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ABSTRACT 

 

Type 1 diabetes is characterized by the loss of insulin production due to beta cell 

dysfunction and/or destruction. The hypothesis that beta cell loss occurs early during the 

pre-diabetic phase has recently been challenged. Here we show, for the first time in situ that 

in pancreas sections from autoantibody positive donors (Ab+) insulin area and beta cell 

mass are maintained prior to disease onset, and that production of proinsulin increases. This 

suggests that beta cell destruction occurs more precipitously than previously assumed. 

Indeed, the pancreatic proinsulin to insulin area ratio (PI /INS area ratio) was also increased 

in these prediabetic donors. Using high-resolution confocal microscopy we found a high 

accumulation of vesicles containing proinsulin in beta cells from Ab+ donors, suggesting 

either a defect in proinsulin conversion or an accumulation of immature vesicles due to an 

increase in insulin demand and/or to a dysfunction in vesicular trafficking. In addition, 

islets from Ab+ donors were larger and contained a higher number of beta cells per islet. 

Our data indicate that beta cell mass (and function) is maintained until shortly before 

diagnosis, and declines rapidly at the time of clinical onset of disease. This suggests that 

secondary prevention before onset, when beta cell mass is still intact, could be a successful 

therapeutic strategy. 
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Type 1 diabetes is defined as an autoimmune disease in which clinical symptoms arise as a 

result of beta cell loss. Genetic and environmental factors might render beta cells 

susceptible to attack by the immune system, or could contribute to beta cell dysfunction (1; 

2). More than three decades ago, Eisenbarth described a linear loss of first phase insulin 

release following intravenous glucose administration in individuals with islet-cell 

antibodies who were followed for 10 years before diagnosis. However, elevations in fasting 

blood glucose and peak glucose during oral glucose tolerance tests were only seen in the 

year prior to onset (3). This sustained loss of beta cell function in prediabetic individuals 

strongly correlated with the time to overt diabetes and led to his landmark article in which 

the stages of type 1 diabetes were presented and where the steady decrease in insulin 

secretion was linked to a linear reduction in beta cell mass that continued after diagnosis 

(4). While this model remained a reference for many years, new studies have suggested that 

beta cell mass is not lost in a linear fashion during the prediabetic phase and a debate about 

the discrepancy between beta cell mass and function ensued (2). Subsequent studies have 

also detected a loss of glucose tolerance in the months preceding diagnosis (5; 6). Beta cell 

dysfunction might occur early in the disease process (at the point at which the individual 

becomes antibody positive), while an actual decline in beta cell mass might occur later. In 

the Diabetes Virus Detection (DiViD) study a transient beta cell dysfunction was detected 

in live cells obtained at diagnosis, which improved in a non-diabetic culture milieu (7). 

Increasing dysfunction would prompt an increase in insulin demand (8; 9), which could 

eventually cause a more cataclysmic decline in beta cell mass around the clinical onset of 

diabetes. However, the cause of the decline in function, and the precise time course of 

events have remained largely undefined.  
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Studies from the Network for Pancreatic Organ Donors with Diabetes (nPOD) have 

recently shown that beta cell mass is not diminished in Ab+ donors and that single beta 

cells and insulin containing islets can be found in donors with longstanding type 1 diabetes 

(10). The time course from seroconversion to onset of clinical diabetes has been further 

characterized in longitudinal studies. After autoantibody seroconversion, 14.5 % of single 

Ab+ and 67.9 % of multiple Ab+ patients progressed to type 1 diabetes in a 10-year follow-

up study in 3 geographically different cohorts (11). In addition, it was also revealed that 

11% of multiple Ab+ children would progress to clinical disease each year (12). However, 

the exact triggers and progression to clinical onset are not fully understood.  

 

Proinsulin is an important autoantigen in type 1 diabetes in both humans and mice 

(13), as it shapes the autoreactive CD8 T cell repertoire (14; 15). Importantly, recent studies 

have shown that several epitopes within its precursor (preproinsulin) and proinsulin itself 

are recognized by islet infiltrating CD4 and/or CD8 T cells isolated from patients with type 

1 diabetes (16-20), suggesting a potential role for this antigen in disease pathogenesis. 

Preproinsulin is processed into proinsulin and signal peptide (21). Only a marginal fraction 

of proinsulin is secreted to the circulation but it accounts for 30-50% of the protein 

production in beta cells and it increases in response to higher insulin demand. Because of 

this high metabolic demand, beta cells are prone to Endoplasmic Reticulum (ER) stress and 

proinsulin misfolding, which could lead to beta cell failure (22). ER stress may also be 

induced by viral infection (23), which was recently detected in the islets of Langerhans at 

diagnosis (24). Interestingly, it has been demonstrated that cytokine-induced ER stress 

enhances the exosomal release of proinsulin (25). Several reports present evidence of high 
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circulating proinsulin and proinsulin intermediates with or without accompanying 

hyperglycemia in patients at risk of developing the disease and after diagnosis (26; 27). 

Proinsulin and proinsulin to C-peptide ratios in combination with autoantibody 

concentration have been suggested as potential biomarkers for type 1 diabetes, capable of 

identifying with high sensitivity individuals at risk of developing disease one to forty 

months prior to clinical onset (28; 29). However, the link between proinsulin levels in 

serum and their content in the pancreas, in beta cells themselves, has not been investigated 

in human specimens in situ.  

 

The objective of this study was to add refinement to the classical model of linear 

beta cell loss and to fill an important gap in our understanding of the prediabetic phase in 

human type 1 diabetes. We studied, for the first time in the human pancreas, the distribution 

of proinsulin in single and double Ab+ individuals, preceding the onset of disease as well 

as in recent-onset type 1 diabetes patients and correlated it with loss of insulin content, beta 

cell mass and proinsulin area to insulin area ratio (PI/INS area ratio). These studies 

underline the need for development of biomarkers as well as for preventive therapies 

focusing on normalizing beta cell dysfunction during the pre-diabetic stage.  

 

RESEARCH DESIGN AND METHODS 

Subjects 

Human pancreas sections were collected from cadaveric organ donors through nPOD. Six 

µm sections from formalin-fixed paraffin-embedded (FFPE) sections from the head, body 

and tail of the pancreas were obtained from non-diabetic-single autoantibody positive 

(Ab+; n=8), non-diabetic double autoantibody positive (Ab+; n=5), non-diabetic 
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autoantibody negative controls (n=9) and one donor at onset of type 1 diabetes (n=1). In 

addition, four µm FFPE sections from living donors with type 1 diabetes (n=6) were 

obtained through the Diabetes Virus Detection (DiViD) study by tail resection (30). 

Overall, a total of 22 sections from head, 22 from body and 29 sections from the tail of the 

pancreas were analyzed (n=73 sections). Table 1 shows summarized demographic 

information for each group. Detailed donor information can be found in online 

supplementary table. All experimental procedures were approved by the La Jolla Institute 

for Allergy and Immunology Institutional Review Board-approved protocol number DI3-

054-1112. For the DiViD study, participants provided written informed consent and more 

details can be found in (30). 

 

Immunofluorescence 

Pancreas sections were stained for insulin, proinsulin and glucagon following a standard 

triple indirect immunofluorescence (IF) staining. After deparaffinization and rehydration in 

descending ethanol concentrations, sections were exposed to heat-based antigen retrieval 

(citrate buffer). Staining was performed using a polyclonal guinea pig anti-insulin antibody 

(Dako, Carpinteria CA; 1:500), monoclonal mouse anti-proinsulin (DSHB clone GS-9A8 

1:50) and monoclonal mouse anti-glucagon (Abcam; clone K79bB10, 1:300) conjugated in 

house to Alexa Fluor 647. Secondary antibodies included F(ab’)2 fragment of goat anti-

guinea pig IgG conjugated to Alexa Fluor 488 (Jackson ImmunoResearch 1:800) and goat 

anti-mouse IgG (H+L) conjugated to Alexa Fluor 555 (Life Technologies, Grand Island 

NY; 1:1000) incubated at room temperature for 30 minutes. Sections were counterstained 

with Hoechst (Life Technologies; 1:400) for 10 minutes and then mounted with ProLong 

Gold anti-fade medium (Life technologies).  
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Image acquisition and analysis 

All sections were scanned with an Axio Scan Z.1 slide scanner (Carl Zeiss microscopy, 

Thornwood, NY) using a fluorescent Orca Flash 4.0 v2 (HXP 120 V lamp) camera with a 

20x/0.8NA objective for immunofluorescence. Images were acquired with ZEN2 software 

slidescan module. Acquisition settings were kept constant between specimens in order to 

allow for quantitative comparison between samples. ZEN2 software blue edition was used 

to process the images prior to analysis. Lower and upper thresholds were defined for each 

channel. For insulin and proinsulin, similar thresholds were set for comparison. Then whole 

tissue section images were exported and reduced at 30% or 45% depending on their size 

into .tiff files for automatic software analysis. Custom macros were developed to measure 

tissue area (macro #1), islet size and count (macro #2) and calculate the % of insulin, 

proinsulin and glucagon areas (macro #3; only cytoplasmic staining above background 

levels was measured). In order to classify and calculate the number of alpha and beta cells, 

the image of the whole tissue section was exported into 20x20 .tiff files in order to improve 

resolution, and then processed by a different custom macro (macro #4) (Supplementary 

Figure 1). All the macros were developed for Fiji (an image processing software developed 

for ImageJ, NIH). R software was used to systematically analyze the data (R is available as 

Free Software under the terms of the Free Software Foundation’s GNU General Public 

License in source code form). In addition, three cases per group were analyzed by high-

resolution confocal microscopy using an LSM 880 confocal microscope with Airyscan 

technology (Carl Zeiss, Jena, Germany) and a 63x objective. 

 

Statistical analysis 
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Differences between group pairs were analyzed with a Student t test or Mann-Whitney test. 

Group differences were analyzed using one-way ANOVA follow by a Holm-Sidak multiple 

comparisons test or Kruskal Wallis follow by a Dunn multiple comparisons test. In order to 

assess the plausibility of using the ratio PI/INS area ratio as a discriminator for disease 

status, a logistic regression was fitted to the data using R version 3.3.0 (9).  

A logistic regression (shown in figure 4C) was performed to assess the validity of the 

PI/INS area ratio as a risk classifier. The scores for this model were calculated as the 

distance from each point (plotted using their % of PI and INS area as coordinates) to the 

line PI = INS (i.e. y = x). Briefly:	����� =
�	
��
	����
	
��
	

√�
  The significance of the overall 

model was calculated by comparing it with a model with just the intercept (i.e. a null 

model). Besides the logistic regression, a Receiver Operating Characteristic (ROC) analysis 

using the R package ROCR version 1.0-7 (10) was performed to investigate the predictive 

power of the model.  

Statistical analysis was performed using GraphPad Prism version 6 (GraphPad Software, 

San Diego California USA). Data in graphs and tables are presented as mean ± SD unless 

otherwise indicated. Findings were assumed statistically significant at p≤0.05. 

 

RESULTS 

Proinsulin area is significantly increased in autoantibody positive donor islets compared 

with non-diabetic controls while insulin area remains similar  

We systematically measured insulin, proinsulin and glucagon staining from the head, body 

and tail regions of pancreatic tissue sections. Interestingly, there was a small increase in 
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total insulin area in Ab+ donors that did not reach statistical significance (Figure 1A, B, C, 

left panel). Conversely, a significant increase in proinsulin area was observed in head (54%, 

p=0.0233), body (57%, p=0.0143) and tail (60%, p=0.0087) regions in Ab+ individuals 

compared with control sections (Figure 1A, B, C, central panel). Lastly, there were no 

major differences in glucagon area between both groups for any of the regions (Figure 1A, 

B, C, right panel). To better understand whether this was due to a shift in the subcellular 

localization of proinsulin and/or to an increase in proinsulin content, a super high-

resolution confocal microscope with Airyscan technology was used. In control donors, 

proinsulin was found to be mainly localized close to the nucleus with a staining pattern 

consistent with the Golgi apparatus and being minimally present in other compartments. In 

multiple Ab+ donors it was more widely localized to the juxtanuclear region (Golgi) and 

vesicular compartment, confirming a change in subcellular localization (Figure 2 and 

Supplementary Figure 2).  

 

Beta cell mass is not reduced in single or double autoantibody positive donors  

The combination of insulin area from the head, body and tail sections of the pancreas, 

normalized by the size of the respective tissues, was multiplied by the total weight of the 

pancreas. Mean beta cell mass was almost identical in controls and Ab+ donors (245.0 ± 

60.5 mg controls vs 267.7 ± 80.2 mg Ab+, Figure 3A). However, when proinsulin area was 

used as reference instead of insulin, a significant increase in beta cell mass in the Ab+ 

donor group was seen (187.4 ± 49.7 mg controls vs 266.9 ± 99.7 mg Ab+, Figure 3B). 

Lastly, alpha cell mass, calculated as the adjusted percentage of glucagon area multiplied 

by the total weight of the pancreas, was similar for both, Ab+ and control groups (121.5 ± 

42.6 mg controls vs 141.2 ± 65.7 mg Ab+, Figure 3C). Beta cell mass did not correlate with 
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age (r=-0.018; p=0.9341), BMI (r=0.377; p=0.0833) or time in intensive care unit (ICU) 

(r=-0.056; p=0.8250) (data not shown). 

 

The proinsulin area to insulin area ratio is increased in autoantibody positive donors and 

constitutes a potential indicator of beta cell dysfunction. 

In order to study the direct relation between insulin and proinsulin area in the pancreas, the 

PI/INS area ratio was calculated for each section, region and donor. Interestingly, the ratio 

was increased for Ab+ donors compared with controls for the head (38%; p=0.0031), body 

(40%; p=0.0005) and tail (32%; p=0.0004) regions of the pancreas (Figure 4A). To 

evaluate the use of the area ratio as a potential indicator of beta cell dysfunction and to 

directly compare Ab+ donors with controls, an arbitrary reference value of 1:1 (proinsulin 

area : insulin area) was chosen and graphically represented as a line to separate control 

from “at risk” donors. The distance from the donor’s area values to the line was used as a 

score to estimate the risk of disease and to classify and distinguish control from Ab+ donors 

(Figure 4B). Then, a logistic regression was performed and the area under the curve (AUC) 

was calculated (Figure 4C). High AUC values, significant coefficients and a good model fit 

were obtained for head (AUC 0.85, coefficient p=0.0348, model p=0.00225), body (AUC 

0.87, coefficient p=0.0213, model p=0.00073) and tail (AUC 0.9, coefficient p=0.0196, 

model p=0.00045), indicating that the pancreatic PI/INS area ratio could identify 

individuals at risk of developing disease. 

 

In order to see if the insulin area, the proinsulin area, or the PI/INS area ratio could 

correlate with the risk of developing T1D, a “Risk Index” was calculated for all the donors 

based on their age, HLA and autoantibody status (Supplementary figure 3). To calculate the 
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Risk Index, a score of 0, 1 or 2 corresponding to low, medium or high risk was assigned as 

follows based on the risk of developing T1D: Age: >40 (0); 30-40 (1); 0-30 (2). HLA: No 

risk alleles (0); DR4 or DR3 only (1); DR4 DQ8 or DR3 DQ2 or DQ8 (2). Autoantibodies: 

0 (0); 1 (1), 2 (2). The Risk Index was then calculated as the sum of the values obtained in 

each category for each donor (range 0 (minimum) to 6 (maximum)). There was a strong 

positive correlation between the risk index and the PI/INS area ratio (right panel) while 

there was a weak correlation with proinsulin area (central panel) and no correlation with 

insulin area (left panel) (Supplementary figure 3). 

 

Patients with recent onset type 1 diabetes have more glucagon, less insulin and less 

proinsulin area but increased proinsulin to insulin area ratio.  

To investigate the timing of the increase in proinsulin area and the inversion of the PI/INS 

area ratio when compared with control donors, pancreas tissue from a set of recently 

diagnosed patients with type 1 diabetes (0-9 weeks post-diagnosis) was studied (Figure 5). 

Only the tail region was analyzed, as all but one sample were obtained by tail resection as 

described in (30) (one section from a donor with type 1 diabetes at onset obtained from 

nPOD was also included for comparison). Patients with type 1 diabetes were compared to 

controls, and single and double Ab+ donors separately (Figure 5A). The insulin and 

proinsulin areas were lower than in the rest of the groups due to a reduction in the islets that 

contained insulin, whereas there was an increase in glucagon area (Figure 5C, 5D and 5F). 

Interestingly, the PI/INS area ratio was increased in patients with type 1 diabetes and 

almost identical to that of at risk, double Ab+ donors (0.77 ± 0.13 controls vs 0.99 ± 0.15 

single Ab+ vs 1.06 ± 0.10 double Ab+ vs 1.07 ± 0.18 type 1 diabetes) (Figure 5E left 

panel).  
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Systematic analysis of islet size reveals heterogeneity within the pancreas and subtle 

differences between Ab+ donors and controls.  

Small morphological alterations as well as in differences in islet number, size and 

distribution might occur many years before diagnosis, in individuals at risk of developing 

disease. First, the number of islets was counted and the total area of the tissue section was 

measured (see methods for details and Supplementary Figure 1). Total islet number and 

tissue size were variable across the pancreas but were similar in control and Ab+ donors 

(data not shown). There were no major differences in mean islet density between non-

diabetic (head 2.5 ± 0.5 vs body 1.8 ± 0.2 vs tail 2.8 ± 0.7 islets/mm
2
) and Ab+ donors 

(head 2.6 ± 0.7 vs body 2.1± 0.7 vs tail 3.1 ± 0.9 islets/mm
2
) (Figure 6A). Next, the islet 

size distribution was analyzed. Significant differences were found between non-diabetic 

controls and double Ab+ donors for the head, body and tail (Figure 6B, Supplementary 

Figure 4). Lastly, sections from patients with type 1 diabetes were analyzed. Larger islets 

were found in these sections (Figure 5A and Supplementary Figure 4, tail region only), 

while the islet density was lower (Figure 5B), as expected. Interestingly, the tail of the 

pancreas presented a distinct islet distribution compared with the head and body regions for 

all groups, with a predominance of large islets and fewer small islets (Figure 6C, 

Supplementary Figure 4), confirming important regional differences within the pancreas.  

 

Changes in the number of alpha and beta cells occur during the pre-diabetic phase and 

after onset of disease.    

 The number of insulin and glucagon expressing cells per islet was counted and the ratio 

between both cell populations was calculated (Supplementary Figure 5A). While no 

Page 12 of 69

For Peer Review Only

Diabetes



 13

significant differences were found, double Ab+ donors presented higher beta to alpha cell 

ratios in head, body and tail regions (Head median = 3.8 control vs 5.3 single Ab+ vs 6.4 

double Ab+ / body median = 4.0 control vs 3.8 single Ab+ vs 7.1 double Ab+ / tail median 

= 3.6 control vs 3.8 single Ab+ vs 4.9 double Ab+). Amongst the Ab+ donors, very 

heterogeneous cell distribution patterns were found, with some individuals having a higher 

abundance of alpha cells per islet (Supplementary Figure 5B central panel) and others with 

a clear predominance of beta cells (Supplementary Figure 5B right panel) when compared 

with control sections (Supplementary Figure 5B left panel).  

 

Patients with type 1 diabetes had a significantly lower beta to alpha cell ratio (median = 1.1 

type 1 diabetes, tail region only) (Figure 5E right panel). Lastly, the percentage of islets 

containing only beta cells was calculated, which again, was similar for the control (24.9% ± 

9.0), single (28.8% ± 9.9) and double Ab+ group (31.3% ± 16.8), and lower for the type 1 

diabetes group (3.5% ± 4.9) (Figure 5G left panel). Islets with only alpha cells were not 

common (control 3.5% ± 3.2 vs single Ab+ 2.8% ± 0.8 vs double Ab+ 5.2% ±7.7). Only 

one double Ab+ donor (# 6267, 18.9%) and the donors with type 1 diabetes (52.2% ± 22.4) 

presented evident increases in the percentage of islets containing only alpha cells when 

compared with the rest of the donor groups (Figure 5G, right panel). 

 

DISCUSSION 

The recent access to human pancreata for research purposes and the subsequent 

histological studies have filled important gaps in our understanding of pancreatic pathology 

(10; 31-33). However, many fundamental questions remain to be answered. In this study, we 

aimed to fully characterize beta and alpha cells, investigating insulin, proinsulin and 
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glucagon content and distribution across head, body and tail regions of the human pancreas 

in healthy individuals and single as well as multiple Ab+ donors. In addition, we had access 

to a very unique subset of pancreatic tissues from living patients with recent-onset type 1 

diabetes who participated in the DiViD study in which a small piece of the tail of the 

pancreas was surgically removed immediately in the months following diagnosis (30). Our 

study is the first to show an increase in pancreatic proinsulin area in prediabetic individuals 

and confirms the value of the PI/INS area ratio as an indicator of early beta cell 

dysfunction. In addition, we confirm previous findings that beta cell mass is not reduced in 

Ab+ individuals. We therefore add critical refinement to the original model of beta cell loss 

described by Eisenbarth three decades ago (4). We did not find any significant differences 

in the overall insulin positive area between healthy controls and Ab+ donors to support a 

reduction in insulin content long before the onset of disease. Moreover, beta cell mass was 

essentially identical in both groups, demonstrating that beta cells are preserved in Ab+ 

individuals until shortly before diagnosis and in agreement with previous publications that 

reported no differences in beta cell mass between non-diabetic and Ab+ donors (34-36).   

 

Increases in proinsulin area were found in some of the single Ab+ pancreata, which 

could explain why the first phase insulin response is already abnormal in some of these 

individuals (4). Proinsulin primarily accumulates in the Golgi apparatus in resting beta cells 

and is further processed to insulin and C-peptide in immature secretory granules (37). Our 

data shows significant increases in the proinsulin area in Ab+ individuals in the head, body 

and tail regions of the pancreas. Using a high-resolution confocal microscope to study a 

subset of samples, we observed that the increase in the proinsulin area was partially due to 

a shift in proinsulin subcellular localization, from the Golgi area in controls (juxta-nuclear) 
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to secretory vesicles in multiple Ab+ individuals (cytosolic). Although an increase in 

proinsulin area suggests an increase in the amount of proinsulin protein, additional 

experiments are needed to accurately measure the protein content. Nevertheless, this 

increase in area could be due to an increase in proinsulin production (to cover insulin 

demand), or to a defect in the processing and maturation of the existing pool of proinsulin 

to insulin, which is consequently released to the circulation. This is in agreement with 

studies which have detected proinsulinemia in prediabetic patients and patients with type 1 

diabetes (38). In addition, an increase in proinsulin synthesis could lead to ER stress, 

protein misfolding and loss of glucose-stimulated insulin secretion (39). Other extrinsic 

factors, for example recurrent autoimmune attacks or other forms of metabolic stress (40; 

41) may affect beta cell function and proinsulin processing early in the prediabetic disease 

process. In normal beta cells, up to 20% of proinsulin can be misfolded. However, only 

under pathological conditions and ER dysfunction, and once a certain level of misfolded 

proinsulin has been accumulated, beta cell toxicity and death can occur (22). 

 

In a case-control study analysis by Sims and colleagues (42) an elevation of the 

proinsulin to C-peptide (PI/C) ratio preceded disease onset in high-risk subjects, and could 

be detected at least 12 months prior to diagnosis (42). This is in agreement with the data 

presented here, in which Ab+ individuals had an increase of the pancreatic PI/INS area 

ratio. Amongst the single Ab+ group, two donors (case 6170 and case 6184) consistently 

presented elevated PI/INS area ratio. This suggests that beta cells in these two individuals 

could have had a functional defect. Conversely, all but one double Ab+ donor (# 6080) 

presented an increased ratio in at least two of the three regions of the pancreas, supporting 

the notion of an early functional defect in beta cells during the prediabetic phase and prior 
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to diagnosis that does not necessarily imply beta cell loss. Donor 6080 was positive for 

Glutamic Acid Decarboxylase (GAD) and insulin autoantibodies but was 69 years old and 

therefore, unlikely to have developed the disease. In conclusion, our results, in situ, 

correlate well with those found in serum and confirm the potential of monitoring PI/C or 

PI/INS ratios as indicators of beta cell dysfunction.  

 

The samples obtained from living individuals with recent-onset type 1 diabetes 

through the DiViD study (30) showed an expected significant decrease in the insulin and 

proinsulin area due to a reduced number of insulin-containing islets, however 4 out of 6 

patients had elevated PI/INS area ratios suggesting that insulin therapy at onset might not 

fully alleviate the dysfunctional beta cells. Our findings indicate that potential therapies 

should target beta cells early before onset, when they still have the ability to be functionally 

rescued and when the immune system has not been fully activated.  

 

We further characterized islet distribution and composition in order to study if small 

differences in islet pathology could be observed early in the prediabetic phase. The tail of 

the pancreas contained larger islets and higher islet density in all donor groups, which could 

point to important developmental and architectural differences in vascularization and 

innervation of the islets in this region (43; 44). Interestingly, subtle differences were found 

in double Ab+, at risk, individuals, in which larger islets were found in the body and tail 

region of the pancreas compared with controls. Moreover, this tendency was accentuated in 

recently diagnosed individuals with type 1 diabetes, where even larger islets could be found 

in the tail region, many of them containing only alpha cells. This is in agreement with 

previous studies in diabetic NOD mice in which small islets were preferentially lost and a 
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subsequent expansion of large islets was seen (45). An increase in the size of the islet and 

number of beta cells in multiple Ab+ donors could be a compensatory mechanism due to 

the chronic increase in insulin demand. 

 

 Our observations in the pancreas of individuals at risk of developing type 1 

diabetes point to important and very early (at the first sign of autoimmunity) pathological 

changes in beta cells without an evident loss of beta cell mass. This confirms the potential 

benefit of estimating the PI/C or PI/INS ratios in Ab+ individuals in order to identify those 

patients at high risk at a stage where beta cells might still respond to preventive therapies 

and in order to enroll patients in clinical trials at a point in the disease when they would 

benefit the most. Whether a consequence of an increase in insulin demand, a primary 

cellular defect or a change in the orchestrated interplay between the immune system and the 

islet, the higher accumulation of proinsulin in beta cells without a reduction in insulin 

content might ultimately lead to beta cell exhaustion and death, with the subsequent release 

of beta cell antigens which initiate the autoimmune process. Whether type 1 diabetes is a 

primary autoimmune disease or autoimmunity is secondary to metabolic or functional 

defects that render beta cells susceptible to autoimmune destruction remains unknown. 

Future studies on proinsulin and insulin dynamics as well as a better characterization of 

beta cells themselves will provide the necessary answers to fully understand the 

pathological changes that precede the clinical onset of type 1 diabetes. 
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Tables 

Table 1: Donor demographic information including age, percentage of males and females, 

ethnicity, BMI, disease duration and C-peptide levels.  

 

 
Control Ab+ T1D Total 

n 9 13 7 29 

Age (years) mean (±SD) 33.6 (±12.5) 36.1  (±13.5) 28.2  (±4.9) 32.6  (±4.1) 

Female (%) 4 (44.5) 8 (61.5) 3 (42.8) 15 (51.7) 

Male (%) 5 (55.5) 5 (38.5) 4 (57.2) 14 (48.3) 

  
    

Ethnicity (%) 
    

African American 0 (0) 2 (15.4) 0 (0) 2 (6.9) 

Caucasian 7 (77.7) 8 (61.5) 7 (100) 22 (75.9) 

Hispanic 2 (22.3) 3 (23.1) 0 (0) 5 (17.2) 

  
    

BMI mean (±SD) 28.2 (±6) 26.2 (±5) 25 (±3.2) 26.5  (±1.6) 

Disease duration in weeks (±SD) 
 

 
4.4 (±2.7) 

 

C-peptide (ng/ml) mean (±SD) 6.7  (±7.2) 6.1 (±6.2) -------- 
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Figure legends:  

 

Figure 1: Proinsulin area but not insulin area is significantly increased in the pancreas of 

autoantibody positive donors compared with non-diabetic controls. Insulin (left panel), 

proinsulin (middle panel) and glucagon (right panel) areas expressed as percentage of positive 

area were measured in whole tissue sections from the head (A), body (B) and tail (C) region of 

the pancreas obtained from non-diabetic controls (n=9, black circles); single (n=8, black squares) 

and double (n=5, open squares) non-diabetic autoantibody positive cadaveric organ donors. * 

p≤0.05; **p≤0.01. 

 

Figure 2: Proinsulin accumulates in the cytoplasmic compartment in beta cells from 

autoantibody positive donors. Pancreatic sections from control (upper rows), single (middle 

rows) and double (lower rows) non-diabetic Ab+ cadaveric organ donors were stained for insulin 

(green), proinsulin (red), glucagon (white) and DAPI (blue) following a standard 

immunofluorescence staining protocol. The merged image can be seen on the right panel. Images 

were taken using a ZEISS LSM 880 confocal with Airyscan and a 63x objective. Scale bar 10µm. 

 

Figure 3: Beta cell mass is not reduced in single or double autoantibody positive donors 

A) Beta cell mass calculated as total pancreas weight multiplied by insulin area in non-diabetic 

controls, single and double non-diabetic autoantibody positive donors. B) Beta cell mass 

calculated as total pancreas weight multiplied by proinsulin area in non-diabetic controls, single 

and double non-diabetic autoantibody positive donors. C) Alpha cell mass calculated as total 

pancreas weight multiplied by glucagon area in non-diabetic controls, single and double non-

diabetic autoantibody positive donors. All panels: Non-diabetic controls (n=9, black circles), 

single (n=8, black squares) and double (n=5, open squares) non-diabetic Ab+ cadaveric organ 

donors. * p≤0.05. 

Figure 4: The proinsulin to insulin area ratio is increased in autoantibody positive donors and 

constitutes a potential indicator of beta cell dysfunction. A) The ratio between proinsulin and 

insulin area (PI/INS area ratio) was calculated for head (left panel), body (middle panel) and tail 

(right panel) regions of the pancreas from non-diabetic controls, single and double non-diabetic 

Ab+ donors. B) Proinsulin area versus insulin area XY plot: a theoretical reference value of 1:1 
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(proinsulin : insulin) was chosen and graphically represented as a line capable of separating 

control from “at risk” donors. The area under this line represents a ratio smaller than 1 and 

viceversa. The distance from the donor’s area values to the line was used as a score to estimate 

the risk of developing disease and used to classify and distinguish control from Ab+ (single and 

double combined). C) Receiver Operating Characteristic (ROC) for the head (left panel), body 

(middle panel) and tail (right panel) regions of the pancreas; the Area Under the Curve (AUC) 

was calculated for the classifier described in B). The p-values show the significance of the 

logistic regression model including the predictor when compared to a model with just the 

intercept. Non-diabetic controls (n=9, black circles), single (n=8, black squares) and double (n=5, 

open squares) non-diabetic Ab+ cadaveric organ donors. **p≤0.01; ***p≤0.001. 

 

Figure 5: Higher glucagon, lower insulin and proinsulin areas but increased proinsulin to 

insulin area ratio in recent onset type 1 diabetic patients. A) Boxplots represent islet size 

distribution for non-diabetic controls (HC, n=5109), single (SingleAb, n=4692), double Ab+ 

(doubleAb, n=2859) and T1D (T1D, n=1748) donors in tail region of the pancreas. B) Islet 

density was calculated as the total number of islets per section divided by the total area of the 

tissue for the tail region of the pancreas. C) Representative image from whole tissue section of 

donor #6362, with type 1 diabetes, at onset.  Insulin is shown in green, glucagon in red and DAPI 

in blue. Note the presence of insulin-deficient and insulin-containing islets scattered across the 

pancreas parenchyma. D) Insulin (left panel), proinsulin (middle panel) and glucagon (right 

panel) areas expressed as percentage of positive area were measured in whole tissue sections 

from the tail region of the pancreas. E) The proinsulin to insulin area ratio (PI/INS area ratio; left 

panel) and the beta to alpha cell ratio (right panel) were calculated for the pancreas tail region. F) 

Representative image of an islet from a recent-onset donor (DiViD study). Insulin is shown in 

green, proinsulin in red and glucagon in blue. G) The percentage of islets containing only beta 

cells (left panel) and only alpha cells (right panel) is shown. All panels: Non-diabetic controls 

(n=9, black circles), single (n=8, green squares), double (n=5, red squares) non-diabetic Ab+ and 

type 1 diabetes donors (n=7, blue triangles). * p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. 

Scale bar 500 µm in C) and 50 µm in F). 

Figure 6: Systematic analysis of islet distribution reveals heterogeneity within the pancreas and 

subtle differences between Ab+ donors and controls. A)1Islet density was calculated as the 

Page 22 of 69

For Peer Review Only

Diabetes



 23

total number of islets per section divided by the total area of the tissue for head, body and tail 

regions of the pancreas. Black circles represent control donors (n=9) while single Ab+ are shown 

in black squares (n=8) and double Ab+ in open squares (n=5). B) Boxplots represent islet size 

distribution for healthy controls, single and double Ab+ donors in head (left panel), body 

(middle panel) and tail (right panel) region of the pancreas. C) Boxplots represent islet size 

distribution for head, body and tail regions in healthy controls (left panel), single (middle panel) 

and double (right panel) Ab+. Number of islets: Head (HC n=4390; SingleAb n=4021, DoubleAb 

n=2067), body (HC n=3446; SingleAb n=4052, DoubleAb n=2043) and tail (HC n=5109; 

SingleAb n=4692, DoubleAb n=2859). * p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. 

 

Supplementary Table 1: Extended donor information. Table S1 shows extended demographic 

and histological information, as well as the pancreatic regions analyzed for each donor. Autoab 

Pos, autoantibody positive donor. T1D, type 1 diabetic donor. Age and duration of disease are 

expressed in years unless otherwise indicated; BMI, body mass index; C-peptide is expressed in 

ng/ml; time ICU, time spent in the Intensive Care Unit (in days); ZnT8A, zinc transporter 8 

autoantibodies; IA-2A, intracytoplasmic domain of the tyrosine phosphatase IA-2 autoantibodies; 

mIAA, micro assay for insulin autoantibodies; GADA, glutamic acid decarboxylase 65 

autoantibodies. – Indicates not determined or not available. 

 

Supplementary Figure 1: Image acquisition and analysis. All sections were scanned with an 

Axio Scan Z.1 slide scanner (Carl Zeiss microscopy, Thornwood, NY). A) For automated and 

systematic analysis, custom macros were developed to measure tissue area (macro #1, B middle 

panels); islet size and count (macro #2, B lower panels); calculate insulin, proinsulin and 

glucagon areas (macro #3, B upper panels). To classify and count alpha and beta cells, the image 

of the whole tissue section was exported into 20x20 smaller images in order to improve 

resolution, and then processed by a different custom macro (macro #4, C). Scale bar 500 µm in B 

and 50 µm in C. 

 

Supplementary Figure 2: Increase in proinsulin area and change in its subcellular localization 

without evident insulin depletion in autoantibody positive individuals. High-resolution images 

and two-dimensional graphs of the intensities of pixels along the corresponding images from 
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control, single and double Ab+ donors. A column average plot is displayed representing the 

horizontal distance through the image (in µm) and the average pixel intensity for: A) proinsulin 

(red profile) and B) insulin (green profile). Scale bar 10 µm. 

 

Supplementary figure 3: Risk index. Table: To calculate the Risk Index, a score of 0, 1 or 2 

corresponding to low, medium or high risk was assigned as follows based on the risk of 

developing T1D: Age: >40 (0); 30-40 (1); 0-30 (2). HLA: No risk alleles (0); DR4 or DR3 only 

(1); DR4 DQ8 or DR3 DQ2 or DQ8 (2). Autoantibodies: 0 (0); 1 (1), 2 (2). The Risk Index was 

then calculated as the sum of the values obtained in each category for each donor (range 0 

(minimum) to 6 (maximum)). Correlation analyses between the risk index and insulin area, 

proinsulin area and the PI/INS area ratio are shown for the head, body and tail regions (r and p-

value area provided in the graph). Non-diabetic controls (n=9, black circles), single (n=8, green 

circles) and double (n=5, red circles) Ab+ cadaveric organ donors. 

 

Supplementary Figure 4: Increase in the size of the islets with autoantibody seroconversion and 

after onset of disease. A) The median (table and bar graph) and interquantile range (IQR) of islet 

size distribution (µm
2
) are shown for pancreas head, body and tail regions of control, single Ab+, 

double Ab+ and type 1 diabetes donors. Note the increase in islet size in double Ab+ and type 1 

diabetes compared to controls. 

 

Supplementary Figure 5: Changes in the number of alpha and beta cells and their distribution in 

the islet can be observed during the pre-diabetic phase. A) The number of alpha and beta cells 

per islet was counted and the ratio beta to alpha cell calculated for head (left panel), body (center 

panel) and tail (right panel) regions of the pancreas. Non-diabetic controls (n=9, black circles), 

single (n=8, green squares) and double (n=5, red squares) non-diabetic Ab+. B) Representative 

images from insulin (green), proinsulin (orange), glucagon (red) and DAPI (blue) staining on # 

6102 control (left panel), # 6267 double Ab+ (center panel) and # 6158 double Ab+ (right panel). 

Note the different patterns of beta and alpha cell content as well as insulin, proinsulin and 

glucagon. A) normal pattern, B) predominantly alpha cells and C) predominantly beta cells. Scale 

bar 100 µm. 
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ABSTRACT 

 

Type 1 diabetes is characterized by the loss of insulin production due to beta cell 

dysfunction and/or destruction. The hypothesis that beta cell loss occurs early during the 

pre-diabetic phase has recently been challenged. Here we show, for the first time in situ that 

in pancreas sections from autoantibody positive donors (Ab+) insulin area and beta cell 

mass are maintained prior to disease onset, and that production of proinsulin increases. This 

suggests that beta cell destruction occurs more precipitously than previously assumed. 

Indeed, the pancreatic proinsulin to insulin area ratio (PI /INS area ratio) was also increased 

in these prediabetic donors. Using high-resolution confocal microscopy we found a high 

accumulation of vesicles containing proinsulin in beta cells from Ab+ donors, suggesting 

either a defect in proinsulin conversion or an accumulation of immature vesicles due to an 

increase in insulin demand and/or to a dysfunction in vesicular trafficking. In addition, 

islets from Ab+ donors were larger and contained a higher number of beta cells per islet. 

Our data indicate that beta cell mass (and function) is maintained until shortly before 

diagnosis, and declines rapidly at the time of clinical onset of disease. This suggests that 

secondary prevention before onset, when beta cell mass is still intact, could be a successful 

therapeutic strategy. 
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Type 1 diabetes is defined as an autoimmune disease in which clinical symptoms arise as a 

result of beta cell loss. Genetic and environmental factors might render beta cells 

susceptible to attack by the immune system, or could contribute to beta cell dysfunction (1; 

2). More than three decades ago, Eisenbarth described a linear loss of first phase insulin 

release following intravenous glucose administration in individuals with islet-cell 

antibodies who were followed for 10 years before diagnosis. However, elevations in fasting 

blood glucose and peak glucose during oral glucose tolerance tests were only seen in the 

year prior to onset (3). This sustained loss of beta cell function in prediabetic individuals 

strongly correlated with the time to overt diabetes and led to his landmark article in which 

the stages of type 1 diabetes were presented and where the steady decrease in insulin 

secretion was linked to a linear reduction in beta cell mass that continued after diagnosis 

(4). While this model remained a reference for many years, new studies have suggested that 

beta cell mass is not lost in a linear fashion during the prediabetic phase and a debate about 

the discrepancy between beta cell mass and function ensued (2). Subsequent studies have 

also detected a loss of glucose tolerance in the months preceding diagnosis (5; 6). Beta cell 

dysfunction might occur early in the disease process (at the point at which the individual 

becomes antibody positive), while an actual decline in beta cell mass might occur later. In 

the Diabetes Virus Detection (DiViD) study a transient beta cell dysfunction was detected 

in live cells obtained at diagnosis, which improved in a non-diabetic culture milieu (7). 

Increasing dysfunction would prompt an increase in insulin demand (8; 9), which could 

eventually cause a more cataclysmic decline in beta cell mass around the clinical onset of 

diabetes. However, the cause of the decline in function, and the precise time course of 

events have remained largely undefined.  
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Studies from the Network for Pancreatic Organ Donors with Diabetes (nPOD) have 

recently shown that beta cell mass is not diminished in Ab+ donors and that single beta 

cells and insulin containing islets can be found in donors with longstanding type 1 diabetes 

(10). The time course from seroconversion to onset of clinical diabetes has been further 

characterized in longitudinal studies. After autoantibody seroconversion, 14.5 % of single 

Ab+ and 67.9 % of multiple Ab+ patients progressed to type 1 diabetes in a 10-year follow-

up study in 3 geographically different cohorts (11). In addition, it was also revealed that 

11% of multiple Ab+ children would progress to clinical disease each year (12). However, 

the exact triggers and progression to clinical onset are not fully understood.  

 

Proinsulin is an important autoantigen in type 1 diabetes in both humans and mice 

(13), as it shapes the autoreactive CD8 T cell repertoire (14; 15). Importantly, recent studies 

have shown that several epitopes within its precursor (preproinsulin) and proinsulin itself 

are recognized by islet infiltrating CD4 and/or CD8 T cells isolated from patients with type 

1 diabetes (16-20), suggesting a potential role for this antigen in disease pathogenesis. 

Preproinsulin is processed into proinsulin and signal peptide (21). Only a marginal fraction 

of proinsulin is secreted to the circulation but it accounts for 30-50% of the protein 

production in beta cells and it increases in response to higher insulin demand. Because of 

this high metabolic demand, beta cells are prone to Endoplasmic Reticulum (ER) stress and 

proinsulin misfolding, which could lead to beta cell failure (22). ER stress may also be 

induced by viral infection (23), which was recently detected in the islets of Langerhans at 

diagnosis (24). Interestingly, it has been demonstrated that cytokine-induced ER stress 

enhances the exosomal release of proinsulin (25). Several reports present evidence of high 
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circulating proinsulin and proinsulin intermediates with or without accompanying 

hyperglycemia in patients at risk of developing the disease and after diagnosis (26; 27). 

Proinsulin and proinsulin to C-peptide ratios in combination with autoantibody 

concentration have been suggested as potential biomarkers for type 1 diabetes, capable of 

identifying with high sensitivity individuals at risk of developing disease one to forty 

months prior to clinical onset (28; 29). However, the link between proinsulin levels in 

serum and their content in the pancreas, in beta cells themselves, has not been investigated 

in human specimens in situ.  

 

The objective of this study was to add refinement to the classical model of linear 

beta cell loss and to fill an important gap in our understanding of the prediabetic phase in 

human type 1 diabetes. We studied, for the first time in the human pancreas, the distribution 

of proinsulin in single and double Ab+ individuals, preceding the onset of disease as well 

as in recent-onset type 1 diabetes patients and correlated it with loss of insulin content, beta 

cell mass and proinsulin area to insulin area ratio (PI/INS area ratio). These studies 

underline the need for development of biomarkers as well as for preventive therapies 

focusing on normalizing beta cell dysfunction during the pre-diabetic stage.  

 

RESEARCH DESIGN AND METHODS 

Subjects 

Human pancreas sections were collected from cadaveric organ donors through nPOD. Six 

µm sections from formalin-fixed paraffin-embedded (FFPE) sections from the head, body 

and tail of the pancreas were obtained from non-diabetic-single autoantibody positive 

(Ab+; n=8), non-diabetic double autoantibody positive (Ab+; n=5), non-diabetic 
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autoantibody negative controls (n=9) and one donor at onset of type 1 diabetes (n=1). In 

addition, four µm FFPE sections from living donors with type 1 diabetes (n=6) were 

obtained through the Diabetes Virus Detection (DiViD) study by tail resection (30). 

Overall, a total of 22 sections from head, 22 from body and 29 sections from the tail of the 

pancreas were analyzed (n=73 sections). Table 1 shows summarized demographic 

information for each group. Detailed donor information can be found in online 

supplementary table. All experimental procedures were approved by the La Jolla Institute 

for Allergy and Immunology Institutional Review Board-approved protocol number DI3-

054-1112. For the DiViD study, participants provided written informed consent and more 

details can be found in (30). 

 

Immunofluorescence 

Pancreas sections were stained for insulin, proinsulin and glucagon following a standard 

triple indirect immunofluorescence (IF) staining. After deparaffinization and rehydration in 

descending ethanol concentrations, sections were exposed to heat-based antigen retrieval 

(citrate buffer). Staining was performed using a polyclonal guinea pig anti-insulin antibody 

(Dako, Carpinteria CA; 1:500), monoclonal mouse anti-proinsulin (DSHB clone GS-9A8 

1:50) and monoclonal mouse anti-glucagon (Abcam; clone K79bB10, 1:300) conjugated in 

house to Alexa Fluor 647. Secondary antibodies included F(ab’)2 fragment of goat anti-

guinea pig IgG conjugated to Alexa Fluor 488 (Jackson ImmunoResearch 1:800) and goat 

anti-mouse IgG (H+L) conjugated to Alexa Fluor 555 (Life Technologies, Grand Island 

NY; 1:1000) incubated at room temperature for 30 minutes. Sections were counterstained 

with Hoechst (Life Technologies; 1:400) for 10 minutes and then mounted with ProLong 

Gold anti-fade medium (Life technologies).  
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Image acquisition and analysis 

All sections were scanned with an Axio Scan Z.1 slide scanner (Carl Zeiss microscopy, 

Thornwood, NY) using a fluorescent Orca Flash 4.0 v2 (HXP 120 V lamp) camera with a 

20x/0.8NA objective for immunofluorescence. Images were acquired with ZEN2 software 

slidescan module. Acquisition settings were kept constant between specimens in order to 

allow for quantitative comparison between samples. ZEN2 software blue edition was used 

to process the images prior to analysis. Lower and upper thresholds were defined for each 

channel. For insulin and proinsulin, similar thresholds were set for comparison. Then whole 

tissue section images were exported and reduced at 30% or 45% depending on their size 

into .tiff files for automatic software analysis. Custom macros were developed to measure 

tissue area (macro #1), islet size and count (macro #2) and calculate the % of insulin, 

proinsulin and glucagon areas (macro #3; only cytoplasmic staining above background 

levels was measured). In order to classify and calculate the number of alpha and beta cells, 

the image of the whole tissue section was exported into 20x20 .tiff files in order to improve 

resolution, and then processed by a different custom macro (macro #4) (Supplementary 

Figure 1). All the macros were developed for Fiji (an image processing software developed 

for ImageJ, NIH). R software was used to systematically analyze the data (R is available as 

Free Software under the terms of the Free Software Foundation’s GNU General Public 

License in source code form). In addition, three cases per group were analyzed by high-

resolution confocal microscopy using an LSM 880 confocal microscope with Airyscan 

technology (Carl Zeiss, Jena, Germany) and a 63x objective. 

 

Statistical analysis 

Page 35 of 69

For Peer Review Only

Diabetes



 8

Differences between group pairs were analyzed with a Student t test or Mann-Whitney test. 

Group differences were analyzed using one-way ANOVA follow by a Holm-Sidak multiple 

comparisons test or Kruskal Wallis follow by a Dunn multiple comparisons test. In order to 

assess the plausibility of using the ratio PI/INS area ratio as a discriminator for disease 

status, a logistic regression was fitted to the data using R version 3.3.0 (9).  

A logistic regression (shown in figure 4C) was performed to assess the validity of the 

PI/INS area ratio as a risk classifier. The scores for this model were calculated as the 

distance from each point (plotted using their % of PI and INS area as coordinates) to the 

line PI = INS (i.e. y = x). Briefly:	����� =
�	
��
	����
	
��
	

√�
  The significance of the overall 

model was calculated by comparing it with a model with just the intercept (i.e. a null 

model). Besides the logistic regression, a Receiver Operating Characteristic (ROC) analysis 

using the R package ROCR version 1.0-7 (10) was performed to investigate the predictive 

power of the model.  

Statistical analysis was performed using GraphPad Prism version 6 (GraphPad Software, 

San Diego California USA). Data in graphs and tables are presented as mean ± SD unless 

otherwise indicated. Findings were assumed statistically significant at p≤0.05. 

 

RESULTS 

Proinsulin area is significantly increased in autoantibody positive donor islets compared 

with non-diabetic controls while insulin area remains similar  

We systematically measured insulin, proinsulin and glucagon staining from the head, body 

and tail regions of pancreatic tissue sections. Interestingly, there was a small increase in 
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total insulin area in Ab+ donors that did not reach statistical significance (Figure 1A, B, C, 

left panel). Conversely, a significant increase in proinsulin area was observed in head (54%, 

p=0.0233), body (57%, p=0.0143) and tail (60%, p=0.0087) regions in Ab+ individuals 

compared with control sections (Figure 1A, B, C, central panel). Lastly, there were no 

major differences in glucagon area between both groups for any of the regions (Figure 1A, 

B, C, right panel). To better understand whether this was due to a shift in the subcellular 

localization of proinsulin and/or to an increase in proinsulin content, a super high-

resolution confocal microscope with Airyscan technology was used. In control donors, 

proinsulin was found to be mainly localized close to the nucleus with a staining pattern 

consistent with the Golgi apparatus and being minimally present in other compartments. In 

multiple Ab+ donors it was more widely localized to the juxtanuclear region (Golgi) and 

vesicular compartment, confirming a change in subcellular localization (Figure 2 and 

Supplementary Figure 2).  

 

Beta cell mass is not reduced in single or double autoantibody positive donors  

The combination of insulin area from the head, body and tail sections of the pancreas, 

normalized by the size of the respective tissues, was multiplied by the total weight of the 

pancreas. Mean beta cell mass was almost identical in controls and Ab+ donors (245.0 ± 

60.5 mg controls vs 267.7 ± 80.2 mg Ab+, Figure 3A). However, when proinsulin area was 

used as reference instead of insulin, a significant increase in beta cell mass in the Ab+ 

donor group was seen (187.4 ± 49.7 mg controls vs 266.9 ± 99.7 mg Ab+, Figure 3B). 

Lastly, alpha cell mass, calculated as the adjusted percentage of glucagon area multiplied 

by the total weight of the pancreas, was similar for both, Ab+ and control groups (121.5 ± 

42.6 mg controls vs 141.2 ± 65.7 mg Ab+, Figure 3C). Beta cell mass did not correlate with 

Page 37 of 69

For Peer Review Only

Diabetes



 10

age (r=-0.018; p=0.9341), BMI (r=0.377; p=0.0833) or time in intensive care unit (ICU) 

(r=-0.056; p=0.8250) (data not shown). 

 

The proinsulin area to insulin area ratio is increased in autoantibody positive donors and 

constitutes a potential indicator of beta cell dysfunction. 

In order to study the direct relation between insulin and proinsulin area in the pancreas, the 

PI/INS area ratio was calculated for each section, region and donor. Interestingly, the ratio 

was increased for Ab+ donors compared with controls for the head (38%; p=0.0031), body 

(40%; p=0.0005) and tail (32%; p=0.0004) regions of the pancreas (Figure 4A). To 

evaluate the use of the area ratio as a potential indicator of beta cell dysfunction and to 

directly compare Ab+ donors with controls, an arbitrary reference value of 1:1 (proinsulin 

area : insulin area) was chosen and graphically represented as a line to separate control 

from “at risk” donors. The distance from the donor’s area values to the line was used as a 

score to estimate the risk of disease and to classify and distinguish control from Ab+ donors 

(Figure 4B). Then, a logistic regression was performed and the area under the curve (AUC) 

was calculated (Figure 4C). High AUC values, significant coefficients and a good model fit 

were obtained for head (AUC 0.85, coefficient p=0.0348, model p=0.00225), body (AUC 

0.87, coefficient p=0.0213, model p=0.00073) and tail (AUC 0.9, coefficient p=0.0196, 

model p=0.00045), indicating that the pancreatic PI/INS area ratio could identify 

individuals at risk of developing disease. 

 

In order to see if the insulin area, the proinsulin area, or the PI/INS area ratio could 

correlate with the risk of developing T1D, a “Risk Index” was calculated for all the donors 

based on their age, HLA and autoantibody status (Supplementary figure 3). To calculate the 
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Risk Index, a score of 0, 1 or 2 corresponding to low, medium or high risk was assigned as 

follows based on the risk of developing T1D: Age: >40 (0); 30-40 (1); 0-30 (2). HLA: No 

risk alleles (0); DR4 or DR3 only (1); DR4 DQ8 or DR3 DQ2 or DQ8 (2). Autoantibodies: 

0 (0); 1 (1), 2 (2). The Risk Index was then calculated as the sum of the values obtained in 

each category for each donor (range 0 (minimum) to 6 (maximum)). There was a strong 

positive correlation between the risk index and the PI/INS area ratio (right panel) while 

there was a weak correlation with proinsulin area (central panel) and no correlation with 

insulin area (left panel) (Supplementary figure 3). 

 

Patients with recent onset type 1 diabetes have more glucagon, less insulin and less 

proinsulin area but increased proinsulin to insulin area ratio.  

To investigate the timing of the increase in proinsulin area and the inversion of the PI/INS 

area ratio when compared with control donors, pancreas tissue from a set of recently 

diagnosed patients with type 1 diabetes (0-9 weeks post-diagnosis) was studied (Figure 5). 

Only the tail region was analyzed, as all but one sample were obtained by tail resection as 

described in (30) (one section from a donor with type 1 diabetes at onset obtained from 

nPOD was also included for comparison). Patients with type 1 diabetes were compared to 

controls, and single and double Ab+ donors separately (Figure 5A). The insulin and 

proinsulin areas were lower than in the rest of the groups due to a reduction in the islets that 

contained insulin, whereas there was an increase in glucagon area (Figure 5C, 5D and 5F). 

Interestingly, the PI/INS area ratio was increased in patients with type 1 diabetes and 

almost identical to that of at risk, double Ab+ donors (0.77 ± 0.13 controls vs 0.99 ± 0.15 

single Ab+ vs 1.06 ± 0.10 double Ab+ vs 1.07 ± 0.18 type 1 diabetes) (Figure 5E left 

panel).  
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Systematic analysis of islet size reveals heterogeneity within the pancreas and subtle 

differences between Ab+ donors and controls.  

Small morphological alterations as well as in differences in islet number, size and 

distribution might occur many years before diagnosis, in individuals at risk of developing 

disease. First, the number of islets was counted and the total area of the tissue section was 

measured (see methods for details and Supplementary Figure 1). Total islet number and 

tissue size were variable across the pancreas but were similar in control and Ab+ donors 

(data not shown). There were no major differences in mean islet density between non-

diabetic (head 2.5 ± 0.5 vs body 1.8 ± 0.2 vs tail 2.8 ± 0.7 islets/mm
2
) and Ab+ donors 

(head 2.6 ± 0.7 vs body 2.1± 0.7 vs tail 3.1 ± 0.9 islets/mm
2
) (Figure 6A). Next, the islet 

size distribution was analyzed. Significant differences were found between non-diabetic 

controls and double Ab+ donors for the head, body and tail (Figure 6B, Supplementary 

Figure 4). Lastly, sections from patients with type 1 diabetes were analyzed. Larger islets 

were found in these sections (Figure 5A and Supplementary Figure 4, tail region only), 

while the islet density was lower (Figure 5B), as expected. Interestingly, the tail of the 

pancreas presented a distinct islet distribution compared with the head and body regions for 

all groups, with a predominance of large islets and fewer small islets (Figure 6C, 

Supplementary Figure 4), confirming important regional differences within the pancreas.  

 

Changes in the number of alpha and beta cells occur during the pre-diabetic phase and 

after onset of disease.    

 The number of insulin and glucagon expressing cells per islet was counted and the ratio 

between both cell populations was calculated (Supplementary Figure 5A). While no 
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significant differences were found, double Ab+ donors presented higher beta to alpha cell 

ratios in head, body and tail regions (Head median = 3.8 control vs 5.3 single Ab+ vs 6.4 

double Ab+ / body median = 4.0 control vs 3.8 single Ab+ vs 7.1 double Ab+ / tail median 

= 3.6 control vs 3.8 single Ab+ vs 4.9 double Ab+). Amongst the Ab+ donors, very 

heterogeneous cell distribution patterns were found, with some individuals having a higher 

abundance of alpha cells per islet (Supplementary Figure 5B central panel) and others with 

a clear predominance of beta cells (Supplementary Figure 5B right panel) when compared 

with control sections (Supplementary Figure 5B left panel).  

 

Patients with type 1 diabetes had a significantly lower beta to alpha cell ratio (median = 1.1 

type 1 diabetes, tail region only) (Figure 5E right panel). Lastly, the percentage of islets 

containing only beta cells was calculated, which again, was similar for the control (24.9% ± 

9.0), single (28.8% ± 9.9) and double Ab+ group (31.3% ± 16.8), and lower for the type 1 

diabetes group (3.5% ± 4.9) (Figure 5G left panel). Islets with only alpha cells were not 

common (control 3.5% ± 3.2 vs single Ab+ 2.8% ± 0.8 vs double Ab+ 5.2% ±7.7). Only 

one double Ab+ donor (# 6267, 18.9%) and the donors with type 1 diabetes (52.2% ± 22.4) 

presented evident increases in the percentage of islets containing only alpha cells when 

compared with the rest of the donor groups (Figure 5G, right panel). 

 

DISCUSSION 

The recent access to human pancreata for research purposes and the subsequent 

histological studies have filled important gaps in our understanding of pancreatic pathology 

(10; 31-33). However, many fundamental questions remain to be answered. In this study, we 

aimed to fully characterize beta and alpha cells, investigating insulin, proinsulin and 
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glucagon content and distribution across head, body and tail regions of the human pancreas 

in healthy individuals and single as well as multiple Ab+ donors. In addition, we had access 

to a very unique subset of pancreatic tissues from living patients with recent-onset type 1 

diabetes who participated in the DiViD study in which a small piece of the tail of the 

pancreas was surgically removed immediately in the months following diagnosis (30). Our 

study is the first to show an increase in pancreatic proinsulin area in prediabetic individuals 

and confirms the value of the PI/INS area ratio as an indicator of early beta cell 

dysfunction. In addition, we confirm previous findings that beta cell mass is not reduced in 

Ab+ individuals. We therefore add critical refinement to the original model of beta cell loss 

described by Eisenbarth three decades ago (4). We did not find any significant differences 

in the overall insulin positive area between healthy controls and Ab+ donors to support a 

reduction in insulin content long before the onset of disease. Moreover, beta cell mass was 

essentially identical in both groups, demonstrating that beta cells are preserved in Ab+ 

individuals until shortly before diagnosis and in agreement with previous publications that 

reported no differences in beta cell mass between non-diabetic and Ab+ donors (34-36).   

 

Increases in proinsulin area were found in some of the single Ab+ pancreata, which 

could explain why the first phase insulin response is already abnormal in some of these 

individuals (4). Proinsulin primarily accumulates in the Golgi apparatus in resting beta cells 

and is further processed to insulin and C-peptide in immature secretory granules (37). Our 

data shows significant increases in the proinsulin area in Ab+ individuals in the head, body 

and tail regions of the pancreas. Using a high-resolution confocal microscope to study a 

subset of samples, we observed that the increase in the proinsulin area was partially due to 

a shift in proinsulin subcellular localization, from the Golgi area in controls (juxta-nuclear) 
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to secretory vesicles in multiple Ab+ individuals (cytosolic). Although an increase in 

proinsulin area suggests an increase in the amount of proinsulin protein, additional 

experiments are needed to accurately measure the protein content. Nevertheless, this 

increase in area could be due to an increase in proinsulin production (to cover insulin 

demand), or to a defect in the processing and maturation of the existing pool of proinsulin 

to insulin, which is consequently released to the circulation. This is in agreement with 

studies which have detected proinsulinemia in prediabetic patients and patients with type 1 

diabetes (38). In addition, an increase in proinsulin synthesis could lead to ER stress, 

protein misfolding and loss of glucose-stimulated insulin secretion (39). Other extrinsic 

factors, for example recurrent autoimmune attacks or other forms of metabolic stress (40; 

41) may affect beta cell function and proinsulin processing early in the prediabetic disease 

process. In normal beta cells, up to 20% of proinsulin can be misfolded. However, only 

under pathological conditions and ER dysfunction, and once a certain level of misfolded 

proinsulin has been accumulated, beta cell toxicity and death can occur (22). 

 

In a case-control study analysis by Sims and colleagues (42) an elevation of the 

proinsulin to C-peptide (PI/C) ratio preceded disease onset in high-risk subjects, and could 

be detected at least 12 months prior to diagnosis (42). This is in agreement with the data 

presented here, in which Ab+ individuals had an increase of the pancreatic PI/INS area 

ratio. Amongst the single Ab+ group, two donors (case 6170 and case 6184) consistently 

presented elevated PI/INS area ratio. This suggests that beta cells in these two individuals 

could have had a functional defect. Conversely, all but one double Ab+ donor (# 6080) 

presented an increased ratio in at least two of the three regions of the pancreas, supporting 

the notion of an early functional defect in beta cells during the prediabetic phase and prior 
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to diagnosis that does not necessarily imply beta cell loss. Donor 6080 was positive for 

Glutamic Acid Decarboxylase (GAD) and insulin autoantibodies but was 69 years old and 

therefore, unlikely to have developed the disease. In conclusion, our results, in situ, 

correlate well with those found in serum and confirm the potential of monitoring PI/C or 

PI/INS ratios as indicators of beta cell dysfunction.  

 

The samples obtained from living individuals with recent-onset type 1 diabetes 

through the DiViD study (30) showed an expected significant decrease in the insulin and 

proinsulin area due to a reduced number of insulin-containing islets, however 4 out of 6 

patients had elevated PI/INS area ratios suggesting that insulin therapy at onset might not 

fully alleviate the dysfunctional beta cells. Our findings indicate that potential therapies 

should target beta cells early before onset, when they still have the ability to be functionally 

rescued and when the immune system has not been fully activated.  

 

We further characterized islet distribution and composition in order to study if small 

differences in islet pathology could be observed early in the prediabetic phase. The tail of 

the pancreas contained larger islets and higher islet density in all donor groups, which could 

point to important developmental and architectural differences in vascularization and 

innervation of the islets in this region (43; 44). Interestingly, subtle differences were found 

in double Ab+, at risk, individuals, in which larger islets were found in the body and tail 

region of the pancreas compared with controls. Moreover, this tendency was accentuated in 

recently diagnosed individuals with type 1 diabetes, where even larger islets could be found 

in the tail region, many of them containing only alpha cells. This is in agreement with 

previous studies in diabetic NOD mice in which small islets were preferentially lost and a 
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subsequent expansion of large islets was seen (45). An increase in the size of the islet and 

number of beta cells in multiple Ab+ donors could be a compensatory mechanism due to 

the chronic increase in insulin demand. 

 

 Our observations in the pancreas of individuals at risk of developing type 1 

diabetes point to important and very early (at the first sign of autoimmunity) pathological 

changes in beta cells without an evident loss of beta cell mass. This confirms the potential 

benefit of estimating the PI/C or PI/INS ratios in Ab+ individuals in order to identify those 

patients at high risk at a stage where beta cells might still respond to preventive therapies 

and in order to enroll patients in clinical trials at a point in the disease when they would 

benefit the most. Whether a consequence of an increase in insulin demand, a primary 

cellular defect or a change in the orchestrated interplay between the immune system and the 

islet, the higher accumulation of proinsulin in beta cells without a reduction in insulin 

content might ultimately lead to beta cell exhaustion and death, with the subsequent release 

of beta cell antigens which initiate the autoimmune process. Whether type 1 diabetes is a 

primary autoimmune disease or autoimmunity is secondary to metabolic or functional 

defects that render beta cells susceptible to autoimmune destruction remains unknown. 

Future studies on proinsulin and insulin dynamics as well as a better characterization of 

beta cells themselves will provide the necessary answers to fully understand the 

pathological changes that precede the clinical onset of type 1 diabetes. 
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Tables 

Table 1: Donor demographic information including age, percentage of males and females, 

ethnicity, BMI, disease duration and C-peptide levels.  

 

 
Control Ab+ T1D Total 

n 9 13 7 29 

Age (years) mean (±SD) 33.6 (±12.5) 36.1  (±13.5) 28.2  (±4.9) 32.6  (±4.1) 

Female (%) 4 (44.5) 8 (61.5) 3 (42.8) 15 (51.7) 

Male (%) 5 (55.5) 5 (38.5) 4 (57.2) 14 (48.3) 

  
    

Ethnicity (%) 
    

African American 0 (0) 2 (15.4) 0 (0) 2 (6.9) 

Caucasian 7 (77.7) 8 (61.5) 7 (100) 22 (75.9) 

Hispanic 2 (22.3) 3 (23.1) 0 (0) 5 (17.2) 

  
    

BMI mean (±SD) 28.2 (±6) 26.2 (±5) 25 (±3.2) 26.5  (±1.6) 

Disease duration in weeks (±SD) 
 

 
4.4 (±2.7) 

 

C-peptide (ng/ml) mean (±SD) 6.7  (±7.2) 6.1 (±6.2) -------- 
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Figure legends:  

 

Figure 1: Proinsulin area but not insulin area is significantly increased in the pancreas of 

autoantibody positive donors compared with non-diabetic controls. Insulin (left panel), 

proinsulin (middle panel) and glucagon (right panel) areas expressed as percentage of positive 

area were measured in whole tissue sections from the head (A), body (B) and tail (C) region of 

the pancreas obtained from non-diabetic controls (n=9, black circles); single (n=8, black squares) 

and double (n=5, open squares) non-diabetic autoantibody positive cadaveric organ donors. * 

p≤0.05; **p≤0.01. 

 

Figure 2: Proinsulin accumulates in the cytoplasmic compartment in beta cells from 

autoantibody positive donors. Pancreatic sections from control (upper rows), single (middle 

rows) and double (lower rows) non-diabetic Ab+ cadaveric organ donors were stained for insulin 

(green), proinsulin (red), glucagon (white) and DAPI (blue) following a standard 

immunofluorescence staining protocol. The merged image can be seen on the right panel. Images 

were taken using a ZEISS LSM 880 confocal with Airyscan and a 63x objective. Scale bar 10µm. 

 

Figure 3: Beta cell mass is not reduced in single or double autoantibody positive donors 

A) Beta cell mass calculated as total pancreas weight multiplied by insulin area in non-diabetic 

controls, single and double non-diabetic autoantibody positive donors. B) Beta cell mass 

calculated as total pancreas weight multiplied by proinsulin area in non-diabetic controls, single 

and double non-diabetic autoantibody positive donors. C) Alpha cell mass calculated as total 

pancreas weight multiplied by glucagon area in non-diabetic controls, single and double non-

diabetic autoantibody positive donors. All panels: Non-diabetic controls (n=9, black circles), 

single (n=8, black squares) and double (n=5, open squares) non-diabetic Ab+ cadaveric organ 

donors. * p≤0.05. 

Figure 4: The proinsulin to insulin area ratio is increased in autoantibody positive donors and 

constitutes a potential indicator of beta cell dysfunction. A) The ratio between proinsulin and 

insulin area (PI/INS area ratio) was calculated for head (left panel), body (middle panel) and tail 

(right panel) regions of the pancreas from non-diabetic controls, single and double non-diabetic 

Ab+ donors. B) Proinsulin area versus insulin area XY plot: a theoretical reference value of 1:1 
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(proinsulin : insulin) was chosen and graphically represented as a line capable of separating 

control from “at risk” donors. The area under this line represents a ratio smaller than 1 and 

viceversa. The distance from the donor’s area values to the line was used as a score to estimate 

the risk of developing disease and used to classify and distinguish control from Ab+ (single and 

double combined). C) Receiver Operating Characteristic (ROC) for the head (left panel), body 

(middle panel) and tail (right panel) regions of the pancreas; the Area Under the Curve (AUC) 

was calculated for the classifier described in B). The p-values show the significance of the 

logistic regression model including the predictor when compared to a model with just the 

intercept. Non-diabetic controls (n=9, black circles), single (n=8, black squares) and double (n=5, 

open squares) non-diabetic Ab+ cadaveric organ donors. **p≤0.01; ***p≤0.001. 

 

Figure 5: Higher glucagon, lower insulin and proinsulin areas but increased proinsulin to 

insulin area ratio in recent onset type 1 diabetic patients. A) Boxplots represent islet size 

distribution for non-diabetic controls (HC, n=5109), single (SingleAb, n=4692), double Ab+ 

(doubleAb, n=2859) and T1D (T1D, n=1748) donors in tail region of the pancreas. B) Islet 

density was calculated as the total number of islets per section divided by the total area of the 

tissue for the tail region of the pancreas. C) Representative image from whole tissue section of 

donor #6362, with type 1 diabetes, at onset.  Insulin is shown in green, glucagon in red and DAPI 

in blue. Note the presence of insulin-deficient and insulin-containing islets scattered across the 

pancreas parenchyma. D) Insulin (left panel), proinsulin (middle panel) and glucagon (right 

panel) areas expressed as percentage of positive area were measured in whole tissue sections 

from the tail region of the pancreas. E) The proinsulin to insulin area ratio (PI/INS area ratio; left 

panel) and the beta to alpha cell ratio (right panel) were calculated for the pancreas tail region. F) 

Representative image of an islet from a recent-onset donor (DiViD study). Insulin is shown in 

green, proinsulin in red and glucagon in blue. G) The percentage of islets containing only beta 

cells (left panel) and only alpha cells (right panel) is shown. All panels: Non-diabetic controls 

(n=9, black circles), single (n=8, green squares), double (n=5, red squares) non-diabetic Ab+ and 

type 1 diabetes donors (n=7, blue triangles). * p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. 

Scale bar 500 µm in C) and 50 µm in F). 

Figure 6: Systematic analysis of islet distribution reveals heterogeneity within the pancreas and 

subtle differences between Ab+ donors and controls. A)1Islet density was calculated as the 
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total number of islets per section divided by the total area of the tissue for head, body and tail 

regions of the pancreas. Black circles represent control donors (n=9) while single Ab+ are shown 

in black squares (n=8) and double Ab+ in open squares (n=5). B) Boxplots represent islet size 

distribution for healthy controls, single and double Ab+ donors in head (left panel), body 

(middle panel) and tail (right panel) region of the pancreas. C) Boxplots represent islet size 

distribution for head, body and tail regions in healthy controls (left panel), single (middle panel) 

and double (right panel) Ab+. Number of islets: Head (HC n=4390; SingleAb n=4021, DoubleAb 

n=2067), body (HC n=3446; SingleAb n=4052, DoubleAb n=2043) and tail (HC n=5109; 

SingleAb n=4692, DoubleAb n=2859). * p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. 

 

Supplementary Table 1: Extended donor information. Table S1 shows extended demographic 

and histological information, as well as the pancreatic regions analyzed for each donor. Autoab 

Pos, autoantibody positive donor. T1D, type 1 diabetic donor. Age and duration of disease are 

expressed in years unless otherwise indicated; BMI, body mass index; C-peptide is expressed in 

ng/ml; time ICU, time spent in the Intensive Care Unit (in days); ZnT8A, zinc transporter 8 

autoantibodies; IA-2A, intracytoplasmic domain of the tyrosine phosphatase IA-2 autoantibodies; 

mIAA, micro assay for insulin autoantibodies; GADA, glutamic acid decarboxylase 65 

autoantibodies. – Indicates not determined or not available. 

 

Supplementary Figure 1: Image acquisition and analysis. All sections were scanned with an 

Axio Scan Z.1 slide scanner (Carl Zeiss microscopy, Thornwood, NY). A) For automated and 

systematic analysis, custom macros were developed to measure tissue area (macro #1, B middle 

panels); islet size and count (macro #2, B lower panels); calculate insulin, proinsulin and 

glucagon areas (macro #3, B upper panels). To classify and count alpha and beta cells, the image 

of the whole tissue section was exported into 20x20 smaller images in order to improve 

resolution, and then processed by a different custom macro (macro #4, C). Scale bar 500 µm in B 

and 50 µm in C. 

 

Supplementary Figure 2: Increase in proinsulin area and change in its subcellular localization 

without evident insulin depletion in autoantibody positive individuals. High-resolution images 

and two-dimensional graphs of the intensities of pixels along the corresponding images from 
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control, single and double Ab+ donors. A column average plot is displayed representing the 

horizontal distance through the image (in µm) and the average pixel intensity for: A) proinsulin 

(red profile) and B) insulin (green profile). Scale bar 10 µm. 

 

Supplementary figure 3: Risk index. Table: To calculate the Risk Index, a score of 0, 1 or 2 

corresponding to low, medium or high risk was assigned as follows based on the risk of 

developing T1D: Age: >40 (0); 30-40 (1); 0-30 (2). HLA: No risk alleles (0); DR4 or DR3 only 

(1); DR4 DQ8 or DR3 DQ2 or DQ8 (2). Autoantibodies: 0 (0); 1 (1), 2 (2). The Risk Index was 

then calculated as the sum of the values obtained in each category for each donor (range 0 

(minimum) to 6 (maximum)). Correlation analyses between the risk index and insulin area, 

proinsulin area and the PI/INS area ratio are shown for the head, body and tail regions (r and p-

value area provided in the graph). Non-diabetic controls (n=9, black circles), single (n=8, green 

circles) and double (n=5, red circles) Ab+ cadaveric organ donors. 

 

Supplementary Figure 4: Increase in the size of the islets with autoantibody seroconversion and 

after onset of disease. A) The median (table and bar graph) and interquantile range (IQR) of islet 

size distribution (µm
2
) are shown for pancreas head, body and tail regions of control, single Ab+, 

double Ab+ and type 1 diabetes donors. Note the increase in islet size in double Ab+ and type 1 

diabetes compared to controls. 

 

Supplementary Figure 5: Changes in the number of alpha and beta cells and their distribution in 

the islet can be observed during the pre-diabetic phase. A) The number of alpha and beta cells 

per islet was counted and the ratio beta to alpha cell calculated for head (left panel), body (center 

panel) and tail (right panel) regions of the pancreas. Non-diabetic controls (n=9, black circles), 

single (n=8, green squares) and double (n=5, red squares) non-diabetic Ab+. B) Representative 

images from insulin (green), proinsulin (orange), glucagon (red) and DAPI (blue) staining on # 

6102 control (left panel), # 6267 double Ab+ (center panel) and # 6158 double Ab+ (right panel). 

Note the different patterns of beta and alpha cell content as well as insulin, proinsulin and 

glucagon. A) normal pattern, B) predominantly alpha cells and C) predominantly beta cells. Scale 

bar 100 µm. 
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nPOD ID Donor Type Age High resolution HLA Autoantibodies RISK index

6044 Autoab Pos 41.4
A*01:01/33:01 B*14:02/37:01 C*06:02/08:02 

DRB1*01:02/15:01 DQA1*01:01/01:02 
DQB1*05:01/06:02 DPA1*01:03/01:03 

1 1

6080 Autoab Pos 69.2
A*02:01/11:01 B*35:01/44:02 C*04:01/05:01 

DRB1*01:01/04:01 DQA1*01:01/03:01 
DQB1*03:01/05:01 DPA1*01:03/01:03 

2 3

6123 Autoab Pos 23.2

A*02:01/24:02 B*35:01/51:01 C*01:02/03:03 
DRB1*08:01/11:01 DQA1*04:01/05:01 
DQB1*03:01/04:02 DPA1*01:03/01:03 

DPB1*04:01/04:01

1 3

6147 Autoab Pos 23.8

A*02:01/02:01 B*08:01/15:01 C*03:04/07:01 
DRB1*03:01/04:01 DQA1*03:01/04:01 
DQB1*03:01/04:02 DPA1*01:03/02:01 

DPB1*01:01/02:01

1 4

6154 Autoab Pos 48.5

A*02:01/03:01 B*07:02/07:02 C*07:02/07:02 
DRB1*09:01/15:01 DQA1*01:02/03:01 
DQB1*03:03/06:03 DPA1*01:03/01:03 

DPB1*02:01/04:01

1 1

6158 Autoab Pos 40.3

A*03:01/24:02 B*15:01/49:01 C*03:04/07:01 
DRB1*04:01/13:02 DQA1*01:02/03:01 
DQB1*03:01/06:04 DPA1*01:03/01:04 

DPB1*04:01:15:01

2 3

6167 Autoab Pos 37 A*01:01, 03:01 DRB1*04:04,15:02 
DQA1*01:03,03:01 DQB1*03:02,06:01 2 5

6170 Autoab Pos 34.4 A*29:02,74:01 DRB1*04:01,13:03 
DQA1*02:01,03:01 DQB1*02:02,03:01 1 3

6181 Autoab Pos 31.9 A*03:01,11:01 DRB1*01:01,04:01 
DQA1*01:01,03:01 DQB1*03:02,05:01 1 4

6184 Autoab Pos 47.6 A*02:06,68:03 DRB1*04:07,04:07 
DQA1*03:01,03:01 DQB1*03:02,03:02 1 3

6197 Autoab Pos 22 A*02:02,24:02 DRB1*03:02, 07:01 DQA1*02:01 , 
04:01 DQB1*02:02 , 04:02 2 5

6267 Autoab Pos 23 A*01:01, 11:01 DRB1*04:01, 04:04 DQA1*03:01, 
03:01 DQB1*03:02, 03:02 2 6

6310 Autoab Pos 28 A*03:01, 30:01 DRB1*07:01, 11:02 DQA1*02:01, 
05:01 DQB1*02:02, 03:19 1 3

6029 No diabetes 24

A*03:01/31:02 B*15:15/35:01 C*01:02/04:01 
DRB1*04:03/08:02 DQA1*03:01/04:01 
DQB1*03:02/04:02 DPA1*01:03/01:03 

DPB1*04:02/51:01

0 4

6073 No diabetes 19.2  A*29/01, B*37/44, DR*13/16, DQ*05/06 0 2

6091 No diabetes 27.1

A*01:01/25:01 B*18:01/39:06 C*07:02/12:03 
DRB1*08:01/15:01 DQA1*01:02/04:01 
DQB1*04:02/06:02 DPA1*01:03/01:03 

DPB1*02:01/03:01

0 2

6102 No diabetes 45.1

A*03:01/31:01 B*08:01/44:02 C*05:01/07:01 
DRB1*03:01/04:01 DQA1*03:01/05:01 
DQB1*02:01/03:01 DPA1*01:03/02:01 

DPB1*01:01/02:01

0 2

6104 No diabetes 41

A*29:02/68:01 B*39:06/44:03 C*12:03/16:01 
DRB1*07:01/13:01 DQA1*01:01/02:01 
DQB1*02:01/05:01 DPA1*01:03/02:02 

DPB1*01:01/03:01

0 0

6165 No diabetes 45.8 A*01:01, 02:01 DRB1*13:01, 15:01 DQA1*01:02, 
01:03 DQB1*06:02, 06:03 0 0

6168 No diabetes 51 A*02:01, 24:02 DRB1* 01:03, 04:04 
DQA1*01:01, 03:01 DQB1*03:02, 05:01 0 2

6251 No diabetes 33 A*02:01, 24:02 DRB1*04:01, 11:01 DQA1*03:01, 
05:01 DQB1*03:01, 03:01 0 2

6271 No diabetes 17 A*02:01, 02:06 DRB1*07:01, 15:02 DQA1*01:01, 
02:01 DQB1*02:02, 05:01 0 2
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nPOD ID Donor Type Gender Age BMI Duration C-Peptide Time ICU HLA Regions 
analyzed Autoantibodies Histopathology by nPOD

6044 Autoab Pos Male 41.4 27.4 - 13.55 -
A*01:01/33:01 B*14:02/37:01 C*06:02/08:02 

DRB1*01:02/15:01 DQA1*01:01/01:02 
DQB1*05:01/06:02 DPA1*01:03/01:03 

Head, Body, Tail GADA+ Ins+/Gluc+ islets, normal sizes and distribution. Ki67 normal

6080 Autoab Pos Female 69.2 21,3 - 1.84 1

A*02:01/11:01 B*35:01/44:02 C*04:01/05:01 
DRB1*01:01/04:01 DQA1*01:01/03:01 
DQB1*03:01/05:01 DPA1*01:03/01:03 

DPB1*04:01/04:02

Head, Body, Tail GADA+ mIAA+  Ins+/Gluc+ normal islets. No islet infiltrates. Chronic pancreatitis, 
mild, multifocal, mixed

6123 Autoab Pos Female 23.2 17.6 - 2.01 4

A*02:01/24:02 B*35:01/51:01 C*01:02/03:03 
DRB1*08:01/11:01 DQA1*04:01/05:01 
DQB1*03:01/04:02 DPA1*01:03/01:03 

DPB1*04:01/04:01

Head, Body, Tail
GADA+

Ins+ islets, various sizes. Low Ki67

6147 Autoab Pos Female 23.8 32.9 - 3.19 3

A*02:01/02:01 B*08:01/15:01 C*03:04/07:01 
DRB1*03:01/04:01 DQA1*03:01/04:01 
DQB1*03:01/04:02 DPA1*01:03/02:01 

DPB1*01:01/02:01

Head, Body, Tail GADA+ Ins+/Gluc+ normal islets. No infiltrates

6154 Autoab Pos Female 48.5 24.5 - <0.05 4

A*02:01/03:01 B*07:02/07:02 C*07:02/07:02 
DRB1*09:01/15:01 DQA1*01:02/03:01 
DQB1*03:03/06:03 DPA1*01:03/01:03 

DPB1*02:01/04:01

Head, Body, Tail GADA+
Ins+ (very weak)/Gluc+ islets, plentiful. Very mild, multifocal 
CD3+ infiltrates acinar regions and interstitial. Moderate fatty 

infiltrates acinar regions

6158 Autoab Pos Male 40.3 29.7 - 0.51 3

A*03:01/24:02 B*15:01/49:01 C*03:04/07:01 
DRB1*04:01/13:02 DQA1*01:02/03:01 
DQB1*03:01/06:04 DPA1*01:03/01:04 

DPB1*04:01:15:01

Head, Body, Tail GADA+ mIAA+ Ins+/Gluc+. Exocrine atrophy, mild. Focal mild chronic 
pancreatitis

6167 Autoab Pos Male 37 26.3 - 5.43 3 A*01:01 , 03:01 DRB1*04:04 , 15:02 
DQA1*01:03 , 03:01 DQB1*03:02 , 06:01 Head, Body, Tail IA-2A+ ZnT8A+ Ins+/Gluc+ islets, normal. No infiltrates. Mild acinar fat. Low Ki67 

except for focally high in acinar and ducts

6170 Autoab Pos Female 34.4 36.9 - 4.29 7 A*29:02 , 74:01 DRB1*04:01 , 13:03 
DQA1*02:01 , 03:01 DQB1*02:02 , 03:01 Head, Body, Tail GADA+ Ins+/Gluc+ islets. Slight acinar atrophy and fatty replacement. No 

infiltrates other than 1 foci of chronic pancreatitis

6181 Autoab Pos Male 31.9 21.9 - 0.06 2 A*03:01 , 11:01 DRB1*01:01 , 04:01 
DQA1*01:01 , 03:01 DQB1*03:02 , 05:01 Head, Body, Tail GADA+ Ins+/Gluc+ islets, normal. No infiltrates

6184 Autoab Pos Female 47.6 27 - 3.42 6 A*02:06 , 68:03 DRB1*04:07 , 04:07 
DQA1*03:01 , 03:01 DQB1*03:02 , 03:02 Head, Body, Tail GADA+

Ins+/Gluc+ islets, normal numbers and morphology. Very mild 
CD3 infiltrate in acinar region. Mild acinar Ki67. Mild fatty 

replacement. Mild ductal sludge

6197 Autoab Pos Male 22 28.2 - 17.48 3 A*02:02 , 24:02 DRB1*03:02 , 07:01 
DQA1*02:01 , 04:01 DQB1*02:02 , 04:02 Head, Body, Tail GADA+ IA-2A+ Ins+/Gluc+ islets, plentiful. Insulitis (rare). Islet hyperemia. Mild, 

multifocal chronic pancreatitis. Low Ki67

6267 Autoab Pos Female 23 23.5 - 16.59 4 A*01:01, 11:01 DRB1*04:01, 04:04 
DQA1*03:01, 03:01 DQB1*03:02, 03:02 Head, Body, Tail GADA+ IA-2A+

Ins+/Gluc+islets in normal numbers and density. Insulitis found in 
all regions. Islets appear well demarcated with some having 

fibrosis. Mild CD3+ infiltrates acinar region with mild exocrine 
atrophy

6310 Autoab Pos Female 28 23.9 - 10.54 A*03:01, 30:01 DRB1*07:01, 11:02 
DQA1*02:01, 05:01 DQB1*02:02, 03:19 Head, Body, Tail GADA+

Ins+/Gluc+ islets, numerous, some hyperplastic and >500um. 
Islet nuclear pleomorphism- mild. Insulitis- low grade, periphery 

and foci. Pseudoatrophic islets observed and other islets with low 
beta to alpha ratio. Multifocal, mild exocrine CD3+ infiltrates. 

Multifocal, mild chronic interstitial fibrosis

6029 No diabetes Female 24 22.6 - - -

A*03:01/31:02 B*15:15/35:01 C*01:02/04:01 
DRB1*04:03/08:02 DQA1*03:01/04:01 
DQB1*03:02/04:02 DPA1*01:03/01:03 

DPB1*04:02/51:01

Head, Body, Tail Negative Ins+/Gluc+ normal islets. Mild fatty infiltrate. Low Ki67. 
Endothelium in islets fairly prominent

Table S1 shows extended demographic and histological information, and pancreatic regions analyzed.
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nPOD ID Donor Type Gender Age BMI Duration C-Peptide Time ICU HLA Regions 
analyzed Autoantibodies Histopathology by nPOD

6073 No diabetes Male 19.2 36 - 0.69 3 - Head, Body, Tail Negative Ins+/Gluc+ islets; mild, multifocal parenchymal mixed infiltrate. 
Endocrine staining intensity weaker than normal

6091 No diabetes Male 27.1 35.6 - 7.71 -

A*01:01/25:01 B*18:01/39:06 C*07:02/12:03 
DRB1*08:01/15:01 DQA1*01:02/04:01 
DQB1*04:02/06:02 DPA1*01:03/01:03 

DPB1*02:01/03:01

Head, Body, Tail Negative Ins+/Gluc+ normal islets, many large especially in head and body. 
Degree of fatty infiltrate moderate. No infiltrates identified

6102 No diabetes Female 45.1 35.1 - 0.55 2

A*03:01/31:01 B*08:01/44:02 C*05:01/07:01 
DRB1*03:01/04:01 DQA1*03:01/05:01 
DQB1*02:01/03:01 DPA1*01:03/02:01 

DPB1*01:01/02:01

Head, Body, Tail Negative
Ins+/Gluc+ islets. Multifocal, mild periductal and peri-islet fibrosis. 
Mild CD3+ acinar regions. Low Ki67. Moderate fatty replacement 

exocrine tissue. Chronic pancreatitis- mild, multifocal

6104 No diabetes Male 41 20.5 - 20.55 3

A*29:02/68:01 B*39:06/44:03 C*12:03/16:01 
DRB1*07:01/13:01 DQA1*01:01/02:01 
DQB1*02:01/05:01 DPA1*01:03/02:02 

DPB1*01:01/03:01

Head, Body, Tail Negative Ins+/Gluc+ islets. Mild adipose infiltration exocrine regions

6165 No diabetes Female 45.8 25 - 4.45 5 A*01:01, 02:01 DRB1*13:01, 15:01 
DQA1*01:02, 01:03 DQB1*06:02, 06:03 Head, Body, Tail Negative Ins+/Gluc+ numerous islets, normal sizes. No infiltrates. Mild 

acinar fat

6168 No diabetes Male 51 25.2 - - 7 A*02:01, 24:02 DRB1* 01:03, 04:04 
DQA1*01:01, 03:01 DQB1*03:02, 05:01 Head, Body, Tail Negative Ins+/Gluc+ islets, all sizes. Normal density. Low Ki67. Variable 

fatty infiltrates acinar regions

6251 No diabetes Female 33 29.5 - 1.92 4 A*02:01, 24:02 DRB1*04:01, 11:01 
DQA1*03:01, 05:01 DQB1*03:01, 03:01 Head, Body, Tail Negative  Ins+/Gluc+ islets, numerous, including single cells. No significant 

lesions

6271 No diabetes Male 17 24.4 - 11.47 0.5 A*02:01, 02:06 DRB1*07:01, 15:02 
DQA1*01:01, 02:01 DQB1*02:02, 05:01 Head, Body, Tail Negative  Ins+/Gluc+ islets, numerous, medium sized

DiViD 1 T1D Female 25 21 4 (weeks) - - A *01:01, 02:01 B*08:01, 40:01 DRB1*01:03, 
03:01 DQB1*05:01, 02:01 Tail

IA-2A+ 
ZnT8A+GADA+ 

mIAA+

Ins+/Gluc+ islets. Only a few insulin containing islets left. Some of 
them with insulitis.

DiViD 2 T1D Male 24 20.9 3 (weeks) - - A*02:01, 11:01 B*18:01, 40:01 DRB1* 04:01, 
13:01 DQB1*03:02, 06:03 Tail IA-2A+ 

ZnT8A+GADA+
Ins+/Gluc+ islets. Only a few insulin containing islets left. Altered 

islet morphology. 

DiViD 3 T1D Female 34 23.7 9 (weeks) - - A*01:01, 24:02 B*08:01, 15:01 DRB1*03:01, 
04:01 DQB1*02:01, 03:02 Tail IA-2A+ 

ZnT8A+GADA+
Ins+/Gluc+ islets. Moderate amount of insulin containing islets 

left. High infiltration in some insulin deficient islets. Insulitis. 

DiViD 4 T1D Male 31 25.6 5 (weeks) - - A*02:01 B*15:01, 35:01 DRB1*04:01 
DQB1*03:02 Tail IA-2A+GADA+ 

mIAA+ Ins+/Gluc+ islets. Only a few insulin containing islets left. 

DiViD 5 T1D Female 24 28.6 5 (weeks) - - A*02:01, 03:01, B*18:01, 40:01 DRB1*03:01, 
04:01 DQB1*02:01, 03:02 Tail IA-2A+GADA+ 

mIAA+ Ins+/Gluc+ islets. Only a few insulin containing islets left. 

DiViD 6 T1D Male 35 26.7 5 (weeks) - - A*01:01, 29:02 B*08:01, 44:03 DRB1*03:01, 
07:01 DQB1*02:01, 02:02 Tail GADA+ Ins+/Gluc+ islets. Most of the islets still contain insulin.

6362 T1D Male 24.9 28.5 0 0.38 A*03:01, 11:01 DRB1*01:03, 03:01 
DQA1*01:01, 05:01 DQB1*02:01, 05:01 Tail GADA+

Ins+/Gluc+ islets, moderate reduction numbers of Ins+ islets. 
Many islets with abnormal morphologies (large, fusing smaller 

islets, irregular outlines, fibrosis). Insulitis in most Ins+ islets and 
small number of Ins- islets. Islet nuclear pleomorphism with 

variable hydropic degeneration. Generally low islet Ki67+ but 
occasional islet with high Ki67+ in non-beta cells. Moderate to 

high acinar Ki67+ cells. Mild to moderate acinar CD3+ infiltrates 
and variable fatty infiltration. Moderate exocrine atrophy with 

variable intralobular fibrosis.

Table S1: Extended donor information. Autoab Pos, autoantibody positive donor. T1D, type 1 diabetic donor. Age and duration of disease are expressed in years unless otherwise indicated; BMI, body mass index; C-peptide is 
expressed in ng/ml; time ICU, time spent in the Intensive Care Unit; ZnT8A, zinc transporter 8 autoantibodies; IA-2A, intracytoplasmic domain of the tyrosine phosphatase IA-2 autoantibodies; mIAA, micro assay for insulin 
autoantibodies; GADA, glutamic acid decarboxylase 65 autoantibodies. – indicates not determined or not available. 
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