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Abstract

The main result in this thesis will be a new stochastic model for to-

tal claim amounts in non-life insurance which captures "regime switch-

ing" effects of data arising for example from natural disasters, regula-

tory changes or other "shocks" in non-life insurance markets:

We assume the total claim amount is modelled as

𝑆(𝑡) =

𝑁(𝑡)∑︁
𝑖=1

𝑋𝑖,

where

𝑁(𝑡) = 𝑁̃(𝜇*(𝑡))

for a process

𝜇*(𝑡) =

∫︁ 𝑡

0
𝜆*(𝑠,𝑋𝑠)𝑑𝑠, 𝑡 ≥ 0,

independent of a standard Poisson process 𝑁̃(𝑡), 𝑡 ≥ 0 and 𝑋𝑖, 𝑖 ≥ 1.
The "intensity process" 𝜆*(𝑡,𝑋𝑡), 𝑡 ≥ 0 is non-negative and depends

on an unknown process 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 , which captures "regime switch-

ing" effects of data.

Chapter 2 introduces basic mathematical tools needed for the con-

struction of our new stochastic model and estimation of parameters.

Chapter 3 summarizes the most important theory needed concerning

Lévy processes. Chapter 4 is arguably the core theory in this thesis;

it introduces non-linear filtering theory, which will be heavily utilized

in connection with our new model. Our new stochastic model fits into

a non-linear filtering framework, which enables the estimation of the

signal process 𝑋𝑡, 𝑡 ≥ 0 from observed data. The latter is discussed in

detail in Chapter 4. Chapter 5 introduces basic concepts of non-life

insurance. Chapter 6 will study the new stochastic model which will

be used for our simulations. The simulations at the end of Chapter

6 focus on an observation process with a pure jump component, and

the signal process is constructed to capture mean reversion. Chapter

7 will contain extensions and future work to the model developed in

Chapter 6.
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Notation

Abbreviations

a.e. - Almost everywhere.

a.s. - Almost surely, with probability 1.

e.g. - For example.

i.i.d. - Independent and identically distributed.

w.r.t. - With respect to.

Other notation

1𝐴 = 1𝐴(𝑥) :=

{︃
1 if 𝑥 ∈ 𝐴,

0 if 𝑥 /∈ 𝐴.
- The indicator function.

∅ - Empty set.

N - The set of all natural numbers.

R𝑛 - For any natural number 𝑛, the set R𝑛 consists of all 𝑛-tuples of real
numbers (R).

R≥0 - The set of all non-negative real numbers.

R+ - The set of all non-negative real numbers, with 0 excluded.

R𝑛 − {0} := {𝑥 ∈ R𝑚, 𝑥 ̸= 0}.

R𝑑×𝑚 - All 𝑑×𝑚 matrices with real entries.

R𝑚
0 - R𝑚, with the 0-vector exluded.

𝐶𝑏(𝑋;𝑆) -The set of all continuous functions 𝑓 : 𝑋 → 𝑆, that are bounded.

𝐶(𝑋 × 𝑌 ;𝑆) - The set of all continuous functions 𝑓 : 𝑋 × 𝑌 → 𝑆.

𝑑
= - Equal in distribution.

♣ - End of an example.

� - End of a proof.

𝑡 ∧ 𝑛 := min{𝑡, 𝑛}.
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𝜉 ∼ Φ - 𝜉 is Φ-distributed.

‖𝑓‖∞ = ‖𝑓‖∞,𝑆 := sup{|𝑓(𝑥)| : 𝑥 ∈ 𝑆} - The supremum norm, where 𝑓
is a real- or complex-valued bounded function and 𝑆 is a set.

⟨𝑥, 𝑦⟩ - The inner product in R𝑑, where 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑑) with each 𝑥𝑖 ∈ R
and 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑑) with each 𝑦𝑖 ∈ R for 1 ≤ 𝑖 ≤ 𝑑; that is, ⟨𝑥, 𝑦⟩ =∑︀𝑑

𝑖=1 𝑥𝑖𝑦𝑖, where 𝑥, 𝑦 ∈ R𝑑.

⟨𝑥,𝐴𝑦⟩ :=
∑︀𝑑

𝑖,𝑗=1𝐴
𝑖
𝑗𝑥𝑖𝑦

𝑖 - The inner product where 𝑥, 𝑦 ∈ R𝑑 and 𝐴 = (𝐴𝑖
𝑗)

is a 𝑑× 𝑑 matrix.

‖𝑥‖1 :=
∑︀𝑑

𝑖=1 |𝑥𝑖|, 𝑥 ∈ R𝑑 - The manhattan norm, where 𝑥 is a vector.

𝐿𝑝(𝑆, 𝜇) - The Banach space of all equivalence classes of mappings 𝑓 : 𝑆 → R𝑑

which agree a.e. (with respect to 𝜇) and for which ‖𝑓‖𝑝 <∞, where‖·‖𝑝 de-
notes the norm

‖𝑓‖𝑝 =
[︁ ∫︁

𝑆

|𝑓(𝑥)|𝑝𝜇(𝑑𝑥)
]︁1/𝑝

.
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Chapter 1

Introduction

An important challenge in the insurance world is accurately modelling the
total claim amount in insurance portfolios. Existing models in non-life insur-
ance are currently able to capture di�erent phenomenons such as �uctuating
properties of the insurance portfolio. As an example, the properties may
include driving skill, the age and health state of the individual drivers in a
car insurance portfolio.

However, in the world of non-life insurance, there does not exist a model
which allows for the modelling of "regime switching" e�ects. What if a nat-
ural disaster occurred? What if regulatory changes completely disrupt the
insurance markets? These are examples of "regime switching" e�ects, and
our goal is to study a model which captures such shocks in non-life insurance
markets.

Models which capture "regime switching" e�ects have been examined in
Bølviken, Duedahl, Proske [6], applied in the realm of life insurance. In
this thesis we will study a new stochastic model for the total claim amounts
in the realm of non-life insurance. A general model for the dynamics of such
aggregated claims is presented in Chapter 5, and we will use this general
model as a framework when studying our new model.

This thesis is built in such a way that it is bene�cial, but not necessary, to
have prior knowledge about the theory and tools used throughout the thesis.
We will present theory and develop tools that are required for the results as
we go along.

The objectives of this thesis are the following:

∙ Introduce basic mathematical tools needed for the development of our
new stochastic model.

∙ Give an introduction to basic concepts of (non-linear) �ltering theory,
jump processes (speci�cally Lévy processes) and stochastic models for
total claim amounts.

∙ Estimation of the unknown parameters/signal process (introduced in
Chapter 4) from simulated insurance data, which will be done by using
non-linear �ltering techniques and Monte-Carlo simulation.

∙ Allow our new stochastic model to capture "regime switching" e�ects
of data, which are due to "shocks" in non-life insurance markets.

At the end of this thesis we will have developed a new stochastic model that
allows for capturing "regime switching" e�ects of data. In other words, our
new model will attempt to accurately predict future values for total claim
amounts based on insurance data given in the past, and it will take potential
"shocks" from non-life insurance markets into account.
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Chapter 2

Preliminaries/basic mathematical tools

2.1 Measure theory

This section will contain key notions of measure theory and probability that
will be used throughout the thesis. We will introduce several important
de�nitions that will be the foundation for problemsolving in future chap-
ters. This chapter is targeted more towards the readers that are not familiar
with probability theory and stochastic analysis. The references used in this
chapter are Agresti [1], Applebaum [2], Benth [4], McDonald, Weiss [9] and
Øksendal [11].

We will begin with introducing basic concepts of measure and probability
theory, and then continue with some key properties of stochastic analysis.
The properties and concepts listed in this chapter will be used throughout
the thesis.

Definition 2.1. 𝜎-Algebra of Sets.
Let Ω be a non-empty set. A nonempty collection ℋ of subsets of Ω is called
a 𝜎-algebra if the following conditions are satisfied:

i) Ω ∈ ℋ.
ii) 𝐴 ∈ ℋ implies 𝐴𝑐 ∈ ℋ.
iii) {𝐴𝑛}𝑛 ⊂ ℋ implies

⋃︀
𝑛 𝐴𝑛 ∈ ℋ.

Definition 2.2. Borel 𝜎-algebra.
The Borel 𝜎-algebra of R𝑑 is the smallest 𝜎-algebra of subsets of R𝑑 that
contains all the open sets. We denote it by ℬ(R𝑑). If 𝑆 ∈ ℬ(R𝑑) we define
its Borel 𝜎-algebra on 𝑆 as

ℬ(𝑆) = {𝐸 ∩ 𝑆;𝐸 ∈ ℬ(R𝑑)}. (2.1)

Definition 2.3. Measure, measurable space and measure space.
Let Ω be a set and ℋ a 𝜎-algebra of subsets of Ω. A measure 𝜇 on ℋ is an
extended real valued function satisfying the following conditions:

i) 𝜇(ℋ) ≥ 0 for all 𝐴 ∈ ℋ.
ii) 𝜇(∅) = 0.
iii) If 𝐴1,𝐴2,... are in ℋ, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ̸= 𝑗, then

𝜇
(︁⋃︁

𝑛

𝐴𝑛

)︁
=

∑︁
𝑛

𝜇(𝐴𝑛). (2.2)

The pair (Ω, ℋ) is called a measurable space and the triple (Ω, ℋ, 𝜇) is
called a measure space.
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Definition 2.4. Null set.
Let (Ω, ℋ, 𝜇) be a measure space. Let 𝐴 ⊂ Ω. If there exists a 𝐵 ∈ ℋ such
that 𝐴 ⊂ 𝐵 and 𝜇(𝐵) = 0, we say that 𝐴 is a null set, or more specifically a
𝜇-null set.
The set of all null sets will usually be denoted by 𝒩 .
Let (Ω,ℋ) be a measurable space. Let (S, 𝒮) be another measurable space.
We say that a function 𝑓 : Ω→ S is ℋ-measurable if

𝑓−1(𝐴) = {𝑤 ∈ Ω : 𝑓(𝑤) ∈ 𝐴} ∈ ℋ, 𝐴 ∈ 𝒮. (2.3)

2.2 Probability Theory

The triple (Ω,ℱ , 𝑃 ) is called a probability space. It is called a complex
probability space if ℱ contains all subsets 𝐺 of Ω with 𝑃 -outer measure zero;
that is, with

𝑃 * (𝐺) = 𝑖𝑛𝑓{𝑃 (𝐹 );𝐹 ∈ ℱ , 𝐺 ⊂ 𝐹} = 0. (2.4)

Any probability space can be made complete simply by adding to ℱ all sets
of outer measure 0 and by extending 𝑃 accordingly. From now on we will
assume that all our probability spaces are complete.
The subsets 𝐹 of Ω which belong to ℱ are called ℱ -measurable sets. In a
probability context these sets are called events and we use the interpretation

𝑃 (𝐹 ) = �The probability that the event 𝐹 occurs�. (2.5)

If (Ω,ℱ , 𝑃 ) is a given probability space, then a function 𝑌 : Ω→ R𝑛 is called
ℱ −𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 if

𝑌 −1(𝑈) := {𝑤 ∈ Ω;𝑌 (𝑤) ∈ 𝑈} ∈ ℱ (2.6)

for all open sets 𝑈 ∈ R𝑛.

A random variable 𝑋 is an ℱ−measurable function 𝑋 : Ω→ R𝑛.

The following de�nition is an example of a transformation in probability
theory. This kind of transformation can be useful when solving certain types
of mathematical problems.

Definition 2.5. Characteristic function.
Let 𝑋 be a random variable defined on (Ω,ℱ , 𝑃 ) and taking values in R𝑑

with probability law 𝑝𝑥. Its characteristic function 𝜑𝑋 : R→ C is defined by

𝜑𝑋(𝑢) = E(𝑒𝑖⟨𝑢,𝑋⟩) =

∫︁
Ω

𝑒𝑖⟨𝑢,𝑋(𝑤)⟩𝑃 (𝑑𝑤) =

∫︁
R𝑑

𝑒𝑖⟨𝑢,𝑦⟩𝑝𝑋(𝑑𝑦) (2.7)

for each 𝑢 ∈ R𝑑.

Definition 2.6. Absolutely continuous measure.
Let (𝑆,ℱ , 𝜇) be an arbitrary measure space. A measure 𝜈 on (𝑆,ℱ) is said
to be absolutely continuous with respect to 𝜇 if 𝐴 ∈ ℱ and 𝜈(𝐴) = 0 =⇒
𝜈(𝐴) = 0. We then write 𝜈 << 𝜇.
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The following theorem is very important in extending the ideas of prob-
ability theory from probability masses and probability densities de�ned over
real numbers to probability measures de�ned over arbitrary sets. It tells if
and how it is possible to change from one probability measure to another.

Theorem 2.1. Radon-Nikodým.
If 𝜇 is 𝜎-finite and 𝑣 is 𝜎-finite with 𝑣 << 𝜇, then there exists a measurable
function 𝑔 : 𝑆 → R+ such that, for each 𝐴 ∈ ℱ ,

𝑣(𝐴) =

∫︁
𝐴

𝑔(𝑥)𝜇(𝑑𝑥). (2.8)

The function g is unique up to 𝜇-almost-everywhere equality.

The functions 𝑔 appearing in this theorem are sometimes denoted 𝑑𝑣/𝑑𝜇
and called the Radon-Nikodým derivative of 𝑣 with respect to 𝜇.
Now let (Ω,ℱ , 𝑃 ) be a probability space and 𝒢 be a sub-𝜎-algebra of ℱ .
Let 𝑋 be an R-valued random variable with E(|𝑋|) < ∞, and for now
assume that 𝑋 ≥ 0. We de�ne a �nite measure 𝒬𝑋 = E(𝑋1𝐴

) for 𝐴 ∈ 𝒢;
then 𝒬𝑋 << 𝑃 , and we write

E(𝑋|𝒢) =
𝑑𝒬𝑋

𝑑𝑃
. (2.9)

We call E(𝑋|𝒢) the conditional expectation of 𝑋 with respect to 𝒢. It is a
random variable on (Ω,𝒢, 𝑃 ) and is uniquely de�ned up to sets of 𝑃 -measure
zero.

The concept of conditional expectation is very useful in probability theory,
which we will apply later on in this thesis. We will now state Bayes' rule
for conditional expectation. When dealing with nonlinear �ltering problems
(introduced later in this thesis), we will use a formula which is a direct con-
sequence of the Bayes' rule.

Theorem 2.2. Bayes' rule.
Let 𝜇 and 𝑣 be two probability measures on a measure space (Ω,𝒢) such that
𝑑𝑣(𝑤) = 𝑓(𝑤)𝑑𝜇(𝑤) for some 𝑓 ∈ 𝐿1(𝜇). Let 𝑋 be a random variable on
(Ω,𝒢) such that

E𝑣[|𝑋|] =

∫︁
Ω

|𝑋(𝑤)|𝑓(𝑤)𝑑𝜇(𝑤) <∞. (2.10)

Let ℋ be a 𝜎-algebra, ℋ ⊂ 𝒢. Then

E𝑣[𝑋|ℋ]E𝜇[𝑓 |ℋ] = E[𝑓𝑋|ℋ] a.s. (2.11)

Proof. See e.g. Lemma 8.6.2 in Øksendal [11].
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For convenient notation, we note the following:
Let 𝑄 be another probability measure on ℱ𝑇 (ℱ𝑇 is de�ned in De�nition
2.17). By De�nition 2.6, we know that 𝑄 is absolutely continuous w.r.t.
𝑃 |ℱ𝒯 (the restriction of 𝑃 to ℱ𝑇 ) if

𝑃 (𝐻) = 0⇒ 𝑄(𝐻) = 0 for all 𝐻 ∈ ℱ𝑇 . (2.12)

By the Radon-Nikodým theorem this occurs if and only if there exists an
ℱ𝑇 -measurable random variable 𝑍𝑇 (𝑤) ≥ 0 such that

𝑑𝑄(𝑤) = 𝑍𝑇 (𝑤)𝑑𝑃 (𝑤) on ℱ𝑇 . (2.13)

In this case we write
𝑑𝑄

𝑑𝑃
= 𝑍𝑇 on ℱ𝑇 (2.14)

and we call 𝑍𝑇 the Radon-Nikodým derivative of 𝑄 with respect to 𝑃 .

A random variable 𝑋 is a function from Ω into R, the set of real num-
bers. This means that for each outcome 𝑤 ∈ Ω, 𝑋(𝑤) is a real number. We
are now ready to de�ne a stochastic process.

Definition 2.7. Stochastic process.
A stochastic process {𝑋(𝑡)}𝑡∈[0,𝑇 ] is a family of random variables parametrized
by time t; that is, for each given 𝑡 ∈ [0, 𝑇 ], 𝑋(𝑡) is a random variable.

2.3 Essential stochastic processes

Two important properties that some classes of stochastic processes possess
are the property of independent increments and the property of stationary
increments:
Let 𝑋 = (𝑋𝑡)0≤𝑡≤𝑇 be a stochastic process.

Property 1: We say that 𝑋 has independent increments if, for all 𝑡, ℎ > 0,
the increment 𝑋𝑡+ℎ −𝑋𝑡 is independent of the process (𝑋𝑠)0≤𝑠≤𝑡.

Property 2: We say that 𝑋 has stationary increments if, for all 𝑡, ℎ > 0,
the increment 𝑋𝑡+ℎ −𝑋𝑡 is equal to 𝑋ℎ in distribution.

An extremely important process, which is used in many di�erent �elds such
as �nance and physics, is Brownian motion. The Brownian motion is typ-
ically used as the noisy part of a model, when we are trying to model a
phenomenon that we can't be certain of how it evolves over time. In �nance,
this is typically represented by the evolution of a stock. We can't possibly
predict the price of a stock in the future, which is where Brownian motion
enters the picture.

Definition 2.8. Brownian motion.
Brownian motion 𝐵(𝑡) is a stochastic process starting at zero; that is, 𝐵(0) =
0, and which satisfies the following three properties:

11



1. Independent increments: The random variable 𝐵(𝑡) − 𝐵(𝑠) is indepen-
dent of (𝐵𝑢)0≤𝑢≤𝑠.
2. Stationary increments: The distribution of 𝐵(𝑡) − 𝐵(𝑠) for 𝑡 > 𝑠 ≥ 0 is
the same as 𝐵𝑡−𝑠.
3. Normal increments: The distribution of 𝐵(𝑡) − 𝐵(𝑠) for 𝑡 > 𝑠 ≥ 0 is
normal with expectation 0 and variance 𝑡− 𝑠.

Simulation of Brownian motion:
Brownian motion is quite simple to simulate. When we want to simulate the
paths Brownian motion, we can construct a short algorithm that creates a
process which is normally distributed:

Algorithm 1 Path of Brownian motion
Input: Time horizon 𝑇 ; use 𝑛 for partitioning
1: ∆𝑡← 𝑇/𝑛
2: Draw (generate) 𝑍𝑖 ∼ 𝑁(0, 1), 𝑖 = 0, ..., 𝑛− 1
3: 𝐵0 ← 0
4: for 𝑖 = 0, ..., 𝑛− 1 do
5: 𝐵𝑡𝑗+1

← 𝐵𝑡𝑗 + 𝑍𝑖

√
∆𝑡

6: end for
7: return (𝐵𝑡𝑗)

𝑛
𝑖=0
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Figure 1: Example of a stock price with Brownian motion.

As mentioned before, Brownian motion is very commonly used to model
phenomenons such as stocks, as illustrated above. This is mostly due to the
fact that Brownian motion is continuous. However, if we wish to model other

12



things, such as insurance claims, we need a process that does not depend on
being continuous. This is because when a new claim occurs, there is a �jump�.

This leads us to the Poisson process, which can model jumps or counting.
Note that it is a Lévy process, whose de�nition will be introduced later in
the thesis.

Definition 2.9. Poisson process.
The Poisson process of intensity 𝜆 is a Lévy process 𝑁 taking values in N∪{0}
wherein each 𝑁(𝑡) ∼ 𝜋(𝜆𝑡), so that we have

𝑃 (𝑁(𝑡) = 𝑛) =
𝜆𝑛𝑡𝑛

𝑛!
𝑒−𝜆𝑡 (2.15)

for each 𝑛 = 0, 1, 2, ...

Another useful process is called the compound Poisson process. This
process is useful when we want to observe the jumps of a Poisson process,
and then choose a distribution for the sizes of the jumps.

Definition 2.10. Compound Poisson process.
Let (𝑍(𝑛), 𝑛 ∈ N) be a sequence of i.i.d. random variables taking values in
R𝑑 with common law 𝜇𝑍 and let 𝑁 be a Poisson process of intensity 𝜆 that
is independent of all the 𝑍(𝑛).
The compound Poisson process X is defined as follows:

𝑋(𝑡) =

{︃
0 when 𝑁(𝑡) = 0,

𝑍1 + 𝑍2 + ... + 𝑍(𝑁(𝑡)) when 𝑁(𝑡) > 0,

for each 𝑡 ≥ 0, so each 𝑋𝑡 ∼ 𝜋(𝜆𝑡, 𝜇𝑍).

We now move on to an even more general class of processes. The gener-
alization of the Poisson process can be de�ned by introducing a stochastic
intensity instead of the deterministic intensity that the regular Poisson pro-
cess has. The new, generalized, process is called a Cox process.
We de�ne the Cox process as in Bening, Koroloev [3].

Definition 2.11. Cox process.
Let 𝑁1 = (𝑁1(𝑡))0≤𝑡≤𝑇 be a Poisson process with intensity equal to 1. Let
𝜇 = (𝜇𝑡)0≤𝑡≤𝑇 be a stochastic process, independent of 𝑁1, with values in R≥0

and non-decreasing paths. In addition, assume that 𝜇 satisfies the conditions

𝜇0 = 0 and P[𝜇𝑡 <∞] = 1, 0 ≤ 𝑡 ≤ 𝑇. (2.16)

Then the time-changed N0-valued process

𝑁𝜇 = (𝑁𝜇
𝑡 )0≤𝑡≤𝑇 = (𝑁1(𝜇𝑡))0≤𝑡≤𝑇 (2.17)

is a Cox process.

13



A compound Cox process can be de�ned similarly to how we de�ned the
Poisson process. That is; a process 𝑋 = (𝑋𝑡)0≤𝑡≤𝑇 ⊂ R𝑑 is a compound Cox
process if it is given by

𝑋𝑡 =

𝑁𝜇
𝑡∑︁

𝑖=1

𝑍𝑖, 0 ≤ 𝑡 ≤ 𝑇, (2.18)

where (𝑍𝑖)𝑖∈N ⊂ R𝑑 is a sequence of i.i.d stochastic variables (see De�nition
2.10), and 𝑁𝜇 = (𝑁𝜇

𝑡 )0≤𝑡≤𝑇 ⊂ N0 is a Cox process.

2.4 Martingale theory

Martingale theory is important with regards to many di�erent subjects. For
instance, it can be critical in models of gambling, but most importantly, it is
important with regards to mathematical �nance and economics. If we were
to model the price dynamics of a �nancial asset as a stochastic (random)
process, we demand pricing rules under which the discounted price asset is
a martingale. In the context of assets, the martingale property is equivalent
to not being able to conduct arbitrage through trades in that asset.
As we will see later on, martingales are essential to stochastic integration.

Definition 2.12. Filtration and martingale.
A filtration (on (Ω,ℱ)) is a family ℳ = {ℳ𝑡}𝑡≥0 of 𝜎-algebras ℳ𝑡 ⊂ ℱ
such that

0 ≤ 𝑠 < 𝑡⇒ℳ𝑠 ⊂ℳ𝑡 (2.19)

(that is {ℳ𝑡} is increasing). An n-dimensional stochastic process {ℳ𝑡}𝑡≥0

on (Ω,ℱ , 𝑃 ) is called a martingale with respect to a filtration {ℳ}𝑡≥0 (and
with respect to P) if
1) 𝑀𝑡 isℳ𝑡-measurable for all 𝑡,
2) 𝐸[|𝑀𝑡|] <∞ for all t and
3) 𝐸[𝑀𝑠|ℳ𝑡] = 𝑀𝑡 for all 𝑠 ≥ 𝑡.

Definition 2.13. Adapted with respect to a �ltration.
A stochastic process 𝑋𝑠 is called adapted if for each time 𝑠 ∈ [0, 𝑡] the random
variable 𝑋𝑠 is ℱ𝑠-measurable.

Example 2.1. Brownian motion 𝐵𝑡 in R𝑛 is a martingale with respect to
the 𝜎-algebras ℱ𝑡 generated by {𝐵𝑠; 𝑠 ≤ 𝑡}.

♣

Proof. We will use the following facts:
1) 𝐵𝑡 is ℱ𝑡-measurable (see Theorem B.2.c in Øksendal [11].)
2) 𝐵𝑠−𝐵𝑡 is independent of ℱ𝑡 (see (2.2.11) and Theorem B.2.d in Øksendal
[11]).
We have:

𝐸[|𝐵𝑡|]2 ≤ 𝐸[|𝐵𝑡|2] = |𝐵0|2 + 𝑛𝑡
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and if 𝑠 ≥ 𝑡, then

𝐸[𝐵𝑠|ℱ𝑡] = 𝐸[𝐵𝑠 −𝐵𝑡 + 𝐵𝑡|ℱ𝑡]

= 𝐸[𝐵𝑠 −𝐵𝑡|ℱ𝑡] + 𝐸[𝐵𝑡|ℱ𝑡]

= 0 + 𝐵𝑡

= 𝐵𝑡.

Here we have used that 𝐸[(𝐵𝑠 − 𝐵𝑡)|ℱ𝑡] = 𝐸[𝐵𝑠 − 𝐵𝑡] = 0 since 𝐵𝑠 − 𝐵𝑡 is
independent of ℱ𝑡, and that 𝐸[𝐵𝑡|ℱ𝑡] = 𝐵𝑡 since 𝐵𝑡 is ℱ𝑡-measurable.

Example 2.2. Let 𝑀𝑡 = 𝐵2
𝑡 − 𝑡. The process 𝑀𝑡 is then a martingale with

respect to the �ltration ℱ𝑡.

♣

Proof. We need to ful�ll the three points listed in De�nition 2.12, in order
to prove that 𝑀𝑡 is a martingale. The �rst two properties are clearly already
ful�lled.
The third one isn't as intuitive, so we need to prove it:
Let 𝑡 > 𝑠.

𝐸[𝑀𝑡|ℱ𝑠] = 𝐸[𝐵2
𝑡 − 𝑡|ℱ𝑠] = 𝐸[𝐵2

𝑡 |ℱ𝑠]− 𝑡

(*)
= 𝐸

[︀
(𝐵𝑡 −𝐵𝑠)

2 −𝐵2
𝑠 + 2𝐵𝑡𝐵𝑠|ℱ𝑠

]︀
− 𝑡

= [(𝐵𝑡 −𝐵𝑠)
2]− 𝐸[𝐵2

𝑠 |ℱ𝑠] + 2𝐸[𝐵𝑡𝐵𝑠|ℱ𝑠]− 𝑡

= 𝑡− 𝑠−𝐵2
𝑠 + 2𝐵2

𝑠 − 𝑡

= 𝐵2
𝑠 − 𝑠

= 𝑀𝑠,

where (*) uses the equality 𝐵𝑡 = 𝐵𝑡 − 𝐵𝑠 + 𝐵𝑠. Now properties 1), 2) and
3) from De�nition 2.12 are met, so 𝑀𝑡 is a martingale with respect to the
�ltration ℱ𝑡.

Definition 2.14. Stopping times.
A stopping time is a random variabe 𝑇 : Ω → [0,∞] for which the event
{𝑇 ≤ 𝑡} ∈ ℱ𝑡 for each 𝑡 ≥ 0.

An example of a stopping time is any ordinary deterministic time. Stop-
ping time can be found in many di�erent applications and de�nitions. An
example of such a de�nition is a local martingale.

Definition 2.15. Local martingale.
A local martingale is a measurable adapted process

𝑀 = (𝑀𝑡, 𝑡 ≥ 0) (2.20)

for which there exists a sequence of stopping times 𝜏1 ≤ · · · ≤ 𝜏𝑛 →∞ (a.s.)
such that each of the processes (𝑀(𝑡 ∧ 𝜏𝑛, 𝑡 ≥ 0)) is a martingale.
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We will in later chapters discuss �ltering problems, which will be an
essential part of �nding the stochastic model for total claim amounts in
this thesis. In order to solve �ltering problems, we will apply the Girsanov
theorem in connection with semimartingales to perform a change of measure.
A semimartingale is de�ned below.

Definition 2.16. Semimartingale.
A (continuous) semimartingale with respect to the filtration ℱ𝑡 is an ℱ𝑡-
adapted process 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 such that

𝑋𝑡 = 𝑀𝑡 + 𝐴𝑡, 0 ≤ 𝑡 ≤ 𝑇 a.e.,

where 𝑀𝑡, 0 ≤ 𝑡 ≤ 𝑇 is a continuous local ℱ𝑡-martingale and 𝐴𝑡, 0 ≤ 𝑡 ≤ 𝑇
is an ℱ𝑡-adapted continuous bounded variation process.

2.5 Stochastic analysis

We have now arrived at stochastic analysis. This chapter will introduce the
basics ideas and concepts of stochastic analysis with respect to Brownian
motion, and is based on Chapter 5 in Øksendal [11].

2.5.1 Itô integration and Itô’s formula

A very important part of stochastic analysis is Itô integration. Itô integration
here deals with stochastic integrals with respect to Brownian motion; we want
to de�ne the integral ∫︁ 𝑇

𝑆

𝑓(𝑡, 𝑤)𝑑𝐵𝑡(𝑤). (2.21)

Before we can de�ne this important integral, we need some de�nitions.

Definition 2.17. The �ltration ℱ𝑡.
Let 𝐵𝑡(𝑤) be n-dimensional Brownian motion. Then we define ℱ𝑡 = ℱ (𝑛)

𝑡

to be the 𝜎-algebra generated by the random variables {𝐵𝑖(𝑠)}1≤𝑖≤𝑛,0≤𝑠≤𝑡. In
other words, ℱ𝑡 is the smallest 𝜎-algebra containing all sets of the form

{𝑤;𝐵𝑡1(𝑤) ∈ 𝐹1, ..., 𝐵𝑡𝑘(𝑤) ∈ 𝐹𝑘}, (2.22)

where 𝑡𝑗 ≤ 𝑡 and 𝐹𝑗 ⊂ R𝑛 are Borel sets, 𝑗 ≤ 𝑘 = 1, 2, ... (We assume that
all sets of measure zero are included in ℱ𝑡).

One often thinks of ℱ𝑡 as "the history of 𝐵𝑠 up to time 𝑡".

Definition 2.18.
Let 𝒱 = 𝒱(𝑆, 𝑇 ) be the class of functions

𝑓(𝑡, 𝑤) : [0,∞)× Ω→ R (2.23)

such that
1) (𝑡, 𝑤)→ 𝑓(𝑡, 𝑤) is ℬ×ℱ-measurable, where ℬ denotes the Borel 𝜎-algebra
on [0,∞).
2) 𝑓(𝑡, 𝑤) is ℱ𝑡-adapted.

3) 𝐸[
∫︀ 𝑇

𝑆
𝑓(𝑡, 𝑤)2𝑑𝑡] <∞.
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For functions 𝑓 ∈ 𝒱 we are now ready to de�ne the Itô integral mentioned
above.

Let the Itô integral be de�ned by

ℐ[𝑓 ](𝑤) =

∫︁ 𝑇

𝑆

𝑓(𝑡, 𝑤)𝑑𝐵𝑡(𝑤), (2.24)

where 𝐵𝑡 is a 1-dimensional Brownian motion.

First, we de�ne ℐ[𝜑] for a simple class of functions 𝜑. Then we show that
each 𝑓 ∈ 𝒱 can be approximated by such 𝜑's and we use this to de�ne

∫︀
𝑓𝑑𝐵

as the limit of
∫︀
𝜑𝑑𝐵 as 𝜑→ 𝑓 .

The following de�nition will be of great use:

Definition 2.19. Elementary function.
A function 𝜑 ∈ 𝒱 is called elementary if it has the form

𝜑(𝑡, 𝑤) =
∑︁
𝑗

𝑒𝑗(𝑤) · 1[𝑡𝑗 ,𝑡𝑗+1)(𝑡). (2.25)

Note that since 𝜑 ∈ 𝒱 each function 𝑒𝑗 must be ℱ𝑡𝑗 -measurable.

Finally, for elementary functions 𝜑(𝑡, 𝑤), we de�ne the integral:∫︁ 𝑇

𝑆

𝜑(𝑡, 𝑤)𝑑𝐵𝑡(𝑤) =
∑︁
𝑗≥0

𝑒𝑗(𝑤)[𝐵𝑡𝑗+1
−𝐵𝑡𝑗 ](𝑤). (2.26)

An important observation for the Itô integral is the Itô isometry.

Lemma 2.1. The Itô isometry.
If 𝜑(𝑡, 𝑤) is bounded and elementary then

𝐸
[︁(︁ ∫︁ 𝑇

𝑆

𝜑(𝑡, 𝑤)𝑑𝐵𝑡(𝑤)
)︁2]︁

= 𝐸
[︁ ∫︁ 𝑇

𝑆

𝜑(𝑡, 𝑤)2𝑑𝑡
]︁
. (2.27)

Proof. For proof see Øksendal [11].

We will now look at some properties for the Itô integral.

Theorem 2.3. Properties of the Itô integral.
Let 𝑓, 𝑔 ∈ 𝒱(0, 𝑇 ) and let 0 ≤ 𝑆 < 𝑈 < 𝑇 . Then

i)
∫︀ 𝑇

𝑆
𝑓𝑑𝐵𝑡 =

∫︀ 𝑈

𝑆
𝑓𝑑𝐵𝑡 +

∫︀ 𝑇

𝑈
𝑓𝑑𝐵𝑡 for almost all 𝑤.

ii)
∫︀ 𝑇

𝑆
(𝑐𝑓 + 𝑔)𝑑𝐵𝑡 = 𝑐 ·

∫︀ 𝑇

𝑆
𝑓𝑑𝐵𝑡 +

∫︀ 𝑇

𝑆
𝑔𝑑𝐵𝑡 (c constant) for almost all 𝑤.

iii) 𝐸[
∫︀ 𝑇

𝑆
𝑓𝑑𝐵𝑡] = 0.

iv)
∫︀ 𝑇

𝑆
𝑓𝑑𝐵𝑡 is ℱ𝑇 -measurable.
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Proof. This clearly holds for all elementary functions, so by taking limits we
obtain this for all 𝑓, 𝑔 ∈ 𝒱(0, 𝑇 ).

As mentioned earlier, we will use the Girsanov theorem to introduce a
change of measure to construct a new Brownian motion under the new mea-
sure. We now have enough background information to introduce the Girsanov
theorem.

Theorem 2.4. The Girsanov theorem.
Let 𝑌 (𝑡) ∈ R𝑛 be an Itô process of the form

𝑑𝑌 (𝑡) = 𝑎(𝑡, 𝑤)𝑑𝑡 + 𝑑𝐵(𝑡); 𝑡 ≤ 𝑇, 𝑌0 = 0. (2.28)

where 𝑇 ≤ ∞ is a given constant and 𝐵(𝑡) is n-dimensional Brownian mo-
tion.
Put

𝑀𝑡 = exp
(︁
−

∫︁ 𝑡

0

𝑎(𝑠, 𝑤)𝑑𝐵𝑠 −
1

2

∫︁ 𝑡

0

𝑎2(𝑠, 𝑤)𝑑𝑠
)︁

; 0 ≤ 𝑡 ≤ 𝑇. (2.29)

Assume that 𝑀𝑡 is a martingale with respect to ℱ (𝑛)
𝑡 and 𝑃 . Define the

measure 𝑄 on ℱ (𝑛)
𝑇 by

𝑑𝑄(𝑤) = 𝑀𝑇 (𝑤)𝑑𝑃 (𝑤). (2.30)

Then 𝑄 is a probability measure on ℱ (𝑛)
𝑇 and 𝑌 (𝑡) is an n-dimensional Brow-

nian motion with respect to 𝑄, for 0 ≤ 𝑡 ≤ 𝑇 .

Proof. For a detailed proof, see Øksendal [11].

Example 2.3. Using the Girsanov theorem.
Let 𝑌 (𝑡) ∈ R𝑛 be given by

𝑑𝑌 (𝑡) = 𝑔(𝑡)𝑑𝑡 + 𝑑𝐵(𝑡), 0 ≤ 𝑡 ≤ 𝑇, (2.31)

where 𝑔 : [0, 𝑇 ]→ R𝑛 is a continuous deterministic function.
Then 𝑌 (𝑡) is a Brownian motion with respect to 𝑄, where

𝑑𝑄(𝑤) = exp
(︁
−

∫︁ 𝑇

0

𝑔(𝑠)𝑑𝐵(𝑠)− 1

2

∫︁ 𝑇

0

𝑔2(𝑠)𝑑𝑠
)︁
𝑑𝑃 (𝑤) on ℱ (𝑛)

𝑇 . (2.32)

♣

The following theorem can be used to solve certain types of stochastic di�er-
ential equations. In our case, this will speci�cally be applied to the Vasicek
model when creating our new model in Chapter 6.

Theorem 2.5. The 1-dimensional Itô formula.
Let 𝑋𝑡 be an Itô process given by

𝑑𝑋𝑡 = 𝑢𝑑𝑡 + 𝑣𝑑𝐵𝑡.
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Let 𝑔(𝑡, 𝑥) ∈ 𝐶2([0,∞)× R). Then

𝑌𝑡 = 𝑔(𝑡,𝑋𝑡)

is again an Itô process, and

𝑑𝑌𝑡 =
𝜕𝑓(𝑡,𝑋𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑓(𝑡,𝑋𝑡)

𝜕𝑥
𝑑𝑋𝑡

+
1

2

𝜕2𝑓(𝑡,𝑋𝑡)

𝜕𝑥2
(𝑑𝑋𝑡)

2, (2.33)

with the calculation rules 𝑑𝑡 · 𝑑𝑡 = 0, 𝑑𝑡 · 𝑑𝐵𝑡 = 𝑑𝐵𝑡 · 𝑑𝑡 = 0 and (𝑑𝐵𝑡)
2 = 𝑑𝑡.

Proof. See the proof for Theorem 4.1.2 in Øksendal [11].

Example 2.4. The process

𝑋(𝑡) := 𝑋(0)𝑒−𝛼𝑡 + 𝜎𝑒−𝛼𝑡

∫︁ 𝑡

0

𝑒𝛼𝑠𝑑𝐵(𝑠),

where 𝑋(0) is the initial value of 𝑋(𝑡), has the dynamics

𝑑𝑋(𝑡) = −𝛼𝑋(𝑡)𝑑𝑡 + 𝜎𝑑𝐵(𝑡).

♣

Proof. Let 𝑓(𝑡, 𝑥) = 𝑡𝑥. Using Itô's formula, we obtain

𝑑𝑋(𝑡) = 𝑑
(︁
𝑋(0)𝑒−𝛼𝑡 + 𝑒−𝛼𝑡𝜎

∫︁ 𝑡

0

𝑒𝛼𝑠𝑑𝐵(𝑠)
)︁

= 𝑒−𝛼𝑡𝜎𝑒𝛼𝑡𝑑𝐵(𝑡)− 𝛼𝑒−𝛼𝑡
(︁
𝑋(0) + 𝜎

∫︁ 𝑡

0

𝑒𝛼𝑠𝑑𝐵(𝑠)
)︁
𝑑𝑡

= 𝜎𝑑𝐵(𝑡)− 𝛼
(︁
𝑋(0)𝑒−𝛼𝑡 + 𝜎𝑒−𝛼𝑡

∫︁ 𝑡

0

𝑒𝛼𝑠𝑑𝐵(𝑠)⏟  ⏞  
=𝑋(𝑡)

)︁
𝑑𝑡

= −𝛼𝑋(𝑡)𝑑𝑡 + 𝜎𝑑𝐵(𝑡).

2.6 Generalized linear models (GLMs)

This section will brie�y introduce the key concepts in the theory of gener-
alized linear models. When attempting to accurately model the number of
incidents that will occur in a given time interval in non-life insurance, one
usually turns to the Poisson distribution. In practice however, the Poisson
distributions might not be su�cient, as the variance may exceed the mean.
We will propose an alternative method to the Poisson distribution in Chap-
ter 5. In order to use the alternative method, we need the basic concepts of
what generalized linear models are.
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2.6.1 The exponential dispersion family

Definition 2.20. Random component.
The random component of a GLM consists of a response variable 𝑦 with
independent observations (𝑦1, ..., 𝑦𝑛) from a distribution having probability
density or mass function for 𝑦𝑖 of the form

𝑓(𝑦𝑖; 𝜃𝑖, 𝜑) = exp
{︁

[𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)]/𝑎(𝜑) + 𝑐(𝑦𝑖, 𝜑)
}︁
. (2.34)

Here 𝑓(𝑦𝑖; 𝜃𝑖, 𝜑) is called the exponential dispersion family. The parameter
𝜃𝑖 is called the natural parameter, and 𝜑 is called the dispersion parameter.
We can derive E(𝑦𝑖) and var(𝑦𝑖) using the quantities in 𝑓(𝑦𝑖; 𝜃𝑖, 𝜑). Let 𝐿𝑖 =
log 𝑓(𝑦𝑖; 𝜃𝑖, 𝜑). It is clear that

𝐿𝑖 = [𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)]/𝑎(𝜑) + 𝑐(𝑦𝑖, 𝜑). (2.35)

The derivative of 𝐿𝑖 with respect to 𝜃𝑖 is now given by

𝜕𝐿𝑖

𝜕𝜃𝑖
=

𝑦𝑖 − 𝑏′(𝜃𝑖)

𝑎(𝜑)
, (2.36)

and the second derivative with respect to 𝜃 is given by

𝜕2𝐿𝑖

𝜕𝜃2𝑖
= −𝑏′′(𝜃𝑖)

𝑎(𝜑)
. (2.37)

Before deriving the expectation and variance itself, we need the following
likelihood results:

E
(︁𝜕𝐿
𝜕𝜃

)︁
= 0 and − E

(︁𝜕2𝐿

𝜕𝜃2

)︁
= E

(︁𝜕𝐿
𝜕𝜃

)︁2

. (2.38)

Further details on why these likelihood results hold can be found in Chapter
4 in Agresti [1].

Applying the likelihood results, we obtain the following:

E[𝑦𝑖 − 𝑏′(𝜃𝑖)]/𝑎(𝜑) = 0, so that 𝜇𝑖 = E(𝑦𝑖) = 𝑏′(𝜃𝑖). (2.39)

Using the results connected to the second derivative of 𝐿𝑖 with respect to 𝜃𝑖,
we obtain

𝑏′′(𝜃𝑖)/𝑎(𝜑) = E
[︁
(𝑦𝑖 − 𝑏′(𝜃𝑖))/𝑎(𝜑)

]︁2
= var(𝑦𝑖)/[𝑎(𝜑)]2,

so that
var(𝑦𝑖) = 𝑏′′(𝜃𝑖)𝑎(𝜑). (2.40)
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2.6.2 The canonical link function of a GLM

Definition 2.21. Linear predictor of a GLM.
For observation 𝑖, 𝑖 = 1, ..., 𝑛, let 𝑥𝑖𝑗 denote the value of explanatory variable
𝑥𝑗, 𝑗 = 1, ..., 𝑝. The linear predictor of a GLM relates parameters {𝜂} relating
to {E(𝑦𝑖)} to the explanatory variables 𝑥𝑖, ..., 𝑥𝑝 using a linear combination
of them,

𝜂𝑖 =

𝑝∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗, 𝑖 = 1, ..., 𝑛. (2.41)

The link function of a GLM connects the linear predictor and the random
component. In other words, a GLM states that a linear predictor

𝜂𝑖 =

𝑝∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

relates to 𝜇𝑖 by 𝜂𝑖 = 𝑔(𝜇𝑖), for a link function 𝑔.

The link function 𝑔 transform the mean 𝜇𝑖 to the natural parameter 𝜃𝑖 in
(2.34) is called the canonical link. For the canonical link, the direct relation-
ship

𝜂𝑖 = 𝑔(𝜇𝑖) = 𝜃𝑖 =

𝑝∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗

equates the natural parameter to the linear predictor.
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Chapter 3

Lévy processes

In Chapter 2, we introduced stochastic processes such as the Poisson process,
the compound Poisson process and Brownian motion. As it turns out, these
processes are a subset of a more general class of processes, called the class of
Lévy processes, which allows for processes with jumps.
This is of very great interest, as it has a wide �eld of real world applications.
Insurance and �nance are great examples of this. When modelling the num-
ber of claims for insurance, a continuous process does not re�ect the real
world. In the world of insurance, once a claim occurs, you get a "jump" in
the process. This is because accidents occur suddenly and unexpectedly and
may take place at any point in time.
In �nance, a stock may look continuous when observing the historical prices,
but sudden changes may happen at any point in time. It may increase or de-
crease tremendously in a small amount of time. The classic way of modelling
the price of a stock is by the Black-Scholes model. In the Black-Scholes
model, one assumes that the stock price evolves continuously, where the
volatility is random and moves according to Brownian motion.
In this chapter, we will look at Lévy processes, which is a more general
type of stochastic process, that will allow to capture sudden and unexpected
movements. The references used in this chapter are Applebaum [2], Korolev
[3] and Cont, Tankov [7].

3.1 Lévy processes

Definition 3.1. Lévy process.
Let 𝑋 be a stochastic process. We say that 𝑋 is a Lévy process if:
(L1) 𝑋(0) = 0 (a.s.);
(L2) 𝑋 has independent and stationary increments (see properties 1 and 2
in Section 2.3);
(L3) 𝑋 is stochastically continuous; that is, for all 𝑎 > 0 and for all 𝑠 ≥ 0

lim
𝑡→𝑠

𝑃 (|𝑋(𝑡)−𝑋(𝑠)| > 𝑎) = 0. (3.1)

Note that in the presence of (L1) and (L2), (L3) is equivalent to the condition

lim
𝑡↓0

𝑃 (|𝑋(𝑡)| > 𝑎) = 0. (3.2)

for all 𝑎 > 0.

Note that by (L3) in De�nition 3.1, it states that 𝑋 is stochastically continu-
ous. This means that the probability of a discontinuity (jump) occuring at a
given point in time is always zero, which again means that all discontinuities
of Lévy processes occur at random times.
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3.1.1 Examples of Lévy processes

Example 3.1. Brownian motion.
A (standard) Brownian motion in R𝑑 is a Lévy process 𝐵 = (𝐵(𝑡), 𝑡 ≥ 0) for
which

(B1) 𝐵(𝑡) ∼ 𝑁(0, 𝑡𝐼) for each 𝑡 ≥ 0,
(B2) 𝐵 has continuous sample paths.

It follows immediately from (B1) that if 𝐵 is a standard Brownian motion
then its characteristic function is given by

𝜑𝐵(𝑡)(𝑢) = exp(−1

2
𝑡|𝑢|2) (3.3)

for each 𝑢 ∈ R𝑑, 𝑡 ≥ 0. ♣
Example 3.2. The Poisson process.
The Poisson process in De�nition 2.9 is a Lévy process.

Claim: The compound Poisson process (De�nition 2.10) is a Lévy process.

Proof of claim. See Proposition 1.3.11 in Applebaum [2]. ♣

3.1.2 Random measures

Definition 3.2. Ring of subsets.
Let 𝑆 be a set and 𝒜 be a ring of subsets of 𝑆; that is, ∅ ∈ 𝒜, 𝐴∪𝐵 ∈ 𝒜 and
𝐴−𝐵 ∈ 𝒜 (where 𝐴−𝐵 = 𝐴∩𝐵𝑐). If 𝐴,𝐵 ∈ 𝒜, we have 𝐴∩𝐵 ∈ 𝒜 since
𝐴 ∩𝐵 = 𝐴− (𝐴−𝐵). Clearly if ℱ is a 𝜎-algebra then it is also a ring.

Definition 3.3. Random measure.
Let (Ω,ℱ , 𝑃 ) be a probability space. A random measure 𝑀 on (𝑆,𝒜) is a
collection of random variables (𝑀(𝐵), 𝐵 ∈ 𝒜) such that:

(i) 𝑀(∅) = 0;
(ii) (finite additivity). Given any disjoint 𝐴,𝐵 ∈ 𝒜,

𝑀(𝐴 ∪𝐵) = 𝑀(𝐴) + 𝑀(𝐵). (3.4)

A random measure is said to be 𝜎-additive if (ii) can be strengthened to (ii)’.

(ii)’ (𝜎-additivity). Given any sequence (𝐴𝑛, 𝑛 ∈ 𝒜) of mutually disjoint
sets in 𝒜 which are such that

⋃︀
𝑛∈N 𝐴𝑛 ∈ 𝒜,

𝑀
(︁ ⋃︁

𝑛∈N

𝐴𝑛

)︁
=

∑︁
𝑛∈N

𝑀(𝐴𝑛). (3.5)

Definition 3.4. Independent scattering.
A random measure is said to be independently scattered if for each disjoint
family {𝐵1, ..., 𝐵𝑛} in 𝒜, the random variables 𝑀(𝐵1), ...,𝑀(𝐵𝑛) are inde-
pendent.
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Example 3.3.
Let 𝑋 = (𝑋(𝑡), 𝑡 ≥ 0) be a Lévy process and choose 𝑆 = [0, 𝑇 ] for some
𝑇 > 0. Take 𝒜 to be the smallest ring that contains all �nite unions of
disjoint intervals in 𝑆. These intervals may be open, closed or half-open so
that 𝒜 also contains isolated points. If 𝐴 = (𝑠1, 𝑡1) ∪ · · · ∪ (𝑠𝑛, 𝑡𝑛), de�ne

𝑀(𝐴) =
𝑛∑︁

𝑗=1

𝑋(𝑡𝑗)−𝑋(𝑠𝑗), (3.6)

with 𝑀({𝑡}) = 0 if 𝑡 ∈ [0, 𝑇 ]. Then 𝑀 is an independently scattered random
measure on (𝑆,𝒜). ♣

We are now ready to de�ne a Poisson random measure, which is an important
tool for modelling jump behavior. It will be used relatively often in this thesis.

Definition 3.5. Poisson random measure.
Let 𝒮 be a 𝜎-algebra of subsets of 𝑆. Fix a non-trivial ring 𝒜 ⊆ 𝒮. An
independently scattered 𝜎-additive random measure 𝑀 on (𝑆,𝒮) is called a
Poisson random measure if 𝑀(𝐵) <∞ for each 𝐵 ∈ 𝒜 and each such 𝑀(𝐵)
has a Poisson distribution.
In many cases, the prescription 𝜆(𝐴) = E(𝑀(𝐴)) for all 𝐴 ∈ 𝒜 extends to a
𝜎-finite measure 𝜆 on (𝑆,𝒮).

Example 3.4.
Let 𝑈 = R𝑑 − {0} and 𝒰 be its Borel 𝜎-algebra. Let 𝒜 be the ring of all
sets in 𝒰 which are bounded below. Let 𝑋 be a Lévy process; then ∆𝑋 is a
Poisson point process and 𝑁 is its associated Poisson random measure. For
each 𝑡 ≥ 0 and 𝐴 bounded below, we de�ne the compensated Poisson random
measure by

𝑁̃(𝑡, 𝐴) = 𝑁(𝑡, 𝐴)− 𝑡𝜇(𝐴). (3.7)

♣

3.1.3 Jumps of Lévy processes

As explained in the introduction to this chapter, it is very useful being able
to model jumps (discontinuities, unexpected and surprising movement) when
working with insurance. This subsection lays the foundation for being able
to model discontinuous movements, which will be introduced in the next
subsection.

Definition 3.6. Jump size of a Lévy process.
Let 𝑋 = 𝑋(𝑡) be a Lévy process. The jump at time t is defined by

∆𝑋(𝑡) = 𝑋(𝑡)−𝑋(𝑡−), (3.8)

where 𝑋(𝑡−) is the left limit of 𝑋(𝑡).
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Definition 3.7. Jump measure of a Lévy process.
Let 0 ≤ 𝑡 < ∞ and 𝐴 ∈ ℬ(R𝑑 − {0}). The jump measure of a Lévy process
𝑋(𝑡) is given by

𝑁(𝑡, 𝐴) =
∑︁
0≤𝑠≤𝑡

1𝐴(∆𝑋(𝑠)). (3.9)

Definition 3.8. Lévy measure.
Let 𝜈 be a Borel measure defined on R𝑑 − {0} = {𝑥 ∈ R𝑑, 𝑥 ̸= 0}. We say
that it is a Lévy measure if∫︁

R𝑑−{0}
(|𝑦|2 ∧ 1)𝜈(𝑑𝑦) <∞. (3.10)

Note: We say that 𝐴 ∈ ℬ(R𝑑 − {0}) is bounded below if 0 /∈ 𝐴.

Example 3.5. Jump measure of a Poisson process.
The jump measure of the Poisson process (De�nition 2.9) is given by 𝐽𝑁 =∑︀

𝑛+≥1 𝛿(𝑇𝑛,1):

𝐽𝑁([0, 𝑡]× 𝐴) =

{︃
#{𝑖 ≥ 1, 𝑇𝑖 ∈ [0, 𝑡]} if 1 ∈ 𝐴,

0 if 1 /∈ 𝐴.

♣

Next we will look at the �nite variation of a Lévy process. Before we can do
this, we need to de�ne total variation.

The total variation of a function 𝑓 : [𝑎, 𝑏]→ R𝑑 is de�ned by

sup
𝑛∑︁

𝑖=1

|𝑓(𝑡𝑖)− 𝑓(𝑡𝑖−1)|, (3.11)

where the supremum is taken over all �nite partitions 𝑎 = 𝑡0 < 𝑡1 < · · · <
𝑡𝑛−1 < 𝑡𝑛 = 𝑏 of the interval [𝑎, 𝑏].

Proposition 3.1. Finite variation Lévy process.
A Lévy process is of finite variation if and only if its characteristic triplet
(𝐴, 𝜈, 𝛾) satisfies:

𝐴 = 0 and

∫︁
|𝑥|≤1

|𝑥|𝜈(𝑑𝑥) <∞. (3.12)

Proof. See Proposition 3.9 in Cont, Tankov [7].

Theorem 3.1.
(i) If A is bounded below, then (𝑁(𝑡, 𝐴), 𝑡 ≥ 0) is a Poisson process with
intensity 𝜇(𝐴).
(ii) If 𝐴1, ..., 𝐴𝑚 ∈ ℬ(R𝑑−{0}) are disjoint and bounded below and if 𝑠1, ..., 𝑠𝑚 ∈
R+ are distinct, then the random variables 𝑁(𝑠1, 𝐴1), ..., 𝑁(𝑠𝑚, 𝐴𝑚) are in-
dependent.

Proof. See Applebaum [2].
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3.1.4 Poisson integration

When modelling jump behavior, it is very common to use integrals with re-
spect to a random measure. In particular, when working with Lévy processes,
one applies integrals with respect to Poisson random measures.

Let 𝑁 be the Poisson random measure associated to a Lévy process 𝑋 =
(𝑋(𝑡), 𝑡 ≥ 0).
Let 𝑓 be a Borel measurable function from R𝑑 to R𝑑 and let 𝐴 be bounded
below; then for each 𝑡 > 0, 𝜔 ∈ Ω, we may de�ne the Poisson integral of 𝑓
as a random �nite sum by∫︁

𝐴

𝑓(𝑥)𝑁(𝑡, 𝑑𝑥)(𝜔) =
∑︁
𝑥∈𝐴

𝑓(𝑥)𝑁(𝑡, {𝑥})(𝜔). (3.13)

Now, since 𝑁(𝑡, {𝑥}) ̸= 0 ⇐⇒ 𝑋(𝑢) = 𝑥 for at least one 0 ≤ 𝑢 ≤ 𝑡, we have∫︁
𝐴

𝑓(𝑥)𝑁(𝑡, 𝑑𝑥) =
∑︁

0≤𝑢≤𝑡

𝑓(∆𝑋(𝑢))1𝐴(∆𝑋(𝑢)). (3.14)

Theorem 3.2.
Let 𝐴 be bounded below. Then:

(i) for each 𝑡 ≥ 0,
∫︀
𝐴
𝑓(𝑥)𝑁(𝑡, 𝑑𝑥) has compound Poisson distributions such

that, for each 𝑢 ∈ R𝑑,

E
(︁

exp
[︁
𝑖
⟨
𝑢,

∫︁
𝐴

𝑓(𝑥)𝑁(𝑡, 𝑑𝑥)
⟩]︁)︁

= exp
[︁
𝑡

∫︁
R𝑑

(𝑒𝑖⟨𝑢,𝑥⟩ − 1)𝜇𝑓,𝐴(𝑑𝑥)
]︁
, (3.15)

where 𝜇𝑓,𝐴(𝐵) = 𝜇(𝐴 ∩ 𝑓−1(𝐵)), for each 𝐵 ∈ ℬ(R𝑑).

(ii) If 𝑓 ∈ 𝐿1(𝐴, 𝜇𝐴), we have

E
(︁∫︁

𝐴

𝑓(𝑥)𝑁(𝑡, 𝑑𝑥)
)︁

= 𝑡

∫︁
𝐴

𝑓(𝑥)𝜇(𝑑𝑥). (3.16)

(iii) If 𝑓 ∈ 𝐿2(𝐴, 𝜇𝐴), we have

Var
(︁
|
∫︁
𝐴

𝑓(𝑥)𝑁(𝑡, 𝑑𝑥)|
)︁

= 𝑡

∫︁
𝐴

|𝑓(𝑥)|2𝜇(𝑑𝑥). (3.17)

Proof. See Applebaum [2].

3.1.5 The Lévy-Itô decomposition

There's a very useful theorem showing that a Lévy process can be decom-
posed into a drift component, a Brownian motion, a compound Poisson pro-
cess, and a jump process which is an 𝐿2-martingale.
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Theorem 3.3. The Lévy-Itô decomposition.
If 𝑋 is a Lévy process, then there exists 𝑏 ∈ R𝑑, a Brownian motion 𝐵𝐴

with covariance matrix A and an independent Poisson random measure 𝑁
on R+ × (R𝑑 − {0}) such that, for each 𝑡 ≥ 0,

𝑋(𝑡) = 𝑏𝑡 + 𝐵𝐴(𝑡) +

∫︁
|𝑥|<1

𝑥𝑁̃(𝑡, 𝑑𝑥) +

∫︁
|𝑥|≥1

𝑥𝑁(𝑡, 𝑑𝑥). (3.18)

Proof. See Theorem 2.4.16 in Applebaum [2].

In Theorem 3.3,
𝐵𝐴(𝑡) = (𝐵1

𝐴(𝑡), ..., 𝐵𝑑
𝐴(𝑡)) (3.19)

can also be written on the form

𝐵𝑖
𝐴(𝑡) =

𝑚∑︁
𝑗=1

𝜎𝑖
𝑗𝐵

𝑗(𝑡), (3.20)

where 𝐵1, ..., 𝐵𝑚 are standard one-dimensional Brownian motions and 𝜎 is a
𝑑×𝑚 real valued matrix for which 𝜎𝜎𝑇 = 𝐴.

Consider the Lévy process 𝑋 = (𝑋𝑡)0≤𝑡≤𝑇 ⊂ R𝑑. The jumps of 𝑋 has
�nite variations. Using Theorem 3.3, we see that 𝑋 can be decomposed in
this way:

𝑋𝑡 = 𝑏𝑡+𝜎𝐵𝑡+

∫︁
|𝑥|≥1

𝑥𝑁(𝑡, 𝑑𝑥) = 𝑏𝑡+𝜎𝐵𝑡+
∑︁
0≤𝑠≤𝑡

∆𝑋(𝑠), 0 ≤ 𝑡 ≤ 𝑇, (3.21)

where 𝑏 ∈ R𝑑 and 𝜎 ∈ R𝑑×𝑚 have constant entries; 𝐵 = (𝐵𝑡)0≤𝑡≤𝑇 is a
𝑚-dimensional Brownian motion, and 𝑁(𝑡, 𝑑𝑥) is the jump measure of 𝑋.

Example 3.6. Let 𝑋 = (𝑋𝑡)0≤𝑡≤𝑇 be a compound Poisson process where
𝑋 ∈ R and Lévy measure 𝜈. If 𝑁(𝑡, 𝑑𝑥), 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ R𝑑

0 is the jump
measure of 𝑋, then

𝑋𝑡 =
∑︁
0≤𝑠≤𝑡

∆𝑋𝑠 =

∫︁
|𝑥|≥1

𝑥𝑁(𝑡, 𝑑𝑥), 0 ≤ 𝑡 ≤ 𝑇, (3.22)

such that 𝑋 is a Lévy process with Lévy triplet (0, 0, 𝜈). ♣

3.1.6 Properties of Lévy processes

Definition 3.9. In�nite divisibility.
A probability distribution 𝐹 on R𝑑 is said to be infinitely divisible if for any
integer 𝑛 ≥ 2, there exists 𝑛 i.i.d. random variables 𝑌1, ..., 𝑌𝑛 such that
𝑌1 + ... + 𝑌𝑛 has distribution 𝐹 .

Claim: Any Lévy process 𝑋 has an in�nitely divisible distribution.

Proof of claim: Recall the information from De�nition 3.1. Using the prop-
erties of stationary and independent increments, we acquire the following:
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Let 𝑋 = (𝑋𝑡)0≤𝑡≤𝑇 be a Lévy process with values in R𝑑. Let (0 = 𝑡0 < 𝑡1 <
· · · < 𝑡𝑛 = 𝑡) be the partitioning of [0, 𝑡], 𝑡 ≤ 𝑇 . Put 𝑡𝑗 = 𝑡𝑗

𝑛
for 0 ≤ 𝑗 ≤ 𝑛,

and where 𝑛 ≥ 2 is an integer. We then have

𝑋𝑡 = 𝑋𝑡 −𝑋0 =
𝑛−1∑︁
𝑗=0

(𝑋𝑡𝑗+1
−𝑋𝑡𝑗). (3.23)

Let 𝑌
(𝑛)
𝑗+1 = 𝑋𝑡𝑗+1

− 𝑋𝑡𝑗 , 0 ≤ 𝑗 ≤ 𝑛 − 1. Using the propositionerties of

stationary and independent increments of Lévy processes, we see that (𝑌
(𝑛)
𝑗 )

are i.i.d. and we have

𝑋𝑡 =
𝑛∑︁

𝑗=1

𝑌
(𝑛)
𝑗 . (3.24)

�

Corollary 3.1.
If 𝑋 is a Lévy process then for each 𝑢 ∈ R𝑑, 𝑡 ≥ 0,

E(𝑒𝑖⟨𝑢,𝑋(𝑡)⟩) = exp
(︁{︁

𝑖⟨𝑏, 𝑢⟩ − 1

2
⟨𝑢,𝐴𝑢⟩

+

∫︁
R𝑑−{0}

[𝑒𝑖⟨𝑢,𝑦⟩ − 1− 𝑖⟨𝑢, 𝑦⟩1𝐵(𝑦)]𝜇(𝑑𝑦)
}︁)︁

.

Proof. See Corollary 2.4.20 in Applebaum [2].

This function is known as the characteristic function of a Lévy process,
and it is actually an exponential function.
That is, the function 𝜑𝑡(𝑢) = E[exp{𝑖⟨𝑢,𝑋(𝑡)⟩}], 𝑢 ∈ R𝑑, 𝑡 ≥ 0 is an expo-
nential function.
Now we will state the Lévy-Khintchine theorem, which gives a character-
isation of in�nitely divisible random variables through their characteristic
functions.

Theorem 3.4. Lévy-Khintchine.
𝜇 ∈ ℳ1(R𝑑) is infinitely divisible if there exists a vector 𝑏 ∈ R𝑑, a positive
definite symmetric 𝑑 × 𝑑 matrix 𝐴 and a Lévy measure 𝜈 on R𝑑 − {0} such
that, for all 𝑢 ∈ R𝑑,

𝜑𝜇(𝑢) = exp
(︁{︁

𝑖⟨𝑏, 𝑢⟩ − 1

2
⟨𝑢,𝐴𝑢⟩

+

∫︁
R𝑑−{0}

[𝑒𝑖⟨𝑢,𝑦⟩ − 1− 𝑖⟨𝑢, 𝑦⟩1𝐵̂(𝑦)]𝜈(𝑑𝑦)
}︁)︁

,

where 𝐵̂ = 𝐵1(0). Conversely, any mapping of the form of 𝜑𝜇(𝑢) is the
characteristic function of an infinitely divisible probability measure on R𝑑.
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3.1.7 Moments of Lévy processes.

In this section we will look at the moments of Lévy processes, which will be
a useful tool for the �nal section of this chapter. We will give necessary and
su�cient conditions for a Lévy process 𝑋 = (𝑋(𝑡), 𝑡 ≥ 0) to have a �nite
moment.

Recall from Section 2.3 that if 𝑌 is a compound Poisson variable, then

𝑌 = 𝑊1 + · · ·𝑊𝑁 , (3.25)

where (𝑊𝑛, 𝑛 ∈ N) is a sequence of i.i.d. random variables and 𝑁 is an
independent Poisson random variable of intensity 𝜆 > 0.

Lemma 3.1.
If 𝑌 is a compound Poisson random variable then for each 𝑛 ∈ N, E(|𝑌 |𝑛) <
∞ if and only if E(|𝑊 |𝑛) <∞.

Proof. See Lemma 2.5.1 in Applebaum [2].

Theorem 3.5.
If 𝑋 is a Lévy process and 𝑛 ∈ N, E(|𝑋(𝑡)|𝑛) < ∞ for all 𝑡 > 0 if and only
if
∫︀
|𝑥|≥1
|𝑥|𝑛𝜈(𝑑𝑥) <∞.

Proof. See Theorem 2.5.2 in Applebaum [2].

3.1.8 Lévy processes and Martingales.

Recalling from Section 2.4, we know that martingale theory is crucial when
applying stochastic processes to real world, practical problems. This section
will give a summary of how Lévy processes are connected to martingales.
The information in this subsection is mainly borrowed from Cont, Tankov
[7].

Proposition 3.2.
Let 𝑋 = (𝑋𝑡)𝑡≥0 be a real-valued process with independent increments. Then

(i)
(︁

𝑒𝑖𝑢𝑋𝑡

E[𝑒𝑖𝑢𝑋𝑡 ]

)︁
𝑡≥0

is a martingale ∀𝑢 ∈ R.

(ii) If for some 𝑢 ∈ R, E[𝑒𝑢𝑋𝑡 ] < ∞∀𝑡 ≥ 0 then
(︁

𝑒𝑢𝑋𝑡

E[𝑒𝑢𝑋𝑡 ]

)︁
𝑡≥0

is a mar-

tingale.

(iii) If E[𝑋𝑡] <∞∀𝑡 ≥ 0 then 𝑀𝑡 = 𝑋𝑡 − E[𝑋𝑡] is a martingale.

(iv) If Var[𝑋𝑡] < ∞∀𝑡 ≥ 0 then (𝑀𝑡)
2 − E[(𝑀𝑡)

2] is a martingale, where
M is the martingale defined in (iii).

If (𝑋𝑡) is a Lévy process, for all of the processes of this proposition to be
martingales it suffices that the corresponding moments be finite for one value
of t.
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Proof. Proof is located in Appendix A.

Proposition 3.3.
Let (𝑋𝑡)𝑡≥0 be a Lévy process on R with characteristic triplet (𝐴, 𝜈, 𝛾).

(i) (𝑋𝑡) is a martingale if and only if
∫︀
|𝑥|≥1
|𝑥|𝜈(𝑑𝑥) <∞ and

𝛾 +

∫︁
|𝑥|≥1

𝑥𝜈(𝑑𝑥) = 0. (3.26)

(ii) 𝑒(𝑋𝑡) is a martingale if and only if
∫︀
|𝑥|≥1

𝑒𝑥𝜈(𝑑𝑥) <∞ and

𝐴

2
+ 𝛾 +

∫︁ ∞

−∞
(𝑒𝑥 − 1− 𝑥1|𝑥|≤1)𝜈(𝑑𝑥) = 0. (3.27)

Proposition 3.3 was borrowed from Proposition 3.18 in Cont, Tankov [7].
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Chapter 4

(Non-linear) Filtering theory

This chapter will give an introduction to the basic concepts of non-linear �l-
tering theory. Our ultimate goal in this thesis is to model total claim amounts
in non-life insurance. In order to accomplish this, a good way of estimating
the process 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 from insurance data is to apply non-linear �ltering
techniques for Lévy processes. This chapter will give further details about
this technique.

In addition, we will mention Monte Carlo when searching for the best possible
estimate 𝑋̂𝑡 of the signal 𝑋𝑡. Essentially, Monte Carlo methods are a broad
class of computational algorithms that rely on repeated random sampling to
obtain numerical results. Monte Carlo is studied in detail in Chapter 5. The
references used in this capter are Applebaum [2], Bølviken, Duedahl, Proske
[6], Øksendal [11] and Xiong [12].

4.1 Non-linear filtering theory - an introduction

When looking at stochastic processes, one often uses information collected
from the past to make a prediction on what will happen in the future. This
occurs constantly in the world of stocks, where one might construct a model
in order to obtain �nancial pro�t.
However, this requires that the information from the past is accurate. How
would one go about constructing a good predictive model if the information
from the past is inaccurate?

Suppose we are looking at a random system that evolves over time. In this
random system we know that there exists a process in which we are interested
in. This might be stocks as mentioned above, or something di�erent entirely,
as long as it contains a random element. Our problem arises when we try to
examine this process, as we are unable to observe the process directly. We
can, however, collect partial observations of the process. In other words, we
observe a distorted version of the real process, and we wish to replicate the
real process as accurately as possible, with the information available.

There are two key processes we will consider when dealing with �ltering
problems. These processes are de�ned on a probability space (Ω,ℱ𝑡,P).
The two processes are:

1) The observation process.
The observation process is the process where we have known information.
The information about the process may or may not be very distorted, but it
is the only information we have about the process nonetheless.
The observation process will be denoted by 𝑌𝑡, 0 ≤ 𝑡 ≤ 𝑇 , where 𝑌 takes
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values in R𝑚.

2) The signal process.
This is the process that we wish to estimate. We will estimate this process by
extracting information from the observation process 𝑌𝑡. The signal process
will be denoted by 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 , where 𝑋 takes values in R𝑑.

Let's unpack the idea behind �ltering problems with an example:

Example 4.1.
Wildlife tracking is a process where scienti�c researchers can remotely ob-
serve patterns of an animal using GPS. Consider the tracking of e.g. a bear,
where the purpose is to study the behavior and patterns of said bear. The
GPS tracker attached to the bear is unfortunately of poor quality, and does
not represent its accurate position. This is a classic example of a �ltering
problem. Here the movement from the GPS tracker is represented as the
observation process 𝑌𝑡, 0 ≤ 𝑡 ≤ 𝑇 . The goal is to replicate the exact coordi-
nates of the bear at time 𝑡 ≥ 0. This is done by collecting information from
the GPS; that is, looking at the observation process 𝑌𝑡. The information
known is given by the �ltration ℱ𝑌

𝑡 . ♣

4.1.1 Filtering problems

The signal process 𝑋𝑡,0 ≤ 𝑡 ≤ 𝑇 follows the dynamics given by the stochastic
di�erential equation:

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵
𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇, (4.1)

where 𝑏, 𝜎 are Borel functions and 𝐵𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇 is a Brownian motion.

The signal process 𝑋𝑡 is not directly observable, hence we must turn to the
observation process 𝑌𝑡 to acquire information about the signal 𝑋.
The observation process 𝑌𝑡 is described by the dynamics:

𝑑𝑌𝑡 = ℎ(𝑡,𝑋𝑡)𝑑𝑡 + 𝑑𝐵𝑌
𝑡 +

∫︁
R𝑚

𝑧𝑁𝜆(𝑑𝑡, 𝑑𝑧), 0 ≤ 𝑡 ≤ 𝑇, (4.2)

where ℎ is a Borel function, 𝐵𝑌
𝑡 is a Brownian motion and 𝑁𝜆 is the jump

measure of a generalized Cox process with a predictable compensator 𝜇̂ given
by

𝜇̂(𝑑𝑡, 𝑑𝑧, 𝜔) = 𝜆(𝑡,𝑋𝑡, 𝑧)𝑑𝑡𝜈(𝑑𝑧) (4.3)

for a Lévy measure 𝜈 and Borel function 𝜆.

Consider the (complete �ltered) probability space (Ω,ℱ ,F := (ℱ0≤𝑡≤𝑇 ),P),
where 𝑇 <∞.
Let F𝑋 := (ℱ𝑋

𝑡 )0≤𝑡≤𝑇 be the natural �lter of the process 𝑋, and F𝑌 :=
(ℱ𝑌

𝑡 )0≤𝑡≤𝑇 be the natural �lter of the process 𝑌 .
One of our goals in this thesis is to estimate the signal 𝑋 to the best of our
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ability. In other words, we want to �nd the best estimate of 𝑋 at a given
time 𝑡 ≤ 𝑇 , given the information (observations) in ℱ𝑌

𝑡 .
How exactly do we do this? We �nd the least square estimate to the (pos-
sibly transformed) signal process 𝑋𝑡; that is, we determine the conditional
expectation

E[𝑓(𝑋𝑡)|ℱ𝑌
𝑡 ],

where 𝑓 is a given Borel function and where ℱ𝑌
𝑡 is the 𝜎-algebra generated

by {𝑌𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}.

In order to guarantee a unique strong solution to the systems (4.1) and (4.2),
we require that the continuous coe�cients 𝑏 : R𝑛 → R𝑛, 𝜎 : R𝑛 → R𝑛×𝑛,
ℎ : [0, 𝑇 ]×R𝑛 → R𝑛 and 𝜆 : [0, 𝑇 ]×R𝑛×R𝑚

0 → R ful�ll a linear growth and
Lipschitz condition; that is,⃦⃦

𝑏(𝑥)
⃦⃦

+
⃦⃦
𝜎(𝑥)

⃦⃦
+
⃦⃦
ℎ(𝑡, 𝑥)

⃦⃦
+

∫︁
R𝑚
0

|𝜆(𝑡, 𝑥, 𝑧)|𝜈(𝑑𝑧) ≤ 𝐶(1 +‖𝑥‖) (4.4)

and ⃦⃦
𝑏(𝑥)− 𝑏(𝑦)

⃦⃦
+
⃦⃦
𝜎(𝑥)− 𝜎(𝑦)

⃦⃦
+
⃦⃦
ℎ(𝑡, 𝑥)− ℎ(𝑡, 𝑦)

⃦⃦
(4.5)

+

∫︁
R𝑚
0

|𝜆(𝑡, 𝑥, 𝑧)− 𝜆(𝑡, 𝑦, 𝑧)|𝜈(𝑑𝑧)

≤ 𝐶‖𝑥− 𝑦‖

for all 𝑥, 𝑦, 𝑡 and a constant 𝐶 <∞, where ‖·‖ stands for a vector or matrix
norm.

4.2 The optimal filter

As mentioned in Section 4.1, our aim is to determine the expectation E[𝑓(𝑋𝑡)|ℱ𝑌
𝑡 ].

We will now look at how the theory behind how this can be determined.

Denote by 𝜋𝑡 : Ω × ℬ(R𝑛) → [0,∞) the regular conditional probability
measure of the signal process 𝑋𝑡 given the 𝜎-algebra ℱ𝑌

𝑡 , generated by
{𝑌𝑠, 0 ≤ 𝑠 ≤ 𝑡} and the null sets 𝒩 . Then

E[𝑓(𝑋𝑡)|ℱ𝑌
𝑡 ] = ⟨𝜋𝑡, 𝑓⟩

for all 𝑓 ∈ 𝐶𝑏(R𝑛), where ⟨𝜋𝑡, 𝑓⟩ :=
∫︀
R𝑛 𝑓(𝑥)𝜋𝑡(𝜔, 𝑑𝑥).

Suppose that the function 𝜆 : [0, 𝑇 ]× R𝑛 × R𝑚
0 → R is strictly positive and

consider the density process

Λ𝑡 :=
{︁

exp
𝑚∑︁
𝑖=1

∫︁ 𝑡

0

−ℎ𝑖(𝑠,𝑋𝑠)𝑑𝐵
𝑌,𝑖
𝑠 −

1

2

∫︁ 𝑡

0

⃦⃦
ℎ(𝑠,𝑋𝑠)

⃦⃦2
𝑑𝑠 (4.6)

+

∫︁ 𝑡

0

∫︁
R𝑚
0

− log 𝜆(𝑠,𝑋𝑠, 𝑧)𝑁𝜆(𝑑𝑠, 𝑑𝑧)

+

∫︁ 𝑡

0

∫︁
R𝑚
0

(𝜆(𝑠,𝑋𝑠, 𝑧)− 1)𝑑𝑠𝜈(𝑑𝑧)
}︁
, 0 ≤ 𝑡 ≤ 𝑇,
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where 𝐵𝑌
𝑡 = (𝐵𝑌,1

𝑠 , ..., 𝐵𝑌,𝑚
𝑠 )* and ℎ(𝑡, 𝑥) = (ℎ1(𝑡, 𝑥), ..., ℎ𝑚(𝑡, 𝑥))* (* trans-

position). Further, assume that

E[Λ𝑇 ] = 1. (4.7)

Remark 1. The following conditions are su�cient for (4.7) to hold (by
Bølviken, Duedahl, Proske [6]):

sup
0≤𝑡≤𝑇

E
[︁

exp
(︁

6

∫︁ 𝑡

0

⃦⃦
ℎ(𝑠,𝑋𝑠)

⃦⃦2
𝑑𝑠 (4.8)

+ 4

∫︁ 𝑡

0

∫︁
R𝑚
0

(1− 𝜆−1(𝑠,𝑋𝑠, 𝑧))𝜆(𝑠,𝑋𝑠, 𝑧)𝑑𝑠𝜈(𝑑𝑧)

−
∫︁ 𝑡

0

∫︁
R𝑚
0

(1− 𝜆−4(𝑠,𝑋𝑠, 𝑧))𝜆(𝑠,𝑋𝑠, 𝑧))𝜆(𝑠,𝑋𝑠, 𝑧)𝑑𝑠𝜈(𝑑𝑧)
)︁]︁

<∞

E
[︁ ∫︁ 𝑇

0

∫︁
R𝑚
0

|(𝜆−4(𝑠,𝑋𝑠, 𝑧)− 1)𝜆(𝑠,𝑋𝑠, 𝑧)|𝜈(𝑑𝑧)𝑑𝑠
]︁

(4.9)

+ E
[︁ ∫︁ 𝑇

0

(︁∫︁
R𝑚
0

|(𝜆(𝑠,𝑋𝑠, 𝑧)− 1)|𝜈(𝑑𝑧)
)︁2

𝑑𝑠
]︁

<∞

E
[︁ ∫︁ 𝑇

0

∫︁
R𝑚
0

|𝜆(𝑠,𝑋𝑠, 𝑧) log 𝜆(𝑠,𝑋𝑠, 𝑧)|𝑑𝑠𝜈(𝑑𝑧)
]︁

(4.10)

<∞.

When we looked at the Girsanov theorem in Chapter 2, we mentioned apply-
ing a change of measure in order to solve our non-linear �ltering problem. We
will now look at a new representation for the observation process (𝑌𝑡)0≤𝑡≤𝑇

under Q.

De�ne the probability measure Q with Radon-Nikodým (see Theorem 2.1)
derivative on (Ω,ℱ𝑡) given by

𝑑Q
𝑑P

⃒⃒⃒
ℱ𝑡

= Λ𝑡 (4.11)

and require that ∫︁
R𝑑
0

‖𝑧‖ 𝜈(𝑑𝑧) <∞. (4.12)

Then by Girsanov's theorem and the uniqueness of semimartingale character-
istics (see Bølviken, Duedahl, Proske [6]), the observation process (𝑌𝑡)0≤𝑡≤𝑇

becomes a Lévy process being independent of the signal process under the
new probability measure Q. That is, the systems (4.1) and (4.2) has the
following representation under Q:

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵
𝑋
𝑡 (4.13)

𝑑𝑌𝑡 = 𝑑𝐵𝑡 + 𝑑𝐿𝑡, (4.14)
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where (𝑌𝑡)0≤𝑡≤𝑇 is a Lévy process independent of (𝑋𝑡)0≤𝑡≤𝑇 and where

𝐵𝑡 := 𝐵𝑌
𝑡 −

∫︁ 𝑡

0

(−ℎ(𝑠,𝑋𝑠))𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (4.15)

is the Gaussian part and

𝐿𝑡 =

∫︁ 𝑡

0

∫︁
R𝑚
0

𝑧𝑁(𝑑𝑠, 𝑑𝑧) (4.16)

is the jump component with respect to the Poisson random measure

𝑁(𝑑𝑠, 𝑑𝑧) := 𝑁𝜆(𝑑𝑠, 𝑑𝑧), 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,

with compensator 𝑑𝑠𝜈(𝑑𝑧). Since (𝑌𝑡)0≤𝑡≤𝑇 is a Lévy process under Q, we
also observe that the �ltration ℱ𝑌

𝑡 , 0 ≤ 𝑡 ≤ 𝑇 is right-continuous.

The following theorem is borrowed from Bølviken, Duedahl, Proske [6].

Theorem 4.1. Representation of the optimal �lter.
The optimal filter 𝜋𝑡 has the representation

⟨𝜋𝑡, 𝑓⟩ =
⟨Ψ𝑡, 𝑓⟩
⟨Ψ𝑡, 1⟩

(4.17)

with
⟨Ψ𝑡, 𝑓⟩ := E[𝑍𝑡𝑓(𝑋𝑡)|ℱ𝑌

𝑡 ] (4.18)

for all 𝑓 ∈ 𝐶𝑏(R𝑛), where E𝜋 denotes the expectation with respect to 𝜋 and
where

𝑍𝑡 :=Λ−1
𝑡 (4.19)

= exp
{︁ 𝑚∑︁

𝑖=1

∫︁ 𝑡

0

ℎ𝑖(𝑠,𝑋𝑠)𝑑𝐵
𝑖
𝑠 −

1

2

∫︁ 𝑡

0

⃦⃦
ℎ(𝑠,𝑋𝑠)

⃦⃦2
𝑑𝑠

+

∫︁ 𝑡

0

∫︁
R𝑚
0

log 𝜆(𝑠,𝑋𝑠, 𝑧)𝑁(𝑑𝑠, 𝑑𝑧)

+

∫︁ 𝑡

0

∫︁
R𝑚
0

(1− 𝜆(𝑠,𝑋𝑠, 𝑧))𝑑𝑠𝜈(𝑑𝑧)
}︁
, 0 ≤ 𝑡 ≤ 𝑇,

under Q.

Proposition 4.1. Assume that the functions 𝑏, 𝜎, ℎ and 𝜆 are bounded and
satisfy the conditions of linear growth and lipschitz ((4.4) and (4.5)). Addi-
tionally, require that (4.8), (4.9) and (4.10) holds. Let 𝑋 𝑖

𝑡 , 0 ≤ 𝑡 ≤ 𝑇, 𝑖 ≥ 1
be a sequence of i.i.d. copies of the solution 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 to (4.1) on
our probability space, being independent of 𝑌𝑡, 0 ≤ 𝑡 ≤ 𝑇 , and denote by
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𝑍𝑖, 0 ≤ 𝑡 ≤ 𝑇 the stochastic exponential in (4.19) based on 𝑋 𝑖
𝑡 , 0 ≤ 𝑡 ≤ 𝑇 for

all 𝑖 ≥ 1. Let 𝑓 ∈ 𝐶𝑏(R𝑛). Then

𝜑𝑙(𝑓) :=
1

𝑙

𝑙∑︁
𝑗=1

𝑍𝑗
𝑡 𝑓(𝑋𝑗

𝑡 ) −−−→
𝑙→∞

⟨Ψ𝑡, 𝑓⟩ = EQ[𝑍𝑡𝑓(𝑋𝑡)|ℱ𝑌
𝑡 ] a.e. (4.20)

for all 𝑡. Moreover, for all 𝑡 there exists a constant 𝐶 <∞ such that

EQ

[︁(︁
𝜑𝑙(𝑓)− ⟨Ψ𝑡, 𝑓⟩

)︁2]︁
(4.21)

= EQ

[︁(︁
𝜑𝑙(𝑓)− EQ[𝑍𝑡𝑓(𝑋𝑡)|ℱ𝑌

𝑡 ]
)︁2]︁

≤ 1

𝑙
𝐶‖𝑓‖2∞

for all 𝑙 ≥ 1.

Proof. For proof, see Proposition 13 in Bølviken, Duedahl, Proske [6].
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Chapter 5

Non-life insurance

This chapter will introduce the basic concepts of non-life insurance. We will
study the mathematics behind non-life insurance, and provide an intuition
into why estimating the claim amount is an important part of managing risk
for the insurance companies. When modelling claim amounts, it is pivotal to
obtain the best estimate possible, as the insurance companies may actually
go bankrupt if the claim amount is highly underestimated or overestimated.
Before creating our own model (in the next chapter), we will examine the
more classical ways of modelling claim frequency and claim amount. We
begin this chapter by introducing basic concepts of risk in non-life insurance,
followed by the introduction of Monte Carlo methods. The references used
in this chapter are Agresti [1], Bølviken [5], Berk, Devore [8] and Mikosch
[10].

5.1 Basic concepts

Definition 5.1. General insurance.
General insurance is economic responsibility for incidents such as fires or
accidents passed on to an insurer against a fee.

One can intuitively think of insurance as transferring the risk from individ-
ual(s) or businesses to an insurer (the insurance company).

Definition 5.2. Claim.
A claim is a formal request to an insurance company for coverage or compen-
sation for a covered loss or policy event. The insurance company validates
the claim and, once approved, issues payment to the insured or an approved
interested party on behalf of the insured.

Going forward, a claim will be denoted by 𝑋. The total claim 𝑋 is a central
quantity amassed during a certain period of time (typically a year). As the
risk of an insurance claim is usually low, the claim amount 𝑋 will often be
zero. However, though rare, 𝑋 can be very large.

Definition 5.3. Policy.
The contract, known as a policy, releases claims when such events occur.

The insurance company has a portfolio of risks and only a few of the risks
materialize. This raises the issue of controlling the total uncertainty, which
is a large subject in general insurance.

5.1.1 Pricing insurance risk.

Naturally, the insured pays an agreed amount (normally monthly or yearly)
to the insurer. This is because the insured is transferring risk to the insurer,
which is not free.
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Definition 5.4. Premium.
The pure premium is charged in advance and is given by

𝜋pu = E(𝑋). (5.1)

The pure premium is a break-even situation. In practice, the insurance com-
pany will add a loading 𝛾 on top of 𝜋pu, in order to make money. The
premium charged by the insurer is then

𝜋 = (1 + 𝛾)𝜋pu. (5.2)

5.1.2 Solvency

A vital part in insurance is control. Insurance companies are obliged to set
aside funds to cover future obligations.

Definition 5.5. Total claim amount.
Suppose a portfolio consists of 𝐽 policies with claims 𝑋1, ..., 𝑋𝐽 . The total
claim amount is then

𝒳 = 𝑋1 + · · ·𝑋𝐽 =
𝐽∑︁

𝑖=1

𝑋𝑖. (5.3)

Another way of expressing the dynamics of aggregated claims over time
is given by the random partial sum process

𝑆(𝑡) =

𝑁(𝑡)∑︁
𝑖=1

𝑋𝑖, (5.4)

where 𝑁(𝑡), 𝑡 ≥ 0 is the claim number process and 𝑋𝑖 are the claim sizes
arriving by time 𝑇𝑖, 𝑖 ≥ 1. Generally, the claim numbers are modelled by a
Poisson process, which is assumed to be independent of the i.i.d. claim sizes.

Regulators demand su�cient funds to cover 𝒳 with high probability. The
mathematical formulation is in terms of the percentile 𝑞𝜖, which is the solu-
tion of the equation

Pr(𝒳 > 𝑞𝜖) = 𝜖, (5.5)

where 𝜖 is a small number. The amount 𝑞𝜖 is known as the solvency capital
or reserve.

5.2 Monte Carlo simulation

The risk variables 𝑋 presented in 5.1 may have many random sources, and it
may often be hard to �nd their density function 𝑓(𝑥) or distribution function
𝐹 (𝑥). Monte Carlo simulations allow distributions to be approximated. The
techniques used approximates the solution to some problem by associating
it with a probability distribution, and then sampling repeatedly from that
distribution.
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Definition 5.6. Mean and standard deviation in Monte Carlo simulations.
Let 𝜉 = E(𝑋) be the expectation and 𝜎 = sd(𝑋) be the standard deviation of
𝑋. Their Monte Carlo estimates are

𝑋
*

=
1

𝑚
(𝑋*

1 + · · ·+𝑋*
𝑚) and 𝑠* =

⎯⎸⎸⎷ 1

𝑚− 1

𝑚∑︁
𝑖=1

(𝑋*
𝑖 −𝑋

*
)2 (5.6)

with the statistical properties for the mean being well known:

E(𝑋
* − 𝜉) = 0 and sd(𝑋

*
) =

𝜎√
𝑚
. (5.7)

5.2.1 Percentiles

The percentile 𝑞𝜖 is the solution of either of the equations

𝐹 (𝑞𝜖) = 1− 𝜖 or 𝐹 (𝑞𝜖) = 𝜖,

where 1− 𝜖 represents the upper version and 𝜖 represents the lower version.
Monte Carlo approximations 𝑞*𝜖 are obtained by sorting the simulations, for
example in descending order as 𝑋*

(1) ≥ · · · ≥ 𝑋*
(𝑚). Then

𝑞*𝜖 = 𝑋*
(𝜖𝑚) (5.8)

is the upper value and
𝑞*𝜖 = 𝑋*

((1−𝜖)𝑚) (5.9)

is the lower value.

5.2.2 Sampling random variables

Below are some examples of algorithms that utilizes the Monte Carlo method.

Let 𝐹 (𝑥) be a strictly increasing distribution function with inverse 𝑥 =
𝐹−1(𝑢) and let

𝑋 = 𝐹−1(𝑈) or 𝑋 = 𝐹−1(1− 𝑈), 𝑈 ∼ uniform. (5.10)

We can now construct an algorithm for sampling random variables using the
inversion method.

Algorithm 2 Sampling by inversion

Input: The percentile function 𝐹−1(𝑢).
1. draw 𝑈* ∼ uniform
2. return 𝑋* ← 𝐹−1(𝑈*) or 𝑋* ← 𝐹−1(1− 𝑈*)

Let's further demonstrate this method with an example.
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Example 5.1. Using the inversion method on the Burr distribution.
Let

𝒳 =
𝒩∑︁
𝑖=1

𝑍𝑖

be the total pay-out in a general insurance portfolio under standard assump-
tions, where𝒩 ∼ Poisson(𝜆) is independent of the individual losses 𝑍𝑖, which
are i.i.d. with the Burr distribution. That is, 𝑍𝑖 has the distribution function

𝐹 (𝑧) = 1− 1(︁
1 + ( 𝑧

𝛽
)𝜃
)︁𝛼 , 𝑧 > 0, (5.11)

where 𝛼, 𝜃, 𝛽 ∈ R+. We can now sample the random variables 𝑍1, ..., 𝑍𝑚

using the inversion method. Before we get to the algorithm, we need to �nd
𝐹−1(𝑢) by basic algebra:

𝐹 (𝑧) = 1− 1(︁
1 + ( 𝑧

𝛽
)𝜃
)︁𝛼 = 𝑢 (5.12)

⇒ 𝑧 = 𝛽
(︁

(1− 𝑢)−1/𝛼 − 1
)︁1/𝜃

= 𝐹−1(𝑢). (5.13)

When simulating 𝒳 , we obtain the following algorithm:

1. Input: 𝛼, 𝜃, 𝛽, 𝜆
2. for 𝑖 = 1, ...,𝑚 do
3. Draw 𝒩 * ∼ Poisson(𝜆)
4. 𝒳 *

𝑖 ← 0
5. for 𝑗 = 1, ...,𝒩 * do

6. Draw 𝑍* = 𝛽
(︁

(1− 𝑢)−1/𝛼 − 1
)︁1/𝜃

7. 𝒳 *
𝑖 ← 𝒳 *

𝑖 + 𝑍*

8. end for
9. end for
10. return 𝒳 *

1 , ...,𝒳 *
𝑚

The mean and sd of 𝒳 can be found using the equations from (5.6). ♣

Below is an algorithm for modelling random variables with stochastic volatil-
ity.

Algorithm 3 Gaussian with stochastic volatility

Input: 𝜉, 𝜉𝜎, model for 𝑍
1. Draw 𝑍* and 𝜎* ← 𝜉𝜎

√
𝑍*

2. Generate 𝑈* ∼ uniform.
3. Return 𝑋* ← 𝜉 + 𝜎*Φ−1(𝑈*)
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5.3 Modelling claim frequency

This section will cover the basic concepts of claim frequency in actuarial
modelling. We will dive deeper into the idea of modelling claim frequency
using the Poisson distribution. When using the Poisson distribution, the
incidents happen (for the most part) rarely, and independently of each other.
This is the reason why it is massively utilized in the insurance world.

5.3.1 Claim intensities

As mentioned above, incidents in the insurance world happen rarely and
independently of each other. Let 𝑇 be some period of time (this is often set
to be 1 year in the insurance world). We can divide 𝑇 into 𝐾 pieces of equal
length ℎ = 𝑇

𝐾
. Naturally, if 𝐾 is a large number, the probability of more

than one incident in a short interval is exceptionally small. If the number of
events per interval is either 0 or 1 and is denoted by 𝐼𝑘 on the 𝑘th interval,
the count for the entire period is

𝑁 = 𝐼1 + · · ·+ 𝐼𝑚 =
𝑚∑︁
𝑘=1

𝐼𝑘,

where 𝑁 is the total number of events. Assume that events happen indepen-
dently of each other and that 𝑝 is equal for all 𝑘, where 𝑝 is given by

𝑝 = 𝑃 (𝐼𝑘 = 1).

This is then an ordinary Bernoulli series, and 𝑁 is binomally distributed
with probability density function

𝑃 (𝑁 = 𝑛) =

(︂
𝐾

𝑛

)︂
𝑝𝑛(1− 𝑝)𝐾−𝑛,

for 𝑛 = 0, ..., 𝐾.

Let 𝑝 = 𝜇ℎ = 𝜇 𝑇
𝐾
. By inserting this into the binomial distribution and

letting 𝐾 →∞, the binomial distribution converges to the Poisson distribu-
tion; that is,

𝑃 (𝑁 = 𝑛)→ 𝜇𝑛𝑇 𝑛

𝑛!
𝑒−𝜇𝑇 as 𝐾 →∞.

In other words, 𝑁 is Poisson distributed with parameter 𝜆 = 𝜇𝑇 when
𝐾 →∞.

From this, it follows that the portfolio number of claims 𝒩 is Poisson dis-
tributed with parameter

𝜆 = (𝜇1 + · · ·+ 𝜇𝐽)𝑇 = 𝐽𝜇̄𝑇, where 𝜇̄ =
(𝜇1 + · · ·+ 𝜇𝐽)

𝐽
.

For further detail on this, consult Bølviken [5].
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Using the fact that 𝑁 is the claim number for policies and 𝒩 is the claim
number for portfolios, we have that both 𝑁 and 𝒩 are Poisson distributed
with parameters 𝜆 = 𝜇𝑇 on policy level and 𝜆 = 𝐽𝜇𝑇 on portfolio level.

The mean and standard deviation of Poisson models are given by

E(𝑁) = 𝜆 and sd(𝑁) =
√
𝜆,

respectively. A useful property is the convolution property:

If𝑁1, ..., 𝑁𝐽 are independent and Poisson distributed with parameters 𝜆1, ..., 𝜆𝐽 ,
then

𝒩 = 𝑁1 + · · ·+ 𝑁𝐽 ∼ Poisson(𝜆1 + · · ·𝜆𝐽).

Claim intensities are determined from historical data, and is rather straight-
forward:

Let 𝑛1, ..., 𝑛𝑚 be claim numbers from 𝑚 policies exposed to risk during
𝑇1, ..., 𝑇𝑛. The usual estimate of a common intensity 𝜇 is given by

𝜇̂ =
𝑛1 + · · ·+ 𝑛𝑚

𝑇1 + · · ·+ 𝑇𝑚

.

It follows that

E(𝜇̂) = 𝜇 and sd(𝜇̂) =

√︂
𝜇

𝑇1 + · · ·+ 𝑇𝑚

.

Example 5.2.
The idea of claim intensity can be illustrated with an easy example. Assume
an insurance company has a portfolio of car insurance. Let the total number
of claims be 7512, and the total risk exposure 𝑇1 + · · ·+ 𝑇𝑚 = 143200. This
gives the common intensity

𝜇̂ =
7512

143200
= 0.0524 = 5.24%

and standard deviation

sd(𝜇̂) =

√︂
0.0524

143200
= 0.0006 = 0.06%.

♣

5.3.2 Random claim intensities

Although the claim intensities introduced in the previous section are mathe-
matically correct, one will often encounter random claim intensities in prac-
tice. In other words, 𝜇 will usually vary over the portfolio. If 𝜇 varies over
the portfolio, we cannot use a common 𝜇 as shown in Section 5.3.1.
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Example 5.3. Random claim intensities.
Assume we are interested in estimating the claim intensity for automobiles.
The drivers of the automobiles will, naturally, not have the same personal
factors. Their ability to drive and caution may vary, and the insurance
company must take this into account. This is done by making 𝜇 a random
variable, and draw 𝜇 for each driver. ♣

At policy level, we have the following:

E(𝑁 |𝜇) = var(𝑁 |𝜇) = 𝜇𝑇, (5.14)

which follows from the properties of the Poisson distribution. Let E(𝜇) = 𝜉
and sd(𝜇) = 𝜎. Using the double rules from Section 6.3.2. in Bølviken [5],
we know that

E(𝑁) = E(𝜇𝑇 ) = 𝜉𝑇 and var(𝑁) = E(𝜇𝑇 ) + var(𝜇𝑇 ) = 𝜉𝑇 + 𝜎2𝑇 2.

Due to the fact that E(𝑁) < var(𝑁), it follows that 𝑁 is no longer Poisson
distributed. This leads to the following de�nition.

Definition 5.7. Overdispersion.
In the Poisson distribution, the mean is equal to the variance. In practice,
count observations often exhibit variability exceeding that predicted by the
Poisson. This phenomenon is called overdispersion.

How does one deal with the problem of overdispersion? A solution is
presented in Section 5.3.3.

5.3.3 The mixed Poisson process.

When modelling random intensities, a good way to account for overdispersion
is by a mixture model. The most common mixture model used in non-life
insurance is called the negative binomial model. It assumes that 𝜇 is given
by 𝜇 = 𝜉𝐺, where 𝐺 ∼ Gamma(𝛼).

Definition 5.8. Mixed Poisson process
Let 𝑁̃ be a standard homogeneous Poisson process and 𝜇 be the mean value
function of a Poisson process on [0,∞). Let 𝜃 > 0 a.s. be a random variable
independent of 𝑁̃ . Then the process

𝑁(𝑡) = 𝑁̃(𝜃𝜇(𝑡)), 𝑡 ≥ 0, (5.15)

is said to be a mixed Poisson process with mixing variable 𝜃.

A mixed Poisson process is a special case of a Cox process (see De�nition
2.11) where the mean value function 𝜇 is a general random process with
non-decreasing sample paths, independent of the underlying homogeneous
Poisson process 𝑁̃ . The following theorem borrows information from Section
7.3.2. in Agresti [1].
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Theorem 5.1. The negative binomial model.
Assume that given 𝜆, the random variable 𝑦 has a Poisson(𝜆) distribution,
and 𝜆 has the Gamma distribution. Using the properties of the Gamma dis-
tribution, we know that E(𝜆) = 𝜇 and var(𝜆) = 𝜇2/𝑘 for a shape parameter
𝑘 > 0. Marginally, the gamma mixture of the Poisson distribution gives the
negative binomial distribution for 𝑦. The negative binomial distribution has
the following properties:

(i) Its probability mass function is given by

𝑝(𝑦;𝜇, 𝑘) =
Γ(𝑦 + 𝑘)

Γ(𝑘)Γ(𝑦 + 1)

(︁ 𝜇

𝜇 + 𝑘

)︁𝑦(︁ 𝑘

𝜇 + 𝑘

)︁𝑘

, 𝑦 = 0, 1, 2, ... (5.16)

(ii) It has a natural parameter log[𝜇/(𝜇 + 𝑘)].

(iii) If 𝛾 = 1/𝑘, then E(𝑦) = 𝜇 and var(𝑦) = 𝜇 + 𝛾𝜇2.

Proof.
(i) Using the probability density function of the Gamma distribution and the
probability mass function of the Poisson distribution, we have the following:

For 𝑦 = 0, 1, 2, ... the marginal probability mass function of 𝑌 is given by

𝑝(𝑦;𝜇, 𝑘) =

∫︁ ∞

0

𝑃 (𝑌 = 𝑦|𝜆)𝑓(𝜆; 𝑘, 𝜇)𝑑𝜆

=

∫︁ ∞

0

𝜆𝑦

𝑦!
𝑒−𝜆 (𝑘/𝜇)𝑘

Γ(𝑘)𝜆𝑘−1
𝑒−𝑘𝜆/𝜇𝑑𝜆

=
(𝑘/𝜇)𝑘

Γ(𝑘)𝑦!

∫︁ ∞

0

𝜆𝑦+𝑘−1𝑒−(𝜇+𝑘)𝜆/𝜇𝑑𝜆

=
(𝑘/𝜇)𝑘

Γ(𝑘)Γ(𝑦 + 1)

∫︁ ∞

0

(︁ 𝜇

𝜇 + 𝑘

)︁𝑦+𝑘−1

𝑒−𝑢 𝜇

𝜇 + 𝑘
𝑑𝑢 (substitute 𝑢 = (𝜇 + 𝑘)𝜆/𝜇)

=
(𝑘/𝜇)𝑘

Γ(𝑘)Γ(𝑦 + 1)

(︁ 𝜇

𝜇 + 𝑘

)︁𝑦+𝑘
∫︁ ∞

0

𝑢𝑦+𝑘1𝑒−𝑢𝑑𝑢

=
(𝑘/𝜇)𝑘

Γ(𝑘)Γ(𝑦 + 1)

(︁ 𝜇

𝜇 + 𝑘

)︁𝑦+𝑘

Γ(𝑦 + 𝑘)

=
Γ(𝑦 + 𝑘)

Γ(𝑘)Γ(𝑦 + 1)

(︁ 𝜇

𝜇 + 𝑘

)︁𝑦(︁ 𝑘

𝜇 + 𝑘

)︁𝑘

.

(ii) Recall from Section 2.6 that the natural parameter is given by 𝜃𝑖 in the
exponential dispersion family. Introduce the random variable 𝑌 * = 𝑌/𝑘.
𝑌 * has the probability mass function given by

𝑝*(𝑦*;𝜇, 𝑘) =
Γ(𝑘𝑦* + 𝑘)

Γ(𝑘)Γ(𝑘𝑦* + 1)

(︁ 𝜇

𝜇 + 𝑘

)︁𝑘𝑦*(︁ 𝑘

𝜇 + 𝑘

)︁𝑘

; 𝑦* = 0,
1

𝑘
,

2

𝑘
, ...

(5.17)
In the negative binomial model, we can rewrite its probability mass function
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as

𝑝*(𝑦*;𝜇, 𝑘) = exp
{︁

(𝑘𝑦*) log
(︁ 𝜇

𝜇 + 𝑘

)︁
+ 𝑘 log

(︁ 𝑘

𝜇 + 𝑘

)︁
+ log

(︁ Γ(𝑘𝑦* + 𝑘

Γ(𝑘)Γ(𝑘𝑦* + 1)

)︁}︁
= exp

{︁[︁
𝑦* log

(︁ 𝜇

𝜇 + 𝑘

)︁
+ log

(︁ 𝑘

𝜇 + 𝑘

)︁]︁⧸︁1

𝑘
+ log

(︁ Γ(𝑘𝑦* + 𝑘

Γ(𝑘)Γ(𝑘𝑦* + 1)

)︁}︁
.

This is of the form (5.16), with

𝜃 = log
(︁ 𝜇

𝜇 + 𝑘

)︁
,

𝑏(𝜃) = − log
(︁

1− 𝜇

𝜇 + 𝑘

)︁
= − log(1− 𝑒𝜃),

𝑎(𝜑) =
1

𝑘
.

Hence the natural parameter is given by 𝜃 = log
(︁

𝜇
𝜇+𝑘

)︁
.

(iii) Using (2.39) and (2.40), we have that

E(𝑌 *) = 𝑏′(𝜃) =
𝑑

𝑑𝜃
[− log(1− 𝑒𝜃)] =

𝑒𝜃

1− 𝑒𝜃
=

𝜇
𝜇+𝑘

1− 𝜇
𝜇+𝑘

=
𝜇

𝑘

and

var(𝑌 *) = 𝑎(𝜑)𝑏′′(𝜃)

=
1

𝑘

𝑑2

𝑑𝜃2
[− log(1− 𝑒𝜃)]

=
1

𝑘

𝑒𝜃

(1− 𝑒𝜃)2

=
1

𝑘

𝜇
𝜇+𝑘

(1− 𝜇
𝜇+𝑘

)2

=
1

𝑘

𝜇
𝜇+𝑘

( 𝑘
𝜇+𝑘

)2

=
1

𝑘3
𝜇(𝜇 + 𝑘).

Since 𝑌 = 𝑌 *𝑘, we have

E(𝑌 ) = 𝑘E(𝑌 *) = 𝑘
𝜇

𝑘
= 𝜇,

and

var(𝑌 ) = 𝑘2var(𝑌 *) =
1

𝑘
𝜇(𝜇 + 𝑘) = 𝜇 +

𝜇2

𝑘
.

By letting 𝛾 = 1/𝑘, we have

E(𝑌 ) = 𝜇 and var(𝑌 ) = 𝜇 + 𝛾𝜇2.

�
The negative binomial model is an example of a mixed Poisson process.
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5.3.4 Poisson regression

Insurance companies will often charge di�erent fees to their customers, de-
pending on which group their customers belong to. For instance, a driver
who is between 18-21 years old is more likely to be a subject of an incident
such as a car crash than a driver who is between 30-33 years old, who is
normally more cautious in tra�c.

This brings us to the topic of Poisson regression. As explained in Section
5.3.1, claim numbers are usually Poisson distributed. When constructing a
model for estimating claim instensity, insurance companies will make sure to
charge a higher fee for customers that are associated with higher risk. This
is done in the form of Poisson regression. The idea is to attribute variations
in 𝜇 to variations in a set of observable variables 𝑥1, ..., 𝑥𝑗.

From Section 2.6.1 we know that the exponential dispersion family is on
the form

𝑓(𝑦𝑖; 𝜃𝑖, 𝜑) = exp
{︁

[𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)]/𝑎(𝜑) + 𝑐(𝑦𝑖, 𝜑)
}︁
. (5.18)

It turns out the Poisson distribution is a member of the exponential dispersion
family. We have

𝑓(𝑦𝑖;𝜇𝑖) =
𝑒−𝜇𝑖𝜇𝑦𝑖

𝑖

𝑦𝑖!

= exp
[︁
𝑦𝑖 log 𝜇𝑖 − 𝜇𝑖 − log(𝑦𝑖!)

]︁
= exp

[︁
𝑦𝑖𝜃𝑖 − exp(𝜃𝑖)− log(𝑦𝑖!)

]︁
, 𝑦𝑖 = 0, 1, 2, ... (5.19)

where the natural parameter 𝜃𝑖 = log 𝜇𝑖. This has exponential dispersion
form (5.18) with 𝑏(𝜃𝑖) = exp(𝜃𝑖), 𝑎(𝜑) = 1, and 𝑐(𝑦𝑖, 𝜑) = − log(𝑦𝑖!). By
(2.39) and (2.40),

E(𝑦𝑖) = 𝑏′(𝜃𝑖) = exp(𝜃𝑖) = 𝜇𝑖,

var(𝑦𝑖) = 𝑏′′(𝜃𝑖) = exp(𝜃𝑖) = 𝜇𝑖.

Using the canonical link function, we end up with the �nal Poisson regression:

𝜃𝑖 = log(𝜇𝑖) =

𝑝∑︁
𝑗=1

𝛽𝑗𝑥𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + · · ·+ 𝛽𝑗𝑥𝑖𝑗 (5.20)

which gives the intensity

𝜇𝑖 = exp
(︁ 𝑝∑︁

𝑗=1

𝛽𝑗𝑥𝑖𝑗

)︁
. (5.21)

Example 5.4.
Following the theme of automobiles, consider a case where we wish to esti-
mate the intensity for a model with two explanatory variables. Assume the
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intensity varies depending on the age and the gender of the customer. We
have

log(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2

where 𝑥𝑖1 is the age of the owner of car 𝑖 and

𝑥𝑖2 =

{︃
0, if 𝑗 is male

1, if 𝑗 is female.

The intensity 𝜇𝑖 is then given by

𝜇𝑖 = 𝑒𝛽0𝑒𝛽1𝑥𝑖1𝑒𝛽2𝑥𝑖2 . (5.22)

Here 𝑒𝛽0 is a baseline intensity, which is driven up or down by the explana-
tory variables. ♣

When developing our �nal model in Chapter 6, these explanatory variables
are automatically included in our data. As a result of this, we do not have
account for the problem of overdispersion when simulating our new model.
Our model is also not limited to the negative binomial model, it can take
any mixture model into account. Intuitively, one can imagine that the model
that creates the explanatory variables is "baked" into our model.

5.4 Modelling claim size

Di�erently from estimating claim frequency, claim size estimation does not
have a speci�c distribution to model from. Claim frequency relies on the
Poisson distribution, whilst claim size is modelled by imposing a family of
probability distributions and estimate their parameters from historical data.
In this chapter we will introduce distributions that can be utilized in order
to provide a good basis for estimating the size of the claims. We will focus
on three main distribution families: Log-normal, Gamma and Pareto. These
are the distributions that are most commonly used when modelling claim
sizes.

5.4.1 Introduction

Our goal is to estimate the total claim amount

𝑆(𝑡) =

𝑁(𝑡)∑︁
𝑖=1

𝑋𝑖, 𝑡 ≥ 0,

where the claim number process 𝑁(𝑡), 𝑡 ≥ 0 is independent of the i.i.d. claim
size sequence (𝑋𝑖). This is of great importance to insurance companies in
order to determine a premium which covers the losses represented by 𝑆(𝑡).

Having introduced claim frequency in Section 5.3, we will now introduce
claim sizes. That is, we will consider realistic claim size distributions and
their properties. We will discuss the notions of heavy- and light-tailed claim
size distributions. By doing this, we will acquire solid methods for modelling
large and small claims.
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5.4.2 Parametric modelling

There are two approaches to modelling claim size. The �rst approach is
known as parametric modelling, which is done through families of distribu-
tion such as the Gamma, log-normal or Pareto with parameters tuned to
historical data. The second approach is non-parametric where each claim 𝑧𝑖
of the past is assigned a probability 1/𝑛 of reappearing in the future.

When modelling parametric claim size, distributions should always include
𝛽 which is known as a parameter of scale. It is given by

𝑍 = 𝛽𝑍0, (5.23)

where 𝛽 ∈ R+ and 𝑍0 is a standardized random variable corresponding to
𝛽 = 1.
As an example, we may look at the log-normal model. In the log-normal
model, we have the random variable 𝑍 given by

𝑍 = 𝑒𝜃+𝜎𝜖,

where 𝜃 and 𝜎 are parameters and 𝜖 ∼ 𝑁(0, 1). Using the parameter of scale,
𝑍 may be rephrased as

𝑍 = 𝜉𝑍0,

where 𝑍0 = 𝑒−𝜎2/2+𝜎𝜖 and 𝜉 = 𝑒𝜃+𝜎2/2. Here E(𝑍0) = 1, and expectation and
scale parameter is represented as 𝜉.

When �nding a model that includes a scale parameter, we have by (5.23)
that

𝑃 (𝑍 ≤ 𝑧) = 𝑃 (𝑍0 ≤ 𝑧/𝛽) or 𝐹 (𝑧|𝛽) = 𝐹0(𝑧/𝛽), (5.24)

where 𝐹 (𝑧|𝛽) and 𝐹0(𝑧) are the distribution functions of 𝑍 and 𝑍0. Denote
𝑓0(𝑧) as the derivative of 𝐹0(𝑧). That is, 𝑓0(𝑧) = 𝑑

𝑑𝑧
𝐹0(𝑧). Di�erentiating

𝐹 (𝑧|𝛽) with respect to 𝑧 yields

𝑓(𝑧|𝛽) =
1

𝛽
𝑓0(𝑧/𝛽), 𝑧 > 0,

where 𝑓(𝑧|𝛽) is the family of density functions.
The standard method of �tting a model that includes a scale parameter is
through likelihood estimation. Assuming 𝑧1, ..., 𝑧𝑛 are historical claims, the
method is as follows:

1) Find the logarithm of the likelihood. The loglikelihood is given by

ℒ(𝛽, 𝑓0) = −𝑛 log(𝛽) +
𝑛∑︁

𝑖=1

log(𝑓0(𝑧𝑖/𝛽)). (5.25)

2) Maximize ℒ(𝛽, 𝑓0) with respect to 𝛽 and other parameters. Let a be a
vector containing 𝛽 and other parameters. The maximum is found by letting

𝜕

𝜕a
ℒ(𝛽, 𝑓0) = 0. (5.26)
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5.4.3 Non-parametric modelling

In non-parametric modelling each claim 𝑧𝑖 of the past is assigned a probability
1/𝑛 of reappearing in the future. These claims are connected to the random
variable 𝑍. Expectation, standard deviation and percentiles are all closely
related to the ordinary sample versions. Replace 𝑋*

𝑖 with 𝑍𝑖 in (5.6) and we
get the same results.
Upper percentiles are approximately the historical claims in descending order;
that is, 𝑞𝜖 = 𝑧(𝜖𝑛), where 𝑧1 ≥ · · · ≥ 𝑧𝑛.

5.4.4 The log-normal family

The log-normal family of distributions is a common model for insurance
losses. In this section we will introduce the most important properties of the
log-normal family.

Similarly as in Section 5.4.2, let 𝑍 = 𝜉𝑍0, where 𝑍0 = 𝑒−𝜎2/2+𝜎𝜖, where
𝜖 ∼ 𝑁(0, 1). The mean, standard deviation and skewness are

E(𝑍) = 𝜉, sd(𝑍) = 𝜉
√
𝑒𝜎2 − 1 and skew(𝑍) = (𝑒𝜎

2

+ 2)
√︀

𝑒𝜎2 − 1.

When estimating the parameters, notice that the log-normal family becomes
normal when taking the logarithm, hence the name log-normal. Let 𝑌 =
log(𝑍). We have

𝑌 = log(𝑍) = log(𝜉)− 1

2
𝜎2 + 𝜎𝜖, (5.27)

where

E(𝑌 ) = log(𝜉)− 1

2
𝜎2

is the mean and
sd(𝑌 ) = 𝜎𝜖

is the standard deviation.
If one tail is longer than the other, it means we have a skewed distribution.
For a better understanding, let's look at an example.

Example 5.5. Skewness of the log-normal distribution.
If the distribution has a long left tail, it means that the distribution is left-
skewed. Below is a graph showing the log-normal distribution with a long
left tail.
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♣
A right-skewed distribution is the opposite of a left-skewed distribution.

5.4.5 The Gamma family

The second common model for insurance losses is the Gamma model. De�ne
𝑍 as in Section 5.3.3; that is, 𝑍 = 𝜉𝐺, where 𝐺 is Gamma distributed with
parameter (shape) 𝛼. The mean, standard deviation and skewness are

E(𝑍) = 𝜉, sd(𝑍) =
𝜉√
𝛼

and skew(𝑍) =
2√
𝛼
. (5.28)

The proposition below is a property borrowed from Chapter 9 in Bølviken
[5].

Proposition 5.1. The convolution property of the Gamma distribution.
Assume 𝐺1, ..., 𝐺𝑛 are independent with 𝐺𝑖 ∼ Gamma(𝛼𝑖) for 𝑖 = 1, ..., 𝑛.
Then

𝐺 ∼ Gamma(𝛼1,+ · · ·+𝛼𝑛) if 𝐺 =
𝛼1𝐺1 + · · ·+ 𝛼𝑛𝐺𝑛

𝛼1 + · · ·+ 𝛼𝑛

. (5.29)

Obviously, when modelling claim size using the Gamma distribution, we
are taking the parametric approach. The parameters 𝜉 and 𝛼 in the Gamma
model can be determined from historical data 𝑧1, ..., 𝑧𝑛. The sample mean
𝑧 and standard deviation 𝑠 are then matched to the theoretical expressions,
yielding 𝑧 = 𝜉, 𝑠 = 𝜉/

√
𝛼 with solution

𝜉 = 𝑧 and 𝛼̂ =
𝑧2

𝑠2
.

When �tting the Gamma model, we follow the two steps given in Section
5.4.2:
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1) The logarithm of the density function of the standard Gamma is

log(𝑓0(𝑧)) = 𝛼 log(𝛼)− log
(︁

Γ(𝛼)
)︁

+ (𝛼− 1) log(𝑧)− 𝛼𝑧. (5.30)

By (5.25), we have

ℒ(𝜉, 𝛼) = 𝑛𝛼 log(
𝛼

𝜉
)− 𝑛 log Γ(𝛼) + (𝛼− 1)

𝑛∑︁
𝑖=1

log(𝑧𝑖)−
𝛼

𝜉

𝑛∑︁
𝑖=1

𝑧𝑖.

2) When maximizing ℒ(𝜉, 𝛼), we have

𝜕ℒ
𝜕𝜉

= −𝑛𝛼

𝜉
+

𝛼

𝜉2

𝑛∑︁
𝑖=1

𝑧𝑖.

By simple algebra, we have that

𝜕ℒ
𝜕𝜉

= 0 when 𝜉 =
1

𝑛

𝑛∑︁
𝑖=1

𝑧𝑖 = 𝑧.

Thus 𝜉 = 𝑧 is the likelihood estimate and ℒ(𝑧, 𝛼) can be tracked under
variation of 𝛼 for the maximizing value 𝛼̂.

5.4.6 The Pareto family

The �nal distribution we will examine is the Pareto distribution. The Pareto
distribution has parameters 𝛼 and 𝛽, where 𝛼, 𝛽 > 0, and will be denoted
by Pareto(𝛼, 𝛽). It is very heavy tailed, which makes it a popular choice for
large claims in property insurance.

The mean, standard deviation and skewness are given by

E(𝑍) = 𝜉 =
𝛽

𝛼− 1
, sd(𝑍) = 𝜉

√︂(︁ 𝛼

𝛼− 2

)︁
and skew(𝑍) = 2

√︂(︁𝛼− 2

𝛼

)︁𝛼 + 1

𝛼− 3
.

This only holds if: 𝛼 > 1 in E(𝑍), 𝛼 > 2 in sd(𝑍) and 𝛼 > 3 in skew(𝑍).

When �tting the Pareto model, we (again) follow the steps given in Sec-
tion 5.4.2:

1) The log-likelihood of the Pareto distribution is given by

𝑛 log(
𝛼

𝛽
)− (1 + 𝛼)

𝑛∑︁
𝑖=1

log
(︁

1 +
𝑧𝑖
𝛽

)︁
.

However, claims may exceed a threshold 𝑏. That is, observed claims 𝑧1, ..., 𝑧𝑛
may exceed the thresholds 𝑏1, ..., 𝑏𝑛. Assume that there are 𝑛𝑏 claims that
have exceeded certain thresholds 𝑏1, ..., 𝑏𝑛𝑏

. We must now take these claims
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into account, along with the ordinary claims. The full log-likelihood function
(as given in Section 9.4.3 in Bølviken [5]) is then given by

ℒ(𝛼, 𝛽) = 𝑛 log(
𝛼

𝛽
)− (1 + 𝛼)

𝑛∑︁
𝑖=1

log(1 +
𝑧𝑖
𝛽

)− 𝛼

𝑛𝑏∑︁
𝑖=1

log(1 +
𝑏𝑖
𝛽

).

2) We now maximize ℒ(𝛼, 𝛽) by di�erentiating with respect to 𝛼.

𝜕ℒ(𝛼, 𝛽)

𝜕𝛼
= 0

⇒ 𝑛 log(
𝛼

𝛽
)− (1 + 𝛼)

𝑛∑︁
𝑖=1

log(1 +
𝑧𝑖
𝛽

)− 𝛼

𝑛𝑏∑︁
𝑖=1

log(1 +
𝑏𝑖
𝛽

) = 0.

Let 𝛼̂𝛽 denote the maximized value of ℒ(𝛼, 𝛽). By simple algebra, solving
for 𝛼 yields

𝛼̂𝛽 =
𝑛∑︀𝑛

𝑖=1 log(1 + 𝑧𝑖
𝛽

) +
∑︀𝑛𝑏

𝑖=1 log(1 + 𝑏𝑖
𝛽

)
.
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Chapter 6

Our new stochastic model for total claim amounts

We will begin this chapter by building our stochastic model in the framework
of generalized Cox processes. Continuing, we will brie�y discuss the distri-
bution families from Chapter 5 that are appropriate for modelling claim size.
Our �nal result will be a new stochastic model which allows for the mod-
elling of regime switching e�ects of data arising, for example from natural
disasters, regulatory changes or other "shocks" in insurance markets. As
discussed in Chapter 4, we will apply Monte Carlo and non-linear �ltering
techniques in order to estimate the signal process as accurately as possible,
which is modelled by a stochastic di�erential equation given by (4.1). With
the introduction of our new model, we will examine the results given from the
simulations, and conclude with a discussion on the advantage and drawbacks
of using this model. The references used in this chapter are Applebaum [2],
Bølviken, Duedahl, Proske [6], Øksendal [11] and Xiong [12].

6.1 Building our model in the framework of general-
ized Cox processes

In this section we will �rst give a general introduction to our new model.
When the model has been introduced, we will continue with simulations of
our model with speci�c functions in the next section. To conclude, we will
discuss the results of the simulations from our new model. As mentioned
in the introduction to this chapter, our model will allow for capturing both
regime switching e�ects and mean reversion.

In order to estimate the unknown signal process𝑋𝑡, which is of the same form
as in the �ltering �ltering framework of Chapter 4, we will apply non-linear
�ltering techniques for Lévy processes. In addition to this, the observation
process 𝑌𝑡 will be described by a generalized Cox process.

Hence, our signal process is given by 𝑋𝑡, where 𝑋𝑡 follows the dynamics

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵
𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇, (6.1)

where 𝑏, 𝜎 are Borel functions and 𝐵𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇 is a Brownian motion.

The signal process 𝑋𝑡 is not directly observable, hence we must turn to the
observation process 𝑌𝑡 to acquire information about the signal 𝑋.
We choose a generalized Cox process in order to describe the dynamics of
our observation process, as done in Chapter 4. The observation process 𝑌𝑡 is
described by the dynamics:

𝑑𝑌𝑡 = ℎ(𝑡,𝑋𝑡)𝑑𝑡 + 𝑑𝐵𝑌
𝑡 +

∫︁
R𝑚
0

𝑧𝑁𝜆(𝑑𝑡, 𝑑𝑧), 0 ≤ 𝑡 ≤ 𝑇, (6.2)
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where ℎ is a Borel function, 𝐵𝑌
𝑡 is a Brownian motion and 𝑁𝜆 is the jump

measure of a generalized Cox process with a predictable compensator 𝜇̂ given
by

𝜇̂(𝑑𝑡, 𝑑𝑧, 𝜔) = 𝜆(𝑡,𝑋𝑡, 𝑧)𝑑𝑡𝜈(𝑑𝑧) (6.3)

for a Borel function 𝜆 and a Lévy measure 𝜈 where∫︁
R𝑑
0

‖𝑧‖ 𝜈(𝑑𝑧) <∞. (6.4)

When simulating our new model, we need to know at which time jump occurs.
We de�ne the function

𝜇*(𝑡) :=

∫︁ 𝑡

0

𝜆*(𝑠,𝑋𝑠)𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇. (6.5)

The "intensity process" 𝜆*(𝑡,𝑋𝑡), 𝑡 ≥ 0 depends on the unknown signal pro-
cess 𝑋𝑡 given in (6.1) which captures regime switching e�ects of data.

Having de�ned 𝜇*(𝑡), we can construct 𝑁(𝑡), which is the number of claims
occuring at time 𝑡. Let 𝑁(𝑡) = 𝑁̃(𝜇*(𝑡)) for a process 𝜇*(𝑡) given by (6.5).
The process 𝜇*(𝑡) is independent of 𝑁̃(𝑡), 𝑡 ≥ 0. Recall from Chapter 4 that
the observation process 𝑌𝑡 can be decomposed (under a change of measure)
in the following way:

𝑑𝑌𝑡 = 𝑑𝐵𝑡 + 𝑑𝐿𝑡, (6.6)

where (𝑌𝑡)0≤𝑡≤𝑇 is a Lévy process independent of (𝑋𝑡)0≤𝑡≤𝑇 and where

𝐵𝑡 = 𝐵𝑌
𝑡 −

∫︁ 𝑡

0

(−ℎ(𝑠,𝑋𝑠))𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 (6.7)

is the Gaussian part and

𝐿𝑡 =

∫︁ 𝑡

0

∫︁
R𝑚
0

𝑧𝑁(𝑑𝑠, 𝑑𝑧) (6.8)

is the jump component with respect to the Poisson random measure

𝑁(𝑑𝑠, 𝑑𝑧) := 𝑁𝜆(𝑑𝑠, 𝑑𝑧), 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,

with compensator 𝑑𝑠𝜈(𝑑𝑧). For the simulations which will be performed
later, recall that∫︁ 𝑡

0

∫︁
R𝑚
0

𝑧𝑁(𝑑𝑠, 𝑑𝑧) =
∑︁
0≤𝑠≤𝑡

∆𝑌𝑠1{Δ𝑌𝑠 ̸=0}, 0 ≤ 𝑡 ≤ 𝑇. (6.9)

How exactly do we allow for regime switching in our signal process (𝑋𝑡)0≤𝑡≤𝑇 ?
As the dynamics of the signal process 𝑋 is given by

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵
𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇,
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as in (6.1), we are able to capture regime switching by choosing a function
for 𝑏 and 𝜎. When the primary objective is to allow for the capture of regime
switching, the most interesting coe�cient to look at is 𝑏. By choosing 𝑏 to be
a discontinuous vector �eld, we allow the model to capture regime switching
e�ects arising from for example �nancial disasters of long-lasting nature.

If we were to choose 𝑏 as a discontinuous vector �eld, it could for exam-
ple be of the form

𝑏(𝑡, 𝑥) =

{︃
𝑎1 if ‖𝑥‖ ≥ 𝜌,

𝑎2 else.

Here 𝑎1, 𝑎2 are vectors in R𝑛, and they represent the di�erent regime switch-
ing states the process 𝑋𝑡 will assume, depending whether it exceeds a certain
threshold 𝜌 at time 𝑡 or not. We could for example, in a modi�ed mean-
reverting Vasicek model, use the function

𝑏(𝑥) =

{︃
𝑎(𝑏1 − 𝑥) if 𝑥 ≥ 𝜌,

𝑎(𝑏2 − 𝑥) else,

for 𝑎, 𝑏1, 𝑏2 ≥ 0, when 𝜎(𝑥) ≡ 𝜎 > 0. Here 𝑎 is the mean reversion coe�cient,
and 𝑏1, 𝑏2 are the stabilization levels in the long run. That is, given a certain
amount of time, the process 𝑋𝑡 will stabilize around either 𝑏1 or 𝑏2. As an
example, consider the case where 𝑥 ≥ 𝜌. Here, the drift of 𝑋𝑡 will be negative
at time 𝑡 ≤ 𝑇 if 𝑥 > 𝑏1, and positive at time 𝑡 ≤ 𝑇 if 𝑥 < 𝑏1.
The classical Vasicek model is obtained from the latter one, if 𝑏1 = 𝑏2; that
is, if

𝑑𝑋𝑡 = 𝑎(𝑏1 −𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡, 0 ≤ 𝑡 ≤ 𝑇.

Its solution is given by

𝑋𝑡 = 𝑒−𝑎𝑡𝑋0 + 𝑏1(1− 𝑒−𝑎𝑡) + 𝜎

∫︁ 𝑡

0

𝑒−𝑎(𝑡−𝑠)𝑑𝐵𝑠,

which is derived in Appendix A.
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Figure 2: 15 simulated paths of the Vasicek interest rate model, with 𝑋0 = 0.01,

𝑏1 = 0.05, 𝑎 = 0.01, 𝜎 = 0.0015, maturity = 700.

An example of simulations of the Vasicek model can be found in Figure 2,
where we can see the 15 paths stabilizing around the solid red line, which
represents 𝑏1.

Before introducing algorithms and speci�c choice of functions in order to
simulate paths of the signal process and obtain the optimal �lter, we will re-
cap the most important results from Chapter 4. In other words, after using
the known observation process to simulate the signal process, we will obtain
an optimal �lter. In order to obtain this optimal �lter, we will rely on the
change of measure which is described in detail in Chapter 4. Recall that the
optimal �lter is given by

⟨𝜋𝑡, 𝑓⟩ = E[𝑓(𝑋𝑡)|ℱ𝑌
𝑡 ] ∀𝑓 ∈ 𝐶𝑏(R𝑛), (6.10)

where 𝜋𝑡 : Ω×ℬ(R𝑛)→ [0,∞) is the regular conditional probability measure
of the signal process𝑋𝑡 given the 𝜎−algebra ℱ𝑌

𝑡 , generated by {𝑌𝑠, 0 ≤ 𝑠 ≤ 𝑡}
and the null sets 𝒩 .
From Theorem 4.1, recall that the optimal �lter 𝜋𝑡 has the representation

⟨𝜋𝑡, 𝑓⟩ =
⟨Ψ𝑡, 𝑓⟩
⟨Ψ𝑡, 1⟩

(6.11)

with
⟨Ψ𝑡, 𝑓⟩ = E[𝑍𝑡𝑓(𝑋𝑡)|ℱ𝑌

𝑡 ] (6.12)

56



for all 𝑓 ∈ 𝐶𝑏(R𝑛), where

𝑍𝑡 =Λ−1
𝑡 (6.13)

= exp
{︁ 𝑚∑︁

𝑖=1

∫︁ 𝑡

0

ℎ𝑖(𝑠,𝑋𝑠)𝑑𝐵
𝑖
𝑠 −

1

2

∫︁ 𝑡

0

⃦⃦
ℎ(𝑠,𝑋𝑠)

⃦⃦2
𝑑𝑠

+

∫︁ 𝑡

0

∫︁
R𝑚
0

log 𝜆(𝑠,𝑋𝑠, 𝑧)𝑁(𝑑𝑠, 𝑑𝑧)

+

∫︁ 𝑡

0

∫︁
R𝑚
0

(1− 𝜆(𝑠,𝑋𝑠, 𝑧))𝑑𝑠𝜈(𝑑𝑧)
}︁
, 0 ≤ 𝑡 ≤ 𝑇,

under Q.

As a �nal note before introducing the general approach to our simulations,
it is necessary to know when a jump in the data can be interpreted as such.
From De�nition 3.6, we know that a jump (or jump size) at time 𝑡 of a Lévy
process 𝑌𝑡 (𝑌𝑡 because we are interested in the observation process) is de�ned
as

∆𝑌 (𝑡) = 𝑌 (𝑡)− 𝑌 (𝑡−),

where 𝑌 (𝑡−) is the left limit of 𝑌 (𝑡). As we are observing the observation
process directly, we de�ne the jump as ∆𝑌𝑖 := 𝑌𝑖+1−𝑌𝑖, where 𝑖 = 1, 2, ..., 𝑇 ,
with 𝑇 being the �nal time horizon. Now that the de�nition of a jump has
been established, it remains to de�ne when the jump occurs. This can be
done in many di�erent ways, but we choose do this in the following way:

Let ∆𝑌 denote the average distance in the interval [0, 𝑇 ]. That is, we de�ne

∆𝑌 :=
1

𝑇

𝑇∑︁
𝑖=1

|∆𝑌𝑖| . (6.14)

We say a jump occurs if
|∆𝑌𝑖| > ∆𝑌 + 𝜖*, (6.15)

where 𝜖* is some chosen constant, usually a small number.

6.1.1 Choosing the distribution for claim sizes

Our goal is to model the total claim amount of insurance portfolios which is
given by

𝑆(𝑡) =

𝑁(𝑡)∑︁
𝑖=1

𝜉𝑖
1, (6.16)

where 𝑁(𝑡) = 𝑁̃(𝜇*(𝑡)) for a process 𝜇*(𝑡) given by (6.5), and 𝜉𝑖 is the
claim size at time 0 ≤ 𝑡 ≤ 𝑇 . Before constructing our new model, we must
�rst choose a distribution for the individual claim sizes. Our alternatives,

1Going forward, we choose to denote claim size at time 𝑖 as 𝜉𝑖 instead of 𝑋𝑖 as in

Chapter 5, in order to avoid confusion with the signal process 𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 .
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as discussed in Chapter 5, are the log-normal, Gamma and Pareto families.
As the Pareto family mainly focuses on very large claim sizes in addition
to a small sample size, the preferred families will either be log-normal or
Gamma. For our purposes, the choice between the log-normal distribution
and Gamma distribution is rather arbitrary. Because of this, going forward,
we will focus on the Gamma distribution.

6.1.2 A general approach to our model

In this section we will examine the general procedure to our simulations. By
the end of this section, we are ready to use algorithms in order to obtain the
signal process, the density process and the optimal �lter.

Going forward, it is important to distinguish what we wish to estimate, and
what is already known. In other words, we wish to estimate future claims
occuring at time 𝑡, and not claims that already belongs to the past. We make
this distinction by denoting the time interval we have data for as [0, 𝑇 ] and
the time interval we wish to estimate data for as [0, 𝑇 *].

The process for simulating future claim amounts can be constructed as the
following:

Step 1: Simulate claims using the Gamma distribution (an example may
be claims in car insurance) using a frequency drawn from the Poisson distri-
bution. This data is regarded as the information given by ℱ𝑌

𝑇 , that is, the
observation process.

Step 2: Based on the information given by ℱ𝑌
𝑇 , simulate paths of the signal

process 𝑋̂𝑇 .

Step 3: Using the information acquired from the observation process and
the simulated paths of the signal process, we simulate the density process,
which is required for computing the optimal �lter.

Step 4: Obtain the optimal �lter by Monte Carlo. We do this by computing
⟨Ψ𝑇 , 𝑓𝑖⟩, 𝑖 = 1, ...,𝑚 and ⟨Ψ, 1⟩, given in (6.19) and (6.20), respectively.

Step 5: Based on the best estimate for 𝑋̂ 𝑖
𝑡 , 𝑖 = 1, ...,𝑚, we simulate fu-

ture paths for the signal process. The future paths of the signal process will
be denoted as 𝑋̂𝑇 * .

Step 6: Simulate future paths of the observation process 𝑌𝑡, 0 ≤ 𝑡 ≤ 𝑇 *,
based on the simulated paths of 𝜇*(𝑗)(𝑡), 0 ≤ 𝑡 ≤ 𝑇 *, where 𝑗 = 1, 2, ..., 𝑙 is
the number of simulations.

Hence, we obtain the best estimate for the signal process 𝑋𝑡 by calculating
the optimal �lter 𝑋̂𝑇 * . The optimal �lter is given by the Kallianpur-Striebel-
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formula, that is

⟨𝜋𝑡, 𝑓⟩ =
⟨Ψ𝑡, 𝑓⟩
⟨Ψ𝑡, 1⟩

, (6.17)

and our goal is to compute ⟨𝜋𝑡, 𝑓⟩ = 𝑋̂𝑡 where 0 ≤ 𝑡 ≤ 𝑇 .

By Proposition 4.1, we know that

1

𝑙

𝑙∑︁
𝑗=1

𝑍𝑗
𝑡 𝑓(𝑋𝑗

𝑡 ) −−−→
𝑙→∞

⟨Ψ𝑡, 𝑓⟩ = EQ[𝑍𝑡𝑓(𝑋𝑡)|ℱ𝑌
𝑡 ] a.e., (6.18)

which means we obtain the optimal �lter 𝑋̂𝑡 by simulating 𝑙 paths of the
density process 𝑍𝑡 given by (6.13). The two functions needed to compute the
optimal �lter 𝑋̂𝑡 = ⟨𝜋𝑡, 𝑓⟩ are, by (6.17),

⟨Ψ𝑡, 𝑓⟩ ≈
1

𝑙

𝑙∑︁
𝑗=1

𝑍𝑗
𝑡 𝑓(𝑋𝑗

𝑡 ) (6.19)

and

⟨Ψ𝑡, 1⟩ ≈
1

𝑙

𝑙∑︁
𝑗=1

𝑍𝑗
𝑡 , (6.20)

for all 0 ≤ 𝑡 ≤ 𝑇 .

In order to construct ⟨Ψ𝑡, 𝑓⟩ and ⟨Ψ𝑡, 1⟩, we need to decide on the following:

∙ The functions ℎ, 𝑏 and 𝜎, as needed in the dynamics of 𝑋𝑡.

∙ The function for 𝜆, as it is given in the density process 𝑍𝑡.

∙ Choosing a Lévy measure, as it is also given in the density process 𝑍𝑡.

∙ Choosing a distribution for which the future points will be simulated
by.

∙ Choosing a constant for 𝜖* that will de�ne when a jump occurs, de�ned
by (6.15).

∙ Choosing the function 𝑓 , as required in ⟨Ψ𝑡, 𝑓⟩.

The functions ℎ, 𝑏 and 𝜎 have been covered in Section 6.1. The Lévy measure
will, in our case, be the distribution of the jump sizes. Hence we de�ne the
Lévy measure as 𝜈(𝑑𝑧) := 𝑝𝑍𝑑𝑧, where 𝑝𝑍 is the probability density function
from a chosen probability distribution. As we are simulating claim size in
non-life insurance, it would be natural to choose 𝑝𝑍 as the Gamma distribu-
tion, as discussed in Section 6.1.1.

We de�ne the function 𝜆 in a way such that we avoid future problems with
simulations. If 𝜆 depends on the spatial variable coming from jumps, we may
encounter problems when trying to simulate the density process. Hence we
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will de�ne a new function which will be the main focus of our simulations.
The new function is de�ned as

𝜆(𝑡, 𝑥, 𝑧) := 𝜆*(𝑡, 𝑥), 0 ≤ 𝑡 ≤ 𝑇, (6.21)

where 𝑥 ∈ R𝑛 and 𝑧 ∈ R𝑚
0 . Finally, we choose the function 𝑓 to be given as

𝑓𝑖(𝑥) = 𝑥𝑖.

6.2 Simulating our model

We can construct a rather straightforward algorithm for simulating the path
of the signal process 𝑋 given by the dynamics

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵
𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇.

Using the dynamics of 𝑋 and the fact that 𝐵𝑡 is normally distributed (see
Algorithm 1 for the path of Brownian motion), we obtain the following algo-
rithm:

Algorithm 4 Simulating paths of the signal process X

Input: Coe�cients 𝑏, 𝜎, �nal point in our interval 𝑇 , 𝑛 (number of intervals),
initial values (𝑥𝑖)

𝑚
𝑖=1.

1: ∆𝑡← 𝑇/𝑛
2: 𝑋 𝑖

𝑡0
← 𝑥, 𝑖 = 1, ...,𝑚

3: draw 𝜉𝑖 ∼ 𝑁(0, 1), 𝑖 = 1, ..., 𝑛
4: for 𝑖 = 1, ...,𝑚 do
5: for 𝑗 = 1, ..., 𝑛− 1 do
6: 𝑋

(𝑖)
𝑡𝑗+1
← 𝑋

(𝑖)
𝑡𝑗 + 𝑏𝑖(𝑋𝑡𝑗)∆𝑡 +

∑︀𝑑
𝑘=1 𝜎𝑖𝑘(𝑋𝑡𝑗)𝜉

√
∆𝑡

7: end for
8: end for
9: Return 𝑋1

𝑡0
, 𝑋2

𝑡1
, ..., 𝑋𝑚

𝑡𝑛−1

In our case, because we choose the coe�cient 𝑏 as that of a mean revert-
ing process, we will work with values for 𝑋 in R3. We do this by de�ning
the coe�cients 𝑏 and 𝜎 in a way that deliberately creates a mean reversion
through the Vasicek model. That is, for all 𝑥 ∈ R3, let

𝑏𝑖(𝑥) =

{︃
𝑥3(𝑥2 − 𝑥1) if 𝑖 = 1,

0 else.

We also de�ne the coe�cient 𝜎 as

𝜎𝑖,𝑗(𝑥) =

{︃
1 if 𝑖 = 𝑗 = 1,

0 else.

Hence, for all 0 ≤ 𝑡 ≤ 𝑇 , we get the following dynamics:⎧⎪⎪⎨⎪⎪⎩
𝑑𝑋1

𝑡 = 𝑑𝑋3
𝑡 (𝑋2

𝑡 −𝑋1
𝑡 )𝑑𝑡 + 𝑑𝐵𝑋,1

𝑡 ,

𝑑𝑋2
𝑡 = 0,

𝑑𝑋3
𝑡 = 0,

(6.22)
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where the initial values 𝑋1
0 , 𝑋

2
0 , 𝑋

3
0 for the dynamics of (𝑋 𝑖

𝑡)0≤𝑡≤𝑇 , 𝑖 = 1, 2, 3
are to be generated from a distribution which is to be decided on beforehand.
For our purposes, we can for example choose either the uniform distribution,
or the Gamma distribution.

Having the procedure for the simulations of the signal process 𝑋 in place,
we continue with the procedure for the observation process 𝑌 . Recall that
the dynamics of 𝑌 is given by

𝑑𝑌𝑡 = ℎ(𝑡,𝑋𝑡)𝑑𝑡 + 𝑑𝐵𝑌
𝑡 +

∫︁
R𝑚
0

𝑧𝑁𝜆(𝑑𝑡, 𝑑𝑧), 0 ≤ 𝑡 ≤ 𝑇. (6.23)

When simulating our model, we choose to focus on capturing jumps. Hence
we let ℎ(𝑡, 𝑥) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ R𝑚, and we also ignore the Brownian
motion in 𝑌 . In other words, we choose to only look at 𝑌 , where 𝑌 follows
the dynamics

𝑑𝑌𝑡 =

∫︁
R𝑚
0

𝑧𝑁𝜆(𝑑𝑡, 𝑑𝑧), 0 ≤ 𝑡 ≤ 𝑇, (6.24)

where the predictable compensator 𝜇̂ is given as in (4.3). That is,

𝜇̂(𝑑𝑡, 𝑑𝑧, 𝜔) = 𝜆(𝑡,𝑋𝑡, 𝑧)𝑑𝑡𝜈(𝑑𝑧),

(*)
= 𝜆*(𝑡,𝑋𝑡)𝑑𝑡𝜈(𝑑𝑧) 0 ≤ 𝑡 ≤ 𝑇, 𝑧 ∈ R𝑚

0 ,

where (*) uses 𝜆(𝑡, 𝑥, 𝑧) as de�ned in (6.21). It remains to choose a function
𝜆*(𝑡,𝑋𝑡). We de�ne this in the following way:

𝜆*(𝑡,𝑋𝑡) :=𝜖‖𝑋𝑡‖1 (6.25)

=𝜖
3∑︁

𝑖=1

|𝑋 𝑖
𝑡 |, 0 ≤ 𝑡 ≤ 𝑇,

where 𝜖 ∈ R>0. The Lévy measure was de�ned in Section 6.1.2 as 𝜈(𝑑𝑧) =
𝑝𝑍𝑑𝑧. Because 𝑝𝑍 is the density of a probability function, we know that∫︁

R𝑚
0

𝑝𝑍𝑑𝑧 = 1. (6.26)

Our observation process 𝑌 is now given by:

𝑌𝑡 =

∫︁ ∫︁
[0,𝑡]×R3

0

𝑧𝑁𝜆(𝑑𝑠, 𝑑𝑧)

=

𝑁̃(𝜇*(𝑡))∑︁
𝑖=1

𝜉𝑖, (6.27)

where
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∙ 𝑁̃ is a Poisson process with intensity equal to 1. That is, 𝑁̃ =
(𝑁̃(𝑡))0≤𝑡≤𝑇 , with the property of stationary increments which states
that

𝑁̃
(︁
𝜇*(𝑡𝑗+1)−𝜇*(𝑡𝑗)

)︁
∼ Poisson

(︁∫︁ 𝑡𝑗+1

𝑡𝑗

𝜆*(𝑠,𝑋𝑠)𝑑𝑠
)︁
, 𝑗 = 0, 1, 2, ..., 𝑛−1.

(6.28)
Here 𝑁̃ is independent of the signal process 𝑋.

∙ The intensity 𝜇*(𝑡) is given by

𝜇*(𝑡) =

∫︁ 𝑡

0

𝜆*(𝑠,𝑋𝑠)𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇. (6.29)

∙ (𝜉𝑖)𝑖∈N is a sequence of i.i.d. stochastic variables that follows the
Gamma distribution.

In Algorithm 5, the integral

𝜇*(𝑡) =

∫︁ 𝑡

0

𝜆*(𝑠,𝑋𝑠)𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,

is approximated by the classic trapezoidal rule.

Algorithm 5 Simulating paths of the observation process 𝑌 .
Input: Paths of the signal process 𝑋, 𝑛 for the number of intervals, �nal time
𝑇 , function 𝜆*(𝑡,𝑋𝑡), jump size distribution Gamma with shape parameter
𝛼𝑖 and scale parameter 𝛽𝑖 for 𝑖 = 1, 2, 3
1: 𝜇*

𝑡0
← 0

2: ∆𝑡← 𝑇/𝑛
3: 𝜆*(𝑡,𝑋𝑡)← 𝜖

∑︀3
𝑖=1 |𝑋 𝑖

𝑡 |
4: for 𝑗 = 0, ..., 𝑛− 1 do

5: 𝜇*
𝑡𝑗+1

= 𝜇*
𝑡𝑗

+ ∆𝑡/2
(︁
𝜆*(𝑡𝑗, 𝑋𝑡𝑗) + 𝜆*(𝑡𝑗+1, 𝑋𝑡𝑗+1

)
)︁

6: draw 𝑀 ∼ Poisson(𝜇*
𝑡𝑗+1
− 𝜇*

𝑡𝑗
)

8: for 𝑖 = 1, ...,𝑚 do
9: for 𝑘 = 1, ...,𝑀 do
10: draw 𝜉𝑗,𝑖𝑘 ∼ Gamma(𝛼𝑖, 𝛽𝑖)
11: 𝑌 𝑖

𝑡𝑗+1
← 𝑌 𝑖

𝑡𝑗
+ 𝜉𝑗,𝑖𝑘

12: end for
13: end for
19: end for
20: Return 𝑌 1

𝑡0
, 𝑌 2

𝑡1
, ..., 𝑌 𝑚

𝑡𝑛−1

Finally, it remains to construct an algorithm for simulating the density pro-
cess 𝑍𝑡, 0 ≤ 𝑡 ≤ 𝑇 . As we choose to let ℎ(𝑡, 𝑥) = 0 and ignore Brownian
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motion, our density function is represented as the following:

𝑍𝑡 = exp
{︁∫︁ 𝑡

0

∫︁
R3
0

log 𝜆*(𝑠,𝑋𝑠)𝑁(𝑑𝑠, 𝑑𝑧)

+

∫︁ 𝑡

0

∫︁
R3
0

(1− 𝜆*(𝑠,𝑋𝑠))𝑑𝑠𝜈(𝑑𝑧)
}︁

(*)
= exp

{︁∫︁ 𝑡

0

∫︁
R3
0

log 𝜆*(𝑠,𝑋𝑠)𝑁(𝑑𝑠, 𝑑𝑧)

+

∫︁ 𝑡

0

∫︁
R3
0

(1− 𝜆*(𝑠,𝑋𝑠))𝑝𝑍𝑑𝑠𝑑𝑧
}︁

(**)
= exp

{︁ ∑︁
0≤𝑠≤𝑡

log
(︁
𝜖‖𝑋𝑠‖1

)︁
1{Δ𝑌𝑠 ̸=0}

+

∫︁ 𝑡

0

(1− 𝜖‖𝑋𝑠‖1)𝑑𝑠
}︁
, 0 ≤ 𝑡 ≤ 𝑇, (6.30)

where (*) uses the fact that 𝜈(𝑑𝑧) = 𝑝𝑍𝑑𝑧, and (**) uses 𝜆*(𝑡,𝑋𝑡) as de�ned
in (6.21).

By (6.15), we know that a jump occurs if |∆𝑌𝑖| > ∆𝑌 + 𝜖*, 0 ≤ 𝑖 ≤ 𝑇 .
When incorporating this into our model, the density function that will be
used in our simulations is represented as the following:

𝑍𝑡 = exp
{︁ ∑︁

0≤𝑠≤𝑡

log
(︁
𝜖‖𝑋𝑠‖1

)︁
1{|Δ𝑌𝑠|>Δ𝑌+𝜖*}⏟  ⏞  

=𝐼1

+

∫︁ 𝑡

0

(1− 𝜖‖𝑋𝑠‖1)𝑑𝑠⏟  ⏞  
=𝐼2

}︁
, 0 ≤ 𝑡 ≤ 𝑇. (6.31)

The �nal algorithm needed is the one simulating the density process 𝑍 given
by (6.31), and is shown on the next page.
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Algorithm 6 Simulating paths of the density process 𝑍𝑡, 0 ≤ 𝑡 ≤ 𝑇
Input: Paths of the signal process 𝑋, 𝑛 for the number of intervals, �nal
time 𝑇 , function 𝜆*(𝑡,𝑋𝑡), observation process 𝑌 , 𝜖*, number of simulations
𝑛𝑠𝑖𝑚.
1: ∆𝑡← 𝑇/𝑛
2: 𝐼1 ← 0
3: 𝐼2 ← 0
4: 𝜆*(𝑡,𝑋𝑡)← 𝜖

∑︀3
𝑖=1 |𝑋 𝑖

𝑡 |
5: for 𝑗 = 0, ..., 𝑛− 1 do
6: ∆𝑌𝑗 ← 𝑌𝑗+1 − 𝑌𝑗

7: end for
8: ∆𝑌 ← 1

𝑇

∑︀𝑇−1
𝑖=0 |∆𝑌𝑖| (As de�ned in (6.14))

9: for 𝑙 = 1, ..., 𝑛𝑠𝑖𝑚 do
10: for 𝑗 = 0, ..., 𝑇 − 1 do
11: if |∆𝑌𝑗| > ∆𝑌 + 𝜖* then
12: 𝐼1𝑗 ← log(𝜆*(𝑗,𝑋𝑗))
13: end if
14: end for
15: end for
16: 𝐼1 ←

∑︀𝑇−1
𝑗=0 𝐼1𝑗

17: 𝑆 ←
∑︀𝑛−1

𝑗=1

(︁
1− 𝜆*(𝑡𝑗, 𝑋𝑡𝑗)

)︁
18: 𝐼2 ← ∆𝑡

[︁
𝑆 +

{︁
1− 1

2

(︁
𝜆(0, 𝑋0) + 𝜆*(𝑡,𝑋𝑡𝑛)

)︁}︁]︁
19: 𝑍𝑇 ← exp(𝐼1 + 𝐼2)
20: Return 𝑍𝑇

6.2.1 Numerical results

When simulating the total claim amounts, we conduct the following steps:

Step 1: Create imaginary claims for a car insurance portfolio.
We simulate these claims by assuming we have a portfolio consisting of
the following:

∙ Let 𝐶= 10 000, where 𝐶 denotes the number of cars in our port-
folio.

∙ We let the average claim frequency be equal to 2%. That is, we let
𝜇 = 2%. This is denoted as the common claim frequency as given
in Example 5.2. In our simulations, this claim frequency will be
drawn for each day.

∙ Claim sizes are assumed to have an average of 10 000 NOK per
claim.

∙ We look at the development of total claim amount for 𝑇 = 500
days.

∙ Claim sizes are given in 10 000 NOK.
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As a result, we assume that out of 10 000 cars, 200 will make an
insurance claim, and we expect each claim to be 10 000 NOK. This
data is now considered as the information given by the observation
process, which has the �ltration ℱ𝑌

𝑇 .

Step 2: Simulate paths of the signal process.
Simulate 15 paths of the process 𝑋1 given by (6.22), using Algorithm 4
and the generated initial values 𝑋1

0 , 𝑋
2
0 , 𝑋

3
0 . By doing this, we acquire

15 paths of the integral de�ned in (6.5).

Step 3: Simulate the density process.
Using Algorithm 6, the simulated signal process and the observation
process, we simulate the density process (𝑍𝑡)0≤𝑡≤𝑇 .

Step 4: Obtain the optimal filter by Monte Carlo.
Having simulated the paths of the process 𝑋1 from step 2, we compute
⟨Ψ𝑡, 𝑓𝑖⟩, 𝑖 = 2, 3 and ⟨Ψ𝑡, 1⟩ as given in (6.19) and (6.20), respectively.
Once these have been computed, we obtain the optimal �lters

𝑋̂2
𝑡 = ⟨𝜋𝑡, 𝑓2⟩ and 𝑋̂3

𝑡 = ⟨𝜋𝑡, 𝑓3⟩, 0 ≤ 𝑡 ≤ 𝑇,

where (⟨𝜋𝑡, 𝑓𝑖⟩)𝑖=2,3 is given by (6.17).

Step 5: Simulate future paths of 𝑋1.
After obtaining the optimal �lters from step 4, we simulate future paths
of the process (𝑋1

𝑡 )0≤𝑡≤𝑇 * , which follows the dynamics given by (6.22):

𝑑𝑋1
𝑡 = 𝑑𝑋̂3

𝑡 (𝑋̂2
𝑡 −𝑋1

𝑡 )𝑑𝑡 + 𝑑𝐵𝑋,1
𝑡 , 0 ≤ 𝑡 ≤ 𝑇.

Step 6: Simulate future paths of the observation process.
Knowing the future paths of our signal process 𝑋, we obtain 15 future
paths for 𝜇*(𝑡). That is, we obtain

𝜇*(𝑗)(𝑡) =

∫︁ 𝑡

0

𝜆*(𝑠,𝑋(𝑗)
𝑠 )𝑑𝑠, 𝑗 = 1, 2, ..., 15, 0 ≤ 𝑡 ≤ 𝑇 *.

Based on these simulations, we obtain the simulated future values for
the observation process 𝑌 given by, for all 0 ≤ 𝑡 ≤ 𝑇 *,

𝑌
(𝑗)
𝑡 =

𝑁̃(𝜇*(𝑗)(𝑡))∑︁
𝑖=1

𝜉𝑖, 𝑗 = 1, 2, ..., 15, 𝜉𝑖 ∼ Gamma(1, 1),

where 𝑁̃(𝜇*(𝑡)) is given in (6.28). Hence, (𝑌𝑡)0≤𝑡≤𝑇 * is regarded as the
total claim amount at a future time 𝑡, where 0 ≤ 𝑡 ≤ 𝑇 *.

By step 1, we obtain the evolution of total claim amounts for the time interval
[0, 𝑇 ], shown in Figure 3.
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Figure 3: Evolution of total claim amount over 500 days.

For the simulations, 𝜖* was chosen rather arbitrarily, and was set equal to 4,
which gave 28 jumps in our model. In addition, 𝜖 was set equal to 0.001 in
order to avoid simulation problems with values that are too extreme.

When performing steps 2-6, we obtain 15 paths for

𝜇*(𝑗)(𝑡), 𝑗 = 1, 2, ..., 15, 0 ≤ 𝑡 ≤ 𝑇 *,

which is shown in Figure 4.
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Figure 4: 15 paths for 𝜇*(𝑡).
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The 15 paths of 𝜇*(𝑡) given in Figure 4 are simulated based on the optimal
�lters

𝑋̂2
𝑡 = 1.04275,

𝑋̂3
𝑡 = 0.8792897.

The average path for 𝜇*(𝑗)(𝑡), 0 ≤ 𝑡 ≤ 𝑇 *, 𝑗 = 1, 2, ..., 15 is shown by a thick
red line in Figure 5.
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Figure 5: Average path for 𝜇*(𝑡).

Continuing, we simulate 15 paths of the observation process 𝑌 , using the
simulated paths for 𝜇*(𝑗)(𝑡), 0 ≤ 𝑡 ≤ 𝑇 *, 𝑗 = 1, 2, ..., 15, in Figure 6.
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Figure 6: 15 simulated path for the observation process.

The average path for the 15 simulations of the observation process 𝑌𝑡, 0 ≤
𝑡 ≤ 𝑇 * is shown as a thick red line in Figure 7.
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Figure 7: Average path for 15 simulations of 𝑌𝑡, 0 ≤ 𝑡 ≤ 𝑇 *.

For comparison, we plot the �rst 200 days of claim sizes from step 1, 15
paths of the observation process 𝑌𝑡 for 0 ≤ 𝑡 ≤ 𝑇 * and the average of the
observation process, in Figure 8.
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Figure 8: The 15 simulated paths of 𝑌 for a future time [0, 200] are colored as

black, the average for the 15 simulated paths is plotted with a thick red color, and

the simulated claim sizes from step 1 is colored as green.

The simulations of our new model shows a fairly stable prediction of the total
claim amounts from step 1, as shown in Figure 8.

6.3 Conclusion

In this thesis we have developed a new stochastic model for modelling total
claim amounts in non-life insurance. We have introduced the necessary math-
ematical theory needed in connection with the development of our model.
Most importantly, we introduced theory for stochastic analysis, Lévy pro-
cesses and non-linear �ltering. Based on the framework of generalized Cox
processes, we were able to simulate a new model which can capture both
short term (by jump processes) and long term (by a discontinuous vector
�eld) shocks in the insurance market.

The simulations in Chapter 6 attempt to predict future values for total
claim amounts, based on insurance data given in the past. However, our
simulations are based on imaginary claims which are drawn from a Gamma
distribution. As a result, it may be di�cult to compare predicted values to
the given data, considering both are drawn from the same distribution. For
future work, it would be interesting to test our new model on real world insur-
ance data, to see whether the model accurately predicts total claim amounts.

A model which examines stochastic transition rates has been discussed in
Bølviken, Duedahl, Proske [6], which uses the concepts of non-linear �ltering
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techniques, but only applied in the realm of life insurance. By applying the
same ideas developed in Bølviken, Duedahl, Proske [6], we were able to de-
velop a new model in the realm of non-life insurance. Our new model is able
to capture regime switching e�ects from data, for example the occurrence of
natural disasters having a long-lasting impact, for example on the economy
of a country. Not only is the model able to capture shocks in the market
through regime switching and mean reversion as done in Chapter 6, it can
also capture di�erent phenomenons through the unknown parametrization
process. This makes the model quite �exible for the user.

To summarize; our new model is �exible to the user, meaning the user can
choose which phenomenons (types of jumps and switching between models
with di�erent types of jumps) they wish to capture. Even though we compare
predicted values to the given data where they both are drawn from the same
distribution, it is reasonable to conclude that our new model gives a stable
prediction of given insurance data. It remains for future work to implement
this model on real world insurance data and see if it gives good predictive
values in the long run.
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Chapter 7

Extensions

In this chapter we will look at extensions and future work that can be per-
formed on the model constructed in Chapter 6. This may be bene�cial in
order to capture di�erent scenarios occuring in the insurance market. Exam-
ples of such scenarios may be a �nancial crisis or the occurrence of war.

7.1 The signal process

The signal process 𝑋 is given by the dynamics

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵
𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇,

where 𝑏, 𝜎 are Borel functions and 𝐵𝑋
𝑡 , 0 ≤ 𝑡 ≤ 𝑇 is a Brownian motion.

Our model in Chapter 6 takes the following de�nitions for 𝑏 and 𝜎:

𝑏𝑖(𝑥) =

{︃
𝑥3(𝑥2 − 𝑥1) if 𝑖 = 1,

0 else.

𝜎𝑖,𝑗(𝑥) =

{︃
1 if 𝑖 = 𝑗 = 1,

0 else.
(7.1)

We will now examine di�erent choices for the coe�cients 𝑏 and 𝜎.

7.1.1 Choosing a different coefficient for 𝑏

The coe�cient 𝑏 can be changed from a mean reversion model to something
that captures di�erent shocks from the insurance market. As an example:
for all 0 ≤ 𝑡 ≤ 𝑇 , choose the following dynamics for 𝑋:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑋1
𝑡 =

(︁
𝑋3

𝑡 1(−∞,𝑋5
𝑡 ]

(𝑋1
𝑡 ) + 𝑋4

𝑡 1(𝑋5
𝑡 ,∞](𝑋

1
𝑡 )
)︁

(𝑋2
𝑡 −𝑋1

𝑡 )𝑑𝑡 + 𝑑𝐵𝑋,1
𝑡 ,

𝑑𝑋2
𝑡 = 0,

𝑑𝑋3
𝑡 = 0,

𝑑𝑋4
𝑡 = 0,

𝑑𝑋5
𝑡 = 0,

where 𝑋5
𝑡 is the threshold process to be estimated, and the initial values

𝑋1
0 , 𝑋

2
0 , 𝑋

3
0 , 𝑋

4
0 , 𝑋

5
0 for the dynamics of (𝑋 𝑖

𝑡)0≤𝑡≤𝑇 , 𝑖 = 1, 2, 3, 4, 5 are to be
generated from a distribution which is to be decided on beforehand.

7.1.2 Choosing a different coefficient for 𝜎

It would be interesting to allow the coe�cient 𝜎 to capture regime switching.
In other words, it would be interesting to capture regime switching through
the coe�cient 𝜎 by choosing 𝜎𝑖,𝑗 to be equal to something di�erent from (7.1).
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If however 𝜎 is discontinuous, a strong solution with respect to the stochastic
di�erential equation for the signal process does not in general exist. In this
case, there is no systematic theory for the construction of such solutions in
the current literature.

7.2 The observation process

The observation process in Chapter 6 is given by

𝑑𝑌𝑡 = ℎ(𝑡,𝑋𝑡)𝑑𝑡 + 𝑑𝐵𝑌
𝑡 +

∫︁
R𝑚
0

𝑧𝑁𝜆(𝑑𝑡, 𝑑𝑧), 0 ≤ 𝑡 ≤ 𝑇. (7.2)

In our simulations, we chose to let ℎ(𝑡, 𝑥) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ R𝑚, and we
also chose to ignore the Brownian motion in 𝑌 . For future work, it would
be interesting to let ℎ(𝑡, 𝑥) ̸= 0 and not ignore Brownian motion, to examine
how this would a�ect the simulations constructed in Chapter 6.

7.3 Claim size distribution

Naturally, for future work, it would be interesting to have real world insurance
data instead of simulated claims as demonstrated in Chapter 6. Besides
looking at real world insurance claims, it would be interesting to let the
claim sizes in (6.27) to follow either the log-normal or Pareto distribution.
Keep in mind that we simulated claims from an imaginary car insurance
portfolio. If one were to for example apply this model on a portfolio of
property insurance, it could be natural to let the claims follow the Pareto
distribution.

7.4 Calculating the reserve

For future work, it would be interesting to estimate the reserve for the sim-
ulated total claim amounts. That is, we calculate the reserve by looking at
the given total claim amount for a future time interval 0 ≤ 𝑡 ≤ 𝑇 *:

𝑌
(𝑗)
𝑡 =

𝑁̃(𝜇*(𝑗)(𝑡))∑︁
𝑖=1

𝜉𝑖, 𝑗 = 1, 2, ..., 15, 𝜉𝑖 ∼ Gamma(1, 1).

Using the simulations of the observation process given above, let

𝒳 (𝑗) = 𝑌
(𝑗)
𝑡

=

𝑁̃(𝜇*(𝑗)(𝑡))∑︁
𝑖=1

𝜉𝑖, 𝜉𝑖 ∼ Gamma(1, 1),

for the simulations 𝑗 = 1, 2, ..., 15. The reserve 𝑞
(𝑗)
𝜖 can then be calculated by

letting
Pr(𝒳 (𝑗) > 𝑞(𝑗)𝜖 ) = 𝜖,
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where 𝜖 is some small, positive number. The average reserve can be calculated
by

𝑞𝜖 =
1

15

15∑︁
𝑗=1

𝑞(𝑗)𝜖 .
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Appendix A - Calculations

8.1 A.1 - Chapter 3

A.1.1 - Proof of proposition 3.3

(i) We want to prove that
(︁

𝑒𝑖𝑢𝑋𝑡

E[𝑒𝑖𝑢𝑋𝑡 ]

)︁
𝑡≥0

is a martingale for all 𝑢 ∈ R. Denote

the function 𝑔 as the cumulant of 𝐿1, that is, 𝑔(𝑢) = logE[𝑒𝑖𝑢𝑋𝑡 ]. De�ne the
process 𝑀 = (𝑀𝑡)0≤𝑡≤𝑇 as

𝑀𝑡 =
𝑒𝑖𝑢𝑋𝑡

𝑒𝑡𝑔(𝑢)
.

By Theorem 3.2 in Cont, Tankov [7], we have that 𝑀𝑡 <∞ for all 0 ≤ 𝑡 ≤ 𝑇 .
Furthermore, we obtain the following:
For 0 ≤ 𝑠 ≤ 𝑡, we can re-write 𝑀𝑡 as

𝑀𝑡 =
𝑒𝑖𝑢𝑋𝑠

𝑒𝑠𝑔(𝑢)
𝑒𝑖𝑢(𝑋𝑡−𝑋𝑠)

𝑒(𝑡−𝑠)𝑔(𝑢)
= 𝑀𝑠

𝑒𝑖𝑢(𝑋𝑡−𝑋𝑠)

𝑒(𝑡−𝑠)𝑔(𝑢)

Using the property of independent increments, we can conclude

E
[︁
𝑀𝑡|ℱ𝑠

]︁
= 𝑀𝑠E

[︁𝑒𝑖𝑢(𝑋𝑡−𝑋𝑠)

𝑒(𝑡−𝑠)𝑔(𝑢)
|ℱ𝑠

]︁
= 𝑀𝑠𝑒

(𝑡−𝑠)𝑔(𝑢)𝑒−(𝑡−𝑠)𝑔(𝑢)

= 𝑀𝑠.

Hence 𝑀𝑡 is a martingale.

(ii) We want to prove that
(︁

𝑒𝑢𝑋𝑡

E[𝑒𝑢𝑋𝑡 ]

)︁
𝑡≥0

is a martingale, where 𝑢 ∈ R,

E[𝑒𝑢𝑋𝑡 ] < ∞ ∀𝑡 ≥ 0. Similarly to (i), denote the function 𝑔 as the cu-
mulant of 𝐿1, that is, 𝑔(𝑢) = logE[𝑒𝑢𝑋𝑡 ]. De�ne the process 𝑀 = (𝑀𝑡)0≤𝑡≤𝑇

as

𝑀𝑡 =
𝑒𝑢𝑋𝑡

𝑒𝑡𝑔(𝑢)
.

We obtain the following:
For 0 ≤ 𝑠 ≤ 𝑡, we can re-write 𝑀𝑡 as

𝑀𝑡 =
𝑒𝑢𝑋𝑠

𝑒𝑠𝑔(𝑢)
𝑒𝑢(𝑋𝑡−𝑋𝑠)

𝑒(𝑡−𝑠)𝑔(𝑢)
= 𝑀𝑠

𝑒𝑢(𝑋𝑡−𝑋𝑠)

𝑒(𝑡−𝑠)𝑔(𝑢)

Using the property of independent increments, we can conclude

E
[︁
𝑀𝑡|ℱ𝑠

]︁
= 𝑀𝑠E

[︁𝑒𝑢(𝑋𝑡−𝑋𝑠)

𝑒(𝑡−𝑠)𝑔(𝑢)
|ℱ𝑠

]︁
= 𝑀𝑠𝑒

(𝑡−𝑠)𝑔(𝑢)𝑒−(𝑡−𝑠)𝑔(𝑢)

= 𝑀𝑠.

Hence 𝑀𝑡 is a martingale.

(iii) We want to prove that if E[𝑋𝑡] < ∞ ∀𝑡 ≥ 0 then the process 𝑀𝑡 =
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𝑋𝑡 − E[𝑋𝑡] is a martingale.
We have for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 :

E[𝑀𝑡|ℱ𝑠] =E[𝑋𝑡|ℱ𝑠]− E[𝑋𝑡]

(Use the simple manipulation 𝑋𝑡 = 𝑋𝑡 + 𝑋𝑠 −𝑋𝑠)

=E[𝑋𝑡 −𝑋𝑠|ℱ𝑠] + 𝑋𝑠 − E[𝑋𝑡]

=E[𝑋𝑡]− E[𝑋𝑠] + 𝑋𝑠 − E[𝑋𝑡]

=𝑋𝑠 − E[𝑋𝑠]

Hence 𝑀𝑡 is a martingale.

(iv) We want to prove that the process (𝑀𝑡)
2 − E[(𝑀𝑡)

2] is a martingale.
We will use the result from (iii); that is, 𝑀𝑡 is a martingale with the prop-
erty of independent increments. For all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , we obtain:

E[(𝑀𝑡)
2 − E[(𝑀𝑡)

2]|ℱ𝑠] =E[(𝑀𝑡 −𝑀𝑠 + 𝑀𝑠)
2|ℱ𝑠]− E[(𝑀𝑡)

2]

=E[(𝑀𝑡 −𝑀𝑠)
2|ℱ𝑠] + 2E[𝑀𝑠(𝑀𝑡 −𝑀𝑠)|ℱ𝑠]

+ E[(𝑀𝑠)
2|ℱ𝑠]− E[(𝑀𝑡)

2]

=E[(𝑀𝑡 −𝑀𝑠)
2] + 2𝑀𝑠E[𝑀𝑡 −𝑀𝑠]

+ (𝑀𝑠)
2 − E[(𝑀𝑡)

2]

=E[(𝑀𝑡)
2]− 2E[𝑀𝑡𝑀𝑠] + E[(𝑀𝑠)

2]− E[(𝑀𝑡)
2]

+ 2𝑀𝑠

[︁
E[E[𝑀𝑡|ℱ𝑠]]− E[𝑀𝑠]

]︁
+ (𝑀𝑠)

2

=(𝑀𝑠)
2 − 2E[𝑀𝑠E[𝑀𝑡|ℱ𝑠]]E[(𝑀𝑠)

2]

=(𝑀𝑠)
2 − E[(𝑀𝑠)

2]

Hence for all 0 ≤ 𝑡 ≤ 𝑇 , (𝑀𝑡)
2 − E[(𝑀𝑡)

2] is a martingale. �

8.2 A.2 - Chapter 6

The Vasicek model.

The dynamics of the signal process 𝑋 is given by

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡, 0 ≤ 𝑡 ≤ 𝑇.

When we wish to capture mean reversion, we look at the Vasicek model in
chapter 6. Hence the dynamics of 𝑋 is now given by

𝑑𝑋𝑡 = 𝑎(𝑏1 −𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡, (8.1)

where 𝑎 is the mean reversion coe�cient and 𝑏1 is the stabilization level in
the long run. The equation (8.1) can be solved using Itô's formula given in
Theorem 2.5: De�ne 𝑓(𝑡, 𝑥) = 𝑒𝑎𝑡𝑥. This gives

(𝑖)
𝜕𝑓

𝜕𝑡
= 𝑎𝑒𝑎𝑡𝑥

(𝑖𝑖)
𝜕𝑓

𝜕𝑥
= 𝑒𝑎𝑡

(𝑖𝑖𝑖)
𝜕2𝑓

𝜕𝑥2
= 0.
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Applying Itô's formula yields

𝑑𝑓(𝑡,𝑋𝑡) = 𝑒𝑎𝑡𝑋𝑡 = 𝑎𝑋𝑡𝑒
𝑎𝑡𝑑𝑡 + 𝑒𝑎𝑡𝑑𝑋𝑡

= 𝑎𝑋𝑡𝑒
𝑎𝑡𝑑𝑡 + 𝑒𝑎𝑡𝑎(𝑏1 −𝑋𝑡)𝑑𝑡 + 𝑒𝑎𝑡𝜎𝑑𝐵𝑡

= 𝑎𝑏1𝑒
𝑎𝑡𝑑𝑡 + 𝑒𝑎𝑡𝜎𝑑𝐵𝑡.

On integral form, this becomes

𝑓(𝑡,𝑋𝑡) = 𝑒𝑎𝑡𝑋𝑡 = 𝑋0 + 𝑎𝑏1

∫︁ 𝑡

0

𝑒𝑎𝑠𝑑𝑠 + 𝜎

∫︁ 𝑡

0

𝑒𝑎𝑠𝑑𝐵𝑠.

Solving for 𝑋𝑡 yields

𝑋𝑡 = 𝑒−𝑎𝑡𝑋0 + 𝑎𝑏1

∫︁ 𝑡

0

𝑒−𝑎(𝑡−𝑠)𝑑𝑠 + 𝜎

∫︁ 𝑡

0

𝑒−𝑎(𝑡−𝑠)𝑑𝐵𝑠

= 𝑒−𝑎𝑡𝑋0 + 𝑎𝑏1
1

𝑎
(1− 𝑒−𝑎𝑡) + 𝜎

∫︁ 𝑡

0

𝑒−𝑎(𝑡−𝑠)𝑑𝐵𝑠

= 𝑒−𝑎𝑡𝑋0 + 𝑏1(1− 𝑒−𝑎𝑡) + 𝜎

∫︁ 𝑡

0

𝑒−𝑎(𝑡−𝑠)𝑑𝐵𝑠.
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Appendix B - Distributions

9.1 B.1 - The normal distribution

A random variable is said to be normally distributed if it has the probability
density function

𝑓(𝑥|𝜇, 𝜎2) =
1√

2𝜋𝜎2
exp

(︁−(𝑥− 𝜇)2

2𝜎2

)︁
,

where 𝜇 is the mean and 𝜎2 is the variance.
If 𝑋 is a random variable taking values in R and 𝑋 is normally distributed,
we write 𝑋 ∼ 𝑁(𝜇, 𝜎2).

9.2 B.2 - Poisson distribution

A random variable 𝑋, 𝑋 ∈ N ∪ {0} is Poisson distributed if it has the
probability mass function given by

𝑃 (𝑋 = 𝑘) =
𝜆𝑘

𝑘!
𝑒−𝜆, 𝑘 = 0, 1, ...,

where 𝜆 is the expectation and the variance. If 𝑋 is Poisson distributed, we
write 𝑋 ∼ Poisson(𝜆).

9.3 B.3 - Gamma distribution

Let 𝑋, 𝑋 ∈ R be a random variable. 𝑋 is Gamma distributed if it has the
probability density function given by

𝑓(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽, 𝑥 > 0,

with E(𝑋) = 𝛼𝛽 and var(𝑋) = 𝛼𝛽2.

9.4 B.4 - Pareto distribution

Random variables are said to be Pareto distributed if they have the density
function

𝑓(𝑥) =
𝛼/𝛽

(1 + 𝑥/𝛽)1+𝛼
, 𝑥 > 0,

with E(𝑋) = 𝛽
𝛼−1

and sd(𝑋) = E(𝑋)
√︀

𝛼
𝛼−2

.
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Appendix C - R-code

10.1 C.1 - Chapter 2

Simulating a stock price with brownian motion:

1 n = 1000
2 y = rnorm (n)
3 x = y
4
5 f o r ( i in 1 : n) {
6 x [ i ] = 1/ sq r t (n)* (sum(y [ 1 : i ] ) * s q r t ( i ) )
7 }
8
9 p lo t (x , type=" l " , xlab = "Time" , ylab = " Pr o f i t " , main =

"Evolut ion o f a s tock p r i c e with Brownian motion" )

10.2 C.2 - Chapter 5

Simulating the density function of claims that are log-normally distributed:

1 m = 1000
2 lambda = 10
3 x i = 0
4 sigma = 1
5 N = rpo i s (m, lambda )
6 X = 1 :m*0
7 f o r ( i in 1 :m) {
8 Z = rlnorm (N[ i ] , xi , sigma )
9 X[ i ] = sum(Z)
10 }
11 p l o t ( dens i ty (X) , main = "Density o f log−normal c la ims " ,

xlab = "" )

10.3 C.3 - Chapter 6

Simulating the Vasicek model:

1 #−−−−−−−−−−−−−−−−−−
2 # model parameters
3 #−−−−−−−−−−−−−−−−−−
4 X0 = 0.01
5 b1 = 0.05
6 a = 0.01
7 sigma = 0.0015
8 T0 = 700
9
10 #−−−−−−−−−−−−−−−−−−−−−−−−
11 # s imu la t i on parameters
12 #−−−−−−−−−−−−−−−−−−−−−−−−
13
14 N = 300
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15 nsim = 15
16 maturity = T0
17
18
19 dt = maturity / (N+1)
20 t ime l i n e = seq (0 , maturity , dt )
21
22 f = matrix (X0 , (N+2) , nsim )
23
24 vas i c ek_ra t e <− f unc t i on ( r , a , theta , sigma , dt ) {
25 expadt = exp(−a*dt )
26 v o l a t i l i t y = ( sigma^2)*(1−expadt ^2)/ (2*a )
27 r e s u l t = r* expadt+theta *(1−expadt )+sq r t ( v o l a t i l i t y )*

rnorm (1)
28 re turn ( r e s u l t )
29 }
30
31 f o r ( i in 2 : (N+2) ) {
32 f o r ( j in 1 : nsim ) {
33 f [ i , j ] = vas i c ek_ra t e ( f [ i −1, j ] , a , b1 , sigma , dt )
34 }
35 }
36
37
38 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 # p lo t o f i n t e r e s t r a t e s imu la t i on s
40 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41
42 p l o t ( t ime l ine , f [ , 1 ] , yl im=range ( 0 , 0 . 1 ) , type=" l " , c o l="

blue " , ylab="" , xlab = "Time" , main = " Simulat ions
o f Vasicek i n t e r e s t r a t e model" )

43 f o r ( j in 2 : nsim ) {
44 l i n e s ( t ime l ine , f [ , j ] , c o l=c o l o r s ( ) [ f l o o r ( r un i f ( 1 , 1 , 657 )

) ] )
45 }
46 ab l i n e ( h = b1 , c o l = " red " , lwd=2)
47
48 mean_f = vecto r (mode = "numeric " , l ength = T0)
49 f o r ( j in 1 :T0) {
50 mean_f [ j ] = mean( f [ j , ] )
51 }
52 p l o t (mean_f , type=" l " , yl im=range ( −0 .1 ,0 .5 ) , main = "

Average o f 15 s imu la t i on s o f the Vasicek i n t e r e s t
model" , ylab = "" , xlab = "Time" )

53 ab l i n e ( h = b1 , c o l = " red " )
54 l i n e s (mean_f , c o l=" black " )

Simulating our new stochastic model:

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 #Simulat ing c la im s i z e data f o r 500 days
3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 days = 500
5 ClaimSize = vec to r (mode="numeric " , l ength = days )
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6 temp = vecto r (mode="numeric " , l ength = 1)
7
8 expectedCla imSize = 1
9 expectedClaimFrequency = 2
10
11 f o r ( i in 1 : days ) {
12 f o r ( j in 1 : 1 ) {
13 N = rpo i s (1 , expectedClaimFrequency )
14 temp [ j ] = 0
15 f o r ( k in 1 :N) {
16 Z = rgamma(1 , expectedCla imSize )
17 temp [ j ] = temp [ j ] + Z
18 }
19 }
20 ClaimSize [ i ] = mean( temp)
21 }
22
23 p l o t ( ClaimSize , type = " l " , xlab ="Time" , ylab = "Total

c la im amount" )
24
25 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 #Creat ing our obse rvat i on proce s s
27 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 Y = c ( )
29 Y = ClaimSize
30 nsim = 15 #Number o f s imu la t i on s
31 T = days #Fina l time in our i n t e r v a l
32 N = 500 #Number o f s t ep s in the i n t e r v a l [ 0 ,T]
33 dt = T/N #Step s i z e
34 de l t a_Y = c ( )
35 de l t a_Y[ 1 ] = Y[ 1 ] #Simply the f i r s t va lue from the

obse rvat i on proce s s
36
37 f o r ( i in 1 : ( l ength (Y)−1) ) {
38 de l t a_Y[ i +1] = Y[ i+1]−Y[ i ]
39 } #Creat ing de l t a_Y vecto r
40
41 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 #Simulate the c o e f f i c i e n t s in the Vasicek model
43 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44
45 L = 100 #Number o f t imes we s imulate nsim
46 X1 = array (0 , c (N, nsim ,L) )
47 X2 = array (0 , c (1 , nsim ,L) )
48 X3 = array (0 , c (1 , nsim ,L) )
49
50 #Choose the i n i t i a l va lue s accord ing to the Gamma

d i s t r i b u t i o n and i n s e r t i n g in to the s i g n a l p roce s s
51
52 #In s e r t i n g the i n i t i a l va lue s in to the s i g n a l p roce s s
53 f o r ( i in 1 :L) {
54 f o r ( j in 1 : nsim ) {
55 X1 [ 1 , j , i ] = rgamma(1 , 1 )
56 X2 [ 1 , j , i ] = rgamma(1 , 1 )
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57 X3 [ 1 , j , i ] = rgamma(1 , 1 )
58 }
59 }
60
61 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62 #Simulat ing the Brownian motion part
63 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 B_t = array (0 , c (N, nsim ,L) )
65 f o r ( l in 1 :L) {
66 f o r ( i in 1 : nsim ) {
67 dB_t = rnorm (T, 0 , 1 ) * s q r t ( dt ) #Standard Brownian motion

with mean 0 and var iance 1
68 f o r ( j in 1 : (T−1) ) {
69 B_t [ j +1, i , l ] = B_t [ j , i , l ] + dB_t [ j ]
70 }
71 }
72 }
73
74 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 #Simulate nsim paths o f X1 , L t imes
76 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77
78 f o r ( l in 1 :L) {
79 f o r ( i in 1 : nsim ) {
80 f o r ( j in 1 : (T−1) ) {
81 X1 [ j +1, i , l ] = X1 [ j , i , l ] + X3 [ 1 , i , l ] * (X2 [ 1 , i , l ]−X1[ 1 , i , l

] ) *dt + B_t [ j , i , l ] * s q r t ( dt )
82 }
83 }
84 }
85
86 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 #Lambda func t i on
88 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 ep s i l o n = 0.001
90 lambda <− f unc t i on ( eps i l on , t ,X_1 ,X_2 ,X_3) {
91 ep s i l o n * ( abs (X_1)+abs (X_2)+abs (X_3) )
92 }
93
94 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 #Def in ing f ( x )
96 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97 f <− f unc t i on (x ) {
98 x
99 }
100
101 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

102 #Simulat ions o f the dens i ty p roce s s Z_t , as g iven by
algor i thm 6

103 #
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

104
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105 #Def in ing the jump given by I1 in ( 6 . 3 1 )
106
107 ep s i l o n_s t a r = expectedClaimFrequency*2 #Chosen in

order to g ive g ive a s t ab l e p r ed i c t i o n
108 mean_de l t a_Y = mean( abs ( de l t a_Y) )
109 th r e sho ld = mean_de l t a_Y + ep s i l o n_s t a r #We have a jump

i f abs ( de l t a_Y[ i ] ) > thre sho ld
110 jump_counter = 0 #Count the number o f jumps occur r ing
111 I1temp = matrix ( 0 , ( l ength ( t ) ) , nsim )
112
113 #Count the number o f jumps
114 f o r ( j in 1 : l ength ( t ) ) {
115 i f ( abs ( de l t a_Y[ j ] ) > thre sho ld ) {
116 jump_counter = jump_counter+1
117 }
118 }
119
120 #Compute I1 g iven by ( 6 . 3 1 )
121 I1 = array (0 , c (1 , nsim ,L) )
122 f o r ( l in 1 :L) {
123 f o r ( i in 1 : nsim ) {
124 f o r ( j in 1 : (T−1) ) {
125 i f ( abs ( de l t a_Y[ j ] ) > thre sho ld ) {
126 I1 [ 1 , i , l ] = I1 [ 1 , i , l ] + log ( lambda ( eps i l on , 1 ,X1 [ j +1, i , l

] ,X2 [ 1 , i , l ] ,X3 [ 1 , i , l ] ) )
127 }
128 }
129 }
130 }
131
132 #Compute I2 g iven by ( 6 . 3 1 ) us ing the t r ap e z o i d a l r u l e
133 I2 = array (0 , c (1 , nsim ,L) )
134 f o r ( l in 1 :L) {
135 f o r ( i in 1 : nsim ) {
136 I2 [ 1 , i , l ] = dt* ((1−0.5* lambda ( eps i l on , 1 ,X1 [ 1 , i , l ] ,X2 [ 1 ,

i , l ] ,X3 [ 1 , i , l ] ) )−0.5* lambda ( eps i l on , 1 ,X1 [T, i , l ] ,X2
[ 1 , i , l ] ,X3 [ 1 , i , l ] ) ) + dt*sum(1−lambda ( eps i l on , 1 ,X1 [ ,
i , l ] ,X2 [ 1 , i , l ] ,X3 [ 1 , i , l ] ) )

137 }
138 }
139
140 #Obtain Z_t
141 Z_t = array (0 , c (1 , nsim ,L) )
142 f o r ( l in 1 :L) {
143 f o r ( i in 1 : nsim ) {
144 Z_t [ 1 , i , l ] = exp ( I1 [ 1 , i , l ]+ I2 [ 1 , i , l ] )
145 }
146 }
147
148 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

149 #Compute the optimal f i l t e r s f o r X1 , X2 and X3 by
( 6 . 1 9 ) and ( 6 . 2 0 )
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150 #
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

151
152 p i_2 = matrix (0 , 1 ,L)
153 p i_3 = matrix (0 , 1 ,L)
154
155 f o r ( l in 1 :L) {
156 Psi1_t = sum(Z_t [ 1 , , l ] ) #Here f ( x ) = 1
157 Psi2_t = sum(Z_t [ 1 , , l ] *X2 [ 1 , , l ] )
158 Psi3_t = sum(Z_t [ 1 , , l ] *X3 [ 1 , , l ] )
159
160 #Compute X2_hat and X3_hat , as in s tep 4 in s e c t i o n

6 . 2 . 1
161 p i_2 [ 1 , l ] = Psi2_t /Psi1_t
162 p i_3 [ 1 , l ] = Psi3_t /Psi1_t
163 }
164
165 X2_hat = sum( pi_2) / l ength ( p i_2)
166 X3_hat = sum( pi_3) / l ength ( p i_3)
167
168 l i n e s ( p i_2 [ , ] , type = " l " , xlab = "Simulat ion nr

1 , 2 , . . . , 1 5 " , ylab = " pi_2" )
169 l i n e s ( p i_3 [ , ] , type = " l " , xlab = "Simulat ion nr

1 , 2 , . . . , 1 5 " , ylab = " pi_3" )
170
171
172 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
173 #Simulate nsim paths o f X1
174 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175
176 T_s t a r = 200 # We s imulate 200 days in to the fu tu r e
177 N_new = 200
178 dt = T_s ta r /N_new
179 X1_new = matrix (0 ,N_new+1,nsim )
180
181 #In s e r t i n i t i a l va lue s
182 f o r ( i in 1 : nsim ) {
183 X1_new [ 1 , i ] = rgamma(1 , 1 )
184 }
185
186 #Simulat ing Brownian motion as be f o r e
187 B_t_new = matrix (0 ,N_new , nsim )
188 f o r ( i in 1 : nsim ) {
189 dB_t_new = rnorm (N_new−1 ,0 ,1)* s q r t ( dt ) #Standard

Brownian motion with mean 0 and var iance 1
190 f o r ( j in 1 : (N_new−1) ) {
191 B_t_new [ j +1, i ] = B_t_new [ j , i ]+dB_t_new [ j ]
192 }
193 }
194
195 f o r ( i in 1 : nsim ) {
196 f o r ( j in 1 :N_new) {
197 X1_new [ j +1, i ] = X1_new [ j , i ] + X3_hat* (X2_hat−X1_new [ 1 , i
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] ) *dt+B_t_new [ j , i ] * s q r t ( dt )
198 }
199 }
200 X1_0 = rgamma(1 , 1 ) #I n i t i a l va lue f o r the s i g n a l

p roce s s X1
201
202 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
203 #Simulate the obse rvat i on proce s s Y f o r [ 0 ,T_s t a r ]
204 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
205
206 #Compute mu_s t a r as in ( 6 . 2 8 )
207 mu_s t a r = matrix (0 ,T_s t a r +1,nsim )
208 f o r ( i in 1 : nsim ) {
209 f o r ( j in 1 :T_s t a r ) {
210 mu_s t a r [ j +1, i ] = mu_s t a r [ j , i ] + ( dt/ 2)* ( lambda ( eps i l on ,

i ,X1_new [ j , i ] ,X2_hat ,X3_hat )+ lambda ( eps i l on , i ,X1_
new [ j +1, i ] ,X2_hat ,X3_hat ) )

211 }
212 }
213 p lo t (mu_s t a r [ 1 , ] , type =" l " )
214 f o r ( i in 1 : nsim ) {
215 l i n e s (mu_s t a r [ i , ] , y lab = "mu_s t a r " , xlab = "Time" )
216 }
217 p lo t (mu_s t a r [ , 1 ] , type=" l " , xlab = "Time" , ylab = "mu_

s t a r " )
218 f o r ( i in 2 : nsim ) {
219 l i n e s (mu_s t a r [ , i ] , type =" l " , xlab = "Time" , ylab = "mu

_s ta r " )
220 }
221 mean_mu_s ta r = matrix (0 ,T_star , nsim )
222 f o r ( i in 1 : nsim ) {
223 f o r ( j in 1 :T_s t a r ) {
224 mean_mu_s ta r [ j ] = mean(mu_s t a r [ j , ] )
225 }
226 }
227
228 l i n e s (mean_mu_s t a r [ , 1 ] , c o l = " red " , lwd=1)
229
230 Y_t = matrix (0 ,T_star , nsim )
231
232 p lo t (Y_t , type=" l " )
233
234 Y_t = matrix (0 ,T_star , nsim )
235 mean_Y_t = vecto r (mode = "numeric " , l ength = T_s ta r )
236 mean_Y_t = matrix (0 ,T_star , nsim )
237
238 #Y_t [ 1 , ] = ClaimSize [ 1 ]
239 f o r ( i in 1 :T_s t a r ) {
240 f o r ( j in 1 : nsim ) {
241 M = rpo i s ( 1 , (mu_s t a r [ i , j ]−mu_s ta r [ i , j ] ) )
242 Y_t [ 1 , j ] = ClaimSize [ 1 ]
243 f o r ( k in 1 :M) {
244 Z = rgamma(1 , expectedCla imSize )
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245 Y_t [ i , j ] = Y_t [ i , j ] + Z
246 }
247 }
248 }
249
250 #Plo t t i ng the average o f Y_t
251 f o r ( i in 1 : nsim ) {
252 f o r ( j in 1 :T_s t a r ) {
253 mean_Y_t [ j ] = mean(Y_t [ j , ] )
254 }
255 }
256 p lo t (mean_Y_t )
257
258 p lo t (Y_t [ , 1 ] , type = " l " , xlab = "Time" , ylab = "Y_t" ,

ylim = c (0 ,14 ) )
259
260
261 f o r ( i in 2 : nsim ) {
262 l i n e s (Y_t [ , i ] , type =" l " , xlab = "Time" , ylab = "Y_t" ,

ylim = c (0 ,14 ) )
263 }
264
265 l i n e s (mean_Y_t [ , 1 ] , c o l =" red " , lwd = 2)
266 ClaimSizeFirst200Days = c ( )
267 f o r ( i in 1 : 200 ) {
268 ClaimSizeFirst200Days [ i ] = ClaimSize [ i ]
269 }
270 l i n e s ( ClaimSizeFirst200Days , type = " l " , c o l ="blue " ,

ylim = c (0 ,14 ) )
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