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Abstract

Longitudinal data arise when repeated measurements are taken on individuals over
time. Commonly used models for such data are multivariate linear models, linear
mixed effect models and generalised linear mixed models. This thesis begins by
providing a detailed overview of these classes of models within the context of lon-
gitudinal data. Attention is then turned to model selection for such data. When
selecting between models, one typically aims to come as close as one may to the un-
derlying truth, without regard to the particular questions of interest. In contrast, the
focussed information criterion (FIC) (Claeskens & Hjort 2003) approaches model se-
lection with the goal of answering specific questions as accurately as possible. In this
thesis, a multivariate slightly misspecified framework is put forward, within which
the FIC is applicable as a covariate selector for multivariate linear models, linear
mixed effect models, and generalised linear mixed models. Alternative approaches
to focussed model selection for multivariate linear models and a selection of quantit-
ies of interest are also formulated.
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Chapter 1

Introduction

1.1 Longitudinal and clustered data
Longitudinal data arise when measurements are taken repeatedly on the same sub-
ject or individual throughout time (Fitzmaurice et al. 2004a). For example, individu-
als randomised to different treatment groups may be observed on several occasions.
Such a setting results in the measurements of any individual having temporal correl-
ation, which must be accounted for in a statistical analysis (Laird & Ware 1982).

Similarly, clustered data are a more general form of longitudinal data. A com-
monly used example of non-longitudinal clustered data is exam results of students
from different classes. The results of students within the same class are more likely,
in comparison with students of different classes, to be similar. Thus, in this example,
the class forms a cluster and the students form the units within each cluster. For
longitudinal data, the repeated measurements of an individual form the units, and the
individuals the clusters. In the school example, the within-cluster correlations are not
temporal, but are still very much present.

In the regression setting, conceptually, independence means that, once having
accounted for a principle set of variables, the connection or similarity between out-
comes is considered weak or distant enough for any similarity between them to be
attributable to chance. For longitudinal data, the measurements of different individu-
als, may (in general) be considered independent. For clustered data, the different
clusters (i.e. the classes in the school example) may be considered independent. The
within-cluster units, or within-individual measurements may not.

1.2 Model selection
For clustered or longitudinal data, multivariate linear regression, linear mixed effect
models, generalised linear mixed models, and marginal models are commonly used
classes of models. However, even within a given class, there is not just one model
from which to draw conclusions. Generally, there is a list of competing models from
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which to choose, though this can often be shortened to some extent by consider-
ing what assumptions may be appropriate at the outset. The design of a study will
also inform (or even determine) the form of a mean structure prior to model selec-
tion (Stroup 2012). Nevertheless, the statistician is regularly placed in a position of
choice: is this model any better than the next? Combining the results from all models
is also possible (Claeskens et al. 2008, Ch. 7), but how much should each model be
relied upon?

A standard approach to model selection is to find the model which comes as
close to the true data generating mechanism as possible. This is directly targeted
by the Akaike information criterion (AIC), whose theoretical basis is in minimising
the statistical distance from the true model (Claeskens et al. 2008, p.30). Selection
of covariates via hypothesis tests (e.g. Wald or likelihood ratio tests) is also a com-
monly used means of model selection. The conditional AIC (cAIC) is an alternative
information criterion for selection between mixed effect models (i.e. linear mixed
effect models or generalised linear mixed models), whose goal is the same as that of
the AIC but suitable when the focus of inference is at the level of a cluster, rather
than the level of the population (Vaida & Blanchard 2005).

The focussed information criterion (FIC) (Claeskens & Hjort 2003, Claeskens
et al. 2008) approaches model selection from a focussed point of view. Research in
any field attempts to address specific questions which, in the sphere of parametric
models, can be formulated as mathematical expressions in terms of parameters. The
goal of the FIC is to estimate the parameters of interest as precisely as possible,
thereby answering research questions as accurately as one may.

In longitudinal studies, there are specific questions to be addressed. Typically,
variance-covariance or scale parameters are treated as nuisance parameters, and hy-
potheses addressing these questions can be formulated in terms of the regression
coefficients (Fitzmaurice et al. 2004a). Questions such as, ‘Is there a positive trend
with time?’, and ‘Are the mean slopes of these two treatment groups parallel?’ are
frequently of interest (Fitzmaurice et al. 2004a). Thus, a focussed approach to model
selection for longitudinal data is conceptually suitable, and is the main topic of this
thesis.

The FIC, as formulated in Claeskens & Hjort (2003), is designed for independ-
ent data, though it is noted in Claeskens et al. (2008, p.259) that the extension to
multivariate models is straightforward (and hence also for models of longitudinal
data). FIC formula are also given in Cunen et al. (2017, 2018) for linear mixed effect
(LME) models with an application to whale ecology. A quasi-FIC (QFIC) and associ-
ated model averaging schemes have also been introduced for selection of covariates
in marginal models (which involve generalised estimating equations) for clustered
data (Yang et al. 2017).
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1.3 Structure of thesis
This thesis is structured as follows. In Chapter 2, a comprehensive overview of linear
models for longitudinal data with and without random effects is given. That is, lin-
ear models (LMs) without random effects and linear mixed effect (LME) models are
discussed in the context of longitudinal data, with a psychological clinical trial data-
set used as an illustration. Chapter 3 gives an overview of generalised linear mixed
models (GLMMs), with an application to binary longitudinal data. Chapter 4 begins
with introducing the FIC for independent data as in Claeskens & Hjort (2003). Then,
how the FIC is applicable to multivariate models of clustered (and in particular lon-
gitudinal) data within a slightly misspecified framework is made explicit. Examples
are then given for multivariate linear regression and for a logistic GLMM. Lastly,
in Chapter 5, alternative methods to arrive at focussed model selection formulae for
linear models and a subset of quantities of interest are derived.

The focus of application in this thesis is on longitudinal data. All of the theory,
however, is applicable to clustered data. Therefore in application, (since it is gener-
ally people that are studied over time) the term ‘individual’ will be used instead of
the term ‘cluster’. With the exception of Chapter 2, which also lays out particular
features of longitudinal data, the term ‘clusters’ will be used for the theoretical parts
that are relevant to both longitudinal and clustered data.
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Chapter 2

Linear Regression for Longitudinal
Data

This chapter discusses linear regression for longitudinal data. The first part deals
with linear regression without random effects and is based upon Chapters 2-7 of
Fitzmaurice et al. (2004a). The second part discusses linear mixed effect (LME)
models and is sourced from Bryk & Raudenbush (1992) and Galecki & Burzykowski
(2013). Estimation and model diagnostics are then discussed for both classes of
models simultaneously. Finally, a real data set is used to illustrate the LME model in
action.

2.1 Linear regression for longitudinal data

Linear regression is one of the most commonly used statistical models. The principal
assumption of ordinary linear regression is that the errors are independent of each
other. This is reasonable in many situations. However, when the data exhibits a
clustered structure, as is the case for longitudinal data where repeated measurements
are clustered within individuals, this assumption is unacceptable. This is due to there
being dependency between measurements: given an individual’s measurement at one
point in time, we have information on the same individual’s measurement at another
point in time.

Assuming independence between individuals (clusters) i = 1, ..., N , but not
between the ni measurements (units) for a given individual (cluster), the linear model
(LM) for longitudinal (or clustered) data is

yi = X iβ + εi, εi ∼ Nni(0,Σi(θ)), (2.1)

where yi is the ni× 1 vector of continuous responses for the ith individual;X i is an
ni × p design matrix for the ith individual; β is a p × 1 vector of regression coeffi-
cients; and εi is the ni × 1 vector of random errors for the ith individual, which is
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assumed to be normally distributed, mean zero, with a positive semi-definite, sym-
metric variance-covariance matrix Σi(θ), itself dependent upon parameters θ.

Typically, the first column of the design matrix will consist of a column of ones
(the intercept term), and each remaining column of the design matrix will correspond
to a particular covariate or interaction between covariates. Generally, it is the regres-
sion coefficients that are of primary interest, as many scientific hypotheses can be
formulated in terms of the regression coefficients.

Note that linear regression for uncorrelated data and homogeneous variance
(when Σi = σ2I) is a special case of the LM (2.1). In fact, the variance-covariance
matrix Σi(θ) specifies the correlation of within-individual measurements, an im-
portant feature of longitudinal modelling. This variance-covariance matrix can be
modelled in different ways. The inclusion of random effects in the mean structure
implicitly induces a structure on the covariance. Alternatively, certain structures can
be explicitly imposed upon Σi, which usually exploit some pattern in the repeated
measurements.

The variance-covariance matrix Σi(θ) need not vary between individuals when
the study design is balanced and there is complete data. That is, the subscript i
may be dropped and it may be assumed that all individuals share the same variance-
covariance. Furthermore, notice that the between-individual measurements are as-
sumed to be independent. This is usually a sound assumption to make as the meas-
urements of different individuals within a study do not usually influence one another.
There are exceptions to this, however. For example, if two participants are living in
the same household.

2.2 Modelling the mean
The mean trend of a response over time can be modelled in one of two different ways:
treating time as discrete, or as continuous. With time continuous, the mean structure
is a parametric or semi-parametric function of time (e.g. linear, or piece-wise linear),
and relatively few parameters are required regardless of the number of measurement
occasions.

2.2.1 Parametric trends
Consider the situation where we have two groups (e.g. girls and boys) measured for
the same outcome on multiple occasions. If the change in mean response over time
seems to be constant for both groups, though at possibly different rates, the following
model for the mean response could be insightful:

E[yij] = β0 + β1groupi + β2tij + β3tijgroupi,

for i = 1, ..., N , j = 1, ..., ni; where groupi is an indicator variable (taking values 0
or 1) for the group of individual i; tij is the time at occasion j (the subscript i allows
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individuals to have different sets of times i.e. an unbalanced design); and the third
term is an interaction between time and group. So, a β3 significantly different from
zero would indicate a significant difference in rate of linear change in response over
time between the two groups.

The same model given in terms of the matrix formulation of (2.1) is

E


 yi1

...
yini


 =

1 groupi ti1 ti1groupi
...

...
...

...
1 groupi tini tinigroupi



β0

β1

β2

β3


Note that, above, the two groups are modelled to have different mean outcomes at
baseline. That is, when t = 0, the reference group has mean baseline score β0 and
the non-reference group a mean score of β0 + β1. Such an assumption is reasonable
at the outset in an observational study, where individuals are grouped according to
naturally existing characteristics. But in studies where individuals are randomised to
different groups after baseline measurement e.g. treatment and placebo, there is no
reason to assume different baseline scores; the means can be assumed to coincide.

Another important assumption of the model is that there is linear change in
the response variable over time for both groups. Such an assumption may not be
appropriate if the mean profiles do not change at a constant rate. In such cases, a
model with quadratic time may be appropriate. For example,

E[yij] = β0 + β1groupi + β2tij + β3t
2
ij + β4tijgroupi + β5t

2
ijgroupi,

for i = 1, ..., N , j = 1, ..., ni; where β3 is now the mean change in response for the
reference group for every unit change in time squared; and β5 an interaction term
between group and time squared. Such a model allows a convex or concave change
in the mean response over time at different rates for both groups.

It should be noted that introducing a quadratic term (or higher order term) for
time results in colinearity between predictors. Time and time squared will be almost
perfectly correlated which can lead to computational problems. It is wise to centre
the variable time to avoid such an issue. Choice of centering is not usually a problem
in balanced designs: the mean time will suffice. But in unbalanced designs, the mean
time may not have a clear interpretation for all individuals (as not all individuals may
have been participating in the study at the mean time), and so a meaningful value for
all individuals may be chosen.

One can easily imagine how these models generalise to multiple categorical or
continuous covariates. Higher order polynomials in time and randomly-varying (with
time) covariates are also possible, but the interpretation of regression coefficients
becomes more challenging.
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2.2.2 Semi-parametric trend
An alternative to assuming a smooth change in mean response over the whole study
period is to assume piece-wise smoothness. That is, to break the study period up into
sections, and to assume a parametric trend (usually defined by a polynomial) over
each individual section.

For example, suppose there is a sharp change in behaviour in the mean response
at time u. Then the model for the mean response could be

E[yij] = β0 + β1groupi + β2tij + β3(tij − u)+ + β4tijgroupi + β5(tij − u)+groupi,

for i = 1, ..., N , and j = 1, ..., ni, where (tij−u)+ equals (tij−u) if u ≥ tij and zero
otherwise. The first term captures the mean baseline score of the reference group;
β0+β1 the mean baseline score of the non-reference group; β2 the change in response
of the reference group induced by a unit increase in time prior to time u; β2 + β3 is
the effect of a unit increase in time on the response of the reference group after time
u; β4 is the additional change in response for the non-reference group before time
u (in comparison with the reference group); and β4 + β5 is the additional change in
response of the non-reference group after time u.

The above model assumes linear change in response before and after time u for
both groups, though the slopes of any group need not be the same before and after
time u. The time u in this model, where the joining of two differentiable curves meet,
is known as a knot. There are methods to decide on the best locations for the knots
of any model, but this will not be discussed in this thesis.

2.3 Modelling the covariance
In longitudinal studies, there are typically three sources of variability. The first is
between-subject variability, which is simply that there will be a spread in response
tendencies among participants. Some individuals will tend to have an above aver-
age response, some below average, and others somewhere in the middle. The second
source is within-subject variability. This source accounts for the fact that the underly-
ing process being measured for any individual (be it biological, psychological etc.) is
constantly undergoing change. Because of this, there will be fluctuations in response
over time for any given individual. The third source of variability is measurement
error. Conceptually, this source of error is that even when two measurements are
taken as close together in time as possible, such that one would expect identical res-
ults to be produced, the results are still not totally consistent due to the measurement
instrument being used. When the instrument of measurement is a psychometric test,
for example, this can be a substantial source of error.

These factors account in different ways for the general characteristics of correl-
ation between repeated measures in longitudinal studies. The correlations between
repeated measures for a given individual arising in such studies:
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• are positive,

• generally decrease as time between measurements increases,

• rarely approach zero, no matter how much time has passed between measure-
ments,

• rarely approach one, no matter how little time between measurements.

Why is it important to take into account correlation between measurements? If
positive correlations between measurements are not taken into account, estimates of
the variance (or variances if allowing for heterogeneity) will be inflated. These incor-
rectly estimated variances influence the standard errors of the regression coefficients
and thereby affect statistical inference. So, failure to account for correlation between
measurements results in faulty inference.

But the correlation between measurements is not a nuisance; it is the strength
of a longitudinal study. Being able to account for the positive correlation results in
more efficient estimates of the mean response at each occasion. In effect, the models
taking into account correlation borrow information from all occasions to obtain more
precise estimates of the mean response. This results in smaller standard errors for
the regression parameters and thereby greater power to detect the effect of covariates
on changes in the response over time. In this way, longitudinal studies capitalise
on correlated measurements, a feature not possible in comparison of two separate
cohorts in a cross-sectional study for example.

There are two options for modelling the covariance: to leave the matrix un-
structured (but necessarily still symmetric and semi-positive definite) or to apply a
structure. The application of a structure can either be done directly via variance-
covariance pattern modelling, or indirectly through the introduction of random ef-
fects. First, variance-covariance pattern models will be discussed. Linear models
with random effects will be discussed subsequently.

2.3.1 Examples of variance-covariance pattern models
Leaving the covariance matrix unstructured (aside from the symmetry and semi-
positive definite requirements) may be suitable when the design is balanced and there
are few measurement occasions. However, since n variance parameters and n(n−1)

2

covariance parameters are required (where n is the number of measurement occa-
sions), various patterns are generally applied (especially when n is large) to reduce
the parameter burden. In the following, ρ is assumed to be a parameter in the interval
[0,1).

The compound symmetric structure is conceptually suited to studies where the
ordering of within-cluster measurements does not matter (not the case for longitud-
inal studies) as the correlation between any pair of measurements is the same. The
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compound symmetric structure is

Cov(εi) = σ2


1 ρ · · · ρ ρ
ρ 1 · · · ρ ρ
...

... . . . ...
...

ρ ρ · · · 1 ρ
ρ ρ · · · ρ 1

 , (2.2)

where σ2 is the variance which is assumed homogeneous across measurements. We
will see this structure again later in this chapter, as it arises naturally when individual-
specific random intercepts are introduced.

The auto-regressive structure assumes a Markov-type dependency on the errors:
that the errors at one occasion depend upon the errors at the previous occasion, and
thus correlations decay with time. The system of equations (e.g. Cressie & Wikle
2011, p.87) relating each error to the previous error is

εij = ρεij−1 + σwij, j = 2, ..., ni

εi1 ∼ N(0, σ2),

where wij are N(0, (1 − ρ2)) random variables. When this structure is imposed on
the errors, their variance-covariance matrix becomes

Cov(εi) = σ2


1 ρ · · · ρn−2 ρn−1

ρ 1 · · · ρn−1 ρn−2

...
... . . . ...

...
ρn−2 ρn−1 · · · 1 ρ
ρn−1 ρn−2 · · · ρ 1

 ,

which only requires two parameters, and where n is the number of measurements.
The Toeplitz covariance pattern

Cov(εi) = σ2


1 ρ1 · · · ρn−2 ρn−1

ρ1 1 · · · ρn−1 ρn−2
...

... . . . ...
...

ρn−2 ρn−1 · · · 1 ρ1

ρn−1 ρn−2 · · · ρ1 1


assumes that pairwise measurements equally distant in time share the same pairwise
correlations (0 ≤ ρ1, ..., ρn−1 < 1).

The exponential covariance structure generalises the auto-regressive structure to
settings where the time between measurement occasions are not necessarily evenly
spaced. The covariance between the jth and kth response for subject i is of the form

Cov(εij, εik) = σ2ρ|tij−tik|,
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which implies exponential decay in correlation between measurements with the pro-
gression of time.

In spatial statistics, a nugget effect is often included to account for discontinuit-
ies in the correlation function at the origin (Cressie & Wikle 2011, p.123). That is,
whenever one moves the smallest of distances from one location to a new location,
there will a drop in correlation between measurements at both locations. In this way,
measurements at two different locations are modelled as never perfectly correlated.
Although I have not seen this in longitudinal literature yet, the same principle can be
applied to longitudinal data where the only ‘spatial’ dimension is time. When the dif-
ference in time between two measurements is zero (i.e. it is the same measurement),
there is perfect correlation between two measurements. But when there is even the
smallest of time lags between measurements, the correlation can no longer be per-
fect. In this manner, the nugget effect can account for the fact that no measurement
instrument is totally reliable and/or that there is within-individual variability in the
response.

For example, the nugget effect, κ, can be added to the exponential correlation
pattern as

Corr(εij, εik) =

{
(1− κ)ρ|tij−tik|, if |tij − tik| ≥ 0,

1, if |tij − tik| = 0,

with 0 < κ < 1 small.
Note that a nugget effect is already implicitly implied for non-continuous cor-

relation functions, such as the compound-symmetric and auto-regressive structures.
So, including a nugget effect only offers a potential improvement for continuous
correlation functions.

The above covariance patterns all assume homogeneity of variance. That is, the
variance is assumed to be constant across time. This can be unrealistic in longit-
udinal studies where there are typically differing degrees in spread of the responses
from baseline to the end of the study. There are different ways to to accommodate
heterogeneity into these covariance patterns. For example (Galecki & Burzykowski
2013), assume no structure and allow n different variance parameters to be estimated,
or define the variance in terms of a function that depends upon unknown parameters
e.g. Var(εij) = |tij|δ, or Var(εij) = e|tij |δ, with δ an unknown parameter.

Choosing an appropriate model for the variances and covariances is a matter of
balance. One neither wants models that are too simple and fail to catch the intricacies
of the covariance patterns, nor models that are too complex with too many parameters
to be estimated. This balance of getting things just right is the case of a bias versus
variance trade-off, and will be discussed in detail later.
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2.4 Linear mixed effect models
Introducing random effects into the LM (2.1) is an alternative means to account for
correlation between repeated measurements. Doing so creates a new class of models:
linear mixed effect (LME) models. Since LME models are used in many different
fields, they go by many different names. LME models are also known as multi-
level models, random-effects models, linear mixed models, and random coefficient
models. In particular, they are also termed hierarchical linear models which stresses
the hierarchy of the data structure.

Typically, longitudinal data have a two-level hierarchy: there is the level of an
individual’s measurements (level-1), and a between-individual level (level-2). There
are variables which relate to between-individual differences, e.g. gender, that do not
change with time, and there are variables at the within-individual level which do
change with time, e.g. time itself. One can also imagine higher levels to the hier-
archy: the individuals may be grouped within schools or hospitals which have their
own associated variables. The inclusion of a random effect at the between-individual
level posits a diversity in the response accountable for by between-individual differ-
ences that have not been explained by the covariates. As such, linear mixed effects
models offer a natural way to account for heterogeneity at different levels of the
data-hierarchy.

Furthermore, the inclusion of random-effects partitions the variability in the
data. The variability due to within-individual fluctuations and between-individual
diversity can be separated, a feature not possible with the variance-covariance pattern
models seen in Section 2.3.1. This separation of the variance facilitates inference at
both the level of the individual and at the level of the population. Which means that,
along with the population mean trend, individual-specific trajectories can be charted
over time.

2.4.1 The general linear mixed effect model
As originally put forward by Laird & Ware (1982), the general LME model for in-
dividuals (clusters) i = 1, ..., N of j = n1, ..., nN measurements (units) respectively
is

yi = X iβ +Zibi + εi, (2.3)

where yi is the ni × 1 continuous outcome vector; the X i is the ni × p fixed effect
design matrix; β is a p×1 vector of fixed effects coefficients;Zi and bi are the ni×k
matrix of random effect covariates and the k× 1 vector of random effect coefficients
respectively; and εi is an ni × 1 vector of random errors, which explain variability
in the response of individual (cluster) i not accounted for by the fixed effect, X iβ,
or random effect, Zibi components of the mean structure. This is in contrast to
the errors of (2.1) which account for variability unexplained by the marginal mean
structure,X iβ, the fixed effect part alone.
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In the general LME model it is assumed that

εi ∼ Nni(0,Ri), bi ∼ Nk(0,D), (2.4)

where εi are independent of bi, and the εi and bi are both themselves assumed inde-
pendent for all i = 1, ..., N .

The fixed effects coefficients are common to all individuals (note the absence of
subscript i). They represent the influence that the fixed effects covariates have on the
population mean response. The random effect coefficients are individual-specific and
describe the expected difference between individual i’s outcome and the population
mean response (McNeish et al. 2017). In fact, it is the inclusion of the random effects
term that differentiates the general LME model from the LM (2.1). Alternatively, one
can view the LM (2.1) as a special case of the general LME model with the random
effect coefficients set equal to zero.

The general LME model (as presented above) is the most general form of a 2-
level LME model. Extension to a greater number of levels is straightforward and is
discussed in, for example, Galecki & Burzykowski (2013).

2.4.2 The conditional distribution defined in the general LME
model

The general LME model specifies the unconditional distribution of the random ef-
fects, bi, and the conditional distribution of the response given the random effects,
yi|bi. Both are assumed to be multivariate normal. The random effects need not
be considered normal, but doing so is mathematically and computationally simpler.1

Therefore, random effects will be considered normal throughout. The distribution of
bi is given in (2.4); the expectation and variance of the conditional distribution of the
response given the random effects are

E[yi|bi] = X iβ +Zibi,

and
Cov(yi|bi) = Ri,

respectively, where Cov(·) denotes the variance-covariance matrix.
In theory, the only constraints on Ri and D are that they are symmetric and

semi-positive definite. However, since these matrices are determined by parameters
to be estimated, certain structures are often imposed to reduce the number of paramet-
ers, especially when sample sizes are small. In fact, it is the modeller who selects the
specification of these structures, which model the within-individual dependency, and
how the random effects of one covariate covary with another respectively (McNeish

1It is suggested in Stroup (2012, p.11) that non-normal random effects will be commonly used in
the future. Just as how linear and generalised linear models would have been too advanced 30 years
ago, but are now ubiquitous in statistics.
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et al. 2017). IfRi is not diagonal, εi no longer accounts purely for within-individual
variability, a feature which may be desirable to retain. In addition, estimation of two
general structures can be difficult due to identifiability reasons (Fitzmaurice et al.
2004a, p.195). Therefore, unless otherwise stated, D is considered to be a general
semi-positive definite symmetric matrix, and Ri will be regarded as a diagonal mat-
rix with homogeneous variances. That is,Ri = σ2Ini .

2.4.3 The marginal model implied by the general LME model
From the general LME model (2.3), it can be seen that, marginally,

Cov(yi) =Cov(X iβ +Zibi + εi)

=Cov(Zibi) + Cov(εi)

=ZiDZ
ᵀ
i + σ2Ini . (2.5)

Thus, marginally, correlations between repeated-measurements are accounted for. In
addition, it is the particular form of the random effect design matrix that determines
the type of association between repeated-measurements. This is in contrast to the LM
of Section 2.1 where the correlations were modelled explicitly. Furthermore, since
E[yi] = X iβ, the general LME model implies the existence of a marginal model,
namely

yi ∼ Nni(X iβ,ZiDZ
ᵀ
i + σ2Ini). (2.6)

Three classes of sub-models of the general LME model will now be discussed.

2.4.4 The random effects model
The random effects model, sometimes called the unconstrained or null-model, is the
least complicated sub-model of the general LME model and corresponds to a one-
way analysis of variance (ANOVA) with random effects. No covariates are taken into
account at any level and the model is formulated as

yij = β0 + bi + εij, (2.7)

where
εij ∼ N(0, σ2) and bi ∼ N(0, d11) (2.8)

are independent for all individuals i = 1, ..., N , and for all within individual meas-
urements j = n1, ..., nN . That is, the response for each individual is predicted by
the overall mean β0; bi are the individual-specific deviations away from the overall
mean; and εij are the within-individual errors. The parameters d11 and σ2 describe the
between and within-individual variances respectively. In other words, they provide
a measure of the response dispersion due to differences between individuals and due
to within-individual differences respectively.
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The random effects model is unrealistically simple for most applications. Nev-
ertheless, it is useful as an initial step in a statistical analysis of two-level hierarchical
data, as it allows the statistician to gauge to what extent each level accounts for the
total variation. Specifically, from the random effects model, we are able to extract
the intraclass correlation coefficient (ICC) defined as

d11

σ2 + d11

, (2.9)

which gives the proportion of the total variability of the response that is accounted
for by the between-individual variation.

The random-effects model can also be formulated using a system of equations
that clearly illustrate the two-level nature of the data. The level-1, within-individual,
model is

yij = γ0i + εij. (2.10)

The individual-specific intercepts γ0i (note the subscript i) are allowed to vary for
each individual and become the response in the level-2, between-individual, model.
This is

γ0i = β0 + bi, (2.11)

which states that the only between-individual differences are in terms of intercepts.
To see the equivalence with Equation (2.7), substitute Equation (2.11) back into
Equation (2.10).

2.4.5 Random intercept models
Introducing the level-1 covariate time tij as an explanation for within-individual dif-
ferences, the level-1 model becomes

yij = γ0i + γ1itij + εij,

and the between-individual model can be formulated as

γ0i = β0 + b0i,

γ1i = β1. (2.12)

Combining the above system of equations gives the combined model

yij = β0 + β1tij + b0i + εij. (2.13)

The above is an example of a random intercept model. Introducing a (level-
2) covariate, e.g. treatment group, into Equation (2.12) allows slopes to vary for
different values of the covariate, producing a non-randomly varying slopes model.
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Induced compound symmetric structure

Consider now a more general random intercept model allowing for the possibility
of several covariates. In particular, let X i be the ith cluster’s fixed effects design
matrix, and β be the vector of fixed effect regression coefficients, as in the general
LME model (2.3).

For the random intercept model with independent and identically distributed
within-individual error terms, the marginal variance-covariance matrix of the re-
sponse is given by

Cov(yi) =Cov(X iβ + 1bi + εi)

=Cov(1bi + εi)

=1Cov(bi)1
ᵀ + Cov(εi)

=1d111
ᵀ + σ2Ini ,

where 1 is a column vector of ones; X i is the design matrix of fixed effect cov-
ariates; σ2 describes the within-individual variation; and d11 the between-individual
variation. This can be written as

Cov(yi) =


σ2 + d11 d11 · · · d11 d11

d11 σ2 + d11 · · · d11 d11
...

... . . . ...
...

d11 d11 · · · σ2 + d11 d11

d11 d11 · · · d11 σ2 + d11

 .

That is, the random intercept model induces a compound symmetric structure [see
(2.2)] on the variance-covariance of the response. Note, however, that this is only
the case when the within-individual errors are assumed independent and identically
distributed, and does not hold in general (Hedeker & Gibbons 2006).

The essential assumption of both the random effects model and random intercept
models is that individuals are allowed to differ randomly only in terms of their inter-
cepts. That is, with the exception of non-randomly varying slope models, the fitted
slopes of different individuals are the same. Indeed, the random effect model in-
volves no slope at all. Such an assumption may be acceptable for some applications.
However, empirical evidence and theoretical reasoning may be to the contrary, and
allowing the slopes to vary randomly for each individual is often a valuable modelling
approach (Bryk & Raudenbush 1992). Furthermore, inducing a compound symmet-
ric structure on the mean marginal (or population) trend is unsuitable for longitudinal
data, where correlations generally decay with time (Fitzmaurice et al. 2004a).
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2.4.6 A random intercept and slope model
Introducing a random effect in Equation (2.12) allows the slope to vary randomly for
each individual and results in the following random intercept and slope model:

yij = β0 + β1tij + b0i + b1itij + εij. (2.14)

This corresponds to including both a column of ones, and a column for time, tij , in
both the fixed effect design matrix, X i, and the random effect design matrix, Zi, of
the general LME model (2.3). The model assumes that there is a between-individual
variability both in terms of intercepts, and in terms of slopes. The combination β1 +
b1i has the interpretation as the individual-specific effect of a unit increase in time on
the expected response.

Marginally, we have that

Var(yij) = Var(β0 + β1tij + b0i + b1itij + εij)

= Var(b0i) + Var(b1itij) + 2Cov(b0i, b1itij) + Var(εij)
= d11 + d22t

2
ij + 2d12tij + σ2,

which means that the variance is a quadratic function in time, and whose coefficients
are determined by the elements of the variance-covariance matrix of the random ef-
fects. This is similar for the marginal response covariances (Fitzmaurice et al. 2004a,
p.197) and is a particular case of Equation (2.5). This means that the model (2.14)
accounts for a quadratic time dependence in the marginal response.

2.5 Estimation
Two types of estimation procedures will be discussed here: maximum likelihood
(ML), and restricted maximum likelihood (REML). Both of these procedures require
an expression for the joint density of the data (or transformed data in the case of
REML). Since random effects are unobserved, it is reasonable to produce parameter
estimates (of the fixed effect and variance-covariance components) for the general
LME (2.3) based on the implied marginal model (2.6) (Galecki & Burzykowski
2013). This model, (2.6), is a special case of the LM (2.1), so estimation for both the
LM and the LME model will be discussed simultaneously. To this end, consider

yi ∼ N(X iβ, σ
2Σ∗i (φ)),

a re-parameterisation of (2.1), with σ2 factorised such that σ2Σ∗i (φ) = Σ(θ) for
later convenience. The parameters φ are defined such that θ = (σ2,φᵀ)ᵀ. For
the special case of the marginal mixed effects model (2.6), we have σ2Σ∗i (φ) =
σ2(ZiD

∗(φ)Zᵀ
i + Ini), with σ2D∗(φ) = D(φ), and where φ are the parameters of

random effect covariance matrix,D.
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2.5.1 Maximum likelihood
Maximum likelihood (ML) estimation is one of the most common methods used to
obtain parameter estimates. The idea is this: given the data, which parameter values
maximise the likelihood that the data was generated by the model under considera-
tion?

Under model (2.5), the joint density of the response for individual (cluster) i is

f(yi) = (2πσ2)−
ni
2 |Σ∗i (φ)|−

1
2 exp

(
− 1

2σ2
(yi −X iβ)ᵀΣ∗−1

i (φ)(yi −X iβ)

)
,

where | · | denotes the matrix-determinant. The contribution to the log-likelihood
from one individual (cluster) is thus

`ML,i(β, σ
2,φ;yi) = −1

2

[
ni log 2πσ2 + log |Σ∗i (φ)|

+
1

σ2
(yi −X iβ)ᵀΣ∗−1

i (φ)(yi −X iβ)
]
.

The log-likelihood, assuming independence between individuals (clusters), is

`ML,N(β, σ2,φ;y) = −1

2

N∑
i=1

[
ni log 2πσ2 + log |Σ∗i (φ)|

+
1

σ2
(yi −X iβ)ᵀΣ∗−1

i (φ)(yi −X iβ)
]
, (2.15)

where y is a stack of all the yi vectors. This marginal log-likelihood can be maxim-
ised via profiling out β and respectively σ2 as illustrated in Galecki & Burzykowski
(2013). Alternatively, one may differentiate (2.15) with respect to β, σ2 and φ dir-
ectly, then equate to zero and re-arrange to form an iterative system of equations
(Gumedze & Dunne 2011). For differentiating (2.15) see Section A.1 of Appendix A,
where expressions are given for the derivatives of the log-determinant of the variance-
covariance matrix and its inverse with respect to its parameters. We will return to
these derivatives again in Section 4.3.

The regression parameters and the factor σ2 at the mth step of the iteration
procedure are given by

β̂(m) =
( N∑
i=1

Xᵀ
iΣ
∗−1
i (φ̂(m−1))X i

)−1
N∑
i=1

Xᵀ
iΣ
∗−1
i (φ̂(m−1))yi, (2.16)

σ̂2
(m) =

1∑N
i=1 ni

N∑
i=1

(yi −X iβ̂(m))
ᵀΣ∗−1

i (φ̂(m−1))(yi −X iβ̂(m)), (2.17)
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respectively. The variance-covariance parameters φ at the mth step solve the r-
dimensional system of equations (indexed by j = 1, ..., r, where r is the dimension
of φ)

N∑
i=1

Tr
{

Σ∗−1
i (φ̂(m))

∂Σ̂
∗
i

∂φj

}
=

1

σ̂2
(m−1)

N∑
i=1

(yi −X iβ̂(m−1))
ᵀΣ̂
∗−1

i

∂Σ̂
∗
i

∂φj
Σ̂
∗−1

i (yi −X iβ̂(m−1)), (2.18)

and where Σ̂
∗
i = Σ∗i (φ̂(m)) is the estimated variance-covariance matrix at the mth

step.
The first step in the iteration procedure is to assign a starting value to φ, which

is then used to obtain estimates of β and σ2 via (2.16) and (2.17). Using (2.18), the
values of β and σ2 are then used to update the variance components φ, which in turn
serve to update the estimates of β and σ2. This procedure of repeatedly alternat-
ing between estimating both β and σ2 and then φ is continued until convergence is
reached.

2.5.2 Restricted maximum likelihood
It is well known that estimates of variance components via ML are downwardly
biased. This is because the ML estimators neglect the fact that the regression para-
meters are also being estimated, which results in a reduction in degrees of freedom.
Restricted maximum likelihood estimation (REML) on the other hand, allows for
unbiased estimates of the variance components. This can be accomplished by using
a projection matrix that removes the regression parameters prior to constructing the
likelihood (shown in Gumedze & Dunne 2011, p.1926).

By profiling out the regression coefficients, the relationship between the log-
likelihood, and restricted-log-likelihood is given in Galecki & Burzykowski (2013,
p.197) as

`REML,N(σ2,φ) = `ML,N(β̂(φ), σ2,φ) +
p

2
log σ2 − 1

2
log
∣∣∣ N∑
i=1

Xᵀ
iΣ
∗−1
i (φ)X i

∣∣∣,
(2.19)

where β̂(φ) is the generalised least squares (GLS) estimator

β̂(φ) =
( N∑
i=1

Xᵀ
iΣ
∗−1
i (φ)X i

)−1
N∑
i=1

Xᵀ
iΣ
∗−1
i (φ)yi, (2.20)

and where p is the number of regression parameters.
Finding the maximiser of (2.19), either via profiling on σ2 or via an iterative

scheme, results in finding unbiased estimates of the variance-covariance components.
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In particular, the REML estimator of σ2, expressed here as a function ofφ is (Galecki
& Burzykowski 2013)

σ̂2
REML =

1(∑N
i=1 ni

)
− p

N∑
i=1

(yi −X iβ̂(φ))ᵀΣ∗−1
i (φ)(yi −X iβ̂(φ)),

which, in contrast to (2.17), accounts for the fact that β is also being estimated. The
estimated variance-covariance components may then be substituted into the expres-
sion (2.20) to find REML estimates for the regression parameters.

2.5.3 A note on model selection
The models for the mean and the covariance are inter-dependent (e.g. Fitzmaurice
et al. 2004a, p.163). This is because the variance-covariance matrix is defined for
the errors which are the response minus the mean trend. When the mean is mis-
specified, for example when linear growth is used with non-linearly behaving data,
additional variance crops up in the covariance matrix of the errors. To avoid model-
ling a covariance matrix that is not representative of the actual covariation, but is a
consequence of a misspecified mean, covariance model selection (or random effect
selection for the case of LME models) should first be performed on a maximal mean
structure (or maximal fixed effect structure) which has minimal bias. Model selec-
tion for the mean trend may then be looked into once a variance-covariance model
has been chosen.

For balanced longitudinal data, the maximal mean structure may be formed by
including time as a categorical variable since this imposes no specific time trend on
the data (e.g. Fitzmaurice et al. 2004a, p.173). At this stage, since REML produces
unbiased estimates of the variance-covariance parameters, REML is the preferred
estimation procedure, and particularly so for smaller samples.2 Comparison of dif-
ferent variance-covariance structures may then be carried out via, for example, the
Akaike information criterion (AIC) based on the maximised restricted log-likelihood,
ˆ̀

REML,N (e.g. Claeskens et al. 2008, p.271)

AICREML = 2(ˆ̀
REML,N − s),

where s is the number of variance-covariance parameters.
Once the covariance model (or random effect structure) has been chosen and

different mean structures are to be compared, the REML log-likelihood is of no use.
This is because models with different mean structures require a different transform-
ation of the data to construct the restricted log-likelihood.3 Hence, it is not possible

2The discrepancy between ML and ML diminishes asN grows relative to the number of regression
parameters (Fitzmaurice et al. 2004a, p.101).

3This aspect of constructing the restricted log-likelihood has not been demonstrated here, see
Gumedze & Dunne (2011, p.1926) for more details.
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to use the restricted log-likelihood for comparison of different mean structures (e.g.
Galecki & Burzykowski 2013, p.87). Rather, one might use the ML based AIC,

AICML = 2(ˆ̀
ML,N − s),

as a selection criterion, where here, in contrast to AICREML, s denotes the total num-
ber of model parameters.

One can view the AIC as a trade-off between fit and complexity. The former be-
ing captured by the (potentially restricted) log-likelihood component, the latter by the
penalty in terms of number of parameters. In addition, the aim of the AIC criterion is
to minimise the distance between the candidate models and the true underlying data
mechanism (Claeskens et al. 2008, p.30). As formulated above, models with larger
AIC are preferred.

For LME models, an alternative to the AIC when focus is at the level of the indi-
vidual is the conditional AIC (cAIC) introduced by Vaida & Blanchard (2005). The
cAIC maximises the conditional (given the random effects) log-likelihood and uses
twice the effective number of model parameters as a penalty term. A corrected ver-
sion of the cAIC which accounts for the fact that the variance-covariance parameters
have to be estimated is given in Greven & Kneib (2010).

2.5.4 Predicting random effects
For the LME model, it is common to use

b̂i = D̂Zᵀ
i Σ̂
−1

i (yi −X iβ̂) (2.21)

as predictors of individual-specific deviations, bi, from the fixed-effect parameters.
These are found by plugging in relevant estimators into the conditional means

E[bi|yi] = DZᵀ
iΣ
−1
i (yi −X iβ),

where the dependence of Σi andD on θ and φ respectively is implicit.
The uncertainty in the predictor (2.21) is4

Cov(b̂i) = DZᵀ
iΣ
−1
i

Σi −X i

(
N∑
i=1

X iΣ
−1
i X

ᵀ
i

)−1

Xᵀ
i

Σ−1
i ZiD. (2.22)

However, to generate prediction intervals, the quantity

Cov(bi − b̂i) = D − Cov(b̂i), (2.23)

which accounts for the variability of the random variable and for uncertainty in pre-
diction (though not for uncertainty in estimation of variance-covariance parameters),
is used (e.g. Fitzmaurice et al. 2004a, p.208).

4See the relevant part of Formula (9.30) in McCulloch & Searle (2001, p.256.).
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2.6 Model diagnostics for linear models
For the general LME model, residuals pertaining to either the marginal (2.6) or the
conditional model (2.3) may be defined (Galecki & Burzykowski 2013, p.265). For
the LM (2.1), only marginal residuals can be defined.

The marginal residuals obtained for individual i are

rm,i = yi −X iβ̂,

where yi are observed, and X iβ̂ is the marginal mean trend. Since the data are
clustered, the residuals obtained for any given individual will be correlated. To ‘de-
correlate’ and simultaneously standardise the residuals, the Cholesky transform may
be applied to give the transformed residuals

r∗m,i = L−1
i rm,i,

whereLi is the lower triangular matrix satisfying the Cholesky-decompositionLiL
ᵀ
i =

Σ̂i. So, the particular form ofLi depends on the particular form of variance-covariance
pattern or random effect structure. For the LM (2.1), these transformed residuals can
be inspected in the same way as how residuals arising from ordinary linear regression
are inspected e.g. graphical checks for homoskedasticity.

For the LME model, the conditional residuals for individual i may also be
defined as

rc,i = yi −X iβ̂ −Zib̂i.

However, these residuals are ‘contaminated’ in that they may be confounded with
the random effects bi. Therefore, for LME models, Santos Nobre and da Motta
Singer (as cited in Galecki & Burzykowski 2013, p.266) suggest using the marginal
residuals to assess propriety of the marginal mean trend. The conditional residuals
may be reserved for detecting outlying observations, and homoskedasticity.

In the general LME model, assumptions are also made on the random effects, bi.
According to Verbeke and Molenberghs (as cited in Galecki & Burzykowski 2013,
p.265), the distribution of b̂i does not necessarily represent that of bi. Therefore,
checking normality of b̂i via e.g. Q-Q plots is of little use. However, such plots may
be useful for detecting outliers. It is also worth mentioning that both normality of
residuals (for both the LM and the LME model) (e.g. Fitzmaurice et al. 2004a, p.61),
and normality of the random effects (particularly if inference concerns only the βs)
are not too critical assumptions (Verbeke and Molenberghs as cited in Galecki &
Burzykowski 2013, p.265).

2.7 Dataset illustration
A dataset from a psychological clinical trial will be used here to illustrate the LME
model in action. The dataset is explored at length in Hedeker & Gibbons (2006)

22



and was obtained from its accompanying website (Hedeker 2006). The trial fol-
lows 66 patients with depression for a period of 5 weeks. All of whom received the
same treatment consisting of a daily dosage of antidepressant Imipramine. The con-
tinuous response to be analysed is the Hamilton Depression Rating Scale (HAMD)
score. The scale measures 17 variables each on either a 3 or 5 item scale (summed
to produce a continuous summary statistic) and is administered by, preferably, two
independent interviewers (Hamilton 1960). The HAMD scores were recorded at the
beginning and end of a first placebo week, and then at the end of each of the follow-
ing four treatment weeks (Hedeker & Gibbons 2006). Patients were diagnosed with
either endogenous depression or non-endogenous depression, where endogenous de-
pression is depression due to internal or biological causes, and non-endogenous de-
pression is caused by external factors such as social or familial reasons (Hedeker &
Gibbons 2006).

As is often the case in psychological research (McNeish et al. 2017), not all
individuals were observed at each time point, resulting in missing data. Even though
neither the LM nor the LME model require complete data (Fitzmaurice et al. 2004a),
a complete case analysis involving N = 46 patients is performed here. The R pack-
age plyr (Wickham 2011) was used to help select the subset of patients with no
missing data.

For simplicity of illustration, the specific drug-levels in the blood, measured
as stochastic, time-varying covariates will be ignored. Instead, covariates of interest
will be t, time in weeks from beginning of treatment treated as continuous, and binary
covariate ed, taking value 1 if a patient has endogenous depression, and 0 if a patient
has non-endogenous depression. Attention will also be given to the interaction term
between t and ed. This being said, the purpose of this illustration is to show LME
models in action, not to draw definitive conclusions about the trial itself.

2.7.1 Exploratory analysis

Figures 2.1 and 2.2 show a scatterplot and box plot of the observed HDRS scores for
the two types of diagnosis for the depressed patients respectively. The figures were
put together using the lattice (Sarkar 2008) package.

The negative trend in both plots suggest that, in general, both groups of patients’
depression scores are reduced over time. It also appears that non-endogenous patients
start with lower depression scores at baseline. In addition, notice that the negative
trend begins even before the treatment starts. An explanation of this could be regres-
sion to the mean, as patients recruited are likely to have more extreme depression
than average at baseline. The slight decline during the placebo week could also be
a case of what is described by Rosenthal & Rosnow (1991) as reactive observation,
where the mere fact that patients are enrolled in a study and observed by therapists
could induce a reduction in depression. The box plot shows increasing variability
in the response as time increases. This suggests different rates of improvement for
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different individuals, implying that a model involving random slopes could be useful.
It could also mean that the assumption of constant variances may not be appropriate,
or that the stochastic time-varying drug-levels in the blood (ignored in our analysis)
are influential.
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Figure 2.1: A spaghetti plot of observed scores against time for all patients with com-
plete data. Patients are separated according to their diagnosis as endogenous (right)
or not (left). Week -1 is the placebo week. Treatment begins from the beginning of
week 0.

For the following, the placebo week is ignored and concentration is on fitting
LME models during the period of treatment. With the treatment period defined as the
beginning of week 0, baseline is considered to be the measurement at the end of week
-1. All models are fit using the lme command from the nlme package (Pinheiro et al.
2016). The parameter estimates are presented in tables that were generated using the
package stargazer (Hlavac 2015). Estimates relating to random effects have been
added to the tables manually.
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Figure 2.2: A box plot of scores against time for all patients with complete data,
separated according to diagnosis. Week -1 is a placebo week. Treatment begins from
the beginning of week 0.

2.7.2 Random effects model

As part of the data exploration, a random effects model was fitted. As explained in
Section 2.4.4, the random effects model is used as a preliminary step in model fitting
in order to extract the ICC, not as a realistic model of the data. The random effects
model is

hdij = β0 + bi + εij, (2.24)

for i = 1, ..., 46, j = 0, ..., 4, where β0 is the overall mean HAMD score, and bi the
individual deviations from the mean score.

Table 2.1 contains the REML parameter estimates obtained from this model.
Extracting the between and within-individual variances enables calculation of the
ICC. The ICC of the complete data set is 0.37, which suggests that the between-
individual variation is accountable for over a third of the total variation. So, taking
into account the effect of clustering is certainly worthwhile.
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Table 2.1: Parameter estimates from the random effects model.

HDRS score

Fixed Effects:
Intercept 16.422∗∗∗

Random effects:
σ 5.61√
d11 4.34
∗p < .05; ∗∗p < .01; ∗∗∗p < .001

2.7.3 Random intercept and slope model
Consider the following random intercept and slope model:

hdij = β0 + β1edi + β2tij + β3tijedi + bi0 + bi1tij + εij,

for all i = 1, ..., 46, j = 0, ..., 4.
This corresponds to having fixed effect and random effect design matrices

X i =

1 edi ti0 ti0edi
...

...
...

...
1 edi ti4 ti4edi

 and Zi =

1 ti0
...

...
1 ti4


in the general LME model respectively.

With this set up, the fixed effect parameters can be interpreted in the follow-
ing way: β0 represents the mean baseline HAMD score for the reference group,
non-endogenous depressed patients; β1 is the effect diagnosis as an endogenous de-
pressed patient has on the mean baseline score; β2 is the effect on the HAMD score
of a non-endogenous patient due to a one week change in time; β3 represents the
additional change in score due to a one week increase in time for endogenous de-
pressed patients. For patient i, bi0 is the difference from the mean baseline score of
the depression group to which patient i belongs, and bi1 is the difference in rate from
the average rate of change of HAMD score of the depression group to which patient
i belongs.

The parameter estimates from the above model are presented in Table 2.2. Sig-
nificance of covariates were tested using exact (under the model) t-tests. The effect
of diagnosis as an endogenous depressed patient on the mean baseline score is a sig-
nificant variable at the 0.05 level, suggesting differences between groups at baseline.
The coefficient of time is negative and significant at the 0.05 level, suggesting a gen-
eral improvement for the reference group over the course of the study. The coefficient
of the interaction term was estimated to be -0.46, suggesting that the endogenous pa-
tients improve faster over time compared with non-endogenous patients, but this term
was not statistically significant.
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The variances of the random effect parameters can be interpreted as follows:
provided the sample of patients are representative of their respective populations,
95% of all non-endogenous patients have baseline HAMD scores ranging between
19.87±Z0.975 ×

√
11.32 = (12.45, 27.29); and over 90% of all non-endogenous pa-

tients have negative slopes (−2.18 + Z0.90 ×
√

2.42 = −0.19 < 0).
This being said, the results should be taken lightly: the analysis was based only

on patients with complete data, who could be a biased subset of the initial sample;
the specific levels of antidepressant and its chemical transformation in the blood
measured each week were ignored; and a linear time effect may be simplistic.

Table 2.2: Parameter estimates from the random intercept and slope model.

HDRS score

Fixed effects:
Intercept 19.87∗∗∗

Endo 2.94∗

Time −2.18∗∗∗

Time:Endo −0.46
Random effects:
σ2 11.32
d11 14.33
d12 -0.41
d22 2.42
∗p < .05; ∗∗p < .01; ∗∗∗p < .001

2.7.4 Model assumptions

It is difficult to detect any pattern in the scatterplot of marginal residuals versus the
marginal mean. But, there appears to be slight variation between weeks (see Fig-
ure 2.3a) in whether the residuals are centered slightly above or below zero, perhaps
suggesting linear time is too simplistic. With less variability at the more extreme val-
ues of the fitted conditional means, Figure 2.3b suggests that homoskedastic within-
individual errors could be improved upon.

Figure 2.3c shows a scatterplot of the random effects for both intercept and time
plotted against patient ID number. Individual 45 has an outlying HAMD score at
baseline; individuals 20, 36, 44 and 45 have potentially outlying slopes.
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Figure 2.3: Part (a) shows a scatterplot of the cholesky transformed marginal resid-
uals versus time in weeks. Part (b) shows a scatterplot of the conditional residuals
versus the fitted conditional means. Part (c) shows a scatterplot of the random effects
for intercept (left) and time (right) against patient ID.
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2.8 Concluding remarks

2.8.1 A short comparison of the general LME model and the LM
Modelling the variability via introducing random effects in the linear model accounts
for the correlations between repeated measurements with relatively few paramet-
ers, regardless of the number of measurement occasions. This is in contrast to the
variance-covariance pattern models of Section 2.3.1, whose simplicity (in terms of
number of parameters) may depend upon the number of units within each cluster.

Furthermore, when the data is inherently hierarchical (longitudinal data are, in-
deed, always hierarchical), a hierarchical approach is natural. Introducing random
effects takes into account the fact that the variability in the data can be separated into
different levels of the hierarchy, meaning that variability due to within-individual
fluctuations in the response, and due to between-individual differences can be separ-
ated. This facilitates inference at both the level of the individual, and at the level of
the population.

This being said, the inclusion of random effects imposes additional assumptions
[see (2.4)] that the linear model (2.1) avoids. Even prior to analysis and model selec-
tion, the choice of inclusion or exclusion of random effects can be made based on two
factors. Firstly, the subject-matter or scientific knowledge may determine suitability
of assumptions. How to determine whether an effect should be fixed or random is
discussed in Stroup (2012, p.38) and depends largely upon whether the effect can be
thought of as arising from a probability distribution. Secondly, the target of inference
should also be considered: including random effects may be unnecessary if the goal
of the study is inference at the level of the population. More details on this are given
in McNeish et al. (2017).

2.8.2 Summary of chapter
This chapter began by describing linear regression without random effects for lon-
gitudinal data. It was shown how the mean trend can be modelled as a function of
time, and how within-cluster dependency can be taken care of by a covariance pat-
tern model. Random effects were then introduced as an alternative means to account
for this dependency, and the general linear mixed effect model was presented. Ran-
dom effect, random intercept, and random intercept and slope models were described.
Subsequently, model diagnostics and estimation via ML and REML for LME models
and the LM were explained. Finally, a clinical trial data set was used to demonstrate
an application of LME models.

I hope to have distinguished differences between the LM and the LME model
from a number of standpoints. And also, since Chapter 4 discusses model selection
for multivariate models where the focus is on parameters, not random effects, shown
how, marginally, the LME model is a special case of the LM.
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Chapter 3

Generalised Linear Mixed Models

When the response variable is no longer continuous, is asymmetric or has heavy tails,
a more general class of models is required than the linear models of Chapter 2. For
example, when the response is a binary (e.g. success/failure) or count variable (e.g.
the number of accidents), the linear models of Chapter 2 are of limited use.

The joint density of non-Normal multivariate data is not straightforward to spe-
cify. This is because specifying the joint distribution of a non-normal multivariate
response without introducing random effects requires specifying more than just the
pair-wise associations (the correlations in the linear model); higher order associ-
ations must also be specified, which typically entails a large number of parameters
(Fitzmaurice et al. 2004a).

Thus, for non-Normal multivariate data, two methods are commonly used: mar-
ginal models (or population-averaged models) and generalised linear mixed models
(GLMMs) (or subject-specific models). Marginal models avoid specification of the
joint density of the data altogether (Liang & Zeger 1986), whereas GLMMs specify
the joint density of a cluster via a conditional model making use of random effects.

GLMMs will be the focus of this chapter. They can be thought of as a gener-
alisation of generalised linear models (GLMs) to clustered, or correlated data, and
can also be considered a generalisation of the LME model to non-Normal or discrete
data.

3.1 Formulating a GLMM
A GLMM requires four components:

• the conditional distribution of the response for the ith cluster and jth unit given
the random effects, yij|bi,

• a linear predictor, xᵀ
ijβ + zᵀijbi,

• a link function, g(·),
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• the distribution of the random effects, bi.

The exponential family of distributions includes a large number of commonly
used distributions e.g. Poisson, binomial, gamma and so on. The conditional distri-
bution of the response in a GLMM given the random effects must be a member of the
exponential family. This means that, given the random effects, the conditional distri-
bution of the response (of cluster i and unit j) can be written in the form (McCulloch
& Searle 2001, p.221)

fyij |bi(yij|ηij, φ) = exp
(yijηij − a(ηij)

φ
− c(yij, φ)

)
(3.1)

with independence assumed for all i = 1, ..., N , and conditional independence given
the random effects for all j = 1, ..., ni. We have that φ is a scale parameter; a(·) is
a function that determines the specific distribution, for example, a(x) = ex for the
Poisson distribution, and a(x) = log(1 + ex) for the Bernoulli distribution (Wand
2007); c(yij, φ) is a constant that makes the expression integrate to one; and the
parameter ηij is known as the canonical parameter.

The link function g(·) relates the expected value of the (i, j)th response condi-
tional on the random effects to the linear predictor xᵀ

ijβ + zᵀijbi, where xᵀ
ij and zᵀij

are the jth rows of the ith fixed effect and random effect design matrices respectively.
That is, we have

g(E[yij|bi]) = xᵀ
ijβ + zᵀijbi.

Note that, the linear predictor, xᵀ
ijβ + zᵀijbi, is linear not necessarily in terms of the

covariates, but in terms of the regression coefficients and random effects.
To complete the specification, we (typically) have that the bi are mean zero,

normally distributed, and with variance-covariance matrixD.
At this point, it is worth noting why GLMMs get their name. The models are

linear in the regression coefficients, mixed because the linear predictor includes fixed
and random effects, and generalised because of the presence of a link function which
need not be the identity.

The canonical link, which is unique to each distribution, is such that g(E[yij|bi]) =
ηij (De Jong et al. 2008, p.66). For example, as we will see in Section 3.2, the
canonical link of the Poisson distribution is log(x), and the canonical link of the
Bernoulli distribution is the logit link log( x

1−x). Furthermore, for the canonical link,
the canonical parameter becomes equal to the linear predictor. That is, we have
ηij = xᵀ

ijβ + zᵀijbi.

3.1.1 Conditional moments of a GLMM
The conditional moments of model (3.1) can be found as illustrated in De Jong et al.
(2008, p.37). In particular, we have

E[yij|bi] = a′(ηij),
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where a′ is the derivative of a with respect to ηij . Furthermore, we have

Var(yij|bi) = φV (E[yij|bi]),

where V (·) = a′′(·) is known as the variance function and relates the conditional
variance to the conditional mean.

3.1.2 The marginal distribution derived from the GLMM
The marginal distribution of the ith cluster is

fyi(yi) =

∫
fyi,bi(yi, bi)dbi

=

∫
fyi|bi(yi|bi)fbi(bi)dbi

=

∫ ni∏
j=1

fyij |bi(yij|bi)fbi(bi)dbi, (3.2)

where the third equality follows from independence of the (i, j)th response given the
random effects. Thus, by specifying the conditional distribution of the response and
the distribution of random effects, an expression for the marginal density is obtain-
able. Using the rule of double expectations, we have that marginally (McCulloch &
Searle 2001, p.222)

E[yij] = E[E[yij|bi]] = E[g−1(xᵀ
ijβ +Zᵀ

ijbi)].

Thus, only for the identity link do we have E[yij] = xᵀ
ijβ. This means that, for non-

identity link functions, xᵀ
ijβ does not have the interpretation as the marginal mean

trend; the LME model (2.3) is indeed a special case. The regression coefficients of
a model which does not have the identity link, can be interpreted in terms of the
corresponding transform, g(·), of the expected response, or must be transformed via
the inverse of the link function, g−1(·) , to be interpretable on the same scale as the
expected response.

In addition, the regression coefficients of a GLMM have an interpretation at the
level of the cluster. This is because the regression coefficients must be interpreted
while holding bi fixed. For interpreting effects of continuous covariates, one should
consider the conditional mean response of a given cluster with a specific bi. Whereas,
for interpreting binary or categorical covariates, one should contrast two different
clusters (perhaps of different covariate values) but that have the same random effect
(Fitzmaurice et al. 2004a, p.361). This interpretation at the level of the cluster is a
characteristic of GLMMs, and, as such, the target of inference of GLMMs is the level
of the cluster. LME models are an exception in that both an interpretation at the level
of the cluster and at the marginal level are available; for GLMMs without an identity
link, this is not possible.
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Lastly, it is worth mentioning that marginal models (or population averaged
models), which posit no distributional assumptions and which specify only the mar-
ginal moments, are an alternative means for modelling non-Normal clustered or lon-
gitudinal data (Liang & Zeger 1986). The target of inference of such models is the
level of the population (e.g. Fitzmaurice et al. 2004a, p.291).

3.2 Examples

3.2.1 A Bernoulli GLMM
Suppose that the response of interest is binary, taking values 0 and 1. Then, a
Bernoulli GLMM with logit link can be formulated as

fyij |bi(yij|bi) =p
yij
ij (1− pij)(1−yij), (3.3)

log
( pij

1− pij

)
=xᵀ

ijβ + zᵀijbi,

bi ∼ N(0,D),

where pij = P (yij = 1|bi) is the probability of unit j of cluster i taking value one
conditional on bi, and 1−pij is the probability of unit j of cluster i taking value zero.
Such a model assumes a natural between-cluster diversity in the tendency to respond
positively. The logit link function is the logarithm of the odds that yij|bi takes value
1, where the odds are given by

pij
1− pij

. Thus, it is the odds that are log-linear in the

regression coefficients.
To see how (3.3) is of the form (3.1) note that

p
yij
ij (1− pij)(1−yij) = exp(yij log(pij) + (1− yij) log(1− pij))

= exp
(
yij log

( pij
1− pij

)
+ log(1− pij)

)
, (3.4)

from which it follows that the canonical parameter takes the form

ηij = log
( pij

1− pij

)
,

and, thus, the logit link is the canonical link for the Bernoulli distribution. In addition,
inverting this relationship gives

pij =
eηij

1 + eηij
. (3.5)

Substitution of (3.5) into the second term in the exponent of (3.4) and forming a
common denominator yields (3.1).
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For the Bernoulli distribution then, we have that the scale parameter φ = 1
and the constant c(yij, φ) is zero. Furthermore, it is well known that E[yij|bi] = pij
and Var(yij|bi) = pij(1 − pij). So, the conditional variance of a Bernoulli random
variable depends only on the conditional expectation. This is not necessarily the case
for other distributions, whose variance may also depend upon the scale parameter
(Stroup 2012, p.125).

Note that, in practice, for binary data and relatively few units within clusters,
there is rarely enough variability in the data to estimate more random effect paramet-
ers than that of the variance of a random intercept (Fitzmaurice et al. 2004a, p.344).

3.2.2 A Poisson GLMM
When the response is a count variable (that is, taking values 0,1,...), the Poisson
distribution may be appropriate. This is in contrast to binary data whose distribution
is necessarily Bernoulli (Fitzmaurice et al. 2004a).

A Poisson GLMM with its canonical log-link can be expressed as

fyij |bi(yij|bi) =
λ
yij
ij

yij!
e−λij ,

log λij = xᵀ
ijβ + zᵀijbi,

bi ∼ N(0,D),

where λij = E[yij|bi] is the expected count of unit j in cluster i. Re-writing the
conditional distribution as

exp(yij log λij − λij − log(yij!)),

it becomes visible that the log-link is indeed canonical since ηij takes the form log λij .
We also have that φ = 1, c(yij, φ) = log(yij!) and a(ηij) = eηij .

For longitudinal data, the measurement occasions may not be equally separated.
To account for this, an offset, Tij , the length of the measurement interval from time
j − 1 to time j, may be introduced into the linear predictor to give

log λij = log Tij + xᵀ
ijβ + zᵀijbi.

Re-arranging this gives

log
(λij
Tij

)
= xᵀ

ijβ + zᵀijbi,

from which
λij
Tij

gets the interpretation as the expected rate of counts at time j, a more

easily interpretable measure across unevenly spread measurement occasions.
The Poisson model imposes the rather restrictive assumption that E[yij|bi] =

Var(yij|bi) = λij . Overdispersion is what occurs if Var(yij|bi) > E[yij|bi], and
tends to be the case more often than not (Fitzmaurice et al. 2004a, p.297). So overd-
ispersion has to, in general, be accounted for if the Poisson model is to be of any use
in application.

35



3.3 Estimation

3.3.1 Maximum likelihood
Maximum likelihood is a commonly used method for estimation of parameters in a
GLMM. Taking the logarithm of (3.2) gives

log(fyi(yi)) = log

(∫ ni∏
j=1

fyij |bi(yij|bi)fbi(bi)dbi

)
,

which, summed over all clusters and inserting expressions for the densities fyij |bi(yij|bi)
and fbi(bi), gives the marginal log-likelihood of model (3.1) as

`N(β,θ|y) =

N∑
i=1

log

(∫
1

√
2π|D| 12

exp
(
− 1

2
bᵀiD

−1bi +

ni∑
j=1

[yijηij − a(ηij)

φ
− c(yij, φ)

])
dbi

)
,

(3.6)

where y is a stack of all clusters, and where θ is a vector including scale parameter
φ, and the variance-covariance parameters of the random effects.

The integrals in (3.6) are analytically intractable. For the situations we are in-
terested in (clustered/longitudinal data), it is suitable to maximise (3.6) numerically,
which involves numerical integration (McCulloch & Searle 2001, p.226). For relat-
ively low dimensions of random effects, Gauss-Hermite quadrature may be used (as
in McCulloch & Searle 2001, p.270) to perform such integration.

In particular, for a univariate random effect, bi ∼ N(0, σ2
b ), (3.6) is expressible

as
N∑
i=1

log

(∫
h(bi)

1√
2πσb

e
−1

2σ2
b

b2i
dbi

)
,

where

h(bi) = exp

(
ni∑
j=1

[yijηij − a(ηij)

φ
− c(yij, φ)

])
,

and the dependency of h on bi is through the canonical parameter ηij . After a trans-
formation of variable, such a sum of integrals becomes of the form

N∑
i=1

log

(∫
h(
√

2σbbi)
e−b

2
i

√
π

)
, (3.7)

and can be approximated via Gauss-Hermite quadrature (e.g. McCulloch & Searle
2001) as

N∑
i=1

log

(
K∑
k=1

h(
√

2σbxk)
wk√
π

)
,
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where K is the number of evaluation points, xk, and wk their corresponding weights.
These can be obtained via, for example, using the statmod package (Smyth 2005) in
R.

3.4 Data illustration
A randomised, double blind, clinical trial dataset comparing two oral treatments for
toe nail infection is now considered. The dataset was obtained from the accompany-
ing website (Fitzmaurice et al. 2004b) of the textbook Applied Longitudinal Analysis
(Fitzmaurice et al. 2004a, p.355). The response of interest is the degree of onycho-
lysis (extent of separation of the nail from the nail bed), which is measured as a binary
variable (0 = none or mild, 1 = moderate or severe). 294 patients were measured on
a maximum of 7 occasions during a period of 18.5 months. There is some spread in
the exact timing of measurements, but measurements were obtained at baseline, and
at (more or less) 1, 2, 3, 6, 9 and 12 months after baseline. Patients were randomised
to two anti-fungal oral treatments (B=) Itraconazole and (A=) Terbinafine at baseline
(Fitzmaurice et al. 2004b). Table 3.1 shows the number of severe or moderate cases
for treatments A and B for all 7 visits.

Table 3.1: The number of severe or moderate cases by treatment group for each of
the seven visits.

1 2 3 4 5 6 7
A 55 48 40 29 8 8 6
B 54 49 44 29 14 10 14

A large number of patients dropped out throughout the course of the study res-
ulting in an incomplete data set. Nevertheless, an all-available data analysis will be
conducted. For such an analysis to be valid, the reasons for missing data should be
unconnected to either the observed or unobserved values, meaning that the observed
values of the remainers (those that do not drop out) must be a random sample of the
corresponding values in the population, which is likely an unrealistic assumption.

3.4.1 A plausible model
The glmmML command from the R package glmmML (Broström 2017) was used to
fit model (3.3) with logit link and the following linear predictor:

log
( pij

1− pij

)
= β0 + β1tij + β2tijgroupi + bi, (3.8)

where pij is the probability of moderate or severe onycholysis at occasion j for indi-
vidual i; tij is the exact time in months; and groupi is the binary treatment group vari-
able (reference group = Treatment B, non-reference group = Treatment A). Since the
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treatment groups were generated by randomisation (not by pre-existing distinguish-
ing factors as in the depression data set (2.7)), it makes sense to assume that both
groups have the same intercept at baseline. Furthermore, allowing separate slopes for
both treatment groups facilitates comparison of both treatments. For obtaining ML
estimates of the parameters, Gauss-Hermite quadrature with 30 quadrature points
was used to approximate the integrals involved in maximising the log-likelihood.

3.4.2 Results

The parameter estimates obtained via ML are given in Table 3.2. Significance of
estimates was judged using the asymptotic properties of ML estimators (with the
inverse of the observed information matrix as the estimated covariance matrix of the
model parameters). The negative (and significant) value for β1 means that Treatment
B is effective in reducing the probability/odds of a severe response at the level of the
individual. However, since the interaction term in the linear model is also negative
(β2 = −0.14) and significant at the 0.05 level (p-value = 0.028), Treatment A can be
concluded as more efficient than Treatment B at the level of the individual.

Table 3.2: Parameter estimates from model (3.8).

Binary outcome

Fixed Effects:
Intercept -1.70∗∗∗

tij -0.39∗∗∗

tijgroupi -0.14∗

Random effects:
σb 4.01
∗p < .05; ∗∗p < .01; ∗∗∗p < .001

On the scale of the linear predictor, the parameter estimates are not so easily
interpretable. Instead, suppose that we are interested in understanding the change in
odds of onycholysis with time for both treatments at the level of the individual. Since
the variable month is modelled as linear, the effect on the odds of severe response by
a unit increase in time is the same regardless of when the unit increase takes place.
For any month x up to one month before the end of study (unless a forecast beyond
the study period is to be made), we have that for individual i of treatment group B
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with random intercept bi,

Estimated odds of severe onycholysis for individual i|bi, group = B, t = x+ 1

Estimated odds of severe onycholysis for individual i|bi, group = B, t = x

=
eβ̂0+β̂1(x+1)+bi

eβ̂0+β̂1x+bi

=eβ̂1 ≈ 0.68.

That is, the odds of moderate or severe onycholysis for any individual in group B
is estimated to be roughly 32% smaller after one additional month of treatment. In
this way, by defining odds ratios and arriving at a multiplicative effect, the parameter
estimates are more readily interpretable.

Similarly, for an individual in group A we have that,

Estimated odds of severe onycholysis for individual i|bi, group = A, t = x+ 1

Estimated odds of severe onycholysis for individual i|bi, group = A, t = x

=
eβ̂0+β̂1(x+1)+β̂2(x+1)+bi

eβ̂0+β̂1x+β̂2x+bi

=eβ̂1+β̂2 ≈ 0.59.

This means that the odds of moderate or severe onycholysis for any individual in
group A is estimated to be roughly 41% smaller after one additional month of treat-
ment. So, the odds of moderate or severe onycholysis is reduced more by each ad-
ditional month of Treatment A compared with Treatment B at the level of the indi-
vidual.

Given the fixed effect parameter estimates and estimates of the realised values
of the random effects, which together form estimates of the individual specific lin-
ear predictors, estimates of the individual specific probabilities can be obtained by

application of the inverse logit transform,
ex

1 + ex
. The estimated individual specific

probabilities are plotted against time for treatment group A in Figure 3.1 and treat-
ment group B in Figure 3.2.

From these plots it is visible that, by the end of the study, there is a selection
of patients in group B that have slightly higher probabilities of a moderate or severe
outcome in comparison with those in group A. It is also of note that a typical patient
(i.e. with random effect set to its mean of zero) has a baseline probability of 0.15 (for
both groups). Thus, there are many probability trajectories hidden in the lower left
corners of Figure 3.1 and Figure 3.2.

Finally, it may be of interest to know, as a measure of treatment efficacy for
both groups, what fraction of individuals have probability greater than one half of
moderate or severe onycholysis after 3 months of treatment. It turns out that 20%
of individuals in group A had a probability of severe onycholysis greater than one
half after 3 months of treatment, whereas 24% of individuals in group B had such a
probability.
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Figure 3.1: Estimated individual specific probabilities for treatment group A
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Figure 3.2: Estimated individual specific probabilities for treatment group B
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3.5 Chapter summary
This chapter has presented essential theory of generalised linear mixed models. In
particular, the exponential class of distributions was introduced, and the components
of a general GLMM explained. The Bernoulli and Poisson models were given as
examples of the general GLMM. Estimation via ML was then discussed along with
Gauss-Hermite quadrature as a means for approximating the integrals of the likeli-
hood. An application to a binary clinical trial dataset involving comparison of two
treatments for toe-nail infection was then presented. Attention was given to inter-
pretation of regression coefficients which, due to the presence of a non-identity link
function, is not as straightforward as the Normal model.
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Chapter 4

The Focussed Information Criterion
for Clustered Data

In any field in which clustered or longitudinal data are collected (as with any field of
research), there are specific questions to be answered. For the models of Chapter 2
and Chapter 3, these questions are typically formulated in terms of the regression
coefficients. In general, model selection has traditionally been based around finding a
model which fits the data well with as few parameters as possible, and without regard
to the particular questions at hand. As discussed in Section 2.5.3, the Akaike inform-
ation criterion (AIC), for example, facilitates such model selection. In this chapter,
the focussed information criterion (FIC), a model selection criterion for targeting spe-
cific questions, as introduced by Claeskens & Hjort (2003), Claeskens et al. (2008),
is presented. In addition, a multivariate framework is developed, within which the
FIC becomes available as a covariate selector for multivariate LMs, LME models
and GLMMs. This is followed by some theoretical results, a simulation study, and
longitudinal data illustrations.

4.1 FIC for independent data

The focussed information criterion (FIC) is a model selection criterion that ranks
models in terms of their appropriateness for a given purpose, or goal. The goal is
to precisely estimate a parameter of primary interest, henceforth called the focus
parameter. The focus parameter could be, for example, an interaction effect, an
expected response, a rate ratio and so on.

The ability of a model to precisely estimate the focus is determined by the FIC
scores which, for each model, are unbiased estimators of the mean squared error
(MSE) of the limiting distribution of the focus. These estimators are derived using
the large sample asymptotic theory of maximum likelihood (ML) estimators. In this
section, the FIC scores for the regression setting with independent data are given.
For which, the setting is laid out and the main steps regarding asymptotic results are
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presented. Initially, a multiple linear regression example will be used to familiarise
the reader with the score vectors and information matrices. A natural extension of
the FIC to multivariate models will then be presented in Section 4.2. Until then,
keep in mind for this section that we are working with a sample of n independent
observations (no clustering).

4.1.1 Framework and goal
Under contention are a list of models ranging from the narrow model (of fewest
parameters) to the widest model (of most parameters), all of which are nested within
the wide model. The parameters ν, of dimension p, are included in every model.
However, only the wide model includes the parameter vector γ, of dimension q, in
its entirety. The models in-between the wide and narrow models contain only some
of the components of γ. For this reason, ν is said to be protected, whereas γ is said
to be unprotected.

The candidate models are within a locally misspecified framework. That is, data
yi, which are assumed to be independent given covariates xi, are generated by the
wide model

fwide,n = f(yi|xi,ν0,γ0 + δ/
√
n), (4.1)

which is assumed to be true. Furthermore, ν0 is the true value of ν, whereas γ0 is
said to be the null value of γ, and γ0 + δ/

√
n is the true value of γ.

That is, we have a sequence of true wide models for each sample size n, and,
as n grows, the true value of γ approaches γ0. So, fwide,n, the true data generating
mechanism, is assumed to be a distance δ/

√
n away from the narrow model in terms

of the unprotected γ parameters. When δ =
√
n(γ − γ0) = 0, we have that γ = γ0,

and we are back at the narrow model. In other words, fwide(ν,γ0) = fnarr(ν). A
model in-between the wide and narrow, model S say, where S is a subset of {1, ..., q},
contains the γj with j ∈ S, and sets γj = γ0,j for those j /∈ S.

Thus, the locally misspecified framework allows us to consider a range of mod-
els that are small perturbations away from a narrow model. Such a framework fa-
cilitates questions such as ‘How far from the narrow model is too far (in terms of
uncertainty introduced by more parameters)?’, and ‘How close to the narrow model
is too close (in terms of simplicity: too few parameters)?’. It may be that a true
value that changes with sample size is conceptually bothering, but this is not how the
framework is to be interpreted: the principal advantage of this framework (as we will
see) is that it leads to attractive asymptotic results (Claeskens et al. 2008, p.128).

The focus parameter is defined as µ = µ(ν,γ), a function of the model para-
meters. For example, the focus could be prediction of the mean response given a set
of covariates, or a particular quantile of the true data generating mechanism. The aim
of FIC is to estimate the MSE of the limiting distribution of the focus parameter for
each of the models. The model with smallest estimated MSE of the limiting distri-
bution of the focus provides the most precise estimate of the focus parameter and is
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therefore deemed the best by FIC. It is well-known that the MSE is expressible as the
sum of a term for bias squared and a term for variance (e.g. Casella & Berger 2002,
p.330). This means that for any estimator µ̂ of the true focus parameter value µ0, one
may write its MSE in estimation as

MSE(µ̂) = E[(µ̂− µ0)2]

= (E[µ̂− µ0])2 + E[µ̂2]− E[µ̂]2

= bias2(µ̂) + Var(µ̂).

The FIC procedure involves estimating the mean squared error of the limiting distri-
bution of the focus by finding separate estimators for the bias squared and variance
of the limiting distribution and summing both.

Example

As a simple example, consider a linear regression model with constant variance σ2,
intercept β0, and covariate x1 with effect β1. Alternative models consist of including
or excluding two more covariates x2 and x3. The goal is to find the best model for
estimating the expected response when the covariates take on values (x1, x2, x3) =
(a, b, c), say. That is, the focus of interest is µ = µ(β,γ) = E[yi|x1 = a, x2 =
b, x3 = c], and the wide model under consideration is

N(β0 + β1x1,i + γ0x2,i + γ1x3,i, σ
2).

The protected parameters are

ν =

σ2

β0

β1

 ,

and the unprotected parameters are

γ =

(
γ0

γ1

)
,

which have null value γ0 = (0, 0)ᵀ.
The narrow model is therefore,

N(β0 + β1x1,i, σ
2),

and the two models in-between the wide and narrow are

N(β0 + β1x1,i + γ0x2,i, σ
2),

N(β0 + β1x1,i + γ1x3,i, σ
2),

which correspond to setting γ = (γ0, 0)ᵀ and γ = (0, γ1)ᵀ respectively.
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Introducing two extra parameters may reduce the bias in estimation of the mean
response, but doing so will also increase the number of parameters to be estimated,
resulting in more uncertainty in the estimation of parameters. So here, the FIC will
help the statistician find the best balance between a biased estimator with less un-
certainty (variance) and a less biased, but more uncertain estimator of the mean
response. This bias versus variance trade-off is called the Goldilocks principle in
(Cressie & Wikle 2011, p.7).1

4.1.2 Score vectors and the expected information matrix
To be able to show the main steps in the derivation of the FIC, necessary quantities
as in Claeskens & Hjort (2003) will first be introduced.

Provided sufficient smoothness in the model parameters about the null point
(ν0,γ0), each observation has an associated score vector(

u(yi|xi)
v(yi|xi)

)
=

(
∂ log f(yi|xi,ν0,γ0)/∂ν
∂ log f(yi|xi,ν0,γ0)/∂γ

)
, (4.2)

where xi is the associated vector of covariates for observation i. For each observa-
tion, there is an associated expected information matrix, which evaluated at the null
point is

J i = −E

[(
∂2 log f(yi|xi,ν0,γ0)

∂ν∂νᵀ
∂2 log f(yi|xi,ν0,γ0)

∂ν∂γᵀ

∂2 log f(yi|xi,ν0,γ0)
∂γ∂νᵀ

∂2 log f(yi|xi,ν0,γ0)
∂γ∂γᵀ

)]
,

and, under the wide model, is equal to the variance-covariance matrix of the score
vector

J i = Var0

(
∂ log f(yi|xi,ν0,γ0)/∂ν
∂ log f(yi|xi,ν0,γ0)/∂γ

)
.

Averaged over all observations, this becomes

J full,n =
1

n

n∑
i=1

J i =

(
J00,n J01,n

J10,n J11,n

)
,

where, averaged over all observations and evaluated at the null value, J00,n is of
dimension p × p and is the variance of the components of the score corresponding
to the protected parameters ν; J11,n is of dimension q × q and is the variance of the
score of the unprotected parameters γ; J01,n, of dimension p × q, is the covariance
between the ν and γ components of the score. Finally, being a symmetric matrix,
J10,n is the transpose of J01,n.

Under certain conditions, as n tends to infinity, J full,n tends to the (p+q)×(p+q)
limiting information matrix of the wide model (4.1)

Jwide =

(
J00 J01

J10 J11

)
,

1In the children’s story, Goldilocks is a little girl who wants things just right.
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where the upper left block of Jwide is of dimension p× p and the lower right block is
of dimension q × q. This has inverse

J−1
wide =

(
J00 J01

J10 J11

)
. (4.3)

Let the size of set S be denoted by |S|. Then, similarly the expected information
matrix of dimension (p+ |S|)× (p+ |S|) for each model S, may be defined as

JS,n =
1

n

n∑
i=1

Var0

(
u(yi|xi)
vS(yi|xi)

)
, (4.4)

where vS(yi|xi) = πSv(yi|xi), with πS a projection matrix of zeros and ones that
maps any vector to the same vector but only containing its entries that belong to the
set S. More formally, for any vectorm, πSm = mS , wheremS is of dimension |S|
and contains only those entries of m that are in S. Similarly, for any matrix M , πS
maps that matrix to the same matrix, but only includes the rows belonging to set |S|.
That is, πSM = MS , where the rows of MS are those belonging to M that are in
the set S.

Under certain conditions, JS,n tends to the matrix

JS =

(
J00,S J01,S

J10,S J11,S

)
=

(
J00 J01π

ᵀ
S

πSJ10 πSJ11π
ᵀ
S,

)
(4.5)

as n grows, where the upper left block is of dimension p×p and the lower right block
is of dimension |S| × |S|. This has inverse

J−1
S =

(
J00,S J01,S

J10,S J11,S

)
. (4.6)

Example

In the multiple linear regression example, the score vector for observation i, found
by differentiating the logarithm of the density of the wide model with respect to the
model parameters, is

(
u(yi|xi)
v(yi|xi)

)
=

1

σ


ε2i − 1
εi

x1,iεi
x2,iεi
x3,iεi

 ,

where xi = (1, x1,i, x2,i, x3,i)
ᵀ and εi = (yi − β0 − β1x1,i − γ0x2,i − γ1x3,i)/σ.

The first three entries of the score are associated with the protected parameters ν =
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(σ, β0, β1)ᵀ, and the last two entries of the score are associated with the unprotected
parameters γ = (γ0, γ1)ᵀ.

Differentiating again, taking minus the expected value and averaging over all
observations gives

J full,n =
1

nσ2

n∑
i=1


2 0 0 0 0
0 1 x1,i x2,i x3,i

0 x1,i x2
1,i x1,ix2,i x1,ix3,i

0 x2,i x1,ix2,i x2
2,i x2,ix3,i

0 x3,i x1,ix2,i x2,ix3,i x2
3,i

 =

(
2
σ2 0
0 1

nσ2

∑n
i=1 xix

ᵀ
i

)
.

(4.7)
Note that in order for J full,n to tend to Jwide a necessary condition is that 1

nσ2

∑n
i=1 xix

ᵀ
i

converges as n grows.
In our example, S can range from (the narrow) S = ∅ to (the wide) S = {1, 2}.

When only γ0 is included as an extra parameter, S = {1} and the required projection
matrix is thus πs = (1, 0). The expected information matrix corresponding to this
model (including γ0 not γ1) is

JS,n =
1

nσ2

n∑
i=1


2 0 0 0
0 1 x1,i x2,i

0 x1,i x2
1,i x1,ix2,i

0 x2,i x1,ix2,i x2
2,i

 ,

where for example the lower right hand block (here only one entry), J11,S [see (4.5)],
which corresponds to the parameter γ0 alone, is calculated as

J11,S =πSJ11π
ᵀ
S

=
1

nσ2

n∑
i=1

(
1 0

)( x2
2,i x2,ix3,i

x2,ix3,i x2
3,i

)(
1
0

)
=

1

nσ2

n∑
i=1

x2
2,i.

4.1.3 Limiting distributions
The score vectors and information matrices have now been introduced. The main
steps required to derive the limiting distribution of the focus parameter will now be
shown. For full details and in particular regularity conditions, the reader is referred
to Section 3.1 and the appendix of Hjort & Claeskens (2003).

The averages of the score vectors defined for each observation in (4.2) are
ūn = 1

n

∑n
i=1 u(yi|xi) and v̄n = 1

n

∑n
i=1 v(yi|xi). Under the locally misspecified

sequence of models (4.1), and due to independence of observations, it can be shown
that the averaged score vector for model S has the following limiting distribution as
n grows: ( √

nūn√
nv̄S,n

)
d→ Np+|S|

((
J01δ
πSJ11δ

)
,JS

)
. (4.8)
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The limiting distribution is not centered at zero because the score vectors are evalu-
ated at the narrow model and thus away from the true wide model.

The maximum likelihood estimators of model S, (ν̂S, γ̂S), can be written in
terms of the averaged score vector via a Taylor expansion, and thereby their limiting
distribution is determined to be( √

n(ν̂S − ν0)√
n(γ̂S − γ0,S)

)
d→ Np+|S|

(
J−1
S

(
J01δ
πSJ11δ

)
,J−1

S

)
. (4.9)

In particular, the limiting distribution of the wide model’s unprotected paramet-
ers is

Dn = δ̂wide =
√
n(γ̂wide − γ0)

d→D ∼ N(δ,Q),

whereQ is the lower right hand corner of J−1
wide, see (4.3). That isQ = J11, and can

be written (using a result on the inverse of block matrices, see e.g. Harville (1997,
p.100)) as

Q = (J11 − J10J
−1
00 J01)−1. (4.10)

For the following, define for submodel S the bottom-right corner of J−1
S , i.e.

the asymptotic variance covariance of γS , as

QS = J11,S = (J11,S − J10,SJ
−1
00,SJ01,S)−1 = (πSQ

−1πᵀ
S)−1,

of dimension |S| × |S|, and

GS = πᵀ
SQSπSQ

−1

of dimension q × q.
Then, the limiting distribution of the focus parameter can be found by applying

the delta method to the limiting distribution of the maximum likelihood estimators,
(4.9). Specifically, the limiting distribution of the focus as estimated by model S can
be written as

√
n(µ̂S − µ0)

d→ N(ωᵀ(I −GS)δ, τ 2
0 + ωᵀGSQG

ᵀ
Sω), (4.11)

where µ0 is the true value of the focus,

ω = J10J
−1
00

∂µ

∂ν
− ∂µ

∂γ
(4.12)

is a column vector of dimension q;

τ 2
0 =

(
∂µ

∂ν

)ᵀ

J−1
00

∂µ

∂ν
(4.13)

is a scalar; and where partial derivatives in both ω and τ 2
0 are evaluated at the null

point (ν0,γ0).
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The quantity τ 2
0 can be thought of as the minimal variance of the limiting dis-

tribution of the focus that persists in all models under consideration. In fact, it is the
variance of the limiting distribution of the focus as estimated by the narrow model.
Note that τ 2

0 does not depend on γ and so is common to all models. In contrast, ω
depends on γ and so is different for each model.

The narrow and wide models are special cases of (4.11) with

√
n(µ̂narr − µ0)

d→ N(ωᵀδ, τ 2
0 ),

√
n(µ̂wide − µ0)

d→ N(0, τ 2
0 + ωᵀQω).

Since the wide model is assumed true, the limiting distribution of its estimator
of the focus is centered at zero, i.e. the bias disappears. The penalty the wide model
pays for this is increased uncertainty due to more parameters having to be estimated.
This is captured by the addition of ωᵀQω to the narrow variance. The bias and
variance of those models in-between the wide and narrow will vary according to
which unprotected parameters they involve.

Since the quantities introduced here (GS,Q,ω, τ
2,QS) all involve inverses of

sums of matrices, it is no longer worth continuing with the linear model example.
Exact expressions are difficult to obtain, and not required.

4.1.4 FIC scores
The FIC scores are calculated by estimating the MSE of the limiting distribution of
the focus for each model. The MSE of the limiting distribution of the focus, (4.11),
as estimated by model S is

MSES = ωᵀ(I −GS)δδᵀ(I −GS)ᵀω + τ 2
0 + ωᵀGSQG

ᵀ
Sω,

with I the q × q identity matrix, and where the first term is for the bias squared, and
the second and third combined are the variance.

The FIC score for model S is constructed by estimating each term of MSES .
This is straightforward for the variance as each element is simply replaced by its
consistent estimator. However, the bias squared term requires a little more thought.
In particular, δδᵀ can be estimated by DnD

ᵀ
n, but this estimator overshoots by the

amount Q. To see this, note that, for any multivariate random variable X , we
have E[XXᵀ] = E[X]E[X]ᵀ + Cov(X). Since the expected value and variance-
covariance of the limiting distribution ofDn are δ andQ respectively [see (4.1.3)],

E[DnD
ᵀ
n] = E[Dn]E[Dn]ᵀ + Cov(Dn) ≈ δδᵀ +Q.

So, a more appropriate, asymptotically unbiased, estimator of bias squared isDnD
ᵀ
n−

Q̂. Furthermore, since this estimator may end up being negative, not desirable for a
squared term, it is truncated at zero.
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The FIC score for model S, an asymptotically unbiased estimator of MSES
adjusted to avoid being a negative bias squared term, is then

FICS = max
(

0, ω̂ᵀ(I − ĜS)(DnD
ᵀ
n − Q̂)(I − ĜS)ᵀω̂

)
+ τ̂ 2

0 + ω̂ᵀĜSQ̂Ĝ
ᵀ

Sω̂.

(4.14)
Special cases of the above for the narrow and wide model are

FICnarr = max
(

0, ω̂ᵀ(DnD
ᵀ
n − Q̂)ω̂

)
+ τ̂ 2

0 ,

FICwide = τ̂ 2
0 + ω̂ᵀQ̂ω̂.

The interpretation being that the narrow model has largest bias squared term, but
smallest variance in its estimation of the focus. Whereas, the widest model has no
bias (since assumed as the true model) but largest variance. The rest of the models
will, in varying degrees, have less bias but more variance than the narrow model, and
more bias but less variance than the wide model. The model with lowest FIC score
strikes the best balance in this bias versus variance trade-off in the estimation of the
focus parameter.

Since both ω and τ 2
0 depend on the focus, different focus parameters will lead to

different MSEs of the focus limiting distributions, and thereby different FIC scores.
This implies that different models may be be ranked differently by FIC when the
purpose, the focus parameter, changes.

In Claeskens et al. (2008), τ 2
0 is dropped from the FIC scores since it is common

to all models and therefore does not affect their relative ranking. However, it is kept
in here, since the FIC scores then retain their interpretation as unbiased estimates of
the MSE of the limiting distribution of the estimated focus.

Finally, note that in practice (Claeskens et al. 2008, p.154), any consistent estim-
ator of Jwide will do; either evaluating at the narrow (ν̂narr,γ0) or the wide (ν̂, γ̂) (or
any model in-between) is acceptable. Furthermore, if an expression for the expected
information is difficult to obtain, or difficult to arrive at numerically, the observed
information matrix may serve as an approximation. For incomplete data this be-
comes especially relevant, as to arrive at the expected information one has to take
into consideration the missing data mechanism (e.g. Gregoire et al. 2012, p.336).

4.2 FIC for clustered data
As we have seen, the FIC scores are based upon the limiting distributions of the fo-
cus parameter estimators (4.11), which are derived from the limiting distribution of
ML estimators (4.9), and which are themselves derived from the limiting distribu-
tions of the averaged score vector (4.8). The derivation of the limiting distributions
of the averaged score vector given in Hjort & Claeskens (2003) makes use of the
independence of the data points conditional on the covariates. In fact, the limiting
distributions are first derived in the independent and identically distributed case (i.e.
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not the regression setting), and are then said to be generalisable to allow for covari-
ates. In the regression setting discussed above, independence of observations given
the covariates is assumed. This being said, a small adjustment can be made to de-
rive the same FIC scores under the assumption of independence between clusters,
rather than independence between observations. Such an adjustment, which allows
for within-cluster dependency, will now be presented.

Since choice between variance-covariance or random effect structures would
lead to null parameters on the border of their parameter space (for example, since
variance parameters are constrained to be positive), and therefore asymptotic nor-
mality would become an issue, the variance components will be assumed protected.
For the FIC to be presented, choice is only between covariates and the focus µ is
allowed to be a function of both regression parameters and variance-covariance para-
meters.

4.2.1 Framework for using FIC for data with independent clusters
Assume that the multivariate response yi for cluster i is generated by the true wide
model

fwide,N = f(yi|X i,ν0,γ0 + δ/
√
N). (4.15)

Here, N is the number of clusters with different clusters assumed independent;X i is
the matrix of covariates for cluster i; ν = (θ,β) is the vector of protected parameters
of length p with true value ν0 = (θ0,β0), where θ, of dimension p1, is the vector of
variance components, and β are the protected regression parameters of dimension p2;
and δ/

√
N is the distance of the wide model from the null value γ0 of the unprotected

regression parameters γ of dimension q. That is, a multivariate locally misspecified
framework is assumed, with the number of units within each cluster, n, fixed, and the
sequence of models indexed by the number of clusters N .

Assuming sufficient smoothness of the log-density about the null point (ν0,γ0),
define the score vector for cluster i as(

u(yi|X i)
v(yi|X i)

)
=

(
∂ log f(yi|X i,ν0,γ0)/∂ν
∂ log f(yi|X i,ν0,γ0)/∂γ

)
. (4.16)

The expected information matrix obtained from one cluster, evaluated at (ν0,γ0) is
thus

J i = −E

[(
∂2 log f(yi|Xi,ν0,γ0)

∂ν∂νᵀ
∂2 log f(yi|Xi,ν0,γ0)

∂ν∂γᵀ

∂2 log f(yi|Xi,ν0,γ0)
∂γ∂νᵀ

∂2 log f(yi|Xi,ν0,γ0)
∂γ∂γᵀ

)]
,

which under the wide model is equal to

Var0

(
∂ log f(yi|X i,ν0,γ0)/∂ν
∂ log f(yi|X i,ν0,γ0)/∂γ

)
.
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Averaging over all clusters we get

J full,N =
1

N

N∑
i=1

J i =

(
J00,N J01,N

J10,N J11,N

)
, (4.17)

where, averaged over all clusters and evaluated at (ν0,γ0), the upper left block,
J00,N of dimension p × p, corresponds to the variance of the score of the protected
parameters; the lower right block, J11,N of dimension q × q, corresponds to the
variance of the score of the unprotected parameters.

Under certain conditions, J full,N tends, as the number of clusters grows, to

Jwide =

(
J00 J01

J10 J11

)
(4.18)

evaluated at the narrow. Similarly, definitions of the same form as (4.3), (4.4), (4.5)
and (4.6) can be given for J−1

wide, JS,N , JS , and J−1
S . In particular, using the projec-

tion matrices πS , JS can be defined as in (4.5), but in terms of the matrix (4.18).
Now, define the cluster averages of the scores (4.16) (but defined for model S) to

be ūN = 1
N

∑N
i=1 u(yi|X i) and v̄S,N = 1

N

∑N
i=1 vS(yi|X i). Due to independence

between clusters, the limiting distribution of these averaged scores will be of the
same form as (4.8), but in terms of the Fisher information matrix (4.18). This being
so, the limiting distribution of the ML estimators are of the same form as (4.9), but in
terms of (4.18). And similarly with the limiting distribution of the focus parameters
estimators (4.11) where, again, the relevant Fisher information matrix upon which
τ 2

0 , ω, Q and GS are based is now (4.18). It is important to note that the limits
considered here are no longer the growth of the total number of observations, but
rather the number of clusters N . This means that the addition of information (in
terms of data) comes from the addition of more and more clusters, and the number
of units within each cluster remains fixed.

The consequence of these equivalent (cluster) limiting distributions is that FIC
scores for models of clustered data are the same form as that of independent data.
For model S we have

FICS = max
(

0, ω̂ᵀ(I − ĜS)(DND
ᵀ
N − Q̂)(I − ĜS)ᵀω̂

)
+ τ̂ 2

0 + ω̂ᵀĜSQ̂Ĝ
ᵀ

Sω̂,

(4.19)
with the difference from (4.14) being that the Fisher information matrix to be es-
timated for the estimates τ̂ 2

0 , ω̂, Q̂ is that of (4.18), and with DN now given by√
N(γwide − γ0).

Since the multivariate LM (2.1), the general LME model (2.3), and GLMMs
(3.2) all have an expression for the joint density, and thereby expected informa-
tion matrices, formula (4.19) is applicable to these classes of models for selecting
between covariates for a given variance-covariance or random effect structure. Note
that for LME and GLMMs, the focus of interest should indeed be a parameter and

53



not include a random effect. Application of (4.19) to these classes of models, along
with finding expressions for information matrices and data illustrations will be the
focus of the rest of this chapter.

4.3 FIC for multivariate linear regression, with and
without random effects

Consider the situation where clustered data are generated by a wide model which is
multivariate Normal of the following form:

yi ∼ N(Xp,iβ +Xu,iγ,Σi(θ)). (4.20)

The matrix of covariates Xp,i appears in all models and is therefore said to be pro-
tected, whereas Xu,i is a matrix of covariates that is considered unprotected: not all
of its columns appear in every model. Define the vector of parameters ξ = (ν,γ) =
(θ,β,γ), with θ and β the protected variance-covariance and regression parameters
respectively; the γ parameters are unprotected regression parameters. That is, we are
working with a fixed (chosen) variance-covariance structure, but looking to choose a
mean structure.

The fixed, chosen, variance-covariance structure can indeed be induced by in-
troducing random effects. As discussed in Chapter 2, marginally the LME model can
be expressed as (4.20), but where Σi(θ) takes on the specific form ZiDZ

ᵀ
i + σ2Ini .

Furthermore, since any focus parameter must necessarily be at the marginal level (At
the level of the individual, a random variable, bi, which is not a parameter, would
become involved.), we will consider the marginal LME model to be simply a special
case of (4.20).

As we have seen, the FIC scores require estimates of the components of the ex-
pected information matrix. Although analytical expressions for these components are
not strictly necessary, they may be useful. Therefore, expressions for the information
matrices of model (4.20) will now be derived.

Formulae for the components of the expected information matrix in the case of
correlated data for linear regression are given in Mardia & Marshall (1984). Clustered
data are a special case of the the more general correlated data, which does not en-
force independence between clusters (or even define clusters as such). The results
given in Mardia & Marshall (1984) are used here but adjusted for the case where the
correlation is solely within clusters, and where two sets of regression parameters are
defined: those that are protected and those that are unprotected. Some details omitted
in Mardia & Marshall (1984) are given here in Appendix A.

The full log-likelihood for model (4.20), assuming independence between clusters,
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is

`N = −
N∑
i=1

1

2

[
ni log(2π) + log |Σi(θ)|

+ (yi −Xp,iβ −Xu,iγ)ᵀΣ−1
i (θ)(yi −Xp,iβ −Xu,iγ)

]
.

Differentiating with respect to β and γ gives

∂`N
∂β

=
N∑
i=1

Xᵀ
p,iΣ

−1
i (θ)(yi −Xp,iβ −Xu,iγ)

and
∂`N
∂γ

=
N∑
i=1

Xᵀ
u,iΣ

−1
i (θ)(yi −Xp,iβ −Xu,iγ)

respectively. Using Equation (A.4) of Appendix A, the kth element of the derivative
of `N with respect to θ is given by(∂`N

∂θ

)
k

=
N∑
i=1

−1

2

[
Tr
{

Σ−1
i (θ)

∂Σi(θ)

∂θk

}
+ εᵀi

∂Σ−1
i (θ)

∂θk
εi

]
,

where εi = (yi −Xp,iβ −Xu,iγ).
The observed information matrix can be written as

− 1

N

∂2`N
∂ξ∂ξᵀ

= − 1

N

N∑
i=1

`θθ `ᵀβθ `ᵀγθ
`βθ `ββ `ᵀγβ
`γθ `γβ `γγ

 ,

where, for example, `ββ =
∂2`N
∂β∂βᵀ . For which, we have

`ββ = −Xᵀ
p,iΣ

−1
i (θ)Xp,i,

`γγ = −Xᵀ
u,iΣ

−1
i (θ)Xu,i,

`βγ = −Xᵀ
p,iΣ

−1
i (θ)Xu,i.

In addition, the kth column of `βθ and `γθ are

(`βθ)k = Xᵀ
p,i

∂Σ−1
i (θ)

∂θk
εi

and

(`γθ)k = Xᵀ
u,i

∂Σ−1
i (θ)

∂θk
εi
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respectively, which are both mean zero under the wide model. Using the product rule
under the trace operation, the (k, l)th element of `θθ becomes

(`θθ)k,l =
∂2`N
∂θl∂θk

=− 1

2
Tr

{
Σi(θ)−1∂

2Σi(θ)

∂θl∂θk
+
∂Σ−1

i (θ)

∂θl

∂Σi(θ)

∂θk

}
− 1

2
εᵀi
∂2Σ−1

i (θ)

∂θl∂θk
εi.

(4.21)

Similarly, the expected information matrix of the wide model can be written as

J full,N = −E
[

1

N

∂2`N
∂ξ∂ξᵀ

]
=

Jθθ,N 0 0
0 Jββ,N Jᵀ

γβ,N

0 Jγβ,N Jγγ,N

 , (4.22)

where

Jββ,N =
1

N

N∑
i=1

Xᵀ
p,iΣ

−1
i (θ)Xp,i,

Jγβ,N =
1

N

N∑
i=1

Xᵀ
u,iΣ

−1
i (θ)Xp,i, (4.23)

Jγγ,N =
1

N

N∑
i=1

Xᵀ
u,iΣ

−1
i (θ)Xu,i,

and the (k, l)th element of Jθθ,N is

(Jθθ,N)k,l =
1

N

N∑
i=1

1

2
Tr

{
Σ−1
i (θ)

∂Σi(θ)

∂θk
Σ−1
i (θ)

∂Σi(θ)

∂θl

}
. (4.24)

Please see (A.3) in the Appendix for full details as to how (4.24) is arrived at. The
block diagonality of (4.22) is thus apparent, and under mild regularity conditions
J full,N , (4.22), tends to the limit

Jwide =

Jθθ 0 0
0 Jββ Jβγ
0 Jγβ Jγγ

 , (4.25)

as the number of clusters increases. Relating this back to the notation of (4.18), we
have

J00 =

(
J θθ 0
0 Jββ

)
, (4.26)

J10 =
(
0 Jγβ

)
,

and
J11 = Jγγ .

Lastly, note that since these expressions do not depend on the regression parameters,
evaluating at the narrow point makes no difference.
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The case of the marginal LME model

Since the marginal variance-covariance takes the form Σi = ZiDZ
ᵀ
i +σ2Ini for the

marginal LME model [see (2.5)], the variance-covariance component of its expected
information matrix also has a particular form.

For the case of a general random effect variance-covariance matrix, D, a com-
pact expression (making use of elimination matrices, and the vec(·) operator) is given
in Demidenko (2013, p.124). For the special case of constant variance and independ-
ence between random effect components, that is, when Σi = σ2

bZiZ
ᵀ
i + σ2Ini , and

D = σ2
bIk is diagonal (e.g. independence between random intercepts and slopes),

we have that, by (4.24), Jθθ is of the form

1

N

N∑
i=1

1

2

 Tr
{

Σ−1
i Σ−1

i

}
Tr
{

Σ−1
i ZiZ

ᵀ
iΣ
−1
i

}
Tr
{
Zᵀ
iΣ
−1
i Σ−1

i Zi

}
Tr
{
Zᵀ
iΣ
−1
i Zi(Z

ᵀ
iΣ
−1
i Zi)

ᵀ
} ,

where the upper left corner corresponds to the within-cluster error variance σ2, the
lower right corner corresponds to the variance of the random effects σ2

b , and the off-
diagonals correspond to the cross-terms. This corresponds to the lower right entry of
Equation (6.62) in McCulloch & Searle (2001), but where there are only two levels
of the data-hierarchy and hence only one vector of random effects.

4.3.1 The focus as solely a function of regression parameters
Consider the limiting expected information matrix of the Normal model, partitioned
into blocks as in (4.25). In general, for discrete GLMMs (e.g. Binary, Poisson) the
block diagonal nature does not hold. So the results in this section only (with some
exceptions) apply to the Normal model.

When the focus parameter, µ, is not a function of the variance-covariance para-
meters, the quantities τ 2

0 , ω andQ drop their dependency upon the component of the
expected information matrix corresponding to the variance-covariance parameters,
Jθθ. For instance, since in this case,

∂µ

∂ν
=

( ∂µ
∂θ
∂µ
∂β

)
=

(
0
∂µ
∂β

)
,

we have that

τ 2
0 =

(
0
(
∂µ
∂β

)ᵀ)(Jθθ 0
0 Jββ

)−1( 0
∂µ
∂β

)
=
(
0
(
∂µ
∂β

)ᵀ)(J−1
θθ 0
0 J−1

ββ

)(
0
∂µ
∂β

)
=

(
∂µ

∂β

)ᵀ

J−1
ββ

∂µ

∂β
. (4.27)
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In a similar manner, the expressions for ω andQ reduce to

ω = JγβJ
−1
ββ

∂µ

∂β
− ∂µ

∂γ
, (4.28)

and
Q = (Jγγ − JγβJ−1

ββJ
ᵀ
γβ)−1. (4.29)

This result makes the FIC scores slightly simpler to arrive at for a focus that is
purely a function of the regression parameters (using the explicit formula for Jθθ,
(4.24) can be a cumbersome activity). Furthermore, since J−1

θθ is the covariance
matrix of the limiting distribution of the variance-covariance parameters, increasing
the number of θs in the model does not, in theory, increase the uncertainty, nor affect
the bias of the estimator of a focus parameter that is only in terms of the regression
parameters.

This means that, within an asymptotic framework and prior to estimation, provided
the focus is a function of the βs alone, there may be little to gain in terms of mean
squared error by attempting to restrict the number of variance-covariance parameters
in the model: the uncertainty in the θs should not influence the uncertainty of the
βs. Asymptotically, both sets of parameters draw their information from independ-
ent sources, albeit the same data. Thus, in terms of choice of variance-covariance
matrix when the focus is on the regression parameters, there may be little advantage
to a simpler model.

Since the expressions (4.23) have to be estimated (usually by plugging in the
inverse of the estimated variance-covariance matrix), this could introduce some un-
certainty into the focus that is purely a function of the βs. To see to what extent the
above conclusion holds in practice (after estimation), a simulation study was con-
sidered. If this result does indeed hold true, there could be implications for how
to go about choosing a variance-covariance matrix when the interest is only in the
regression parameters.

4.3.2 Simulations
For foci that are only a function of the regression parameters, does the choice of
covariance model (or random effect structure) affect the stability of the FIC scores?
Instability in the FIC scores of a correct, but overly-specified variance-covariance
model would indicate uncertainty in the θs influencing either (or both) the variance
or bias of the focus estimators.

Thus, the specific question to be addressed is: given two correctly specified,
covariance matrices Σ1 and Σ2, but where Σ2 includes more parameters than neces-
sary, is there any difference in terms of variability of FIC scores when the focus is
only a function of β? The answer is likely to depend on the number of clusters; the
number of units within clusters; whether the dataset is balanced by design; whether
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there is missing data; the mean structures to be selected between; the particular fo-
cus of interest; and the different covariance structures in question. Addressing all of
these variables at once is a tall order. A simplified scenario was thus constructed.

One hundred balanced longitudinal datasets were generated for each pair of
(N, n): the number of subjects N taking values in the set {30, 50, 100, 200}, and the
number of measurement occasions n taking values {3, 4, 5, 6}. For each situation
(N, n), the true model was a LME model including a random intercept and a random
slope for the effect of time. In particular, the true marginal model was

yij = β0 + β1groupi + β2tij + γ0t
2
ij + γ1tijgroupi + εij, (4.30)

with the true variance-covariance of the errors given by

Cov(εi) = ZiDZ
ᵀ
i + σ2In, (4.31)

where Zi is the true random effects design matrix, and D the variance-covariance
matrix of the random effects, which are given by

Zi =

1 ti1
...

...
1 tin

 , D =

(
d11 d12

d12 d22

)
.

The binary covariate group was generated using the command rbinom in R with
probability 0.5. Covariate time was treated as continuous over the interval [0, t∗],
with t∗ = 12, and centered about its mean, (t = 6). For each situation of (N, n),
measurements were simulated for both endpoints, t = 0, t = t∗, and additional
measurements divided the interval [0, t∗] into equal length sub-intervals.

The true values of the parameters were set as β = (β0, β1, β2) = (1, 1, 1),γ =
(γ0, γ1) = (−0.1, 1) which means that the true mean trend was increasing and
slightly concave. And, in addition θ = (σ2, d11, d12, d22)ᵀ = (4, 4, 0.2, 1).

Four different mean structures were considered for each simulation and for each
situation of (N, n). The widest mean structure considered, M4, was

E[yij] = β0 + β1groupi + β2tij + γ0t
2
ij + γ1tijgroupi + γ2t

2
ijgroupi; (4.32)

the narrowest model, M1, included only the protected covariates. The true model,
M3, (4.30), was among the candidate models, and finally, the mean structure M2

E[yij] = β0 + β1groupi + β2tij + γ2t
2
ijgroupi, (4.33)

which is the narrow model plus one interaction: the uninformative interaction between
group and t2, was also included.

The focus parameter of interest in every situation was the expected response of
an individual belonging to the non-reference group at the last measurement occasion
n, when t = t∗, that is,

µ = E[yin|t = t∗, group = 1].

The covariance models under consideration were:
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• Σ0, the marginal covariance matrix arising from a random intercept model, i.e.
compound symmetric, see (2.2), with two parameters regardless of the num-
ber of measurement occasions: the variance of the random intercept and the
variance of the errors.

• Σ1, the marginal covariance matrix arising from a random intercept and slope
model, i.e. the true data generating model, with four unknown parameters θ =
(σ2, d11, d12, d22)ᵀ regardless of the number of measurement occasions).

• Σ2, an unstructured covariance model with n(n + 1)/2 parameters, ranging
from 6 (n = 3) to 21 (n = 6) parameters.

• Σ3, the true covariance model with known parameter values θ = (4, 4, 0.2, 1)ᵀ.

The variance-covariance matrix Σ0 is thus misspecified, Σ1 and Σ3 are both true,
but with unknown and known parameters respectively, and Σ2 is correctly specified,
but involves too many parameters.

Given enough data, Σ1 and Σ2 are expected to converge to the same true cov-
ariance model. Since Σ2 involves more parameters (especially as n grows), what are
the consequences for the variability in the bias and variance of the focus?

Results

The package simsalapar (Hofert & Mächler 2016) was used to help run parallel sim-
ulations. Figures were produced using the package ggplot2 (Wickham 2009). The
random intercept model, Σ0, failed to converge on 5 out of the 100 simulations, but
there were no other complications. Tables B.1 and B.2 in Section B.2 of Appendix
B give the arithmetic mean over all 100 simulations of the FIC scores divided by N
(scaled to be interpretable as estimates of the MSEs) for each situation (N, n,M,Σ).

In general, M3 and M4, were preferred over M1 and M2, as illustrated in Fig-
ure 4.1, which shows box plots (of all 100 simulations) of the FIC scores scaled down
by a factor of N for the particular situation N = 50 and n = 6, and with covariance
matrix indexed along the x-axis. It is also visible that, for this case (and in fact more
generally), that M3 and M4 displayed much less uncertainty in the FIC scores.

From inspection of the plots of FIC/N for each situation (N, n,M,Σ), it is clear
that two cases arise: the cases of correctly and incorrectly specified mean structures
need to be distinguished.

When the mean structure is misspecified, i.e. for M1 and M2, there is more
variability (particularly for M1) in the FIC scores of the variance-covariance matrix
Σ2 relative to that of Σ1. Figure 4.2 shows a grid of box plots in 4 × 4 = 16 cells.
Each column of the grid represents a specific size for n, and each row a specific N .
In each individual cell, FIC/N for mean structure M1 is on the y-axis; the values of
the x-axis (0, 1, 2, 3) correspond to the indices of the different variance-covariance
matrices. The red crosses mark the approximately true mean squared errors. That is,
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Figure 4.1: Box plots of FIC/N for the situation N = 50, n = 6 plotted for each
covariance structure Σ (whose indices correspond with the values (0, 1, 2, 3) on the
x-axis) and for each mean structure (M1, M2, M3 and M4) represented by different
colours.
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the red crosses show the sample means (over all 100 simulations) of the ‘observed’
squared errors: (µ̂j − µtrue)

2. The box plots show more variability in the FIC scores
(divided by N ) of Σ2 consistently throughout the grid. The same set-up is given for
mean structure M2 in Figure B.1 in Appendix B, where the differences still exist, but
are much less severe.

Figures B.3 and B.4 along with Figures B.7 and B.8 in Appendix B, using the
same set-up as described above, show box plots of the estimated bias squared and
estimated variances of models M1 and M2. The red crosses mark the approxim-

ately true bias squareds
(

1
100

∑100
j=1(µ̂j − µtrue)

)2

, and the sample variances in focus
estimates over all 100 simulations for the bias squared (B.3 and B.4) and variance
plots (B.7 and B.8) respectively. Inspection of these plots shows that the difference
in spreads of FIC/N between Σ1 compared with Σ2 is due to differences in bias
squared, not variance (although the variances of Σ2 seem to be underestimated for
mean structure M1).

The same set-up as Figure 4.2 is displayed in Figure 4.3 for the FIC/N scores
of correctly specified mean structure M3 (and for M4 in Figure B.2 in Appendix B).
For M3 and M4, it is visible that there is very little difference in terms of variability
of the FIC scores (divided by N ) between Σ1 and Σ2.

Analysis of the relevant box plots (Figures B.9 and B.10) shows that for M3 and
M4 the estimates of the variance term were similar for both Σ1 and Σ2, in terms of
spread. There is more variability in the bias squared estimates belonging to Σ2 for
M3 (see Figure B.5), though since M3 is correctly specified, these differences do not
contribute much to the FIC scores; the variance term dominates. Since M4 is the
mean structure assumed correct by the FIC procedure, its bias squared estimates are
effectively zero (see Figure B.6).

The conclusion is then that, provided the mean structure is correctly specified,
the FIC scores will not suffer if too many parameters are used to correctly specify
the variance-covariance model. For the correctly specified mean structures, the vari-
ance term tends to dominate, which appears to be less afflicted by lack of simplicity.
However, the bias squared terms of misspecified models appear to show more spread
in the estimates of over-parameterised variance-covariance models.

In general, the true specification of the mean structure is not known, so it is of
interest to include potentially biased (misspecified) mean structures among the can-
didate models. Therefore, foci that are purely a function of the βs do require parsimo-
nious variance-covariance models. This agrees then with the Goldilocks principle of
traditional methods of choosing a variance-covariance model by balancing between
fit and simplicity.

As a comment, note that the FIC/N estimates of the misspecified Σ0 appear to
be underestimated. This seems to be more in connection with the variance estimates
rather than the bias squareds. For example, see Figure B.9. In my view, this is most
likely attributable to the fact that the FIC procedure used model-based inference:
Σ0 enforces compound-symmetry - an unrealistic structure. Model-robust inference
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Figure 4.2: In this figure showing a grid of box plots in 4 × 4 = 16 cells, each
column represents a specific size of n, and each row a specific N . In each individual
cell, FIC/N for the narrow mean structure M1 is plotted on the y-axis; the values of
the x-axis (0, 1, 2, 3) correspond to the indices of the different variance-covariance
matrices, Σ.
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Figure 4.3: In this figure showing a grid of box plots in 4×4 = 16 cells, each column
represents a specific size of n, and each row a specific N . In each individual cell,
the y-axis gives the values of FIC/N for the true mean structure M3; the values of
the x-axis (0, 1, 2, 3) correspond to the indices of the different variance-covariance
matrices, Σ.
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would produce valid estimates for such misspecified covariance models.
Lastly, it is worth mentioning that the simulations were repeated but with less

variable intercepts and slopes, d11 = 2, d22 = 0.2. The same conclusion was arrived
at: the relative differences in variability of FIC scores between mean structures and
covariance structures remained, only the scale of the variability had reduced.

4.3.3 Data illustration

The FIC, (4.19), will be used as a covariate selector for the data set introduced in
Section 2.7, where 46 depressed patients are followed over a period of 5 weeks, and
their HAMD depression scores are recorded. Two different foci will be considered.
But, first of all, a variance-covariance model will be selected via maximising the
REML based AIC.

Step 1: choosing a covariance model

A range of covariance models were considered with a maximal mean structure. Since
a misspecified mean structure can result in the attempt to model covariance which is
not truly there, imposing no assumptions on the maximal mean trend is best (e.g.
Fitzmaurice et al. 2004a, p.173). And with balanced data, time was able to be treated
as discrete (categorical), which forces no structure on the mean response. The max-
imal mean trend was thus taken as an interaction between discrete time and depres-
sion type, including the main effects of both.

The candidate covariance models include: M1, an unstructured variance-covariance
matrix, the same for both groups; M2, an unstructured variance-covariance matrix
but with separate sets of variance parameters for both groups;2 M3, compound sym-
metric with the same unstructured variances for both groups; M4, M5 and M6 have
exponentially decaying correlations and exponentially growing variances, the differ-
ence being that M5 and M6 allow different rates of exponential growth of variances
for each group, and, in addition, only M6 includes a nugget effect; M7 is the covari-
ance matrix arising marginally from a random intercept and slope model. Its fixed
effect part was set as the same maximal mean structure so that, marginally, REML
based AIC comparison was possible.

The results are presented in Table 4.1, where the column p1 gives the number of
variance-covariance parameters and ˆ̀

REML the maximum restricted log-likelihood.
Model M6 was deemed best by AIC.

2This model assumes that the correlations are the same for both groups. If there was more data,
and R facilitated such an option, I would also specify separate sets of parameters for the unstructured
correlations of both groups and check the AIC.
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Table 4.1

Model p1 AIC ˆ̀
REML

M1 15 -1367.84 -658.92
M2 20 -1370.03 -655.01
M3 6 -1475.97 -721.98
M4 3 -1360.92 -667.46
M5 4 -1360.28 -666.14
M6 5 -1357.24 -663.62
M7 4 -1359.22 -665.61

Step 2: covariate selection

The focus as solely a function of regression parameters

Suppose that the focus is the expected response at the end of the study (the end
of treatment week 4) of a non-endogeneous patient with an above average baseline
response of 27 on the HAMD scale. That is,

µ(β,γ) = E[hdi4|basei = 27, ti4 = 4, edi = 0]. (4.34)

All models now under consideration were a subset of the wide model with the fol-
lowing mean structure

E[hdij] = β0 + β1baseci + β2tcij + γ0edi + γ1tc
2
ij + γ2tcijedi + γ3tc

2
ijedi (4.35)

for individual i at time j, where the response is HAMD score, hdij; covariate baseci
is the baseline score centered about the sample mean; tcij is time, but centered around
the middle of the treatment period; and edi is an indicator variable for depression
type, with non-endogeneous patients as the reference group; and where β and γ
signify protected and unprotected regression coefficients respectively. Altogether,
24 = 16 submodels were considered, corresponding to the different possible com-
binations of unprotected regression coefficients.

For the wide model, the matrix of protected covariates is

Xp,i =

1 baseci tci0
...

...
...

1 baseci tci4

 , (4.36)

and the matrix of unprotected covariates is

Xu,i =

edi tci0edi tc2
i0 tc2

i0edi
...

...
...

...
edi tci4edi tc2

i4 tc2
i4edi

 . (4.37)
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The covariance matrix (pattern M6) for endogenous, Σ1, and non-endogenous pa-
tients, Σ2, as estimated using REML by the wide model are

Σ̂1 =


21.82 15.65 14.12 12.75 11.50
15.65 28.27 20.27 18.29 16.51
14.12 20.27 36.61 26.26 23.70
12.75 18.29 26.26 47.42 34.01
11.50 16.51 23.70 34.01 61.42


and

Σ̂0 =


19.76 13.48 11.58 9.94 8.54
13.48 23.17 15.81 13.58 11.66
11.58 15.81 27.17 18.55 15.93
9.94 13.58 18.55 31.87 21.75
8.54 11.66 15.93 21.75 37.38


respectively. That the variances are different for each group is clear. When the cov-
ariances are standardised into correlations one can see that they are in fact the same
for both groups. These matrices give estimates for the required components (4.23) of
the expected information matrix of the wide model. These, along with partial deriv-
atives of the focus evaluated at the null model, give estimates of the quantities (4.27),
(4.28) and (4.29), which, in turn, combined with DN and the relevant projection
matrices, πS , give the FIC scores (4.19).

The results from the analysis of this focus, (4.34), are shown in Table 4.2. The
first column states which unprotected covariates have been included. For example,
an entry of 1100 corresponds to including edi and tc2 but excluding the interaction
terms. Column |S| is the number of unprotected parameters included in the model;
column µ̂ contains the estimate of the focus parameter for each model; column bias2

contains the estimates of the squared bias of the limiting distribution of the focus for
each model; Var is the estimated variance of the limiting distribution of the focus for
each model; the column AIC gives the (ML based) AIC scores of all models; rAIC
and rFIC rank the AIC and FIC scores from best (=1) to worst (=16) respectively.

Model 1000 is the FIC favourite for this focus. With smallest FIC score its
estimate appears furthest to the left on part (a) of Figure 4.4. That is, the model
including only the main effect for group, edi, as an additional term produced the
best estimate for this particular focus as judged by FIC. Table 4.2 shows that there
is disagreement between AIC and FIC in terms of covariate selection. Part (a) of
Figure 4.4, displaying two groups distinguished by similar sized confidence intervals
and similar point estimates, shows that FIC is happy to accept some bias in exchange
for smaller confidence intervals here.

When the focus is changed to the expected response at the end of treatment for
an endogeneous patient with a below average baseline score of 18, the narrow model
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Table 4.2: FIC results for the focus as an expected response at the end of the study
for a non-endogeneous depressed patient with an above average baseline score of 27
on the HAMD.

Model |S| µ̂ bias2 Var FIC
√

FIC/N rFIC AIC rAIC
1000 1 12.64 0 68.58 68.58 1.22 1 -1363.04 14
0101 2 13.03 12.68 57.1 69.78 1.23 2 -1360.09 4
1001 2 12.87 0.66 69.16 69.82 1.23 3 -1360 3
1100 2 12.2 0 71.77 71.77 1.25 4 -1362.31 10
0001 1 13.07 18.5 55.12 73.62 1.27 5 -1358.14 1
1101 3 12.73 0 77.31 77.31 1.3 6 -1361.87 8
0100 1 13.07 22.55 57.07 79.62 1.32 7 -1362.8 12
0000 0 13.54 104.02 53.86 157.88 1.85 8 -1365.77 16
0010 1 10.5 0 171.09 171.09 1.93 9 -1362.09 9
1010 2 10.58 0 171.14 171.14 1.93 10 -1363.14 15
0011 2 11.5 0 179.59 179.59 1.98 11 -1359.19 2
1011 3 11.49 0 180.55 180.55 1.98 12 -1361.17 6
1110 3 10.3 15 172.66 187.66 2.02 13 -1362.63 11
0110 2 10.26 17.51 172.62 190.12 2.03 14 -1361.66 7
0111 3 11.3 0 191.63 191.63 2.04 15 -1361.03 5
1111 4 11.22 0 196.31 196.31 2.07 16 -1362.96 13

is judged best by FIC. Table 4.3 shows the output for this focus.3 Stark contrasts
between AIC and FIC are again evident. The estimates of the focus for each model
are plotted versus the square root of the FIC scores, scaled by a factor of 1/

√
N

in part (b) of Figure 4.4. This particular transformation of the FIC scores has the
interpretation of estimated root MSE, which is on the same scale as the standard
errors of the focus estimates.

It should be noted that selecting only one of the models would result in a reduc-
tion in confidence of the confidence intervals of Figure 4.4. This is because simply
choosing the best estimate would not be acknowledging the uncertainty involved in
the model selection procedure. Taking the best model, as judged by FIC (or AIC for
that matter), would be acting as if the model was known to be the best at the outset,
which is not so; the uncertainty of the model selection procedure must be taken into
account (Claeskens et al. 2008). Since the model selection was performed in two
steps here, the uncertainty should be acknowledged as such. To my knowledge, there
are no frequentist model averaging schemes which account for two model selection
steps, though smoothed weights as in Section 7.2 of Claeskens et al. (2008) could
well be explored for this purpose.

R code for this section is given in Appendix D. In particular, preparation of the

3The bias squared terms are mostly truncated to zero, in spite of varying estimates. This is because
the correction for over-shooting produces a negative bias squared.
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(a) (b)

Figure 4.4: Figure (a) displays the estimated response at the end of treatment for a
non-endogeneous patient of baseline score 27 along with 95% confidence intervals.
Figure (b) displays the estimated response at the end of treatment for an endogeneous
patient of baseline score 18 along with 95% confidence intervals.

depression dataset is given in Listing D.1, and code for the FIC procedure is given in
Listing D.2.

The focus now allowed to depend on the variance-covariance parameters

For the HAMD rating scale, Zimmerman et al. (2013) suggest severity ranges of≤ 7
for no depression, (8− 16) for mild depression, (17− 23) for moderate depression,
and ≥ 24 for severe depression.

Suppose that we now wish to rank models in terms of estimation of the prob-
ability of endogeneous patients, who have baseline HAMD scores ranging from
(14, 15, ..., 34), being depression free at the end of the study.4 That is, rather than
looking at a single focus determined by a single covariate value, as in the expecta-
tions of the previous section, a range of foci will be considered, each probabilities
determined by a different baseline covariate value. The FIC scores will be calcu-
lated for each model and for each focus. The model with lowest FIC averaged over
all foci is deemed the winner. In other words, the averaged FIC (AFIC) scheme of
(Claeskens et al. 2008, Section 6.9) will be carried out with equal weighting for each
focus.

Recall that the AIC favoured variance-covariance model was M6 (see Table 4.1).
This, for occasions tj and tk in {1, 2, 3, 4, 5} and for an endogeneously depressed

4I do not wish to extend too far beyond the sample baseline scores which range from 15 to 33.
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Table 4.3: FIC results for the focus as the expected response at the end of the study
of an endogeneous depressed patient with (a below average) baseline score of 18 on
the HAMD.

Model |S| µ̂ bias2 Var FIC
√

FIC/N rFIC AIC rAIC
0000 0 8.94 0 61.72 61.72 1.16 1 -1365.77 16
0100 1 8.96 0 61.76 61.76 1.16 2 -1362.8 12
0001 1 11.02 0 89.67 89.67 1.4 3 -1358.14 1
0101 2 10.93 0 99.62 99.62 1.47 4 -1360.09 4
1000 1 10.38 0 102.29 102.29 1.49 5 -1363.04 14
1100 2 10.42 0 102.33 102.33 1.49 6 -1362.31 10
1001 2 11.25 0 109.07 109.07 1.54 7 -1360 3
1101 3 11.16 0 112.16 112.16 1.56 8 -1361.87 8
0011 2 9.19 0 256.37 256.37 2.36 9 -1359.19 2
0111 3 8.87 0 287.34 287.34 2.5 10 -1361.03 5
1110 3 7.87 27.03 286.8 313.83 2.61 11 -1362.63 11
1011 3 9.33 0 318.67 318.67 2.63 12 -1361.17 6
1111 4 9.11 0 329.42 329.42 2.68 13 -1362.96 13
1010 2 7.64 53.63 285.89 339.52 2.72 14 -1363.14 15
0110 2 6.25 208.09 166.05 374.14 2.85 15 -1361.66 7
0010 1 6.05 253.67 165.5 419.17 3.02 16 -1362.09 9

individual i, can be written as

Cov(yij, yik) =

{
σ2e2tjδ1 , if j = k,

σ2(1− κ)e2(tj+tk)δ1−
|tj−tk|
R , if j 6= k,

(4.38)

in terms of parameter vector θ = (σ, δ1, δ0, R, κ)ᵀ, where σ is a scaling parameter; δ1

regulates the exponential growth of the variances; R regulates the exponential decay
of correlations; and κ is a nugget effect. The corresponding variance-covariance
model of a non-endogeneous patient is found by replacing δ1 with rate δ0.

Recall also that the covariance matrix of an endogeneous patient was labelled
Σ1, and that of a non-endogenous patient was labelled Σ0. Since the protected and
unprotected design matrices, (4.36) and (4.37), are determined by baseline covari-
ate score and depression type respectively, for a patient of baseline score b, denote
the matrix of protected covariates as Xp,b and the unprotected covariates by Xu,1

or Xu,0 depending on the depression type (1 =endogenous, 0 =non-endogenous).
These quantities will determine the probability of a patient with a specific baseline
score being depression free at the end of the study.

Thus, the foci of an endogeneous patient, indexed by baseline score b in the set
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{14, ..., 34}, are

µb = P (yi4 ≤ y∗) (4.39)

=

∫
Ω∗

(2π)−
5
2 |Σ1(θ)|−

1
2 exp

(
− 1

2
wᵀΣ−1

1 (θ)w
)
dy, (4.40)

where
w = y −Xp,bβ −Xu,1γ,

Ω∗ = (−∞,∞)× (−∞,∞)× (−∞,∞)× (−∞,∞)× (−∞, y∗), with y∗ = 7 the
no depression threshold value and 5 the number of measurement occasions.

The chosen variance-covariance model, given by (4.38), has parameter vector
θ = (σ, δ1, δ0, R, κ)ᵀ. In order to carry out AFIC for foci that are functions of these
parameters, an estimate of the quantity Jθθ will be needed. Therefore, making use
of the explicit expression (4.24), the derivatives of Σ1 and Σ0 with respect to θ are
required. We have, for example, the (i, j)th element of the partial derivative of Σ1

with respect to σ as

(∂Σ1(θ)

∂σ

)
i,j

=

{
2σe2tjδ1 , if i = j,

2(1− κ)σe|ti−tj |δ1−
|ti−tj |
R otherwise.

Similar calculations can be performed for the other variance-covariance parameters
and likewise for Σ0 (see (A.4) in Appendix A), and using the estimates of the wide
model, Jθθ may be estimated.

In addition, forω and τ 2
0 , we require the partial derivatives of the focus evaluated

at the narrow model. Differentiating under the integral sign of (4.40) with respect to
the regression parameters, we get

∂µb
∂β

=

∫
Ω∗
Xᵀ

p,bΣ
−1
1 (θ)ε(y)fy(y)dy, (4.41)

∂µb
∂γ

=

∫
Ω∗
Xᵀ

u,1Σ
−1
1 (θ)ε(y)fy(y)dy,

where
fy(y) = (2π)−

5
2 |Σ1(θ)|−

1
2 exp

(
− 1

2
εᵀ(y)Σ−1

1 (θ)ε(y)
)
,

and ε(y) = y −Xp,bβ.
The partial derivatives of µb with respect to the kth element of θ may be written

as

∂µb
∂θk

=

∫
Ω∗

1

2

(
−Tr

{
Σ−1

1 (θ)
∂Σ1

∂θk

}
+ εᵀ(y)Σ−1

1 (θ)
∂Σ1

∂θk
Σ−1

1 (θ)ε(y)

)
fy(y),

where the derivative of the determinant was found by (A.3), and (A.1) was applied
to the derivative of the inverse.
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Table 4.4: For the set of foci (4.40), the AIC and AFIC scores are given for each
model along with their relative ranking.

model AFIC rAFIC AIC rAIC
0000 0.131 1 -1363.50 16
0100 0.135 2 -1365.96 12
0001 0.168 3 -1361.45 1
0101 0.169 4 -1363.35 3
1000 0.18 5 -1366.25 13
1100 0.188 6 -1365.35 9
1001 0.192 7 -1363.4 4
1101 0.193 8 -1365.21 8
0011 0.236 9 -1362.67 2
0111 0.241 10 -1364.44 5
1110 0.279 11 -1365.86 11
1011 0.286 12 -1364.67 6
1111 0.286 13 -1366.38 14
0110 0.286 14 -1365.18 7
1010 0.346 15 -1366.56 15
0010 0.447 16 -1365.8 10

These three integrals, the first two of which have integrands of dimension p2 = 3
and q = 4 respectively, were approximated via Monte Carlo integration. In order to
do this, each integral was re-expressed as an expectation with respect to a multivariate
normal distribution over the unrestricted domain of integration, Ω. For example, it is
possible to write (4.41) as

∂µb
∂β

=

∫
Ω

Xᵀ
p,bΣ

−1
1 (θ)ε(y)1{yi4≤y∗}fy(y)

= Ef [Xᵀ
p,bΣ

−1
1 (θ)ε(y)1{yi4≤y∗}]. (4.42)

Furthermore, since the true β, Σ and its derivatives are unknown, β̂, Σ̂ etc. as estim-
ated under the wide model via REML were used as direct substitutes.

Using the rmvnorm command of the mvtnorm package in R (Genz & Bretz
2009, Genz et al. 2017), 1000 samples were drawn from the appropriate multivari-
ate normal density. The function Xᵀ

p,bΣ
−1
e ε(y)1{yi4≤y∗} was then evaluated at these

samples and the mean of these evaluations was calculated to give an approximation
to (4.41). This process was repeated for each of the required integrals, and, within a
loop, for each of the foci.

The FIC scores for each foci and for each model were then calculated by plug-
ging in the estimated and approximated quantities into (4.10), (4.12), and (4.13) (or
rather, their cluster versions). Estimates of the focus, (4.40), were produced using
the pmvnorm command of the mvtnorm package. These are displayed in Figure 4.5
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Figure 4.5: The estimated probabilities for each model of being depression free by
the end of study for endogeneous patients against baseline score. The estimates from
the favourite AFIC model is shown with a dashed line.
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for each of the baseline scores. The results are, of course, not continuous, but are
displayed as such for the purpose of illustration.

The FIC scores averaged over all foci are displayed in Table 4.4 which shows,
again, difference between the rankings of the ML based AIC and the AFIC scores.
The model with smallest FIC averaged over all baseline situations is the narrow
model and is shown in Figure 4.5 with a dashed line. This model estimates that all
patients classified as severely depressed (HAMD ≥ 24) at baseline have a probabil-
ity smaller than 0.26 of no depression by the end of study, and a probability between
0.43 and 0.26 for those moderately depressed (17 ≤ HAMD ≤ 23) at baseline.
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4.4 FIC for generalised linear mixed models

Since for GLMMs an expression for the marginal density of each cluster (3.2) is
available, the FIC formula (4.19) for selection of covariates in GLMMs can be set
to work with a chosen link function and random effect structure. As by Section 4.2,
the vector of protected parameters ν includes the protected regression parameters,
the variance-covariance parameters of the random effects and any scale parameter.
As with LME models, the focus parameter, µ, should not include a random effect
since random effects are random variables. By defining odds ratios, or rate ratios for
example, one can arrive at sensible focus parameters.

The expected information matrix for the canonical class of GLMMs is given
for general random effect structures with potentially numerous hierarchies in Wand
(2007). Computing expected information matrices for GLMMs involves numerical
integration, the complexity of which depends on the dimension of the random effects
and the number of units within clusters. The observed information, which serves
as an approximation, may be more readily available as output from software fitted
models, and simpler to calculate, particularly so when there is missing data. For
example, the observed information matrix of a logistic GLMM is readily available
after calling glmmML in R, as the inverse of N times the variance-covariance matrix
of the model parameters. Nevertheless, it is interesting to see exact expressions for
these matrices.

4.4.1 Derivations of information matrices of a logistic GLMM
with a random intercept.

The logistic GLMM of Section 3.2.1, but with only a random intercept, will be con-
sidered here and expressions for its expected and observed information matrices are
derived.

Define parameters α =

(
β
γ

)
as the vector of protected and unprotected re-

gression coefficients. In addition, define the fixed effect design matrix as X i =
(Xp,i Xu,i) to be the concatenation of protected and unprotected design matrices,
with jth row xᵀ

ij . Then the wide model is

fyij |bi(yij|bi) =p
yij
ij (1− pij)(1−yij), (4.43)

log
( pij

1− pij

)
=xᵀ

ijα+ bi, (4.44)

bi ∼ N(0, σ2
b ),

where pij = P (yij = 1|bi) is the probability of unit j of cluster i taking value one,
and 1− pij is the probability of unit j of cluster i taking value zero.

First of all, note that from (3.4) and (4.44) we have that (4.43) can be re-written

74



as
fyij |bi(yij|bi) = exp

(
yij(x

ᵀ
ijα+ bi)− log(1 + ex

ᵀ
ijα+bi)

)
,

and by conditional independence we have

fyi|bi(yi|bi) =

ni∏
j=1

fyij |bi(yij|bi)

= exp

(
ni∑
j=1

yij(x
ᵀ
ijα+ bi)− log(1 + ex

ᵀ
ijα+bi)

)
. (4.45)

The marginal log-likelihood of a single cluster is

`i(α|y) = log

(∫
fyi|bi(yi|bi)fbi(bi)dbi

)
,

where fbi(bi) is the N(0, σ2
b ) density of the random effects.

The score function of protected and unprotected regression coefficients for the
ith cluster is thus

∂`i
∂α

=

∫ ∂fyi|bi (yi|bi)
∂α

fbi(bi)dbi∫
fyi|bi(yi|bi)fbi(bi)dbi

, (4.46)

where
∂fyi|bi(yi|bi)

∂α
= fyi|bi(yi|bi)

ni∑
j=1

[
yij −

ex
ᵀ
ijα+bi

1 + ex
ᵀ
ijα+bi

]
xᵀ
ij.

Similarly we have

∂`i
∂σb

=

∫
fyi|bi(yi|bi)

∂fbi (bi)

∂σb
dbi∫

fyi|bi(yi|bi)fbi(bi)dbi
, (4.47)

where
∂fbi(bi)

∂σb
=

1√
2πσ2

b

( b2
i

σ2
b

− 1
)
e
− b2i

2σ2
b = v(bi)fbi(bi),

with

v(bi) =
1

σb

( b2
i

σ2
b

− 1
)
. (4.48)

Expected information matrix

For the expected information, what we are interested in is the covariance of the
scores. Since the scores are mean zero under the wide model (4.44), when aver-
aged over all clusters, the covariance of the scores corresponding to the regression
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coefficients becomes (i.e. the component of the expected information corresponding
to the regression coefficients is)

1

N

N∑
i=1

E
[(∂`i
∂α

(yi)
)ᵀ ∂`i
∂α

(yi)

]
. (4.49)

Similarly the component corresponding to the standard deviation parameter of the
random effects is

1

N

N∑
i=1

E
[( ∂`i
∂σb

(yi)
)2
]
, (4.50)

and the cross-term is

1

N

N∑
i=1

E
[(∂`i
∂α

(yi)
)ᵀ ∂`i
∂σb

(yi)

]
, (4.51)

which are averages of expectations with respect to yi. These expectations, which
give expressions for the components of the expected information matrix of the lo-
gistic model, can be evaluated at the narrow (β̂narr,0) or at the wide estimate (β̂, γ̂)
(Claeskens et al. 2008, p.154) for use in the FIC framework.

In practice, there are integrals within integrals to be approximated here. Monte
Carlo methods are typically more suited for the outer integrals (the expectations with
respect to the data), since the number of units within each cluster may be relatively
large. However, samples cannot be drawn directly from the marginal of yi. Instead,
one may draw from the distribution of bi, and then subsequently from the conditional
distribution of yi given the sampled bi. The inner integrals consist of integrating
out bi which, in this case, are univariate. Deterministic approaches such as Gauss-
Hermite quadrature are therefore acceptable for the inner integrals. If this is the ap-
proach to be taken, integration with respect to the random effects has to be performed
for each of the sampled yi.

Observed information matrix

By the quotient rule, the component of the observed information corresponding to
the regression parameters, found by taking the sum and derivative of (4.46) under the
integral sign, is

− 1

N

∂2`N
∂α∂αᵀ

= − 1

N

1

(fyi(yi))
2

(
∂h(yi)

∂αᵀ
fyi(yi)−

∂fyi(yi)

∂αᵀ
h(yi)

)
, (4.52)
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where
∂fyi(yi)

∂αᵀ
is the transpose of (4.46), h(yi) is the numerator of (4.46), and

∂h(yi)

∂αᵀ
=∫ (

∂f(yi)

∂αᵀ

ni∑
j=1

[
yij −

ex
ᵀ
ijα+bi

1 + ex
ᵀ
ijα+bi

]
xᵀ
ij − f(yi|bi)

ni∑
j=1

[
ex

ᵀ
ijα+bi

(1 + ex
ᵀ
ijα)2

]xijx
ᵀ
ij

])
fbi(bi)dbi.

Similarly, for the component corresponding to the standard deviation of the ran-
dom effects, we have

− 1

N

∂2`N
∂σ2

b

= − 1

N

1

(f(yi))
2

(
∂2f(yi)

∂σ2
b

f(yi)−
(
∂fyi(yi)

∂σb

)2
)
, (4.53)

where
∂2fyi(yi)

∂σ2
b

=

∫
fyi|bi(yi|bi)

[
v(bi) +

∂v(bi)

∂σb

]
fbi(bi)dbi,

with v(bi) as in (4.48),
∂v(bi)

∂σb
=

1

σ2
b

(
1− 3bi

σ2
b

)
,

and
∂fyi(yi)

∂σb
the score function given in (4.47). Finally, for the cross-term we have

− 1

N

∂`N
∂σb∂α

= − 1

N

1

(fyi(yi))
2

(
∂2f(yi)

∂σb∂α
fyi(yi)−

∂fyi(yi)

∂α

fyi(yi)

∂σb

)
, (4.54)

where
∂2f(yi)

∂σb∂α
=

∫
fyi|bi(yi|bi)h(yi)v(bi)fbi(bi)dbi.

The integrals in (4.52), (4.53) and (4.54) are all with respect to a univariate normal
density. Thus, in application, Gauss-Hermite integration may be suitable for approx-
imating these quantities.

4.4.2 Data illustration
Recall the binary dataset introduced in Section 3.4 of Chapter 3. Suppose that the
focus of interest is the following odds ratio:

Odds of onycholysis|groupi = A, bi, t = tk
Odds of onycholysis|groupi = B, bi, t = tk

. (4.55)

That is, the focus is an odds ratio comparing an individual of Treatment A to an
individual of Treatment B at time j, both of which happen to share the same random
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effect, bi. In other words, the same tendency (whatever strength that might be, but
that persists throughout the study) to be observed as moderately or severely infected
is shared by both individuals.

The widest model under consideration is the logistic cubic

log
( pij

1− pij

)
= β0 + β1tij + γ0t

2
ij + γ1t

3
ij

+ γ2tijgroupi + γ3t
2
ijgroupi + γ4t

3
ijgroupi + bi,

where time, t, was centered about its mean. The focus (4.55) can be written as

ex
ᵀ
A,ijα+bi

ex
ᵀ
B,ijα+bi

,

where xᵀ
A,ij is the jth row of the design matrix of individual i from treatment group

A, and similarly for xᵀ
B,ij . Since both individuals under comparison are assumed to

have measurements observed at the same set of scheduled occasions (at 1, 2, 3, 6, 9
and 12 months), and also share the same random effect, bi, this reduces to

e(xA,ij−xB,ij)ᵀα = eγ3tij+γ4t
2
ij+γ5t

3
ij . (4.56)

For this set-up, there are four potential models (the narrow, 00000, and 10000, 01000,
11000), which all set γ3 = γ4 = γ5 = 0 and thus estimate the focus to take value 1
with zero variance. Of these four, only the narrow is included as a candidate.

The derivatives of (4.56) with respect to the model parameters, evaluated at the
narrow model, give estimates for the required partial derivatives in the cluster version
of (4.13).

The observed information matrix [see formulas (4.52), (4.54), (4.53)] of the
wide model was used as an approximation of the expected information matrix. Doing
so is advantageous since this dataset contains missing data which has to be accoun-
ted for by the expected information matrix. 60 quadrature points were used in the
Gauss-Hermite quadrature for approximating the integrals of the observed informa-
tion matrix. The command gauss.quad from the R package statmod (Smyth 2005)
was used to create the quadrature points. In addition, the observed information mat-
rix was evaluated at the wide estimate (rather than the narrow), which builds in a
certain model robustness (Claeskens et al. 2008, p.154).

This focus, (4.55), was estimated by each model for each of the scheduled time
points, producing corresponding FIC scores. The AFIC was then calculated over all
7 time points. Table 4.5 presents the AFIC scores (divided by the number of patients
N = 294) and the AIC scores of the top five models (out of 29) as rated by AFIC.
Once again, there are disagreements between the rankings of AIC and AFIC.5

5Admittedly, the conditional AIC would be more appropriate than the AIC since the focus is at
the level of the individual. However, implementation of this is a slow process in R package cAIC4
(Saefken et al. 2018a,b) for Bernoulli models due to the number of model-refits required.
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Table 4.5: The AFIC (divided by N) and AIC scores for the top 5 models (as judged
by AFIC) for the onycholysis data set with focus given in (4.55).

model AFIC/N AIC
10001 0.027 -1243.64
00000 0.029 -1261.84
01001 0.035 -1244.58
11001 0.036 -1241.7
00100 0.062 -1260.75

Figure 4.6 shows the focus estimates of the favoured AFIC model, 10001, for
each of the 7 time points along with 95% confidence intervals (which are optim-
istic as they neglect the uncertainty in the model selection procedure). Under the
assumptions of model 10001 and assuming an all-available data analysis is appro-
priate, this figure suggests that, since the 95% confidence intervals include the no-
difference between treatment line, there is no significant difference between the odds
of onycholysis of two individuals from both treatments who happen to have the same
random effect.

4.5 Chapter summary
In this chapter, the focussed information criterion for independent data as in in
Claeskens & Hjort (2003) was introduced. How this generalises to clustered data
within a multivariate misspecified framework was then made explicit. In particular,
the framework formulated in Section 4.2.1 opens the door to application of the FIC
for covariate selection in multivariate LMs, LME models and GLMMs. With re-
gard to the Normal model, a simulation study was carried out to see how influential
the uncertainty in over-parametrised variance-covariance models is upon the limiting
distribution of focus parameters that are only a function of the regression coefficients.
As examples of the framework in Section 4.2.1, the FIC was applied to select cov-
ariates in the multivariate Normal model and a logistic GLMM for two clinical trial
datasets. Explicit formulae for the information matrices of the multivariate linear
model and the logistic GLMM were also given.

79



Figure 4.6: The focus [see (4.55)] as estimated by model 10001 for each scheduled
measurement occasion 1, 2, 3, 6, 9 and 12. The dashed red line is where no difference
between treatments would be observed i.e. the odds of treatment A is a factor of
one time the odds of Treatment B. The solid green lines give upper and lower 95%
confidence intervals (albeit optmistic).
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Chapter 5

Derivations of Mean Squared Error
Formulae

For the Normal model, an alternative approach to constructing FIC scores is avail-
able for a subset of foci. The method, described in the appendix of Cunen et al.
(2017), begins with finding the expected value and covariance of the generalised
least squares (GLS) estimator for each candidate model, under the assumption that
the wide model’s first two moments are correctly specified, and, thereby, the bias
squared and variance of the focus estimator of each model. This method was used in
Cunen et al. (2017) to construct FIC formulas for linear mixed effect (LME) mod-
els, albeit only for the bias squared term. Since the focus of interest in Cunen et al.
(2017) was a single regression coefficient, the formulas were given for that specific
case, and noted to be readily available for more general functions of the regression
coefficients.

In this chapter, the approach will be demonstrated for a general linear combina-
tion of regression coefficients and for a multivariate linear combination of regression
coefficients. An extension, following the work of Kackar & Harville (1984), which
also takes into account the uncertainty in the variance-covariance parameters is also
presented. Lastly, a similar approach is demonstrated for ranking LME models in
terms of the precision of predictors of cluster-specific trajectories.

5.1 MSE formula for a focus that is a general linear
combination of regression parameters

For this chapter, the slightly misspecified framework of (4.15) is not needed. Rather,
an alternative, but similar setup is required. It will be assumed that a wide model,
with fullest mean structure is the true model. The form of its covariance matrix
depends on whether we are considering a model with random effects (the marginal
model), or no random effects at all. Then, independent vector responses yi are gen-
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erated by
yi ∼ N(Xp,iβ +Xu,iγ,Σi(θ)). (5.1)

In the same way as the FIC setup, let model (say) S be a function of the protected
regression parameters β of dimension p and the unprotected regression parameters
γS of dimension |S|, a subset of the wide models γ, which is of dimension q.

In terms of design matrices for each individual i, all models will include a matrix
of protected covariates,Xp,i, but only the wide model will additionally include all of
the unprotected covariates,Xu,i. So, the wide model has an ni×(p+q) design matrix,
X i = (Xp,i Xu,i), which is the concatenation of the protected and unprotected
covariates. Candidate model S has design matrix XS,i = (Xp,iXuS ,i) where XuS ,i

is the matrix of columns of Xu,i whose indices are in the set S (S denotes a set;
model S refers to that model which includes the unprotected covariates whose indices
appear in set S).

Let α =

(
β
γ

)
be the vector of all regression coefficients. For a focus µ that is

a linear combination of the elements of α, whose weights are defined by the (p+ q)
row vector m, we may write µ = mα. Also required is the p + |S| row vector
mS whose first p entries correspond to the first p entries of m (i.e. the protected
regression weights) and the remaining |S| entries are the weights of the unprotected
γs that appear in set S. It is assumed that the variance-covariance model, Σi(θ), is
the same across candidate models. Furthermore, its parameter values are considered
known, with superscript o used to denote this. Mean squared error formulae will now
be derived.

We have that the generalised least squares estimator of α for model S is

α̂oS =

(
β̂
o

S

γ̂oS

)
=

(
N∑
i=1

Xᵀ
S,iΣ

−1
i (θo)XS,i

)−1 N∑
i=1

Xᵀ
S,iΣ

−1
i (θo)yi. (5.2)

Then, the estimate of µ produced by model S is µ̂oS = mSα̂
o
S .

Since, under the wide model, E[yi] = X iα, where α is the true parameter
value, taking the expected value of (5.2) gives

E[α̂oS] =

(
N∑
i=1

Xᵀ
S,iΣ

−1
i (θo)XS,i

)−1( N∑
i=1

Xᵀ
S,iΣ

−1
i (θo)X i

)
α (5.3)

=Bo−1
S Do

Sα,

with

Bo
S =

N∑
i=1

Xᵀ
S,iΣ

−1
i (θo)XS,i, and Do

S =
N∑
i=1

Xᵀ
S,iΣ

−1
i (θo)X i. (5.4)

In addition, define
Ao
S = Bo−1

S Do
S. (5.5)
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For the bias squared term, we have that the bias in the estimator µ̂oS is

biasS = E[µ̂oS − µ] = E[mSα̂
o
S −mα]

=mSE[α̂oS]−mα = (mSA
o
S −m)α, (5.6)

where the fourth equality follows from (5.3) combined with (5.5).
A naive estimator of bias squared for model S is then

b̂ias
o2

S = ((mSA
o
S −m)α̂o)2,

where α̂o is the estimator of the wide model. Since for any random variable say b,
E[b2] = E[b]2−Var(b), this naive estimator overshoots by the amount Var(b̂ias

o

S). An
improved estimator is therefore

(mS(Ao
S −m)α̂o)2 − Var(b̂ias

o

S),

where, by (5.6),

Var(b̂ias
o

S) = (mSA
o
S −m)Cov(α̂o)(mSA

o
S −m)ᵀ.

We have that

Cov(α̂o) =

(
N∑
i=1

XiΣ
−1
i (θo)X i

)−1

=·· Bo−1,

and so, along with truncating at zero to avoid a negative bias squared, we get

max
[
0, ((mS A

o
S − m)α̂o)2 − (mSA

o
S − m)Bo−1(mSA

o
S − m)ᵀ

]
(5.7)

as an improved estimator of bias squared.
As for the variance term, note that under the wide model, the variance-covariance

of α̂oS is
Cov(α̂oS) = Bo−1

S . (5.8)

Therefore, the variance in estimation of the true focus µ = mα for model S is

Var(µ̂oS) = mSCov(α̂oS)mᵀ
S

= mSB
o−1
S mᵀ

S. (5.9)

Summing (5.9) and (5.7) together then gives an estimator for the MSE of model
S in estimation of µ = mα as

M̂SE
o

S = mSB
o−1
S mᵀ

S + max
[
0, ((mSA

o
S −m)α̂o)2

− (mSA
o
S −m)Bo−1(mSA

o
S −m)ᵀ

]
, (5.10)
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which, for known θ, the variance term is exact and the bias squared term is unbiased
prior to truncation.

The same derivation when θ has to be estimated does not hold: the uncertainty
in the estimates of θ needs to be taken into account. Therefore, for such a situation,
a plausible option is to use the estimates of θ based on the widest mean structure and
simply plug them into the relevant quantities of formula (5.10). That is, to use the
estimators

ÂS = B̂
−1

S

N∑
i=1

Xᵀ
S,iΣ

−1
i (θ̂)X i, B̂

−1

S =

(
N∑
i=1

Xᵀ
S,iΣ

−1
i (θ̂)XS,i

)−1

, (5.11)

and

B̂
−1

=

(
N∑
i=1

Xᵀ
iΣ
−1
i (θ̂)X i

)−1

. (5.12)

Plugging in estimates into (5.10) could, for example, rank models in terms of
their estimation of the focus µ, which is the expected marginal response given a
vector of covariates m, E[yij|xᵀ

ij = m]. Or, similar to Cunen et al. (2017), to
estimate the kth regression coefficient, in which case m = ∂β

∂βk
, i.e. a vector of

zeroes with a single entry of one in the kth slot. Furthermore, although this method
has been presented in the multivariate linear regression setting, equivalent formulas
can equally be derived for univariate linear regression.

As a final comment, note that one could consider a similar situation for choosing
between covariance models, which should be done based on a maximal mean (or
fixed effect) structure. For such a situation, with the maximal mean structure assumed
true, the bias squared term would be zero; the variance term is the only contributing
factor. However, there would be no guarantee that the favoured models would be
correctly specified, so no formula is given here.

5.1.1 Data illustration
As an illustration of formula (5.10) consider the depression data set introduced in
Section 2.7. Consider also the first focus of Section 4.3.3, namely

µ(β,γ) = E[hdi4|basei = 27, tci4 = 2, edi = 0],

the expected response of a non-endogeneous depressed (edi = 0) individual with
an above average depression score at baseline (basei = 27) by the end of the study
(tci4 = 2). The same variance-covariance matrix M6 chosen in Section 4.3.3 was
used here. The plug-in estimators in (5.11) and (5.12) were used to generate estimates
of (5.10) for each of the candidate models that are submodels of the wide model
which is given in (4.35). REML was used for estimation of the variance-covariance
of the wide model.
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Table 5.1 displays the results, ranging from the model with smallest MSE at the
top, to the largest at the bottom. The columns bias2 and Var give the estimated bias
squared [see (5.7)] and variance [see (5.9)], MSE gives the estimated mean squared
error [see (5.10)], which is in agreement with the FIC/N scores to 12 decimal places.
This is unsurprising since the FIC, being asymptotic, neglects the uncertainty in the
variance components, and the asymptotic covariance of the regression coefficients
under the wide model, (5.12), was used as an estimator in the MSE formula. This
connection between FIC and exact MSE formulas under a Normal model is discussed
in Claeskens et al. (2008, p.172).1

Table 5.1: Mean squared error estimates by formula (5.10) for a focus that is the
expected response at the end of the study of a non-endogeneous patient with baseline
score 27 on the HAMD scale.

model bias2 Var MSE FIC/N
1000 0 1.4908 1.4908 1.4908
0101 0.2756 1.2414 1.517 1.517
1001 0.0144 1.5035 1.5179 1.5179
1100 0 1.5602 1.5602 1.5602
0001 0.4021 1.1983 1.6004 1.6004
1101 0 1.6806 1.6806 1.6806
0100 0.4902 1.2407 1.7308 1.7308
0000 2.2614 1.1708 3.4322 3.4322
0010 0 3.7194 3.7194 3.7194
1010 0 3.7205 3.7205 3.7205
0011 0 3.9041 3.9041 3.9041
1011 0 3.925 3.925 3.925
1110 0.3261 3.7535 4.0796 4.0796
0110 0.3806 3.7526 4.1331 4.1331
0111 0 4.1658 4.1658 4.1658
1111 0 4.2677 4.2677 4.2677

5.2 Extension to a multivariate focus

Often, the research question to be answered will be a hypothesis about the regression
coefficients consisting of more than one constraint. In other words, a null hypothesis
may be of the form H0 : Mβ = r, where r is a vector of constants and M is a
matrix of weights for the regression coefficients which define the constraints of the

1A detail implicitly assumed in Claeskens et al. (2008, p.172) is that the variance parameter σ2

should be known.
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hypothesis. For example, β1 = β2 = 0 may be the null hypothesis that two non-
reference group treatment effects coincide with that of the reference group. This can
be expressed as (

−1 1
0 1

)(
β1

β2

)
=

(
0
0

)
.

Such hypotheses can be addressed via multivariate Wald tests, for example. One may
also be interested in simultaneously predicting all entries of a multivariate response.
In such situations, the focus is multivariate.

The MSE formula (5.10) can be extended to the situations just described, al-
lowing the statistician to rank models in terms of mean squared error in estimation
of a multivariate focus. Such a formula will be derived here, when working with a
fixed, known, variance-covariance matrix.2 Choice is between unprotected regres-
sion parameters. And, one should ensure that inclusion or exclusion of unprotected
regression parameters does not affect the interpretation of those parameters of in-
terest. In particular, interpreting the parameters of interest as by the wide model may
be suitable.

Define the multivariate focus as µ = Mα, where M is a matrix of dimension
k × (p + q) and whose entries are constants. As discussed, they could define the
weights of the linear constraints of a hypothesis, or the values of covariates used to
make a prediction of a vector response. In the former case, k defines the number of
constraints in a hypothesis. In the latter, it is the length of the response vector to be
predicted.

When Σ(θ) is considered fixed and known, the estimator of µ by the model
with mean structure S is µ̂oS = MSα̂

o
S , where MS is a k × (p + |S|) matrix whose

first p columns correspond to the weights of β. If the aim is to test a hypothesis
about β alone, the additional |S| columns would be columns of zeros. If the aim is
prediction of a multivariate response, then the additional |S| columns correspond to
the weights of γS .

The mean squared error for estimator µ̂oS of the multivariate focus µ by model
with mean structure S is

MSE(µ̂oS) = Tr{Cov(µ̂oS)}+ (E[µ̂oS]− µ)ᵀ(E[µ̂oS]− µ).

The first term can be thought of as the sum of the variances of each entry of the focus,
and the second as the sum of the squared bias in each entry of the focus. Both terms
can be estimated in a similar fashion to the univariate case. The bias, as in (5.6) but
now a vector of length k, is

biasS =E[µ̂oS − µ] = MSE[α̂oS]−Mα

=(MSA
o
S −M )α,

2The word ‘fixed’ is used in the sense of chosen, the same across candidate models, and could
arise marginally from a random effect structure.
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whereAo
S is as in (5.5). A naive estimator of the bias squared term is thus

b̂ias
oᵀ

S b̂ias
o

S = α̂oᵀ(MSA
o
S −M )ᵀ(MSA

o
S −M )α̂o.

This, akin to the univariate case, overshoots by

Tr{Cov(b̂ias
o

S)} = Tr{(MSA
o
S −M )Cov(α̂o)(MSA

o
S −M )ᵀ}.

So, a better estimator of bias squared, truncated to avoid being negative, is

max

[
0, α̂oᵀ(MSA

o
S −M)ᵀ(MSA

o
S −M )α̂o

− Tr
{

(MSA
o
S −M)

(
N∑
i=1

Xᵀ
iΣ
−1
i (θo)X i

)−1

(MSA
o
S −M )ᵀ

}]
. (5.13)

The variance part of the MSE formula is also derived in a similar fashion to the
univariate case. The covariance of µ̂oS is

Cov(µ̂oS) = MSB
o−1
S M ᵀ

S (5.14)

of which the diagonal elements are of interest, and whereBo
S is as in (5.4).

So, an estimator of the MSE in estimation of the multivariate focus for each
model, found by taking the trace of (5.14) and summing with (5.13), is

M̂SE
o

S = Tr
{
MSB

o−1
S M ᵀ

S

}
+ max

[
0, α̂oᵀ(MSA

o
S −M )ᵀ(MSA

o
S −M )α̂o

− Tr
{

(MSA
o
S −M)Bo−1(MSA

o
S −M )ᵀ

} ]
, (5.15)

and when k = 1 we are back to formula (5.10). Thus, under the assumption that
the wide model is true, candidate models may be ranked according to their MSE in
estimation of the multivariate linear combination of protected regression parameters,
with direct application to ranking models in terms of ability to reject/fail to reject a
multivariate hypothesis, or for predicting a multivariate response.

5.3 Accounting for uncertainty in the variance com-
ponents

A limitation of of the previously considered MSE formulae (5.10) and (5.15) is that
uncertainty in the variance-covariance parameters is neglected. Following the work
of Kackar & Harville (1984), approximate MSE formula for both of these but that
account for uncertainty in the variance-covariance parameters may be constructed.
The method will be shown here for adjusting formula (5.10). The true focus is µ =
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mα, and, from candidate model S, has estimators µ̂oS and µ̂S , which treat θ as known
and unknown respectively.

By Kackar & Harville (1984, p.854), we have that

µ̂S − µ = (µ̂oS − µ) + (µ̂S − µ̂oS), (5.16)

and both terms on the right hand side are independently distributed. Thus, the actual
mean squared error in estimation by model S is

E[(µ̂S − µ)2] = E[(µ̂oS − µ)2] + E[(µ̂S − µ̂oS)2]. (5.17)

Formula (5.10) provides an estimator for the first term on the right hand side of
(5.17), which is, in fact, a lower bound for the actual MSE (Kackar & Harville 1984).
The second term captures the additional MSE due to uncertainty in estimation of θ.

Using a second order Taylor expansion for µ̂2
diff,S = (µ̂S − µ̂oS)2 = (µ̂S(θ̂) −

µ̂S(θo))2 as a function of θ̂ about θo as in Kackar & Harville (1984), and supposing
θ̂ is the REML estimator to ensure unbiasedness, an approximation to the second
term on the right hand side of (5.17) is

E[µ̂2
diff,S] ≈ 1

2
E[(θ̂ − θo)ᵀ

∂µ̂2
diff,S

∂θ∂θᵀ

∣∣∣∣
θ0

(θ̂ − θo)]

=
1

2
Tr
{∂µ̂2

diff,S

∂θ∂θᵀ

∣∣∣∣
θ0

Cov(θ̂)
}

= Tr
{(∂µ̂S

∂θ

)(∂µ̂S
∂θ

)ᵀ∣∣∣∣
θ0

Cov(θ̂)
}
, (5.18)

where the first equality is a consequence of (A.5) and the second is explained in
Section A.5 of Appendix A.

So, given estimates for the quantities in (5.18) an approximation of the amount
by which (5.10) undershoots the actual MSE is available. The Cov(θ̂) may be estim-
ated asymptotically as the inverse of the expected information corresponding to the
variance-covariance parameters (Kackar & Harville 1984) (for which, an expression
is given (4.24)). For the partial derivatives, note that as a function of the variance-
covariance parameters, the focus estimator for model S is expressible as

µ̂S(θ) = mSα̂S(θ) = mSB
−1
S (θ)CS(θ),

where

BS(θ) =
N∑
i=1

Xᵀ
S,iΣ

−1
i (θ)XS,i and CS(θ) = CS(θ,y) =

N∑
i=1

Xᵀ
S,iΣ

−1
i (θ)yi.

The required partial derivatives in (5.18) are then
µ̂S(θ)

∂θk
= mS

∂α̂S(θ)

∂θk

= mS

(
∂B−1

S (θ)

∂θk
CS(θ) +B−1

S (θ)
∂CS(θ)

∂θk

)
,
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where,

∂B−1
S (θ)

∂θk
= −B−2

S (θ)

(
N∑
i=1

Xᵀ
S,i

∂Σ−1
i (θ)

∂θk
XS,i

)
,

∂CS(θ)

∂θk
=

N∑
i=1

Xᵀ
s,i

∂Σ−1
i (θ)

∂θk
yi,

and
∂Σ−1

i (θ)

∂θk
is given by (A.1) in Appendix A.

Therefore, given an estimate of the asymptotic variance-covariance of the cov-
ariance parameters and estimates of the partial derivatives of the variance-covariance
matrix of the wide model, an approximate MSE formula for model selection which
accounts for the uncertainty in the variance-covariance parameters is available. This
is obtained by summing (5.10) with (5.18).

5.3.1 A simulation study
To see how useful formula (5.18) might be in practice, a small simulation study was
carried out.

500 balanced longitudinal datasets were generated from a random intercept and
slope model for a fixed number of measurement occasions n = 5, and for each of the
number of individuals N = 10, 20, 30, 100, 250. Four models (M1-M4), each with
the same random intercept and slope, were under consideration.

The mean structure of the widest model (M4) was

E[yij] = β0 + γ0tij + γ1tijgroupi,

where covariate group was binary and generated by the command rbinom in R. Model
M2 was the true data generating model, and given by

yij = β0 + bi,0 + (γ0 + bi,1)tij + εij,

with (
bi
εi

)
∼ N

(
0,

(
D 0
0 σ2In

))
.

The true values of the regression parameters were (β0, γ0, γ1) = (1,−0.1, 0), and the
true values of the variance-covariance parameters were (σ2, d11, d12, d22) = (4, 1, 0.2, 0.1).

The mean structure of model M3 was

E[yij] = β0 + γ1tijgroupi,

and that of the narrowest model, M1, was

E[yij] = β0.

The focus under consideration was the marginal mean response of non-reference
group individuals by the end of study. That is

µ = E[yi5|groupi = 1] = β0 + γ0t5 + γ1t5,

where t5 = 4 is the time at the fifth measurement occasion. The focus had true value
1 + (−0.1× 4) = 0.6.
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Results

For N = 10, 51 models out of 2000 failed to converge (4 mean structures times 500
datasets). No other complications arose.

It has been drawn to my attention (Cunen et al. 2018, p.14), that not truncating
bias squared at zero (for both FIC and (5.10)) leads to nicer results computation-
ally, in spite of the conceptual issue of a negative estimate of a squared term. This
certainly proved true for these simulations. Therefore, it was thought sensible to
compare the MSE estimates, (5.10), but whose bias squared had not been truncated
at zero, with the same estimates (that is, also not truncating bias squared) but sub-
sequently adjusted by formula (5.18). To see this, compare Tables 5.3, 5.2, and 5.4,
which show the average MSE estimates (over all 500 datasets) of formula (5.10)
without truncation, with truncation, and the true MSE values for each mean struc-
ture and for each value of N respectively. In particular, for smaller N and narrower
mean structures formula (5.10) with truncation of bias squared, overestimates the
true MSE.3

With regard to comparison with accounting for uncertainty in the variance com-
ponents, note that the estimates of Table 5.3, especially as N grows, are close to
the true MSEs shown in Table 5.4. Thus, it is only really for smaller N that there
is potential room for improvement. However, as shown in Table 5.5, adjusting for
uncertainty in θ via (5.18) did not make any improvement. Except for model M1,
the estimates are poor for small N , which could be due to the use of the asymptotic
variance-covariance matrix of the variance components in formula (5.18).

Table 5.2: MSE error estimates produced from formula (5.10) truncating bias squared
at zero.

N M1 M2 M3 M4
10 0.4976 0.7610 0.6112 0.8042
20 0.2819 0.3351 0.2875 0.3382
30 0.2142 0.2237 0.1955 0.2247

100 0.1179 0.0666 0.0674 0.0671
250 0.0917 0.0266 0.0321 0.0267

3In practice, when working with a single dataset, it may still be desirable to truncate bias squared,
but in the simulation setting this is less so.
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Table 5.3: MSE error estimates produced from formula (5.10) without truncating
bias squared at zero.

N M1 M2 M3 M4
10 0.2233 0.6957 0.4065 0.8042
20 0.1948 0.3320 0.2379 0.3382
30 0.1644 0.2228 0.1650 0.2247

100 0.1100 0.0661 0.0603 0.0671
250 0.0906 0.0266 0.0307 0.0267

Table 5.4: The true MSE errors: averages (over 500 simulations) of the observed
squared errors (µ̂M,N,j − µN,true)

2, for simulation j, mean structure M, and sample
size N .

N M1 M2 M3 M4
10 0.3588 0.6322 0.4178 0.7451
20 0.1948 0.3138 0.2304 0.3179
30 0.1635 0.2195 0.1685 0.2194

100 0.1104 0.0690 0.0634 0.0696
250 0.0899 0.0270 0.0307 0.0270

Table 5.5: The average estimates produced by the adjusted MSE which accounts for
uncertainty in variance components by formula (5.18).

N M1 M2 M3 M4
10 0.2523 5.7666 8.7159 33.2241
20 0.2042 0.7902 0.8867 2.2227
30 0.1693 0.3614 0.3911 0.7086

100 0.1109 0.0774 0.0721 0.0845
250 0.0909 0.0296 0.0319 0.0289
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5.4 Mean squared prediction error formulae
In some situations, the focus may not be to estimate a true value, but to predict future
behaviour of a random variable. Suppose that there are a list of LME models with
the same random effect structure, but different fixed effect structures. Which model
produces the best predictor of the multivariate response of single cluster, or for a
collection of clusters from the current dataset?

To this end, define the focus as the multivariate response of cluster i,

µi = X iα+Zibi, (5.19)

which arises from the LME model

yi|bi ∼ N(X iα+Zibi, σ
2Ini). (5.20)

Note that the focus is considered to be a random variable, and until realised, does not
have a true value.

With variance-covariance parameters assumed known, the predictor from the
widest model (which is assumed true) is

µ̂oi = X iα̂
o +Zib̂

o

i ,

with α̂oS as in (5.2), and b̂
o

i as in (2.21) but with known variance components. In
addition, model S produces predictor

µ̂oS,i = XS,iα̂
o
S +Zib̂

o

S,i,

where
b̂
o

S,i = DoZᵀ
iΣ

o−1
i (yi −XS,iα̂

o
S). (5.21)

As a measure of precision in prediction of µi, the mean squared prediction error
(MSPE) of model S is given by

MSPES,i = E[(µ̂oS,i − µi)ᵀ(µ̂
o
S,i − µi)]. (5.22)

For which, an estimator of the MSPE in prediction of µi by model S, assuming
known variance components, is

M̂SPE
o

S,i = Tr{XS,iB
o−1
S Xᵀ

S,i +ZiCov(b̂
o

S,i)Z
ᵀ
i }+ α̂oᵀW oᵀ

S,iW
o
S,iα̂

o

− 2
[

Tr{ZiV
o
iZiD

oZᵀ
i + (Ini −ZiV

o
i )XS,iB

o−1
S Xᵀ

S,iV
oᵀ
i Z

ᵀ
i }

+ α̂oᵀW oᵀ
S,iX iα̂

o
]

+ Tr{ZiD
oZᵀ

i }+ α̂oᵀXᵀ
iX iα̂

o, (5.23)

where
W o

S,i = XS,iA
o
S +ZiV

o
i (X i −XS,iA

o
S);
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Cov(b̂
o

S,i) is as in (C.3); α is estimated by the wide model; and for which the deriva-
tion, largely inspired by previous methods of this chapter, is given in Appendix C.

The above formula could, in theory, be used for ranking models in terms of
prediction of the multivariate response of a given individual, or for ranking models
in terms of predictions of the collection of responses of a group of individuals: the
MSPE estimated for each of them, and then averaged accordingly. In practice, as
with formulae (5.10) and (5.15), the variance components must be estimated, and so
estimating θ from the wide model may be, in general, acceptable.

5.5 Chapter summary
In this chapter, mean squared error formulas have been derived for foci that are either
univariate or multivariate linear combinations of the regression parameters. This con-
trasts with Chapter 4, where linearity of the focus in the regression coefficients was
not required. Note also that, for formulas (5.10), (5.15), and indeed (5.23) an identity
link function is essential. The form of the wide model’s first two moments must also
be correctly specified. However, normality is not necessary. By derivation, the mean
squared error formulas (5.10) and (5.15) are exact for the variance term and unbiased
for the bias squared term (provided no truncating at zero takes place) when the vari-
ance components are known. However, in practice these are to be estimated, and in
doing so from the wide model one arrives at the same estimates as produced by FIC.
In Section 5.3, the uncertainty in the variance components was taken into considera-
tion. A simulation study showed that the suggested formulas provided no gain when
the asymptotic variance-covariance of the variance components was utilised. Lastly,
a mean squared prediction error formula was introduced, with potential applications
for model selection between LME models when interest is in predicting responses of
clusters from the current dataset.
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Chapter 6

Summary and Further Topics

6.1 Summary of thesis
This thesis began with a detailed overview of linear models for longitudinal data.
That is, in Chapter 2, the well-established theory of LMs and LME models was
presented in the context of longitudinal data. Chapter 3 explained the theory and
principal ideas behind GLMMs. For both Chapter 2 and Chapter 3, clinical trial
datasets were used as illustrative examples. In Chapter 4, the focussed information
criterion as in (Claeskens & Hjort 2003, Claeskens et al. 2008) was introduced, and
the main steps underlying the limiting distribution theory was exhibited. Building
upon this theory, a multivariate slightly misspecified framework was put forward
which permits application of the FIC for selection of covariates in the multivari-
ate LM, LME models, and GLMMs. A simulation study was then conducted and
showed that, even if in theory the limiting distribution of the regression coefficients
is independent of the uncertainty in the variance components, in practice it is still
worthwhile to acknowledge the uncertainty. The rest of Chapter 4 was dedicated to
illustrations of this FIC setup for multivariate models. In particular, examples of FIC
and AFIC were given for the multivariate LM and a logistic GLMM. In addition,
expressions for the relevant information matrices were derived. Chapter 5 presented
alternative formulae for estimating the MSE of foci that are a linear combination of
the regression coefficients in the context of multivariate linear models. An extension
to multivariate foci was also suggested. Then, even if perhaps of limited practical
value, an approximation that accounts for uncertainty in the variance components,
making use of Kackar & Harville (1984), was put forward. Lastly, a mean squared
prediction error formula for selection of fixed effects in LME models was proposed.

6.2 Further topics
The framework introduced in Section 4.2.1 assumes that any variance-covariance
parameters or scaling parameters are protected. However, this assumption could po-
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tentially be relaxed. Random effect structures are typically nested in the FIC sense,
whereby setting a parameter (or parameters) equal to a null value gives a simplified
structure (e.g. setting d12 = d22 = 0 in the variance-covariance matrix of a random
intercept and slope gives a random intercept model). The covariance pattern mod-
els of Section 2.3.1 are not necessarily nested, though may be in some cases, for
an example see Claeskens et al. (2008, p.259). However, since variance-covariance
parameters and scale parameters are constrained to be non-negative, the issue of
asymptotic normality about border parameters arises. For the Normal model, due
to asymptotic independence of regression coefficients and variance-covariance para-
meters, as discussed in Section 4.3.1, asymptotic normality of variance-covariance
parameters is not required if the focus is purely a function of the regression paramet-
ers. So treating variance-covariance parameters as unprotected is acceptable for the
Normal model if the focus is purely a function of the regression parameters. How-
ever, in general, this is not so. In addition, if choice between variance-covariance
is to be considered, model robust inference would be required, as the FIC may not
favour models with correctly-specified variances.

The FIC of Cunen et al. (2018) for LME models is not within the slightly mis-
specified framework, and so avoids the issue of asymptotic normality of variance-
covariance parameters about null values. This makes choice between covariates
and different random effect structures possible even for foci that are functions of
the variance-covariance parameters, provided that the true values of the variance-
covariance parameters are not on the border of their parameter space. The asymptotic
distribution of ML estimators with boundary restrictions is given in Claeskens et al.
(2008, p.278) and could offer an avenue of future research for the FIC.

The multivariate MSE error formulas of Section 5.2 are not restricted to the
Normal model. In particular, it is possible to assess the MSE for multivariate foci
via the FIC, where the multivariate delta method would be required. This could have
applications for multivariate hypothesis testing for both univariate and multivariate
models, and for predicting multivariate responses of non-Normal multivariate data.
In particular, after application of the multivariate delta method, the limiting distribu-
tion of a k-dimensional multivariate focus as estimated by model S for independent
data, can be written [similar to (4.11)] as:

√
n(µ̂S − µ0)

d→ Nk(ω
ᵀ(I −GS)δ, τ 2

0 + ωᵀGSQG
ᵀ
Sω),

where
ω = J10J

−1
00

(∂µ
∂ν

)ᵀ
−
(∂µ
∂γ

)ᵀ
is of dimension q × k, and similarly

τ 2
0 =

(∂µ
∂ν

)
J−1

00

(∂µ
∂ν

)ᵀ
is now a matrix of dimension k × k.

96



Model averaging is a topic that has not been covered in this thesis. So it is per-
haps hypocritical to say that, in my view, the "quiet scandal" of statistics remains a
scandal as long as remedies to resolve it do not become part of mainstream practice
(Breiman 1992). Nevertheless, for statisticians to remain confident that the confid-
ence in their confidence intervals is as confident as claimed, continued application of
estimation post model selection is problematic (see Claeskens et al. (2008, p.199) for
more details). Model averaging approaches are a method to account for loss of con-
fidence after model selection (Claeskens et al. 2008, Ch. 7). With regard to this, there
are as yet (to my knowledge) no smoothed frequentist model averaging weights that
account for more than one stage of model selection (as illustrated in Section 4.3.3
for the LM, or say for separate stages of choice of link, random effect structure and
covariates in a GLMM).
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Appendix A

A.1 Results on derivatives of the determinant and in-
verse of a matrix

From Section 15.9 of Harville (1997), provided sufficient smoothness of a matrix
Σ(θ) in the domain of its parameters θ, the first and second derivatives of the inverse
of Σ(θ) are given by

∂Σ−1(θ)

∂θk
= −Σ−1(θ)

∂Σ(θ)

∂θk
Σ−1(θ), (A.1)

and

∂2Σ−1(θ)

∂θl∂θk
=

Σ−1(θ)

(
∂Σ(θ)

∂θl
Σ−1(θ)

∂Σ(θ)

∂θk
+
∂Σ(θ)

∂θk
Σ−1(θ)

∂Σ(θ)

∂θl
− ∂2Σ(θ)

∂θl∂θk

)
Σ−1(θ)

(A.2)

respectively. Furthermore, the first derivatives of the determinant and the logarithm
of the determinant of Σ(θ) are given by

∂|Σ(θ)|
∂θk

= |Σ(θ)|Tr
{

Σ−1(θ)
∂Σ(θ)

∂θk

}
, (A.3)

and
∂ log |Σ(θ)|

∂θk
= Tr

{
Σ−1(θ)

∂Σ(θ)

∂θk

}
(A.4)

respectively.

A.2 Expectation of a quadratic form of mean-zero vari-
ables

Let ε be a mean zero random vector with covariance matrix Σ and letA be a generic
matrix, then (Searle 1971, p.56):

E[εᵀAε] = Tr{AΣ}. (A.5)
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A.3 Derivation of Jθθ,N
To find the expression for the (k, l)th element of Jθθ,N , (4.24), substitute equation
(A.2) into the second term of (4.21). Then sum (4.21) over all clusters, multiply by
minus one and take the expectation to get

E

[
N∑
i=1

1

2
Tr
{

Σi(θ)−1∂
2Σi(θ)

∂θl∂θk
+
∂Σ−1

i (θ)

∂θl

∂Σi(θ)

∂θk

}
+

1

2
εᵀiAεi

]
, (A.6)

where

A = Σ−1
i (θ)

(
∂Σi(θ)

∂θl
Σ−1
i (θ)

∂Σi(θ)

∂θk
+
∂Σi(θ)

∂θk
Σ−1
i (θ)

∂Σi(θ)

∂θl
− ∂2Σi(θ)

∂θl∂θk

)
Σ−1
i (θ).

Since that which is inside the trace of (A.6) is considered fixed (even if unknown),
the trace can move outside of the expected value to give

N∑
i=1

1

2
Tr
{

Σ−1
i (θ)

∂2Σi(θ)

∂θl∂θk
+
∂Σ−1

i (θ)

∂θl

∂Σi(θ)

∂θk

}
+ E

[1

2
εᵀiAεi

]
. (A.7)

By application of Equation (A.5) the expected value of 1
2
εᵀiAεi is

1

2
Tr

{
Σ−1
i (θ)

∂Σi(θ)

∂θl
Σ−1
i (θ)

∂Σi(θ)

∂θk

+ Σ−1
i (θ)

∂Σi(θ)

∂θk
Σ−1
i (θ)

∂Σi(θ)

∂θl
−Σ−1

i (θ)
∂2Σi(θ)

∂θl∂θk

}
.

Applying Equation (A.1) to the first two terms of this gives

E[
1

2
εᵀiAεi] =

1

2
Tr

{
−∂Σ−1

i (θ)

∂θl

∂Σi(θ)

∂θk
− ∂Σ−1

i (θ)

∂θk

∂Σi(θ)

∂θl
−Σ−1

i (θ)
∂2Σi(θ)

∂θl∂θk

}
.

(A.8)
Trace being a linear operator, the first and third terms of (A.8) cancel with the trace
of (A.7). What remains is

N∑
i=1

1

2
Tr
{
− ∂Σ−1

i (θ)

∂θk

∂Σi(θ)

∂θl

}
,

and by applying (A.1) once more, we get (4.24).
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A.4 Derivatives of Σ1(θ) and Σ0(θ) with respect to θ

The (i, j)th element of the partial derivative of Σ1(θ) with respect to the parameter
that regulates the exponential growth of variances of the endogenous response, δ1; the
parameter that regulates the exponential growth of variances of the non-endogenous
response, δ0; the range of exponentially decaying correlations R; and the nugget
effect κ are(∂Σ1(θ)

∂δ1

)
i,j

=

{
2σ2tjσ

2e2tjδ1 , if i = j,

σ2(1− κ)(ti + tj)e
(ti+tj)δ1−

|ti−tj |
R if i 6= j,(∂Σ1(θ)

∂δ0

)
i,j

= 0 for all i and j,(∂Σ1(θ)

∂R

)
i,j

=

{
0, if i = j,
σ2(1−κ)|tj−ti|

R2 e(ti+tj)δ1−
|ti−tj |
R if i 6= j,(∂Σ1(θ)

∂κ

)
i,j

=

{
0, if i = j,

−σ2e(ti+tj)δ1−
|ti−tj |
R if i 6= j,

respectively. Similarly, for Σ0 we have(∂Σ0(θ)

∂δ1

)
i,j

= 0 for all i and j;(∂Σ0(θ)

∂δ0

)
i,j

=

{
2σ2tje

2tjδ0 , if i = j,

σ2(1− κ)(ti + tj)e
(ti+tj)δ0−

|ti−tj |
R if i 6= j;(∂Σ0(θ)

∂R

)
i,j

=

{
0, if i = j,
σ2(1−κ)|ti−tj |

R2 e(ti+tj)δ0−
|ti−tj |
R if i 6= j;(∂Σ0(θ)

∂κ

)
i,j

=

{
0, if i = j,

−σ2e(ti−tj)δ0−
|ti−tj |
R if i 6= j;

and the derivative of Σ0(θ) with respect to the scaling parameter σ is,(∂Σ0(θ)

∂σ

)
i,j

=

{
2σe2tjδ0 , if i = j,

2(1− κ)σe(ti+tj)δ0−
|ti−tj |
R if i 6= j.

A.5 Result (5.18)

For the second equality in (5.18), note that, for µ̂2
diff,S as a function of θ,

∂µ̂2
diff,S(θ)

∂θk
= 2(µ̂S(θ)− µ̂S(θo))

∂µ̂S(θ)

∂θk
,
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so,
∂2µ̂2

diff,S(θ)

∂θl∂θk
= 2
(∂µ̂S(θ)

∂θk

∂µ̂S(θ)

∂θl
+ (µ̂S(θ)− µ̂S(θo))

∂2µ̂S(θ)

∂θl∂θk

)
which equates to 2∂µ̂S(θ)

∂θk

∂µ̂S(θ)
∂θl

∣∣∣∣
θ0

when evaluated at θo. Hence, (5.18) follows.
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Appendix B

B.1 Figures from the simulations of Section 4.3.2

Figure B.1: In this figure showing a grid of box plots in 4 × 4 = 16 cells, each
column of the grid represents a specific size for n, and each row a specific N . In
each individual cell, the y-axis gives the values of FIC/N for the mean structure M2;
the values of the x-axis (0, 1, 2, 3) correspond to the indices of the different variance-
covariance matrices, Σ.
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Figure B.2: The FIC/N of mean structure M4 for each situation, plotted for different
covariance matrices Σ.
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Figure B.3: In this figure showing a grid of box plots in 4×4 = 16 cells, each column
represents a specific size of n, and each row a specific N . In each individual cell,
the estimated bias squared term for the narrow mean structure M1 is plotted on the
y-axis; the values of the x-axis (0, 1, 2, 3) correspond to the indices of the different
variance-covariance matrices, Σ. The red crosses signify the approximately true bias
squared in estimation.
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Figure B.4: Estimated bias squared term for the mean structure M2 are plotted
against covariance matrices Σ.
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Figure B.5: Estimated bias squared term for the mean structure M3 plotted against
covariance matrices Σ.
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Figure B.6: Estimated bias squared term for the mean structure M4 plotted against
covariance matrices Σ.
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Figure B.7: In this figure showing a grid of box plots in 4×4 = 16 cells, each column
represents a specific size for n, and each row a specificN . In each individual cell, the
estimated variance term for the narrow mean structure M1 is plotted on the y-axis;
the values of the x-axis (0, 1, 2, 3) correspond to the indices of the different variance-
covariance matrices, Σ. The red crosses signify the approximately true variance in
estimation.
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Figure B.8: Estimated variances for the mean structure M2 are plotted against cov-
ariance matrices Σ.
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Figure B.9: Estimated variances for the mean structure M3 are plotted against cov-
ariance matrices Σ.
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Figure B.10: Estimated variances for the mean structure M4 are plotted against cov-
ariance matrices Σ.
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B.2 Tables from the simulations of Section 4.3.2

Σ 1 2 3 4

N n | M 1 2 1 2 1 2 1 2

30 3 2.3 (1.69) 6.5 (3.63) 3 (2.09) 6.9 (4.19) 7.4 (9.92) 8.1 (6.30) 2.8 (1.77) 6.7 (3.81)
4 1.5 (1.41) 6 (3.80) 2.3 (1.36) 6.2 (3.74) 7.1 (8.60) 6.9 (5.49) 2.3 (1.49) 6.3 (4.03)
5 1.1 (1.04) 6.5 (3.68) 2.1 (1.22) 6.9 (3.94) 8.7 (11.26) 8.2 (5.90) 2.1 (1.10) 6.9 (3.90)
6 1.2 (1.12) 6.4 (4.10) 2.4 (1.46) 7.2 (4.85) 7.3 (10.24) 7 (5.48) 2.2 (1.14) 6.9 (4.33)

50 3 4 (3.12) 10 (4.85) 4.6 (3.51) 11 (5.36) 7.9 (9.45) 12 (7.45) 4.4 (3.33) 10 (5.14)
4 2.8 (2.59) 10 (5.19) 3.4 (2.79) 11 (5.60) 6.8 (8.75) 11 (8.25) 3.3 (2.79) 11 (5.53)
5 2.2 (2.32) 10 (5.16) 2.8 (2.68) 11 (5.72) 7.6 (8.75) 13 (9.04) 2.7 (2.48) 11 (5.50)
6 2.1 (2.29) 10 (5.56) 2.8 (2.63) 11 (6.24) 4.6 (5.51) 11 (7.29) 2.7 (2.44) 11 (5.98)

100 3 3.9 (2.22) 10 (3.59) 4.3 (2.45) 11 (3.88) 6 (4.87) 11 (4.68) 4.2 (2.40) 10 (3.83)
4 3 (2.10) 11 (4.00) 3.4 (2.31) 11 (4.31) 5 (4.81) 12 (5.52) 3.4 (2.28) 11 (4.25)
5 2.3 (1.86) 11 (3.86) 2.7 (2.13) 11 (4.23) 5.1 (5.52) 12 (6.01) 2.7 (2.03) 11 (4.11)
6 1.8 (1.48) 11 (3.75) 2.2 (1.66) 11 (4.07) 3.3 (4.06) 11 (5.48) 2.2 (1.62) 11 (3.99)

200 3 3.7 (1.80) 9.6 (2.90) 4.1 (1.94) 10 (3.07) 4.6 (3.75) 10 (3.89) 4 (1.95) 10 (3.09)
4 2.5 (1.38) 10 (2.63) 2.9 (1.57) 11 (2.94) 3.7 (3.43) 11 (3.85) 2.9 (1.51) 11 (2.80)
5 1.9 (1.15) 10 (2.56) 2.3 (1.26) 11 (2.70) 3.7 (3.62) 11 (3.97) 2.2 (1.27) 11 (2.73)
6 1.5 (1.15) 9.8 (2.87) 1.8 (1.31) 10 (3.11) 2.3 (2.53) 10 (3.72) 1.8 (1.27) 10 (3.05)

Table B.1: The mean FIC scores (over all 100 simulations) divided byN as estimates
of the MSE for mean structures M1 and M2 and each situation (N, n,Σ) are shown
along with the corresponding standard deviation in brackets.

Σ 1 2 3 4

N n | M 3 4 3 4 3 4 3 4

30 3 1.5 (0.33) 1.6 (0.35) 2.4 (0.61) 2.4 (0.61) 2.4 (0.62) 2.4 (0.61) 2.4 (0.02) 2.4 (0.00)
4 1.3 (0.27) 1.4 (0.30) 2.5 (0.66) 2.5 (0.66) 2.4 (0.66) 2.4 (0.67) 2.4 (0.02) 2.4 (0.00)
5 1.1 (0.23) 1.2 (0.27) 2.4 (0.71) 2.4 (0.71) 2.2 (0.69) 2.3 (0.70) 2.4 (0.03) 2.4 (0.00)
6 .96 (0.18) 1.1 (0.21) 2.5 (0.71) 2.5 (0.71) 2.3 (0.78) 2.3 (0.71) 2.4 (0.03) 2.4 (0.00)

50 3 1.1 (0.18) 1.2 (0.20) 1.8 (0.34) 1.8 (0.34) 1.8 (0.35) 1.8 (0.35) 1.9 (0.02) 1.9 (0.00)
4 .93 (0.15) 1.1 (0.18) 1.9 (0.36) 1.9 (0.36) 1.8 (0.38) 1.8 (0.37) 1.8 (0.03) 1.8 (0.00)
5 .76 (0.13) .9 (0.15) 1.8 (0.41) 1.8 (0.41) 1.7 (0.40) 1.7 (0.41) 1.8 (0.02) 1.8 (0.00)
6 .68 (0.11) .83 (0.13) 1.9 (0.42) 1.9 (0.41) 1.7 (0.41) 1.8 (0.42) 1.8 (0.03) 1.8 (0.00)

100 3 .61 (0.07) .67 (0.08) .97 (0.15) .97 (0.15) .96 (0.15) .97 (0.16) .98 (0.01) .99 (0.00)
4 .49 (0.05) .57 (0.06) .99 (0.13) .99 (0.13) .97 (0.14) .98 (0.14) .98 (0.01) .98 (0.00)
5 .41 (0.04) .49 (0.06) .98 (0.15) .99 (0.15) .95 (0.15) .96 (0.15) .97 (0.02) .98 (0.00)
6 .36 (0.04) .44 (0.05) .99 (0.15) 1 (0.14) .96 (0.15) .97 (0.15) .97 (0.02) .97 (0.00)

200 3 .3 (0.03) .33 (0.03) .48 (0.05) .48 (0.05) .48 (0.05) .48 (0.05) .48 (0.00) .48 (0.00)
4 .24 (0.02) .28 (0.02) .48 (0.05) .48 (0.05) .47 (0.05) .47 (0.05) .47 (0.01) .48 (0.00)
5 .2 (0.02) .24 (0.02) .48 (0.05) .48 (0.05) .47 (0.05) .48 (0.05) .47 (0.01) .47 (0.00)
6 .17 (0.01) .21 (0.01) .47 (0.04) .48 (0.04) .47 (0.04) .47 (0.04) .47 (0.01) .47 (0.00)

Table B.2: The mean FIC scores (over all 100 simulations) divided byN as estimates
of the MSE for M3 and M4 and each situation (N, n,Σ) are shown along with the
corresponding standard deviation in brackets.
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Appendix C

Derivation of the MSPE formula (5.23)

The mean squared error in prediction (5.22), unlike the MSE, is not expressible as a
sum of variances and squared biases. It can, however, be written as

E[µ̂oᵀS,iµ̂
o
S,i − 2µ̂oᵀS,iµi + µᵀ

iµi]

=E[µ̂oᵀS,iµ̂
o
S,i]− E[µ̂oS,i]

ᵀE[µ̂oS,i] + E[µ̂oS,i]
ᵀE[µ̂oS,i]− 2E[µ̂oᵀS,iµi] + E[µᵀ

iµi]

= Tr{Cov(µ̂oS,i)}+ E[µ̂oS,i]
ᵀE[µ̂oS,i]− 2E[µ̂oᵀS,iµi] + E[µᵀ

iµi], (C.1)

where the first two terms on the right hand side of the first equality have been ex-
pressed as the sum of the uncertainties in each entry of the predictor. In the fol-
lowing, expressions will be derived for the above four terms. And, thereby, formula
(5.23), for comparison of LME models (with different fixed effects) in terms of mean
squared prediction error, is arrived at.

For the uncertainty in the predictor, we have

Cov(µ̂oS,i) = Cov(XS,iα̂
o
S +Zib̂

o

S,i) = XS,iCov(α̂oS)Xᵀ
S,i +ZiCov(b̂

o

S,i)Z
ᵀ
i

= XS,iB
o−1
S Xᵀ

S,i +ZiCov(b̂
o

S,i)Z
ᵀ
i , (C.2)

where the second equality follows since Cov(α̂oS, b̂
o

S,i) = 0 (Henderson 1975); the
third equality by (5.8); and where, as in (2.22),

Cov(b̂
o

S,i) = V o
i

Σo
i −XS,i

(
N∑
i=1

XS,iΣ
o−1
i Xᵀ

S,i

)−1

Xᵀ
S,i

V oᵀ
i , (C.3)

where V o
i = DoZᵀ

iΣ
o−1
i .

For the second term of (C.1), we will require E[µ̂oS,i], which, by (5.3), (5.21),
and assuming (5.20) is the true model, is equal to

E[XS,iα̂
o
S +Zib̂

o

S,i] = XS,iA
o
Sα+ZiD

oZᵀ
iΣ

o−1
i E[yi −XS,iα̂

o
S]

= [XS,iA
o
S +ZiV

o
i (X i −XS,iA

o
S)]α =··W o

S,iα, (C.4)

whereAo
S is as in (5.5).

It is fruitful to express the cross-term in (C.1) as

E[µ̂oᵀS,iµi] = Tr{Cov(µ̂oS,i,µi)}+ E[µ̂oS,i]
ᵀE[µi], (C.5)
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since expressions for Cov(µ̂oS,i,µi), E[µ̂oS,i] and E[µi] are more easily obtained. In
particular, we have that

Cov(µ̂oS,i,µi) = Cov(XS,iα̂
o
S +Zib̂

o

S,i,X iα+Zibi)

= Cov(XS,iα̂
o
S +Zib̂

o

S,i,Zibi)

= XS,iCov(α̂oS, bi)Z
ᵀ
i +ZiCov(b̂

o

S,i, bi)Z
ᵀ
i . (C.6)

For which, we have

Cov(α̂oS, bi) =Cov

(
Bo−1
S

N∑
j=1

Xᵀ
S,jΣ

o−1
j yj, bi

)
=Cov(Bo−1

S Xᵀ
S,iΣ

o−1
i yi, bi)

=Bo−1
S Xᵀ

S,iΣ
o−1
i Cov(yi, bi)

=Bo−1
S Xᵀ

S,iΣ
o−1
i Cov(X iα+Zibi + εi, bi)

=Bo−1
S Xᵀ

S,iΣ
o−1
i ZiCov(bi)

=Bo−1
S Xᵀ

S,iΣ
o−1
i ZiD

o

=Bo−1
S Xᵀ

S,iV
oᵀ
i , (C.7)

where the second equality follows from independence of yj and bi for i 6= j; and the
fourth from the assumed true model (5.20), with εi ∼ N(0, σ2Ini). Furthermore,

Cov(b̂
o

S,i, bi) =Cov(V o
i (yi −XS,iα̂

o
S), bi)

=V o
i [Cov(yi, bi)−XS,iCov(α̂oS, bi)]

=V o
i [Cov(X iα+Zibi + εi, bi)−XS,iB

o−1
S Xᵀ

S,iV
oᵀ
i ]

=V o
i [ZiD

o −XS,iB
o−1
S Xᵀ

S,iV
oᵀ
i ]. (C.8)

Therefore, by combining (C.6) with (C.7) and (C.8), we have

Cov(µ̂oS,i,µi) = XS,iB
o−1
S Xᵀ

S,iV
oᵀ
i Z

ᵀ
i +ZiV

o
i [ZiD

o −XS,iB
o−1
S Xᵀ

S,iV
oᵀ
i ]Zᵀ

i

= ZiV
o
iZiD

oZᵀ
i + (Ini −ZiV

o
i )XS,iB

o−1
S Xᵀ

S,iV
oᵀ
i Z

ᵀ
i . (C.9)

In addition,
E[µi] = E[X iα+Zibi] = X iα. (C.10)

So, by (C.5), (C.4), (C.10) and (C.9), the third term in (C.1) is expressible as minus
twice

Tr{ZiV
o
iZiD

oZᵀ
i +(Ini−ZiV

o
i )XS,iB

o−1
S Xᵀ

S,iV
oᵀ
i Z

ᵀ
i }+αᵀW oᵀ

S,iX iα. (C.11)

The final term in (C.1) is E[µᵀ
iµi], and is equal to

Tr{Cov(µi)}+ E[µi]
ᵀE[µi] = Tr{ZiD

oZᵀ
i }+αᵀXᵀ

iX iα. (C.12)

Finally, taking the trace of (C.2) and summing with (C.12), (C.4) multiplied by
its transpose, and minus twice (C.11) gives an expression for the true MSPE under
the first two moments of the wide model, and is estimated by (5.23).
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Appendix D

D.1 R code

The code for the data illustrations in this thesis, written using the software R (R
Development Core Team 2008), were all of a similar form. The narrow and wide
models are typically fit to the data first. The wide model provides estimates of the
necessary quantities for the FIC. The narrow is dealt with separately, then all other
models are fit within a loop and the FIC scores are simultaneously calculated. An
example is given in Listing D.2. For the AFIC this procedure is repeated within
a bigger loop for the different foci. Listing D.1 gives the data preparation for the
Riesby depression dataset.

Listing D.1: Prepare Riesby depression dataset.
r i e sbynow <− read . t a b l e ( " h t t p : / / h e d e k e r . p e o p l e . u i c . edu / RIESBY .DAT.

t x t " , nrows = 396 , na . s t r i n g s = " . " )

colnames ( r i e sbynow ) <− c ( " i d " , " hd " , " i n t c p t " , " week " , " endo " , "
i n t e r a c t i o n " ) #0=’NonEndog ’ 1=’Endog ’

l i b r a r y ( p l y r )

s e a r c h c o l s <− c ( ’ hd ’ ) # d e l e t e i n d i v i d u a l s w i t h m i s s i n g da ta
r i e s b y <−ddp ly ( r iesbynow , " i d " , f u n c t i o n ( x ) i f ( any ( i s . na ( x [ ,

s e a r c h c o l s ] ) ) ) NULL e l s e x )
r i e s b y $ i d 2 <−rep ( 1 : 4 6 , each =6)

# s e t b a s e l i n e as c o v a r i a t e
base <− ddp ly ( r i e s b y , " i d 2 " , f u n c t i o n ( x ) { rep ( x [ 1 , 2 ] , l e n g t h ( x [ , 2 ] )

) } )
colnames ( ba se )<− c ( " i d 2 " , " y1 " , " y2 " , " y3 " , " y4 " , " y5 " , " y6 " )
base . now <− r e s h a p e ( base , d i r e c t i o n =" long " , v a r y i n g = c ( " y1 " , " y2 "

, " y3 " , " y4 " , " y5 " , " y6 " ) , sep = " " , i d v a r = " i d 2 " )
base . now <− base . now [ order ( ba se . now$ i d 2 ) , ]
r i e s b y $ base <− base . now [ , 3 ]

r i e s b y <− s u b s e t ( r i e s b y , week >0) # o n l y da ta from t r e a t m e n t p e r i o d

# c ( " nonendo " , " endo " ) = c ( 0 , 1 )
r i e s b y $ endo . f <− f a c t o r ( r i e s b y $ endo , l a b e l s = c ( "Non−endo " , " Endo " )

)
r i e s b y $week . f <− f a c t o r ( r i e s b y $week , l a b e l s = 0 : 4 )

r i e s b y $ time <− r i e s b y $week # c e n t e r t i m e
r i e s b y $ t i m e c <− r i e s b y $ time − mean ( r i e s b y $ time )
r i e s b y $ t i m e s q <− r i e s b y $ t i m e c ^2
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r i e s b y $ b a s e c <− r i e s b y $ base − mean ( r i e s b y $ base ) # c e n t e r b a s e l i n e

Listing D.2: FIC for depression data set predictions.
l i b r a r y ( nlme )

b0 <− 27− mean ( r i e s b y $ base ) # h igh s c o r e r a t b a s e l i n e
t 0 <− 2 # end o f week 4 # c e n t r e d t i m e i s 2
e0 <− 0 #non−endogeneous

# needed f o r e s t i m a t e o f f o c u s
xu0xp0 <− c ( 1 , b0 , t0 , e0 , e0 * t0 , t 0 ^2 , e0 * t 0 ^2 )

# narrow
n a r r . f <− formula ( hd~ 1 + b a s e c + t i m e c )
nar row <− g l s ( n a r r . f , c o r r e l a t i o n = corExp ( form=~ time | id2 , n ug ge t

= T ) ,
weight s = varExp ( form=~ time | endo ) , #AIC

f a v o u r e d
method = "ML" , data = r i e s b y )

# wide
wide . f <− formula ( hd~ 1 + b a s e c + t i m e c + endo + t i m e s q + t i m e c :

endo + t i m e s q : endo )
wide <− g l s ( wide . f , c o r r e l a t i o n = corExp ( form=~ time | id2 , n ug ge t =

T ) , weight s = varExp ( form=~ time | endo ) , #AIC f a v o u r e d
data = r i e s b y ) #By REML

Sigma . non <− getVarCov ( wide , i n d i v i d u a l = " 2 " ) #non−endo
Sigma . endo <− getVarCov ( wide , i n d i v i d u a l = " 3 " ) # endo

# p r o t e c t e d and u n p r o t e c t e d d e s i g n m a t r i c e s
XP <− cbind ( 1 , r i e s b y $ basec , r i e s b y $ t i m e c )
XU <− cbind ( r i e s b y $ endo , r i e s b y $ t imesq , r i e s b y $ t i m e c * r i e s b y $ endo ,

r i e s b y $ t i m e s q * r i e s b y $ endo )
XX <− cbind (XP , XU) # wide d e s i g n

NN <− 46 # number o f i n d i v i d u a l s
nn <− 5 # each o f 5 measurements
p1 <− 5 # 1 sigma , 2 v a r i a n c e , 1 corr , 1 nu gge t
p2 <− 3 # p r o t e c t e d r e g r e s s i o n p a r a m e t e r s
qq <− 4 # u n p r o t e c t e d r e g r e s s i o n p a r a m e t e r s
pp <− p1+p2

MM <− 2^ qq # number o f models

# g e t e s t i m a t e o f J h a t
J h a t <− matrix ( rep (NA, ( pp+qq ) * ( pp+qq ) ) , nrow = ( pp+qq ) , nco l = ( pp

+qq ) )
J r e g <− NULL
sumnow <− l i s t ( )
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f o r ( i i n 1 :NN) {
XXnow <− s u b s e t (XX, r i e s b y $ i d 2 == i )
Sigmanow <− getVarCov ( wide , i n d i v i d u a l = i )
sumnow [ [ i ] ] <− t (XXnow) %*% s o l v e ( Sigmanow ) %*% XXnow

}
J r e g <− (1 /NN) * Reduce ( "+" , sumnow )
J h a t [− (1 : p1 ) ,− (1 : p1 ) ] <− J r e g

JBB <− J h a t [ ( p1 +1) : pp , ( p1 +1) : pp ]
JGB <− J h a t [ ( pp +1) : ( pp+qq ) , ( p1 +1) : pp ]
JGG <− J h a t [ ( pp +1) : ( pp+qq ) , ( pp +1) : ( pp+qq ) ]
JBG <− t ( JGB )

# p a r t i a l d e r i v a t i v e s
dmudbeta <− c ( 1 , b0 , t 0 )
dmudgamma <− c ( e0 , t 0 *e0 , t 0 ^2 , ( t 0 ^2 ) * e0 )

#FIC q u a n t i t i e s
t a u 0 s q <− t ( dmudbeta ) %*% s o l v e ( JBB ) %*% dmudbeta
t a u 0 <− s q r t ( t a u 0 s q )
omega <− ( JGB %*% s o l v e ( JBB ) %*% dmudbeta ) − dmudgamma
QQ <− s o l v e ( JGG − JGB %*% s o l v e ( JBB ) %*% JBG )
Dn <− s q r t (NN) * ( c o e f ( wide ) [ ( p2 +1) : ( p2+qq ) ] )
I <− diag ( qq )

c o m b i n a t i o n s = f u n c t i o n ( n ) # as from l e c t u r e s
{ comb = NULL

{ f o r ( i i n 1 : n )
comb = rbind ( cbind ( 0 , comb ) , cbind ( 1 , comb ) )
re turn ( comb ) } }

s u b s e t s <− c o m b i n a t i o n s ( qq )

# s t o r a g e space
modout <− l i s t ( ) ; FIC <− NULL; AIC <− NULL b i a s <− NULL ;
b i a s . sq <− NULL ; b i a s . sq . t <− NULL ; var <− NULL ;
muhat <− NULL ; num . param <− NULL ; num . qq <− NULL

# narrow
b i a s [ 1 ]<− t ( omega ) %*% Dn
b i a s . sq [ 1 ] <− t ( omega )%*% ( Dn %*% t ( Dn ) − QQ ) %*% omega
b i a s . sq . t [ 1 ] <− max ( 0 , b i a s . sq [ 1 ] )
var [ 1 ]<− t a u 0 ^2
FIC [ 1 ] <− b i a s . sq . t [ 1 ] + var [ 1 ]
AIC [ 1 ] <− −(AIC ( narrow ) )
num . param [ 1 ] <− pp
num . qq [ 1 ] <− 0
muhat [ 1 ] <− t ( xu0xp0 )%*% c ( c o e f ( nar row ) , rep ( 0 , qq ) )

f o r ( k i n 2 : nrow ( s u b s e t s ) ) { # f o r r e s t o f models

# d e f i n e s u b s e t o f u n p r o t e c t e d params
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where <− ( 1 : qq ) [ s u b s e t s [ k , ] == 1]
dims <− l e n g t h ( where )

# f i t models
p r o t <− c ( " 1 " , " b a s e c " , " t i m e c " )
u n p r o t <− c ( " endo " , " t i m e s q " , " t i m e c : endo " , " t i m e s q : endo " )
vec <− c ( p r o t , u n p r o t [ s u b s e t s [ k , ] == 1 ] )

meannow <− p a s t e ( vec , c o l l a p s e = "+" )
formula <− as . formula ( p a s t e ( " hd ~ " , meannow , sep = " " ) )

modout [ [ k ] ] <− g l s ( formula ,
c o r r e l a t i o n = corExp ( form=~ time | id2 , n ug ge t = T ) ,
weight s = varExp ( form=~ time | endo ) , #AIC

f a v o u r i t e c o v a r i a n c e
method = "ML" , data = r i e s b y )

#FIC
piS <− I [ where , ] # p r o j e c t i o n m a t r i c e s
dim ( p iS ) <− c ( dims , qq )
QS <− s o l v e ( p iS %*% s o l v e (QQ) %*% t ( p iS ) )
GS <− t ( p iS ) %*% QS %*% p iS %*% s o l v e (QQ)
#
b i a s . sq [ k ] <− t ( omega ) %*% ( I − GS) %*% ( Dn %*% t ( Dn ) − QQ ) %*%

t ( I − GS) %*% omega
b i a s . sq . t [ k ] <− max ( 0 , b i a s . sq [ k ] )
b i a s [ k ] <− t ( omega ) %*% ( I − GS) %*% Dn
var [ k ] <− t a u 0 ^2 + t ( omega ) %*% GS %*% QQ %*% t (GS) %*% omega
#
FIC [ k ] <− b i a s . sq . t [ k ] + var [ [ k ] ]

# f o c u s e s t i m a t e
MLest <− 0* ( 1 : ( p2+qq ) )
MLnow <− c o e f ( modout [ [ k ] ] )
MLest [ 1 : p2 ] <− MLnow [ 1 : p2 ]
MLest [ p2+where ] <− MLnow [ ( p2 +1) : l e n g t h (MLnow) ]
muhat [ k ] <− t ( xu0xp0 ) %*% MLest
#
AIC [ k ] <− −AIC ( modout [ [ k ] ] )
num . param [ k ] <− pp + dims
num . qq [ k ] <− dims

}
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