = v(i) + z(j)

Since z is s-sparse, we have |S| = s. Since G
[1]
p,d is a d-left regular bipartite

graph, we have |R((x, y))| = d, for all left vertices (x, y). This implies that the
number of arithmetic operations required to compute v = Az is O(sd). Notice
that the input vector z does not need to be sparse. If the vector z is dense, then
this algorithm requires O(Nd) arithmetic operations which can be pretty slow
and be a problem if applied iteratively. However, for most applications, the
number of arithmetic operations on the order of sd is a useful property to have.
The pseudocode for this algorithm can be found the appendix as algorithm 1.

Computing z = ATv.

To compute the vector z = ATv, we essentially apply the same algorithm. The
main di�erence between this algorithm and the previous algorithm is that the

complexity is slightly di�erent. Since G
[1]
p,d is a p-right regular bipartite graph,

we have |N((a, b))| = p, for all right vertices (a, b). If v is s-sparse then the
number of arithmetic operations required to compute z = ATv is O(sp). The
pseudocode for this algorithm is found the appendix as algorithm 2.

Computing w = ATAz

The matrix-vector algorithm for w = ATAz is not necessary to de�ne, since
it can be obtained by composing the previous two algorithms. Nevertheless,
observe that

(ATA)j1,j2 = 〈aj1 ,aj2 〉 for any j1, j2 ∈ [N ].

For any indices j1 and j2 with corresponding left vertices (x1, y1) and (x2, y2),
respectively, we have

〈aj1 ,aj2 〉 =


d, if j1 = j2

1, if there exists right vertex (a, b) such that

(a, b) is adjacent to both (x2, y2) and (x1, y1)

0, otherwise.
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It follows from the adjacency condition of G[1] that a right vertex (a, b) is
adjacent to both (x1, y1) and (x2, y2) if

y1 = ax1 + b (mod p) and y2 = ax2 + b (mod p)

hold. Putting these two equations together implies

〈aj1 ,aj2 〉 = 1 if and only if ax1 − y1 = ax2 − y2 (mod p)

The algorithm to compute the vector w = ATAz follows by iterating through
all values of j1, j2 ∈ supp(z). The number of arithmetic operations to run
w = ATAz is O(s2d), where s is the sparsity of z. Notice that the number of
arithmetic operations required is marginally better than if we were to compose
the previous two algorithms rather than take this approach. Algorithm 3 in
the appendix provides pseudocode for this algorithm.

Bijective Functions Between the Indices of the Matrix and

the Vertices of G[1]

To compute the previous algorithms, we must de�ne a bijective relationship

between the indices of the columns of A and the left vertices of G
[1]
p,d, as well

as a bijective function between the row indices of A and the right vertices of

G
[1]
p,d. It is important to minimize the number of arithmetic operations required

to compute both directions of these bijective relationship because they will be
computed many times over the course of a matrix-vector multiplication. Since
the algorithms presented in this section are applied many times in compressed
sensing recovery algorithms, it is even more important to minimize the number
of required arithmetic operations.

Since the vertices of G
[1]
p,d are de�ned by ordered pairs, we correspond each

index j ∈ [N ] with the left vertex

(x, y) =

( ⌊
j − 1

p

⌋
, j − 1

)
(mod p).

To obtain the index that corresponds with the left vertex (x, y), we compute

j = xp+ y + 1.

Similarly, we correspond each index i ∈ [m] with the right vertex

(a, b) =

( ⌊
i− 1

p

⌋
, i− 1

)
(mod p).

To obtain the index that corresponds with the right vertex (a, b), we compute

i = ap+ b+ 1.

12.2 Least Squares Minimization Problem

For the next two sections we will assume the following. Let x be an arbitrary s′-

sparse vector. Let A be the bipartite adjacency matrix of the graph G
[1]
p,d or the
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bipartite adjacency matrix of the graph G
[2]
p,d with the parameters 2 ≤ d ≤ p.

Let y = Ax be the measurement vector of x. Many of the recovery algorithms
we will be discussing in the next chapter will require us to �nd a solution to

x] = argmin
z∈CN

{‖y−Az ‖2 | supp(z) ⊂ S}, (12.1)

for some S ⊂ [N ] with |S| = s ≤ s′. Equation (12.1) is the least squares
minimization problem over the support set S. If we have θ2s < 1/6, then the
robust null space property of order s is satis�ed. Then theorem 2 implies every
set of 2s-columns of A are linearly independent. It follows from theorems 8.4
and 8.5 of [24] that the least squares solution x] in (12.1) is unique and we can
obtain the least squares solution from the normal equations,

ATSASzS = ATSyS . (12.2)

One can solve the normal equations with a QR-decomposition of AS or solving

zS = (ATSAS)
−1ASyS .

However, both of these approaches are not desirable to use in this situation for
a variety of reasons. The latter option requires us to compute the inverse of
ATSAS , which is computationally expensive. The QR-decomposition requires us
to store the orthogonal matrix Q and the upper triangular matrix R. Similarly,
the latter option requires us to store the matrix (ATSAS)

−1. This implies that
in both cases we must now be concerned with memory constraints. Neither
of these approaches exploit the matrix-vector algorithms we de�ned in the
previous section. The next section describes an alternative method that avoids
these problems.

12.3 Conjugate Gradient Method

Since we have matrix-vector multiplication algorithms for A and AT , we can
solve the normal equations in (12.2) e�ciently. Rather then use a direct
method, such as one of the two presented above or Gaussian elimination, we will
be applying an iterative method called the conjugate gradient method. Much
can be said about the conjugate gradient method, but we will only mention
here what is necessary for the rest of the thesis.

The conjugate gradient method iteratively solves sparse positive de�nite
systems of linear equations. Since every set of 2s columns of A are linearly
independent, it follows from lemma 3.8 of [24] the matrix ATSAS is positive
de�nite. This implies we can apply the conjugate gradient method to solve

BSzS = bS ,

where BS := ATSAS and bS := ATSyS . To de�ne the conjugate gradient
method, we need the following de�nitions.

De�nition 36 (A-norm and A-inner product). Let A ∈ Rn×n be any positive
de�nite matrix. Then, for all x,y ∈ Rn, the A-norm of x is de�ned by

‖x ‖A :=
√
xTAx

and the A-inner product of x and y is de�ned by

〈x ,y 〉A := xTAy.
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Computation

To solve for the solution x] of BSzS = bS , we implement the following.

Initialize :

1. Choose a small tolerance ε > 0.

2. Choose a best initial guess x(0) of x.

3. Compute the residual

r(0) = BSx
(0)
S − bS .

Iterate: For each step n = 1, 2 . . .

1. Choose a step direction p(n) by

p(n) := r(n) −
n−1∑
i=0

〈 r(n) ,p(i) 〉BS

〈p(i) ,p(i) 〉BS

p(i).

2. Choose a step length α(n) by

α(n) :=

∥∥ r(n)
∥∥2

BS∥∥p(n)
∥∥2

BS

.

3. Update the n-th approximation x(n+1)

x
(n+1)
S := x

(n)
S + α(n)p(n).

4. Update the residual

r(n+1) := r(n) − α(n)BSp
(n).

Halt: If
∥∥ r(n+1)

∥∥ < ε

The slowest part of the conjugate gradient method is iteratively applying
algorithm 3 with the matrix BS . Notice that applying algorithm 3 to w = BSz
with T = supp(z) may be signi�cantly less expensive than the original O(s2d).
This is because we have to do arithmetic on t = |T ∩ S| indices. This shows
that w = BSz requires O(t2d) arithmetic operations.

If we apply the algorithms introduced in the �rst section of this chapter,
then at no point in this algorithm do we need to create or store a matrix.
When we call the conjugate gradient method in this context, we will denote
this function by

x] = CG(x(0),b, p, d, S).
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Convergence

The following theorem shows that the conjugate gradient demonstrates the rate
of convergence of the conjugate gradient method.

Theorem 30 ([24], Theorem 12.16). Let A be any positive de�nite matrix.
Then the n-th step of the conjugate gradient method satis�es∥∥x− x

(n)
∥∥
A∥∥x− x(0)
∥∥
A

≤ 2

(√
κ− 1√
κ+ 1

)n
,

where κ = λmax/λmin is the spectral condition number of A.

Since the matrix BS is a positive de�nite matrix, the inequality in theo-
rem 30 holds for every step of the conjugate gradient method. Theorem 30
demonstrates a couple of properties of the algorithm. First, since

√
κ− 1√
κ+ 1

< 1, (12.3)

we have

lim
n→∞

2

(√
κ− 1√
κ+ 1

)n
= 0. (12.4)

Therefore, the conjugate gradient method always converges. Observe that if
λmin relatively close in value to λmax, then the inequality (12.3) is close to
1. Thus, equation (12.4) approaches 0 at a slower rate and it follows that the
conjugate gradient method takes more iterations to complete. Unfortunately,
due to the nature of the construction of BS , it is not clear how to �nd a good
approximation of κ. This implies we can not say much about the exact rate of
convergence.

Next, suppose we have a bad initial estimate x(0) for x. Then
∥∥x− x(0)

∥∥
BS

is large and it follows from the inequality in 30 that the error of the n-th
estimate x(n) of x may be large. This problem we will actually be avoidable
and this will be made clear when we introduce compressed sensing recovery
algorithms.



13 Compressed Sensing Recovery Algorithms

with G[1] and G[2]

In this next chapter, we take a step back from the quadratic bottleneck prob-
lem and we discuss various compressed sensing recovery algorithms when the
measurement matrix is the bipartite adjacency matrix of G[1] or G[2]. In many
instances, the way we present the algorithms are easily generalized to general
measurement matrices, but this is not always the case.

13.1 Lossless Expander Graphs Relationship to the

Scaled Restricted Isometry Property in `1

Before we discuss the common compressed sensing recovery algorithms, we
de�ne a variation to the restricted isometry property that may be useful for
proving theoretical results about convergence. In Chapter 4 we introduced the
restricted isometry property for matrices with `2-normalized columns. This
does not translate well to the bipartite adjacency matrix of a lossless expander
graph. If we were to just relax the de�nition to allow for binary matrices, then
the paper [10] shows that the number of rows m cannot obtain the optimal
bound

m ≥ Cs log (N/s).

This shows that the restricted isometry property is an insu�cient measure
for us. Since many proofs in compressed sensing depend on the restricted
isometry property, this is an unfortunate property for binary matrices to have.
The variation of the restricted isometry property that we will use is called the
scaled restricted isometry property in `1. The main di�erence between these
two properties is that instead of `2-norm, we use the `1-norm and instead of
the restricted isometry constant δs, we use the restricted expansion constant
θs. It should be noted that it seems the scaled restricted isometry property in
`1 is far less common in the literature.

Before continuing we �rst need to introduce some notation and a lemma
whose proof can be found in lemma 13.4 of [18].

Lemma 3 ([18], Lemma 13.4). Let G be an (s, d, θ)-lossless expander graph.
Let S be any set of left vertices of G with |S| ≤ s. Denote the set of right
vertices of S with i left vertices in S by Ri(S). Then

|R1(S)| ≥ (1− 2θs)d|S|.

With this, we are ready to prove the main result of this section.
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Theorem 31 ([18], Ex 13.5). Let A ∈ {0, 1}m×N be the bipartite adjacency
matrix of an (s, d, θ)−lossless expander graph. Then A satis�es the scaled re-
stricted isometry property in `1

d(1− 2θ) ‖x ‖1 ≤ ‖Ax ‖1 ≤ d ‖x ‖1

for all s-sparse x ∈ CN .

Proof. Let x ∈ CN be an arbitrary s-sparse vector. We start with the upper
bound. The operator 1-norm is subordinate to the vector 1-norm, so we have

‖Ax ‖1 ≤ ‖A ‖1 ‖x ‖1 .

Since the operator 1-norm of B is equal to the maximum column sum of A and
A has d ones in each column, we have ‖A ‖1 = d. This gives us,

‖Ax ‖1 ≤ d ‖x ‖1

and this proves the upper bound.
We now prove the lower bound. Let S be an arbitrary subset of left vertices

with |S| ≤ s. Let ¬R(S) denote the set of right vertices with no adjacent left
vertex in S. Then we can write ‖Ax ‖1 as the following sum,

‖Ax ‖1 =
∥∥ (Ax)¬R(S)

∥∥
1
+
∥∥ (Az)R1(S)

∥∥
1
+
∥∥ (Ax)R≥2(S)

∥∥
1
. (13.1)

In general, if s is large enough then there exists a set of left vertices S such
that R(S) is equal to all of the right vertices of G. In this case ¬R(S) is equal
to the empty set, so that

∥∥ (Ax)¬R(S)

∥∥
1
= 0. Thus, this is the lower bound

and for an arbitrary S we have∥∥ (Ax)¬R(S)

∥∥
1
≥ 0.

Similarly, if s is small enough, then there exists a set of left vertices S such
that all of the right vertices in R(S) have a unique left vertex in S. In this
case R≥2(S) is equal to the empty set and

∥∥ (Ax)R≥2(S)

∥∥
1
= 0. Thus, this is

the lower bound and for an arbitrary S we have∥∥ (Ax)R≥2(S)

∥∥
1
≥ 0.

Recalling from lemma 3 that |R1(S)| ≥ (1− 2θs)ds and θs ≤ θ, we have∥∥ (Ax)R1(S)

∥∥
1
≥ (1− 2θ)d ‖xS ‖1 .

By applying all of these inequalities to the equation (13.1), we obtain

‖Ax ‖1 =
∥∥ (Ax)¬R(S)

∥∥
1
+
∥∥ (Az)R1(S)

∥∥
1
+
∥∥ (Ax)R≥2(S)

∥∥
1

≥ d(1− 2θ) ‖xS ‖1

= d(1− 2θ) ‖x ‖1 .

This proves the lowerbound and it follows that the bipartite adjacency matrix
of a lossless expander graph satis�es the scaled restricted isometry property in
`1.
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The next corollary further demonstrates why we require θ2s to be small.

Corollary 2. Let A ∈ {0, 1}m×N be the bipartite adjacency matrix of an
(s, d, θ)-lossless expander with θ2s < 1/2. Then every s-sparse vector has a
unique measurement vector.

Proof. Let x,x′ ∈ {0, 1}N be distinct s-sparse vectors and let their measure-
ment vectors be y = Ax and y′ = Ax′, respectively. Then it follows from
theorem 31 and the assumption that θ2s < d/2 that the following inequality
holds

0 < d(1− 2θ2s) ‖x− x′ ‖1 ≤ ‖A(x− x
′) ‖1 .

This implies that we have

y− y′ = Ax−Ax′ 6= 0,

which is if and only if y 6= y′. Therefore, every s-sparse vector has a unique
measurement vector.

13.2 Unique Neighborhood Algorithm

Combinatorial Recovery Algorithms This �rst class of recovery algo-
rithms require a speci�c type of measurement matrix. Speci�cally, combina-
torial recovery algorithms require a measurement matrix A with entries 0 and
1. Thus, matrix-vector multiplication implies that every entry of the measure-
ment vector y = Ax of a sparse vector x is a sum of the entries in the support
of x. If the measurement matrix is also sparse, then many of the values of the
entries of y are not just the sum of entries in the support of x, but are the
actual values of the entries in the support of x. When we use the bipartite
adjacency matrix of a left regular graph, there tends to be repeated values of
x in y. This is because there are multiple ones in each column of the measure-
ment matrix. The combinatorial approach uses these repeated values in y to
�nd the locations of that value in x.

The fact that combinatorial recovery algorithms require �nding the same
values in a measurement vector many times is a large setback in applications
of compressed sensing. This is because we cannot properly deal with measure-
ment error. Because of this, we will only present one variation of this class of
algorithm. Though, it should be noted though that there are many algorithms
that exist in this class.

Unique Neighborhood algorithm

Let A be the bipartite adjacency of an (s, d, θ)-lossless expander graph G. Let
x be an arbitrary s-sparse vector with measurement vector y = Ax. Recall
from lemma 3 that, for any subset S of left vertices, we have

|R1(S)| ≥ (1− 2θ)d|S|.

This inequality implies that for any left vertex v, we have

|R1(v)| ≥ (1− 2θ)d.
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When put into the terms of the measurement vector y, this implies that for
every j ∈ supp(x), there exists at least (1 − 2θ)d entries in y with the value
x(j). Thus, if we �nd (1− 2θ)d entries in y with the same value, then we can
obtain the location of that value in x. Using this line of reasoning, we can
recover the s-sparse vector x by implementing the following.

Computation

Initialize :

1. Choose a small tolerance ε > 0.

2. Choose a best initial guess x(0) of x.

3. Compute the residual

r(0) = Ax(0) − y.

Iterate: For each step n = 0, 1 . . .

1. Find a set of indices Rval of (1− θ)d entries of r(n) with the same
value val.

2. Find the unique index column index j ∈ [N ] of A that satis�es the
property that for all i ∈ Rval, we have ai,j = 1.

3. Update the n-th approximation x(n+1) of x by

x(n+1)(j) = x(n)(j) + val

4. Update the residual

r(n+1) = y−Ax(n+1).

Halt: If
∥∥ r(n+1)

∥∥ < ε

This algorithm is optimal for random binary measurement matrices, since
no knowledge of the measurement matrix is known beforehand. The slowest
step of each iteration is �nding the column of the matrix that matches the set
of indices of Rval since we have to check O(N) set intersections. However, if A
is the bipartite adjacency matrix of the graph G[1] or the graph G[2], then we
can optimize this procedure. We will only consider how this can be optimized
for G[1] and the procedure for G[2] can be easily generalized.

Let i1, i2 ∈ Rval be distinct indices with corresponding right vertices (a1, b1)
and (a2, b2), respectively. Then, there exists at most one left vertex that is
adjacent to both of these right vertices. Let (x, y) be such a right vertex.
Then, we have

y = a1x+ b1 and y = a2x+ b2 (mod p)

which is if and only if

x = (a1 − a2)
−1(b2 − b1) (mod p)

and
y = a1(a1 − a2)

−1(b2 − b1) + b1 (mod p).
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Finally, we �nd the column index j ∈ [N ] corresponding to (x, y) and update
the approximation

x(n+1)(j) = x(n)(j) + val.

This procedure requires a constant number of arithmetic operations rather then
the linear in N required in the non-optimal version.

13.3 Orthogonal Matching Pursuit and Compressive

Sampling Matching Pursuit

Orthogonal Matching Pursuit

The orthogonal matching pursuit recovery algorithm is the �rst of the two
greedy algorithms presented. The reason why orthogonal matching pursuit is
considered a greedy method is because optimization occurs on each iteration
and it is on a local level rather than in a basis pursuit algorithm which does
global optimization. More precisely, orthogonal matching pursuit adds another
index to the support set on each iteration in a way that obtains the maximum
distance between x and its n-th approximation x(n). It then updates the ap-
proximation x(n+1) so that the this maximized distance is decreased.

Computation Let 2 ≤ d ≤ p be the parameters of the bipartite adjacency

matrix A of the graph G
[1]
p,d or the graph G

[2]
p,d. Let x be an arbitrary s-sparse

vector. Then to recover the vector x from its measurement vector y = Ax with
orthogonal matching pursuit, we implement the following.

Initialize :

1. Choose a small tolerance ε > 0.

2. Choose a best initial guess x(0) of x.

3. Compute the residual

r(0) = Ax(0) − y.

Iterate: For each step n = 1, 2 . . .

1. Choose the index

j(n+1) = argmax
j∈[N ]

{ |(AT (y−Ax(n)))j | }.

2. Update the support set

S(n+1) = S(n) ∪ {j(n+1)}.

3. Update the n-th approximation x(n+1) of x by solving the least
squares minimization problem over the support set S(n+1) de�ned
by

x(n+1) = argmin
z∈CN

{‖y−Az ‖2 | supp(z) ⊂ S
(n+1)}.

This is done by solving the conjugate gradient method on the normal
equations

x(n+1) = CG(x(n),b, p, d, S(n+1)),

where b = ATy.
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4. Update the residual

r(n+1) = y−Ax(n+1).

Halt: If
∥∥ r(n+1)

∥∥ < ε

The slowest part of the orthogonal matching pursuit algorithm is the com-
putation of the conjugate gradient method. Also notice that since we only add
one index on each iteration, orthogonal matching pursuit requires at least s
iterations to complete. Thus, we must apply the conjugate gradient method at
least s times, which is less then desirable for large s. The upside of this is that
for the smaller values of s, the conjugate gradient method is applied on a very
small support set, so this requires little arithmetic operations.

Analysis We now go back to the original discussion about why orthogonal
matching pursuit is considered a greedy algorithm. First, observe that requiring
the restricted expansion constant θs to be small implies

ATSAS ≈ dI for all S ⊂ [N ] with |S| ≤ s, 0

where I is the identity matrix of order s. Consider the vector

AT (y−Ax(n)) = ATA(x− xn) ≈ dI(x− xn) = d(x− xn),

which is the vector the index j(n+1) is maximized over. Thus, our choice of
j(n+1) is chosen to maximize the distance between x(n) and x. We then solve
the least squares problem over this support set to update the approximation
in a way that reduces this maximum distance.

As a �nal note, we recall from theorem 30 that the error bound of the
n-th iteration of the conjugate gradient method may be large if we have a
bad initial approximation vector. As seen from orthogonal matching pursuit,
we use the previous iterations approximation on each iteration of orthogonal
matching pursuit as an initial vector in the conjugate gradient method. Since
each iteration does not change much from step to step, this shows that this
choice of initialization should be a good choice.

Compressive Sampling Matching Pursuit

Before we describe the compressive sampling matching pursuit algorithm, we
need to introduce the following nonlinear operators.

De�nition 37 (Hard Thresholding Operator). Let z ∈ CN be a vector. Then
de�ne the set Ls(z) to be the index set of the s largest absolute entries of z
and the hard thresholding operator Hs(z) to be the s largest absolute entries
of z with the rest of the entries of z being zeroed out.

The fact that these two operators are nonlinear can make the analysis of
algorithms less straight forward.

Compressive sampling matching pursuit again does local optimization. The
main di�erence from orthogonal matching pursuit is that instead of choosing a
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single index on each iteration, we choose an index set of size 2s of the maximum
absolute entries of the vector

AT (y−Ax(n)).

This slows down each iteration signi�cantly, but the bene�t to this algorithm
is that it could take far less iterations to complete in comparison to orthogonal
matching pursuit if the sparsity s is large.

Computation Let 2 ≤ d ≤ p be the parameters of the bipartite adjacency

matrix A of the graph G
[1]
p,d or the graph G

[2]
p,d. Let x be an arbitrary s-sparse

vector. Then to recover the vector x from its measurement vector y = Ax with
compressive sampling matching pursuit, we implement the following.

Initialize :

1. Choose a small tolerance ε > 0.

2. Choose a best initial guess x(0) of x.

3. Compute the residual

r(0) = Ax(0) − y.

Iterate: For each step n = 1, 2 . . .

1. Choose the index set of size greater then 2s by

S(n+1) = supp(x(n)) ∪ L2s(A
T (y−Ax(n))).

2. Compute the least squares solution u(n+1) from the least squares
minimization problem over the support set S(n+1) de�ned by

u(n+1) = argmin
z∈CN

{‖y−Az ‖2 | supp(z) ⊂ S
(n+1)}.

This is done by solving the conjugate gradient method on the normal
equations

u(n+1) = CG(u(n),b, p, d, S(n+1)),

where b = ATy.

3. Compute the s largest absolute entries of un+1 by

xn+1 = Hs(u
n+1).

4. Update the residual

r(n+1) = y−Ax(n+1).

Halt: If
∥∥ r(n+1)

∥∥ < ε

13.4 Iterative Hard Thresholding and Hard

Thresholding Pursuit

In this section we de�ne two recovery algorithms that are based on iterative
methods and the hard thresholding operator of Hs.
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Derivation of the Algorithms Let A be the bipartite adjacency matrix of
the graph G[1] or the graph G[2]. Let x be an arbitrary s-sparse vector with
the measurement vector y = Ax. Recall from the least squares minimization
section that we want to solve the normal equations

ATAz = Ay,

If we take the splitting matrix to be the identity matrix I, then we have the
following system of linear equations,

x = (I −ATA)x+ATy

= x+AT (y−Ax).

This implies we can use the �xed point iteration method

x(n+1) = x(n) +AT (y−Ax(n)).

By applying the hard thresholding operator Hs to the right hand side of this
equation gives us

x(n+1) = Hs(x
(n) +AT (y−Ax(n))),

which ensures that xn+1 is s-sparse. By iterating this for all n = 1, 2, . . ., we
obtain the iterative hard thresholding algorithm. If instead we were to take the
index set of the s largest elements on the right hand side of the equation, then
we obtain the index set

S(n+1) = Ls(x
(n) +AT (y−Ax(n))).

Then the least squares minimization problem over the support set S(n+1)

x(n+1) = {‖y−Az ‖2 | supp(z) ⊂ S
(n+1)}

obtained by solving the conjugate gradient method on the normal equations to
obtain the n-th approximation of x

x(n+1) = CG(x(n),b, p, d, S(n+1))

gives us the hard thresholding pursuit algorithm.

Analysis It is known from [17] that the iterative hard thresholding and hard
thresholding pursuit algorithms converge if a measurement matrix B satis�es

‖B ‖22 < 1.

Since G[1] and G[2] are the Levi graphs of con�gurations, the convergence prop-
erties of the iterative hard thresholding algorithm and the hard thresholding
pursuit algorithm with the measurement matrix A follows from the next theo-
rem.

Theorem 32. Let A be the incidence matrix of a (vr, bk) con�guration. Then

‖A ‖22 = rk.
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Proof. First, recall theorems 6.5 and 7.18 of [24] that

‖A ‖22 = σ2
max = λmax,

where σmax is the largest eigenvalue of A and λmax is the largest eigenvalue of
ATA. Then observe that

1

rk
ATA

is a stochastic matrix. Since the largest eigenvalue of a stochastic matrix is 1
with the eigenvector 1, we have

1

rk
ATA1 = 1.

Multiplying both sides of this equation by rk gives us

ATA1 = rk1.

Therefore, ∥∥ATA ∥∥2

2
= λmax = rk.

Since the bipartite adjacency matrix A of the graph G
[1]
p,d or the graph G

[2]
p,d

is a (mp, Nd) con�gurations, where m and N are determined by the graph
chosen, we have

‖A ‖22 = pd > 1.

Thus, iterative hard thresholding and hard thresholding pursuit do not con-
verge in general with the measurement matrix A. However, in [17] an aug-
mented iterative hard thresholding and hard thresholding pursuit is presented
by introducing a factor µ. The iterative hard thresholding-µ algorithm is de�ned
by iterating

x(n+1) = Hs(x
(n) + µAT (y−Ax(n)))

and the hard thresholding pursuit-µ algorithm is de�ned by iterating

S(n+1) = Ls(x
(n) + µAT (y−Ax(n))).

It is know from [17] that these augmented versions of the iterative algo-
rithms converge if

µ ‖A ‖22 < 1.

The paper [17] presented a way of updating this factor µn for each iteration
n = 1, 2, . . . is de�ned, so that we can guarantee convergence. This requires
several applications of matrix-vector multiplication, which is not desirable even
with matrix-vector multiplication requiring only O(sd) arithmetic operations.
The previous proof provides us with everything we need to avoid having to use
this µn. We state this result in the following corollary.

Corollary 3. Let A be the bipartite adjacency matrix of the graph G
[1]
p,d or the

graph G
[2]
p,d with the parameters 2 ≤ d ≤ p. Let ε > 0 be arbitrarily small. If we

choose

µ =
1

pd+ ε
,

then the iterative hard thresholding-µ algorithm and the hard thresholding pursuit-
µ converge.
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We end this section with a quick remark on the complexity of iterative hard
thresholding. Since we do not need to apply the conjugate gradient method,
this speeds up the algorithm signi�cantly in comparison to the other non-
combinatorial algorithms.

Remarks on Convergence and the Compressed Sensing

Problems

Throughout this section, let A be the bipartite adjacency matrix of a "good"
lossless expander graph. We de�ne this ambiguously since the exact properties
of A are not necessary for the discussion. This allows us to move between
di�erent contexts freely.

Recall the equation (4.4) for the restricted isometry constant. Unfortu-
nately, an analogous equation is not known for the restricted expansion con-
stant. As stated in chapter 4, many of the known proofs for the convergence
properties of recovery algorithms make use of equation (4.4). Since we also
cannot rely on other more common tools that come with the 2-norm of a vec-
tor, it is clear that we have to take a much di�erent approach to convergence
proofs when the measurement matrix is the bipartite adjacency matrix of a
lossless expander graph.

In this thesis, we have spent most of our time on proving results for basis
pursuit and quadratically constrained basis pursuit. Both approaches solve
their respective versions of the compressed sensing problem when the measure-
ment matrix used is A. It is also shown in [21] that the unique neighborhood
algorithm converges to the unique sparse solution as well when A is the mea-
surement matrix. Thus, the unique neighborhood algorithm solves the basic
version of the compressed sensing problem as well.

We have shown that the iterative hard thresholing-µ algorithm and the hard
thresholding pursuit-µ algorithm converge, but we still have not shown when it
converges uniquely to the sparse vector we are looking to recover. Because of
this, we have not proven when these algorithms solve the compressed sensing
problem when the measurement matrix is A. For orthogonal matching pursuit
and compressive sampling matching pursuit, we are essentially in the same
position when the measurement matrix is A. It is known from proposition 3.5
of [18] that a su�cient condition for unique sparse vector recovery does exist
for the orthogonal matching pursuit algorithm. If we were to show that A can
satisfy this property, then we have demonstrated that orthogonal matching
pursuit solves the compressed sensing problem with measurement matrix A.



14 Summary of References for Part Three

The numerical linear algebra theory used in chapter 12 was derived primarily
from the lecture notes written by Tom Lyche. These lecture notes were used
in a course on numerical linear algebra taught by Nils Henrik Risebro. The
material on least squares minimization and the conjugate gradient method was
primarily derived from these lecture notes. The chapter on classical iterative
methods was used in conjunction with the iterative hard thresholding algorithm
and the hard thresholding pursuit algorithm.

The selection of compressed sensing recovery algorithms presented here,
with the exception of the unique neighborhood algorithm, came from [17] and
chapter 3 of [18]. The µ augmented iterative algorithms were also obtained
from [17]. The unique neighborhood algorithm and its analysis was obtained
from [21].

Corollary 2 is applied in the exact same way to the restricted isometry
property in many places throughout compressed sensing. It was originally
obtained from chapter 6 in [18].
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A Pseudocode of Matrix-Vector

Multiplication Algorithms

Algorithm 1 Matrix-Vector Multiplication of G[1]: y = Az

Input: The parameters 2 ≤ d ≤ p of the bipartite adjacency matrix A of G
[1]
p,d

and a vector z ∈ CN with N = p2.
Output: v = Az ∈ Cm with m = dp.
S = supp(z)
v = 0

for j = S do

x = b j−1
p c (mod p)

y = j − 1 (mod p)
for a = 0 : d− 1 do
b = y − ax (mod p)
i = ap+ b+ 1
v(i) = v(i) + z(j)

end for

end for

Algorithm 2 Transposed Matrix-Vector Multiplication of G[1]: z = ATv

Input: The parameters 2 ≤ d ≤ p of the bipartite adjacency matrix A of G
[1]
p,d

and a vector v ∈ Cm with m = dp.
Output: z = ATv ∈ CN with N = p2.
S = supp(v)
z = 0

for i = S do

a = b i−1
p c (mod p)

b = i− 1 (mod p)
for x = 0 : p− 1 do
y = ax+ b (mod p)
j = xp+ y + 1
z(j) = z(j) + v(i)

end for

end for
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MULTIPLICATION ALGORITHMS

Algorithm 3 Transposed Matrix-Matrix-Vector Multiplication: w = ATAz

Input: The parameters 2 ≤ d ≤ p of the bipartite adjacency matrix A of G
[1]
p,d

and a vector z ∈ CN with N = p2.
Output: w = ATAz ∈ CN with N = p2.
S = supp(z)
w = 0

for j1 = S do

x1 = b j1−1
p c (mod p)

y1 = j1 − 1 (mod p)
for j2 = S \ {j1} do
x2 = b j2−1

p c (mod p)

y2 = j2 − 1 (mod p)
for x = 0 : p− 1 do
if ax1 − y1 = ax2 − y2 (mod p) then
w(j1),w(j2) = z(j1) + z(j2)
w(j2) = z(j2) + z(j1)

end if

end for

end for

end for

for j = S do

w(j) = d z(j)
end for
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