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Abstract

In this thesis, we consider models for survival data with a high-dimensional covariate

space. Most models used for such datasets are based on the Cox regression model,

of which a critical assumption is that the hazard functions are proportional between

individuals. The purpose of this thesis is to develop a way of analysing these datasets

that does not require that the proportional hazards assumption is valid. In search of

such a method, we study the concept of landmarking and try to develop a way of
fitting what van Houwelingen and Putter [2011] refers to as sliding landmark models
that works when we have a high number of covariates. An essential part of our strategy

is the ‘bet on sparsity principle’ [Hastie et al., 2001], where one assumes that only some

of the variables in the dataset have an effect on the outcome. We seek out to implement

this using regularisation techniques, such as penalised regression and boosting. In

particular, we develop a boosting algorithm for sliding landmark models, based on the

likelihood boosting algorithm for Cox regression [Binder and Schumacher, 2008]. The

thesis is concluded by a simulation study, where the different models and methods

of estimation we consider are used to analyse different simulated datasets, and are

compared via a dynamic Brier score [van Houwelingen and Putter, 2011].
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Chapter 1

Introduction and
outline of the thesis

A lot of time and effort has been invested over the past couple of decades into trying to

utilise genetic information to make predictions of survival. The hope of this is that we

can use these very high quantities of information to make more accurate predictions

than if we were merely using standard clinical variables such as the patients age, gender,

biomarkers, et cetera. If one were able to create statistical models that incorporate

genetic variables that yields more accurate predictions, then one could use these for a

wide variety of applications. One could for instance give more accurate prognoses of,

say 5 year survival, for a cancer patient. These models could potentially also be used to

better understand, or perhaps discover, relationships between genetic variables and as

it were, the risk of dying for an individual with a certain condition. To model survival

data, the by far most widely used model is the Cox regression model [Cox, 1972]. Due
to the omnipresence of the Coxmodel, manymodels that research statisticians attempt

to develop to model survival data are based on the Cox model, and we too will here

consider models that are extensions of the Cox regression model.

One particular problem that arises when working with statistical techniques for

high dimensional data, is that which Bellman [1961] refers to as the curse of dimen-

sionality, which essentially is that in a high dimensional space virtually any two points

in a dataset will be very far apart. This makes generalisation from observed data hard,

and using standard statistical techniques will in all likelihood lead to models that have

little, if any predictive utility. In addition to this we also realistically need to be able
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1. Introduction and

outline of the thesis

to fit models where the number of observations is outnumbered by the number of

covariates. In these situations we cannot use the statisticians arsenal of maximum

likelihood methods and least squares model fitting in the direct sense, but must adapt

and extend them. All these possible extensions, at least the ones we are discussing here,

can be referred to by the all-encompassing term regularisation. What we mean by this

term is effectively either restricting the number of dimensions of the covariate space

that themodelmakes use of, forcing the estimates to be closer to zero, or a combination

of the two.

A group of such extensions is called penalisation, and involves adding a term called

a penalty function to the objective function, i.e. the residual sum of squares, likelihood

function, or in our case the partial log likelihood. Of these, we in particular discuss

the lasso [Tibshirani, 1994], which involves subtracting a term proportional to theL1

norm of the regression coefficients from the partial log likelihood. The effect of the

lasso is that it restricts the absolute value of the estimates, or shrinks them. In addition,
not all dimensions of the covariate space are guaranteed to be used, and we say that the

model selects a subgroup of the effects. An alternativeway of fittingmodels that can also
cope with the same problems that penalised methods are designed to do, is the method

of boosting. The idea of boosting is to estimate our model in an iterative fashion, by
adding together small increments to the estimates for a given number of iterations.

Boosting algorithms are usually designed to overcome the problem we discussed above

concerning situations with more covariates than observations by letting the algorithm

only update the coefficient of a single covariate in each iteration, and stopping the

algorithm before it converges. We discuss two different boosting algorithms for the

Cox model, which are calledmodel-based boosting [Bühlmann andHothorn, 2007]

and likelihood-based boosting [Binder and Schumacher, 2008].
As mentioned most models used to model survival data are based on Cox regres-

sion. A key underlying assumption of the Coxmodel, is that the hazards are assumed to

be proportional between individuals, or alternatively that the effects of the covariates

are assumed to be constant in time. This assumption is not always valid, but there are

ways to extend the Cox model that allows time varying effects. One such extension of

the Cox regression model is known as landmarking [van Houwelingen and Putter,

2011], which in its essence involves considering Cox regression models that are local in

time. One considers the sequence of these local models, where each individual model

is connected to a subset of the follow-up range. This sequence is by van Houwelingen

2



and Putter [2011] termed a sliding landmark model. The purpose of landmarking is to
create models that are better suited to make dynamic survival predictions than the Cox

model when the proportional hazards assumption fails to hold. By dynamic predic-

tions one here refers to continously making predictions of an individual surviving a

given period ahead in time from a certain landmark point. I.e, we want to be able to
predict for instance 5 year survival for a patient, not only at the time of diagnosis, but

at several landmark points during the follow up of a patient.

The main goal of this thesis is to try and expand this method of landmarking to

applications for high dimensional datasets, such as datasets where genetic variables are

recorded. To this end we will consider two options, namely to extend it using a lasso-

like approach, or by boosting. We want this method to behave in such a manner that it

selects effects for all landmark points simultaneously. For the lasso based algorithm we

will consider a combination of sliding landmarking with the group lasso [Yuan and Lin,
2006], treating the landmark effects for a covariate as different levels of a categorical

covariate. Essentially we propose to extend the landmarking scheme by estimating the

sliding landmark by subtracting a group lasso penalty from the likelihood function

we get from adding the individual partial log-likelihoods from each local model in the

sliding landmark model together. This aggregate of the individual likelihoods is by van

Houwelingen and Putter [2011] referred to as the integrated partial log likelihood. For
the boosting-based algorithm, we will consider a scheme based on likelihood-based

boosting, where we extend this method to the integrated partial log likelihood.

In chapter 2, we will provide some background on survival data and the Cox

regression model, and discuss sliding landmarking. In addition, we will also discuss a

Brier score [Graf et al.] based method as a way of evaluating the predictive accuracy

of landmark models. In chapter 3, we discuss penalised estimation of Cox regression

models, and extensions of this approach to sliding landmark models. This is followed

by a discussion of boosting in Cox regressionmodels in chapter 4, where we also discuss

boosting for sliding landmark models. The thesis is then concluded by a simulation

study in chapter 5, and a summary in chapter 6.
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Chapter 2

Survival analysis and
non proportional hazards

2.1 Right-censored survival data

Time to event data can be encountered in many different fields of scientific study,

such as medicine, biology, demography and sociology, to name a few. When the event

in question can only happen once for each individual studied, such data are termed

survival data. An overview of modeling of survival data, and methods concerning

such models can for instance be found in Aalen et al. [2008]. Even though the term

survival data is used, these data can be recorded times until any event, not just death.

The problem with observing such data is that it takes time to observe time, and for

various reasons such data will be incomplete. Imagine, for example, a clinical trial

of some sort, where one records the time to some event for all the individuals in the

study. Such studies usually span some fixed length of time, and all of the individuals

will not always experience the event before the end of the study. In addition, there

is always a possibility that some of the individuals will drop out before the end of

the study, without experiencing the event. This is, of course, a problem that has to

be dealt with when analysing such data. One could, somewhat naively, propose to

ignore the incomplete data. But, only looking at the complete data will give a biased

and less informed view of what we are studying. Survival data that are incomplete

as described above are termed censored survival data [Aalen et al., 2008]. We can

describe these data as two sets of random variables in the following way. For each
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2. Survival analysis and

non proportional hazards

observation i, i = 1, 2, ..., n, there is one random variable Ti representing the i-th

survival time, and one random variableCi representing the i-th censoring time. The

observed, possibly censored survival time is then T̃i = min(Ti, Ci), along with an

indicatorDi = I(T̃i = Ti) of an event taking place at time T̃i.

When studying censored survival datawe are interested in estimating the probabil-

ity of the event happening later than a time t, P (T > t).This is known as the survival
function, and we write S(t) = P (T > t). One may also define a similar censoring
function,C(t) = P (C > t), as it were, as a survival function for the censoring times.

It is worth noting that we can write

1− S(t) = P (T ≤ t) = F (t),

where F (t) is the cumulative distribution function. Another function that we would

like to estimate is the hazard function, which, loosely speaking, is the probability of the
event happening in a small interval [t, t+ δ), given that the event has not happened

before time t. More formally, the hazard function is defined as

α(t) = lim
δ→0

P (T < t+ δ|T ≥ t)

δ
.

Estimation of hazard functions, as with densities, is in general quite hard. In particular,

we cannot attain the usual

√
n convergence rate that we get for estimates. By using

that

P (T < t+ δ|T ≥ t)P (T ≥ t) = P (T ≥ t)− P (T ≥ t+ δ)

and recognizing the derivative of S(t), one can make the observation that

α(t) =
−S ′(t)
S(t)

.

By noting that this is a separable differential equation in S and t, we get the relation

S(t) = e−A(t),

whereA(t) =
∫ t

0
α(s)ds is called the cumulative hazard function. Like the cumulative

distribution function, both the survival and the cumulative hazard functions are much

easier to estimate than densities and hazard functions. Traditional estimators of these

are the Kaplan-Meier and the Nelson-Aalen estimators. Assuming a situation where
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2.2. Cox regression

we have observed censored survival data (ti, di), i = 1, ..., n, these estimators are

defined as

Ŝ(t) =
∏
ti≤t

(
1− di

Y (ti)

)
,

and

Â(t) =
∑
ti≤t

di
Y (ti)

,

respectively. Here di is an indicator of the i-th recorded time being an event time and

not a censored observation, and Y (t) is the number at risk at time t. By the number at

risk at time t, we mean the number of individuals that have not experienced the event,

and have not been censored prior to time t.

In addition to the right censoring described above, where some of the individ-

uals in the study either drop out, or never experience the event of interest, a further

complication can be present. In some cases, not all the individuals under study enter

the study at the same time, but enter the study at different times. This is known as left
truncation. We will not deal with these type of data directly in this thesis, but we will

in a central topic of this thesis pretend that all of the observations under consideration

are left truncated at a specified time. This does not matter for estimation, as we can

merely pretend that this point in time is 0, since the left truncation time is the same

for all observations.

2.2 Cox regression

A Cox proportional hazards regression model [Aalen et al., 2008] is, as the name

suggests, defined through the hazard function, which is required to be proportional

between all individuals. This is done by assuming that the hazard consists of some

arbitrary non-parametric function, usually referred to as the baseline hazard, multiplied
by a constant that depends on a linear predictor for each individual. More concretely,

the hazard of an individual i is expressed as

α(t,xi) = α0(t)e
βTxi ,

where α0(t) is the baseline hazard common to all individuals, xi is the covariate vector

for individual i, and β = (β1, . . . , βp)
T
are regression coefficients. As mentioned
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2. Survival analysis and

non proportional hazards

above we do assume that all individuals share a common baseline hazard α0(t), but

we do not make any assumptions about its shape. I.e, the Cox proportional hazards

model is a semi-parametric model. Due to the semiparametric nature of the hazard

specification in the Cox regression model, it is impossible to use ordinary likelihood

methods. Instead one has to resort to a partial likelihood for estimation and inference.

The partial likelihood for such a model is

L(β) =
n∏
i=1

(
eβ

Txi∑
`∈Ri

eβ
Tx`

)di

,

where Rj is the risk set at time tj . Underlying the Cox model are the two main

assumptions of log-linearity

log(α(t|x)) = log(α0(t)) + β
Tx,

and that the hazards are proportional independently of time

α(t|x1)

α(t|x2)
= eβ

T (x1−x2).

One way to check if the first assumption holds for a given covariate xj is to fit a Cox

model where the hazard takes the form α(t|xj) = α0(t)e
f(xj), where f(x) is some

regression function that is estimated by a spline, and then plot f(xj) against xj . To

check the second assumption, one option is to plot and perform tests based on the

Schoenfeld residuals [Grambsch and Therneau, 1994].

2.2.1 Cox regression on Danish melanoma data

One example that illustrates that these assumptions do not need to be fulfilled, is a

dataset of Danish cancer patients with malignant melanoma operated at the Odense

University hospital in the period of 1962-1977, which can be found in Andersen et al.

[1993]. In this dataset the patients’ tumor thickness, age, and sex were recorded, along

with an indicator of a patient having ulceration.

Table 2.1: Ordinary Cox-regression for melanoma data.

β̂ eβ̂ σ̂β̂ Z P

ulcer 0.971 2.641 0.321 3.027 0.002

log2(tumor thickness) 0.423 1.527 0.122 3.470 0.001
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2.2. Cox regression
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Figure 2.1: Spline fit of the effect of log2-tumor thickness, and Scoenfeld residuals for

the Danish melanoma patients.

A summary of a regular Cox regression model fitted with log2 of the tumor thickness

and ulceration as covariates is given in table 2.1. The fit indicates – given that the model

is correct – that the effect of doubling the tumor thickness is an increase in relative

risk of 52.7%, and that the effect of a patient having ulceration corresponds to an

increase in relative risk of 164.1%. By plotting spline fits (figure 2.1) one can see that

the assumption of log-linear effects seems to hold for the log-transformed thickness,

except for smaller values of tumor thickness. The results from a formal test based on

the Schoenfeld residuals from a fitted Cox model with the log-transformed thickness,

and the plot given in figure 2.1 indicates a deviation from the proportional hazards

assumption. A problem that arises, is that we do not know what is estimated when

the assumption of proportional hazards is violated. In short, it turns out that the

Cox-regression estimate is a kind of average of the time-varying effect over the entire

study. We will return to this problem with a more in-depth answer in section 2.3.1.
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2. Survival analysis and

non proportional hazards

2.2.2 Estimation of cumulative hazards and survival probabilities

For various reasons, we may be interested in the estimated cumulative hazard under

the assumptions of the Cox proportional hazards model for a given covariate vector.

One approach here is to use the estimator

Â(t|x) = Â0(t)e
β̂
T
x,

where Â0(t) is the Breslow estimator

Â0(t) =
∑
ti≤t

di∑
`∈Ri

exp
(
β̂
T
x`

) . (2.1)

We can also obtain an estimator of the survival function by transforming the cumulative

hazard estimator, i.e

Ŝ(t|x) = e−Â(t|x). (2.2)

An application of this is to use the estimated survival function in order to calculate

estimates of survival probabilities. For example one can answer questions such as what

is the probability of the event not occuring before time t, given that it has not yet

occured by time s ≤ t, by estimating

P (T > t|T ≥ s) =
S(t|x)
S(s|x)

, s ≤ t

using Ŝ(t|x).

2.2.3 Survival probabilities for the melanoma data

Using the fitted Cox model from section 2.2.1 together with the Breslow estimator, we

can compute estimated 5-year survival probabilities for a given individual as described

in section 2.2.2. As an illustration we compute these for an individual with an average

tumor thickness, without ulceration. A plot of these probabilities is given in figure 2.2.

A simple interpretation of the plot is that the 5-year survival prognoses are increasingly

becoming better from around two years after the diagnosis, meaning that a patient

is more likely to recover from the disease if he or she survives the first two years after

being diagnosed.
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2.3. Landmarking
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Figure 2.2: 5-year survival probabilities from regular Cox fit, for an individual with

an average tumor thickness and no ulceration. The dotted lines represent 95% confi-

dence intervals.

2.3 Landmarking

In this section, we will first consider some robustness properties of Cox regression in

a misspecification context. We will assume that there is a time-varying effect of the

covariates on the true hazard, i.e. the hazard is of the form

αi(t) = α0(t)e
β(t)Txi ,

and consider what happens if we fit a Cox proportional hazards regression model. We

will see that if we fit a Cox-model where we treat all observations with a (censored or

uncensored) survival time that exceeds some thor as censored, the coefficient estimates

we obtain are a form of averages of the time-varying effects over the interval [0, thor].

Such a scheme, where one treats all observations with a survival time that exceeds some

value t as censored is called administrative censoring. In the same context, we will also

11



2. Survival analysis and

non proportional hazards

observe that the Breslow-type estimate of the cumulative hazard is approximately equal

to the true cumulative hazard at thor, given some conditions. In short, these conditions

state that the prognostic indexβTx should be small, and not vary toomuch. If we center
the covariates we ‘move’ some of the prognostic index from the relative risk function

eβ(t)x
to the baseline hazard α0(t) in the Cox regression model, thus the condition

that the prognostic index should be small necessitates centering the covariates. When

we center the covariates, the hazard instead takes on the form

αi(t) = α∗0(t)e
β(t)x∗

i ,

where x∗i = xi − x, α∗0(t) = α0(t)e
β(t)x

, and x = 1
n

∑n
i=1 xj.We can then relabel

x∗i as xi, and α
∗
0(t) as α0(t). This theoretical investigation is a motivation for a way of

dealing with time-varying effects when trying to make dynamic survival predictions.

In short, this methodology involves fitting Cox regression models on different ‘time

windows’ [LMs, LMs + w] for S time-pointsLMs and a fixed window sizew with

left-truncation at LMs and administrative censoring at LMs + w. Here, one exploits

the fact that the estimated cumulative hazard under the Cox model will be close to the

true model on each of these subintervals of the total follow up time, which will yield

good dynamic predictions of survival probabilities even though there are time-varying

effects.

2.3.1 Robustness of Cox-regression

Wewill go over some theoretical results that are the underpinnings of the landmarking

technique for computing dynamic survival predictions in settings with time-varying

effects. These results are taken from van Houwelingen [2007], and are here merely

stated without justification. Detailed derivations, that are a somewhat embellished

version of the appendix of van Houwelingen [2007], can be found in appendix B.

Suppose we are in the right-censored survival data situation, described in section 2.1,

and that the censoring and survival times are independent given the covariates. Such a

censoringmechanism is called random censoring. In addition, assume that the covariates
xi are centered and that the individual hazards take the form

αi(t) = α0(t)e
βT (t)xi ,

i.e. there is a time-dependent effect of the covariates. In this case, one can show that

given some regularity conditions, the most important being that the covariates are

12



2.3. Landmarking

centered,

A(t|xi) ≈ A0(t)e
β
T

(t)xi , (2.3)

where

β(t) =

∫ t
0
α0(s)β(s)ds

A0(t)
. (2.4)

One may also show that, provided some regularity conditions are satisfied, if one fits a

Cox regression model with administrative censoring at some time thor, the estimates

β̃Cox are approximately given by

β̃Cox ≈ β(thor). (2.5)

This leads to, after quite some work, an approximation which is essential to the topic

of this thesis, namely that

ACox(thor|x) ≈ A(thor|x), (2.6)

if the covariates are centered, the coefficients do not vary to much over [0, thor], this

interval is not too wide, and we have random censoring. This means that if we use the

estimator (2.2), provided that we consider a small enough time window, we should

obtain approximately correct predictions of surviving up to time thor even though

there might truly be a time-dependent effect of the covariates.

2.3.2 Sliding landmarking

The estimates from a Cox model might give a reasonable prediction of survival time

up to some thor, even if the assumption of proportional hazards fail. However, in this

case the Cox model might not be a good choice when it comes to making dynamic

predictions. I.e, the estimates obtained by the method presented in section 2.2.2 might

be inaccurate, as the Cox model does not capture dynamic differences. Instead we may

assume that we are in the misspecification situation presented in subsection 2.3.1, and

rather use weighted averages of β(t) computed over the intervals [LMs, LMs + w],

0 = LM1 < LM2 < · · · < LMS = thor instead of the average over thewhole follow-

up range [0, thor]. van Houwelingen and Putter [2011] call this a sliding landmark

13
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model. To make predictions from some time-point t = LM to t = LM +w, one fits

a Cox model to a data set that is left truncated at t = LM with administrative right

censoring at t = LM + w. The sliding landmark model can be written as

α(t|x, LM,w) = α0(t|LM,w) exp(βT (t)x).

The landmark pointsLMs can, for example, be chosen as a grid of equidistant points

over a desired interval [0, tend]. Alternative choices are possible but should not depend

on the actual event times. van Houwelingen and Putter [2011] suggest that a grid of

between 20 and 100 points should be sufficient. As outlined above, one estimates the

model by fitting a sequence of Cox regression models, one for each landmark point

LMs on the grid, where all observations are left truncated at the landmark pointLMs,

and right censored at LMs + w. Using the notation

As = {i|ti ∈ [LMs, LMs + w]} ,

we can write the individual partial log likelihood for the s-th landmark point as

∑
i∈As

βT (LMs)xi − log

(∑
`∈Ri

exp
(
βT (LMs)x`

))
.

Since all these S partial log-likelihoods depend on different sets of regression coeffi-

cients, β(LMs), if we maximise them independently this is equivalent to maximising

them all at once. Therefore, using the notation

li(β(LMs)) = β
T (LMs)xi − log

(∑
`∈Ri

exp
(
βT (LMs)x`

))
(2.7)

we can write the likelihood we are maximising as

ipl(β(LM)) =
S∑
s=1

∑
i∈As

li(β(LMs)). (2.8)

van Houwelingen and Putter [2011] calls this expression an integrated partial log-
likelihood, although they define it in seemingly different, but equivalent terms. We

shall from here on occasionally refer to this expression by the name integrated partial
log-likelihood, or by the abbreviation ipl.
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2.3. Landmarking

2.3.3 Survival predictions from sliding landmark models

As discussed in the previous section, the motivation for the sliding landmark model is

rooted in the problem of giving dynamic survival predictions for a given individual.

By this we mean predicting the probability of an individual surviving, say 5 years from

some point in time given that the individual has survived up to then. We do this in the

natural way, keeping the approximation (2.6) in mind, by computing the conditional

baseline cumulative hazard from LMs to LMs + w as

Â0(LMs + w|LMs) =
∑
i∈As

di∑
`∈Ri

exp (β(LMs)Tx`)
.

The estimate of the corresponding conditional baseline hazard estimate for an individ-

ual with covariate vector x0 is then

Â(LMs + w|LMs,x0) = A0(LMs + w|LMs) exp(β(LMs)
Tx0).

Therefore the estimate of the conditional survival function used to predict survival for

an individual with covariate vector x0 is

Ŝ(LMs + w|LMs,x0) = exp(−A(LMs + w|LMs,x0)).

2.3.4 Sliding landmarking analysis of Danish melanoma data

An illustration of the sliding landmarking approach to computing regression coef-

ficients can be given using the data from the Danish melanoma study. A grid of 76

equidistant points over the interval [0, 7.5] were chosen as landmarks. Regression

coefficients were computed for log-transformed tumor thickness and ulceration at each

landmark point LMs using the corresponding landmark datasets with a window size

ofw = 5, i.e. with left truncation atLMs and administrative censoring at LMs + 5.

A plot of the landmark estimates of the regression coefficients is given in figure 2.3.

From the plot, it seems like the effect of increasing log-transformed tumor thickness is

decreasing on the interval [0, 6], and increasing on the interval [6, 7.5]. It also seems

like the effect of ulceration being present is somewhat decreasing on the interval [0, 4],

and increasing on [4, 7.5]. An application of these fitted coefficient curves is to produce

estimates of 5-year survival probabilities as described in the previous section. A plot

of these computed for each landmark point using both the landmark coefficients and
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Figure 2.3: Sliding landmark estimate of the coefficients for log-transformed thickness

and ulceration. The dotted lines indicate the values of the Cox estimates over the en-

tire study.

the Cox estimates, for both an individual without ulceration with average log2 tumor

thickness (0.89), and an individual with ulceration and log2 tumor thickness equal

to one is given in figure 2.4. Judging by the plot, the Cox model overestimates the

5-year survival probabilities compared to the sliding landmark model for the individual

without ulceration and with an average log2 tumor thickness, and underestimates for

the individual with ulceration and log2 tumor thickness equal to 1.

2.4 Assesment of survival predictions

Amajor ambition of this thesis is to develop a newmethod for making survival pre-

dictions that we hope is well suited for situations where we have a high dimensional

covariate space, and non-proportional hazards. Specifically, we wish to investigate if
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Figure 2.4: 5 year survival probability predictions computed from the sliding land-

mark model and from the Cox-model, for an individual with ulceration and log2 tu-

mor thickness equal to 1, and an individual without ulceration and an average log2

tumor thickness.

ourmethod does any better than standard approaches based onmethods that implicitly

assume proportional hazards such, as penalised Cox regression methods which we will

discuss later in this thesis. To be able to answer such questions, we need a conceptual

contraption that allows for such comparisons, which is not as straightforward as in

other situations as for example binary classification problems. There are a number of

available methods developed specifically for the assessment of survival predictions, of

which a number are summarised and discussed in the paper by Bøvelstad and Borgan

[2011].

Of the methods discussed in this paper we will here focus on the Brier score and a

relatedR2
measure based on it, and apply this to the evaluation of dynamic survival

predictions based on landmarking. The reason we choose the Brier score approach, is
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mainly that the Brier scores are not specific to the Cox likelihood. ByR2
measure, one

means a score between 0 and 1 that says something of the proportion of variation in

the dependent variable, i.e the survival time, that is predictable from the independent

variables. In other words, the closer the R2
measure for a given method is to 1, the

better the predictive capabilities of the model. It is important to note that when we

are to evaluate how a well a method of prediction works, we need to ‘hide’ some of

the data from the from the estimation procedure. If the data we use to evaluate the

goodness of the models predictions also are used to estimate the parameters of the

model, then wemay grossly overestimate its predictive power. This includes the tuning

of what are sometimes referred to as hyperparameters, a topic we shall return to when

we discuss penalised regression methods in the next chapter. The subset of the data

that we omit when estimating the regression coefficients is often referred to as a test set,
and the remaining data that is used in the estimation procedure is often referred to as a

training set.

2.4.1 Brier scores for survival data

The Brier score was first introduced in Brier [1950] as a method of measuring the

inaccuracy of probabilistic weather forecasts. In the paper by Graf et al., the Brier score

was adapted as a measure for evaluating the accuracy of survival predictions, and anR2

measure based on the Brier score was developed. The Brier score is purpose specific of

predicting survival up to some time t∗. In a situation where there are no censorings in

the test set, the Brier score of predicting survival up to t∗ is defined as

BS(t∗) =
1

m

m∑
j=1

(
I(tij > t∗)− π̂(t∗|xij)

)2

=
1

m

m∑
j=1

[
π̂(t∗|xij)2I(tij ≤ t∗) + (1− π̂(t∗|xij))2I(tij > t∗)

]
wherem is the number of individuals in the test set, ij , j = 1, 2, ..m are the indices

of the individuals in the test set, and π̂(t∗|xij) is the estimated probability of the j-th
individual in the test set surviving up to t∗. This probability can be anything, but it

could here be natural to imagine that it is estimated by (2.2). Looking at the expression

for the Brier score with no censorings, we can see that the idea of the Brier score is

to dichotomise the survival times by looking at the variable I(ti > t∗), and then

18



2.4. Assesment of survival predictions

computing a mean squared measure from the prediction of the survival time exceeding

t∗. In the event that not all the individuals in the test set experience the event and

that the censoring and survival times are independent given the covariates, Graf et al.

propose that the Brier score is expressed as

BSc(t∗) =
1

m

m∑
j=1

[
π̂(t∗|xij)2I(tij ≤ t∗, dij = 1)

Ĝ(tij)
+

(1− π̂(t∗|xij))2I(tij > t∗)

Ĝ(t∗)

]
,

where

Ĝ(t) =
∏
tij≤t

(
1−

1− dij∑m
k=1 Yik(tij)

)

is the Kaplan-meier estimate of the censoring function for the individuals in the test

set, where Yi(t) is an indicator of the i-th individual being in the risk set at time t. This

score may be used to define anR2
measure, benchmarking the performance of a model

against the null model, in the following way

R2
Brier(t

∗) = 1− BSc(t∗)

BSc0(t
∗)
.

ByBSc0 wemean the expression forBS
c
where the predictions are made with a model

where all the regression coefficients are set to zero. Graf et al., and Bøvelstad and Borgan

[2011] extend these concepts of the Brier score, and the relatedR2
measure to integrated

versions. That is, instead of evaluating them at some single time-point t∗, they are

evaluated on a grid, and averaged in a suitable fashion. We will see in the next section

that these extensions are not so relevant for our application, and we will therefore not

go through them in detail.

2.4.2 A dynamic Brier score approach to assesing landmark pre-
dictions

The Brier score and the related R2
measure attempts to estimate the goodness of a

set of survival predictions at some time t∗, or over a time-period via their integrated

versions. The goal is to assess the predictive performance of a model, specifically of

predictions concerning survival from time t = 0 to time t = t∗. In this thesis however,

we are studying landmarking, which is motivated by a desire to produce good dynamic

survival predictions. In other terms we are working with estimates of a conditional
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survival function P (T > t|T ≥ s), and not with estimates of a survival function

S(T > t). To be even more specific, we are estimating a sequence of S models

connected to different points in time (landmarks) LMs, where the purpose of each

model is to predict survivalw ahead in time. I.e., we are trying to give as good as possible

an estimate of P (T > LMs + w|T ≥ LMs), where these are achieved with models

built for each purpose, each model having its own set of coefficients, and separate

baseline hazard. To evaluate such models that give dynamic predictions, we need a

dynamic measure of prediction error. Such a measure is provided by vanHouwelingen

and Putter [2011], and can, in the notational style of this thesis, be expressed as

DBSc(t0, t
∗) =

1

Ytest(t0)

∑
j∈Rtest(t0)

π̂(t∗|xij , t0)2I(tij ≤ t∗, dij = 1)

Ĝ(tij |t0)

+
(1− π̂(t∗|xij , t0))2I(tij > t∗)

Ĝ(t∗|t0)
,

where t0 is the time-point we are predicting the survival up to t
∗
from, π(t∗|xij , t0) is

the estimate of the survival up to t∗, conditional of survival up to t0, and Ĝ(t
∗|t0) is

the Kaplan-Meier based estimate of the conditional censoring function,Rtest(t0) is

the set of indices belonging to the individuals in the test set at time t0, and Ytest(t0)

is the number of individuals in the test set at risk at time t0. It is worth noting that

van Houwelingen and Putter [2011] propose that the weights here represented by the

Kaplan-Meier based estimates Ĝ are instead estimated in an analogue fashion to (2.2),

but we will here stick to the Kaplan-Meier, in keeping with Graf et al. and Bøvelstad

and Borgan [2011]. This conditional version of the censoring function is computed as

Ĝ(t|s) = G(t)

G(s)
=

∏
tij∈(s,t]

(
1−

1− dij∑m
k=1 Yik(tij)

)
.

As mentioned, we are interested in the dynamic preditions w ahead in time at each

landmark point LMs, therefore the scores we will use can be written as

DBSc(LMs, LMs + w) =
1

Ytest(LMs)

×
∑

j∈Rtest(LMs)

π̂(LMs + w|xij , LMs)
2I(tij ≤ LMs + w, dij = 1)

Ĝ(tij |LMs)

+
(1− π̂(LMs + w|xij , LMs))

2I(tij > LMs + w)

Ĝ(LMs + w|LMs)
,

20



2.4. Assesment of survival predictions

which will yield a vector of S scores when evaluated for each landmark point. These

can, in a similar manner as before, be used to define a dynamicR2
measure for our

landmarking predictions as

DR2
Brier(LMs + w,LMs) = 1− DBSc(LMs, LMs + w)

DBSc0(LMs, LMs + w)
,

which will also yield a vector of S scores, one for each landmark point.

2.4.3 Comparison of the predictive performance of landmarking
and Cox regression on Danish melanoma data

To measure ability of the landmarking model to predict the survival of melanoma

patients, we will use the strategy outlined above. Specifically, we will compute dynamic

R2, orDR2
Brier, for 5-year predictions for each method and plot these to compare

them. To do this we have to split the data in two parts, into so-called test and training

sets. We let the test set consist of approximately a third of the data, and the training

set of the remaining data. Both a Cox regression model, and a sliding landmarking

model with the same landmarks and interval width as in section 2.3.4 are fitted to the

training data. The resulting two models are then used to predict 5 year survival times

for the data in the test set. From these, the dynamic Brier scores, and the dynamicR2

measures are computed as described in the previous section. These are rendered in

two separate plots, which are shown in figure 2.5. Since the Brier score is like a mean

squared measure, the lower the Brier score, the better the model is at predicting 5 year

survival.

As for otherR2
measures, the closer the measure is to 1 the better. Keeping this

in mind when we expect the plots in figure 2.5, we see that the Cox and the landmark

model in this case are quite similar in performace, up to about 3 years. The landmark

model seems to do better than the Cox model, apart from the last time period from

about 7 years. Looking at the dynamicR2
, we see that in the interval [3, 6], both the

models seem to make worse predictions than if we were to use the null-model, or the

model with no effect of the covariates. The performance is here much worse than the

null model for the Cox model, while the landmark model seems to vary around the

point of being equally bad as the null model in terms of predictive performance. The

landmark approach may be better than the Cox model at making dynamic predictions

in this setting, but will certainly suffer from the same issues as the Cox model, and
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Figure 2.5: Plot of the dynamicBrier score and the dynamicR2
measure for theDanish

melanomadata, computed for theCoxmodel and themethodof sliding landmarking.

other maximum-likelihood related models in higher dimensions. This neccesitates

regularisation, or imposing restrictions on the optimisation problem. Regularisation

could also yield better predictions in lower dimensions, and much of what we will

focus on for the remaining part of this thesis will revolve around such techniques.

22



Chapter 3

Penalised regression in survival
models

For the most part of the history of statistics, the main focus has been on maximum

likelihood estimation and least squares model fitting. In this setting, we need to have

more observations than the number of parameters in the model to even be able to

estimate the model parameters. Usually, this is not a problem. There are however

situations where we have more variables than observations, one notable example being

medical studies with recorded gene expression data for each individual. In these types of

situations, one can easily have several thousand parameters to estimate, and only a few

hundred observations or less. Here, most methods of classical statistics are unusable. It

may also occur that we have many parameters to estimate in relation to the number of

observations, but still more observations than parameters. Here, one can technically

fit regression models with traditional techniques, but the estimates are usually too

variable to be useful. The problem here may be thought of as that too much of what

the model explains is random variation, rather than an actual relationship between

the covariates and the dependent variable. We will here focus on a solution to this

problem called penalised likelihood estimation, which essentially involves subtracting

a function of the parameters, called a penalty function, from the log likelihood.
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3. Penalised regression in survival models

3.1 Penalisation

Before we get into technical points about penalisation, we would like to take a moment

and address the question of which problems we are trying to solve. Firstly, there are

numerical issues that can occur as described above. Secondly, if we fit a model with

many covariates, wemight think that themodel is too complex, and therefore is lacking

in interpretability. One popular way to deal with these problems, and in particular the

second problem, is subset selection. This involves fitting models where one includes

and exclude different combinations of the covariates, and picks the ‘best’ model in

terms of some selection criteria such as AIC or BIC [Claeskens andHjort, 2008]. There

are several issues with this. It typically involves fitting many models, which quickly

becomes computationally infeasible when the number of covariates is large [Hastie

et al., 2001].

Although the latter can be remedied by using greedy algorithms, there is an

additional problem in that since the model selection process is discrete, there is very

high variability in the resulting models. I.e., small changes in the dataset can lead to a

very different model [Breiman, 1996]. By greedy algorithms one means algorithms for

solving optimization problems that follow a heuristic of sequentially making locally

optimal choices, in the hope of finding a global optimum. For the subset selection

problem this can for instance mean starting from a model with no covariates, and

including one covariate at a time until no further improvement can be made in terms

of the selection criteria, instead of selecting the optimal solution among all possible

covariate combinations.

Returning to penalisation, an alternative approach is to fit the model with a lasso
penalty, introduced by Tibshirani [1994] The idea here is to introduce a penalty term

to the objective function to shrink the estimates. The penalty term here is theL1 norm

of the parameter vector. This might help against overfitting. In addition, it often tends

to set some of the coefficients to zero, thus also serving as a model selection procedure.

More specifically, we obtain the regression coefficients by solving

argmax

β

{
l(β)− λ

p∑
j=1

|βj|

}
,

where l(β) is the log likelihood of the model, and λ is a parameter that determines how

much the parameters should be penalised. This form of the maximization problem is
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3.1. Penalisation

known as the Lagrangian form, and the problemmay also be stated in the equivalent

way of

argmax

β

l(β), subject to

p∑
j=1

|βj| ≤ s,

where s is a parameter that determines the level of constraint on the coefficients. An

alternative to the lasso is the method of ridge regression [Hoerl and Kennard, 1970],

which penalises the likelihood by the squared L2 norm of the coefficient vector. In the

Lagrangian form, the ridge problemmay be stated as

argmax

β

{
l(β)− λ

p∑
j=1

β2
j

}
.

Ridge regression only shrinks the coefficients, and does not offer model selection

directly like the lasso does.

3.1.1 Cross validation, and how to choose λ

To fit the model, one must choose a specific value for λ. This will typically be done by

setting a grid of values, and choosing the optimal by a technique called cross validation
(CV). Cross validation had previously existed as an idea in statistics, but was first

formalised by Stone [1974] and Geisser [1975]. The procedure, now usually termed

ordinary cross validation(OCV)— as opposed to generalised cross validation(GCV)

[Craven andWahba, 1978]— involves dividing the dataset intoK different subsets

of roughly the same size, successively fitting toK − 1 of the subsets, and computing

some measure of fit on theK-th subset. The sum, or average of these is then used to

evaluate the model. In the penalised likelihood setting, this may be phrased as

CV (λ) =
K∑
k=1

lk(β̂(−k)(λ)),

where lk(β(−k)(λ)) is the penalised log likelihood evaluated for the k-th subset, using

parameter estimates computed from the full dataset excluding the k-th subset. When

K < n (typically 5 or 10), this is referred to asK-fold cross validation. The situation

whereK = n is referred to as leave one out - cross validation (LOO).
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3. Penalised regression in survival models

3.1.2 Penalisation and the Cox regression model

In this thesis, we concern ourselves with survival data, the Cox regression model, and

extensions thereof. Due to the fact that the terms in the Cox partial log likelihood are

not independent, we have to adapt the likelihoodmeasure of fit in order to use ordinary

cross validation to evaluate Cox regression models. Verweij and Van Houwelingen

[1993] provided an extension of the cross validation methodology to the survival

setting, and specifically the Cox regression model, which in their later paper [Verweij

and VanHouwelingen, 1994] was applied to penalised likelihood in Cox regression,

with anL2 penalty term. In Verweij and VanHouwelingen [1993], they concentrate

on an expression for the likelihood for leave one out cross validation. K-fold cross

validation for the Coxmodel has been discussed by Bøvelstad et al. [2007]. It is possible

here to find an exact expression for the cross validated partial log likelihood as inVerweij

and Van Houwelingen [1993], but in practice what one computes is just

CV (λ) =
K∑
k=1

{
l(β̂(−k)(λ))− l(−k)(β̂(−k)(λ))

}
where l(−k) is the Cox partial log likelihood where the k-th fold is excluded. One

should note that there does not exist a valid formula for the standard errors of the

regression coefficients from this model. This is due to the fact that the terms in the

partial log likelihood are dependent, and that we have to define the cross validated

partial log likelihood in the manner stated above. While first developed for the linear

model, Tibshirani [1997] provided an extension to the Cox regression model in the

right censored survival data setting. The problem is stated as

argmax

β

l(β), subject to

p∑
j=1

|βj| ≤ s,

where l(β) is the Cox log partial likelihood. In the original paper by Tibshirani

[1997] the covariates are assumed to be standardised such that

∑n
i=1 xij = 0, and

1
n

∑n
i=1 x

2
ij = 1.We may however not always require this, but instead relax the as-

sumption to that the measurements have to be on the same scale. The ridge method

may also be adapted to the Cox regression model in a similar fashion as the lasso.
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Figure 3.1: Values of the partial likelihood deviance and values of the coefficients plot-

ted for a sequence of λ-values for the carcinoma data.

3.1.3 Carcinoma of the Oropharynx

To illustrate the lasso method for Cox regression, we will consider a dataset of 195

patients with oropharyngeal cancer taken from the book by Kalbfleisch and Prentice

[1986]. Here, the patients survival time, an event indicator, the patients sex and age, the

institution where the patients were treated, what treatment each patient received, the

general condition of each patient, the site of the carcinoma in the oropharynx, the grade

of the carcinoma, the t-stage and the n-stagewas recorded. TheTNstaging classification

gives a measure of the extent of the tumor at the primary site (T), and at regional

lymph nodes (N). The grade variable is a measure of the degree of which the tumor cell

resembles the host cell. The variables institution, sex, treatment, grade, t-stage, n-stage

and site are all categorical variables with 6, 2, 2, 3, 4 and 4 levels, respectively. Since the

effect on the mortality is too dominant, we do not include the general condition of

the patients for purposes of illustration. The penalisation parameter λ was chosen
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3. Penalised regression in survival models

by 10-fold cross validation, where we aim to minimise the partial likelihood deviance

(figure 3.1). To see how the lasso method works, it is illustrative to look at a plot of the

coefficients for the models corresponding to a range of λ-values, which is shown in

figure 3.1. Here we can see how the lasso shrinks the coefficients, and sets some to zero.

Table 3.1: The non-zero coefficients from a Cox model with a lasso penalty, fitted to

the carcinoma data.

Variable β
Institution 3 −0.007
Grade 2 0.026
Grade 3 −0.173
t-stage 2 −0.016
t-stage 4 0.219
n-stage 3 0.250

The coefficients from the fitted model with the optimal value of λ is shown in table

3.1, where we can interpret the coefficients as the effect of the variables having a given

level, relative to the base level, which is 1. For example, we can see that institution

number 3 has an estimated lower mortality rate than institution 1. One problem with

the direct use of the lasso in this situation is that we might want to include or exclude

an entire variable, and not just the levels of a categorical variable as individual variables.

This problem has a solution in an adjusted version of the lasso method, which we will

introduce next.

3.1.4 Group lasso

Yuan and Lin [2006], in their article, derive an extension to the lasso method to

situations with categorical covariates, ensuring that grouped coefficients are pushed

in and out of the model simultaneously. This is achieved by imposing a ridge penalty

within each group, and then weighting the penalty of each group with the square

root of the number of levels within each group. All the discussion in Yuan and Lin

[2006] has the linear model in mind, with the objective function being the squared

error loss function. We will here concentrate on the Cox model, with the objective

function being the Cox partial log likelihood. To state the maximisation problem,

some notation is needed. We assume that there areG variables, at least one of which is

a categorical variable, where each variable has pg levels. The maximisation problem to
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Figure 3.2: Values of the partial likelihood deviance and values of the coefficients plot-

ted for a sequence of λ-values for the carcinoma data, for the group lasso model.

be solved can be expressed as

argmax

β

l(β)− λ
G∑
g=1

√
pg

(
pg∑
j=1

β2
gj

) 1
2


where l(β) is the Cox partial log likelihood.

3.1.5 Carcinoma of the Oropharynx, group lasso

Returning to the dataset of 195 patients with carcinoma of the Oropharynx, we can

illustrate the group lasso method, which serves the purpose of ensuring that each of

the grouped coefficients are pushed in and out of the model in unison. We here also

choose the optimal penalty parameter λ via 10-fold cross validation, and choose the

value of λ that yields the smallest cross validation error (see figure 3.2). To see how

the grouped lasso behaves in comparison to the regular lasso, we here also plot the
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3. Penalised regression in survival models

coefficients for each λ to obtain the coefficient paths, which is shown in figure 3.2. We

can here see that the individual variables in each group are set to zero at the same time,

and the coefficient paths are somewhat smoother than for the regular lasso, due to the

ridge-like penalty on the individual coefficients within each group. Concretely, we see

that in contrast to the model with an ordinary lasso penalty, the institution variable is

now excluded, and all the levels of t-stage and n-stage are included.

Table 3.2: The non-zero coefficients from a Cox model with a group lasso penalty,

fitted to the carcinoma data.

Variable β
Grade 2 0.060
Grade 3 −0.128
t-stage 2 −0.103
t-stage 3 −0.014
t-stage 4 0.143
n-stage 2 −0.017
n-stage 3 0.242
n-stage 4 0.087

The regression coefficients that are not set to zero are given in table 3.2. If we are to

interpret this model, we can infer from the coefficients from the fit that patients with

grade equal to 2 and 3 have an estimated higher and lower mortality rate compared to

those with grade equal to 1, respectively. In addition, patients with t-stage equal to 2 or

3 have an estimated lower mortality rate than those with t-stage equal to 1, while those

with t-stage equal to 4 have a higher mortality rate. Lastly, those patients with n-stage

equal to 2 have an estimated lower mortality rate than those with n-stage equal to 1,

and those with n-stage equal to 3 or 4 have an estimated higher mortality rate.

3.2 Landmarking and penalised Cox regression

Amain goal of this thesis is to adapt the Cox model to situations where we have non-

proportional hazards (or time-varying effects, if you will), and a high dimensional

covariate space. We have looked at two extensions that try to solve these two problems

by themselves, namely landmarking, and penalised partial likelihoodmethods, and our

aim forward is to try and combine the two. The first approach we take is a naive one,
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3.2. Landmarking and penalised Cox regression

where we just maximise the penalised log partial likelihood for each of the landmark

datasets.

3.2.1 Penalised sliding landmarking

As mentioned above, we first attempt to estimate coefficients at each landmark point

as before, but with a penalised regression technique instead of ordinary Cox regression.

Given S landmark points and interval width w, the likelihood that we maximise,

omiting penalty terms, is the expression (2.8) given in section 2.3.2, which can be

written as

ipl(β(LM)) =
S∑
s=1

∑
i∈As

li(β(LMs)),

whereAs = {j | tj ∈ [LMs, LMs+w]} is the landmark dataset with left-truncation
at t = LMs and right-censoring at t = LMs + w. In the naive approach we first

propose, we fit models to each landmark dataset independently, and thus also set a

penalty independently for each of these models. Hence, what we are maximising, if we

follow this approach is{
S∑
s=1

(∑
i∈As

li(β(LMs))− λs
p∑
j=1

|βj(LMs)|

)}
.

It should be noted that there usually is a lot of overlap between the different landmark

sets, and therefore this likelihood-like expression is not a proper partial likelihood, and

the terms in the likelihood, as for the Cox partial likelihood, are not independent.

3.2.2 Primary biliary cirrhosis data

To illustrate the method outlined above, we will fit such a penalised sliding landmark-

ing model to a dataset of 310 patients from the Mayo Clinic trial in primary biliary

cirrhosis (PBC) of the liver conducted between 1974 and 1984. We here choose to use a

new dataset, because we want a dataset without any categorical variables, with enough

variables to illustrate the lasso, that also can be used to illustrate the next natural exten-

sion of the above method later. The dataset we use is a subset of the full dataset, where

we have only included those individuals that were in the treatment/control groups, and

that had measured values of all the covariates we included. The covariates included are
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3. Penalised regression in survival models

the patients age, sex, treatment received (D-penicillamine/placebo), whether or not the

patient had an enlarged liver (hepato), ascites or blood vessel malformations in the skin

(spiders), the measured values of aspartate aminotransferase (ast), serum bilirunbin

(bili), serum cholesterol (chol), serum albumin, urine copper, alkaline phosphotase

(alk.phos), and standardised blood clotting time (protime).

To be able to summarise themodel in a simplemanner, we fit themodel with only

a handful of landmarks, more precicely we choose LM1 = 0 years, LM2 = 3 years

andLM3 = 6 years. Settingw = 5 years yields 3 datasets, the first with administrative

censoring at t = 5 years, the second and third with left truncation at t = 3 years and

t = 6 years, and administrative censoring at t = 8 years and t = 11 years, respectively.

We then fit a Cox regression model to each of these datasets with anL1 penalty, where

the individual penalty terms are chosen via 10-fold cross validation.

Table 3.3: Landmark estimates computed by individual lasso-penalised regressions for

each landmark set, computed for the primary biliary cirrhosis data.

LM : 0 years 3 years 6 years
trt 0 0 0
age 0.013 0 0
sex 0 0.06 0

ascites 0.128 0.071 0.432
hepato 0.052 0.07 0
spiders 0 0 0
bili 0.083 0.174 0.191

albumin −0.910 −0.895 −0.287
copper 0.003 0.00003 0
alk.phos 0 0 0

ast 0.001 0 0
protime 0.304 0 0

A summary of themodel fit is shown in table 3.3. Looking at the table we see that not all

of the variables that are set to zero are set to zero at every landmark point. As we would

like to have a scheme that pushes covariates in and out of the model in unison, we need

to come up with a different approach to fitting our model. If we are to interpret the

fit given in table 3.3, we see there is no estimated effect of difference in treatment and

that older patients have a higher mortality, but only at the start of the study. There is

an estimated higher mortality rate among males at the second landmark, the patients

with ascites have a higher mortality rate and patients with an enlargened liver have
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3.2. Landmarking and penalised Cox regression

an estimated higher mortality rate, but not towards the end of the study. There is no

effect of blood vessel malformations in the skin, higher values of serum bilirunbin

are associated with a higher mortality rate but the effect is not as strong for the first 5

years, and higher values of serum albumin are associated with a lower mortality rate.

In addition, there is a estimated positive effect on the mortality rate at the first and

second landmark point of increased urine copper and at the first landmark point of

increased standardised blood clotting time.

3.2.3 Sliding landmarking with preselection of variables

A possible strategy when we are to fit sliding landmark models to datasets with a high

number of covariates, is to first use a method to select a subset of the covariates, and

then to fit a model to this reduced dataset. There are a variety of methods that allows us

to select such a subset, but as we have here already introduced lasso regression we will

focus on lasso selection. For an overview of some available techniques, see for instance

Bøvelstad et al. [2007]. Thus our propoced procedure is here to first fit a penalised Cox

regression model to the given dataset using a lasso-penalty, and then fitting a sliding

landmark model using only the selected covariates from the lasso-model. For brevity,

we will occasionally refer to this scheme by the acronym SL-PS.

3.2.4 Sliding landmark analysis of the PBC data with preselecion
of variables

To exemplify, we use the above method to estimate regression coefficients for the PBC

data discussed in section 3.2.2. To ensure perfect comparability we use the same folds

as in 3.2.2 when choosing the tuning parameter for the lasso model that we use to select

covariates. The landmark coefficients are then estimated as discussed in chapter 1, with

landmarks at 0, 3 and 6 years, and an interval width ofw = 5 years.
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3. Penalised regression in survival models

Table 3.4: The resulting coefficients from the sliding landmark analysis of the primary

biliary cirrhosis data using lasso selection.

LM: 0 years 3 years 6 years

age 0.031 0.017 0.039

ascites 0.095 0.229 0.735

hepato 0.438 0.489 0.31

spiders 0.022 0.12 0.34

bili 0.075 0.184 0.187

albumin -1.12 -1.441 -1.347

copper 0.003 0.002 0.003

ast 0.004 0.001 0.004

protime 0.434 -0.098 0.127

The lasso model selects all of the covariates except treatment, sex, blood vessel mal-

formations in the skin and alkaline phosphotase. The sliding landmark estimates are

summarised in table 3.4. If we are to compare with the previous analysis in section 3.2.2,

we see that the with the exception of the nonzero estimate at the second landmark of

the covariate sex, the same covariates have been set to zero across all the landmarks.

Aside from the fact that some of the landmark coefficients are zero for the analysis in

3.2.2, the results seem quite similar, but are larger in absolute value for the model in the

present section. This is of course to be expected as we are not penalising the estimates

here.

3.2.5 Group penalised sliding landmarking

In the example in 3.2.2, we saw that when we simply fit penalised Cox regression

models with a lasso penalty to each of the landmark datasets, the resulting model has

an unwanted property. Namely, that the coefficient of a variable can be excluded and

included at different landmark points. What we want instead, is that the effect of a

variable is either estimated at all the landmark points, or excluded from the model

entirely. To achieve this, wewant to estimate amodel based on all the landmark datasets,

with a group penalty on each group of coefficients belonging to the same variable at

different landmark points. Specifically, we seek to maximise the expression
S∑
s=1

∑
i∈As

li (β(LMs))− λ
p∑
j=1

(
S∑
s=1

β2
j (LMs)

) 1
2

 ,
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3.2. Landmarking and penalised Cox regression

with respect to λ and β(LM). We wish however, to use existing software to do this.

This is not possible to do directly with the software packages that are avaialble to us at

the present time. The closest approximate solution is to stack the individual datasets

created by the dynpred software by Putter [2015], and then fit the model using for

instance the grpreg package [Breheny and Huang, 2015]. One can show that using this

strategy, what we actually maximise is
S∑
s=1

∑
i∈As

l∗i (β(LMs))− λ
p∑
j=1

(
S∑
s=1

β2
j (LMs)

) 1
2

 ,

where

l∗i (β(LMs)) = di

βT (LMs)xi − log

∑
`∈Ri

∑
{k|tl≥LMk}

exp
(
βT (LMk)x`

) .

(3.1)

Thus the risk used when computing the individual likelihood contributions are here

incorrect, as the observations often are counted more than once and coefficients be-

longing to other landmarks also contribute. In addition this approach requires that all

the landmark datasets are kept in-memory at the same time. This might impose too

large a constraint on the number of landmark points that can be included, especially for

high-dimensional datasets. Nevertheless, it offers a way of expanding on the approach

outlined in 3.2.1, potentially leading to a more parsimonous and interpretable model.

3.2.6 Group penalised sliding landmarking analysis of PBC data

In an attempt to exemplify and illustrate the approach outlined in section 3.2.5, we

will fit such a model to the liver cirrhosis data discussed in section 3.2.2. To choose the

penalty parameter λ, we use 10-fold cross validation. Since we here reuse observations

in the model, it is now quite important to pay attention to how the folds are generated.

We would like that when an observation is excluded from one of the model fits in the

cross validation procedure, it is removed from all the landmark datasets at the same

time. To ensure this, we define and assign the fold numbers to each of the observations,

prior to creating and stacking the landmark datasets.
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3. Penalised regression in survival models

Table 3.5: Landmark estimates computed by a group lasso-penalised regression with

stacked landmark datasets, computed for the primary biliary cirrhosis data.

LM : 0 years 3 years 6 years
trt 0 0 0
age 0.016 0.013 0.011
sex 0 0 0

ascites 0.181 0.057 0.239
hepato 0.235 0.163 0.099
spiders 0 0 0
bili 0.108 0.121 0.138

albumin −0.927 −0.995 −1.051
copper 0.003 0.002 0.001
alk.phos 0 0 0

ast 0.0009 0.0006 0.0004
protime 0.162 0.147 0.134

The model is fitted with landmark points at LM1 = 0 years, LM2 = 3 years and

LM3 = 6 years, and an interval with ofw = 5 years.A summary of the fitted model

is given in table 3.5. From the table, we can see that the variables treatment, sex, spiders

(blood vessel malformations in the skin) and alkaline phosphostase are excluded from

the finalmodel. Interpreting the coefficients, we see thatwe estimate that older patients,

patients with ascites, enlargened livers, higher values of serum bilirunbin, higher values

of copper urine, higher values of aspartate amonotransferate, longer standardised blood

clotting time, and lower values of albumin are positively associated with the mortality

rate. While studying the coefficient estimates from different models is interesting in

itself, it is not clear which estimates are better or worse in any sense. If we are interested

in survival predictions from given time-points ahead in time, which we in this thesis

are, we could here compare the models using the measures described in section 2.4.2.

Todo thiswe split the data in two,where two thirds of the data are used to estimate

the models, and the rest are used for the evaluation of the models. The models we will

compare the predictive of performance of the group penalised sliding landmarking

model to is the lasso-model, and the sliding landmark model with preselection. For

these three models, we compute the dynamic Brier score for predicting survival 3

years ahead in time at the landmarks LM1 = 0, LM2 = 3 and LM3 = 6, and the

corresponding dynamic R2
measures. These are shown in figure 3.3, where we can

see that for the first landmark the sliding landmark model with preselection performs
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Figure 3.3: Plots of the dynamic Brier score and the dynamic R-squared measure for

the group penalised sliding landmarking (GPSL), sliding landmarking with preselec-

tion (SL-PS) and the lasso model for the pbc data.

better than the two other methods, where the two other seem to have the exact same

score. For the second landmark, all the three models seem to have scores that are very

close. At the last landmark, the lasso seems to perform drastically better than the group

penalised sliding landmarking, which in turn seems to perform drastically better than

the sliding landmarking with lasso selection. This coul perhaps seem contradictive as

these measures are specifically designed to measure the predictive accuracy of dynamic

predictions, and the sliding landmark model is specifically designed to produce good

predictions of this kind. However, there is less data available at the last landmark, and

due to this the estimates become somewhat unstable, and are thus outperformed by

the methods that incorporate a form of shrinkage, in addition to selecting a subset of

the covariates.
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Figure 3.4: Values of the coefficients plotted against the L1 norm of the coefficient

vector, for models fitted to the Dutch breast cancer data.

3.2.7 Dutch breast cancer data

To further illustrate the lasso method for Cox regression, specifically the high dimen-

sional setting, we will consider a dataset containing 4919 gene expression measure-

ments and censored survival times for 295 Dutch women dicussed in the paper of van

Houwelingen et al. [2006]. This dataset consists of a subset of the gene-expressions in

cDNAarrays containing 24885 genes, whichwere reduced to4919 genes [vanHouwelin-

gen et al., 2006]. The subjects were selected from the fresh-frozen-tissue bank of the

Netherlands Cancer Institute, where the criteria were that the tumour was a primary

invasive breast carcinoma, less than 5 cm in diameter, that the age at diagnosis was 52

years or younger, that the calendar year of diagnosis was between 1984 and 1995, and

that there was no previous history of cancer, except non-melanoma skin cancer. We fit

a Cox regression model with a lasso penalty to the data, where the penalty is chosen by

10-fold cross validation using the R [R Core Team, 2017] package glmnet [Friedman
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et al., 2010, Simon et al., 2011].

Table 3.6: Coefficients fromCoxmodel lasso penalty, fitted to theDutch breast cancer

data.

Gene No. β
128 -0.102

1925 0.003

2042 -0.099

2242 -0.204

2246 -0.164

2363 -0.102

2816 0.092

3154 0.281

3394 -0.237

4175 -0.197

4176 -0.141

4197 0.004

4272 0.093

4309 0.545

4331 -0.091

4616 -0.018

The fitted (non-zero) coefficients from the final model are shown in table 3.6,where the

interpretation is that a higher value of the measured gene expression is associated with

a higher mortality rate for those genes with a estimated positive coefficient, and a lower

mortality rate for those genes with an estimated negative coefficient. A plot showing

the relationship between the L1-norm of the coefficient vector and the individual

values of the coefficients, and in addition the number of non-zero coefficients in the

model is given in figure 3.4. One would normally standardise data when fitting models

with a lasso penalty since it is sensitive to scaling, but we have here chosen not to do so

because the gene expression measurements already are on the same scale.

3.2.8 Sliding landmark analysis of the Dutch breast cancer data
with preselection of variables

As previously alluded to, a possible solution that allows us to estimate sliding landmark

models for high dimensional datasets is to first select a subset of covariates, and then to

fit a sliding landmark model to the low-dimensional dataset with only these covariates.
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Naturally, our first attempt to estimate a model to a high dimensional dataset utilises

this strategy. Therefore, we use the very covariates that are selected in the lasso-analysis

of the previous section in our sliding landmark analysis of the same dataset. To fit the

model itself we use landmarks at 0, 2.5, 5 and 7.5 years, and an interval width of 2.5

years.

Table 3.7: The resulting landmark coefficients from the sliding landmark analysis of

the Dutch breast cancer data, using lasso preselection of variables.

Gene no. 0 years 2.5 years 5 years 7.5 years

128 -0.356 -0.446 0.384 0.819

1925 1.542 1.004 0.144 2.213

2042 -0.484 -0.837 -1.892 -1.314

2242 -0.291 -1.298 -0.336 -2.341

2246 -0.106 -1.699 -0.393 0.793

2363 -1.584 0.052 -0.783 -6.551

2816 2.076 -0.108 -0.198 -3.059

3154 0.577 0.421 0.268 4.732

3394 -1.387 0.071 1.044 3.557

4175 -1.534 0.156 -0.716 -2.832

4176 -1.17 0.19 -1.337 -1.541

4197 -0.706 1.472 1.256 2.464

4272 -0.955 0.483 0.179 3.278

4309 0.916 0.981 1.968 2.999

4331 0.117 -0.264 -1.037 -5.918

4616 1.425 0.045 -0.933 0.811

The coefficients from the analysis are given in table 3.7, where we see that compared

to the lasso analysis the many of the coefficients are very large in absolute value, in

particular at the last landmark dataset. They also seem to vary greatly in size across the

same covariates. While we undoubtedly are able to estimate a model to the data using

this technique, some of the resulting coefficients are in this case much to large, perhaps

because this strategy is too unrobust.

3.2.9 Group penalised sliding landmarking analysis of Dutch breast
cancer data

Amain goal of this thesis is to try and develop a method that allows for estimation of

time-varying effects in Cox regression, for high dimensional settings. While we could
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use the strategy used in the previous example, we desire an approach to estimating

the coefficients that does both variable selection and estimation at the same time, and

that also penalises the estimates. Our initial candidate for such a method is the group

penalised sliding landmarking approach outlined in 3.2.5. In this section, we will take a

look at a concrete example, namely the breast cancer data discussed in the two previous

sections, and illustrate group penalised sliding landmark analysis on this dataset. To fit

themodel, we set an interval width ofw = 5 years, landmark points atLM1 = 0 years,

LM2 = 2.5 years, LM3 = 5 years, and LM4 = 7.5 years, and choose the penalty

parameterλ by 10-fold cross validation, using the same folds as for the analyses from the

two previous sections. The resultingmodel contains estimated non-zero coefficients for

no less than 102 covariates, which needless to say are to many to display in a table here.

It is worth mentioning that although the same folds are used, only 6 of the covariates

that appeared in the lasso model reappear in this model, despite the fact that it contains

as many as 102 covariates.

Table 3.8: Table containing the group penalised sliding landmark estimates of the co-

efficients of the coefficients that are also estimated to have a non-zero effect by lasso

penalised Cox regression.

Gene no. 0 years 2.5 years 5 years 7.5 years

2042 -0.145 -0.147 -0.096 0.022

2363 -0.15 -0.117 -0.113 -0.023

2816 0.448 0.439 0.452 0.672

3154 0.157 0.184 0.269 0.443

4197 0.01 0.024 0.024 0.022

4331 -0.076 -0.129 -0.16 -0.126

The interpretation of these coefficients are as in previous examples, higher values of a

measured gene expression is associated with a higher mortality rate if the coefficient is

positive, and lower if the coefficient is negative. The estimates that are in common for

both the methods are given in table 3.8. These are much smaller and seemmore stable

for the group penalised method, which is reasonable since this model contains a lot

more coefficients in total, and the estimates are penalised.

In a similar way as for the pbc data, we will here also assess the quality of the

predictions made from the lasso model, the sliding landmark estimates made using the

lasso selection, and the group penalised sliding landmark estimates using the measures

introduced in section 2.4.2. We here estimate the models using roughly two thirds of
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Figure 3.5: Plots of the dynamic Brier score and the dynamic R-squared measure for

the group penalised sliding landmarking (GPSL), sliding landmarking with preselec-

tion (SL-PS) and the lasso model for the Dutch breast cancer data.

the data, and evaluate the predictions using the remaining third. Plots of the dynamic

Brier scores and related R2
measures are shown in figure 3.5. Here we see that in

terms of predictions, the lasso estimates are most accurate, followed by the sliding

landmark estimates using the lasso selection,while the grouppenalised sliding landmark

estimates are the least accurate. Concentrating on thedynamicR2
basedon thedynamic

Brier scores, we see that the lasso model is better than the null model at the three

first landmarks, but worse at the last landmark. The sliding landmark model with

preselection is better than the null model at the first landmark, and worse compared

to the null model at the three last landmark. The group penalised model is worse

than the null model at all of the four landmarks. Thus none of the two considered

models seem to outperform the lasso model for this dataset, and these test cases. For

the sliding landmark model using the lasso selection, is seems that the problem is a

42



3.2. Landmarking and penalised Cox regression

lack of shrinkage of the estimates, which naturally makes the coefficient estimates less

stable, and therefore more inaccurate predictions. For the group penalised sliding

landmark analysis, it seems that the error we make in terms of the baseline when trying

to estimate themodel in the way we do here as discussed in section 3.2.5, is large enough

that the estimates become too inaccurate, and useless for predictions.

This example also neatly illustrates the computational disadvantages of the ap-

proach outlined in section 3.2.5, as this requires the design matrix of the regression

problem to have p times S columns, where p is the number of covariates in the dataset,

and S is the number of landmark points, in addition, the number of rows also grows

as S increases. With several thousand variables in the dataset, it will be challenging to

store the design matrix of a model with more than a handful of landmark points in

the memory of a standard computer. This might prompt us to go for the two-stage

process we also have discussed in this chapter, but as we have seen, this method also has

some undesirable properties. The ideal solution might be the group penalised sliding

landmark approach, but limitations of the available software might render further

pursuit of this idea to be beyond the scope of this thesis. If we however were to follow

this idea we would have to store the design matrix in a memory-efficient way, which of

course is no real challenge, but we would also have to develop a a way of estimating

the model using a quadratic optimisation algorithm taylored to this specific problem.

This is of course a possible solution, but we will instead go down a somewhat different

path in our pursuit of truth, as it were, by designing an algorithm using the likelihood

function (2.8), and an estimation technique known as boosting.
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Chapter 4

Boosting in survival models

An alternative to penalisedmaximum likelihood estimation is the concept of likelihood-

based boosting. Boosting originated in the field ofmachine learning, andwas originally

developed for classification, perhaps the most notable example being the AdaBoost

algorithm [Freund and Schapire, 1997]. Boosting has later been adapted to a statistical

setting, instigated by Friedman et al. [2000] who showed that AdaBoost minimises a

certain exponential loss function. They also showed that this loss function is related

to the binomial log likelihood, and developed an algorithm called LogitBoost, which

fits an additive logistic regression model. The LogitBoost algorithm can be adapted

to work for any exponential family, and for proportional hazards models [Ridgeway,

2001]. So, what is boosting? All boosting procedures are iterative procedures that

adapt to some measure of error from the data. For AdaBoost, this involves weighting

the data with the weights being decided by the misclassification error. An important

procedure for regression, and in general, is the gradient boost algorithm by Friedman

[2001], which is a general description of a way to iteratively estimate the minimiser of

a loss function by moving in the direction of the gradient of the loss function. From a

statistical point of view, one usually works with maximising the log likelihood instead

of minimising loss functions, but we can adapt the gradient boosting procedure by

thinking of the negative log likelihood as a loss function. In this manner the gradient

boosting algorithm can be adapted and used as a means to fit for instance exponential

family models and proportional hazards regression models, such as the ones we are

interested in in this thesis.
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4. Boosting in survival models

4.1 Gradient boosting

In the paper by Friedman [2001], he proposes the general gradient boosting algorithm.

The aim of the algorithm is, as previously mentioned, to minimise a loss function. The

algorithm is iterative in nature, and the idea of it is, for each iterationm, to compute an

increment to a predictor that aims to move in the direction of the negative derivative

of the loss function. The first step is therefore to compute this derivative evaluated at

the previous estimate

ỹm = −
∂L
(
y, F(m−1)(x)

)
∂F (x)

,

whereF is a general predictor thatmaps values ofx to values ofy, an example being the

linear predictor F (x) = βTx. One then subsequently fits a model h(x) that predicts

ỹ, and regresses on h using the previous estimate F as an offset. The new estimate is

then the previous estimate plus the increment of h scaled by a regression coefficient ρm.

The latter is sometime referred to as a line search, because it involves finding the point

on the line F(m−1)(x) + ρmh(x) that minimises the loss function. One can use any

model fitting procedure to computeh(x), but Friedman [2001] proposes a least squares

approach, due to the computational advantages of least-squares algorithms. A natural

adoption of the general gradient boosting procedure for Cox regression is to replace

the general loss function with the negative partial log likelihood, and h(x) by a least

squares fit [Ridgeway, 2001]. Note thatwe hereworkwith the prognostic index in place

of the general predictor such that we can obtain regression coefficients, and interpret

them in the same way as for regular maximum likelihood-fitted Cox regression models.

Another thing to note is that one often scales the updates to the regression coefficients

(or to F in the general algorithm) by a parameter ν ∈ (0, 1). This parameter is usually

called the ‘learning rate’, because it controls how large the updates of the coefficients

are in each step, and thus also the rate at which the algorithm ‘learns’ the relationships

between the covariates and the dependent variable. One usually chooses the number of

iterations to use by some form of cross-validation, and the controlling the learning rate

ν helps in finding a model that minimises the cross-validated loss by making smaller

steps in each iteration.
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4.2. Model-based boosting for Cox regression

4.2 Model-based boosting for Cox regression

The approach to boosting for Cox regression outlined in the previous section is some-

times refered to asmodel-based boosting [De Bin, 2016]. The procedure usually does
not, however, compute the estimates in theway stated above. Instead of simultaneously

updating all the regression parameters, only one parameter is usually updated in each

iteration. This is done both to be able to fit sparse models, and to be able to handle

high-dimensional data. One adapts the algorithm by computing univariate linear fits

to the pseudo-observations

ỹi =
∂li
(
β(m−1)

)
∂βTxi

= di − di
exp(βT(m−1)xi)∑
`∈Ri

exp(βT(m−1)x`)
,

where li is the i-th contribution to the partial log likelihood. The univariate linear fits

are computed as

γ̂j =

∑n
i=1 ỹixij∑n
i=1 x

2
ij

j = 1, 2, ...p,

where one then chooses to update the coefficient of the covariate j∗ such that

j∗ = argmin

j

n∑
i=1

(ỹi − γ̂jxij)2.

The boosting estimates are then subsequently updated as

β
(m)
j∗ = β

(m−1)
j∗ + νγj∗

β
(m)
j = β

(m−1)
j , j 6= j∗

.

This model-based boosting algorithm for the Cox model with a componentwise ap-

proach to estimation is implemented in the R packagemboost [Hothorn et al., 2017].

4.3 Likelihood-based boosting for Cox regres-
sion

The alternative to themodel-based approach iswhatDeBin [2016] refers to as likelihood-
based boosting. The main difference compared to the model-based approach is that
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4. Boosting in survival models

one circumvents the computation of pseudo-observations (negative derivative of the

loss). Instead, one computes the updates to the coefficients by a single iteration of

the Newton-Raphson algorithm to maximise a penalised version of the partial log

likelihood, using the current estimate as an offset. To state these steps in detail, we first

need to state the relevant expressions formulated with an offset term. The penalised

likelihood that we aim to maximise is

lpen(b|β̂) =
n∑
i=1

di

[
(b+ β̂)Txi − log

(∑
`∈Ri

exp((b+ β̂)Tx`)

)]
− λ

2

p∑
j=1

b2
j ,

where β̂ is the current estimate, and b is an increment to the current estimate. The

expression above can perhaps be written in a neater way by using the notation

s(0)(β, ti) =
∑
`∈Ri

exp(βTx`).

It will also prove convenient to introduce the notation

s
(1)
j (β, ti) =

∑
`∈Ri

x`j exp(β
Tx`),

and

s
(2)
j (β, ti) =

∑
`∈Ri

x2
`j exp(β

Tx`)

for the first and secondpartial derivative of s(0)(β, ti), respectively. Using this notation,

we can express the first and second partial derivatives of lpen(b|β̂) as

∂lpen(b|β̂)
∂bj

=
n∑
i=1

di

[
xij −

s
(1)
j (b+ β̂, ti)

s(0)(b+ β̂, ti)

]
− λbj,

and

∂2lpen(b|β̂)
∂b2

j

= −
n∑
i=1

di
s

(2)
j (b+ β̂, ti)s

(0)(b+ β̂, ti)− s(1)
j (b+ β̂, ti)

2

s(0)(b+ β̂, ti)2
− λ.

The updates are then, as previously mentioned, computed in a similar way to one

iteration of the Newton-Raphson algorithm for one covariate at a time. To make later

generalisations easier to comprehend we use the notation

upenj (b|β̂) = ∂lpen(b|β̂)
∂bj

,
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4.3. Likelihood-based boosting for Cox regression

and

Jpenj (b|β̂) = −∂
2lpen(b|β̂)
∂b2

j

,

which can also be written as

upenj (b|β̂) = uj(b|β̂)− λbj,

and

Jpenj (b|β̂) = Jj(b|β̂) + λ,

where uj and Jj are the unpenalised counterparts of u
pen
j and Jpenj . Because our aim

is to later generalise this algorithm to landmark models, it seems worthwile to remind

ourselves of how theNewton-Raphson update of the estimate is derived, formulated in

our current context. The aim of the algorithm is in each step to try and move towards

the maximum of the partial log likelihood in one dimension at a time, but to do this

we need to determine what the individual updates should be. The trick we employ is

to approximate the offset penalised partial log likelihood with a second order Taylor-

expansion about 0 in the direction of each of the p covariates. Phrased somewhat

differently, we can say that we compute p different univariate Taylor approximations to

the offset penalised partial log likelihood, where we in each of them differentiate with

respect to the the regression parameter of one covariate, and treat the rest as constant.

This expansion in the direction of the j-th covariate is

lpen(b|β̂) ≈ lpen(0|β̂) + upenj (0|β̂)bj −
Jpenj (0|β̂)

2
b2
j

= l(0|β̂) + uj(0|β̂)bj −
Jj(0|β̂) + λ

2
b2
j , (4.1)

which is a second degree polynomial in bj and thus its maximum can be found by

finding the value of bj that satisfies that the derivative of it is zero. Hence, the potential

update of the regression coefficient of the j-th covariate is

bj =
uj(0|β̂)

Jj(0|β̂) + λ
.

To select which covariate to update the regression coefficient of, the natural solution

is to use the penalised partial log likelihood evaluated at the j-th update as a scoring
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4. Boosting in survival models

criteria. However, while this is largely unproblematic for datasets without too many

covariates, it can impose a large computational constraint for high-dimensional data.

This is due to the form of the partial log likelihood, which takes quite a few steps to

compute. This is not an issue for a problemwith a few hundred observations and up to

around a hundred covariates. But since we have to compute the partial log likelihood

for each covariate in each boosting step, this accumulates and becomes infeasible if we

have several thousand covariates. The alternative and preferred solution is therefore

instead to use a scoringmeasure based on an approximation of the partial log likelihood.

The approximation we choose is precisely the second order Taylor approximation in

(4.1). If we insert our potential updates for each covariate into (4.1), we see that we get

l(0|β̂) + uj(0|β̂)
uj(0|β̂)

Jj(0|β̂) + λ
− Jj(0|β̂) + λ

2

(
uj(0|β̂)

Jj(0|β̂) + λ

)2

= l(0|β̂) + 1

2

uj(0|β̂)2

Jj(0|β̂) + λ
.

Thus, choosing the coefficient update that maximises the second order approximation

to the partial log likelihood is equivalent to scoring them using the scoring measure

W (j) =
uj(0|β̂)2

Jj(0|β) + λ
,

because l(0|β̂) is the same for all covariates, and scaling the measures does not change
the rank-order. The regression coefficient we choose to update is then the covariate

with index j∗ such that

j∗ = argmax

j

W (j).

I.e., the new estimates are

β
(m)
j∗ = β

(m−1)
j∗ + bj∗

β
(m)
j = β

(m−1)
j j 6= j∗.

Binder and Schumacher [2008] advocate using the same scoring variable as given above

to choose the update in each iterations. But rather than refer to an argument similar

to the one given here, they refer to it as a penalised version of the score test statistic,

based on a low-order Taylor approximation, which is perhaps because a first order
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4.3. Likelihood-based boosting for Cox regression

approximation of the partial log likelihood leads to the same scoring measure as above.

While this is of course absolutely true, we think that in this thesis it makes more sense

to reason as we have done above. This is mainly because we are to generalise this

approach to landmark models, where the notion of a score test statistic may not make

as much sense as in the Cox regression setting. Due to this, reasoning in this way might

obfuscate rather than clarify the argument. Instead, we should keep in mind that what

we merely are doing is choosing the covariate that maximises the same approximation

that we use to derive the updates, in the hope that this yields the largest increase of the

partial log likelihood. Software that implements the likelihood boosting algorithm for

Cox regression is available through the package CoxBoost [Binder, 2013].

4.3.1 Boosted Cox regression analysis of the primary biliary cir-
rhosis data

The techniques of likelihood-based boosting, model-based boosting as well as the

ridge and the lasso are well suited for high dimensional data, but before we consider

a high-dimensional case, we look at a simpler example. To this end, we revisit the

primary biliary cirrhosis data discussed in section 3.2.2, and fit models to this data

using the four aforementioned techniques, as well as ordinary Cox regression. An

important thing to remember is that, like the ridge and lasso, the likelihood-based

boosting requires centering non-dichotomous covariates, and transforming them such

that their empirical variance is equal to one. Like the glmnet package, the CoxBoost
package offers to do this internally. However, unlike the glmnet package the CoxBoost
package does not transform the coefficients back to the original scale of the covariates,

therefore we must take care of this ourselves. As we have previously mentioned, and as

we may infer from the computation

α(t|x) = α0(t) exp(β
Tx)

= α0(t) exp(β
T (x− x+ x))

= α0(t) exp(β
Tx) exp(βT (x− x)),

centering the covariates does not change the value of the estimated coefficients, it

merely moves a part of the risk function to the baseline hazard. Scaling the covariates

can be viewed as multiplying the covariate vector with a diagonal matrixD, and hence
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4. Boosting in survival models

from the computation

α(t) = α0(t) exp(β
Tx)

= α0(t) exp(β
TD−1Dx)

= α0(t) exp((D
−1β)TDx),

where the diagonal entries ofD are the empirical standard deviations of the corre-

sponding covariate column of the design matrix, we can deduce that the resulting

coefficient estimates β∗ are not on the same scale as the original data, but multiplied

by the empirical standard deviation of each covariate. I.e., the estimated effect of the

j-th covariate is β∗j = σ̂xjβj , and hence to revert to the same scale as the data, we must

divide each estimated coefficient with the same factor as the corresponding covariate

column is divided by in the process of standardising the covariates.

When fitting the models, the tuning parameters in each of the algorithms are all

chosen via cross-validation, using the same folds to ensure comparability. The penalty

parameter for the likelihood-based boosting is set to λ = 1116, and the learning

rate for the model-based boosting is set to ν = 0.1. The reasons for these choices

is merely that these are the default values set in the packages, where 1116 is 9 times

the number of events in the dataset, which is the default value of λ for the CoxBoost

package. The values of the tuning parameters that are selected, in this case the number

of boosting steps, areMCoxBoost = 94 for CoxBoost, andMmboost = 339 for mboost.

The resulting coefficients are all given in table 4.1. From the table we see that overall,

ordinary Cox regression yield the largest estimates in absolute value, and that the

CoxBoost estimates are similar to the Lasso estimates, but slightly larger. The lasso

renders the sparsest model, followed by the CoxBoost, while mboost gives us the least

sparse model. That is, of the techinques that incorporate some form ofmodel selection.

4.3.2 Boosted Cox regression analysis of the Dutch breast cancer
data

To exemplify the use of model-based boosting and likelihood-based boosting for Cox

regression in situations where p > n, we will fit Cox regression models to the Dutch

breast cancer data using the CoxBoost andmboost software. To ensure comparability,
we divide the observation into 10 folds ourselves, instead of leaving it to the built-in

validation of the software packages to decide how to split the data. For the likelihood-

based version, we set λ = 711, for the same reason as in the previous example. For
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4.3. Likelihood-based boosting for Cox regression

Table 4.1: Estimates from the model and likelihood-based boosting fit to the primary

biliary cirrhosis data, as well as the corresponding Lasso and Ridge estimates, which

are included for comparison.

CoxBoost Mboost Lasso Ridge Cox

0 0 0 -0.01156 0.01367

0 0.06829 0 0.04028 0.12447

0 0.13272 0 0.12031 0.18257

0 0.27996 0 0.10474 0.18783

0.20501 0.37054 0.05247 0.18393 0.46761

0.02639 0.02685 0.02295 0.02221 0.02901

0.09453 0.09127 0.09136 0.0767 0.08479

-1.05905 -0.98862 -1.02312 -0.81383 -1.06789

0.00326 0.00285 0.00321 0.00303 0.00291

-0.00001 -0.00001 0 -0.00001 -0.00002

0.00263 0.00311 0.00219 0.00306 0.00368

0.28015 0.28012 0.26151 0.25858 0.31085

the model-based version, we let ν = 0.1 and the maximum number of iterations be

M = 10000. In figure 4.1, a plot of the cross validated partial log likelihood for the

likelihood based approach, and a plot of the cross validated loss based on the Cox

proportional hazards model are shown. The optimal number of iterations are chosen

asMCoxBoost = 150, andMmboost = 6017, respectively. The final model for the

likelihood-based boosting estimates non-zero coefficients for 18 covariates, while the

model-based version estimates 205 of the regression coefficients to be non-zero.
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Figure 4.1: Cross validated partial likelihood for CoxBoost, and cross validated Cox

partial likelihood based loss formboost, computed for the Dutch breast cancer data.

Table 4.2: Estimates from the likelihood-based boosting fit to theDutch breast cancer

data, as well as the corresponding Lasso estimates, which are included for comparison.

Gene no CoxBoost Lasso

128 -0.093 -0.102

1925 0.057 0.003

2042 -0.094 -0.099

2242 -0.206 -0.204

2246 -0.198 -0.164

2309 -0.098 0

2363 -0.089 -0.102

2816 0.097 0.092

3154 0.221 0.281

3394 -0.21 -0.237

3822 -0.027 0

4175 -0.161 -0.197

4176 -0.099 -0.141

4197 0.045 0.004

4272 0.062 0.093

4309 0.499 0.545

4331 -0.083 -0.091

4616 0 -0.018

4630 -0.097 0
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4.4. Extensions to landmarking

The estimates from the CoxBoost (likelihood based) model are given in table 4.2 along

with estimates from a Lasso model using the same folds as for the CoxBoost fit. From

the table, we see that at least for this particular split of the data, the estimates from the

likelihood-based boosting are comparable to the Lasso estimates. In addition, both of

the methods seem to select almost the same set of covariates. In this case, CoxBoost

seems to estimate almost the same amount of coefficients to be non-zero. If we desired

a sparser fit, we could have tuned the number of iterations with a smaller penalty

parameter. Alternatively, if the penalty parameter was larger, the increments to the

coefficients in each iteration would be smaller, and thus we might expect that more

coefficients are estimated as non-zero. Most of the estimates that are non-zero for both

models are similar in absolute value, although there is some variation. One could think

– and hope – that the reason that the mboost procedure selects so many coefficients is

that its estimates lie closer to the Ridge estimates on an imaginary continuum between

the Lasso and the Ridge, but on inspection, its estimates are actually larger in absolute

value than the CoxBoost estimates, and certainly larger than the Ridge estimates. In

the interest of further illuminating the latter point of dicussion, it is interesting to

investigate what estimates of prognostic index these coefficients correspond to, and

to compare these across methods. To do this, we plot histograms of the estimated

prognostic index for the CoxBoost, mboost, Lasso and Ridge estimates, which are

shown in figure 4.2. We see from the histograms, that the distribution of the prognostic

index is quite similar for the Ridge, Lasso and CoxBoost models, and that the mboost

has quite a different distribution, which is in line with the fact that the coefficient

estimates from the mboost-procedure are somewhat larger than those of the other

methods, and that it selects a great number of covariates.

4.4 Extensions to landmarking

In the present section, we seek to extend the above likelihood-boosting scheme to fit

sliding landmark models. We do this by replacing the penalised log likelihood by a

penalised version of van Houwelingens integrated partial log likelihood (2.8) offset

by the current estimate, and then we carry out an argument analogue to the Cox-case.

Each covariate now has an associatedS number of parameters which wewish to update

at the same time. Hence, we must do a multivariate version of the Cox-version taking

into account all the landmark coefficients of each variable simultaneously. Firstly, we
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Figure 4.2: Histograms of the progostic indexes for the Dutch breast cancer data esti-

mated by boosting using CoxBoost andmboost, and by Lasso and Ridge using glmnet.

observe that the first and second partial derivative of the penalised integrated partial log

likelihood with respect to the g-th landmark coefficient of the j-th covariate evaluated

at 0 are

∂ipl
(
0|β̂(LM)

)
∂βj(LMg)

=
∑
i∈Ag

di

(
xij −

s
(1)
j (β(LMg), ti)

s(0) (β(LMg), ti)

)
,

and

∂2ipl
(
0|β̂(LM)

)
∂βj(LMg)2

= −
∑
i∈Ag

di
s

(2)
j (β(LMg), ti) s

(0) (β(LMg), ti)−
(
s

(1)
j (β(LMg), ti)

)2

(s(0) (β(LMg), ti))
2 .

Wewill refer to the S-dimensional vector consisting of the first derivatives with respect

to each landmark coefficient for the j-th covariate as uj(0|β̂(LM)) and the matrix

consisting of second derivatives with respect to the landmark coefficients of the j-th
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4.4. Extensions to landmarking

variable as Jj(0|β̂(LM)).One can easily observe that the latter is a diagonal matrix,

because each of the components of the first derivative only depends on the coefficients

associated with one of the landmarks. Using the multivariate Taylor approximation of

the second order to the penalised integrated partial log likelihood

iplpen(b(LM)|β(LM)) ≈ ipl(0|β(LM)) + bj(LM)Tuj(0|β(LM)) (4.2)

− 1

2
bj(LM)T

(
Jj(0|β̂(LM)) + λI

)
bj(LM),

where bj(LM) is the vector of landmark coefficient updates for the j-th covariate,

we can derive the updates by differentiating with respect to bj(LM) and solving the

resulting equation. This predictably yields that the updates to the coefficients of the

j-th variable are

bj(LM) =
(
Jj(0|β̂(LM)) + λI

)−1

uj(0|β(LM)). (4.3)

In situations where computing the value of the partial log likelihood p times for each

boosting iteration is too costly, certainly the same will be true for van Houwelingens

integrated partial log likelihood. Therefore, we will use the same approximation as the

one we used to derive the coefficient updates to derive a scoring measure, as we did in

the Cox setting. Inserting the updates (4.3) into the right hand side of (4.2) we get the

expression

ipl(0|β(LM)) + uj(0|β(LM))T
(
Jj(0|β̂(LM)) + λI

)−1

uj(0|β(LM))

− 1

2
uj(0|β(LM))T

(
Jj(0|β̂(LM)) + λI

)−1

uj(0|β(LM))

= ipl(0|β(LM)) +
1

2
uj(0|β(LM))T

(
Jj(0|β̂(LM)) + λI

)−1

uj(0|β(LM)).

Since the first term is the same for all covariates, and the constant
1
2
does not matter

when selecting the largest index, we arrive at the scoring measures

W (j) = uj(0|β(LM)T
(
Jj(0|β̂(LM)) + λI

)−1

uj(0|β(LM)).

We then use these to select which covariate to update the landmark coefficients in each

iteration. I.e., they are updated as

β
(m)
j∗ (LM) = β

(m−1)
j∗ (LM) + bj∗(LM)
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4. Boosting in survival models

and

β
(m)
j (LM) = β

(m−1)
j (LM), j 6= j∗,

where j∗ = argmax

j

W (j). Van Houwelingens integrated partial log likelihood is

sometimes referred to as ipl for short, and inspired by this we will sometimes refer
to the algorithm above by the name IplBoost, for the sake of brevity. A prototype

implementation that computes landmark estimates using likelihood boosting of van

Houwelingens integrated partial likelihood is available through the package IplBoost,
currently available for download at https://github.com/simbrant/IplBoost.

4.4.1 Boosted landmarking applied to the primary biliary cirrhosis
data

As for the boosted Cox regression, we begin with a simpler low dimensional example,

before we tackle a more high dimensional dataset, namely the primary biliary cirrhosis

data previously discussed in section 3.2.2 and section 4.3.1. In addition to being low-

dimensional, this dataset also has more heterogenous covariates than for instance

the Dutch breast cancer dataset we have previously discussed, which requires us to

standardise the covariates. Before we fit the landmark model, we must decide which

landmarks to use, and how wide landmark intervals we wish to use. In addition,

we have to decide upon the values of the penalty parameters in the algorithm. The

survival times in this dataset are measured in days, the maximum follow-up time being

t = 4556 days. For the purpose of this analysis, we convert these to years, so that the

maximium follow up time is just short of 12.5 years. Therefore, we choose a grid of

81 equidistant points on the interval [0, 8] as our landmarks, and an interval width

ofw = 3 years. To fit the landmark model we use the likelihood-boosted landmark

algorithm outlined in section 4.4. In this algorithm, we can set individual values of

the penalty parameter for each landmark point. We could set it to the same value for

each landmark, but this might not be the best solution. It is reasonable that a better

solution is to let the size of the penalty parameters depend upon the amount of data

available to estimate the coefficients at the corresponding landmark, and can therefore

be set to depend on the number of events in each landmark data set. For this reason,

we will choose a strategy where we let the penalty parameter for each landmark point

depend upon the number of events in the corresponding landmark interval in the same
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Figure 4.3: The values of the cross-validated integrated partial log likelihood for each

iteration for the primaty biliary cirrhosis data, in addition to a plot of the proportion

of individuals still at risk.

manner as for the likelihood-boosted Cox-regression analysis of the same dataset. That

is, the penalty for the s-th landmark point is 9 times the number of events between

LMs and LMs + w. Subsequently, we choose the number of iterations via 10-fold

cross validation using the same folds as for the analysis in section 4.3.1, such that the

estimates are comparable. In this case, for the penalty parameters described above, the

optimal number of iterations is estimated to beMIplBoost = 57. For reference, a plot

of the cross-validated ipl is given in figure 4.3. The algorithm selects the same 8 effects

that were also selected by CoxBoost. A rendition of these are given in figure 4.4, where

they are drawn together with a dotted line denoting the value of the corresponding

CoxBoost estimates for comparison. From these plots we see that the estimates from

the IplBoost algorithm seem to correspond fairly well to the CoxBoost estimates in

that they lie relatively close to them. In addition, most of the landmark coefficients

59



4. Boosting in survival models

0 2 4 6 8

0.
00

0.
10

0.
20

hepato

Time(years)

E
st

im
at

e

0 2 4 6 8

0.
00

5
0.

01
5

0.
02

5

age

Time(years)

E
st

im
at

e

0 2 4 6 8

0.
04

0.
08

0.
12

0.
16

bili

Time(years)

E
st

im
at

e

0 2 4 6 8

−
1.

2
−

0.
8

albumin

Time(years)

E
st

im
at

e

0 2 4 6 8

0.
00

0
0.

00
2

0.
00

4

copper

Time(years)

E
st

im
at

e

0 2 4 6 8

−
2e

−
05

2e
−

05
6e

−
05

alk.phos

Time(years)

E
st

im
at

e

0 2 4 6 8

0.
00

00
0.

00
15

ast

Time(years)

E
st

im
at

e

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

protime

Time(years)

E
st

im
at

e

Figure 4.4: The estimated coefficient curves for the primary biliary cirrhosis data.The

title of eachplot of the coefficients denotes the covariate forwhich the estimated effects

are drawn. The dotted lines correspond to theCoxBoost-estimates of the effects of the

same covariate.

cross the corresponding effects estimated by CoxBoost. To see how well the IplBoost

algorithm does compared to the CoxBoost and the lasso when it comes to making

dynamic 3-year survival predictions for this dataset, we fit models on a subset of the

available data and try to predict the 3 year survival probabilities at each landmark for

each model for the remaining data. These predictions are then evaluated using the

dynamic Brier score and the related dynamicR2
that were presented in section 2.4.2.

The plots of these scores for the IplBoost, CoxBoost and lasso models are shown in

figure 4.5. Here we see that the predictions made using the CoxBoost and lasso models

almost make an identical error. More imortantly, we see that for the most part of

the first four years, the IplBoost seems to make the most accurate prognosis. For the

next two years however, the CoxBoost and lasso estimates are more accurate, but the
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Figure 4.5: Dynamic Brier score, and dynamic R2
computed for the primary biliary

cirrhosis data using estimates computed by IplBoost, CoxBoost and lasso.

IplBoost are more accurate on the whole, in terms of average dynamic Brier score. One

could also make the remark that there are less events later in the study, which therefore

also makes the later landmark estimates, and also the evaluated performance of these,

more unstable. The Brier scores will later in the study be, as it were, inherently more

random that earlier in the study. Due to this increasing of the variance of the Brier

scores as time passes, we should put more weight on the prognoses made at the earlier

landmarks where more data is used both for estimation and validation. Thus it seems

that for this particular dataset, for this particular division into training and test cases

IplBoost seems to outperform CoxBoost when it comes to making dynamic survival

predictions.
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Figure 4.6: The values of the cross-validated integrated partial log likelihood for each

iteration, and a plot of the proportion of the individuals that are still at risk for the

Dutch breast cancer data.

4.4.2 Boosted landmarking applied to the Dutch breast cancer data

To further illustrate the IplBoost algorithm outlined in section 4.3.1, we will try com-

pute landmark estimates for the Dutch breast cancer data. To define the model,

we choose 31 equidistant landmarks on the interval [0, 6], and an interval width of

w = 3 years. We here choose to not standardise the covariate vectors as previously

discussed in section 3.2.7, and employ the same strategy when selecting the penalty

parameters as described in the previous example. The number of iterations is selected

using 10-fold cross-validation using the same folds as in section 4.3.2, where a plot of

the cross-validated ipl is given in figure 4.6. The selected number of iterations is in this

caseMIplBoost = 350, and for this model 42 effects are selected. Of the 18 effects that

CoxBoost selects, 14 are selected. These are all shown in figures 4.7 and 4.8 where the

CoxBoost estimate is drawn as a dotted line for comparison. Plots of the remaining 28
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Figure 4.7: The estimated coefficient curves for 7 of the covariates that are selected by
both IplBoost and by CoxBoost for the Dutch breast cancer data.

selected effects are given in figures (C.1), (C.2) and (C.3). The estimtates of the coeffi-

cients that are selected both by the CoxBoost algorithm and the IplBoost algorithm

are somewhat diverse in nature. Some are larger or smaller in absolute value overall,

and some cross the CoxBoost estimate. The ones that are only selected by IplBoost

also display varying characteristics. Some are increasing in absolute value, some are

decreasing, some of them cross 0, and some seem to be more stable than others. The

resulting model from this analysis is less sparse than the CoxBoost model in that it

selects 49 coefficients instead of the 18 covariates, but still relatively few compared to

the 4919 avaiable covariates to choose from. The number of iterations is quite high,

and if we desired a more sparse model that also took a shorter time to fit, we might set
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Figure 4.8: The estimated coefficient curves for 7 of the covariates that are selected
both by IplBoost and by CoxBoost for the Dutch breast cancer data.

the penalties to be smaller. It could also be that putting more weight on the landmark

datasets with fewer events by penalising them less is not the best idea. Perhaps we

should have set the penalty to be the same for all landmark datasets, so that we shrink

the landmark coefficients more where there is less available information, rather than

the penalties being proportional to the number of events. To evaluate the quality of

the predictions the algorithm makes, we again use the dynamic Brier score, and the

dynamicR2
measure based on it, as in the example in the previous section. We fit a

model using the IplBoost algorithm to two thirds of the observations, using the same

landmarks and penalty strucure as we did above. In addition, we fit models using

both the lasso and CoxBoost algorithms to the same data for comparison. These two
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Figure 4.9: Dynamic Brier score, and dynamic R2
computed for the Dutch breast

cancer data using estimates computed by IplBoost, CoxBoost and lasso.

measures are plotted as curves, which are given in figure 4.9. From the plot of the Brier

scores it is hard to discern a difference in terms of the error made by the three algo-

rithms, they seem to be quite similar apart from some minor differences. These small

differences are more pronounced when the Brier scores are translated into the dynamic

R2
measure, due to the scale of theR2

scores, but all the three curves are very close

together. The IplBoost estimates seem to be slighly more accurate in the two first years

than the lasso and the Coxboost estimates, and somewhat less accurate from the fifth

year and onwards. From the second to the fifth year, the IplBoost estimates seem to be

more accurate than the lasso estimates, but less accurate than the CoxBoost estimates.

Overall, the three methods are quite similar in term of predictive performance. The

Coxboost is perhaps the best overall, while the IplBoost is better at the start of the

study, and the lasso is slightly better at the end. As there are quite few events in the

dataset, there is a high variance both in the estimates and the estimated test error, so it
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4. Boosting in survival models

is hard to say if any of these methods are superior to the other. To study how well the

IplBoost method works, so to speak, we will instead study it in an artificial setting. By

this we mean that we define a model that data could be generated from, simulate a set

of observations from these, and then see how well the algorithm performs in terms of

estimating regression coefficients and making predictions for unseen data.
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Chapter 5

Simulations

In many settings related to survival analysis it can be difficult, indeed sometimes im-

possible, to determine by calculation if a given method of estimation works, and how

well a given method works. By ‘working’ we here refer to theoretical properties such

as consistency, i.e. that the model estimates will approach the ‘true’ values, under the

assumption that the model is correctly specified, as we get more data. In these cases

where theoretical computations are difficult or impossible without imposing unreal-

istic conditions on the problem, we can instead try to generate data where we know

what the ‘ground truth’ is, and then apply our method to see how well it behaves.

5.1 Generating data

To generate survival data, one must first define the hazard from which the survival

times will be drawn. Since we in this thesis are discussing the Cox proportional hazards

regression model, and extensions of this model, the hazards we are interested in are of

the form

α(t|x) = α0(t) exp(g(t,θ,x)),

where g is a function that describes both the time-varying and time-constant effects.

When we analyse real data, we assume that the baseline hazard α0(t) is just some

arbitrary function that is common to all of the individuals in the sample. Now, however,

we are generating artificial data to test how well a given method of estimation works

when we know the true generating mechanism, and thus we must explicitly define the
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baseline hazard. Popular choices include α0(t) = k, α0(t) = ktk−1, and α0(t) =

exp(kt), for some real number k. In addition, it is convenient to define the hazard

in such a way that we can find a closed form expression for the cumulative hazard

A(t|x) =
∫ t

0
α(s|x)ds. Since there is a one-to-one correspondence between the

cumulative hazard and the cumulative distribution function, we can then find an

explicit expression for F−1
, the inverse of the cumulative distribution function. By

the inverse probability integral transform, we have that if U ∼ Uniform([0, 1]), then

T = F−1(U) ∼ F , if F is the cumulative distribution function of T . Thus, we may

simulate values of T by drawing values from U ∼ Uniform([0, 1]), and transforming

these via F−1
, which is known as the method of inversion [Devroye, 1986]. Since the

methodsweoutline in this thesis are intended to extend theCoxmodel to accommodate

for time-varying effects, our simulation models should reflect this. Thus, it is sensible

for us to design models from which to draw samples that have both time-constant and

time-varying effects. Therefore, we may describe the models we want to consider in

our studies by a hazard function of the form

α(t|x, z) = α0(t) exp(β
Tx+ γ(t)Tz)

Since, for computational reasons, we want to be able to find an expression for F−1,

and thus also analytically solve the integral of the hazard function from 0 up to t,

the functions we use to represent time-varying effects must reflect this constraint.

To generate a sample of survival data, we first draw uniformly distributed random

variables and values of the covariates from some distribution to simulate the survival

times. Then, we draw censoring times from some distribution (exponential, Weibull,

etc.), or alternatively a censoring indicator from a Bernoulli distribution, and right-

censor at some tend.

5.1.1 Models with constant effects

Before we get to grips with finding a working model with time-varying effects, it is

natural to first consider some simpler models with only time-constant effects. In this

case, the hazard takes on the form

α(t|x) = α0(t) exp(β
Tx),
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and thus all models of this have corresponding cumulative hazards that can be written

as

A(t|x) = exp(βTx)

∫ t

0

α0(s)ds = exp(βTx)A0(t).

Writing F (t|x) = 1 − exp(−A(t|x)), and solving for t, we can see that, provided
that we can find an expression forA−1

0 , survival times can be simulated from anymodel

with time-constant effects via the formula

T = A−1
0

(
− exp(−βTx) log(1− U)

)
,

where U is drawn from a uniform distribution on the unit interval. If we consider the

three examples mentioned above arising from the exponential, Weibull and Gompertz

distributions, these have corresponding cumulative hazardsA0(t) = kt, A0(t) = tk,

and A0(t) = 1
k
(exp(kt) − 1), respectively. The inverse functions of these are

A−1
0 (y) = y

k
, A−1

0 (y) = y
1
k , andA−1

0 (y) = 1
k
log (ky − 1), and thus we the formu-

las from which we can generate survival times frommodels with these baseline hazards

are

T = −1

k
exp(−βTx) log(1− U),

T =
(
− exp(−βTx) log(1− U)

) 1
k , and

T =
1

k
log
(
−k exp(−βTx) log(1− U) + 1

)
.

5.1.2 A class of models with time-varying effects

As we saw in the previous section, the time-constant effects do not make the problem

of computing and inverting the cumulative distribution function any harder, as they

only contribute to the hazard by a constant. For time-varying effects, this is not the

case, and we have to choose the form of these effects in such a way that we are able to

find an expression for the cumulative distribution function that we can invert. When

time-varying effects occur in observed data, they are often decreasing with time, and

thus we want to find a model that has this property. An example of a description of

time-varying effects that has these properties is

γ(t) = γc(tu − t),
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where γc is a q-dimensional vector of constants, and tu is some positive real number

that is greater than the largest survival time, or larger than a timepoint where all survival

times are right-censored. We will consider a class of models with time-varying effects

on this form, in addition to a set of time-constant effects, with hazard functions

α(t|x, z) = α0(t) exp(β
Tx+ γTc z(tu − t)).

By moving all constants outside the integral, we can see that all such models have

cumulative hazard functions that can be written in the form

A(t|x, z) = exp(βTx+ γTc ztu)

∫ t

0

α0(s) exp(−γTc zs)ds,

and thus the integral we need to solve in each case is∫ t

0

α0(s) exp(−cs)ds.

Wewill consider each of the shapes of the baseline hazard previously mentioned. For

the case of α0(t) = k, the above integral is∫ t

0

k exp(−cs)ds = k

c
(1− exp(−ct)) .

The case where α0(t) = exp(kt) is also straight-forward, and the solution of the

integral is ∫ t

0

exp(ks) exp(−cs)ds = 1

k − c
(exp([k − c] t)− 1) .

Amore complicated situation arises when we let the baseline hazard assume the form

α0(t) = ktk−1, because the integral that corresponds to this cannot be expressed in

closed form. However, by making a simple subsitution we see that we can express the

integral as ∫ t

0

ksk−1 exp(−cs)ds = k

ck
γ (k, ct) ,

where γ is the lower incomplete gamma-function

γ (k, x) =

∫ x

0

uk−1 exp(−u)du.
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There does, however, exist software to evaluate this function and the corresponding

inverse function, so we can still use this model to draw survival times. By writing

F (t|x, z) = 1− exp(−A(t|x, z)), inserting the solution of the integrals above, and
solving for t, we can find formulas that we can use to generate survival times for each

of these cases. For α0(t) = k, we find that this formula is

T = − 1

γTc z
log

(
1 +

γTc z

k exp
(
βTx+ γTc ztu

) log(1− U)) .
An issue with this model is that since log(1− U) < 0, we must have γTc z < 0. For

this reason we must reject those observations where this is the case. The formula for

the model with α0(t) = exp(kt) is

T =
1

k − γTc z
log

(
1− k − γcz

exp
(
βTx+ γTc ztu

) log(1− U)) ,
where we must have γcz < k. For the last case, when α0(t) = ktk−1, the correspond-

ing formula from which we can generate survival times is

T =
1

γTc z
γ−1

(
k,−

(
γTc z

)k
k exp

(
βTx+ γTc ztu

) log(1− U)) ,
where γ−1(k, ·), the inverse of the lower incomplete gamma function, must be com-
puted numerically. The latter is, however, not too difficult as it can be shown that

γ−1(k, yt) = G−1( y
Γ(k)

),whereG is the cumulative distribution function of a gamma

distributed variable with scale parameter β = 1, and shape parameter α = k. There-

fore it is easy to implement this using existing software in R.

5.2 A simulation study of likelihood-boosting
in landmark models

In this thesis we are designing a newmethod of estimation, which aims to estimate and

detect time-varying effects in high dimensional survival data. As previously discussed,

this is done by combining van Houwelingen’s concept of landmarking with that of

likelihood boosting by Tutz and Binder [2006]. We are obviously interested in how

this method performs, and in such a situation we can do one of two things to clarify
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how well a given method works. We can either analyse the method from a theoretical

point of view, or we can simulate data from a model and try to use our method in this

setting where we know the true data-generatingmechanism as discussed above. Wewill

rely on the latter, as the former similarly requires an assumed truth, and the nature of

the both the model and the method of estimation is quite complicated, which makes

the analysis infeasible. As a starting point, we will first study likelihood boosting in

Cox-regression for a model that has no time varying effects.

5.2.1 Likelihood boosted Cox regression

As mentioned above, we will initially study likelihood boosting in Cox regression via

simulation. To this end, we simulate datasets and fitmodels to these using theCoxBoost

software, with varying parameters. All the datasets are simulated using an exponential

baseline hazard α0(t) = k,with parameter k = 6 and 10 time-constant effects that all

are set to β = log(3). Censoring times are drawn from an exponential distribution

with rate λ = 0.2. In addition, all observations are right-censored at t = 1.5. All

covariates are drawn from a uniform distribution on [−1, 1], where 0, 10, 50 or 200
additional variables are simulated, with n = 400 or n = 1600 total observations.

This amounts to drawing 8 different datasets, to which we then fit Cox proportional

hazards models using CoxBoost. These experiments are all repeated 100 times, using

different seeds to the random number generator. The results of the simulations are

summarised in figure 5.1, wherewe showhowdifferentmeasures depend on the number

of covariates in the dataset for the two sample sizes. From the figures, we see that the

accuracy of the estimates of the effects for those covariates that influence the survival

times decreases when adding more covariates with zero effects, and that this error is

smaller for the dataset with more observations. The average number of the variables

with zero effects that are estimated to have nonzero effects increases with the number of

such variables for the datasets with the least amount of observations. For the datasets

with most observations, less incorrect covariates are selected for the datasets with 200

additional covariates than for the datasets with 50 additional covariates. In addition,

the average mean squared error of the zero effects decreases as the number of zero

effects increases. The latter is, however, averaged over all the zero covariates. If we

instead sum the mean squared errors these are slightly increasing with the number of

zero covariates. I.e., when more noise is added to the dataset in terms of extra variables
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Figure 5.1: Plots illustrating how the CoxBoost procedure copes with the presence

of covariates that do not have an effect on the survival. This is measured in terms of

averagemean squared error for both the covariates with non-zero and zero effects, and

the number of covariates with zero effects that are estimated as non-zero.
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5. Simulations

that are uncorrelated with the survival times, a larger portion of the estimated effects

consists of noise and not the true signal, as it were.

5.2.2 Likelihood boosted sliding landmark models

We continue with a simulation where we now introduce time-varying effects, and fit

sliding landmark models using the likelihood boosting scheme introduced in section

4.4. In the simulation examples we consider, we generate the data using p = 5 time-

constant effects and q = 5 time-varying effects from a model of the kind discussed in

section 5.1.2 where we let the baseline be of theWeibull kind. I.e., we letα0(t) = ktk−1
,

and set the baseline parameter to be k = 4. Similarly to the example above, we here

also simulate datasets with 400 and 1600 observations, and 0, 10, 50, or 200 additional

covariates that are independent of the survival times. All observations are censored

at time t = 1.5. In addition to that, censoring times are drawn from an exponential

distribution with rate λ = 1
3
. The parameters that define the time-varying effects are

set to tu = 0.7, and γ(t) is chosen so that

∫ 1.5

0
exp(γ(s))ds∫ 1.5

0
ds

= 1.5,

where γ(t) = γc(tu − t).The time-constant effects are all set to βj = log(1.5). The

landmark model is defined using 11 equidistant landmarks on the interval [0, 1], with

an interval width ofw = 0.25. In an analysis of a dataset, we would of course use a

denser grid of landmarks, but here it should suffice with a coarse grid to illustrate how

the method works. These 8 different simulation examples are repeated 100 times each,

using different seeds for the random number generator. In order to summarise the

results, we compute the average of the estimated time-constant effects, time-varying

effects and the estimated effects of the noise variables for each example. These are then

drawn together with each of the estimated coefficient curves (as gray lines), and the

true effect (as dotted red lines). For the time-varying effects however, the true effects

are not what the estimates should converge towards. In fact, we know from section

2.3.1 that they should approximately be of the form (2.4), integrating over the s-th

landmark interval instead of [0, t]. I.e., the g-th landmark estimate of a coefficient with
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5.2. A simulation study of likelihood-boosting in landmark models

a time-varying effect should approximately equal

∫ LMg+w

LMg
α0(s)γ(s)ds∫ LMg+w

LMg
α0(s) ds

,

which, in terms of the model in section 5.1.2 with baseline α0(t) = ktk−1, is

∫ LMg+w

LMg
ksk−1γc(tu − s)ds∫ LMg+w

LMg
ksk−1ds

.

If we compute the integrals and tidy up the resulting expression we can see that this

becomes

γc

[
tu − k(LMg+w)

k+1

]
(LMg + w)k −

[
tu − kLMg

k+1

]
(LMg)

k

(LMg + w)k − (LMg)k
.

This is what we should compare the estimates of the 5 time varying effects to, instead

of the true effects. For this reason, the true time-varying effects are not drawn for

comparison in theplots of the estimates of the time-varying effects, but instead the curve

defined by the expression above. The plots of the constant, varying and zero effects are

given in the figures 5.2, 5.3, and 5.4, respectively. The image of the comparisons of the

estimates in figure 5.3 to the approximations defined by (2.4) is quite striking in terms

of the discrepancy between the estimates andwhat they should approximately converge

to. However, if we look at the derivation of this approximation given in appendix

B.2, we see that a premise for the approximation to be valid is that there are few events

and few censorings in each landmark interval, compared to the number of individuals

at risk. This condition cannot be said to hold true for our simulation example, and

it may also be that the coefficients decrease too rapidly for this approximation to be

true, as the coefficients cannot vary to much over the interval. The comparison of this

approximation to the estimates is however a more relevant one than the true value.
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Figure 5.2: Plot of the estimated coefficient curves of the variables with constant ef-

fects. The average of all the estimates coefficient curves are drawn in a bold black line,

while the dotted line denotes the true effect.
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Figure 5.3: Plot of the estimated coefficient curves of the variables with time-varying

effects. The average of all the estimates coefficient curves are drawn in a bold black

line, while the dotted line is defined by the approximation in (2.4)
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Figure 5.4: Plot of the estimated coefficient curves of the variables with no effect on

the survival times. The average of all the estimates coefficient curves are drawn in a

bold black line, while the dotted red line denoted the true effect βj = 0.

Table 5.1: Table that displays the average mean squared error for the covariates with

effects that are constant, time-varying and zero, the average number of coefficients that

are correctly incorrectly estimated as non-zero for each of the models in the IplBoost

simulation.

p n MSE Constant MSE Varying MSE zero num correct num wrong

10 400 0.0817 0.3000 0.0000 9.98 0.00

20 400 0.0860 0.3393 0.0140 9.58 7.44

60 400 0.1046 0.4289 0.0028 8.10 16.98

210 400 0.1265 0.5019 0.0006 5.75 20.25

10 1600 0.0303 0.2318 0.0000 10 0.00

20 1600 0.0339 0.2266 0.0086 10 8.38

60 1600 0.0439 0.2339 0.0025 10 17.57

210 1600 0.0544 0.2576 0.0007 10 21.74

It can be tricky to judge small differences across the different plots, therefore a table
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5.3. Predictive accuracy

(Table 5.1) where the average mean squared error for the covariates that have constant,

time-varying and zero effects are shown for each model, as well as the average number

of effects that are correctly and incorrectly estimated as non-zero. We see from the

table that when the number of covariates increases the overall error of the constant and

time-varying effects seems to increase, and the average error of the zero effects seems to

decrease. In addition, if more covariates that are included that do not a have a non-zero

effect on the survival, then more covariates are selected in total, where all the correct

effects are selected for the datasets with 1600 observations, but not for the datasets

with 400 observations. For these datasets, when the number of additional covariates

increases, the number of correctly selected effects decreases, while the total number of

selected effects increases.

5.3 Predictive accuracy

As a way to assess the predictive power of the different algorithms we have discussed

in this thesis, we will simulate a selection of different datasets from different models.

We will fit models to these datasets, predict survival probabilities, and validate these

via the dynamic Brier score. The models will be fit using the CoxBoost algorithm,

the IplBoost algorithm, the lasso algorithm, and sliding landmarking using the lasso

algorithm to select covariates (SL-PS).Wewill look at a situationwith only time-varying

effects, one with only time-constant effects, and a situation with a mixture of time-

constant and time-varying effects. For each of these situations, we will consider both

effects that are relatively small and relatively large, and datasets that have 400 or 1600

observations. For all the different sampling models we define the landmark models

using 11 equidistant landmarks on the interval [0, 1], and a landmark interval width

ofw = 0.25. In addition, all observations are right-censored at t = 1.5, all covariates

are drawn from a uniform distribution on [−1, 1], and all datasets contain either 0, 10,
50 or 200 additional covariates that are indepentent of the simulated survival times.

First, we look at a setting where the data is generated using only time-constant

effects. The data is generated with an exponential baseline hazard α0(t) = k, where k

is chosen to be 2 for the datasets with 400 observations, and 6 for the datasets with

1600 observations. The censoring times are drawn from exponential distributions

with rate λ = 0.2.
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Table 5.2: Simulation with 10 time-constant effects. The effects are all equal to

log(1.5).

N p CoxBoost IplBoost lasso landmarking, lasso selection

400 10 0.1602 0.1660 0.1602 0.1605
400 20 0.1613 0.1678 0.1613 0.1618
400 60 0.1632 0.1700 0.1631 0.1638
400 210 0.1657 0.1723 0.1656 0.1662
1600 10 0.1588 0.1606 0.1588 0.1605
1600 20 0.1591 0.1615 0.1591 0.1622
1600 60 0.1595 0.1625 0.1595 0.1651
1600 210 0.1601 0.1636 0.1600 0.1699

Table 5.3: Simulation with 10 time-constant effects. The effects are all equal to log(3).

N p CoxBoost IplBoost lasso landmarking, lasso selection

400 10 0.0914 0.0959 0.0914 0.0914
400 20 0.0923 0.0995 0.0922 0.0924
400 60 0.0942 0.1041 0.0936 0.0941
400 210 0.0964 0.1092 0.0952 0.0963
1600 10 0.0904 0.0914 0.0904 0.0914
1600 20 0.0907 0.0924 0.0906 0.0925
1600 60 0.0913 0.0942 0.0910 0.0952
1600 210 0.0917 0.0949 0.0914 0.1006

We consider datasets where all the effects are set to βj = log(1.5), and where βj =

log(3). Tables summarising simulation results for both of these situations are given in

tables 5.2 and 5.3. These tables, and the tables below contain the average dynamic Brier

score for each simulation, averaged over all the simulations that are based on the same

model. All experiments are here repeated 100 times.

For all the models with only time-constant effects under consideration, the Cox

model estimated by the lasso or the CoxBoost algorithm is the most accurate, where

the lasso has a tendency to be slightly more accurate. The IplBoost algorithm is unsur-

prisingly never the best at prediction dynamic survival. In addition, there seems to be

a tendency that the IplBoost also performs increasingly worse when the number of

covariates that do not influence the survival times increases, which is also the case for

the other 3methods. The IplBoost is quite bad compared to the CoxBoost and the

lasso, which is not strange as the true effects are constant, and the IplBoost thus has
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a lot more parameters to estimate that are not justified by the complexity of the data

generating mechanism.

Next, we consider models that have 5 time constant effects of the same sizes as

above, and 5 time varying effects. The effects are chosen either so that the average

hazard ratio over the follow up range is equal to 1.5, or so that it is equal to 3 for every

covariate that has a nonzero effect on the survival times. All the models have Weibull

baseline hazards, where the parameter is chosen to be k = 4 for the models where

the average hazard ratio is 1.5, and k = 6 where the average hazard ratio is 3. The

censoring times are drawn from exponential distributions with rates equal toλ = 0.33

for the datasets with smaller effects, and λ = 0.3 for the datasets with larger effects.

The tables 5.5 and 5.4 summarise the average Brier scores of these experiments.

Table 5.4: Simulation with 5 time-constant and 5 time-varying effects. The effects are

chosen so that the average hazard ratio for each covariate is equal to 1.5.

N p CoxBoost IplBoost lasso landmarking, lasso selection

400 10 0.1716 0.1729 0.1717 0.1666
400 20 0.1728 0.1750 0.1728 0.1690
400 60 0.1747 0.1766 0.1746 0.1733
400 210 0.1759 0.1777 0.1759 0.1761
1600 10 0.1699 0.1663 0.1700 0.1663
1600 20 0.1702 0.1678 0.1702 0.1684
1600 60 0.1705 0.1693 0.1703 0.1730
1600 210 0.1713 0.1705 0.1707 0.1812

Table 5.5: Simulation with 5 time-constant and 5 time-varying effects. The effects are

chosen so that the average hazard ratio for each covariate is equal to 3.

N p CoxBoost IplBoost lasso landmarking, lasso selection

400 10 0.1423 0.1406 0.1425 0.1335
400 20 0.1432 0.1449 0.1431 0.1350
400 60 0.1449 0.1496 0.1446 0.1392
400 210 0.1466 0.1528 0.1463 0.1440
1600 10 0.1408 0.1337 0.1409 0.1335
1600 20 0.1410 0.1351 0.1411 0.1350
1600 60 0.1417 0.1372 0.1413 0.1397
1600 210 0.1423 0.1383 0.1416 0.1472

For the datasets with 400 observations and average hazard ratios equal to 1.5, the

performance of the lasso and CoxBoost is worse than SL-PS for the datasets with 0,
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10 and 50 covariates with a zero effect, and marginally better for the datasets with

200 covariates without any effect. For all the datasets with 400 observations, the

performance of the IplBoost is the worst of all the four methods. For the datasets with

1600 obsetvations and hazard ratios equal to 1.5, the situation is quite different. The

IplBoost is only marginally less accurate than the SL-PS scheme for the dataset with 0

additional covariates, and the most accurate for the other datasets. It seems that while

the SL-PS method is the most accurate for the datasets with no additional covariates, it

cannot handle datasets with more covariates. The reason for the latter might be that

the lasso selects more covariates due to the higher number of observations. Comparing

the Brier scores for the IplBoost to that of the CoxBoost and lasso, it seems that while

the IplBoost is better, it is decreasingly so when the number of covariates with no effect

increases.

For the datasets with average hazard ratios equal to 3, and 400 observations

SL-PS is significantly better than the other 3methods. The IplBoost is better than

the CoxBoost and the lasso for the datasets with 0 additional covariates, but not for

the datasets with 10, 50 and 200 additional covariates. For the datasets with hazard

ratios equal to 3 and 1600 observations, the IplBoost and the SL-PS are similar in

performance for the datasets with 0 and 10 additional covariates, where the IplBoost

is marginally less accurate. For the datasets with 50 and 200, the IplBoost is the most

accurate algorithm. We also see also that the performance of SL-PS is quite bad for the

datasets with 200 additional covariates. While the IplBoost is better than the CoxBoost

and the lasso, we here also see that the gap in terms of performance between the lasso

and CoxBoost and the IplBoost is decreasing when the number of additional covariates

increases.

To conclude, we consider models that exclusively have time-varying effects. These

are also chosen such that they cross 0 at tu = 0.7, and such that the average hazard

ratio over the follow up range is equal to either 3 or 1.5. All the datasets are simulated

with a baseline hazard ofWeibull form α0(t) = ktk−1
, where k is set to k = 6. The

censoring times are drawn from exponential distributions with rates equal toλ = 0.25

for the datasets with smaller effects, and λ = 0.33 for the datasets with larger effects.

As with the previous examples, the results are summed up in terms of average dynamic

Brier scores, which are given in table 5.6 and table 5.7.
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Table 5.6: Simulation with 10 time varying effects. The effects are chosen so that the

average hazard ratio for each covariate is equal to 1.5.

N p CoxBoost IplBoost lasso landmarking, lasso selection

400 10 0.1456 0.1451 0.1457 0.1443
400 20 0.1453 0.1455 0.1453 0.1449
400 60 0.1452 0.1453 0.1451 0.1451
400 210 0.1453 0.1452 0.1451 0.1454
1600 10 0.1465 0.1396 0.1467 0.1407
1600 20 0.1461 0.1415 0.1462 0.1433
1600 60 0.1451 0.1433 0.1450 0.1458
1600 210 0.1450 0.1443 0.1449 0.1461

Table 5.7: Simulation with 10 time varying effects. The effects are chosen so that the

average hazard ratio for each covariate is equal to 3.

N p CoxBoost IplBoost lasso landmarking, lasso selection

400 10 0.1723 0.1642 0.1725 0.1555
400 20 0.1731 0.1706 0.1729 0.1576
400 60 0.1767 0.1750 0.1745 0.1621
400 210 0.1793 0.1773 0.1777 0.1706
1600 10 0.1707 0.1557 0.1708 0.1555
1600 20 0.1708 0.1579 0.1707 0.1577
1600 60 0.1711 0.1611 0.1704 0.1637
1600 210 0.1707 0.1616 0.1702 0.1760

For the datasets with smaller effects and fewer observations the SL-PS method is best

for the datasets with 0 or 10 additional covariates, while the three other methods are

somewhat less accurate, but have similar performance. For the datasets with 50 or

200 additional covariates, all the methods have similar performance, but the lasso is

marginally the more accurate one. For those datsets with smaller effects and more

observations, the IplBoost is the most accurate. The SL-PS is more accurate than the

CoxBoost and the lasso for the datasets with 0 or 10 additional covariates, but less for

the other datsets. Looking at the datasets with larger effects, SL-PS is the most accurate

for the datasets with 400 observations. For these datsets, the IplBoost is more accurate

than the CoxBoost and the lasso, but comes quite close to these two for the datasets

with 200 additional covariates. For the datasets with 1600 observations and large

effects, SL-PS is more accurate for the datasets with either 0 or 10 additional covariates,

while the IplBoost is the most accurate for the other datasets. The performance of the

83



5. Simulations

IplBoost and SL-PS is, overall, better than the CoxBoost and the lasso, apart from the

datasets with 200 additional covariates, where SL-PS performs poorly.

From these simulations, we observe that there are situations where the sliding

landmark models estimated by the IplBoost algorithm, or maximum likelihood fitted

models where we select covariates using the lasso (SL-PS), may be superior to Cox

proportional hazards models fitted by lasso, or CoxBoost. For this to happen for the

cases we have considered, it seems that quite a lot of data must be available. As we

would expect, we have also seen that when the data are generated from a model with

time-constant effects, the proportional hazards models yield better predictions than

the sliding landmark models. The sliding landmark models do not however seem to

require that the data come from a model with exclusively time-varying effects, as they

appear to be better than the proportional hazards models for the situations we have

considered with both constant and varying effects.
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Chapter 6

Discussion

In this thesis we have looked at problems concerning survival data, where we both have

a high-dimensional covariate space, and where we can have time-dependent effects.

Since we are dealing with high dimensional covariate spaces, we have discussed ways

of estimating models that are designed to work in this setting. In particular, we have

considered L1-penalised Cox proportional hazards regression [Tibshirani, 1994], and

boostedCox regression, with an emphasis on likelihoodboostedCox regression [Binder

and Schumacher, 2008]. For the purpose of handling time dependent covariates, we

have studied so called sliding landmark models [van Houwelingen and Putter, 2011],

which serve the specific purpose of producingmore accurate dynamic predictionswhen

there are time dependent effects. As stated in the introduction, our main goal for this

thesis was to try and combine the two concepts, and estimate sliding landmark models

using penalised regression, or boosting.

The first possible solution we established is the somewhat ad-hoc method of

fitting a proportional hazards model to the dataset using the lasso, and then to fit

a sliding landmark model using the covariates that the lasso has selected. We then

attempted to use the group lasso [Yuan and Lin, 2006] to estimate a sliding landmark

model, by treating the landmark coefficients of a covariate as being grouped together

like levels of a categorical covariate. As it turns out, this is not possible to do using

the available software. For this to be possible, we would have to be able to estimate

the model by stratifying on each landmark dataset. Instead, if we try to do this with

the available software (i.e, without stratification), what we end up estimating is the

maximum of the group penalised integrated partial likelihood, where the likelihood
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contributions are given by (3.1) instead of the correct likelihood contributions (2.7).

Moving on from penalised regression, we considered a way of estimating the

sliding landmark model using an algorithm based on likelihood boosting. This is done

by treating the landmark coefficients of each covariate as one entity, so to speak, and

updating all the landmark coefficients of one covariate for each iteration of the algo-

rithm. This approach is attractive in its simplicity in that derivation of the algorithm is

completely analogous to that of likelihood boosting, and therefore easy to understand.

We cannot ‘tweak’ existing software so that it also works for sliding landmark models.

Therefore we opted for writing taylored software for this problem, which we have

collected in an R package. We have named this package IplBoost, as its purpose is to
estimate a model corresponding to the integrated partial log-likelihood via boosting.

As mentioned earlier in the thesis, the software is freely available for download at

https://github.com/simbrant/IplBoost.

Landmarkmodels can be seen as a direct answer to the problemof producing good

dynamic survival predictions, given that there are time dependent effects. Therefore

we judge the adequacy of our solution based on its ability to produce dynamic survival

predictions, measured by the dynamic Brier score. The boosting algorithm seems to

work well for the data examples we have studied compared to standard methodology,

such as penalised Cox regression, but we cannot draw a conclusion merely on these

grounds, as this could be by chance. Taking the simulations into account, we are lead to

believe that there are situations where using the IplBoost can be useful. The simulation

study does, however, indicate that the IplBoost algorithmmight require a good number

of observations to be more effective than proportional hazards models, and there must

also be time dependent effects in the underlying mechanism that generates the data.

For many datasets that are available this is not the case, but as current development is

that datasets with survival data and genetic variables are getting larger, the IplBoost

could be a relevant tool for analysis.

For further work, one of the things we would propose is the development an

algorithm optimising the penalised integrated partial log likelihood. In addition, if

dynamic predicitons are the ultimate goal, it might be that the way the IplBoost is

designed might be slightly off the mark in terms of what it achieves. By this we mean

that to minimise the dynamic prediction error, it may be more fruitful to take an

aggregate measure of dynamic prediction error, say the sum of the dynamic Brier

scores, as the loss function for a boosting algorithm. However, this will at least for the
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dynamic Brier scores be more computationally intensive compared to the already quite

computationally intensive IplBoost algorithm, and the derivatives of the dynamic Brier

scores may not behave ‘nicely enough’ for the estimation to work properly. Another

interesting problem, is to develop a way of penalising Aalen’s additive model [Aalen

et al., 2008], which as a problem is similar to that of group penalising estimation

of the integrated partial likelihood. This is because the estimates of Aalen’s additive

model are computed incrementally at each event time by a least-square procedure. The

difficulty is here then to develop a method that allows for shrinkage and selection,

while ensuring that if a covariate is selected, it is selected at all the points of estimation.

An interesting problem related to that we have discussed in this thesis, is to be able to

determine whether a given covariate has a time-dependent effect or not. In particular

one could try and develop a way of determining if there is something to be gained by a

landmark effect of a covariate, compared to just a time-constant effect. Conceivably,

one could possibly modify the IplBoost algorithm so that covariates can be specified as

time-dependent, and themodel be estimated by a hybrid of the IplBoost and likelihood

boosted Cox regression.
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Appendix A

Software

In this thesis, we have used a variety of software. We will here give a summary of the

software we have used, and of the software that has been developed specifically for this

thesis.

A.1 R packages

We have used a few different packages that are not part of the R base distribution, some

of which we have mentioned throughout this thesis. We will here give a short summary

of most of the packages that are used, and what they have been used for. To fit ordinary

Cox proportional hazards models and Cox regression models with smoothing splines,

and to compute Schoenfeld residuals [Grambsch and Therneau, 1994], we have used

the survival package authored by Therneau [2015]. To fit sliding landmark models,
without any form of regularisation, we have used the dynpred package authored by
Putter [2015], in conjunction with the survival package. For proportional hazards
modelswithL1 regularisation, or if you prefer, a lasso penalty, we have used the package

glmnet [Friedman et al., 2010, Simon et al., 2011]. For proportional hazards models
with a group lasso penalty, we have used the grpreg package by Breheny and Huang

[2015]. This package is also used together with the dynpred package in our attempt
to fit regularised sliding landmark models using a group lasso penalty. The package

mboost [Hothorn et al., 2017] is used to fit gradient boosted Cox proportional hazards

models, which De Bin [2016] refers to as model-based boosting. For the procedure
De Bin [2016] refers to as likelihood-based boosting, the package CoxBoost created by
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A. Software

Binder [2013] is used.

A.2 Selection of software written
for this thesis

As with surely any master thesis in statistics, quite a lot of the time spent writing this

thesis has been consumed by various programming tasks. Not all of these are worth

discussing of course, and we will here try to give an as detailed as possible account

without, as it were, explaining the self-explanatory. Perhaps the most noteworthy piece

of software written, is the software created to estimate landmark models via likelihood

boosting, and so this seems like the most natural starting point.

A.2.1 IplBoost

As mentioned in section 4.4, we have written software that can be used to fit landmark

models using likelihood boosting, and compiled this in a package that can be down-

loaded from https://github.com/simbrant/IplBoost. From the users perspective, this

package has two functions. One to tune the number of iterationsM , called cv.IplBoost,
and one to fit the models up to a given number of iterations, called IplBoost. The
software is designed to resemble the CoxBoost package, so users already familiar with
this package should easily be able to use the software without much explanation. Doc-

umentation, and example code is however included in the package, and can be viewed

if the package is installed. The function IplBoost that is called by the user, initialises
the estimates as zero for each covariate, and each landmark as zero, which are organised

in a (S × p)matrix, where S and p are the number of landmarks and covariates, re-

spectively. One column of these, corresponding to the landmark effects are updated

in each iteration of the algortihm, and the process of updating these are done by the

function shown in figure A.1. This is of course done in the way explained in section 4.4.

Computing the updates is quite computationally intensive, and to try and minimise

computing time, the likelihood function and its first and second derivatives are com-

puted in C++, where the C++ code is integrated using the Rcpp package [Eddelbuettel
and François, 2011].
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for this thesis

Figure A.1: Function that computes the updates in the IplBoost algorithm.

1

2 .IplBoost.iter <- function(times , status , mat , betas , lms , w, lambda) {
3 ## Internal function that performs one iteration of the
4 ## IplBoost algorithm
5

6 # Matrix of risk functions for the coefficients for each landmark point
7 risk.s <- exp(mat %*% t(betas))
8

9 # Call Cpp function to compute S0 for each landmark
10 S0 <- .compute_S0(as.matrix(risk.s), times , length(times), length(lms))
11

12 # Call C++ functions sequentially to compute S1.j and S2.j for each
13 # landmark for each covariate j (loops over j)
14 S1 <- lapply (1: dim(mat)[2], .compute_S1_j, risk=as.matrix(risk.s),
15 times=times , mat=mat , n=length(times), S=length(lms))
16 S2 <- lapply (1: dim(mat)[2], .compute_S2_j, risk=as.matrix(risk.s),
17 times=times , mat=mat , n=length(times), S=length(lms))
18

19 # Call C++ functions to sequentially compute the first derivative and the
20 # negative of the second derivative for each landmark , for each covariate

j
21 first.der <- lapply (1:dim(mat)[2],
22 function(j){. compute_u_j(j, status , mat , times , S0,
23 S1[[j]], length(times),
24 length(lms), lms , w)})
25

26 neg.second.der <- lapply (1:dim(mat)[2],
27 function(j){. compute_negI_j(j, status , times , S0

,
28 S1[[j]], S2[[j]],
29 length(times),
30 length(lms), lms , w,
31 lambda)})
32

33 # Compute scores (proportional to second order Taylor expansion of the
ipl)

34 score.vars <- as.numeric(lapply (1:dim(mat)[2],
35 function(j){sum(first.der[[j]]**2/neg.

second.der[[j]])}))
36

37 # Choose the variable that maximises the approximation
38 j.star <- which(score.vars == max(score.vars))
39

40 # Update coefficients
41 betas <- betas
42 betas[, j.star] <- (betas[, j.star] +
43 first.der[[j.star]]/neg.second.der[[j.star ]])
44

45 return(betas)
46 }

As mentioned, the function that the user calls again calls the function shown in figure

A.1, in a loop. When the function terminates, it returns an object containing an

(M + 1) dimensional vector of values of the integrated partial likelihood, evaluated
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at each iteration, as well as for the null model. In addition, the object also contains a

list of matrices containing the coefficient estimates at each iteration, including the null

model.

The function that tunes the number of iterationsworks in a similar fashion, where

it divides the data inK partitions, and then calls the function IplBoost, excluding one of
the partitionsK times, yieldingK ×Mmax models. These are then used to compute

the cross validated integrated partial likelihood. Upon termination, the function

returns an object containing anMmax + 1 dimensional vector of values for the cross-

validated integrated partial likelihood for each iteration, as well as the value ofM

that maximises this. To be able to further minimise computing time, the package also

supports parallellisation of the cross-validation procedure, via the snowfall package
[Knaus, 2015]. The process of setting up the cross-validation so that it computes in

parallel is similar to how the parallelised cross validation for the CoxBoost package is
organised, but it is also explained in the documentation of cv.IplBoost. A remark that

can bemade about this piece of software, is that it can also be used to estimate likelihood

boosted Cox models, of the kind the CoxBoost package does. While lacking a lot of

the functionality that is built into CoxBoost, it does in our experience use somewhat

less computing time to estimate models. To use the software for this purpose, the user

has to specify a single landmark at time t = 0, and an interval widthw that is larger

than the greatest event time.

A.2.2 DynamicBrier

In addition to the package designed to estimate likelihood boosted sliding landmark

models, we have also developed another package, DynamicBrier, which purpose is
to compute dynamic Brier scores, defined in section 2.4.2. This package is not at the

present time of writing available for download, but can be made avaiable upon request.
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Figure A.2: Function that computes dynamic Brier scores.

1 DynamicBrier <- function(times , status , design , betas , landmarks , w){
2

3 # Check for tied survival times , break if necessary.
4 if (length(times) != length(unique(times))){
5 times <- times + abs(rnorm(length(times), mean=0, sd=10^( -10)))
6 }
7

8 # Order observations ascendingly in time
9 status <- status[order(times)]
10 design <- design[order(times), ]
11 times <- times[order(times)]
12

13

14 # Compute e(\beta^T(LM_s)x_i) for each landmark
15 if (is.null(dim(betas))){
16 risk <- as.matrix(vapply (1: length(landmarks),
17 function(s) exp(design %*% betas),
18 times))
19 } else{
20 risk <- exp(design %*% t(as.matrix(betas)))
21 }
22

23 # Call C++ functions to compute S_0 and conditional survival
24 # probabilities for each landmark
25 s0 <- .compute_S0(risk , times , length(times), length(landmarks))
26 pi <- .compute_pi(risk , status , times , s0, length(times),
27 length(landmarks), landmarks , w)
28

29 # Call R functions that compute Y(LM_s), as well as the conditional
30 # censoring function evaluated at each survival time in A_s, and
31 # the conditional censoring function evaluated at LM_s + w
32 # for each landmark.
33 Y_lm <- .comp.Y_lm(times , landmarks)
34 c_hat <- .comp.c_hat(landmarks , times , status)
35 c_hat_end <- .comp.chat.end(landmarks , w, times , c_hat)
36

37 # Call C++ function that computes the dynamic Brier scores.
38 .computeDynamicBrierScores(Y_lm , pi , times , status , c_hat , c_hat_end ,
39 landmarks , w, length(times), length(landmarks))
40 }

The interface of this package consists of two functions, one that computes dynamic

Brier scores, and another that computes a dynamicR2
measure based on the dynamic

Brier scores. As an illustration, the code for the function that computes the dynamic

Brier scores is provided in figure A.2. In order to minimise computing time some of

the heavier lifting is here also done by code written in C++, which is integrated using
the Rcpp package.
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Appendix B

Derivation of results from section
2.3.1

Wewill here provide some derviations of the results presented in section 2.3.1 of this

thesis. In all of what follows, we assume that we have right censored survival data,

where the hazard function of an individual with index i can be described as

αi(t) = α0(t)e
βT (t)xi ,

that the covariates are centered, and that the survival and censoring times are indepen-

dent given the covariates.

B.1 Derivation of 2.3

For the following we impose the condition that∫ t

0

α0(s)
(
(β(s)− β(t))Txi

)2
ds is small,

where

β(t) =

∫ t
0
α0(s)β(s)ds

A0(t)
,

which requires that β(s)xi is small and does not to vary too much. Using a Taylor

expansion of eβ
T (s)xi

around the point eβ
T (s)xi

, we can write it as

eβ
T (s)xi = eβ

T
(t)xi + eβ

T
(t)xi

(
β(s)− β(t)

)T
xi +

ec

2

(
(β(s)− β(t))Txi

)2
,
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B. Derivation of results from section 2.3.1

where c lies between β(t)xi and β(s)xi.Multiplying both sides of this expression

with α0(s) and integrating from 0 to t, we see that∫ t

0

α0(t)e
βT (s)xids = eβ

T
(t)xi

∫ t

0

α0(s)ds

+ eβ
T

(t)xi

(∫ t

0

α0(s)β
T (s)xids− β

T
(t)xi

∫ t

0

α0(s)ds

)
+
ec

2

∫ t

0

α0(s)
(
(β(s)− β(t))Txi

)2
ds.

Since

eβ
T

(t)xi

(∫ t

0

α0(s)β
T (s)xids− β

T
(t)xi

∫ t

0

α0(s)ds

)
= 0,

and ∫ t

0

α0(s)
(
(β(s)− β(t))Txi

)2
ds

is small, we have that

A(t|xi) =
∫ t

0

α0(t)e
βT (s)xids ≈ A0(t)e

β
T

(t)xi .

B.2 Derivation of 2.5

If we fit a Cox proportional hazards model with administrative censoring at some

horizon thor, when the hazard can be described as

αi(t) = α0(t)e
βT (t)xi ,

then [van Houwelingen and Putter, 2011] the estimate converges to a limiting value

approximately given by

β̃Cox ≈
(∫ thor

0

S(t)C(t)V (X|T = t,β(t)) dt

)−1

·
∫ thor

0

S(t)C(t)V (X|T = t,β(t))β(t)dt,
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B.3. Derivation of 2.6

given that the true coefficients β(t) do not vary too much over time. Here S(t),

C(t) and α(t) are the marginal survival, censoring and hazard functions, respecitvely.

V (X|T = t,β(t)) is is defined as the limiting value of

S(2)(β(t), t)

S(0)(β(t), t)
−
(
S(1)(β(t), t)

S(0)(β(t), t)

)(
S(1)(β(t), t)

S(0)(β(t), t)

)T
where

S(0)(β(t), t) =
n∑
i=1

Yi(t) exp(β(t)
Txi),

S(1)(β(t), t) =
n∑
i=1

Yi(t)xi exp(β(t)
Txi),

and

S(2)(β(t), t) =
n∑
i=1

Yi(t)xix
T
i exp(β(t)

Txi).

By limiting value, we here mean the value which the expression above, as it were,

approaches when the number of observations increases. Under the conditions that

thor, and the effects of the covariates, are small,V (X|T = t,β(t)) is approximately

constant over the interval [0, thor]. Thus, under these conditions we have that

β̃Cox ≈
∫ thor

0
S(s)C(s)α(s)β(s)ds∫ thor

0
S(s)C(s)α(s)ds

.

Furthermore, ifC(t) ≈ 1, S(t) ≈ 1 and α(t) ∝ α0(t), then by (2.4) we have that

β̃Cox ≈ β(thor).

B.3 Derivation of 2.6

Wewill now argue that under some conditions,ACox(thor|x) ≈ A(thor|x).Themost
important of these conditions is thatβ(t)Txi does not vary toomuch. First we observe

that for the Breslow estimator of the baseline hazard, we have

dÂ0(β(t), t)

dÂ0(β, t)
=

S(0)(β, t)

S(0)(β(t), t)
,
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B. Derivation of results from section 2.3.1

for arbitrary β,where

Â0(β, t) =
∑
ti≤t

di∑
`∈Ri

exp(βTx`)
=
∑
ti≤t

di
S(0)(β, ti)

.

By defining

πi(β, t) =
Yi(t) exp(β

Txi)∑n
j=1 Yj(t) exp(β

Txj)
,

and writing

S(0)(β, t)

S(0)(β(t), t)
=

n∑
i=1

exp((β − β(t))Txi)πi(β, t),

we see that by Theorem 1 of Xu and O’Quigley [2001], this converges in probability to

E(exp((β − β(t))TX)|T = t),

given that we have random censoring. By making a Taylor expansion of

exp((β − β(t))TX)

around (β − β(t))TE(X|T = t), and then taking the expectation conditioned on

that T = t, on both sides, one can see that

E(exp((β − β(t))TX)|T = t) ≈ exp
{
(β − β(t))TE(X|T = t)

}
,

provided that (β − β(t))TV(X|T = t)(β − β(t)) is small. Thus we get that

dÂ0(β̃Cox, t)

dÂ0(β(t), t)
≈ exp

{
(β(t)− β̃Cox)TE(X|T = t)

}
,

and therefore

α0,Cox(t) ≈ α0(t) exp
(
(β(t)− β̃Cox)TE(X|T = t)

)
.
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B.3. Derivation of 2.6

From this it can be argued that

ACox(thor|x) = exp(β̃
T
x)

∫ thor

0

αCox,0(t)dt

≈ exp(β̃
T
x)

∫ thor

0

α0(t) exp
{
(β(t)− β̃Cox)TE(X|T = t)

}
dt

=

∫ thor

0

exp
{
β(t)x+ (β̃Cox − β(t))T (x− E(X|T = t))

}
dt

≈
∫ thor

0

α0(t) exp
{
β(t)Tx

}
= A(thor|x),

given that β(t) does not vary too much.
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Appendix C

Figures
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Figure C.1: Some of the estimated coefficient curves for the covariates that are selected

only by IplBoost and not by CoxBoost for the Dutch breast cancer data, in section

4.4.2.
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C. Figures
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Figure C.2: Some of the estimated coefficient curves for the covariates that are selected

only by IplBoost and not by CoxBoost for the Dutch breast cancer data, in section

4.4.2.
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Figure C.3: Some of the estimated coefficient curves for the covariates that are selected

only by IplBoost and not by CoxBoost for the Dutch breast cancer data, in section

4.4.2.
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