
A Pipeline for Extraction of
Patient-Specific Geometries with
Machine Learning

Per Magne Florvaag
Master’s Thesis, Spring 2018



This master’s thesis is submitted under the master’s programme Computational
Science and Engineering, with programme option Computational Science, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60
credits.

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today
they play a central role in various parts of mathematics.



Abstract
Modeling of the blood flow in and around aneurysms with computational
fluid dynamics (CFD) is important to better understand why aneurysms
form and rupture. CFD modeling requires an accurate representation of the
patient-specific arteries for simulations to be reproducible and reflect the
reality. State-of-the-art methods use semi-manual tools to extract patient-
specific geometries, which result in inconsistent results and a lot of tedious
work. This limits the potential clinical impact of CFD-based aneurysm
modeling. In this thesis, we develop an automated pipeline for extracting
consistent patient-specific geometries. The pipeline consists of two parts:
1) Image restoration based on dictionary learning, and 2) vessel extraction
by multiscale segmentation techniques. We show that dictionary learn-
ing based methods are able to restore (denoise and inpaint) 3D computed
tomography (CT) images, and multiscale segmentation techniques can ac-
curately extract both small and large arteries. Finally, we summarize the
proposed pipeline and show its efficiency on a number of 3D CT images from
the Aneurisk Project. The suggested pipeline is provided as a ready-to-use
python library.
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Notation

A A matrix
a A vector
ai Element i of vector a
ai Column i of matrix A
Aij or aij Element (i, j) of n×m matrix A
AI Matrix A restricted to columns I = [i1, i2, .., in]
A† Moore-Penrose pseudo inverse of A. A† = (ATA)−1AT

A�B Hadamard product of A and B
‖a‖0 `0-penalty of a = [a1, a2, ..., an], ‖a‖0 = #{i : ai 6= 0}

‖a‖p `p-norm of a, ‖a‖p =
(∑

i |ai|p
)1/p

‖A‖F Frobenius norm of A, ‖A‖F =
(∑

ij a
2
ij

)1/2
In Identity matrix of size n× n
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Chapter 1

Introduction and Medical
Background

In this thesis, we are interested in automatically extracting patient-specific
models of arteries from Computed Tomography (CT) images of patients with
cerebral aneurysms. Currently, the extraction of geometries is performed
(semi-)manually, leading to inconsistent results [77], and tedious work. An
automated tool for geometry extraction will allow engineers to speed up
their preprocessing work and more importantly, reduce interlaboratory dif-
ferences.

Cerebral aneurysms are balloon-like features on artery walls, most often
found in bifurcations around the Circle of Willis, see Figure 1.1a. It is
estimated that 5% of the population harbor at least one cerebral aneurysm
with an annual rupture risk of about 0.2% [68]. A ruptured aneurysm results
in subarachnoid hemorrhage (SAH), a type of stroke caused by bleeding
into the subarachnoid space. SAH accounts for approximately 5% of all
strokes and carries with it a 50% mortality rate and among survivors a 50%
morbidity rate [24, 42]. Because SAH occurs at a young age and has a high
mortality rate, the loss of productive years in the general population is as
large as that from the most common type of stroke [34].
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8 CHAPTER 1. INTRODUCTION AND MEDICAL BACKGROUND

(a) Circle of Willis (b) Cerebral Aneurysm

Figure 1.1

Aneurysms are treatable, but its treatment is not without risk. Therefore,
identifying factors for aneurysm rupture are important to more confidently
decide if a patient should undergo treatment [33]. Morphological markers
such as size, irregular shape, size of parent artery, bifurcation angle, and
more, are of interest for understanding the risk of aneurysm rupture [68,
25, 44, 69]. These markers will affect the blood flow through factors such
as pressure, wall shear stress, flow impingement, etc., which are expected
to play a role in the pathogenesis1 of aneurysms [14, 68]. In the field of
Computational Fluid Dynamics (CFD), there is great interest in studying
aneurysms. Modeling of blood flow is important to better understand and
predict the risk of aneurysm rupture. However, one of the bottlenecks of
CFD modeling is the need for accurate and efficient extraction of patient-
specific geometries [14, 8, 64]. A patient-specific geometry is an accurate
model of the underlying anatomy of interest, i.e, the arteries and aneurysm
sac. Recent studies indicate that manual extraction of geometries is one of
the main causes for inconsistent results [77].

Motivated by this challenge, this thesis aims to efficiently and consistently
extract accurate models of the underlying anatomy. The current pipeline
starts with taking an image of the patients head using contrast-enhanced
CT, called CT angiography (CTA). During CTA imaging contrast fluid is
injected into the patient’s bloodstream. The contrast fluid will absorb more
radiation than other tissue and the arteries will become brighter and more
visible.

The next, and challenging, step is to extract the arteries from the CTA
images. The challenge lies with the extraction being done consistently and

1The manner of development of a disease.
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efficiently. The current approach is to manually extract the arteries with
the help of tools like the Vascular Modeling Toolkit (VMTK) [4], the Vi-
sualization Toolkit (VTK) [72] and Insight Segmentation and Registration
Toolkit (ITK) [43]. This approach is slow and prone to inconsistencies [77].
Therefore, current state-of-the-art CFD models provides inconsistent re-
sults for the same CT images. This hinders the potential clinical impact of
the field, as clinical deployment requires large-scale and consistent studies.

Goals

The goal of this thesis is to develop a pipeline for automatically extracting
patient-specific geometries from CTA images, with the help of machine
learning techniques. This will enable faster, and reproducible extraction
of patient-specific models for use in CFD modeling. Although we focus on
aneurysms, the developed pipeline can in future work be extended to any
field requiring models of vessel-like structures.

In addition to this thesis, we provide a python library called dictlearn2

that contains algorithms and methods discussed in later chapters. The
library also includes the final pipeline described in Chapter 5, which can
easily be used and extended with other specialized methods to better fit
the needs at hand.

Structure of this work

In Chapter 2 and 3, we introduce theory and methods for image restora-
tion based on sparse image representation. In particular, in Chapter 2, we
provide an overview of the development in sparse representation and sparse
signal recovery. We define concepts such as, sparse coding, overcomplete
signal representation, and how to solve its corresponding optimization prob-
lems. In Chapter 3, we introduce methods for adapting and extending the
techniques presented in Chapter 2, for reconstruction of 3D CTA images.
Chapter 4, explores different ways of consistently extracting arteries from
CT images. Finally, in Chapter 5, we summarize the final pipeline together
with its results.

2Found at https://github.com/permfl/dictlearn

https://github.com/permfl/dictlearn
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1.1 Digital Image Representation

Since we are interested in analyzing 3D CTA image, we first introduce some
terminology before we can properly define our tasks.

A 2D grayscale image is represented as a matrix I ∈ RH×W , where the
number of rows H is the height of the image and the number of columns
W is its width. Further, the element Iij is a pixel and its value is called
the intensity. For 2D color images this is similar, usually we define it as
I ∈ RH×W×3. This corresponds to a red, green and blue (RBG) image and
each pixel is a triple Ii,j = (r, g, b), which defines how much of the colors red,
green, and blue are used to paint this pixel. This representation directly
extends to 3D image volumes. A 3D image is defined as I ∈ RH×W×D, where
we have height and width as before and the extra dimension D denotes the
depth. The points in a 3D image are given by three coordinates, (i, j, k),
and the value at Iijk is the intensity.

The methods we introduce in the next chapters are designed to process
vectorized signals, x ∈ Rn. We therefore need to transform the image rep-
resentation defined above to fit this form. To achieve this, we use vectorized
image patches. For a 2D image, an image patch is a small rectangle p ∈ Ra×b

with a · b = n, extracted from some location (i, j) in the image. Addition-
ally, we assume that a � H and b � W such that an image consists of
many patches. If not explicitly stated otherwise the patch p will have the
pixel at (i, j) as its upper left corner. A vectorized image patch is a vector
x ∈ Rn that is created by stacking the columns of p. The definition of 3D
image patches is similar. A 3D image patch is a small volume p ∈ Ra×b×c

with a · b · c = n, extracted from position (i, j, k) in a 3D image volume.

If we extract multiple patches from an image and two or more patches holds
a copy of the same pixel, then they are called overlapping image patches.
An example of overlapping image patches is shown below.

To transform a signal x ∈ Rn back into an image the same steps are followed.
First, x is reshaped into its original matrix form. Then, it is inserted into
the image at the same location from where it was extracted. If the patches
are overlapping, all pixels contained in multiple patches are averaged.
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Overlapping Image Patches

Let I be a 2D grayscale image.

I =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


2×2 overlapping image patches are created by sliding a 2×2 window along
the rows, starting at pixel (0, 0). When the last column is reached, the
window is moved down to the next row, and back to the first column. The
first five image patches are

p0,0 =

[
1 2
5 6

]
, p0,1 =

[
2 3
6 7

]
, p0,2 =

[
3 4
7 8

]
, p1,0 =

[
5 6
9 10

]
And their vectorized representation is

p0,0 =


1
5
2
6

 , p0,1 =


2
6
3
7

 , p0,2 =


3
7
4
8

 , p1,0 =


5
9
6
10







Chapter 2

Sparse Coding

In this Chapter, we provide an overview of how sparsity is used in signal
processing. In recent years, sparsity and overcomplete signal representa-
tions have been found useful in a wide range of signal and image processing
tasks. Among these are compression, upscaling and demosaicing [53], and
tasks like denoising and inpainting, which are discussed in Chapter 3.

The main focus of this chapter is to introduce concepts and terminology. We
will also explore the main problems associated with sparse coding together
with their solutions, and compare different sparse recovery algorithms.

The first thing we need to define is a signal. A signal is a measurement of
some phenomenon, for example, it could be an image, a video, speech or
audio. In the rest of this work, a signal is represented as a vector x ∈ Rn.

A vector or signal is called sparse if it has only a few nonzero elements, and
we define sparsity in terms of its support. Let x = [x1, x2, ..., xn] ∈ Rn be a
signal, its support is then defined as

supp(x) = {i : xi 6= 0} (2.1)

If |supp(x)| ≤ m, then x is called m-sparse. Given a set of elementary
signals, a sparse signal x can be represented as a linear combination of a
few elementary signals. In mathematical terms, let di ∈ Rn for i = 1, ...K
be the elementary signals, then we define the representation of x as

x =
K∑
i=1

diai (2.2)

If most of the coefficients a = [a1, a2, ..., aK ] ∈ RK are zero, expression
(2.2) is called the sparse representation of the signal x. The elementary

13



14 CHAPTER 2. SPARSE CODING

signals di are called atoms, and each atom describes a basic feature of the
signal. There are multiple ways to choose the atoms. Possible choices
are using basis functions from well-known transformations such as Fourier
Transform, Wavelet [66], or the Discrete Cosine Transform (Sections 3.6
and 3.7). These functions, or transformations, are chosen depending on
the signal, for example, the Discrete Cosine Transform (DCT) is good for
representing an image.

Figure 2.1: Sparse representation of a signal x = Da with an overcomplete
dictionary and a sparse vector with two nonzero coefficients

We can rewrite formulation (2.2) into matrix form

x = Da (2.3)

The formulation (2.3) holds the same information as formulation (2.2), but
the atoms are now ordered as columns of the matrix D ∈ Rn×K . The
matrix D is called a dictionary, and we say the signal x is sparse in the
dictionary D. It is usually considered the case where K � n. In this case
the dictionary is overcomplete. An overcomplete dictionary holds more
atoms which allows to better describe the signals compared to a square
dictionary with n = K.

As there are more columns than rows in D, we need to solve the underde-
termined linear system x = Da which has infinitely many solutions, Figure
2.1. In order to more efficiently find a solution we impose some additional
constraints on the dictionary. In particular, we require the atoms to have
unit `2 norm, and we have D ∈ Cn×K , where

Cn×K = {D ∈ Rn×K : ‖di‖2 = 1, i = 1, ..., K}
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The representation (2.3) assumes that the signal is sparse. Most natural
signals are not directly sparse, but they are compressible-sparse [74]. This
means that the sorted magnitudes |ai| of the coefficients from (2.3) decay
according to the power law

|ai| ≤ Ci−1/2, i = 1, ..., K (2.4)

It is known that we can accurately represent a compressible-sparse signal
using only its k largest coefficients [74].

2.1 Problem Formulation
The sparse coding problem is defined as following. Given a signal x ∈ Rn

and a dictionary D ∈ Cn×K , find the vector a ∈ RK with the minimum
number of nonzero coefficients such that x = Da. Formally, it is defined as

min
a∈RK

‖a‖0 such that x = Da (2.5)

‖ · ‖0 is the `0-norm1 which counts all nonzero elements in a vector, and
is often denoted as ‖x‖0 = #{i : xi 6= 0, i = 1, ..., n}. Formulation (2.5)
assumes the signal is noiseless. A more realistic case is when a signal is
corrupted by noise. In this case, we want to solve

min
a∈RK

‖a‖0 such that ‖x−Da‖22 < ε (2.6)

This formulation is more robust. In formulation (2.6) we are only interested
in recovering the support up to a tolerance ε, and noise or other artifacts
can be accounted for by setting the appropriate tolerance. This formulation
also works for compressible-sparse signals.

We can reformulate (2.6) using the Lagrangian formulation

argmin
a∈RK

1

2
‖x−Da‖22 + λ‖a‖0 (2.7)

We will consider this form, rather than its constrained optimization version
throughout the rest of the thesis. The term ‖x−Da‖22 is the reconstruction
error which measures the accuracy of the representation, and the last term
λ‖a‖0 is the regularization. The parameter λ ∈ R is called the regulariza-
tion parameter and provides a way to control the trade-off between data
fitting accuracy and sparsity of a.

1The `0-penalty does not define a norm, but we use the ‖·‖0 notation for consistency
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Solving the sparse coding problem with `0-regularization is a non-convex
optimization problem, which is known to be NP-Hard [23]. There are two
main approaches to solving (2.7), one of them is using efficient greedy al-
gorithms, such as Orthogonal Matching Pursuit (Section 2.2). The other
approach is to replace the non-convex `0-penalty with the convex `1-norm.
The `1-regularized problem is a convex-relaxation of the `0 problem, its
formulation is known as the Lasso, and is defined as

argmin
a∈Rk

1

2
‖x−Da‖22 + λ‖a‖1 (2.8)

This formulation is convex, and the global minimum can be found [49].
Convex optimization problems are well-studied, and software for solving
such problems are readily available [22].

Much work has been done to establish the relationship between, and prove
uniqueness of the `0- and `1-regularized problems. The theoretical results
uses maximum coherence, µ = maxi 6=j |〈di,dj〉|, of a dictionary as a measure
of how well the dictionary can describe the signals. A large maximum coher-
ence, µ ≈ 1, means that the atoms contains a lot of redundant information.
The work of Donoho, Hou, Fuchs, Tropp, and others, in [27, 38, 26, 76]
provide the following result.

Theorem 2.1.1 (Unique Sparse Recovery [38]) Let
µ = maxi 6=j |〈di,dj〉| be the maximum coherence of a dictionary
D ∈ Cn×K, if

‖a‖0 ≤
1

2

(
1 +

1

µ

)
then a is a unique solution of (2.7), and also a unique solution of (2.8).

Theorem 2.1.1 was first proved by Donoho and Hou in [27], but with the
restriction that the dictionary is a concatenation of two square orthogonal
matrices, D = [A1 A2]. Their proof was later expanded to include arbitrary
dictionaries with `2-normalized columns [38, 26, 76].
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Why do `0- and `1-regularization lead to a sparse solution, and not
`2-regularization?
The solutions of the `0-, `1- and `2-regularized problems can in some sense be
viewed as first solving the ordinary least squares problem

â = argmin
a∈RK

1

2
‖x−Da‖22

then, projecting the solution â onto the appropriate `i-ball, i = 0, 1, 2. In Fig-
ure 2.2, an example where K = 2 is given, â is the least squares solution plotted
together with each of the `0, `1 and `2 balls. In Figure 2.2c, all points on the `0
ball are sparse, thus projecting â onto this ball will clearly yield a sparse solution.

The `1-ball has corners where the solution is sparse. In this example there are only
four points where the solution is sparse, but when the dimension of â increases
the number of corners do to. Then, the probability of projecting onto any of the
corners increase. The dark areas in Figure 2.2b are all points from which â will
be projected onto one of the corners on the `1 ball.

For the `2-ball, Figure 2.2a, the points giving a sparse solution represent a very
small part of all the possible solutions. The projection of â onto the `2-ball will
give a solution with small coefficients. However, it is only sparse if â already is
sparse.

(a) `2 ball (b) `1 ball (c) `0 ball

Figure 2.2: Projection of least-squares solution â onto the `i unit balls

2.2 Reconstruction with the `0-penalty
Finding the exact solution to the `0 problem requires checking

(
K
s

)
combi-

nations of nonzero coefficients, which is impractical. In this section, we will
give an overview of the most well-known and recognized greedy algorithm
and its variations for solving the `0-problem. Greedy algorithms provide an
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efficient mechanism for solving problems of this sort. A greedy algorithm is
an iterative approach, which at each iteration will choose the best possible
solution.

Orthogonal Matching Pursuit

To reiterate, given a signal x ∈ Rn and a dictionary D ∈ Rn×K , the `0
sparse coding problem is as follows.

argmin
a∈RK

1

2
‖x−Da‖22 + λ‖a‖0

Orthogonal Matching Pursuit (OMP) is an iterative algorithm for recov-
ering the support of a [17, 61, 67]. An outline of the algorithm is given
below.

Algorithm 1: Orthogonal Matching Pursuit
Data: Dictionary D, signal x, and sparsity target s or tolerance ε
Result: Sparse approximation a such that x ≈ Da

1 I = [], r = x, a = 0;
2 while length(I) < s or ‖r‖2 > ε do
3 Find element with largest correlation;
4 k = argmax

k
|dTk · r|;

5 Update index set: I = [I, k];
6 Solve for aI : DIaI = x;
7 r = x−DIaI ;
8 end

Algorithm 1, is the original implementation of OMP [23]. This algorithm
iteratively builds the sparse coefficients a for the signal x. It is initialized
with the residual r, being equal to the input signal, and the trivial initial
solution a = 0. Then, at each iteration the atom from D with the highest
correlation with the current residual r is selected (line 3). This atom is
added to an index set I, called the active-set, to keep track of previously
activated coefficients. The second, and final step, is to orthogonally project
the signal onto the span of the selected dictionary atoms (line 5). This
process repeats until a stopping criterion is met. The stopping criteria used
in OMP are the maximum number of nonzero coefficients, or sparsity target
s, or a given reconstruction tolerance ε.
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Analysis

If the condition in Theorem 2.1.1 holds, then OMP will recover the exact
support of a. A signal does not always have an exact sparse representation
over the given dictionary, and in that case Theorem 2.1.1 is not applicable.
In this case we have the following result.

Theorem 2.2.1 (Compressible Signal Recovery [76]) Let µ be the
maximum coherence of a dictionary D ∈ Cn×K, and x ∈ Rn is a com-
pressible sparse signal, then there exists a best m-sparse approximation
xopt = Daopt, with supp(aopt) = m. If

µ ≤ 1

3m

then, the m-sparse approximation xm, obtained by OMP is bounded by

‖x− xm‖2 ≤
√
1 + 6m‖x− xopt‖2

Improvements
The OMP algorithm is computationally expensive. Below, we will give
an overview of two efficient, alternative implementations of OMP using a
Cholesky factorization to speed up the calculations.

Algorithm 1 is computationally expensive, mainly because of the need to
solve the linear system DIaI = x. Typically this is solved as aI = D†Ix =
(DT

I DI)
−1DT

I x. Since OMP selects only linearly independent atoms, the
matrix DT

I DI will always be non-singular and its inverse exists. In addition,
DT
I DI is symmetric positive definite with one row and one column appended

to it at every iteration. For this reason, an efficient incremental Cholesky
factorization can be used to reduce the computational cost of solving the
linear system. This new variation of OMP using a progressive Cholesky
factorization is presented under the name OMP-Cholesky [10, 19, 67].
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Algorithm 2: OMP-Cholesky [67]
Result: Sparse approximation a of x such that x ≈ Da
Data: Signal x, dictionary D, sparsity target s, tolerance ε

1 I = [], L = [1], r = x, a = 0, α = DTx, n = 0;
2 while length(I) < s or ‖r‖2 > ε do
3 k̂ = argmax

k∈[1,K]
|dTk r|;

4 if n > 0 then
5 Solve for w: Lw = DT

I dk̂;

6 L =

[
L 0

wT
√

1−wTw

]
;

7 end
8 I = [I, k̂];
9 Solve for aI : LLTaI = αI ;

10 r = x−DIaI ;
11 n = n+ 1;
12 end

Using OMP-Cholesky, Algorithm 2, aI = (DT
I DI)

−1DT
I x is reduced to com-

puting the Cholesky factorization LLT (lines 5-6) and solving LLTaI = αI

(line 9).

If Â = L̂L̂T ∈ Rn×n is a Cholesky factorization of Â, then the matrix with
one row and one column appended to it,

A =

(
Â g
g c

)
has the Cholesky factorization A = LLT ∈ R(n+1)×(n+1) [67], where

L =

(
L̂ 0
w (c−wTw)1/2

)
, and w = L̂−1g

While the dominating operation in the original algorithm (DT
I DI)

−1 re-
quires O(n3) operations, the new system (line 9) requires O(n2) opera-
tions. This system can be solved as Lz = αI with forward substitution,
and LTaI = z using backwards substitution. Both forward- and back-
ward substitution have complexity O(n2) and solving LLTaI = αI requires
both operations, thus it also has complexity O(n2). LLT is the Cholesky
factorization of DT

I DI , so the linear system changes from DIaI = xI to
DT
I DIaI = α which is why the right-hand side changes to αI = (DI)

Tx.
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Encoding Multiple Signals
In practice, one is usually interested in approximating more than one signal,
in this case further optimization can be introduced [67]. One example of
approximating multiple signals is finding the sparse representation of an
image over a dictionary D ∈ Cn×K . The problem of encoding multiple
signals can be formulated as a matrix factorization problem

argmin
A∈RK×N

1

2
‖X−DA‖2F + λ‖A‖0 (2.9)

Now X ∈ Rn×N is a matrix of N signals represented as its columns, and all
N signals are to be sparsely encoded over the same dictionary. OMP-Batch
is an efficient algorithm for approximating multiple signals over the same
dictionary, its details are given in the algorithm below.

Algorithm 3: OMP-Batch [67]
Result: Sparse approximation a of x such that x ≈ Da
Data: α0 = DTx, G = DTD, ε0 = xTx, sparsity target s or tolerance ε

1 I = [], L = [1], r = x, a = 0, α := α0, n := 0;
2 while length(I) < s or εn > ε do
3 k̂ = argmax

k∈[1,K]
|αk|;

4 if n > 0 then
5 Solve for w: Lw = Gk̂,I;

6 L =

[
L 0

wT
√

1−wTw

]
;

7 end
8 I = [I, k];
9 Solve for aI : LLTaI = α0

I ;
10 b = GIxI ;
11 α = α0 − b;
12 δn+1 = xTI bI ;
13 εn+1 = εn − δn+1 + δn;
14 n = n+ 1;
15 end

By pre-computing the Gram matrix of the dictionary, G = DTD and
α0 = DTx, the residual r no longer needs to be computed explicitly. With
these pre-computations we save two matrix-vector multiplications per it-
eration for the cost of computing the Gram matrix and α0 = DTx. In
practice, computing α0 can be quite expensive since it requires the ma-
trix multiplication DTX, where X can be very large. For example, if X
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is generated from all overlapping 8 × 8 image patches from a 256 × 256
image, we have N = 62001, and X ∈ R64×62 001. The computations saved
by not explicitly calculating the residual makes up for the extra upfront
costs of the pre-computations already when the number of signals exceeds
approximately

√
n.

Computational Complexity

The upper bound on the number of iterations is always known. If a sparsity
target s is supplied, OMP will use at most s iterations. If tolerance is given
as stopping criterion, then the maximum number of iterations is equal to
the number of atoms, K. Let T denote the number of iterations, then the
complexities for sparse coding one signal with Algorithms 2 and 3, are as
given by Rubinstein, Zibulevsky and Elad [67]

Comp-cholesky = 2TKn+ 2T 2n+ 2T (K + n) + T 3 (2.10)
Comp-batch = 2Kn+ T 2K + 3TK + T 3 (2.11)

where K is the number of dictionary atoms and n is the signal size. The
last term is the complexity for solving the Cholesky system (line 9). The
first term in Comp-c corresponds to finding the most correlated atom, and
in Comp-b calculating α0. The two middle terms are the complexities of
updating the residual in OMP-Cholesky, α in OMP-Batch, and updating
the Cholesky factorization.

When setting2 K = 2n and T =
√
n the complexities for encoding one signal

reduces to O(n5/2) for OMP-Cholesky and O(n2) for OMP-Batch. One
can easily see the increased efficiency of OMP-Batch. The computational
complexity of encoding one signal with the original implementation of OMP,
Algorithm 1, is O(n3) [75], which is larger than its two accelerated versions.

Implementation Details

The memory required to compute the sparse coefficients can be pre-allocated.
Since the maximum number of iterations is known, we also know how much
memory is needed for the computations. Therefore, arrays such as w for
computing the Cholesky factorization can be allocated once and reused for
later iterations to speed up the calculations.

2Setting K = 2n is a commonly used size for overcomplete dictionaries.
√
n is a

reasonable choice for the sparsity level in a sparse representation.
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The OMP versions above encodes each signal independently, therefore, it
can easily be parallelized. Algorithms 1, 2 and 3, are implemented in the
provided software3. These implementations take advantage of the men-
tioned techniques for speeding up the computations. Algorithms 2 and 3
are implemented in the programming language C using Cython [7] to inter-
face with python. Parallelization is achieved using OpenMP [21].

It is worth-while to mention that Algorithms 2 and 3, are also available via
the popular machine learning library scikit-learn [62]. Those implementa-
tions however, do not apply pre-allocation or parallelization. Therefore, it
is worth-while to perform a comparison of our implementations with those
of scikit-learn. For the comparison we run two experiments. Firstly, we
compare the single core performance of both dictlearn and scikit-learn.
Then, we compare the multi-threaded performance of our two OMP imple-
mentations.

Figure 2.3 contains the result of comparing the computation time of the pro-
vided implementations versus the implementations provided by scikit-learn.
For this test, a variable number of signals are encoded over a dictionary
D ∈ R64×256, created using the Discrete Cosine Transform bases as atoms.
For OMP-Cholesky, we calculated the sparse codes approximately 75 times
faster than the equivalent implementation in scikit-learn. For OMP-Batch,
the speedup factor is approximately 50.

Figure 2.3: Single core performance of scikit-learn and dictlearn

Other reasons for these single core speedups are that the provided imple-
mentations are implemented in C, while the scikit-learn implementations

3OMP-Batch and OMP-Cholesky are found in dictlearn/sparse.py
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calls LAPACK [2] directly from python which introduces quite a lot of over-
head. Therefore, the exact factor of speedup is not of interest, but rather
how the implementations scale when the number of signals increase.

The implementations provided with this work will achieve further speedups
by running more threads, Figure 2.4. In Figure 2.4, 70000 signals are sparse
coded over the same dictionary as in Figure 2.3. We can see that OMP-
Cholesky has a larger speedup compared to OMP-Batch. This is because
the entire OMP-Cholesky algorithm is parallelized, and OMP-Batch is not.
The pre-computations in OMP-Batch are not run in parallel.

Figure 2.4: Multi-core performance of dictlearn OMP

2.3 Reconstruction with the `1-norm

Another approach to sparse coding is where we replace the `0-penalty with
the `1-norm. Replacing the non-convex `0-penalty with the convex `1-norm
is known as convex-relaxation. The problem is then defined as

argmin
a∈RK

1

2
‖x−Da‖22 + λ‖a‖1 (2.12)

As before, we have the signal x ∈ Rn, D ∈ Cn×K the dictionary, and
we are interested in recovering the coefficients a ∈ RK . Some authors
[54, 76, 16] advocate the use of the `1-regularization compared to its non-
convex alternative. By Theorem 2.1.1, we know the optimal solution to this
problem is unique and identical to the `0-regularized problem.
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Even though formulation (2.12) is convex, it is not continuously differen-
tiable and applying gradient based methods is difficult [49]. There exist a
number of approaches for solving (2.12), among the most popular methods
are Least Angle Regression [29], feature-sign search [49] and thresholding
[53]. The first two methods will recover the support one element at the
time, similar to OMP. Thresholding-based methods require an initial guess
for the solution (can be the least squares solution) which then are shrunk
using the soft-thresholding operator.

In the rest of this section, we will briefly introduce the Least Angle Regres-
sion (LARS) algorithm for solving the `1-problem. The feature-sign search
algorithm [49] and soft-thresholding based algorithm [53] are also available
in our software, but their details are left out of this thesis for the sake of
concise presentation. OMP and `0-regularization are the main sparse cod-
ing techniques we use in this thesis and the provided software. Therefore,
we provide only a short summary of LARS to prepare its comparison with
OMP for solving the `0 and `1 sparse coding problems. A comparison of
computation time and reconstruction accuracy of sparse coding with both
OMP and LARS is found at the end of this Chapter.

Least Angle Regression
Least Angle Regression (LARS) [29] is an iterative method, similar to OMP,
for solving the `1-regularized problem (2.12). LARS starts by initializing
the solution a = 0, and the residual r = x. In the first step, LARS selects
the atom most correlated with the residual

h = argmax
i=0,...,K−1

|dTi r| (2.13)

Rather than directly project the signal onto the span of selected dictionary
atoms, as done by OMP, the selected coefficient ah is moved in the direc-
tion dh starting at ah = 0 until a new coefficient enter the set of active
coefficients. Initially the set of active coefficients Â is defined

Ĉ = max
i=0,...,K−1

|dTi r|, (2.14)

Â = {j : j = 0, ..., K − 1 and dTj r ≥ Ĉ} (2.15)

At the first iteration Â contains only one index h from equation (2.13).
Thus, ah is moved in the direction of its least-square coefficient, dTh r. At
some point on this path, a new coefficient will reach the same level of
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correlation with the residual and enter the active set. The active coefficients
aÂ are now moved in the direction of their joint least-squares coefficients,
which is given by the normal equations

b = (DT
ÂDÂ)

−1DT
Âr ∈ Rsize(Â)

The coefficient change is done according to

âÂ = aÂ + γ · b

where γ is the step size. This process repeats until the requested number of
nonzero coefficients are achieved or the reconstruction error is within some
tolerance.

2.4 Sparse Coding CTA Volumes
In this thesis, we are interested in analyzing 3D CTA images. Overlap-
ping image patches are generated as explained in Chapter 1, such that the
patches fit the required form X = [x1,x2, ...,xN ] ∈ Rn×N . One of the chal-
lenges of working with this class of images is the memory requirements. In
this section, we will see how this issue is solved in the provided software
such that the sparse coding algorithms can be applied on images where the
set of image patches is too large to fit in memory.

For a 2D image of size H×W , we can extract all overlapping image patches
into the matrix X. For a 256 × 256 image and patch size p × p we have
S2 = (256− p+ 1)2 patches. The amount of memory needed to store these
patches is S2 ·p2 ·type_size bytes. A common choice for patch size is 8×8,
storing all overlapping patches of this size from a 256×256 image needs 31.7
megabytes (MB), assuming the image is stored as double. When adding
the memory needed for storing the sparse coefficients4, the dictionary and
other temporary arrays, the total amount of memory needed will usually
not exceed 100MB.

The memory increases substantially when adding the extra dimension. The
amount of memory needed to store all overlapping 8 × 8 × 8 patches from
a 256× 256× 256 image volume is S3 · p3 · type_size = 63.2 GB. On top
of this, we have to add the memory for the sparse coefficients, dictionary,
etc., and the total consumption will easily reach 100s of gigabytes. One of

4The size of the sparse coefficients is S2 ·K ·type_size, which usually is larger than
the signals. Overcomplete dictionaries have n = pi � K, i = 2, 3
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the intentions with the software developed for this thesis is that is should
be usable on a standard computer, then storing more than a few gigabytes
is unreasonable.

The first step in reducing the memory consumption is noticing that the
sparse coding methods only depends on a single signal. Therefore, the
sparse coding process can be reduced from a batch algorithm requiring all
signals, to an online algorithm encoding one signal at the time (or in smaller
batches). The lower bound on the memory needed is now p3 ·type_size, or
one signal. The implementation of image patches5 included in our software
will handle these issues automatically, by only creating the matrix of image
patches if it can fit in memory. If the set of image patches is too large
to be kept in memory, the patches are only accessible in smaller batches
through an iterator. Iterative reconstruction is also supported. A more
detailed example showing how this implementation is used with both large
and small sets of image patches is provided in Example 1.

2.5 Comparison of sparse coding algorithms

In this section, we will conduct a comparison of OMP and LARS for solv-
ing the sparse coding problems. This comparison is often left out of the
literature. Therefore, it is of interest to run it in order to better understand
the practical differences of the algorithms. The first part of this section will
give an overview of how reconstruction accuracy or error is measured in the
image domain, and then, we present the comparison itself.

Accuracy Measures

The reconstructed image patches are defined as X̂ = DA with D ∈ Cn×K
and A ∈ RK×N the dictionary and sparse codes respectively. We define
Ir ∈ RH×W to be the image created from the reconstructed image patches
X̂, and I ∈ RH×W is the original image. The accuracy, or reconstruction
error is ε = d(I, Ir), d is a function d : (I, I)→ R that measures the distance
between the original image and its reconstruction. There is no single way
to chose d for measuring the image reconstruction quality, two common
choices are the mean squared error (MSE) and peak signal to noise ratio
(PSNR). MSE is defined as

5Found in dictlearn/preprocess.py
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>>> image_patches = Patches(small_volume, size=(16, 16, 16))
>>> patches = image_patches.patches # Get matrix of signals
>>> reconstructed = image_patches.reconstruct(2*patches)
>>> # The reconstructed volume will have all points doubled
>>> numpy.allclose(reconstructed, 2*small_volume)
True

>>> image_patches = Patches(large_volume, size=(16, 16, 16))
>>> image_patches.patches # Too large to access matrix
MemoryError: Not enough memory for patches, need 143.18 GB.
Use Patches.generator(batch_size)
>>> iterator = image_patches.generator(batch_size=1000)
>>> next(iterator) # Get 1000 first patches
array([[16480., ..., 20662.],

...,
[21212., ..., 19563.]],

dtype=float32)
>>> # To double all patches do:
>>> iterator = image_patches.generator(1000, callback=True)
>>> for patches, reconstruct in iterator:
>>> reconstruct(2*patches)

>>> numpy.allclose(image_patches.reconstructed,
>>> 2*large_volume)
True

Example 1: Handle large image patches with dictlearn

MSE(I, Ir) =
1

HW

H∑
i=1

W∑
j=1

(I[i, j]− Ir[i, j])2 (2.16)

And PSNR is defined

PSNR(I, Ir) = 20 log MAXI − 10 logMSE(I, Ir) (2.17)

where MAXI is the maximum possible intensity in the image. MSE is an
error-measure, it measures the error between its two inputs, and we want
MSE close to zero for a high quality reconstruction. PSNR measures the
quality between the original image I and its reconstruction Ir, in decibel
(dB). The range of the PSNR is (0,∞), where ∞ corresponds to the case
where Ir = I. To give some context to PSNR values, it is often said a PSNR
in the range of 30dB to 50dB is acceptable for lossy image compression.
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Starting at around 30dB, it can also be hard to tell the difference between
the original image and its reconstruction without comparing the images side
by side.

Below is the result from a simple experiment where the image lena (Figure
2.6a) is reconstructed using an increasing number of nonzero coefficients.
The image is reconstructed using an overcomplete DCT dictionary D ∈
R64×256, Figure 2.7, and the number of active coefficients are increased from
s = 1, ..., 65. MSE and PSNR of reconstruction for a given sparsity level are
presented in Figure 2.5. In Figure 2.6, we show some of the reconstructed
images. The purpose for including this experiment is to show the accuracy
of representing an image via a sparse representation. We see that by using
only ten nonzero coefficients per image patch, the reconstruction, Figure
2.6c, looks almost identical to the original image, Figure 2.6a.

(a) PSNR (b) MSE

Figure 2.5: Accuracy of reconstruction with a variable number of nonzero coeffi-
cients

Figure 2.7: Overcomplete Discrete Cosine Transform dictionary, size 64, 256
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(a) Original. PSNR =
∞, MSE = 0

(b) One nonzero coeffi-
cient. PSNR = 20.7dB,
MSE = 8 · 10−3

(c) Ten nonzeros co-
efficients. PSNR =
30.4dB, MSE = 9 · 10−4

(d) 65 nonzeros coeffi-
cient. PSNR = 81.7dB,
MSE = 6 · 10−9

Figure 2.6: Reconstructions of the image 2.6a with increasing number of nonzero
coefficients, using the ODCT dictionary

Comparison of OMP and LARS
In this section, we compare the solutions of the `0 and `1 sparse coding
problem, as this comparison is often not included in the literature. Bach et
al. [6] did an extensive review of `1 methods for solving problem (2.12). The
review also contains a thorough benchmark6 for different problem sizes and
dictionary structures. They concluded that LARS is the preferred method
for solving (2.12). Among the methods they reviewed, LARS recovered the
most accurate solution as well as being the most efficient method. How-
ever, they did not compare LARS with OMP. Therefore, we focus on this
comparison.

Below are the results from an experiment designed similar to that of Bach
el at. We compare the reconstruction accuracy and computation time for

6Section 8.1 in [6]
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the OMP-Batch implementation included with this thesis, and the LARS
implementation7 used for the benchmark in [6].

(a) MSE of reconstruction with
LARS and OMP as sparsity increase
using a dictionary trained from im-
age patches

(b) MSE of reconstruction with
LARS, OMP and as sparsity in-
crease using a Gaussian dictionary

Figure 2.8: Accuracy of reconstruction with LARS and OMP for two different
dictionaries.

These tests were run with signals from a 3D medical image volume using
(8 × 8 × 8) image patches. The dictionary size was in both cases 512 ×
1024. The dictionary for the second test was created by drawing each
row from a Gaussian distribution, similar to that of Bach et al. and the
dictionary for the first experiment was learned using 100, 000 image patches
from CTA volumes. In both experiments, OMP is the superior in terms of
reconstruction error, see Figure 2.8.

In terms of computational time, the methods have a similar performance,
but OMP is slightly slower when the same number of coefficients are used,
Figure 2.9a. From this comparison, we can conclude that LARS is faster to
achieve a given sparsity level. At the same time, OMP will produce a more
accurate solution than LARS given the same number of nonzero coefficients.
Figure 3.1b shows MSE of the reconstruction and computation time. For
reconstruction with trained dictionaries, LARS is slightly slower than OMP
to achieve a given accuracy. For Gaussian dictionaries, OMP is faster by a
large margin. From these tests, we can conclude that OMP performs better
than LARS for image reconstruction applications.

7The implementation is found here: http://spams-devel.gforge.inria.fr/
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(a) Computation time for each level
of sparsity for OMP and LARS rel-
ative to slowest run

(b) Relative MSE as a function of
time for OMP and LARS

Figure 2.9: Comparison of computation time for LARS and OMP.



Chapter 3

Dictionary Learning

In Chapter 2, we introduced algorithms for computing a sparse represen-
tation of some signals X ∈ Rn×N , over a fixed dictionary D ∈ Cn×K . In
Chapter, we introduce methods for learning the dictionary from the input
signals to create a highly specific dictionary that is very good at represent-
ing the signals. We will also see how the introduced methods are applied
to problems of image restoration.

Dictionary learning is a form of representation learning which learns a dic-
tionary D ∈ Cn×K of elementary signal features, from a set of input signals
X ∈ Rn×N , allowing to represent the signals as a linear combination of
just a few atoms. The best dictionary is the one providing the sparsest
representation.

(a) Overcomplete DCT dictio-
nary

(b) Dictionary trained with K-
SVD

Figure 3.1: Static ODCT dictionary (left) and a dictionary learned from image
patches (right)

33
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In practice, we would like to have a dictionary with a fast, implicit transfor-
mation, so that we can obtain the coefficients and reconstruct the signals in
near linear time. This so-called analytical approach to dictionary learning
has been widely popular in signal processing in the 80’s and 90’s. However,
choosing the best analytical dictionary require prior knowledge of the sig-
nals. Fourier Transform, Wavelets [56], Curvelets [73], Ridgelets [12] and
others, are all designed to provide a very good representation for signals
with a specific structure [74]. For example, a harmonic signal will have
an accurate sparse representation with a Fourier dictionary, but it may
not have a sparse representation in any of the other dictionaries mentioned
above. With dictionary learning, we learn a highly specific dictionary from
the input signals. Thus, we can always efficiently represent the input sig-
nals sparsely, also more complex signals where an analytic dictionary cannot
guarantee a sparse representation. Examples of analytic and learned dic-
tionaries are presented in Figure 3.1.

The dictionary learning problem is a joint minimization problem and is as
following. Find a dictionary D ∈ Cn×K , and a matrix of sparse coefficients
A ∈ RK×N such that X ≈ DA, that is

argmin
D∈Cn×K ,A∈RK×N

1

2
‖X−DA‖2F + λ‖A‖0 (3.1)

X = [x1,x2, ...,xN ] ∈ Rn×N is the matrix of all training signals as its
columns and A ∈ RK×N is the sparse matrix where each column i is the
sparse coefficients of the signal xi. Here, we use `0-regularization for finding
A, but `1-regularization can also be used.

The formulation (3.1) is a non-convex minimization problem and is usually
solved by an alternate minimization scheme. An alternate minimization
algorithm will first fix the dictionary, then minimize (3.1) with respect to
the sparse coefficients. Then, fix the sparse codes and update the dictio-
nary. In the next sections, we give an overview of two batch algorithms
and two online algorithms for training a dictionary. Although they all fol-
low the alternate minimization scheme, they differ in the form the sparse
coefficients and the dictionary are updated. Batch algorithms take all the
training signals into account when updating the solution, while online al-
gorithms perform the updates after looking at a single (or few) training
signals. Therefore, an online algorithm may be preferred when the number
of training signals is very large.
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3.1 Method of Optimal Directions
Method of Optimal Directions (MOD) [31] was the first popular algorithm
for dictionary learning. It provides an efficient and flexible way for training
a dictionary, as it typically converges in just a few iterations. The goal
of MOD is to find a dictionary D and a matrix of sparse coefficients A
that minimize the representation error (3.2), given a set of training signals
X ∈ Rn×N . MOD minimizes

argmin
D∈Cn×K ,A∈RK×N

‖X−DA‖2F such that ‖ai‖0 ≤ s i = 1, ...N, (3.2)

Like other training methods, MOD alternates the sparse coding and dic-
tionary update steps. The sparse coding step can be done by any sparse
coding technique.

Algorithm 4: Method of Optimal Directions
Input: Training data X ∈ Rn×N , initial dictionary D0, stopping

criterion for sparse coding s, number of iterations T
Result: Trained dictionary D ∈ Rn×k

1 for t = 1, ..., T do
2 Compute sparse codes;
3 At ≈ argmin

A∈RK×N

1
2 ‖X−Dt−1A‖22 + λ‖A‖0;

4 Update the dictionary;
5 Dt = ProjC(XAT

t (AtA
T
t )−1);

6 end

The dictionary update (line 5) is done by computing the analytical so-
lution of the problem, given by D = XA† = XAT (AAT )−1, using the
Moore-Penrose inverse of A. Then, D is renormalized to fit the constraint.
Typically, MOD only needs a few iterations to converge and is overall an
efficient method. On the other hand, the relatively large complexity of the
matrix inversion is a large weakness [31, 32, 66].

Complexity

The sparse coding (line 3) can be done with the efficient OMP-Batch al-
gorithm. The dictionary update (line 5) requires the computation of AAT

which has complexity O(K2N), inverting AAT is O(K3), multiplying this
with AT is O(NK2). Applying X to the pseudo-inverse is O(nKN). Pro-
jecting the dictionary onto the space C is insignificant in this context, as it
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only requires the normalization of the columns of a n × K matrix, where
n < K � N . The number of signals, N , is typically very large which make
the dictionary update computationally demanding, and for this reason is
MOD not an appropriate choice for training dictionaries from large train-
ing sets. This shortcoming has inspired the development of other dictionary
learning methods.

3.2 K-SVD and its Modifications

The K-SVD algorithm was introduced because of the wish to efficiently
train a generic dictionary for sparse signal representation [1]. Like MOD,
K-SVD uses the alternate minimization scheme by first solving the sparse
coding problem before iteratively updating the dictionary atom by atom
using the singular value decomposition (SVD).

Algorithm 5: K-SVD
Input: Training data X ∈ Rn×N , initial dictionary D0, sparsity target

s, number of iterations T or tolerance ε
Result: Trained dictionary D ∈ Rn×K

1 t = 0;
2 while t < T or until ‖X−DA‖F < ε do
3 Compute the sparse codes;
4 A ≈ argmin

A∈RK×N

1
2‖X−DA‖22 + λ‖A‖0;

5 Update the dictionary;
6 for i = 1,...,K do
7 w = {Index of samples in X using atom i};
8 Compute the error without using atom i;
9 Ei = X−

∑
j 6=i dja

T
j ;

10 Restrict Ei to only columns given by w, Ew
i ;

11 Ew
i = UΣVT ;

12 Set dictionary atom di = u1;
13 Let aw

i be row i of A with columns corresponding to w, then set;
14 aw

i = Σ1,1v1;
15 end
16 t = t + 1;
17 end

Looking at the reconstruction error in iteration i of the dictionary update
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step, we have

‖X−DA‖2F =

∥∥∥∥∥X−
K∑
j=1

dja
j
T

∥∥∥∥∥
2

F

=

∥∥∥∥∥X−∑
j 6=i

dja
j
T − dia

i
T

∥∥∥∥∥
2

F

=
∥∥Ei − dia

i
T

∥∥2
F

Where aiT is row i in matrix A. For every atom update the goal is to
reduce the error E = ‖X − DA‖2F by finding new vectors di and aiT . Ei

is the current reconstruction error without using atom i. Since the goal is
to minimize E by replacing di and aiT , we can replace dia

i
T with the best

rank-1 approximation of Ei. By taking the left and right singular vectors
corresponding to the largest singular value of the SVD of Ei, its best rank-
1 approximation is found. Using the SVD of Ei directly will minimize the
error, but there is no guarantee that the sparsity constraint is still satisfied.
To account for this Aharon et al. [1] restricts the error matrix and the
sparse coefficient vector to indices for the signals whose representation uses
atom i. That is the index set w = {j : aiT (j) 6= 0}. Denoting this restricted
error matrix as Ew

i and the sparse coefficients aw
i , the SVD can now be

applied without loosing the sparsity in aw
i . Write Ew

i = UΣVT , then the
new atom becomes di = u1. The update for the sparse coefficients will be
aw
i = Σ1,1v1.

Computing the error matrix Ei can be computationally demanding, and
the cost of this computation grows with the number of training samples.
The sum of outer products

∑
j 6=i dja

T
j requires O((k−1)kN) operations for

every atom update, with the number of training samples N typically very
large. To increase the efficiency of the dictionary update, a new method
was proposed by Rubinstein et al. in [67] under the name Approximate
K-SVD, Algorithm 6. In K-SVD, Algorithm 5, the error matrix is com-
puted explicitly and a full singular value decomposition is done, but none
of these are strictly needed. We only need the singular vectors correspond-
ing to the largest singular value for the restricted error matrix. In [67], the
error matrix and SVD computation are replaced with one iteration of an
alternate-optimization scheme. The new atom update is given by

d = Eig/‖Eig‖2
g = ET

i di
(3.3)
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The update (3.3), is one iteration of the power method for computing the
Singular Value Decomposition. It will eventually converge to the optimum,
but it was shown that a single iteration is sufficient to achieve results com-
parable to the original algorithm [67]. The full details of the method are
given in Algorithm 6.

Algorithm 6: Approximate K-SVD (AK-SVD)
Input: Training data X ∈ Rn×N , initial dictionary D0, sparsity target

s, number of iterations T or tolerance ε
Result: Trained dictionary D ∈ Rn×K

1 t = 0;
2 while t < T or until ‖X−DA‖F < ε do
3 Compute sparse codes using;
4 A ≈ argmin

A

1
2 ‖X−DA‖22 + λ‖A‖0;

5 Update the dictionary;
6 for i = 1,...,K do
7 di = 0;
8 w = {Index to samples in X using atom i};
9 g = Ai,w;

10 d = Xwg −DAwg;
11 d = d/ ‖d‖2;
12 g = XT

wd− (DAw)Td;
13 di = d;
14 Ai,w = gT ;
15 end
16 t = t + 1;
17 end

Complexity
The complexity of the sparse coding step is described in Chapter 2. The
asymptotic complexity of Approximate K-SVD is

CAK-SVD = N · Comp-b (3.4)

The complexity of one iteration with AK-SVD is equivalent to sparse cod-
ing of N signals with OMP-Batch. The dictionary update step becomes
insignificant when compared to the sparse coding [67].

The dominating operations for the dictionary update in the original K-SVD
is sparse coding, with complexity equal to (3.4) and creating the index set w
which is O(N). The computations of the error matrix and its singular value
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decomposition are dependent on the size of the index set. Calculating Ew ∈
Rn×Cw is approximatelyO(nKCw) where Cw ∈ [0, N ] is the size of the index
set. The complexity of the SVD of Ew is given by O(min{n2Cw, nC

2
w}) [36].

The size Cw cannot be determined for each iteration, but the total size of
Cw when summing over all iterations of the dictionary update is known.
This is sN , the number of nonzero coefficients in each signals multiplied
with the total number of signals.

3.3 Online Dictionary Learning

So far we have seen two batch algorithms for training dictionaries. A batch
learning algorithm will look at the entire training set before doing the dic-
tionary update, while an online algorithm only looks at a single (or few)
training sample before doing the update.

Online Dictionary Learning for Sparse Coding (ODL) algorithm fromMairal
et al. [54] is an efficient online algorithm for learning a dictionary from large
sets of input signals. The computational cost and memory requirements per
iteration is lower compared to K-SVD and MOD. In [54], ODL minimizes

argmin
D∈C,ai∈RK

1

N

N∑
i=1

(1
2
‖xi −Dai‖+ λ‖ai‖1

)
(3.5)

Similar to MOD and K-SVD, ODL alternates between finding the sparse
coefficients ai and updating the dictionary. The authors uses the LARS
algorithm [29] to solve the sparse coding step, but any sparse coding method
can be used. For the dictionary update block-coordinate descent with warm
restarts is used.

At every iteration, of Algorithm 7, a signal xt is drawn randomly from the
matrix of input signals X ∈ Rn×N . Information about previous signals and
its sparse representation is stored in the matrices A ∈ RK×K and B ∈ Rn×K .
The dictionary update uses block-coordinate descent with warm restarts.
A block coordinate-descent (BCD) optimizes the objective for one block of
variables at the time. Due to the structure of the matrix A, Mairal et
al. found a BCD based dictionary update step, Algorithm 8, to be a more
efficient choice for the optimization method [54].
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Algorithm 7: Online Dictionary Learning
Input: Signals X ∈ Rn×N , initial dictionary D0 ∈ Rn×K , regularization

parameter λ, number of iterations T
Result: Trained dictionary D ∈ Rn×k

1 A0 = 0, B0 = 0;
2 for t = 1, ..., T do
3 Draw signal xt randomly from X;
4 Sparse Coding;
5 at = argmin

a∈RK

1
2 ‖xt −Dt−1a‖22 + λ‖a‖1;

6 At = At−1 + ata
T
t ;

7 Bt = Bt−1 + xta
T
t ;

8 Update the dictionary using algorithm 8 such that;

9 Dt = argmin
D∈Cn×K

1
t

∑t
i=1

(
1
2‖xi −Dt−1ai‖+ λ‖ai‖1

)
;

10 end

In Algorithm 8, one atom is updated at the time. Since the dictionary
from the previous iteration is used as a warm restart, and we keep previous
information by summing over all seen signals (line 9 Algorithm 7), one
iteration with BCD is sufficient for each atom update (T = 1 in Algorithm
8). It is shown that this method converges to the optimum [54, 9].

Algorithm 8: Online Dictionary Update
Input: Dictionary D ∈ Cn×K , matrices with information from previous

iterations A ∈ RK×K and B ∈ Rn×K , number of iterations T
Result: Trained dictionary D ∈ Rn×k

1 t = 0;
2 while t < T do
3 for i = 1, ...,K do
4 ui = 1

Aii
(bj −Dai) + dj ;

5 di = 1
max(‖ui‖2,1)ui;

6 end
7 t = t+ 1;
8 end

Being an online algorithm, ODL works better with large sets of signals
compared to K-SVD or MOD. The training signals can be split into smaller
batches, and then the dictionary is trained on one batch at the time. Let
Di be the dictionary trained on the first i batches. To train the dictionary
on batch i+ 1, Di is used as the initial dictionary such that the structures



3.4. ITERATIVE THRESHOLDING AND K-RESIDUAL MEANS 41

learned from the signals in previous batches are kept. The usage of ODL
for large sets of signals fits very well with the provided implementation of
image patches, such that the training can be split over multiple batches of
training signals. An example of how ODL is used is given in example 2.

>>> image_patches = Patches(large_volume, size=(16, 16, 16))
>>> iterator = image_patches.generator(1000)
>>> # Create an initial dictionary
>>> dictionary = random_dictionary(image_patches.size,
>>> 2*image_patches.size)
>>> for patches in iterator:
>>> # Train the dictionary on one batch with ODL
>>> dictionary = odl(patches, dictionary, iters=1000)

Example 2: Train a dictionary using a large training set

3.4 Iterative Thresholding and K-residual
Means

Iterative thresholding and K-residual Means (ITKrM) [71] is an online learn-
ing algorithm that belongs to the class of alternate optimization algorithms.
ITKrM uses thresholding for the sparse coding step and residual means for
the dictionary update. Due to these simple operations, the algorithm is
computationally light and can be easily parallelized. There are theoretical
results concerning its local convergence and experimental results concerning
its global convergence [71, 59].

Algorithm 9: ITKrM (one iteration)
Input: Signals X ∈ Rn×N , initial dictionary D0 ∈ Cn×K , sparsity target

s
Result: Trained dictionary D ∈ Cn×K

1 for i = 1, ..., N do
2 Recover support;
3 Ii = argmax

I: |I|=s
‖DT

I xi‖1;

4 for k = 1, ...,K do
5 d̄k =

∑
i:k∈Ii [In − P (DIi) + P (dk)]xi · sign(〈dk,xi〉)

6 end
7 end
8 Output D = (d̄1/‖d̄1‖2, ..., d̄K/‖d̄K‖2);
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In Algorithm 9, P (A) denotes the orthogonal projection onto the column
span of A, defined P (A) = AA†. In ITKrM the generating dictionary
is a fixed point, and the initial dictionary D0, will converge towards the
generating dictionary.

ITKrM does not search for the sparse representation exactly, but rather
finds a combination of atoms Ii which is used for signal representation, via
the thresholding operation (line 3). Then, ITKrM updates the recovered
dictionary atoms using K-residual means (line 6).

Complexity

The dominating operations in each iteration of ITKrM are the matrix-
vector multiplication in the sparse coding step, which is O(nKN), and
the projection P (DIi)xi is O(nNs2). This projection can be optimized by
computing the Gram matrix DTD, then the complexity of the projections
are O(s3N) [71]. Thus, for low sparsity target, s, ITKrM is computationally
light compared to K-SVD.

3.5 Comparison of Training Algorithms

In the previous sections we introduced multiple algorithms for training dic-
tionaries, in the next sections, we will apply these algorithms for image
restoration. Before we can apply them to the specific applications it needs
to be verified that our implementations of the training algorithms can in-
deed learn a dictionary. The tests are done by training a dictionary with
each algorithm using the same set of signals and the same initialization. The
dictionary size is 64 × 128, and 16 nonzero coefficients are used for both
training and signal reconstruction. After each algorithm has been running
for a given amount of time, the signals are reconstructed using OMP and
the trained dictionary. The figure below shows the relative error of the
reconstructed signals and the original signals.

The results in Figure 3.2 show that all algorithms can learn a dictionary
that produce a sparse representation that is very close to the exact solution.
These results are not meant to be used for ranking the methods, only verify
that our implementation can learn a high quality dictionary from image
signals.
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Figure 3.2: Relative reconstruction over training time, averaged over five runs.
The dictionary size is (64, 128), and we used 16 coefficients for the sparse coding
for both training and reconstruction.

3.6 Image Denoising

The first image restoration task we will discuss is the removal of unwanted
noise. Denoising is an important part of our segmentation pipeline discussed
in Chapter 5. If an image is noisy, it can be hard to distinguish a small,
or low intensity artery from the noise, thus the image has to be denoised
before we can accurately extract the arteries.

There are multiple reasons for why an image contains noise. One reason is
that an image is a discretization of an analog signal, the analog signal is
converted to a discrete digital signal by quantization which can introduce
some noise. Other reasons are lighting, camera quality or movement of
either the subject or the camera. A special case for CT imaging, is noise
introduced during tomographic reconstruction [41]. A CT image is created
by taking multiple x-ray images from different angles, these images are
reconstructed using a process called tomographic reconstruction to create
a 3D image volume.

Image denoising is one of the fundamental problems in image processing.
Mathematically the problem is formulated as following. Given a noisy image
y, defined by

y = x + v, (3.6)
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recover the noise free, ground truth image x. v is the noise, here it is
assumed to be additive zero-mean white and homogeneous Gaussian noise,
with standard deviation σ.

Figure 3.3: Image corrupted with white Gaussian noise with σ = 20 and PSNR =
17.9 (left) and its denoised version with PSNR = 32.7dB

Denoising fits well with the ideas of sparsity and sparse representations. If
the ground truth image x is sparse, we can assume the largest coefficients in
the sparse representation of the measured image describes the ground truth
image, while the smaller coefficients correspond to the noise. Therefore, we
can recover its support by the following minimization procedure

min
A∈RK×N

‖A‖0 such that ‖Y −DA‖2F < ε, (3.7)

where Y ∈ Rn×N is the matrix of image patches from the measured image y.
The noisy image y may not be sparse in the dictionary because of the noise,
but its m-sparse approximation will be a good estimate of the underlying
ground truth image, see compressible-sparse signals (2.4).

Extending the sparse coding and learning methods to handle denoising re-
quire minimal changes. The first denoising method based on dictionary
learning was introduced by Elad and Aharon in [30], and still provides very
good results. In [30], K-SVD is used to train a high quality dictionary, but
any method for obtaining a dictionary can be used. For training the dic-
tionary one can either use the noisy image itself, or any set of high-quality
images. However, the denoising procedure using a dictionary trained on
patches from the corrupted image was found to give the best results. In
particular, the dictionary is learned using

argmin
D∈Cn×K , A∈RK×N

‖A‖0 such that ‖Y −DA‖2F < Lσ (3.8)

The tolerance constraint Lσ depends on both the standard deviation of the
noise σ, and some constant L. Empirically it was shown L = 1.15 gave
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the best results [30]. The resulting sparse representation X̂ = DA from
equation (3.8) is accurate up to the constant Lσ, proportional to the noise.
The final estimate of the ground truth image is obtained by reconstructing
the image from the image patches X̂. The averaging of overlapping pixels
when reconstructing the image patches also acts as additional noise removal.

This denoising procedure requires the noise level σ to be known, which is not
typically the case. The noise level can be estimated from the noisy image
to various degree of success [28, 65]. In the provided software, Threshold
Selection by SURE [28] is the chosen method for estimating the level of
noise.

Denoising 3D CTA Volumes

The algorithm presented by Elad and Aharon in [30] trains the dictionary
from the noisy image with a tolerance-based sparse coding step in K-SVD.
The implementation provided in dictlearn1 is more general, and any dic-
tionary learning algorithm can be used with either a tolerance- or sparsity-
based stopping criterion for the sparse coding stages. A simple usage of the
denoising implementation is shown in Example 3.

To verify the implementation, the first step is to test the quality of denoised
2D images. The results presented in Figure 3.5 use the same images and
noise levels as some tests described in the original paper [30].

(a) Barbara (b) Fingerprint

Figure 3.4: Original images used for the denoising experiment presented below

Each of the images Barbara and Fingerprint, Figure 3.4, are denoised sep-
arately, and the tests are done according to the following steps.

1Found in dictlearn/algorithms.py
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Data acquisition: The images are first corrupted with Gaussian noise with
σ = 20, 50. Then, all overlapping p = (10×10) image patches from the noisy
image are put as columns in the matrix of training signals X ∈ R100×253 009.
Training: Dictionary size is chosen as 100× 256. We train one dictionary
per image for both training algorithms. We use K-SVD and ODL such that
we have one batch and one online algorithm. Training with K-SVD uses
T = 80 iterations, and 30 000 iterations for ODL. The number of iterations
for ODL is the same as the number of signals used for training. Thus, ODL
uses only 12% of the signals for training, where K-SVD uses all available
signals.
Reconstruction: The image is reconstructed using OMP-Batch with tol-
erance stopping as described in Section 3.6. The tolerance is defined by
ε = p · (1.15σ)2

Barbara Fingerprint
σ (PSNR) 20 (22.11) 50 (14.15) 20 (22.11) 50 (14.15)
ODCT 30.07 25.09 28.15 22.98
K-SVD 30.86 26.13 28.62 23.83
ODL 29.89 25.91 28.47 23.66
Elad [30] 30.83 25.47 28.47 23.25

Figure 3.5: PSNR of denoised images. The last row are results from the method
presented in [30].

Denoising with the fixed ODCT dictionary follows the first and last step
outlined above. The DCT dictionary produce results comparable to the
trained dictionaries. Since denoising with a static dictionary require no
training, it will be more efficient than trained dictionaries. K-SVD (Algo-
rithm 6) and ODL (Algorithm 7), both used a stopping criteria for training,
and the results in the last row, are generated using tolerance stopping, and
the implementation of the exact K-SVD published with [30].

Verification on 3D images is done using synthetic image volumes created
with the software VascuSynth [40, 45]. This software creates very simple
images (Figure 3.6a), where only the vessel-like structures take a value larger
than zero. But, for verifying whether the implementation can remove noise
from 3D image volumes it is sufficient. For these experiments, we use K-
SVD to train the dictionaries, since it provides the best result for 2D image
denoising and the images are small enough for a batch algorithm to be used.

There are two main ways denoising can be applied to image volumes. The
first is to process the volume using 3D image patches. Then, all overlapping
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3D image patches are extracted into the matrix of signals X ∈ Rn×N , and
denoising is done as described above. The second approach is to process
the volume as separate 2D slices. Using this approach, each slice in a
given direction (height, width or depth) is denoised as a 2D image. The
image patches for the first approach will contain more spatial information
that may be helpful for producing the best results. The latter method will
save computation time, but discard all spatial information in the dimension
where the slices are extracted.

(a) Original noise free
image

(b) Noisy image, σ =
20, PSNR = 25.10dB

(c) Denoised us-
ing 3D patches,
PSNR = 30.15dB

(d) Denoised using 2D
slices, PSNR = 26.66dB

Figure 3.6: (100× 100× 100) image volumes denoised with a trained dictionary
using 3D and 2D image patches

In Figures 3.6 and 3.7, we see the denoising procedure can remove noise
from 3D images using both 3D and 2D image patches. Denoising with
10 × 10 × 10 3D image patches starts with randomly extracting 100 000
overlapping patches into the matrix of training signals, X ∈ R1000×100 000.
Then, a 1000× 2000 dictionary is trained using 10 iterations with K-SVD,
and s = 60 nonzero coefficients as the stopping criterion. Approximate time
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for denoising the 100×100×100 images is one hour, training the dictionary
takes around 20 minutes, the rest is for the final sparse coding.

For 10×10 2D image patches we use a 100×256 dictionary, all overlapping
patches in each slice, s = 10 nonzero coefficients, and 10 iterations per
slice. Denoising 2D slices only needs 10 minutes for the whole volume. The
accuracy lost for choosing 2D patches over 3D is the same for both noise
levels.

(a) Original noise
free image

(b) Noisy version,
σ = 50, PSNR =
17.18dB

(c) Denoised us-
ing 3D patches,
PSNR = 25.10dB

(d) Denoised using
2D slices, PSNR =
21.37dB

Figure 3.7: (100× 100× 100) image volumes denoised with a trained dictionary
3D and 2D image patches

>>> denoise = Denoise('noisy_image.png', patch_size=10)
>>> denoise.train(n_atoms=256, n_nonzero=8)
>>> denoised_img = denoise.denoise(sigma=20)

Example 3: Denoise a 2D image with a learned dictionary
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3.7 Inpainting

Image inpainting is the next image restoration problem we consider. In-
painting is the process of removing unwanted structures or filling in missing
points in an image. Dictionary-based inpainting delivers good results as
long as the corruptions are of reasonable size, see left image in Figure 3.8.
If the corrupted areas are too large, methods based on Texture Synthesis
has to be applied. The method Object removal by exemplar-based inpainting
by Criminisi et al. [20] is one of such methods, which is implemented in the
provided software2. In this section, we focus on dictionary-based inpainting
as it fits nicely with the established framework. The next reason is that
vessels in a 3D CTA image are usually small enough to be inpainted with
dictionary-based methods.

Figure 3.8: Example of small (left) and large (right) corruption patterns

Dictionary-based Inpainting

We assume the corruption to be distributed independently of the signals,
and each pixel, (i, j), in the image is observed with a probability pij. A
requirement for inpainting with dictionary learning is that no image patch
is covered entirely by the corruption. The corrupted image is assumed to
be on the form

y = x�m + v (3.9)

y ∈ RH×W is the measured image, x ∈ RH×W is the ground truth image
we want to recover, and m ∈ {0, 1}H×W is the corruption. v is noise as
described in Section 3.6, which can be zero. The idea is to include a binary
mask, where the value 1 denotes an intact pixel, and 0 denotes a corrupted
pixels, and by using the data available in the intact pixels we can fill in
values for the corrupted.

2Multiple inpainting methods are implemented in dictlearn, their details can be
viewed in dictlearn/inpaint.py
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Let X ∈ Rn×N be the image patches from the ground truth image, M ∈
{0, 1}n×N is the masks, where each mi is the mask for xi, such that yi =
mi � xi defines the measured, corrupted image patches. Dictionary based
inpainting relies on the fact that if every image patch xi is sparse in the
dictionary D, then every corrupted patch yi = mi � xi is sparse in the
corrupted dictionary Dmi. We denote the corrupted dictionary by Dmi =
[d1�mi, ...,dK �mi], that is, each atom in the corrupted dictionary corre-
sponding to signal i, is multiplied with the mask for signal i. From this we
have that if ai are the coefficients for the sparse representation of the cor-
rupted patches yi = (Dmi)ai, then x̂i = Dai is an estimate of the ground
truth image patches xi [59].

The learning problem is defined

argmin
D∈Cn×K , A∈RK×N

1

2
‖M� (Y −DA)‖2F + λ‖A‖0 (3.10)

The idea is similar to that of denoising; learn a dictionary D, and find
a matrix of sparse coefficients A, then the representation X̂ = DA is an
estimate of the image patches for the ground truth image x.

Where denoising was achieved by only setting an appropriate stopping cri-
terion on the final sparse coding step, inpainting needs a few more changes.
Since the points in Y marked by zero in the mask are corrupted, these can-
not be taken into account while training the dictionary and sparse coding
the signals. First, assume the dictionary is fixed, then we can obtain the
sparse codes for the corrupted signals over the corrupted dictionary with the
original implementation of OMP (Algorithm 1), by changing only its inputs.
The new inputs are the corrupted signal yi ∈ Rn, mask mi ∈ {0, 1}n, and
the renormalized masked dictionary Dmi ∈ Cn×K , then OMP can progress
as given by Algorithm 1. The dictionary has to be renormalized since
‖dj �mi‖2 ≤ ‖dj‖2 = 1 for j = 1, ..., K with equality only if mi(k) = 1 for
all k = 1, ..., n. The corruption does not necessarily affect the norm of the
atoms in the same way, thus less corrupted atoms will take precedence in
the atom selection step [59].

K-SVD and ODL can both solve the inpainting problem [55, 54], but they
use the modified OMP to compute the sparse codes, which is quite slow.
Thus, methods relying on OMP for sparse coding during training are im-
practical. Sparse coding a 256 × 256 image using a sparsity target of 8,
(8 × 8) image patches, and a dictionary of 256 atoms is almost 100 times
slower with the original OMP, compared to OMP-Batch. A better approach
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is to do sparse coding with a thresholding technique. Iterative Threshold-
ing and K-residual Means for corrupt data (ITKrMM) [59] is an extension
of the efficient ITKrM, Algorithm 9, for learning a dictionary from cor-
rupted data. It belongs to the class alternate optimization algorithms that
alternates between sparse coding the signals with hard-thresholding and
updating the dictionary using residual averages.

ITKrMM require only one sparse coding with OMP for recovering the sup-
port with the final, learned dictionary, which makes it more efficient than
K-SVD or ODL. Inpainting with ITKrMM was shown to be between 8−12
times faster than inpainting with K-SVD [59].

Inpaint CTA Volumes
Inpainting is verified in the same way as denoising. First using 2D images,
then with 3D CTA images. Figure 3.9, shows the results of inpainting a 2D
image with random corruption. The dictionaries are trained with ITKrMM,
using 20 iterations, 10 nonzero coefficients, one low-rank component, and
(10× 10) image patches. The final OMP step is done with tolerance stop-
ping at ε = 10−3. The reconstructions using a DCT dictionary only require
the sparse approximation of the image patches, thus we do sparse approxi-
mation with OMP the same way as for ITKrMM.

(a) 20% corruption (b) PSNR = 41.40 (c) PSNR = 40.57

(d) 70% corruption (e) PSNR = 29.60 (f) PSNR = 29.99

Figure 3.9: Random corruption restored with ITKrMM (middle) and DCT
(right), with p = 0.8 and p = 0.3. PSNR is given in dB.
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In the case of 20% corruption, both ITKrMM and DCT dictionaries provide
very good results. Training the dictionary with ITKrMM on all overlapping
image patches from the 256× 256 image in Figure 3.9 takes approximately
five minutes, and ten minutes for the final sparse coding with OMP, for
both ITKrMM and DCT dictionaries. The dictionaries from ITKrMM are
trained with only 20 iterations, which is quite low, if trained for more iter-
ations ITKrMM will outperform DCT [59].

Figures 3.11 and 3.10 are the results of inpainting a 3D CTA volume with
(8 × 8 × 8) image patches. The dictionary is in both cases (512 × 1024).
For random corruption, the dictionary is trained on all overlapping image
patches. When only a part of a vessel is missing, such as Figure 3.10,
inpainting can be very efficient, since the final sparse coding step only has
to be done on the corrupted patches. Figure 3.10 is inpainted by training
the dictionary on 60000 intact image patches, and reconstruction is done by
sparse coding only the corrupted patches. For this corruption, sparse coding
with OMP is faster than the 2D images in Figure 3.9, taking approximately
two minutes.

Figure 3.10: Inpainting of larger corrupted area, PSNR(corrupted) = 30.68dB,
PSNR(restored) = 43.32dB

Inpainting random corruption is slower as all image patches are required
to be sparsely approximated with OMP. In Figure 3.10 only 2000 patches
is affected by the corruption and have to be approximated, but for Figure
3.11 all 65 000 image patches has to be approximated, thus computation
time will increase with a factor of 32.5.
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Figure 3.11: Sliced from 3D image. Left: Corruption, middle: Inpainted, right:
Original. PSNR(corrupted) = 18.83dB, PSNR(restored) = 34.46dB





Chapter 4

Segmentation and Feature
Enhancement

In Chapter 2 and 3, we saw how sparse coding and dictionary learning
based image restoration can be applied to 3D images. Image restoration is
used as the initial step in our segmentation pipeline, presented in Chapter
5, to increase the quality of the extracted vessels. This chapter will explore
various techniques for extracting arteries from the restored images. Roughly
speaking, all points in an image needs to be marked as either an artery point
or a not-artery point. This process of dividing an image into two or more
regions by labeling every point, is known as image segmentation.

(a) Two overlapping
classes

(b) Classes separated
with feature enhance-
ment

Figure 4.1: Two overlapping classes that are separated with feature enhancement

In some cases, the boundary between two classes can overlap, Figure 4.1a,
then structures of different classes will be similar and hard to segment into
the correct classes. In images where this occur, an appropriate feature
enhancement technique should be applied first. The goal of feature en-
hancement is to make the feature of the different classes more distinct and,
thus, make the image easier to segment, Figure 4.1b.

55
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In this Chapter, we look at two techniques for enhancing vessel features,
and two methods for extracting the vessels into a binary image, where all
points that belong to a vessel take the value 1 and everything else 0. The
main issue we need to keep in mind is that a CTA image is not an exact
representation of a patient’s anatomy. There is no ground truth image, and
thus, any inaccuracy introduced by the vessel extraction technique will be
added on top of the errors already existing in the CTA. Hence, we should
keep the extracted structures as close to the CTA as possible. For example,
if there is a narrowing of a vessel, similar to Figure 3.10, then we cannot
determine if this is due to an imaging artifact or a stenosis found on the
patient’s vessel. Therefore, we do no attempt at altering the structure of
the vessels, but rather leave this as an optional step in the final pipeline,
Chapter 5.

4.1 Thresholding

Thresholding is the simplest way of segmenting an image. By setting all
pixels less than a threshold τ to zero, a binary image is created. Often
the selection of the threshold is done manually by visual inspection, but
methods for automated threshold selection do exist to various degree of
success. Global histogram-based threshold selection algorithms are the most
commonly used. Minimum, entropy, median, and mean are some of the
threshold selectors proposed in [39].

The histogram for an image is denoted by qi, where qi is the number of pix-
els with intensity contained in the bin bi = [ti, ti+1, ..., ti+s−1]. The possible
intensity values for a point in the image, ti, are divided into N bins. For
example, if I is a grayscale image with intensities in [0, 255], and its his-
togram is chosen to have N = 16 bins, then each bin contains the intensities
bi = [16 · (i− 1), ..., 16i− 1] for i = 1, ..., 16.

The minimum threshold assumes the image has a bimodal histogram, Fig-
ure 4.2. The threshold τ is chosen τ = i, such that qi takes the minimum
value in the valley between the two modes. This is done by finding two
local maxima, then finding the minimum point between them. Computing
the thresholds mean, median and entropy requires the partial sums

Aj =

j∑
i=1

qi and Bj =

j∑
i=1

iqi
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Aj is the number of pixels with intensity contained in the first j bins, and Bj

is approximately the sum of intensities of the pixels in the first j bins. The
median threshold divides the histogram into two classes, each containing
approximately 50% of the pixels, and can be defined as

τ = argmin
t=1,...,N

∣∣∣ t∑
i=1

qi −
N∑

i=t+1

qi

∣∣∣
The mean threshold is the mean value of the image, τ = E(BN/AN), where
E(x) denotes the integer part of x. The next threshold of interest is the
entropy threshold [39, 46]. This method requires an additional sum; Ej =∑j

i=1 qi · log(qi), and the optimal threshold is found by

τ = argmin
i=1,...,N

Ei
Ai
− log(Ai) +

EN − Ei
AN − Ai

− log(AN − Ai)

Otsu’s-method [60], is another commonly used technique for automatically
estimating the threshold. This method assume that the image consists of
two classes, which correspond to a bimodal histogram as in Figure 4.2.
The threshold is chosen such that the intra-class variance is minimized.
First, define class weights ω0(t) =

∑t−1
i=1 qi and ω1(t) =

∑N
i=t qi, and its

corresponding means

µ0(t) =
t−1∑
i=1

iqi
ω0(t)

and µ1(t) =
N∑
i=t

iqi
ω1(t)

Finding the optimal threshold τ , which minimizes the intra-class variance,
is equivalent to finding the threshold which maximizes the between-class
variance σ2

B(t) = ω0(t)ω1(t)(µ1(t)− µ0(t))
2, then

τ = argmax
t=1,...,N

σ2
B(t)
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Figure 4.2: Various automatic thresholds on a bimodal histogram created from
drawing from two Gaussian distributions

Application to CTA volumes

Histograms constructed from CTA-volumes will roughly resemble the bi-
modal histogram in Figure 4.2. A histogram from a CTA volume is shown
in Figure 4.3. Arteries containing contrast fluid will have higher intensity
than the rest of the volume, and will make up the smaller peak at the end
of the intensity spectrum. For some volumes, the arteries can be extracted
by setting the threshold somewhere in-between the two peaks, this can be
achieved by either Otsu-, entropy- or minimum-threshold, see Figures 4.4
and 4.5.

Figure 4.3: Histogram of a CTA image volume. Vessels are found in the bins
with intensity 50 and up
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The challenge with this approach, is that the intensity of the points in
an artery is directly dependent on its size. Larger arteries contain more
blood and contrast fluid, thus they will be brighter than smaller arteries.
This problem arises around smaller arteries, and in areas where there are
other structures that absorb radiation. These structures, see the light blue
patterns in Figure 4.5a, have multiple sources. Some are due to noise not re-
moved during image restoration, but some are also due to other anatomical
structures. For example, the structure in the lower right corner of Figure
4.5a is the skull. It is the region where the Internal Carotid Artery passes
through the skull, and the artery will be darker since it is partially hidden
by bone. This is also the reason for the large hole in the segmented vessels
in Figure 4.5b.

In the above mentioned areas, artery voxels and non-artery voxels will have
overlapping intensity, and there is no single point where the classes can
be separated exactly. For this reason, the resulting geometry may include
non-artery voxels labeled as arteries or artery voxels are missed. In smaller
volumes where the artery size and intensity are fairly similar through the
whole volume, thresholding methods work very well, see Figure 4.4. One
the other hand, Figure 4.5, is an example where thresholding does not work,
the geometry extracted with minimum-threshold has large holes where there
should be an artery. Whereas with Otsu’s threshold the opposite occur.

Based on this, it is clear that a vessel extraction method based solely on
voxel intensity is not the best approach for a general method. In order
to improve the results, one can apply an appropriate feature enhancement
technique to increase the difference between artery and non-artery classes.
However, for volumes with similar vessel size and intensity, there is lit-
tle to no overlap between arteries and non-artery points, and thresholding
should be used. The advantage of using thresholding compared to the more
complex techniques, is its efficiency and simplicity. When the threshold is
known, one pass through the image is sufficient to divide all voxels into the
two classes.

Thresholding is not the default segmentation method in the provided pipeline,
Chapter 5, but support for thresholding is included, and its use require min-
imal changes to the default configuration.
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(a) Denoised volume of
size (30× 52× 66)

(b) Minimum threshold (c) Otsu’s threshold

Figure 4.4: Arteries extracted with thresholding. The vessels have similar size
and intensity through the whole image.

(a) Denoised volume of
size (256× 256× 256)

(b) Minimum threshold (c) Otsu’s threshold

Figure 4.5: Arteries extracted with thresholding. The image has large variations
in both vessel size and intensity.

4.2 Feature Enhancement with K-Means
In the previous section, we saw that thresholding yields good segmentation
results for images with a simple vessel structure, but for more complex
images we need to perform feature enhancement first in order to be able
to segment the image accurately. In this section, we show how clustering
with K-Means can be used to enhance vessel features, to create a good and
efficient vessel extraction method.
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K-Means is a clustering algorithm, which groups together similar data sam-
ples. By analyzing the training data, a clustering algorithm will split the
data into classes with similar features and learn the decision boundaries
between the different classes.

K-Means

K-Means is a simple heuristically-driven clustering algorithm. Given some
data {xi}Ni=1 and the number of clusters k, K-Means divides the input data
into k clusters by minimizing the variance within each cluster.

The algorithm can be initialized in many ways, the simplest is by placing
k points called centroids randomly in the data. A data point is said to be
in cluster j, if it is closer to centroid µj, than any other centroid µi, i 6= j.
Every centroid µj is the mean of cluster j. After each data point has been
assigned to a cluster, the centroids are moved to the new mean of its cluster.
These operations repeats until some stopping criterion is met. Two com-
monly used stopping criteria are setting the maximum number of iterations,
or keep updating the centroids until they reach a stable configuration. That
is

n∑
i=0

‖µold
i − µnew

i ‖2 < ε

K-Means is sensitive to the initial placement of the centroids, and multiple
runs with different initializations should be done before obtaining consistent
results. A simple, but efficient implementation is provided in Algorithm 10.

Complexity

The dominating operations in Algorithm 10, are assigning a training sample
to a class and updating the cluster means, which is O(kn) for each training
sample, O(Nkn) for all N training samples. Total complexity is O(NknT ),
where T is the number of iterations until the stopping criterion is met.
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Algorithm 10: K-Means Clustering
Input: Training data X ∈ Rn×N , number of clusters k, a stopping

criterion
Result: Class labels L ∈ ZN+

1 Initialize centroid, M = [µ1,µ2, ...,µk] ∈ Rn×k;
2 while stopping criterion not reached do
3 Reset labels;
4 Y = {0}N ;
5 sum = {0}n×k;
6 s = {0}k;
7 Assigns new labels to all samples;
8 for i = 0, ..., N do
9 j = argmin

j=0,...,k
‖xi − µj‖2;

10 sumj = sumj + xi;
11 sj = sj + 1;
12 Li = j;
13 end
14 Update and move centroids;
15 for j = 0, ..., k do
16 µj = 1

sj
· sumj ;

17 end
18 end

Applications to CTA

K-Means is not able to work as a standalone vessel extraction method,
mainly due to image brightness still being an important factor. Thus, we
use it as a way to enhance vessel features in CTA images. The idea is
that a sufficiently clean image can be clustered into two classes. One small
cluster containing mostly arteries and a second, larger cluster, containing
everything else. After running K-Means on the image volume we can adjust
the resulting labels, L, such that the label corresponding to the smaller
cluster have the value one and the larger are zero. We then create a new
version of the input data containing only the smallest cluster, Y = X� L.
This multiplication will set all image patches not in the smaller cluster to
zero. To generate the final enhanced image, a convex combination is used.
Choose 0 ≤ α ≤ 1, then Xe = αX + (1− α)Y defines the vessel enhanced
image. Choosing α = 1, we obtain the original image, choosing α closer to
zero, we enhance arteries.
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Figure 4.6 shows the results of vessel enhancement with K-Means. The
algorithm is trained on all overlapping 2D image patches of size 6× 6 using
2D 256 × 256 slices from a 256 × 256 × 256 volume. 3D patches can also
be used. The choice for using 2D or 3D image patches is the same as for
image denoising or inpainting (Sections 3.6 and 3.7), using 2D patches is
computationally more efficient, but 3D patches give better results. The
image in Figure 4.6b, is constructed by setting α = 0.3 in the expression
for Xe.

(a) 256 × 256 volume
slice

(b) Enhanced vessel im-
age

(c) K-Means and mini-
mum threshold

Figure 4.6: Clustering with K-Means

K-Means can be applied directly on the sparse codes. If a sparse represen-
tation is available, it is more efficient to cluster the sparse codes rather than
full image patches. The sparse codes can be compressed using Compressed
Sparse Column-matrix format, which only stores nonzero elements in each
column. This approach reduces both running time and memory consump-
tion. The size of the image patches should be chosen such that the smallest
side in the patches have approximately the same size as the diameter of the
smallest vessels.

Figure 4.7 shows the result of K-Means with 3D image patches and entropy-
threshold. Figure 4.7d, is the resulting segmentation when using feature
enhancement, which we see provide a better result compared to Figure
4.7c, where no feature enhancement is used.
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(a) 256×256×256 CTA
image

(b) K-Means enhanced

(c) Entropy threshold
on CTA image

(d) Entropy threshold
on enhanced image

Figure 4.7: Successful vessel extraction with K-Means and thresholding

4.3 Hessian-Based Methods
In this section, we present two methods for image enhancement and seg-
mentation respectively, based on the structure of the Hessian matrix of
the image. These methods are expected to show a better general perfor-
mance compared to the previous methods, as both structure and brightness
is examined when labeling the points. Hessian-based methods combine
multiscale analysis, and analysis of the eigenvalues and eigenvectors of the
Hessian matrix to determine what kind of structure (plate-, tubular-, or
blob-like) each point belongs to. In a 3D image, a plate-like structure will
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have large variations in its intensity when moving in only one direction
(height, width or depth). A tubular (vessel) structure will show large in-
tensity variations in two directions, and a blob-like structure shows large
variations in all directions, and can in many cases be considered as noise.
In summary, we are interested in extracting points belonging to tubular
structures.

Before we can define the details of the Hessian-based segmentation tech-
niques, we need to define how an image is represented at multiple scales.
This is done using a Scale-Space representation.

Scale-Spaces
A scale-space representation, is a way to describe an image at multiple
resolutions [51, 63]. The idea is that different structures, or elements, is
best described at different scales, see Figure 4.8. To obtain the scale-space
representation, the initial image I0(x) is embedded into a family of derived
images I(x; t), where t denotes the scale. Lindeberg [51], terms this opera-
tion as scale-space smoothing.

Figure 4.8: (256× 256) CTA slice at three different scales. Left: Original image
with t = 0, middle: t = 6, and right: Coarse scale with t = 12

Scale-space smoothing can be done in multiple ways, but the most useful
is to filter the image with a Gaussian kernel, G(x; t). The n-dimensional
kernel, with x ∈ Rn is defined as

G(x; t) =
1√
2πt2

n · e−
‖x‖22
2t2 (4.1)

Where t defines the scale. Given a set of scales

T ⊆ R+ = {t ∈ R : t > 0},
the scale space of an image I0(x) is defined

S(I0(x); T ) = {I0(x) ? G(x, t) : t ∈ T }
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f ? g denotes the convolution of f with g. Additionally, the image at scale
t = 0 is defined as I0(x)

Images created with larger t correspond to images at coarser resolutions,
while smaller t corresponds to a finer resolution. The details in the image
decrease when the scale t increase.

Normalized Derivatives

The Hessian-based segmentation techniques uses scale-spaces to represent
images and their derivatives. One challenge associated with scale spaces,
is that the Gaussian kernel and its derivatives are decreasing functions of
scale, and we have

lim
t→∞

∂n

∂xn
G(x; t) = 0 ∀n ≥ 0

Therefore, by comparing an image at multiple scales, the high resolution
images (small t) will take precedence over the low resolution (large t) ver-
sions. Normalized derivatives were introduced by T. Lindeberg [50] to make
comparisons between scales fair. The derivative of an image is defined in
terms of convolutions with the derivative of the Gaussian

∂

∂xi
I(x; t) = I0(x) ?

∂

∂xi
G(x; t) (4.2)

To normalize, such that ∂
∂xi
I(x; t) can be compared across scales, it is scaled

by a factor tγ

∂

∂xi
I(x; t) = tγI0(x) ?

∂

∂xi
G(x; t) (4.3)

When γ = 1, equation (4.3) is called the normalized -derivative of I0(x).
Otherwise, it is called γ-parameterized derivative, and the value of γ is
important when equation (4.3) is used to detect shapes in the image, Section
4.3.

Analysis of the Hessian Matrix

The Hessian-based methods presented in this thesis are based on the same
idea of examining the eigenvalues of the Hessian matrix. By examining the
eigenvalues corresponding to each point x0 = (i, j, k), we can determine the
type of structure the point x0 belongs to [35, 52, 70]. The Hessian matrix
describes the second-order structure of local intensity variations around each
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point x0. These structures are reflected in the eigenvalues of the Hessian
matrix. Let I(x; t) be a 3D image at scale t, then consider the 2nd degree
Taylor expansion in the neighborhood of a point x0

I(x0 + hx; t) ≈ I(x0; t) + hxT∇tI(x0) + h2xTHx0,tx (4.4)

Where ∇tI ∈ RH×W×D×3 is the normalized gradients at scale t. Hx0,t ∈
R3×3 is the Hessian matrix for point x0 at scale t, defined as

Hx0,t(i, j) =
∂2

∂xixj
I(x0; t)

Let |λ1| ≤ |λ2| ≤ |λ3| be the eigenvalues of Hx,t, then for an ideal bright
tubular (vessel) structure the following holds [35].

λ1 ≈ 0 (4.5)
λ2 � λ1 (4.6)
λ2 ≈ λ3 (4.7)

Let v1, v2, and v3 be the eigenvectors corresponding the eigenvalues λ1, λ2, λ3.
Further, assume the eigenvalues of the Hessian matrix of a point x follows
the structure (4.5)-(4.7), where λ1 is close to zero, λ2 and λ3 are both neg-
ative and of large magnitude. Then, any change in the direction of v1,
I(x + rv1), results in a small change in intensity. Since λ2 and λ3 are neg-
ative and of large magnitude, any change in the directions of v2 or v3 will
result in large changes towards a lower intensity. All relationships between
size and magnitude of the eigenvalues and shape can be seen in Figure 4.10.

An example of an ideal vessel is shown in Figure 4.9. Let x be the point
on the center of the vessel in Figure 4.9a, which corresponds to the top of
the peak in Figure 4.9b. The eigenvalues of the Hessian matrix to the point
x then follows a structure similar to (4.5)-(4.7). We have λ1 ≈ 0, and any
change in the direction of v1 results in very small changes in intensity. In
Figure 4.9a, v1 is the direction normal to the cross section, and is also the
direction of the vessel. The other eigenvalues, λ2 and λ3, are negative with
large magnitude, thus, changes in the directions of v2 or v3 results in large
changes towards a lower intensity. This can be visualized in Figure 4.9b, v2

and v3 points away from the top of the peak, and we see that the intensity
decrease quickly when moving away from the peak. Moving away from the
peak is equivalent to moving away from the center of a vessel and towards
its boundary.
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(a) Cross section of a vessel (b) Intensity profile of the image. A
higher peak gives higher intensity

Figure 4.9: Vessel cross section and its intensity profile

2D 3D Structure
λ1 λ2 λ1 λ2 λ3
N N N N N Noise, no structure

L L H- Plate-like (bright)
L L H+ Plate-like (dark)

L H- L H- H- Tubular (bright)
L H+ L H+ H+ Tubular (dark)
H- H- H- H- H- Blob-like (bright)
H+ H+ H+ H+ H+ Blob-like (dark)

Figure 4.10: Relationships between local image structures and Hessian eigenval-
ues. L is a low value, H for high and N is noisy, +/- denotes the sign.

Frangi Vessel Enhancement Filter

Frangi et al. [35], have developed a multiscale vessel enhancement filter
that measures to which extent a point resembles a vessel, called the ves-
selness of a point. Based on the relationships in Figure 4.10, each point is
assigned a vesselness value between zero and one to create a feature image,
similar to K-Means in Section 4.2. Points with a value close to one are as-
sumed to belong to a vessel. Due to its multiscale approach, Frangi Vessel
Enhancement Filter is better equipped to handle images with small vessels
compared to K-Means, for instance. Used together with thresholding, the
Frangi Vessel Enhancement filter creates a good and efficient method for
extracting vessels.

The Frangi vessel filter works by assigning each point in the image a ves-
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selness values according to the vesselness function, defined as

V(t) =

{
0 if λ2 > 0 or λ3 > 0[

1− exp
(
− R2

A
2α2

)]
exp

(
− R2

B
2β2

)[
1− exp

(
− S2

2c2

)]
otherwise

(4.8)

Here, α, β and c are parameters that controls the sensitivity of the filter,
andRA, RB and S are geometric ratios that are used to distinguish between
tubular, plate- and blob-like structures. V(t) is designed to take large values
if the point corresponding to the three ratios is vessel-like. Details on how
to compute the vesselness response is given in Algorithm 11.

Algorithm 11: Frangi Vesselness Filter
Input: Image I0 ∈ RH×W×D, set of scales T
Result: Feature image V∗ ∈ RH×W×D

1 for t ∈ T do
2 Calculates partial derivatives, equation (4.3);
3

Iij = tγI0(x) ?
∂2

∂xixj
G(x; t)

4 For each x = (x, y, z) ∈ [0, H]× [0,W ]× [0, D];
5 Hx,t(i, j) = Ii,j [x, y, z];
6 λ1, λ2, λ3 = eigvals(Hx,t);
7 Calculate V(t) (4.8) for point x with λ1, λ2, λ3;
8 end
9 Get maximum response for each point over all scales;

10 V∗[x, y, z] = max
t∈T

V(t)[x, y, z];

The first ratio, RB, accounts for the deviation from a blob-like structure

RB =
|λ1|√
|λ2λ3|

, (4.9)

and is close to zero for both tubular and plate-like structures. RB cannot
distinguish between tubular and plate-like structures, therefore, another
ratio is needed

RA =
|λ2|
|λ3|

(4.10)

RA is close to zero for plate-like structures and close to one for tubular
structures. For a tubular structure, we have RB ≈ 0 and RA ≈ 1. These
two ratios are intensity invariant, and background noise can give a high
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response for vesselness. To account for this we have S, which Frangi et al.
defined as the Frobenius norm of the Hessian matrix [35]

S = ‖Hx,t‖F =
√
λ21 + λ22 + λ23

S is low for background points and high for vessels. Thus, with these three
ratios, RA, RB and S, the vesselness function is able to distinguish between
vessel-like structures and everything else.

Figure 4.11: Original image volume and its vesselness response computed at
scales T = {1, 2, 3.5, 5}

The vesselness response, equation (4.8), is calculated at multiple scales
T = {tmin, t1, ..., tmax}, and the final feature image is obtained by taking
the maximum value of a point x over all scales,

V∗[x] = max
t∈T

V(t)[x]

The scales are chosen such that tmin and tmax corresponds to the width of
the smallest and largest vessels.

Complexity

The dominating operations in Algorithm 11 are computation of the par-
tial derivatives and iterating through all points in the image. Finding the
eigenvalues of a 3× 3 matrix is very fast, and computing the response (4.8)
is also very fast, and can be considered as constant operations.

The partial derivatives are computed efficiently in the Fourier domain. The
Convolution Theorem [11], states that f ? g = F−1(F(f) � F(g)), where
F ,F−1 are the Fourier transform and its inverse. The complexity of convo-
lution in the Fourier domain is O(HWD log(HWD)). To iterate through
all points and compute V , is O(HWD). Thus, the complexity of the Frangi
filter is equivalent to convolutions in the Fourier domain.
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Eigenvector-Based Vessel Extraction

The next approach is based on the eigenvectors of the Hessian matrix,
and is similar to the Frangi Vessel Enhancement Filter. The eigenvectors
are included as an additional source of information for describing local in-
tensity variations. The Frangi filter looks only at the eigenvalues of the
Hessian matrix to determine if a point belongs to a vessel. Hence, it re-
quires high contrast between the vessels and the background in order to
perform well. By using the eigenvectors of the Hessian matrix to a point x,
the eigenvector-based vessel extraction method will analyze the local struc-
tures around x. Therefore, the eigenvector-based vessel extraction method
is less dependent on high contrast between the vessels and the background
to accurately label a point as a vessel.

The general idea is that based on the information stored in the eigenvalues
and eigenvectors, we can estimate the medial axis (centerline) and radius
of the vessels [48, 5]. Let I(x; ti) ∈ RH×W×D be a 3D image at scale ti,
∇ti(x) its normalized derivatives, and the eigenvalues and eigenvectors are
as before, then the point xj is on the medial axis of a vessel with radius r if

Rti(xj) =
1

N

N−1∑
i=0

−∇ti(xj + rvα) · vα, (4.11)

is a local maximum. (xj, ti) is a local maximum if Rti(xj) ≥ Rti±1
(xj) ,

Rti(xj) ≥ Rti(xj±v2), and Rti(xj) ≥ Rti(xj±v3). Rt in equation (4.11) is
the medialness response of xj, and is large if xj is at the center of a vessel
[48]. The points xj + rvα, defines N points on a circle around xj with
radius r, and vα = cos(α)v2 + sin(α)v3 and α = 2πi/N . Further, the set
of local maximum points, {(xj, ti)}j, is the centerlines of the vessels in the
image. To obtain the vessel radius r, Rti(xj) is computed with increasing
r until Rti(xj) starts to decrease. The vessels are then reconstructed from
the centerlines by drawing disks spanned by v2 and v3 normal to v1, with
radius r around each local maximum point xj.

In the provided segmentation pipeline, the model is not used exactly as
proposed by Krissian et al. in [48], due to the assumption that the cross
section of a vessel is circular1. An aneurysm cannot be assumed to always
have a circular cross section. The method used in our pipeline, Algorithm
12, is a relaxed version of the method proposed by Krissian et al.

1The implementation of maximum medial response is found in
dictlearn.detection.tube
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Algorithm 12: Hessian Eigenvector Filter
Input: Image I0 ∈ RH×W×D, set of scales T = {tmin, t1, ..., tmax}
Result: Vessel image R∗ ∈ RH×W×D

1 for t ∈ T do
2 Calculates partial derivatives, Equation (4.3);
3

Iij = tγI0(x) ?
∂2

∂xixj
G(x; t)

4 For each x = (x, y, z) ∈ [0, H]× [0,W ]× [0, D];
5 Hx,t(i, j) = Ii,j [x, y, z];
6 (λ1,v1), (λ2,v2), (λ3,v3) = eig(Hx,t);
7 if λ2 < 0 and λ3 < 0 then
8 Calculate Rt(x) for point x with r =

√
3t;

9 end
10 end
11 Get maximum response for each point over all scales;
12 R̂∗[x, y, z] = max

t∈T
Rt[x, y, z];

13 Create output image R∗ by setting to zero all points not included in the
largest connected component in R̂∗;

Algorithm 12 will compute Rt at all points resembling a vessel (line 7-8),
on a given scale t. Then, taking the maximum response over the scales
ensures that both small and large vessels are captured. The input image
I0, is scaled to have range [−1, 1], therefore values in R̂∗ corresponding to
negative values in the input image corresponds to the background or noise,
and they can be discarded. The remaining values in R̂∗ contains the vessels,
but also some points that are part of the background or noise. To extract
the vessels from R̂∗, we extract the points contained in the largest connected
component in R̂∗. The parameters r, and γ are fixed. Krissian et al. [48]
found r =

√
3t and γ = 1 to make the response Rt scale-invariant.

This method is very efficient, its complexity is equivalent to convolutions
in the Fourier domain. The scales at which to compute Rt are given as
arguments, where tmin corresponds to the width of the smallest vessel to
extract, and tmax the largest. Most vessels within this range will be ex-
tracted, but some limitations exist. The first, and most important, is that
some change in intensity between the vessel boundary and the background
is required. If the contrast at boundary is very low, or the boundary is very
wide (blurred), then Algorithm 12 cannot determine where the boundary
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between the background and vessel should be, and such points are not cor-
rectly marked as a vessel, see Figure 4.14. The second is when a vessel is
split in two due to a hole, then only one of its parts are included in the
largest connected component, and the other will be discarded, Figure 4.13.

Figure 4.12: Vessels extracted from a denoised image with Algorithm 12

(a) Contours of
vessel with low
contrast

(b) Vessel split in
two due to low con-
trast edges

(c) Vessel discarded
by extraction
largest connected
component

Figure 4.13: Vessel extraction with Algorithm 12. The low contrast, circled area,
results in a hole in the vessels extracted (middle) with Algorithm 12, then the
smallest part is discarded in extraction of largest connected component.
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Figure 4.14: Two examples of vessel with poor contrast not being marked cor-
rectly. The vessels should pass through the circled areas. The red points are
vessels detected by Algorithm 12. Each corner in the grids correspond to one
point x in the image volume

4.4 Active Contours
So far we have seen segmentation performed by thresholding and Hessian-
based methods. All these methods have their advantages and disadvan-
tages, and can do very well at extracting vessels. However, the resulting
geometries can be somewhat rough, since the methods are based on hard
thresholds or hard requirements to label a point as either artery or not-
artery, Figure 4.15a. In this section, we introduce the method Geodesic Ac-
tive Contours [13], which is the final method used in our vessel extraction
pipeline. Geodesic Active Contours will smooth and move the boundaries
of an initial, rough segmentation (Figure 4.15a), such that the final surface
better fits the true boundaries, see Figure 4.15b.

Active contours, also known as snakes are deformable models that grows
or shrinks an initial surface towards the boundary of the object to be de-
tected [13, 47, 79, 78]. The deformation of the initial surface is obtained by
minimizing a functional that is designed to have its minimum at the object
boundary.

Let C(q) : [0, 1] → R2 be a parametrized planar curve, and I : [0, H] ×
[0,W ]→ R the image in which we want to detect boundaries. The goal of
geodesic active contours [13] is then to find the curve C, that minimize the
following energy

E(C) = α

∫ 1

0

|C ′(q)|2dq + λ

∫ 1

0

|∇I(C(q))|)2dq (4.12)

The first term controls the smoothness of the contour, also called its internal
forces. The second term, is its external force and attracts the contour



4.4. ACTIVE CONTOURS 75

(a) Output from Hes-
sian Eigenvector filter

(b) Output from
Geodesic Active Con-
tours

Figure 4.15: Results from Hessian Filter, Algorithm 12, and Active Contours
segmentation

towards the object boundary. In equation (4.12) the external force works
as an edge detector, and can be generalized. Let g : [0, H]× [0,W ]→ R+,
then

E(C) = α

∫ 1

0

|C ′(q)|2dq + λ

∫ 1

0

g(C(q)))2dq (4.13)

The function g is called the edge map. At an ideal edge g is expected to
be zero, that is, g is small on the object’s boundaries, and large otherwise.
If g is created based on a 3D CTA image, it should be close to zero on
vessel boundaries and close to one otherwise. The choice of the edge map
g is important for the quality of the solution, a better solution is obtained
with a better map. In the provided segmentation pipeline, the edge map is
defined as

g(x) =
1

1 + |∇I(x)|
,

where ∇I is the image gradient defined as the maximum normalized deriva-
tive (Section 4.3) over multiple scales T . For all points x = (i, j, k) the
maximum gradient is

∇I(x) = max
t∈T

∣∣∣ ∂
∂x
I(x; t)

∣∣∣+ ∣∣∣ ∂
∂y
I(x; t)

∣∣∣+ ∣∣∣ ∂
∂z
I(x; t)

∣∣∣
This multiscale approach for computing the gradient is important for cap-
turing the boundaries of both small and large vessels. Figure 4.16 shows
the outputs from Geodesic Active Contours with both a high and a low
quality edge map. By a high quality edge map, we mean a map g with
values close to zero, and show high contrast on the vessel boundaries. A
low quality edge map is a map that provide an inaccurate representation of
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the vessel boundaries. For example, by having low contrast or not having
the boundaries at the correct points, such as Figure 4.17b. Figure 4.17,
shows the edge maps used for generating the results in Figure 4.16. The
edge map is also used as a stopping criterion, and segmentation with a high
quality edge map will be faster [13]. The figures below show a (50×50×50)
subsection of a (200×200×200) image, and segmentation with a good edge
maps takes approximately 10 seconds, versus 80 seconds with the bad edge
map.

(a) Generated with edge
map 4.17a

(b) Generated with edge
map 4.17b

Figure 4.16: Geodesic Active Contours segmentation with the same initial sur-
face, but different edge maps.

(a) High quality edge
map

(b) Low quality edge
map

Figure 4.17: High quality map is computed on scales T = {0.5, 1, 2} and the low
quality map T = {7}

In the provided segmentation pipeline, we set the output from the Hessian
Eigenvector Filter, Algorithm 12, to be the initial surface, called the seed,
for Geodesic Active Contours. The main advantage to this, is increased
computational efficiency. The vessels extracted from the Hessian filters
are close to the true surfaces, and the amount of deforming to be done is
low. The next advantage, is that the Hessian filters are better equipped to
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extract smaller vessels. For Geodesic Active Contours to be able to extract
a vessel, it needs to have sufficiently high contrast in the image. As we have
seen, this is often not the case for smaller vessels. The default configuration
(Section 5.1), is set to do small deformations to the initial surface, which
results in the topology of the final surface to be the same as the seed. The
advantage to this, is again increased computational efficiency, but artifacts,
such as holes or fused vessels in the seed, will be found in the final image.
Inpainting (Section 3.7), or changing of the default parameters for Geodesic
Active Contours can be used to fix these issues.

The solution to equation (4.13), is given by a a geodesic curve in Rieman-
nian space induced from the image I, and is obtained using a variational
approach [13]. A very efficient solver for equation (4.13), for both 2D and
3D images is implemented in Insight Segmentation and Registration Toolkit
(ITK) [43].





Chapter 5

Extraction of Patient-Specific
Geometries

In this Chapter, we give an overview of the complete pipeline for extracting
patient specific geometries. The provided segmentation pipeline1 combines
the techniques from the previous chapters into one large sequential model.
The default model is created with the goal of giving good results for many
different images, and consist of steps (1)-(3) below.

Figure 5.1: Vessel segmentation pipeline. The blue boxes represent the contribu-
tion from this work.

1. Denoising

Noise can introduce unwanted artifacts when segmenting an image. There-
fore, the first step is to denoise the image. Denoising is done as described
in Section 3.6, using 2D image patches. This does not provide as good
result as 3D image patches, but the increased quality of the result does not
outweigh the extra computational cost. The image is denoised as 2D image

1Found at dictlearn/scripts/surfit.py
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slices with 8×8 image patches. For each slice the dictionary is trained with
K-SVD, 10 iterations and a sparsity target such that approximately 10% of
the sparse coefficients are nonzero. The standard deviation of the noise, σ,
is estimated with Threshold Selection by SURE [28].

2. Seed Creation

The seed for Active Contours is created using Algorithm 12. Algorithm 12
extracts an estimate of the vessel network. As mentioned in Section 4.4,
holes and other artifacts present in the output from Algorithm 12, will also
be found in the output of Geodesic Active Contours. Therefore, inpainting
might have to be applied before the output from this step is used as the seed
for Geodesic Active Contours. The final operation done before the output
from this step can be sent to Active Contours is shrinking. Then, most of
the vessels are smaller than the true vessel structure, which will reduce the
computations needed in the next step.

3. Active Contours

Geodesic Active Contours is the final part of this vessel extraction pipeline.
The seed from the previous step is deformed according to its edge map.
The edge map is an image with values close to zero on the vessel edges,
and close to one otherwise. The edge map is created by inverting the
normalized derivatives (Section 4.3) of the denoised image at different scales.
The normalized derivatives have high values on the vessel edges and low
elsewhere, thus inverting it produces the required structure for the edge
map. Geodesic Active Contours will smooth the vessel estimate from step
two, and increase the accuracy of the segmented vessels.

5.1 Configuration
As stated above, the goal of the default pipeline if to generate sensible re-
sults for a wide range of CTA images. To achieve optimal accuracy one
might need to change how the pipeline segment the arteries. Therefore, the
pipeline is designed to be easy to reconfigure and extend with customized
methods2. The pipeline is configured with a YAML file that defines the
input image, which methods to use, and its parameters. The full set of con-
figuration options are emitted due to its size, but a version that will run the
steps (1)-(3) above is included in Example 4. If one would rather segment

2Details of how this is done, will be found in the documentation on github
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using K-Means feature enhancement (Section 4.2) and thresholding with
the minimum-threshold (Section 4.1), one would change the configuration
accordingly, see Example 5.

# configuration.yml

# Global configuration
- config:

input: image_volume.vti

# Operations to execute
# These operations are executed in the order they appear
- denoise
- create_seed
- active_contours

Example 4: Default configuration for vessel extraction pipeline

# configuration.yml

# Global configuration
- config:

input: image_volume.vti

- kmeans_enhance
- surface:

args:
level: minimum

Example 5: Segmentation with K-Means feature enhancement and thresholding
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5.2 Results

Below are results from running the default pipeline on image volumes from
the Aneurisk Project [3].

(a) Input Volume (b) Seed From Hessian Selection

(c) Output Active Contours

Figure 5.2: AneuriskData #4
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(a) Input Volume (b) Seed From Hessian Selection

(c) Output Active Contours

Figure 5.3: AneuriskData #41
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(a) Input Volume (b) Seed From Hessian Selection

(c) Output Active Contours

Figure 5.4: AneuriskData #2

Challenges

The challenges we saw for Algorithm 12 in Section 4.10, translates to the
full pipeline. When the vessels are very small or close together the contrast
between the vessels and the background may be weak. Then it will be
hard to determine where the boundary should be placed. Figures 5.5 and
5.6 represent two such scenarios. To give some context to the size of the
vessels in those figures, a four voxels wide black line is included. In Figure
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5.5, there are some very small vessels that are visible in Figure 5.5b, but
disappear in the output, Figure 5.5c. In this case, one would need to inpaint
the seed for active contours to avoid losing small vessels and having uneven
vessel-shape. When vessels fuse, Figure 5.6, adding more shrinking to the
seed for the active contours will often separate the vessels, but the size of
the vessels will also change, and smaller vessels may also disappear, Figure
5.6c.

(a) Input Volume (b) Seed From Hessian Selection

(c) Output Active Contours

Figure 5.5: AneuriskData #8. Small vessels with low contrast. The black line is
four pixels wide in the original data.
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(a) Input Volume

(b) Vessels fuse together (c) Add more shrinking to avoid

Figure 5.6: AneuriskData #52. The circle in image (a) show where the vessels
fuse. The border of the circle is four pixels wide in the original data.

Manual Segmentation

In Figure 5.7 below, results from manual segmentation with VMTK are
presented. During manual segmentation, we aim to achieve a result at least
as good as the provided pipeline. The segmentation of the CTA images
in Figure 5.7 required five hours of continuous work. Segmentation with
the pipeline (1)-(3) requires the creation of a configuration file, similar to
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Example 4, and running a python script. The whole process of creating
the configuration and running the pipeline takes around 30 minutes for all
three images.

(a) AneuriskData #2

(b) AneuriskData #4 (c) AneuriskData #41

Figure 5.7: Manual segmentation of CTA volumes with VMTK, overlaid the true
vessels.





Chapter 6

Conclusion and Future Work

In this thesis, we present a pipeline for automatic extraction of patient-
specific geometries. In particular, we show how to sparsely represent a
3D CTA image using an overcomplete dictionary, and how sparse repre-
sentation can be used for image restoration. We also found Hessian-based
segmentation techniques to be efficient and accurate in extracting vessels
from restored CTA volumes.

These image restoration and segmentation methods are implemented to
create an automatic pipeline for extracting patient-specific geometries. This
pipeline reduces the manual inputs needed compared to state-of-the-art
methods. However, for images of poor quality we have to resort to image
inpainting to extract an accurate representation of the vessel network, for
which the mask has to be created manually. Thus, in future work we are
interested in designing techniques to automatically detect and fill holes in
the arteries, to remove the need for manual mask creation.

We also aim at overcoming the limits of the Hessian-based segmentation
methods in regards to small and low-contrast vessels. One field for where to
look for improvements is deep learning. Recently, much work has been done
on extracting vessels from MR- and CT images with convolutional neural
networks [57, 58, 15, 18]. The Hessian-based vesselness filter, Algorithm
11, has also been combined with a convolutional neural net in [37], which
showed improved results. Following up this work is of great interest, as we
think these approaches can give major improvements to our segmentation
pipeline.
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