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Abstract

Computer vision is a research area for developing formulas that en-
able computers to mimic human visual perception and interpret two-
dimensional images through analysis algorithms. Precise and efficient
three dimensional(3D) reconstruction is one of the most explored issues
in computer vision today. The term 3D reconstruction as it applies to com-
puter vision is the process of creating a 3D model from 2D images. There
are many different approaches as well as many different implementations
of the respective steps in the process. In this thesis, we specifically look
at a Structure from Motion(SfM)-based reconstruction. SfM firstly refers to
the task of interpreting the camera motion, commonly defined as the series
of possible translations on an image that produce a positional change from
some previous reference point. These translations include linear transla-
tion, angular rotation, or a combination of these. Secondly, it refers to the
use of the motion interpreted data to construct a 3D scene. The motion
interpreted data is created through analysis of an image sequence. SfM
uses feature extraction first to find unique points seen in several images,
from there it goes to meshing, continuing to mesh refinement and textur-
ing. The matching, also called Nearest Neighbour search(NN) is one of
the most time-consuming parts of any SfM software, and although there
is much research in this field, there is to date no solutions faster than the
exhaustive search that has the same precision. There are, however, many
solutions using Approximate Nearest Neighbour(ANN) searches that sac-
rifice matching precision for effectiveness which many applications prefer
due to their apparent runtime benefits. We will in this thesis show that
there is possible to use a different metric to improve the runtime of the ex-
haustive search without diminishing the precision of the matches. Further,
we will explore different approximate searches to see the benefits they can
give before introducing our implementations and results. To begin with, a
general introduction to 3D reconstruction will give the needed background
to understand the challenges to this task. There will also be an introduction
to some programming themes to show what types of tools are available to
improve different types of code.
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Chapter 1

Introduction

3D is a common term in the world today. It refers both to a field of
study that utilises 3D technology, or simply something that exists in
three-dimensional space. There are many reasons why 3D reconstruction
is useful in today’s society. A complete 3D model of our world and
everything in it will allow us to see and study everything from micro-
sized elements in the human body to massive planets in our solar system.
There are things we cannot visit in person because they are either in an
inaccessible place or it would take too long to get access to it. If we
can create 3D models, we may study and learn about objects without
even leaving our own home. The field of computer vision enables us
to use computing power for tasks requiring an intelligent understanding
of images. Common applications consist of object recognition, motion
detection and analysis, and 3D reconstruction. An image-based 3D
reconstruction is a computed representation of a 3D shape from several
images of a scene. The number of images and camera positions needed for
reconstruction is arbitrary, but the higher the number of images, the better
the quality of the reconstruction. This comes as a result of more images
generating a greater amount of data to create and refine the model. The
minimum requirement is two images in different positions, as computing
the depth between objects is otherwise impossible when going from a 2D
to a 3D scene. The images can come from isolated cameras or a video
sequence. An efficient pipeline is necessary for the reconstruction to be
valuable in many practical applications, and real-time reconstruction is
the final goal. To achieve this satisfactorily, it becomes essential to have
a comprehensive understanding of 3D reconstruction.

1.1 Purpose of thesis

The goal of the thesis is to explain 3D reconstruction, and how it can be
done accurately and efficiently, getting it as close to real-time speed as pos-
sible. More precisely, we will describe the steps that lead from feature ex-
traction to point clouds by exploring the pipeline that makes this possible.
We will go through some of the most common steps in 3D reconstruction
to get a basic understanding of the complexity of such a process. Later we
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will go deeper into a more specific setup which is the sole purpose of our
work. Our primary task in this is to look at and hopefully improve the
runtime and efficiency of a project called BUISAR (Building Site Inspection
Supported by Augmented Reality). The idea is that the use of 3D recon-
struction and Augmented Reality (AR) should allow clients to produce a
virtual reference between reality and virtual reality and augment or en-
hance this reality to assert that their constructions are within the desired
specifications. The project is built up by three steps which mainly is 3D re-
construction, match-moving and AR. The goal for both match-moving and
AR are real-time performance; if not they are no longer beneficial.

Since this is a relatively large project, we will base our work on the third
part of the project which is the 3D reconstruction. To be able to streamline
the process we will need to understand how this set-up is working, and
what the different parts of it do. There are three primary functions in the
approach we are looking at, PopSift for feature extraction, OpenMVG for
reconstruction of the mesh and CMPMVS for mesh refinement and textur-
ing.

3D reconstruction pipeline

Figure 1.1 shows the AliceVision 3D reconstruction pipeline. This pipeline
is a complete setup from start to end, and it will be the basis of our work.
The first step is to provide images of an object or a scene to the software.
There has to be at least two images to use the software, and the more in-
formation about the camera used regarding position and settings the better.

The next step is to find points of interest in each image. This step will go
through every image and extract unique features. Features are a distinctive
group of pixels and are used to find points of interest in the images. After
the feature extraction, the features are compared to find the images that are
pointing to the same area of the scene.

After the initial steps, the pipeline arrives at the feature matching. This
step is a vital one who finds the most similar features between the dif-
ferent images, which will be the foundation of the reconstruction. These
matched features will then go through the SfM which will fuse all the
matches between the image pairs into tracks. Each of these tracks will rep-
resent a point in space which is visible from multiple cameras.

The next section will then calculate the depth value of each pixel and store
them into a depth map. The depth map is then used to create a mesh, a
dense geometric surface representation of the scene. Last part is the tex-
turing which will define specific characteristics as colour, shininess, trans-
parency, reflectivity, and smoothness [55]. This process paints the 3D mesh
model with static images.

Our focus in this setup will be the Nearest Neighbor search in the fea-

2



Input
images

Camera
initial-
isation

Feature
extraction

Image
matching

Feature
matching

Structure
from

Motion

Depth
maps

estimation

Meshing Texturing

Primary
focus

Figure 1.1: AliceVison 3D reconstruction pipeline

ture matching which is a severe bottleneck regarding runtime. This part
is highly time-consuming, and if we manage to reduce the time spent on
this, we will improve the overall runtime of the program.

1.1.1 Nearest Neighbour search

Algorithmic improvements are substantially more likely to produce com-
prehensive performance improvements compared to modifying or rework-
ing implementation details. Therefore, our task is first to study the prob-
lem as a whole and evaluate the existing algorithms in the context of this
problem to determine if a more efficient solution is theoretically possible.
Secondly, we will look at the quality of the coded implementation to see if
there is room for improvements that will enhance the overall execution per-
formance. This process will consist of reducing complexity, such as elim-
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inating unnecessary abstractions and temporary variables and finding the
optimal data structure for the algorithm. We will focus on the matching
part of the program also known as the Nearest Neighbour search, which
is one of the main bottlenecks in the pipeline. Nearest Neighbour search
refers to the process of finding the closest point to the query point from a
given set or database of points. Nearest Neighbour search executes after
the feature extraction of the input images, where each of them has many
descriptors. The concept here is to find the best match between the images,
the interest point in one image that has the closest "neighbour" in another
image.

There are different approaches to this; one such approach is the exhaustive
search method (also known as a full search) which will explore all possible
matches and thus guarantees to find the global best match. However, this is
a computationally costly process due to many repetitive operations where
each descriptor in one image needs to be compared with every descriptor
in the other image, and therefore not applicable to more massive datasets.
Alternatively, there are a lot of different approximate searches that do this
part quicker but cannot guarantee that the matches they find are the correct
ones.

OpenMVG has a solution for exhaustive search using Euclidean distance
as a metric which will be our primary focus, but it does also have some
approximate searches as a k-d tree solution with FLANN (Fast Library for
Approximate Nearest Neighbours) and a cascade hashing option. The ap-
proximate searches are something that has been explored a lot over the
years and is, therefore, more unlikely subject to improvements compared
to the exhaustive search. However, we will study the advantages and the
drawbacks of the existing ANN algorithms and propose our own ANN al-
gorithm to see what benefits we can achieve. It is interesting to see if we can
find a solution to exhaustive search that improves the runtime, as there is
to date no known algorithm that does it better without diminishing results
regarding the matches.

1.1.2 Goals, achievements

Our initial goal is to explore solutions and changes that will improve the
overall performance of the process. At the same time, we want to find sec-
tions that we are not capable of improving, and learning why this is so. It is
also interesting to see if some of our ideas apply to other problems, which
uses the same type of algorithms to achieve their goals.

Our primary focus will be on the matching process and the metrics used
on this part, as this is one of the most time-consuming parts of the pipeline.
We will explain the concept of this later in our thesis.

Our primary goal is to make the exhaustive search a viable option
in comparison to the approximate searches. We will accomplish this
by presenting a new metric which is better suited for matching SIFT
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descriptors than the Euclidean distance. The reason for this is because
it is favourable to have an algorithm that does not sacrifice precision
for matching speed. The secondary objective is to propose our own
approximate search with higher precision than the other ANN algorithms
available in OpenMVG while reducing the search time of the exhaustive
search.
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Chapter 2

Background

2.1 3D reconstruction

Accurate and efficient 3D reconstruction has been a goal in computer vision
for decades. There are a great variety of approaches to 3D reconstruction.
The best-suited approaches will differ with the captured object or scene,
and the required quality of the result. Feature-based 3D reconstruction is
typically achieved in three phases [28].

The first phase is to find a set of matching points between the different
input images to determinate the common parts of the images. The second
phase is then to use the matching points to calculate the location, orient-
ation and other needed parameters of the cameras. The third phase is to
compute a 3D mesh using the data from the other phases. This explanation
of the process is simple, and there will be more phases in between these de-
pending on the complexity of the captured object or scene, and the quality
of the desired result. We will go through some of the tools and methods
used in this field today, and explain how they measure up to each other.

2.2 SIFT - Scale Invariant Feature Transform

One vital step in most computer vision technologies is a distinct and reli-
able representation of points of interest in an image. To accomplish this, we
need to provide a suitable algorithm which can identify image features that
is recognisable over a wide variety of both geometric and photometric im-
age transformations comparable to those that would occur from a change in
viewpoint, illumination and other viewing conditions of a scene. Further,
the algorithm must create a unique signature that describes these feature
points to identify their appearance compactly and robustly so that they are
repeatedly recognisable.

The keypoint detector and descriptor Scale Invariant Feature Transform
(SIFT) [40] is an algorithm created to be good at locating (feature point)
and labelling (feature descriptor) the same point in the 3-dimensional real
world seen in two images. SIFT does this with a Difference of Gaussian
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(DoG) based keypoint detector that creates a collection of features that
does not change based on scaling, rotation and brightness. These features
descriptors are created and labelled based on the gradient orientation dis-
tribution in the surrounding region of each feature. These invariant fea-
tures enable us to recognise similar features precisely from several angles
and scales under various lighting conditions to find correspondences across
many photographs containing the same scene or object. While the SIFT
algorithm has many use cases from object recognition to 3D reconstruc-
tion, its core functionality is to extract features and create one or more
descriptors for every feature. In our application, we will use it as the first
step to determine image correspondence, or simply put, given two images
of the same scene, SIFT enables us to find equivalent features in the images
before we match them. This matching gives us information about how the
images are related to each other. While there are many new keypoint de-
tector and descriptor algorithms available, SIFT is very stable and yields
strong results compared to its alternatives [4].

SIFT is often used in applications dealing with object recognition [40, 58],
object tracking [21, 71, 73], face recognition [46], face authentication [9, 42],
three dimensional reconstruction [45], image stitching [13, 32], and image
classification [66, 70]. However, these are only a small sample of possible
use cases.

2.2.1 SIFT features

For the SIFT algorithm to be invariant to the noted parameters and able to
detect the same feature in two images independently, the feature needs to
possess several characteristics. First, a feature needs to be repeatedly recog-
nisable - A feature is viewable from several different angles in such a way
that we can recognise the same feature in images taken from different view-
points despite large-scale change and difference in camera orientation. For
a feature to be recognisable over large-scale changes, essentially making it
scale invariant, it should be extracted over several scales, ensuring that it
is not only present at a particular scale level. In SIFT this is done by using
a sub-octave Difference of Gaussian pyramid. Neighbouring scale levels in
the pyramid are subtracted from each other to create Difference of Gaus-
sian images. These images are then searched for features that are present
in several or all of the DoG images.

A feature also needs to be unique - This means that it should be sufficiently
distinct from all other features such that we can compare and match them
with ease. In consequence, a good feature will rarely reside within a tex-
tureless region as precisely localising the feature point will be challenging
if not impossible [62]. A region with large contrast change is a much bet-
ter option; however, a strong one-directional contrast change is not enough
due to the aperture problem [2, 30, 41]. This is because all features from a
straight line on a blank background would be identical, i.e. we would not
be able to determine an exact position along the line. Considering this, we
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want features that are distinct from their neighbourhood in both horizontal
and vertical direction. A corner will often satisfy this characteristic. Good
features should be local, they should not cover a large area, and preferably
be a single pixel. This will increase the algorithms ability to handle occlu-
sion, a concept where one object is partially or completely hidden from one
image to another due to viewpoint changes. Several algorithms offering
good repeatability over a variety of image transformations has been pro-
posed [5, 38, 40, 51, 57]. Among these, SIFT is highly popular. The SIFT
detector is partially invariant to affine transformations. While there ex-
ist algorithms that are thoroughly invariant to affine transformations like
the Hessian-affine, Harris-affine detectors [48, 49], the SIFT detector and
descriptor produce similar invariance characteristics [50, 72].

2.2.2 SIFT pipeline

The overall SIFT procedure for recognition has two main components:
Feature extraction and feature description. Each component consists of
two separate steps. The first two steps are scale-space extrema detection
and feature point localisation. These two steps are done by looking at
extrema in the Difference of Gaussians and identifying the exact location
of the feature point. The last two steps are orientation assignment and
feature description, which means that we are going to define an orientation
before using this orientation in combination with the feature to create a
description.

1. Scale space extrema detection

2. Feature point localization

3. Orientation assignment

4. Feature description

2.2.3 Feature detection

To detect a feature in scale space, we search the complete image in several
different scales to find groups of pixels that are significantly different from
their neighbouring pixels. To find these positions, we will create several
versions of the image, each smoothed with an increasingly stronger Gaus-
sian blur. Even though resolution technically is the same (same number of
pixels) after the blur is applied, it will mathematically have the same effect
as increasing/decreasing image scale. The visual effect of a Gaussian blur
on an image is seen in figure 2.1 on page 10.

We then compute the Difference of Gaussians (DoG) by taking pairs of
these and do a pixel-wise subtraction. This new image will heighten the
visibility of places in the image that has substantial intensity changes, such
as corners and edges. As we are after corners, we look at the surrounding
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Figure 2.1: An example of Gaussian blurring an
image. From left to right: the original image in
grayscale, Gaussian filter with σ = 3, with σ = 5,

with σ = 10.

neighbourhood of a point to see if our point is an extremum in horizontal
and vertical direction. We will know if the extremum is invariant to scale
if it is present in all sizes of the DoG image. To qualify as a SIFT feature,
it must be an extremum to its 26 neighbours: 8 in same DoG level, 9 in
the less blurry level above, and 9 in the level below. To get features that
have better stability, we apply a threshold on minimum contrast, as low
contrast points are prone to noise errors. Contrast is the absolute DoG
value of the extremum. After applying a threshold on minimum contrast,
the final features are calculated by an additional threshold on the ratio of
principal curvatures. Here the 3D curvature volume through the extremum
is computed to help remove features that are unstable to small amounts of
noise. The extremum can move by up to a pixel left or right, up or down,
DoG level up or DoG level down.

2.2.4 Feature description

Through finding the overall orientation of the feature based on local im-
age properties we can describe it. To calculate the individual pixel orient-
ation, SIFT uses a 16x16 pixel window around the feature in the level of
the Gaussian pyramid where the feature was originally detected. The pixel
orientation is the direction of largest change in the gradient within a neigh-
bourhood of pixels.

SIFT counts each pixel in a histogram with 36 possible orientations. These
36 different orientations cover 360 degrees. Each pixel is weighted by a
Gaussian fall-off function, such that pixels closer to the centre of the feature
have greater weight than pixels further away. The overall feature orienta-
tion is the highest column in the histogram. See figure 2.2 on page 11 for
visualization. Note that the image and its caption are misleading: There are
16 quadratic “quadrants” around a feature point. The number of pixels in
each is unknown as it depends on the DoG scale level we find the keypoint,
and on rotation. However, these quadrants overlap by 50% in each direc-
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tion which is significant because it is the basis of SIFT’s affine tolerance.

If there are other columns with above 80% of the height of the main peak,
these will be created as separate features to improve matching. These new
features will be at the same location, but with different orientations. These
256 computed orientations are added to histograms of size 2x2x2 with tri-
linear interpolation to get a descriptor more robust against a wrong assess-
ment of orientation [62]. After these computations, we get 128 non-negative
values representing the SIFT descriptor.

Figure 2.2: Figure from [40]. Example of
individual pixel orientation used to calculate a
descriptor array. The blue circle represents the

Gaussian fall-off function. Note that all sizes are
divided by two (8x8 instead of 16x16, 2x2 instead

of 4x4) in this example to clearly visualize the
orientations.

2.2.5 Descriptor representation

The SIFT descriptors are normalised to unit length with L2 norm to reduce
the effect of contrast. Further, it is truncated with 0.2 as the threshold to
reduce the effect of other photometric variations on the descriptors stability
and then renormalised again to unit length. This way, each of the 128
dimensions in a SIFT descriptor should theoretically contain a value in
the interval [0, 1]. However, in practise SIFT descriptor dimensions are
in the interval [0, 1

2 ]. It is also quite common to convert the floating point
vector into a vector of unsigned chars. If each element in the vector is in
the interval [0, 1], multiplying by 256 accomplishes this conversion, as this
is the maximum size of an unsigned char. This method would lose some
precision as each of the 128 dimensions are in the interval [0, 1

2 ]. Thus we
can instead multiply by 512 to get better distribution with less precision
loss. Note that this conversion still loses some precision.
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2.3 Stereo Matching

Stereo matching also known as disparity mapping is a method for find-
ing corresponding points from one image to another. It is one of the most
common parts of computer vision and has a variety of solutions. Stereo
methods consist of several steps, most of them use matching cost computa-
tion, cost aggregation, disparity computation/ optimisation and disparity
refinement [60]. The sequence of these steps varies from the algorithm used
in a specific case (local- and global algorithms).

The most difficult parts are often occlusions, object boundaries and fine
structures, which can appear blurred. It could also be challenging due to
low or repetitive textures [29]. Stereo matching is one of the most demand-
ing parts in the pipeline regarding speed and efficiency, and there is often
a balance between precision and speed.

2.3.1 Matching cost computation

In simple terms, a matching cost computation measures the similarity
between different pixels. Typical cost functions are squared difference
(SD), absolute difference (AD), mutual information (MI) and normalised
cross-correlation (NCC). MI is a method for handling complex radiometric
relationships between two images. It relies on the entropy of the images
underlying probability densities [19].

2.3.2 Disparity computation/refinement

Disparity originally describes the difference in location of corresponding
features when seen by the left and right eyes. Computer vision literature
describes this as inverse depth [60]. Disparity computation is a "winner
takes all" algorithm, and the corresponding pixel is the most similar
pixel in the searched set. For every pixel select the disparity with the
lowest cost. Disparity refinement is used for removing peaks, checking
consistency, interpolating the gaps or increasing the accuracy by sub-pixel
interpolation [29].

2.3.3 Cost aggregation

A problem with disparity computation is that there can be too much noise
in the images (or if there are too many similar pixels). The solution is
then cost aggregation. Instead of using just one pixel, it uses a "matching
window" around the pixel of interest and creates an area-based matching
cost. Global algorithms typical skip the cost aggregation step and define
a global energy function that includes a data term and a smoothness
term [29].
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2.4 Multi-view reconstruction

To construct 3D models from multiple photographs is the most common
way to get the best result as possible, at the same time the more photos
added, the more time consuming and complex the process will be. Multi-
view reconstruction usually consists of three steps [23]. The first step is
to acquire multiple images from a scene or an object; this can be images
taken with a camera or downloaded from the internet. The second step is
to define the camera parameters; this is done in advance while capturing
the images or calculated later. The last part is to build the 3D model (dense
geometry reconstruction).

2.4.1 Image acquisition

Image acquisition is always included in 3D reconstruction and is the basis
for the process. There are different ways to acquire images, and they will
be implemented concerning the scene we are capturing. There are three
typical image acquisition setups [23]: Fixed camera on a rotating object
or fixed object and a rotating camera. Often used for small objects in a
controlled environment and will make it possible to calibrate cameras from
images of a calibration chart. Moving camera around an object or a scene.
Used for capturing small-scale outdoor scenes (buildings, people) and will
often need to get camera parameters from an algorithm. Downloading
images from the internet. This is used for large scenes, there are some
drawbacks like less control of the object and light conditions. This setup
must get camera parameters from an algorithm.

2.4.2 Camera Parameter Estimation

Camera parameters consist of extrinsic, intrinsic and distortion paramet-
ers [23]. Extrinsic is rotational and translational pose information of the
camera and will change when the camera is physically moved. Intrinsic
is information about pixel sensor size, a principal point and magnification
factors. Distortion parameters capture higher-order effects from the lens.

Since the camera is pre-calibrated in our project, and our scene is in
a controlled environment, we only need to do a camera pose estimation
(extrinsic) and can dismiss the intrinsic and distortion parameters. Thus
we save a lot of work and time in the project.

2.4.3 Dense geometry reconstruction

The last part of the reconstruction is to use the images to find common
points to build a 3D model. This is done by comparing the images and
finding corresponding points that match. The points will then be used to
create the complete model.
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2.5 Structure from motion (SfM)

The idea of recovering an unknown scene also known as structure from
motion is one of the most difficult problems in computer vision. There
are many different approaches, and there is a great number of potential
solutions. SfM is a concept that takes a set of images as input and outputs a
complete 3D reconstruction. It consists of several steps, solved in different
ways. The first step is to obtain multiple images of a scene or object. The
next step is to extract unique feature points from each image. After this,
the images need to be matched against each other, before estimation of the
camera poses, and the triangulation of 3D points in the images. A bundle
adjustment is then applied before the final reconstruction is ready. In this
section, we will describe some of the methods used in a SfM pipeline.

Input
images

Feature
extraction

Image
matching

Estimate
camera
poses

Triangulate
3D points

Bundle
adjustment

Final
reconstruction

Figure 2.3: Flowchart of SfM

2.5.1 Pinhole camera

Imagine we have a film and we expose it to the light projected from a
scene. Because all points in the scene will project to every position on
the film, this will not give us an image representation of the scene. The
problem is that every location in the film sees the light from more than one
location, no single value of light comes from a single place in the scene.
The pinhole camera model provides a solution to this problem by putting
in a barrier between the scene and the film. This barrier is light proof
with a small hole in the centre where rays of light can come through to the
film. This hole is called an aperture. This barrier affects that each location
on the film can only be reached from one location in the scene through
a straight line. All of the other projected light from this location will hit
the light proof barrier, and therefore it will not be part of the image. An
interesting thing to note here is that the image projection on the film will be
an inverted version of the scene. This inversion has a direct correlation with
the model. To give an example, if we draw a projection line from a point
in the upper right corner of a scene through the aperture, this line will
have a downwards right direction. This direction will continue through
the aperture. Therefore the point will be projected in the bottom left corner
of the film. Most structure from motion techniques starts with adopting
a perspective projection model. This model is illustrated in Figure 2.4 on
page 15. Here, a 3D point P is projecting on a two-dimensional image plane
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with perspective rays coming from the Center Of Projection (COP) which
also is the origin of the coordinate system. The focal length f is the distance
from COP to the image plane along the principal axis.
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principal
point
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Figure 2.4: camera perspective projection model

2.5.2 Epipolar geometry

The epipolar geometry is the geometry between two views [26]. There are
several relations between a real-world point and how it projects in different
2D views that lead to constraints between these views. Given a point in 3D
space X that is seen in two views as x in one image and x’ in the other.
Then the relation between these two corresponding points is the following:
If we draw a line between the two views centres of projection and from
view one to x and view two to x’, then these rays would intersect at X. The
camera centres, X, x and x’ will also be coplanar. Given we only know the
location of x and the camera pose but not x’, we can use epipolar geometry
to constrain where x’ lies in the second plane. If we draw the plane that
consists of the two centres of projection and x, we know that x’ lies on
this plane. More precisely, x’ lies on the line where the plane intersects
the second views projection plane. This line is known as the epipolar line
corresponding to x [26].
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Figure 2.5: Epipolar line
Ol and Or is the projection centers, Pl and Pr
are the vectors through the projection plane,

el and er are the epipoles while πl and πr is the image plane.

2.5.3 Fundamental matrix

The fundamental matrix F is an algebraic notation of epipolar geometry. It
is used for finding a points corresponding epipolar line in a different view.
F is a square matrix with nine entries and size 3x3. By multiplying a point
in one view with the fundamental matrix, we will find its corresponding
epipolar line in the second view. If a world 3D point is set to x in one view
and x’ in another view, then we can create an equation x′T ∗ F ∗ x = 0. We
can use this equation to relate x to x’. Two points that satisfy this equation
will be coplanar, which they need to be for point correspondence [26].

2.5.4 The eight-point algorithm

The eight-point algorithm is a way to estimate the fundamental matrix from
eight or more feature correspondences in two views. As stated above, the
fundamental matrix is defined by the equation x′T ∗ F ∗ x = 0 for matching
features in two views. When we have eight such correspondences, this
information can be used to calculate the rotation and translation between
our two views in the form of the fundamental matrix. For each pair of
matches, we formulate a homogeneous pair of linear equations with nine
unknowns. F, x and x’ will look like the following:

x =

x1
x2
1

 x′ =

x′1
x′2
1

 F =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 (2.1)

With the number of correspondences N >= 8, we get a linear system
A f = 0 where A is the equation matrix formed by stacking the data vectors,
and f is a nine vector containing the entries of the fundamental matrix F.
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We can solve this with a singular value decomposition. Since we may have
noise errors in our correspondences, we will get our best estimate from a
least squares solution. The solution will be the Eigenvector corresponding
to the smallest Eigenvalue AT ∗ A. From this we can find the singular value
decomposition of F, get the Eigenvalues of AT ∗ A before recomputing F. As
our feature matches are likely to be imperfect, we want to increase accuracy
and stability by preceding the algorithm with a very simple normalisation.
This normalisation will be in the form of translation and scaling of the
coordinates of our matched features, such that they have an average of
zero and standard deviation of one. On algorithm completion, we will
denormalize fundamental matrix F [39][27].

2.5.5 Triangulation

At this point, we have calculated the relative orientation of the images,
and we want to use this information to compute the 3D coordinates of
our corresponding points. The first step in doing this is to compute the
3D location relative to one of the view frames (typically the first view).
A geometric approach known as triangulation is used to perform this
calculation. The baseline for the triangle is given by the projection centres
of our two views. These two points have a direction vector each that point
to the matched features in the 3D world. The last point of the triangle
is at the intersection of these lines. To find the exact location, we need
to estimate what the scaling parameter is. As this cannot be determined
mathematically, we need extra knowledge. However, we know the angles,
so if we can measure the distance between our views through a GPS or
some other tool, we have the necessary information. Unfortunately, this
approach does not always work, because, in the presence of noise, our
lines will not be guaranteed to intersect as we may not have a perfect
correspondence between the images. This means that the provided points
do not satisfy the epipolar constraint x′T ∗ F ∗ x = 0. The result of this will
be that the lines do not intersect in 3D. There are many ways to fix this,
one way is to draw a new line perpendicular to our two lines at the point
where they are closest to each other, and set the last point in the triangle in
the middle of this new line [26].

2.5.6 Absolute Orientation

With triangulation, we have found out where are the points are concerning
the camera projection centre. The next step is to figure out where the points
are in the world. To do this, we need to relate the point cloud that we
computed to an external reference frame. There are several ways of doing
this, the most accurate one is to use known ground truth points, but this is
often not available. Another way is the two-step approach where we first
find the plane at infinity to calculate an affine transform, before identifying
the absolute conic to get the metric reconstruction. One way to find the
plane at infinity is to look at three intersections of parallel lines in our scene.
The points at these intersections will give us the plane at infinity [26].
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2.5.7 Bundle adjustment

Bundle adjustment is an algorithm that reconstructs the 3D structure and
camera parameters from a series of scene images. Its main usage is to
refine an existing but uncertain 3D reconstruction and camera parameters
to produce optimal accuracy in the reconstruction. Bundle adjustment
improves the reconstruction by minimising a cost function. This cost
function is the reprojection error, which will give us a maximum likelihood
estimation of the camera parameters and the 3D reconstruction [64]. It
refers to the ’bundle’ of light rays from each 3D feature converging on
each camera centre, and are ’adjusted’ ideally concerning both feature
and camera positions. This is different from the independent model’s
methods that merge partial reconstructions without changing their internal
structure. Bundle adjustment adjusts both the structure and camera
parameters together in one bundle.
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Chapter 3

Concepts in optimization

3.1 Complexity

To evaluate an algorithm, we need to have a concept to describe the
complexity that is universal. It will not be enough to just run timed test
to see the benefits of a solution, as results will vary depending on many
different factors.

3.1.1 Big O notation

To describe the complexity of an algorithm computer scientists uses what
we call a big O notation. It is used to describe the worst case scenario of
the execution time required. It isn’t necessarily a measure of time itself.
It rather describes the growth of a problem as the input increase. When
referring to big O, it is written with O and the growth inside parentheses
after it, for example, O(1). This case suggests that the problem is constant,
regardless of the size of input it will always take just one iteration to execute
the algorithm. Imagine if you want to find the largest number in a sorted
list, regardless of the size of the list, you only need to look at the last number
to find what you are after. Figure 3.1 on page 20 illustrates a complexity
graph.

Linear time

O(n) suggest that the problem is linear, which means that it grows
simultaneously with the size of the input. If we were to do the same as
in the previous example except that the list is not sorted, we would need to
go through the whole list before we could be certain that we had found the
largest number.

Logarithmic time

O(log n) tells us that a problem has a logarithmic runtime. Take an old-
fashioned phone book, there are n people listed in it, and they are all sorted.
If you want to find a specific person by name in it, you could pick a name
at some point in the middle of it to start with. The next step would be to
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Table 3.1: Time Complexity

see which side of the middle the name we are searching for would be, then
we do the same for this side, picking the middle of it and repeat this until
we have found the name we are searching for. If the name does not exist it
would have used log n iterations to conclude this.

Polynomial time

O(n2) describes a problem that has a quadratic growth as the input grows
larger. If we, for example, need to find a duplicate number in a list, we
would need to first find one number from the list and then search through
it again to see if there are any duplicates. Of course one might be lucky and
find it quickly, but big O shows us the worst case scenario where we would
need to search the list in n2 iterations.

Exponential time

O(2n) tells us that the problem is exponential and grows drastic for larger
inputs. Big O notation also excludes constants because it is calculated as
the input moves towards infinity. So for example if you have a problem
that has n + 100 iterations, n will eventually grow so much larger than
the constant does not have any importance at all, so instead of writing
O(n+100) we just write O(n).
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3.2 Good code versus bad code

Programming software today is often based on just making it work, and
not necessarily doing it the correct way. There are many roads to Rome,
and there are many different ways to code a program. It can make a huge
difference to the flow of a program depending on how it is coded. Bad
code and memory management can result in a slow and expensive program
compared to optimized code. Some solutions turns to parallel computing
for improved runtime, but parallel computing consists of serial code and
will perform better if the code is done properly.

3.2.1 Small optimizations

A simple way to optimize code is to make sure that the same memory is
used at the same time. Take this two for loops into consideration:

for (int i = 0; i < 1000; i++)
x += a[i] * b[i];

for (int i = 0; i < 1000; i++)
y += a[i] + b[i];

Both these loops will run 1000 times each, and although there are
different operations, the same memory is read each time. So the correct
and best way to do this would be to merge the two loops into one:

for (int i = 0; i < 1000; i++) {
x += a[i] * b[i];
y += a[i] + b[i];
}

Another example is to read or write to memory the best possible way. If you
have a two dimensional matrix and need to access the elements in them,
you will need to run a double for loop to access all the data.

for (int i = 0; i < 1000; i++)
for (int j = 0; j < 1000; j++)

y += a[j][i];

In the code above, we access each element column wise reading
a[0][0], a[1][0], a[2][0], ..., a[999][999]. It looks like a decent solution, but
since the data in memory is stored row-wise in languages of the C family
(C++, Java, C#, Go), this is actually an ineffectual way to do it, as
each iteration has to discard the cache that has been built up and read
a new line from memory to access the new query. The solution is to
program after the memory layout, and access the matrix row-wise reading
a[0][0], a[0][1], a[0][2], ..., a[999][999].

for (int i = 0; i < 1000; i++)
for (int j = 0; j < 1000; j++)

y += a[i][j];
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By doing it this way, the cache will contain the data we are accessing
more often, reducing the need for reading data and thus improving the
efficiency of the program. Good compilers will do improvements like
these automatically on a CPU, but not on a GPU as it will assume the
setup is intended by the programmer. Getting the best performance out
of a program is not just about using the ideal algorithm or finding the
best pipeline, it is also about programming optimally. There can be a
huge difference between "good" code and "bad" code, and it is key to
all programming to understand and use the best possible code for each
scenario.

3.3 Parallel processing

3.3.1 The CPU

With the technological advancements of recent years, there has been a shift
from single core computation to multi-core computation. Part of the reason
for this advancement was that developers and manufacturers understood
it was necessary to look for new methods to increase computational
power. This understanding came as a result of the traditional methods
of increasing computational power such as increasing the processing units
clock speed no longer was a viable option because of heat- and power
supply restrictions. Parallel computing was the proposed solution, as it
allows computing speed to increase linearly with the number of extra cores.
Therefore it is no surprise that new computers, whether it is a stationary or
a laptop, almost always are created with multi-core central processors.

3.3.2 The GPU

The GPU (Graphical Processing Unit) is a tool specializing in processing
graphics, such as the creation of an image before it is displayed on
the connected monitor and various other graphical applications. It was
popularized in 1990s due to the increasing popularity of operating systems
with graphical user interfaces. As the GPU is in its core components is
built to excel at rendering independent pixels in an image, its structure
is massively parallel. This structure makes the GPU surpass the CPU
on tasks that allow for high levels of parallelism. The general-purpose
GPU (GPGPU) trend started with people who did shader programming:
re-formulating matrix multiplication problems to look like 3D texture
projections. That led to better tool support, which led to more interest,
which led to GPUs with more CPU-like capabilities.

3.4 CUDA - The Compute Unified Device Architec-
ture

In recent years, there has been considerable progress in programmable
interfaces targeting the GPU. One of the tools created is the parallel
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computing platform and application programming interface (API) model
created by NVIDIA, named The Compute Unified Device Architecture, or
just CUDA [54]. CUDA is a vast improvement from earlier techniques as it
is simply an extension to the C++ programming language. CUDA allows
the GPU to be applied as a general purpose computing tool. Compared to a
CPU the GPU easily outperforms it on tasks that allows for high parallelism
as the GPU itself is built to run concurrent operations. Depending on
your GPUs compute compatibility, CUDA C++ is structured into a grid of
blocks, each block sharing memory which depending the specific GPU can
run up to 1024 threads in parallel. Allowing for parallelism to be split up
in a large amount of blocks and threads in this manner greatly simplifies a
programmer’s ability to tailor an algorithm to their needs. As an example,
GEFORCE® GTX 1080 parallelism and memory capacities can be found in
table 3.2 on page 23. With seemingly infinite parallelism it is easy to find

CUDA Capability Major 6.1
Total global memory 8111 MBytes
(20) Multiprocessors, (128) CUDA Cores/MP 2560 CUDA Cores
GPU Max Clock rate 1757 MHz (1.76 GHz)
Memory Clock rate 5005 MHz
Memory Bus Width 256-bit
L2 Cache Size 2.0971 MBytes
Total amount of constant memory 65536 bytes
Total amount of shared memory 49152 bytes
Total number of registers available per block 65536
Warp size 32
Max threads per multiprocessor 2048
Max threads per block 1024
Max dimension size of a thread block (x,y,z) (1024, 1024, 64)
Max dimension size of a grid block (x,y,z) (2147483647, 65535, 65535)

Table 3.2: Parallelism and memory capacity of
GTX1080

algorithms that will benefit greatly from this technology, as many scientific
problems are computationally intensive, and allow for high parallelism.

3.4.1 Memory

CUDA global memory

Global memory is allocated from the CPU and shifts memory between the
CPU and the GPU. No other memory type can do this, as all data not in
global memory will disappear once the kernel execution completes [43].
Global memory is likely to be very large but is dependent on the specific
GPU, and not its compute compatibility.
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CUDA local memory

Local memory is an abstraction of global memory and has high latency and
low bandwidth [20]. It is not a memory type as it is something the compiler
does with global memory. Local memory is however slightly faster than
global memory on parallel operations due to interleaved addressing. When
organised such that continuous four-byte data are accessed by continuous
thread id’s we get Interleaved memory.

CUDA constant memory

With the massive parallel abilities of the GPU, the program bottleneck in
addition to allocation and synchronisation is often memory bandwidth.
The solution to this can be the constant memory that can lower memory
traffic. Constant memory tells the compiler that this memory is read-only.
Reading from constant memory is beneficial compared to reading from
global memory, as it broadcasts the read to threads with similar indices.
Reads of same address will also be fast, as constant memory is cached. This
caching means that constant memory is very effective when several threads
read from memory that is close together. Constant pre-calculated tables is
an example of efficient use of constant memory.

CUDA shared memory

Shared memory is often used and has several advantages. Firstly, the
threads in a block share this memory. This way it is easy for threads to
operate on the same data in unison with each other. Since shared memory
is located on-chip, it is faster than both local and global memory [56]. There
are however limits to it both in memory size and in memory access, and
there is often a need for synchronisation that will slow it down. When there
are no bank conflicts (Simultaneous access to the same memory bank), the
speed of the shared memory is comparable to registers memory.

CUDA register memory

Register memory is limited in size and is only accessible by one thread.
However, with the speed of which accessing a register takes (zero clock
cycles), this is by far the fastest memory CUDA provides. In some instances
such as a read depending on a write to be completed first, we may have
some extra latency. However, this latency will be hidden entirely if enough
threads run in parallel. Additionally, there are fast but functionally limited
shuffle operations that allow threads to exchange units of register memory.
If there are not enough registers available for a specific kernel, the local
memory will take over.

CUDA texture memory

Texture memory is read-only. On specific read orders, it can enhance
performance. As texture memory uses the on-chip cache, it will reduce
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memory requests to off-chip DRAM. In particular, texture caches are
designed for graphics applications where memory access patterns are
located close to each other in both horizontal and vertical direction. It is
a layer that modifies the way in which we read global memory. For 1D, 2D
or 3D arrays, texture memory allows for efficient cache-line fetching in all
dimensions.

3.4.2 CUDA warps and occupancy

A warp consists of 32 threads and is a Single Instruction Multiple Data
(SIMD) processing unit. Thus, a warp is a set of 32 threads which share
instruction pointer, and the threads within a warp will execute the same
code [18]. The threads within a warp all have sequential indexes, from
0-31, the next warp starting from 32 to 63. If the programmer asks for a
specific thread within a warp to operate, the remaining threads within the
warp will wait for the completion of this operation before continuing [25].

The definition of occupancy is the number of warps that can run concur-
rently on a multiprocessor divided by the theoretical maximum number of
warps that are allowed to run concurrently [35]. To reach 100% occupancy
the number of warps currently executing must be equal to the theoretical
maximum.

3.4.3 CUDA synchronization

There are several synchronisation directives in CUDA. cudaDeviceSychron-
ize() is called from the host and synchronises the host with the device such
that the CPU is waiting for all pending GPU activity before continuing.
This synchronisation is often used after a kernel call before the result data
is copied to host memory. It is not always needed to do this explicitly as cer-
tain operations such as cudaMemcpy() have built-in blocking device syn-
chronisation mechanisms. It is also possible to purposely run the host and
device code asynchronously in cases where it is beneficial to have them run
concurrently.

syncthreads() is used inside the kernel and is often used as a barrier in al-
gorithms where threads read and write to the same shared memory. It can
also be used after branching to assure that updated and not updated val-
ues are not used together. syncthreads() only synchronizes threads within
a block, not between blocks.

3.4.4 Thrust

Thrust is a template library for parallel algorithms and data structures on
the GPU. It provides an interface for parallel computing focusing on overall
programming productivity and real-world performance. The algorithms
are implemented in such a way that thrust itself figures out the optimum
number of blocks and threads to run [36]. Therefore it is quite easy
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to use, as no greater understanding of the architecture is necessary for
efficient code. It will be easier to apply a variety of algorithms that provide
high performance and significant optimization on tasks that are otherwise
considered to be computationally demanding. Thrust is especially good
at solving the type of problems which can be implemented in a good way
without having to go into the depth of architecture. Other algorithms that
fit well are those that the programmer will doubtless be able to improve
or have no time to look at [7]. Using Thrust, the programmer can solve
his problem in a good way using high-level algorithms and make decisions
about specific implementation details completely controlled by the library.
Since the library is responsible for providing an effective implementation,
Thrust will investigate different options, choosing the best implementation
that is available for the given parameters. Another benefit of this is that
the developer can spend more time on other tasks, giving the development
process increased productivity. Thrust allows the developer to run complex
GPU accelerated algorithms in just a few lines of code. High-level libraries
have long been widely used in fields where high performance is important.
An example is the BLAS standard, an abstract linear algebra interface that
is about 30 years old [37]. BLAS is still used today, and many of the reasons
are because it uses platform-specific optimizations that are handled by the
interface, without the help of the programmer. In contrast to BLAS, which
mainly deals with numerical linear algebra, Thrust is an interface for some
specific parallel algorithms such as sorting and reduction. Since Thrust
uses C ++ templates to make its algorithms generic, it is possible to use
operators and types defined by the programmer [7].
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Chapter 4

The project

4.1 OpenMVG

OpenMVG is a library written in C++ which provides different tools,
techniques, and algorithms for computer vision and structure-from-
motion. Its main purpose is to provide an easy to use, and easy to learn
collection of modules that is open for all to use. The different parts are
independent and can be either used by itself or as part of a larger set-up.
Created with the philosophy "Keep it simple, keep it maintainable" [52], it
sets out to be a software that inspires to be used and modified to extend its
quality and flexibility.

4.1.1 Design

There are multiple goals that OpenMVG sets itself. An easy access to
accurate implementation of multiple view geometry algorithms, a simple
and understandable source code library and a set of tools that can be used
to build complete applications. You will find functions for image loading
and processing, feature detection and matching, multi-view geometry
solvers and easy access to linear algebra and optimization frameworks. It
also delivers a collection of modular core features in small libraries that
covers different areas of computer vision. The modules are independent,
but can also be used as part of a complete pipeline to perform 3D
reconstruction from images (SfM) or localize images into an existing 3D
reconstruction.
To achieve the goal of being simple and maintainable, openMVG uses
test-driven development. This will help to ensure that algorithms and
code works as expected, and that external users can implement their own
methods and verify them via tests.

4.1.2 Functionality

OpenMVG offers a wide spectrum of functionality to its users, covering
many of the key elements in 3D reconstruction.
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Functions

• Image Processing:
A simple image handling
module that acts as a 2D
template pixel container
based on the Eigen matrix
structure

• Feature and image collec-
tion matching:
An abstract nearest neigh-
bour search framework

• Robust estimation:
Removes outliers in noisy
data

• Localization:
Enables the possibility to
find the camera pose and
orientation from images of
an existing reconstruction

• Feature extraction and
Description:
Detecting distinctive, re-
peatable image points and
descriptors

• Multiple view geometry:
Allows to check some mul-
tiple view geometric con-
straints

• Structure from Motion:
Complete 3D-
reconstruction pipeline,
both incremental and
global

Table 4.1: Functions and modules in openMVG

4.2 PopSIFT

PopSift is a GPU implementation of SIFT in CUDA. It is created with extra
attention towards speed as well as following the algorithm outlined in the
original SIFT paper [40] in detail. PopSift can process 25 frames per second
or more with a modern GPU on HD images. Due to its complex nature, this
is quite remarkable, as SIFT has been thought of as a slow algorithm in the
computer vision community to the point where several other algorithms [5,
57] has been created to reduce the time requirements for feature extraction
and description. However, these algorithms do not yield comparable res-
ults. Several GPU implementations of SIFT has already been created, how-
ever many of them are not publicly available.

Among those implementations which are available, none of them achieves
the speed requirements of real-time feature extraction and description in
addition to attaining comparable accuracy. An example of this is Cu-
daSift [10] which is much faster. However, it finds entirely different keypo-
ints, which affects scale independence negatively, in addition to making it
impossible to combine with e.g. VLFeat [65], OpenCV SIFT [12] or PopSift.
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PopSift is available for use under a permissive open source license.

4.3 RANSAC - Random Sample Consensus

This section is based upon the original RANSAC paper [22] as well
as lectures from Aaron F Bobick [11]. RANSAC, Random Sample
Consensus [22] is used for interpreting and grouping data containing
a significant percentage of errors. Automated feature detection and
matching can be prone to errors. Thus, RANSAC is a handy tool to
filter out incorrect matches. These false matches are known as outliers.
We can compute the relative orientation between images from a set of
corresponding features obtained by SIFT or some other feature extractor.
However, as our matching produces a percentage of feature matches with
orientations distant from the majority consensus, we need to filter out
these false matches (outliers), so we can determine the relative orientation
between the images with certainty. We Filter outliers by proposing an
orientation before counting how many matches have values close to the
proposal. We repeat this process until we have an orientation with many
feature matches. As outliers likely will be randomly distributed, this
method can handle a large number of them. How many feature matches
we need to create the initial model depends on what information we are
looking for; we need two points to calculate the translational shift between
two images, four points to calculate the homography, and 8 points to
calculate the fundamental Matrix. A classic example of RANSAC can be
found in figure 4.1 on page 30.

4.3.1 General RANSAC algorithm

1. Randomly select S points (number required by the model)

2. Create the model from the selected points (draw a line/compute
homography/fundamental matrix)

3. Score according to counted points within the distance threshold

4. Repeat N times or until the termination condition is reached and keep
the best score

4.3.2 RANSAC algorithm for SIFT

The RANSAC algorithm has four main steps. The first step of RANSAC
is to pick a sample subset of random feature matches from the complete
set of matches. The number of points in the subset is equal to the
minimal number of points required by the model. In our application,
we want to compute the fundamental matrix, so our minimal subset
consists of 8 feature matches. The fundamental matrix relates points in
one scene (image) to lines in another. The second step is to compute
the fundamental matrix that fits this sample subset. The third step is to
use this model to determine which feature matches from the complete
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Figure 4.1: Ransac model fitting

set are consistent with the fundamental matrix of the initial subset. A
feature match will be regarded as an outlier if its deviation from the
model is above some threshold. The feature matches within bounds of
the threshold are known as the consensus set. The fourth part is to
repeat these steps N times, or until the consensus set is sufficiently large,
determined by some preset threshold. On completion, the fundamental
matrix is re-estimated to improve the result further. The re-estimation is
based upon all feature matches in the consensus set. As a side note, the
estimated fundamental matrix might not be entirely correct as the theory
is based on the pinhole camera model, while in reality, cameras often have
lens distortions. Regardless of this, the estimated fundamental matrix is
efficient at filtering out outliers from the correct SIFT matches.

4.3.3 Choosing parameters

Points in subset

The points in the subset are decided by the model (line, homography,
fundamental matrix) and are the minimum number of data points required
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to obtain this model.

Distance threshold t

If the distance threshold parameter is set very high, it is difficult to
accurately determine the correctness of the model as we will get many
misclassifications, where points not part of our model are considered
inliers. On the contrary, if the distance threshold parameter is set too low,
the resulting estimate tends to be unstable, as many points that in reality are
part of our model are classified as outliers. [63] We solve this by setting the
distance threshold t such that a high percentage of inliers have a distance
d within the threshold d < t. If t2 = 3, 88σ2, then there is a 95% probability
that a points distance from the model is lower than the threshold d < t
when the point is an inlier (σ = standard deviation). We can change the
constant to change the inlier percentage.

Number of samples N

N is the number of samples to be processed. Depending on the size of our
dataset, to exhaustively try all possible samples is often not attainable in
practice, even with high-performance computers. However, neither is it
necessary. Instead, we will choose the number of samples such that we can
ensure with probability p that at least one of our random sample sets is just
made up off points coming from the correct model (e.g. p = 0.99). To do
this, we need to set the number of samples N based on the outlier ratio e.

Calculate N

The size of N will be estimated based upon the outlier ratio e, the size of
the minimal sample set s, and the probability P for a sample set to contain
inliers only.

• s is the number of points in the set

• P is the probability of success

• e is the proportion outliers, so % inliers = (1 - e)

• P(sample set with all inliers) = (1− e)s

• P(sample set will have at least one outlier) = (1− (1− e)s)

• P(all N samples have outlier) = (1− (1− e)s)N

• We want P(all N samples have outlier) < (1− p)

• So (1− (1− e)s)N < (1− p)

• From this we get our equation: N > log(1− p)/log(1− (1− e)s)
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Analysis of the N formula

When using the above formula, N is relatively steady whether the propor-
tion of outliers e is high or low, while it increases steeply with the number
of points in the set s. Another important thing to note here is that the num-
ber of points in the image, or more precisely, the number of features, is not
included in the formula. Thus, the number of samples needed has nothing
to do with the number of possible matches. It is only concerned with the
percentage of wrong ones, effectively making the algorithm scale invari-
ant. This scale invariance is a fundamental reason for the success of the
RANSAC algorithm.

The main problem with the above formula is that the proportion of outliers
e is not known. If we knew which points were outliers, we could simply ig-
nore them altogether. As mentioned in the previous paragraph the number
of samples N is relatively steady whether e is high or low. We can use this
knowledge to our advantage and set the initial e to be a worst case value
without any significant increase in algorithm run time. E.g. 50% outliers (e
= 0.5) and adapt if more inliers are found. The adaptive procedure would
look like the following:

• Adaptive procedure

• N = ∞, sample count = 0, e = 0.5

– while N > sample count

– Choose a sample and count the number of inliers

– Set e0 = 1− numbero f inliers
totalnumbero f points

– If e0 < e Set e = e0 and recompute N from e

– N = log(1− p)/log(1− (1− e)s)

– Increment the sample count by 1

Termination condition - Lower bound on an acceptable consensus set

RANSAC terminates after running through the steps in the algorithm N
times, or when the lower bound on an acceptable consensus set is reached.
A threshold is set to determine if a subset is sufficiently large. Reaching
this threshold will allow the algorithm to terminate. Thus, the chosen
size of the termination threshold must be large enough to ensure that
the computed model is correct (relative orientation between the images).
The consensus set should be large enough to satisfy the needs of the re-
estimation procedure for model improvement. As the correctness of a
consensus set cannot be guaranteed, the researchers suggest setting the
threshold such that the probability for the set to be incorrect is lower then
5%.
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Pros Cons

• The algorithm is robust and
will yield a correct result,
even with a high percentage
of outliers

• Not sensitive to the number
of feature points in the im-
age

• Allows for parallelisation
with minimal modifications
to the original algorithm

• A general algorithm funda-
mental in computer vision,
applicable to many kinds of
model fitting problems

• Runtime increases drastic-
ally with the size of the set s
and is therefore heavily reli-
ant on the model used

• Multiple fits increases
probability of failure, for
example, multiple planes.
Therefore a carefully set
threshold is required.

• Needs a specific model, ap-
proximate models (for ex-
ample a plane, which is
not a plane will likely not
work). Important that the
model fit the underlying
structure

Table 4.2: Pros and cons of RANSAC

4.3.4 RANSAC conclusions

4.4 Approaching the problem

There are many approaches to improving a program today, from modi-
fying the code structure in the original implementation to replacing al-
gorithms with more effective ones.There are also different hardware like
GPUs that can improve the efficiency drastically. The purpose of the code
often defines what tools and approaches may be available.

It is also essential to find the bottlenecks of the code, and try to improve
them; speedup in these sections has a more significant impact on the
runtime in comparison to the parts that have a lesser say in the overall
runtime. In general we look for repeating patterns in the code, parts that
do the same or similar operations several times in the program. When we
find these parts we start analysing if there is some unnecessary repetitions
or if the code is written badly. It is quite astonishing what simple changes
in the code can do for the efficiency of a program. The next approach is
then to analyse what the code actually does and see if there are other al-
gorithms or solutions that may offer the same result more efficiently than
the one present. After a successful implementation, apply new tests to see
if the bottlenecks have shifted elsewhere in the program and improve them
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as well.

Early on in OpenMVG we quickly found a bottleneck in the matching pro-
cess. The program has to find corresponding features from one image to an-
other by exploring all image descriptors given. This part is essential for the
process and is quite time-consuming given a considerable input of images.
To improve this part we needed to understand how the process works, and
if there are any alternatives to it. In the next chapter, we will explain what
the matching process is, and what tools and algorithms that are available
to implement it.

4.5 Implementation

As we mentioned earlier, we thought that the exhaustive search would
have the biggest potential for improvement. In OpenMVG, this part is done
relatively straightforward, by iterating through each descriptor in one im-
age and comparing it to all the other descriptors in the corresponding im-
age. The exhaustive search is a costly method with complexity O(n2).

The comparison is made by calculating the squared Euclidean distance
between each descriptor and keeping the two best matches. If we are to
improve the exhaustive search, we will need to change or replace this com-
putation to something more efficient. We will explain the complexity of the
Euclidean distance later in section 6.1 on page 45.

The next approach will be to implement an approximate search which has
a better complexity than the O(n2) the exhaustive search provides. This
solution will have to sacrifice some precision, and our main goal will be to
limit this sacrifice compared to the other ANN searches available in Open-
MVG.

There are both a CPU implementation and a GPU implementation of the
exhaustive search. We will begin to change the CPU part first, and if the
results are positive, we will then implement them on the GPU version. As
we want to keep the quality of the search, we will begin to look at the cal-
culation and keep the structure of the exhaustive search for now.
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Chapter 5

Assessment of feature
matching

Previously we discussed how to detect SIFT feature points as well as how
we can describe them. In this chapter, we will go over some commonly
used algorithms for matching, as well as their positive and negative
attributes. These algorithms are not limited to matching sift descriptors,
but function on a wide variety of descriptors.

5.1 Distance threshold

To find the most likely match for a descriptor we identify its nearest
neighbour in the matching set. The literature defines the Nearest
Neighbour (NN) search problem in the following manner: given a set S
of points in a space M and a query point q ε M, find the closest point in
S to q [17]. The closest point is defined based on the metric used. The
Euclidean distance metric is considered the gold standard of metrics, but
others exist. However, not all descriptors will have a good match. One way
to reduce this would be to set a global distance threshold on the distance
to the nearest neighbour. However, this method is not used in practice, as
descriptors vary in how discriminative they are [40]. Instead, Brown and
Lowe [14, 40] proposes a distance threshold between the nearest neighbour
and second nearest neighbour. This Nearest Neighbour distance ratio [47]
is defined as follows:

Distanceratio =
d1

d2
=
||DA − DB||
||DA − DC||

In the above equation d1 and d2 are the shortest and second shortest
distances, DA is the target descriptor, and DB and DC are the two closest
neighbours. This threshold between the two nearest neighbours removes
a potential match if there are two close possibilities. When two close
candidate matches are closer than the threshold allows, we discard the
descriptor with the reasoning that the likelihood of the match being a false
positive is too high.
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5.2 Nearest Neighbour using Exhaustive search

Assuming that the Euclidean distance comparison can be used to rank
potential matches, the first step is to check whether some axes in the
descriptors are more reliable than others. If so, these axes are re-scaled
ahead of time by comparing them against verified matches to determine
divergence [31, 62]. The nearest neighbour to a point calculated using
Euclidean distance is the point with the shortest Euclidean distance from
the query descriptor. As the feature descriptors will be highly distinctive
on average, each feature will have a high probability of finding its correct
match. We match features after creating feature descriptors from two
or more images. By finding the Euclidean distance between one feature
descriptor in image one, and all feature descriptors of image two we can
match them. Since we want distinct stable matches, we do not consider a
feature to have a match if the two closest matches are too similar (distance
threshold). Thus, we order all the descriptors in an array, from best match
to worst match and set a threshold. The distance between the best match
and the second best match must be above this threshold for the features
to be considered a match. This procedure repeats until the steps complete
for all feature descriptors in image one. The exhaustive search algorithm is
considered to be the best solution for Nearest Neighbour searches because
it guarantees to find the best match. However, due to the quadratic runtime
to the number of feature descriptors, it is not often used in applications with
large descriptor numbers [62].

5.3 Approximate Nearest Neighbour search

Depending on what the matching purpose is, it might be acceptable to
guess which descriptor is the nearest neighbour. Some of our matches will
be incorrect due to other factors, so a slight increase in this number will
not always matter. An algorithm like RANSAC can be used to filter correct
matches from incorrect matches.

5.4 FLANN

An exhaustive search in matching will explore all possible matches and
find the best matches correctly. The main problem is that there are often a
large number of points to search with high dimensionality. This means that
the matching process will slow down the program and in some cases make
it unusable. As a consequence of this, there has been a significant develop-
ment of different solutions that sacrifices precision to achieve a better over-
all performance. FLANN (Fast Library for Approximate Nearest Neigh-
bours) is a matching library designed for higher performance, sometimes
at the cost of accuracy. It contains several solutions for different scenarios,
including K-Nearest Neighbour search (KNN), which will provide a fixed
number of matches, and Radius Nearest Neighbour search (RNN), which
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provides the matches that satisfy a given threshold.

KNN is defined as:
KNN (q, P, K) = A

where A:
|A| = K, A ⊆ P

∀x ∈ A, y ∈ P− A, d(q, x) ≤ d(q, y)

KNN returns exactly the K best matches from the neighbours if there are
enough points in P.

RNN is defined as:

RNN (q, P, R) = {p ∈ P, d(q, p) < R}

RNN will return anything from zero to the complete set of points depend-
ing on the value of R.

KNN and RNN can combine with Radius K-Nearest Neighbour search
(RKNN), where K limits the number of points from R [53].

RKNN is defined as:

RKNN (q, P, K, R) = A

where:
|A| ≤ K, A ⊆ P

∀x ∈ A, y ∈ P− A, d(q, x) < R and d(q, x) ≤ d(q, y)

There are three main categories of algorithms in Nearest Neighbour
searches: partitioning trees, hashing techniques and neighbouring graph
techniques.

5.5 K-Dimensional Tree

A k-d tree is a space-partitioning data structure that organizes points in a
k-dimensional space. It is a multidimensional binary search tree [8] that
can be used for numerous applications such as range searches and Nearest
Neighbour searches. The main idea behind it is to make searches more ef-
fective by organizing the data structure beforehand. There are many vari-
ations of it, depending on the size and type of data used. The tree is built by
finding the median in one dimension, and then splitting the points into two
branches, in each of these branches the same is done for the next dimension.
This is repeated until each dimension is used resulting in a binary tree that
contains all points in the leaf nodes. Each leaf node will represent a point;
however, some implementations allow each leaf node to contain more than
one point [61]. The fully built tree will have a height of log2 N where N
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is the number of points in the dataset. Inserting a new node to the tree is
done by looking at the first dimension, and see if the value is smaller or lar-
ger than the root node, then the same is done for the next dimension in the
next branch until a leaf node is reached. Search is done exactly the same,
by using each dimension to find the leaf node, resulting in a complexity of
O(log n) for finding the leaf node. However, there is no guarantee that the
nearest neighbour is in the leaf node reached, so the algorithm then finds
the best point in this node, and if there are potentially better points, it will
backtrack and search in the other nodes. The recommended method for
this part is the priority search [6], where the backtracking will be done in
cells in the order of their distance from the query point. This will in the
worst case scenario result in a time complexity of O(n).

Algorithm Average Worst case
Space O(n) O(n)
Search O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

Table 5.1: Complexity of k-d trees

In high dimensional spaces, the k-d tree Nearest Neighbour becomes
inefficient. In general, with k-dimensionality, the number of points in data
N, should not be N � 2k. If this is not the case, then the algorithm
will evaluate most points in the data set, resulting it to have the same
runtime as an exhaustive search. This is a result of the algorithm needing to
backtrack further as the number of dimension increase. If the backtracking
is then reduced by limiting it, the certainty of finding the best match is
sacrificed resulting in an approximate search instead. The quality of the
result diminishes as the dimensions increase. Below in Figure: 5.1 on
page 38 is an illustration of a k-d tree built from the points: (1.9), (8.8),
(2.3), (7.2), (4.1), (9.6), (3.7), (7.9), (5.4), (6.8). And in Figure: 5.2 on page 39
the illustration of the sectors the points are in.

x≥6

y≥8

(6.8) (7.9) (8.8)(7.2) (9.6)

y≥4

(1.9) (3.7) (5.4)(2.3) (4.1)

Figure 5.1: k-d tree illustration
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Figure 5.2: k-d tree illustration showing points in
sectors

There are many different implementations of approximate Nearest
Neighbour searches in k-d trees. In 1998 Arya [3] proposed a solution that
imposed a bound on the accuracy by using the notion of ε-approximate
Nearest Neighbour. Where a point p ∈ X is an ε-approximate Nearest
Neighbour of a query point q ∈ X if dist(p, q) ≤ (1 + ε)dist(p*, q) where
p* is the true nearest neighbour. This means that p is within relative error
ε of the true nearest neighbour. This is also referred to as "error bound"
approximate search [53].
Another solution proposed is a "time-bound" approximate search called
Best Bin First which sets a fixed limit to the number of leaf nodes the
algorithm searches [6]. This solution has been found to yield better results
than the "error bound" search [53].

5.6 Multiple randomised k-d trees

Multiple randomised trees [61] is proposed to improve the original k-d tree
algorithm. These randomised trees are searched simultaneously to avoid
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the problem of diminishing returns in high dimensions.
The method will create an m number of different k-d trees where each has
a different structure so that searching them will be independent. Limiting
the number of nodes to be searched to n nodes, will on average result
in n/m nodes simultaneously searched in all of the m trees. If one is to
achieve independent tree searches, there is not enough to build the trees by
selecting random dimensions. One of the solutions is to create the trees
with different orientation by rotating the data [61]. The search is then
carried out concurrently with a pooled priority queue. After each of the
m trees has been ascended once, and each search have found their first
potential best match, the nodes are compared across so that every match is
ranked both with the other potential matches within each tree and with the
nodes in the other trees.

5.7 Best Bin First(BBF)

BBF is a shape-based indexing method suited for a moderate number of
dimensions, up to 20. It was created as a solution to improve the k-d tree
solution which suffers from a higher dimensionality. It uses feature vectors
from an image to rapidly find possible matches from an index structure [6].
Each query looks at a fixed number of bins before ending the search. The
bins are explored after their distance from the query point. BBF will on
average return 90% correct matches, and the remaining 10% will otherwise
be close neighbours.

5.8 Locality Sensitive Hashing (LSH)

Usually, a hash function maps data into distributed space. However, hash
functions are exact, designed for precise data structures. Locality Sensitive
Hashing [34] takes distance into the calculation. If two points are close
together in the original space, it is likely they are close together in the hash
structure. Similarly, two descriptors far away from each other in the ori-
ginal space will be likely to be far away from each other in the hash struc-
ture.
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Figure 5.3: Illustration of Locality Sensitive
Hashing

LSH aim to project the data into a low dimensional binary hamming
space. The hash key is each data point mapped to a b-bit vector, and this
will potentially allow an approximate Nearest Neighbour search in sub-
linear time. By applying n binary hash functions h1,....,hn to every object in
the database, we will get all the hash keys. All of the hash functions h must
satisfy the locality-sensitive hashing property:

Pr[h(xi) = h(xj)] = sim(xi, xj)

where sim(xi, xj) ∈ [0, 1] is a similarity function. The idea here is that
similar point will get the same hash key and be stored together, which
means that when a query finds a bucket, it will get a collection of related
points. The query time for retrieving (1 + ε) nearest neighbours is bounded
by O(n1/(1+ε)) for the hamming distance [59], which enables the possibility
of speeding up the query time at the cost of accuracy.

5.9 Wavelet-based hashing

Wavelet indexing uses hash tables. This solution uses a Haar wavelet which
is a sequence of rescaled square shaped functions that form a wavelet
family [24]. A wavelet is a repetitive sequence formed as a wave that
increases and decreases from zero to zero. The Haar wavelet is the purest
form of a wavelet, and it is not continuous. A three-dimensional lookup
table indexes each feature, and the dimensions are the corresponding three
first non-zero wavelet coefficients [15]. There are ten overlapping bins
per dimension; thus at least half of a bin match each query. A query
is exhaustively matched to all features in a query bin and will produce
many nearest neighbours. As there is a possibility that the actual nearest
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neighbour is outside one of the three dimensions, this classifies as an
approximate Nearest Neighbour search. The algorithm potentially gives
a 125 times speed-up with only a 10% loss of matches assuming an even
feature distribution.

5.10 Cascade Hashing

Cascade hashing [16] is a proposed three-layer structure of hashing lookup,
hashing remapping and hashing ranking.
The first step is to construct a hashing lookup with short codes to do
a coarse search. Each feature is represented in bits made from locality
sensitive hashing and sorted in buckets from the bit sequence. When
searching a particular feature point from the hash table, all features from
the corresponding bucket is returned. The number of bits to represent
each feature is freely set, a small number will give large buckets and many
potential points both similar and dissimilar. While a large number will
reduce the samples in each bucket and reducing the chance for dissimilar
points, it will also reduce the number of the best matches to fall into the
same bucket thus increase the possibility to miss vital features. This means
that the number of bits would have to be tuned to achieve the best possible
result.
The next step could be to calculate the distance from all the points
returned from the bucket, however, as the calculation part is the most time
consuming, and the number of samples is still potentially large, this would
not be an optimal solution. Instead, a hashing remapping is introduced, by
using hamming distance on a larger amount of bits from the candidates,
and then sorting them accordingly.
The final step will then be to create a third hash table which will be
constructed from the hamming distance from the query point to all of
the features in the other image. Each bucket is sorted after the hamming
distance from 0 and upwards. Then all the points from bucket with
hamming distance 0 will be extracted, if the number of points is less
than the number of points the second step provided, the next bucket with
hamming distance 1 will also be used. This part will be repeated until
the number of points is equal to the potential points found by the hash
remapping. The two best candidates from these are calculated, and the
method moves on to the next query point.
The tests done with this implementation has yielded great results giving
up to 300 times speed-up compared to the brute force method [16].

5.11 Conclusions

There are obviously many different approaches to handle feature match-
ing, often depending on the size and type of problem. Many of the NN
solutions are good in lower dimensions; however, when the dimensional-
ity grows, the search time grows exponentially with it. So to achieve ef-
fectiveness in these cases, the Approximate Nearest Neighbour search will
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improve it a lot compared to the exhaustive search. The SIFT descriptors
in openMVG have a 128 dimensionality, which means that the exhaustive
search and many of the solutions with tree structures will probably be inef-
ficient implementations. Regarding the dimensionality, it will also be inter-
esting to see how the quality of the matches will be on the cascade hashing
and k-d tree solution which we will test our implementations against later
on. The k-d tree solution is interesting because the number of dimensions
means that it has to sacrifice the number of correct matches or suffer re-
garding the speedup [53]. For the cascade hashing it will be interesting to
see what the dimensionality does for the quality since it at some point uses
hamming distance to find matches. Hamming distance does give an indic-
ation for equality, but it does not consider the significance of a bit, only if it
is wrong or not.

We believe that there is most likely that the exhaustive search would have
the biggest improvement potential as this would be a serious bottleneck
due to the dimensionality. It will be interesting to see how close we can get
the exhaustive search to the approximate search by improving it. Another
approach could be to combine some of the different solutions into a new
method and see if there is any possibility for improvement through that. In
any case, our solution would have to be judged not only by the one we are
improving but also against other solutions available.
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Chapter 6

Exhaustive search

6.1 Squared Euclidean distance

If we are to improve the exhaustive search we have to look at the
calculations for matching the descriptors. As mentioned in section 4.5
on page 34 the matching calculation done in OpenMVG is by default
squared Euclidean distance. Euclidean distance gives us the Euclidean
length (straight line distance) between two different points in Euclidean
space. The Euclidean distance of a vector v ∈ Rn is the square root of the
summed squared vector elements.

d =

√
n

∑
i=1

(xi − yi)
2

By examining this formula it becomes apparent that it is a straightfor-
ward development to the multidimensional problem of the Pythagorean
theorem, which can be seen in figure 6.1 on page 46. The algorithm takes
two vectors and sums the squared result of each dimension subtracted from
each other. The OpenMVG implementation of exhaustive search using Eu-
clidean distance as metric takes each descriptor in one image and calculates
the disparity between each of the descriptors in the corresponding image.
When the calculation completes, it saves the two best matches and moves
to the next descriptor repeating this until all descriptors in the image have
two matches in the corresponding image. The reason the best and next
best descriptor is saved is that the disparity between them should be of a
certain distance. If they are below a distance threshold (The threshold is
pre-set to a default value, and can be tuned if needed), they are dismissed
as potential matches because they are not unique enough. The complex-
ity of this algorithm consists of n subtractions, n square operations and n
sums, which gives us a complexity of O(3n), this means that it has a growth
of O(n). This complexity will be the benchmark we will need to go under
if we want to improve the efficiency of the matching process.
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Figure 6.1: Squared Euclidean distance between
two points in two dimensional space computed

through the Pythagorean theorem

6.2 Linear algebra model

As a basis for our Nearest Neighbour algorithms, we will use vectors to
represent the SIFT descriptors. We explain this choice as follows: A vector
v is a set of numbers, where each number v1, v2, ..., vn will represent one
of the 128 dimensions of the SIFT descriptor. This representation allows
our 128-dimensional vectors to represent coordinates of points in 128-
dimensional space, and since each component of a SIFT descriptor is a
floating point number, i.e. di ∈ R then v is a floating point vector of
dimension 128 which we mathematically express as v ∈ R128. Representing
the SIFT descriptors as a coordinate has a series of benefits as it allows us
to experiment with different linear algebra models which may improve the
efficiency and correctness of the Nearest Neighbour problem in comparison
to the Euclidean distance metric. Especially the dot product, also known
as the scalar product, inner product or the projection product, has an
interesting effect: It is directly correlated to the angle between two vectors
and introduces the concept of vector norm (the length of the vector in
linear space). This effect allows us to look at a vector as a linear function
and enable us to project the vector representation of the SIFT descriptors
against some defined model or subspace, such as a line defined by the
vector representation of a different SIFT descriptor.

6.3 Hypersphere

A hypersphere is an entirely round geometrical object with the same
mathematical properties as a sphere, but it has an arbitrary amount of
dimensions. While a standard sphere relies in three-dimensional Euclidean
space, a hypersphere relies in N-dimensional Euclidean space. One of the
main properties of a sphere is its equal distance from the centre to all edges.
This property is deduced from the mathematical definition of a sphere. A
hypersphere is visualised in figure 6.2 on page 47 and is defined as follows:
the set of points that are all at the same distance r from a given point in
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N-dimensional space [1]. We represent normalised SIFT descriptors as
points on a hypersphere. As a SIFT descriptor has 128 dimensions, the
hypersphere on which we project the descriptors will be 128 dimensional
as well.

Figure 6.2: Hypersphere illustrated in three
dimensions

6.4 Arc length

Considering the hypersphere representation of SIFT descriptors mentioned
above, we can find the disparity between descriptors by looking at the
arc length between the points representing them on the hypersphere.
We compute the arc length through the angle between the points. Our
thoughts were that by calculating the arc length between two points,
we would have another method to figure how close to each other
two descriptors were, which would hopefully achieve an accuracy that
exceeded the measurement done by the Euclidean distance metric as well
as performance improvements. Below is an explanation of the calculation.
A single vector consist of n coordinates:

−→u = [x1, x2, x3...xn]

The length of the vector is retrieved by taking the square root of the sum
of all coordinates squared:

‖−→v ‖ =
√

n

∑
i=1

x2
i =
√−→v · −→v

This results in n square operations and n sum operation, which gives 2n
calculations in total.

Dot product between the vectors is the sum of each corresponding
coordinate multiplied with each other:

−→u · −→v =
n

∑
i=1

xui · xvi
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Again this gives us 2n calculations as there is n multiplications and n sums.

The angle is retrieved by taking the dot product of the vectors divided
by each vectors length multiplied with each other:

θ = cos−1
(

(−→u · −→v )

(‖−→u ‖ · ‖−→v ‖)

)

Which gives us the arc length computation:

Arclength =
θ◦

360◦ · 2πr

Complexity-wise this gives us 4n for the product of the length of
the vectors, and 2n for the dot product of the vectors. Ignoring the
last calculations which are constant regardless of the size of n, we get
O(6n). Thus, we perform six operations times the descriptor size for each
calculation. This algorithm complexity suggests that the arc length metric is
not potentially faster than the Euclidean distance metric, so the only thing
we can achieve is higher quality on the calculation itself and hopefully not
lose too much performance.

6.4.1 Implementation

Since we only change the calculation on this part, we could keep the
general set-up and only change the calculation itself. We declare three
variables to hold the intermediate results, one for the dot product between
the descriptors and two for the dot product of each descriptor. Further, the
inverse cosine function is computed based on the dot product divided by
the product of the two length calculations, before multiplying it with 2π.
The result is then returned and the main part will use it as if it was done
by Euclidean distance to compute the distance threshold. The initial results
for this method was actually quite positive, it seemed like the run time was
more or less stable, and the matches provided seemed to be more precise in
comparison to the Euclidean distance metric as there were fewer outliers.
However, if the number of features increased the solutions proved to be
less effective and not a good solution overall. We will not go deeply into
the results for now, as we will compare our different solutions later in the
thesis.

6.4.2 Comparing arc length to squared Euclidean distance

The arch length solutions proved to be slower in theory, and that was
also the case when testing it. But it did provide some changes to
the matches, removing some of the outliers that we experienced with
Euclidean distance. This suggest that the solution is more precise and that
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there may be uses for it in some cases. However, upon further testing we
understood that the reduction of false matches was due to the increased
distance threshold from measuring along an arc instead of a direct line.
When we adjusted for this, the matching results were the exact same. This
can be proved through the following observations for the l2 normalized
vectors −→v ,−→w which have length one:

‖−→v ‖ = 1, and ‖−→w ‖ = 1

We can show that the Euclidean distance between these two vectors is
proportional to the arc length between them in the following manner [69]:

‖−→v −−→w ‖2 =
128

∑
n=1

(vn − wn)(vn − wn)

=
128

∑
n=1

v2
n − 2vnwn + w2

n

= 2−
128

∑
n=1

2vnwn

= 2−
128

∑
n=1

2cos∠(vn, wn)

= 2(1−
128

∑
n=1

cos∠(vn, wn)

It is straightforward to see that Euclidean distance and arc length
are mathematically proportional as it is trivial to convert between the
Euclidean distance and the angle used to calculate an arc length. The
two calculations are not equal due to the square operation; however, as
squaring is an operation that preserves the order for a set of positive
numbers, this can be ignored. Another problem was due to the initial
test programs use of a relatively small number of descriptors. When we
increased the data size, we experienced that the runtime suffered more and
more in comparison to the Euclidean distance metric.

6.4.3 Arc length improvement

Since we had concluded that the algorithm did not have any advantages
considering the number of operations, the next step was to see if there were
any unnecessary calculations in our implementation. Since the vectors we
are working with are normalised to unit length, calculating the length of
them should not be necessary to get the correct result from the algorithm.
Therefore, we can ignore the calculation that finds the length of each
vector and use a constant number instead. By doing this, we can change
the complexity of the algorithm from O(6n) to O(2n) which would be
potentially better than the original implementation. When implementing
this on the unsigned char representation of the SIFT descriptor discussed
in section 2.2.5 on page 11, we noticed that due to loss of precision during
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the conversion, the new vector length was between 507 and 508 instead
of the expected 512. Therefore we used this constant as vector length
and got identical matching results. The remaining bottleneck with this
implementation was the expensive inverse cosine operation. One way to
improve this is to create an inverse cosine lookup table; we decided against
doing this in a CPU implementation for memory efficiency purposes.

6.5 Dot product

As discussed in section 6.2 on page 46 the dot product on Rn is directly
associated with the concept of an angle between two vectors. We can see
this association from the following example: Given two vectors x and y
each representing points in a Cartesian coordinate system, we can draw
lines from the centre of the coordinate system the points specified by each
of the vectors to create an angle. Further, we can create a triangle by
drawing a third line between the two points. The dot product between
two vectors by its algebraic definition is written

−→v · −→w

which by its geometric definition is equivalent to

|−→v ||−→w | cos θ

where |−→v | is the length of −→v and θ is the angle between −→v and −→w . If the
dot product is negative, θ is larger than 90° telling us that the two vectors
are far apart from each other. When θ is 90°, the dot product is zero since
cos 90° = 0.

−→w

−→v

θ

|−→v | cos θ

Figure 6.3: Projection found by the geometric definition of the dot product

This means that when the dot product is positive, θ is less than 90°,
and it will increase as θ decreases. When the two vectors are aligned, the
maximum value of the dot product is achieved. Therefore, by calculat-
ing the dot product between our descriptors, we can find the best matches
by keeping the ones that have the highest value after the calculation, and
achieving the same distribution as the Euclidean distance would provide.
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The pipeline for the dot product calculation is illustrated in figure 6.5 on
page 53.

Euclidean distance has 3n operations for each calculation. Since each
descriptor consists of 128 dimensions, the total amount of operations with
squared Euclidean distance will be 128 subtractions, 128 multiplications
and 128 sums, which is 384 operations. Since we do not need the exact
distance between the vectors, but rather finding the ones that are closest
to each other before doing the calculation, we can instead calculate the
dot product between the vectors, since it gives us an angular relationship
between the two vectors. Thus, we will still be able to find the two best
matches from each descriptor, and we will do it with fewer operations than
if we used the squared Euclidean distance formula. We compute the dot
product in the following manner:

d =
n

∑
i=1

(xi · yi)

This formula takes 2n operations which will result in 128 multiplications
and 128 sums, the total being 256 operations which are 128 operations
fewer than the original implementation. It does perhaps not sound like
a big deal, but since this part is done m*n times for each m descriptors
in the left image and n descriptors in the right image, we will save many
calculations as the number of descriptors increases. To avoid complication
with the other parts of the program, we do not return the dot product
result. Instead, we find the two best matches from our calculation and
return the result after doing squared Euclidean distance from these two.
Hence we will improve the runtime to find the matches at the same time
we will still be able to use the original implementation for calculating the
difference between them. This solution should provide an improved run-
time since the number of calculations will decrease. By our accounts, it is a
great chance that it will also improve more as the data set increases, as the
number of calculations we save will increase as well.

6.5.1 CPU Implementation

The first natural step for us to take with this idea was to implement our
solution in the CPU based part of the program. Although the best imple-
mentation probably would be on the GPU, it is sensible to start off with the
CPU, making sure that the implementation work and see the advantages it
gives regarding run-time and if the quality will suffer since we do a differ-
ent computation. Implementing a new line of code can be done in many
ways, our approach was to do small incremental changes and verify them
step by step. We did this to ensure that our changes would not impact the
program in the wrong way, and simplify elimination of errors.

What we knew for sure was that the result of the algorithm still should
provide two matches we could compute the distance between the best and
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second best match. We compute this distance with the Euclidean distance
metric in the last part of the method from the two best descriptor indexes.
Then we looked at how we get the two descriptors, we knew that we
needed to search through all the descriptors from the second image, so we
set up a standard iteration of each descriptor in the first image, and then we
iterated through all descriptors in the corresponding image in a standard
exhaustive search pattern. Further, we required the calculation of the dot
product between these descriptors.

In our first implementation we iterated through every dimension in the
descriptors one at a time, however, by loop enrolling, calculating four di-
mensions each iteration, we could minimise the overall runtime of this part.
Therefore we iterate four dimensions at a time, saving the result of four
multiplications from each descriptor, and summarise them when all 128
dimensions have been measured, before jumping to the next descriptor.
When we have a complete calculation of a descriptor against our query
point, we check if the sum of them is larger than the previous best result.
If it is, we save the index and the value as the new best result. We do this
both for the best match and the second best match, making sure we always
have control over the two best potential matches. After all descriptors in
the second image have been checked, we provide the two indexes to the
Euclidean distance calculation to check if the distance is above the required
threshold, and continue to the next descriptor in the left image. This pro-
cess repeats until we have compared all of the descriptors in the left image
with all descriptors in the right image.
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Figure 6.5: Flowchart of exhaustive search using dot product

The results from this solution was encouraging, the run time had a
significant improvement, and we couldn’t see any negative impact on the
quality of the results. The improvement was seen both on a small scale as
well as on a large scale of input. So we quickly decided that we also wanted
to do our implementation on the GPU part to see if we could achieve the
same improvement.

6.5.2 GPU Implementation

As was the case for the CPU implementation, we did this part in small it-
erations to avoid complications on the way. The set-up on the GPU is quite
different to the CPU implementation, and the room for errors is bigger as
we need to consider race conditions. However, the principle is the same; we
want to compute the Euclidean distance only two times per run to calculate
the distance threshold between the nearest and second nearest neighbour.
We will find these two descriptors through the dot product computation.

The GPU implementation is done in PopSIFT, as PopSIFT had a more
proper set-up for our problem than what we experienced in openMVG.
Largely because the descriptors already exist in GPU memory, thus no
memory copy from CPU to GPU is needed. Our implementation in PopSift
runs with one block and 32 threads for each descriptor in the query set. Do-
ing this, we take advantage of the GPUs ability to run threads and blocks in
parallel. The choice of 32 threads per block is due to the warp size, which
we utilise for efficient thread communication. We also implemented this
algorithm for 64/128/256 threads per block, but as the general process is
the exact same for all sizes, we only explain the 32 thread version. The only
difference is that the number of blocks is divided by the number of warps.

We compute the dot product in two basic steps. First, the 128 floating
point values are distributed between the 32 threads within a block, giv-
ing each thread four floating point values from its query descriptor. Then
all the threads iterate over all the descriptors in the database set, calling a
function that calculates the dot product between the query descriptor and
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each of the descriptors in the database set. In this function, each thread
computes the dot product of its four floating point values with the corres-
ponding four floating point values in the database descriptor. We then have
32 values, which is added together in thread zero using the shuffle down
operation available within a warp. Thread zero will then update the best
and second best result by comparing the new result with the previous best
and second best. We repeat this procedure for all descriptors in the query
set. When we have compared a query point to all the descriptors in the
database set, we compute the Euclidean distance on the two best poten-
tial matches to compute the distance threshold before adding them to the
match set. This computation is again computed by 32 threads in parallel,
in a similar manner as the dot product. Since we assign each query point
to a block, this operation is concurrent.

GPU implementation Conclusions

The dot product method proved to be faster on the GPU as well, with
the running time cut down by about 2

3 over the Euclidean distance search
already implemented. We were pleased with this result, as it proved that
not only the algorithm in itself was better as was seen on the CPU, but our
implementation, in general, was also better as we reduced the running time
by more than the algorithmic improvements would suggest.

6.5.3 Comparing Squared Euclidean distance to dot product

By changing the metric from the Euclidean distance to the dot product
calculation, we have achieved an exhaustive search that is faster than
previous solutions without diminishing the results. Since the complexity
of the dot product is O(2n) versus O(3n) for Euclidean distance, there will
always be n fewer operations with this implementation regardless of the
size of the input. Thus, the larger the data sets provided is, the better the
dot product will perform against Euclidean distance, making it a preferred
algorithm to use as a metric. As we still use the Euclidean distance metric
for the last calculations, it is still a relevant algorithm in this type of work
even though we could completely remove it through the use of an inverse
cosine table.
The dot product can also improve some approximate searches if they do
calculations on a relatively large number of descriptors. Alternatively, it
can make some of them more precise by giving them the option of doing
more calculations than previously without losing performance.

6.6 Results

The tests are not to be taken literally, as there will be different results
based on external factors, but they will say something about our solutions
nevertheless. In the CPU test, we include running-time comparisons to
two approximate searches: Cascade hashing [16], and randomised k-d
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trees [53]. For the GPU tests, FLANN [53] provides a CUDA version of
the ANN randomised k-d trees algorithm. However, this solution only
supports three dimensions [68]. Although it would be possible to perform
a dimension reduction, we choose not to do this as it would significantly
reduce the matching quality. Instead, we will use the CPU version of
randomised k-d trees provided by FLANN [53] as a comparison.

6.6.1 CPU INFO

All CPU experiments were computed with the specifications provided in
table 6.1 on page 55.

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) 8
On-line CPU(s) list 0-7
Thread(s) per core 2
Core(s) per socket 4
Socket(s) 1
NUMA node(s) 1
Vendor ID GenuineIntel
CPU family 6
Model 158
Model name Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
Stepping 9
CPU MHz 4200.000
CPU max MHz 4500,0000
CPU min MHz 800,0000
BogoMIPS 8400.00
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 8192K
NUMA node0 CPU(s) 0-7

Table 6.1: CPU information

6.6.2 Test data

Our tests are done with three image pairs with different size so we could see
where our solutions would have the best impact. The first image pair has a
low resolution which is below the recommended standard for openMVG.
The second pair is in HD resolution which is the recommended standard
for openMVG, and the third pair is in UHD resolution. The exact resolution
and number of features in each image can be seen in table 6.2 on page 56
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Image Size Features OpenMVG Features PopSift
Ace 0 500x500 477 1448
Ace 1 640x480 641 2449
Col 0 1920x1080 5028 25018
Col 1 1920x1080 5556 27517
NY 0 3264x1836 12269 60237
NY 1 3264x1836 10130 48438

Table 6.2: Test data

Figure 6.6: Picture set Ace

Figure 6.7: Features in image set Ace
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Figure 6.8: Picture set Col
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Figure 6.9: Features in image set Colosseum

New York
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Figure 6.10: Picture set NY
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Figure 6.11: Features in image set NY

6.6.3 CPU tests

Metric Matches Runtime Speedup
Euclidean distance 122 32 ms 1x

Arc length 109 29 ms 1.1x
Dot product 122 26 ms 1.2x

ANN k-d tree 123 60 ms 0.5x
Cascade 126 10 ms 3x

Table 6.3: CPU test on Ace

Table 6.3 on page 60 shows that there are no major differences between
the methods regarding both runtime and the number of matches. The
Cascade hashing has the most noticeable speedup; however,it has more
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false matches compared to the other methods, and it is not necessarily
the best solution for images with low resolution. Our arc length and dot
product solution is slightly faster than the original Euclidean distance, and
the matches they provide are satisfying, making them more or less equal.
There is no good reason to use one over the other, and if the image data
consists of low-resolution images, the standard solution will work fine.

Figure 6.12: Matches from Euclidean distance

Figure 6.13: Matches from dot product
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Figure 6.14: Matches from arc length

Metric Matches Runtime Speedup
Euclidean distance 540 3363 ms 1x

Arc length 286 1899 ms 1.8x
Dot product 540 760 ms 4.5x

ANN k-d tree 559 234 ms 14x
Cascade 590 83 ms 40x

Table 6.4: CPU test on Col

The Colosseum test shown in table 6.4 on page 62 provides some more
interesting data. All the methods perform faster than Euclidean distance,
but there is more disparity in the matches provided. Again the Cascade
hashing is by far the most efficient method with potentially 40 times
speedup, but the number of matches provided differ from the exhaustive
searches. The k-d tree solution is faster than the original implementation
with up to 14 times speedup. The dot product solution which has the
same matches as the original implementation is 4.5 times faster, and are
a good alternative if the quality of the matches matters. The arc length
solution has significantly fewer matches, however, as we discussed earlier,
the arc length solution needs tuning of the distance threshold to get all the
matches, and we did not do this on the test sets as this would not change
the performance noticeably.

Figure 6.15: Colosseum euclidean distance
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Figure 6.16: Colosseum dot

Figure 6.17: Colosseum arc

Metric Matches Runtime Speedup
Euclidean distance 4166 14980 ms 1x

Arc length 3544 8431 ms 1.8x
Dot product 4168 3338 ms 4.5x

ANN k-d tree 4159 481 ms 31x
Cascade 3772 183ms 82x

Table 6.5: CPU test on NY

The final test on the CPU implementation with the New York image set
show in table 6.5 on page 63 describes a similar pattern as on the Colosseum
test. The speedup for our dot product and arc length solutions are the
same as before while the approximate searches provide an even greater
speedup. Thus, as the number of image points increases, the efficiency of
the exhaustive search will deteriorate in comparison to the approximate
searches.

Figure 6.18: brute NY
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Figure 6.19: dot NY

Figure 6.20: arc NY

Ace Ventura Colosseum New York
Arc length 1.1x 1.8x 1.8x
Dot product 1.2x 4.5x 4.5x
ANN k-d tree 0.5x 14x 31x
Cascade 3x 40x 82x

Table 6.6: CPU speedup on the different image sets

The table 6.6 on page 64 shows how well the different solutions do
on the different image sets. As the resolution on the images increases,
the exhaustive searches improves the runtime to a point before stagnating
around full HD resolution. The approximate searches continue to improve
even after the resolution surpasses 1920x1080 and yields a much better
speedup when it comes to images with a significant resolution.

6.6.4 GPU tests

Metric Matches Runtime Speedup
Euclidean distance 752 3.627 ms 1x

Dot product 752 3.606 ms 1x
ANN k-d tree* 755 118 ms 0.03x

Table 6.7: GPU test on Ace
Done with NVIDIA Visual Profiler

*ANN k-d tree done on CPU
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Metric Matches Runtime Speedup
Euclidean distance 5550 519 ms 1x

Dot product 5550 502 ms 1x
ANN k-d tree* 5970 1997 ms 0.3x

Table 6.8: GPU test on Col
Done with NVIDIA Visual Profiler

*ANN k-d tree done on CPU

Metric Matches Runtime Speedup
Euclidean distance 24999 3173 ms 1x

Dot product 24999 2022 ms 1.6x
ANN k-d tree* 25668 4864 ms 0.7x

Table 6.9: GPU test on NY
Done with NVIDIA Visual Profiler

*ANN k-d tree done on CPU

The GPU tests on table 6.7, table 6.8 and table 6.9 show us that the dot
product is performing better than the Euclidean distance, but there is no
evident speedup on the smaller images. It does have some speedup on the
New York image set, and since it has the same matches as the Euclidean
distance, it can replace it on any image set without any drawbacks.
The tests shows that both the exhaustive searches compared to the ANN
k-d tree is significantly faster on both the Ace image set and the Colosseum
image set. On the New York image set, the difference is not as substantial,
but both GPU versions of the exhaustive search is still better. In any
case, the GPU solution using the dot product is the best option since it is
significantly faster and 100% correct.

Thread count Runtime Occupancy
32t 2107 ms 49.6
64t 2022 ms 99.9
128t 2092 ms 99.9
256t 2166 ms 99.9

Table 6.10: Optimizing the dot products number
of threads per block GPU test on NY
Done with NVIDIA Visual Profiler

One of the things we did to optimise the dot product was to implement
it with 32, 64, 128 and 256 threads, to see what would give us optimal
performance. We did this because the profiling results pointed to an
achieved occupancy of 49.6 in our 32 thread implementation which we
thought we would be able to improve by increasing the number of warps
per thread block. Table 6.10 on page 65 shows the number of threads,
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execution time and occupancy for the dot product on image set NY. The
64 thread version proves itself as the winner with the lowest running time
and 100% occupancy.

6.6.5 Conclusion

The CPU tests give us an indication that the arc length implementation per-
forms slightly better in comparison to the Euclidean distance metric with
regards to the runtime. The dot product is faster than both these imple-
mentations, and it is a lot faster for the larger images. The Approximate
searches are quite similar for smaller images, but they are much faster on
the larger inputs. The precision of the matches are not as good since the
number of matches varies from the exhaustive search, the k-d tree solution
is not far from the original implementation, while the cascade hasher has a
high percentage of false matches and are not a viable option. If the input
consists of standard HD images and the guaranty for correct matches is
needed, the dot product solution should be an excellent alternative to the
approximate searches as it performs well enough and supplies the same
matches as the Euclidean distance does.

The GPU tests show that if there are input images with low resolution,
there is no significant difference if we are using the Euclidean distance
metric compared to the dot product. Larger images show us that there
is a difference and that the dot product will enhance the program. There is
evident that the size of the images or more precisely the number of features
has a big say on the algorithms on a CPU. If there is a moderate number
of features, usually because the images has a low resolution, the exhaust-
ive searches often has a adjacent runtime to the approximate searches. As
the number of features increases, the gap between the exhaustive searches
and the approximate searches grows and the speedup they give will often
weigh heavier than the drawbacks they give regarding the precision. On
the GPU, our dot product solution is faster than the other solutions both
compared to the CPU and the GPU solutions. It is also 100% correct, thus
the best solution regardless of the data set in this setting.
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Chapter 7

Approximate nearest
neighbour searches

7.1 The need for speed

We managed to improve the exhaustive Nearest Neighbour search, and it
should be a viable solution in many scenarios. However, there is still a need
for even faster solutions, and there is a limit to how far we could take the
exhaustive search. So our next focus would be to change the search method
itself, and try to make a more effective way of doing it, and still be able to
provide an acceptable number of matches. There are several algorithms for
computing an Approximate Nearest Neighbour [6, 8, 16, 34, 61], however,
the fastest algorithms sacrifice much precision to get a fast running time.
We will attempt to develop an algorithm which surpasses these algorithms
in speed an precision. The optimal solution would give a 100% number of
matches, but we are prepared to lose some precision if it could improve the
overall runtime drastically.

7.2 Tree structure of transposed descriptors

Our proposed algorithm for an Approximate Nearest Neighbor search
makes use of transposed descriptors to quickly discard different descriptors
through a coarse comparison of the most significant bits. The algorithm
takes advantage of the 128 dimensions of the SIFT descriptor for fast match-
ing. The flow of this approximate search is illustrated in figure 7.1 on
page 68.

7.2.1 Memory layout

The SIFT descriptor is laid out in memory either as 128 consecutive single
precision floating point numbers(32 bit) as the most precise representation,
or 128 consecutive unsigned chars in the less precise but more memory
efficient representation. All dimensions have equal weight. Let us take
the descriptor consisting of floating point numbers as an example. This
descriptor consists of 512 consecutive bytes. If we instead visualise this as
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a two dimensional 128 * 4-byte matrix where the floating point numbers
are laid out column-wise in memory, we would be able to iterate through
a descriptor in such a way where we first see the bytes which have the
strongest impact on the size of the number first. We continue this abstrac-
tion and visualise our descriptor as a 128 * 32-bit matrix where every float is
laid out column-wise with one bit in each depth, and we can iterate through
the descriptor looking at 128 bits at a time which will be the most signific-
ant bits, then the second most significant bits, etcetera.

This method will function in the same way for the unsigned char repres-
entation of the SIFT descriptor, the only difference being that our descriptor
would be a smaller 128 * 8-bit matrix instead. With this abstraction, we will
be able to detect fast whether two descriptors are a potential match for
each other and otherwise discard without making a thorough comparison.
It also gives us the ability to sort the descriptors in a purposeful matter, as
the descriptor is represented as a large integer. This sorting will allow us
to preprocess our data, creating bins of descriptors in which a descriptor is
either highly likely or highly unlikely to find its match. We will use this to
drastically cut down the number of descriptors we need to search to find
the nearest neighbour.

Left image

Right
image

Transpose

Transpose Hash next
descriptor

Sort Build
hash table

Lookup
from table

Dot
product

Distance
threshold

Figure 7.1: Flowchart of approximate search by transposing memory layout

7.2.2 Bitwise transpose

To convert our descriptor into a transposed bit matrix sorted by bit
significance, we can use bitwise operations. What is needed is a bitwise
transposition of the data. We have implemented several algorithms that
perform this bitwise transpose targeting CPU and GPU architectures as
well as the two different descriptor representations. However, the general
concept of the bitwise transpose stays the same. We will start by going over
the serial bitwise transpose of the 128x32 bit matrix on the CPU. As we
do the transposition of the 128x8 bit matrix by 16 8x8 transpositions also
performed for the 128x32 bit matrix, both transposition procedures will be
clear from the explanation. We will later discuss solutions optimized for
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the GPU in section 7.2.15 on page 75.

7.2.3 Detailed explanation of fast binary transpose of 128 * 32 bit
matrix

The way we choose to do this is through four 32x32 bit transpositions, and
then a final function to organize the data in such a way that we get one
128 * 32 bit matrix instead of four 32 * 32. The naive way to transposing
a bit matrix would be to mask and shift one bit at the time, and store the
current shift value in a temporary swap variable. This approach would be
very slow, as it does not take into account any knowledge about the matrix
structure. What would be a better solution would be to first swap large
16*16 blocks, then 8*8 blocks, and so on dividing the size by two each time
until we hit one [67]. Organizing the 32 * 32 bit blocks with each other is
simply a manner of swapping specific bytes in the pattern within each 32 *
32 bit sequence, this is shown in table 7.2 on page 72. As no operation needs
to swap data between the four different 32x32 blocks, the same steps will
run individually and if the architecture supports it, in parallel. In the first
step, we look at our 32x32 bit matrix as four separate 16x16 bit matrices,
and transform them in the following manner.[

1 2
3 4

]
⇒

[
1 3
2 4

]
Each number represents one 16x16 bit matrix. 1 is the left upper part, 2
the right upper part, 3 the left bottom part and 4 the right bottom part.
As shown in the illustration, the right upper part is swapped with the
left bottom part. As our 32x32 matrix consists of 32 four byte values, this
swap can be accomplished by swapping the last two bytes in the first 16
integers(0 - 15) with the first two bytes in the last 16 integers(16 - 31). In
the second step, we view our 32x32 bit matrix as 16 independent 8x8 bit
matrices, and transform them in the following manner.


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ⇒


1 5 3 7
2 6 4 8
9 13 11 15
10 14 12 16


Similar to the previous illustration, each number represents one 8x8 bit
matrix corresponding to each correct placement within the 32x32 bit matrix.
This transformation can be accomplished by swapping bits 0x00FF00FF
of the first eight integers(0 - 7) with bits 0xFF00FF00 of the next eight
integers(8 - 15). The same procedure is done for bits 0x00FF00FF of
integers(16 - 23) with bits 0xFF00FF00 of the next eight(24 - 31). What this
accomplishes is to swap bits zero to seven, also known as the eight least
significant bits, with bits eight to fifteen. In the third step we again divide
the size of our representation by two, so we get 64 4x4 bit matrices. We
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transform them in the following manner.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64


⇒



1 9 3 11 5 13 7 15
2 10 4 12 6 14 8 16
17 25 19 27 21 29 23 31
18 26 20 28 22 30 24 32
33 41 35 43 37 45 39 47
34 42 36 44 38 46 40 48
49 57 51 59 53 61 55 63
50 58 52 60 54 62 56 64


Four 4x4 bit matrices represent each of the previous 8x8 bit matrices, and
each 4x4 matrix corresponds to its correct placement within the 32x32 bit
matrix. We transform them following the same pattern as previous ex-
amples. The difference is that we again have reduced the size of our swap-
ping intervals. We swap bits 0x0F0F0F0F of the first four integers(0-3) with
bits 0xF0F0F0F0 of the next four integers(4 - 7). The same swaps are done
consecutively for all remaining integers(8 - 11, 16 - 19, 24 - 27, are swapped
with 12 - 15, 20 - 23, 28 - 31).

As the size of the illustration matrix doubles in vertical and horizontal size
we will not draw out the remaining two steps, but the procedure is essen-
tially the same. In the fourth step we divide our representation in two yet
again, four 2x2 bit matrices corresponds to one 4x4 bit matrix, giving us 256
2x2 bit matrices representing the complete 32x32 bit matrix. Here we swap
bits 0x33333333 of the first two integers(0 - 1) with bits 0xCCCCCCCC of
the next two integers(2-3). This is done through all 32 integers in the same
pattern as the previous scales. In the Last bit swapping step we swap 1x1
bit matrices, which of course is only one and one bit giving us our final rep-
resentation of consecutive 1024 bits, representing the 32x32 bit matrix. The
swaps still follows the same pattern, and now we swap bits 0x55555555 of
every even integer with bits 0xAAAAAAAA of every odd integer. As it
is easier to visualize the swaps taking place in binary, a conversion of the
hexadecimal values to binary is provided in table 7.1 on page 71.

The last operation performed is the swapping of integers in the 128x32
bit matrix to get the most significant byte of the second third and forth
32x32 bit matrix before the second most significant byte of the first matrix.
The second most significant bits of the second third and fourth-bit matrix
before the third most significant of the first-bit matrix etcetera. This opera-
tion is very similar to a normal transposition. In the illustration below each
number represents a 32x8 bit matrix(eight four-byte integers). A figure that
illustrates the necessary swaps is seen in figure 7.2 on page 72.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ⇒


1 5 9 13
2 6 10 14
3 7 11 12
4 8 15 16
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0x0000FFFF
0xFFFF0000
0x00FF00FF
0xFF00FF00
0x0F0F0F0F
0xF0F0F0F0
0x33333333

0xCCCCCCCC
0x55555555

0xAAAAAAAA

⇒

0000 0000 0000 0000 1111 1111 1111 1111
1111 1111 1111 1111 0000 0000 0000 0000
0000 0000 1111 1111 0000 0000 1111 1111
1111 1111 0000 0000 1111 1111 0000 0000
0000 1111 0000 1111 0000 1111 0000 1111
1111 0000 1111 0000 1111 0000 1111 0000
0011 0011 0011 0011 0011 0011 0011 0011
1100 1100 1100 1100 1100 1100 1100 1100
0101 0101 0101 0101 0101 0101 0101 0101
1010 1010 1010 1010 1010 1010 1010 1010

Table 7.1: Hexadecimal swap values shown in
binary

7.2.4 Detailed explanation of fast binary transpose of 128x8 bit
matrix

As previously mentioned, the transposition operation of the 128x8 bit
matrix follows the same pattern as the 128x32 bit matrix. The core
difference is that it only runs a subset of the operations. We split the
descriptor consisting of 128 bytes into 16 eight byte groups, and transpose
each individually with the same steps as performed for the 8x8 bit level.
The last operation we perform is another bit swapping routine. This routine
puts the bit level groups after each other in memory, instead of having the
transposed 8x8 bit groups after each other.

7.2.5 Sorting descriptors

After successfully transposing our descriptor into a bit matrix sorted by
bit significance, we can further use this representation to our advantage
by sorting the descriptors. This sort will give a meaningful representation
as each of the descriptors are essentially large 512/128 byte integers after
the transformation. As an integer of this size obviously can’t fit inside a
register, we need to find an appropriate iterative method of comparing two
descriptors. An efficient way to do this is to loop through the descriptor 4
bytes at a time looking for the first occurrence of uneven values. If we do
not find any, then the descriptors are exact copies.

7.2.6 Data structure

The data structure we store our descriptors in is a lookup table with several
layers. A hash table of structures containing hash tables of structures is a
good option. To create this structure all 128 bits from a specific bit level will
be used as keys. Depending on the descriptor representation used, (vector
of floating point numbers or unsigned chars) we will start with the 3rd
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Figure 7.2: Swap table for transforming four 32x32
bit matrix to one 128x32 bit matrix sorted by bit
significance. On the GPU, the same pattern is
performed on 8x8 bit blocks for completing a

32x32 transpose in parallel.

most significant bits(floating point) or the most significant bits(unsigned
char). The reason we can ignore the two first bit levels when dealing with
the floating point representation is due to the nature of the SIFT descriptor
explained in section 2.2.5 on page 11. As all elements in the SIFT descriptor
is in the interval [0, 1

2 ], the sign bit will never be set. Further, as no value is
greater than or equal to two, the first exponent bit will be zero as well.

7.2.7 Hash functions

When picking the hash functions for our descriptors, we make a few
considerations. Firstly, they should be independent and produce uniformly
distributed hashes. Secondly, it is important that the hash function execute
fast. Standard hash functions such as SHA1 which might be considered a
good option. However, it is not because of the speed consideration. Good
choices are often non-cryptographic hashes. A good example is the djb2
hash function [44]. This hash function is a string hash function which
produces very well distributed hashes with few instructions on most key
sets.

Hash table

The data structure we create will contain similarities to a tree structure, but
it can contain multiple root nodes as it is a tree of hash tables. The hash
key maps to a certain range in the sorted descriptor list. If we encounter a

72



duplicate key in a map insertion, we increase the range of the provided key.
We call these keys and their corresponding range of descriptors pools. The
range given by a key can further be reduced by having multiple key levels,
meaning that each larger pool can have multiple smaller pools within(tree
branches), reducing the amount of possible descriptor matches the further
down the structure we get. The number of key levels recorded can either
be provided as a dynamic variable provided by the user, be pre-set, or be
dynamically set from a size limit of the innermost pools. A illustration of
a simple hash table is provided in figure 7.3 on page 73. Each entry in the
hash table will have a structure as value. This structure will contain two
indexes representing begin and end, as well as a new hash table in which
the next bit level will function as the key.

Figure 7.3: Illustration of keys passed to a hash
function which are used to compute entry indexes

to a hash table

7.2.8 Discover matching range

To match descriptors in this structure the first step needed is to prepare
the query descriptors to transpose them with the same method we used
on the database set. Further, we want to find the smallest possible range
in the sorted descriptor array to minimise comparisons without giving up
precision. We find this range in the following manner: For each descriptor,
the bit levels are used as keys in the structure, to see if an exact match of
that bit level exists. If we find an exact match in the previous level, we
will progressively check for exact matches in bit levels until no such exact
match exists, or we are above a threshold in level depth or descriptor range
size. As two descriptors are needed to compute the distance threshold, the
minimum size of a pool is two descriptors. For searches where no match in
any bit level occurs, the matching range is set equal to the entire set.

7.2.9 Descriptor comparison

When a perfect match to a new level no longer can be found, we compare
the descriptor to every descriptor inside this pool. The comparison
operation uses the Euclidean distance, arc length or the dot product for
measuring similarity.
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7.2.10 Descriptor comparison using Hamming distance

To speed up this process, we can take advantage of the fact that we have
already transposed and sorted our data, giving us the opportunity to do
this comparison using hamming distance in the next level where they are
not equal. The Hamming distance between the descriptors is the number of
set bits after an XOR operation. Counting the bits: several options, an easy
fail safe way would be to use a gnu built-in function builtin popcount.
Given sufficient amount of memory, it would also be possible to count
up the bits in O(1) using a large lookup table. The drawback with using
hamming distance in comparison to the Euclidean distance is that it is not
a precise measurement. Further, it will significantly reduce the number of
correct matches as well as introduce several false matches.

7.2.11 Distance threshold

The final step used for determining if two descriptors matches, is the
distance threshold computation. If the dot product comparison or the
Hamming distance comparison method was used to find the two nearest
neighbours, we need to recalculate the Euclidean distance or arc length
between these two, so we can apply the distance threshold.

7.2.12 Complexity

This algorithm has a worst-case running time of O(n2) and a best case of
O(n log n) bound by the sorting algorithm. The worst case arise when no
sector reduction is found, and we need to examine all descriptors N times
which is then the same as the exhaustive search.

7.2.13 Tree structure of transposed descriptors conclusions

This algorithm would allow us to do a rough comparison between two
128 dimensional descriptors with very few operations, allowing us to
determine that two descriptors are dissimilar quickly. The cost of the
transpose algorithm, the sorting algorithm and the building of the hash
table will determine if this algorithm improves performance. The grouping
of data must also be thorough. As the grouping of data is linked to the
number of descriptors, the effectiveness of this algorithm should improve
in correlation to the number of descriptors.

7.2.14 CPU Implementation

We implemented this within the OpenMVG framework. The input data
to our matcher is two compressed SIFT descriptor sets represented as
two unsigned char vectors. The transposition has two main steps, and
is implemented as we explained within section 7.2.2 on page 68. We
create a hash table with byte sequences as keys and a structure for each
entry containing an interval, as well as another hash table to distinguish
further the keys mapped to the same hash entry. This way, we store
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the two first bit levels as keys. When matching, if we hit a level two
pool containing more than two descriptors, we compare them with either
hamming distance or the dot product. If the dot product is used, we find
the two best matches before computing the Euclidean distance and the
distance threshold between them. If we use hamming distance and there is
no clear winner, we store all the descriptors with equal hamming distance
to a list on which we later compute the Euclidean distance to find the best
and next best match.

7.2.15 GPU Implementation

Transposition kernel

The first step to the algorithm is the transposition of the descriptor vectors.
As we do not want to corrupt or original descriptors, we allocate two new
buffers in GPU memory. We allocate these buffers to the same size as the
descriptor vectors. Our first attempt at this transposition was a naive one,
as it simply tried to parallelise the bit transpose without any consideration
to finding a better algorithm more fitting the massively parallel architecture
of the GPU. We call the GPU kernel with one block and 32 or 64 threads per
descriptor depending on which of our two suggested implementations we
use. We include the algorithm with worse performance here. This is to
show that an algorithm that has a low instruction count on the CPU will
not be faster than an algorithm with a higher instruction count if this al-
gorithm utilises the GPU resource better as the parallel computation will
hide the extra instruction count. The 64 threads version of the algorithm
runs in about 2

3 of the original algorithm.

We create one shared array of 128 floats, and the threads write the
descriptor from global memory to the new shared array. Each thread writes
four floating point numbers. After the write we synchronise our threads
with a barrier, ensuring all threads have completed the previous step be-
fore we use the data. Four threads call the main transposition routine, each
responsible for a 32x32 section. Again the threads are synchronised with a
barrier. The final step is to combine the separate 32x32 transpositions to get
the 128x32 transposed descriptor. As all threads write to separate floating
point values, there is no need for synchronisation. This step is done from
the shared memory buffer and back to the global memory before the kernel
completes. The main Problems with this implementation is that we need
two synchronisations, as well as having most of our threads idle during the
transposition. We solve these problems by using an alternative algorithm
which uses 64 threads through the entire process and runs without the need
for synchronisation.

First each thread reads in an 8x8 block bytes to local memory. This block
is not consecutive in memory, as we want to eliminate the need to read
or write data from other 32x32 blocks than what we initially assigned the
threads. Thus, the blocks consist of 8 bytes each having a 16-byte interval
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between them. All bytes in the 8x8 matrix will be in a separate bit level
when the transposition is complete. This way 16 threads will be cooperat-
ing on each 32x32 transposition. When the 8x8 bit transposition routine
completes, we finish by transposing the 8x8 blocks between each other.
This transposition writes from the local memory to the global destination
memory. Throughout this entire process, no synchronisation is needed as
two threads never write or read from the same memory address.

Sorting transposed descriptors with thrust

As there is only need to sort one of the descriptor sets, we pick the largest
one. Although this will make the sort itself slightly more time consuming,
it will later benefit the algorithm runtime to build the matching structure
with the larger descriptor set. We create a thrust device vector of integer
type with length equal to the descriptor count of the set. It is initialised
with thrust sequence to index the descriptors array position. This sequence
vector is created to perform an indirect lookup sort on the descriptors.
The indirect lookup comparison compares one byte at the time to avoid
the possible NaN value of a float or integer comparison. Comparison of
NaN values is an illegal operation. IEEE floating-point standard [33] single
precision (32-bit) NaN would be:

s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx

Where s is the sign. If the x sequence is all zeros then the floating point
number would be infinity, otherwise it would be a NaN value. The
comparison function compares bytes iteratively as long as they are equal.
As thrust sort does not accept equal values, if all 512 bytes of the descriptors
are equal, we compare the indexes of the indexing array to determine sort
order.

Building the GPU Hash Table

For efficient matching, a matching structure is created based on the trans-
posed descriptors. A hash table is a suitable choice. We pass the descriptor
count together with the number of hash entries to an initialisation func-
tion, which allocates the required memory. We chose the number of hash
entries carefully. Since our hash table will have no further elements added
after its first build, we do not need to worry about the load factor, i.e. the
percent full point where the table will increase its size and redistribute ele-
ments. For maximum efficiency, the hash entry count should be set equal
to the descriptor count. However, as there will likely be several duplicates,
descriptor count

2 will be more than sufficient in most cases.

To add keys to our hash table in parallel, we cannot hash two keys to the
same value without synchronisation. If this happens, several things could
go wrong. One of the key-value pairs could disappear, or we could get a
key-value pair in which the key does not correspond to the value as they
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are from two different descriptors. To solve this, we create one mutual ex-
clusion lock for each hash entry. To insert a new key-value pair to the table,
the lock corresponding to the hash value is first locked before we insert the
new entry. If one or more entries already exists at this location, we compare
our key to the keys of all the other entries, as we do not want to insert it if it
has a duplicate. If a duplicate exists, we update its value. We store multiple
entries as a linked list, each entry having a pointer to the next. An interest-
ing problem arises if more than one thread within a warp (an assembly of
32 threads executing together in lockstep) tries to acquire the same lock at
the same time. Sanders and kandrot [59] suggests to create a loop iterating
over the 32 threads in a warp, and an if statement inside the loop, letting
only the thread Idx % loop iteration continue to the locking portion of the
code.

When comparing this GPU implementation to the CPU implementation,
we see that their performance is quite similar. The GPU performs poorly at
parallelising access to data structures which need synchronisation. Thus,
building a hash table would not be a profitable operation to perform on
the GPU. However, as it significantly reduces the cost of data retrieval, it is
still a good choice. Additionally, our data already resides on the GPU, and
thus, it is counterproductive to perform this operation on the CPU as the
memory copy from device to host is costly.

Get section from hash table

To retrieve a section to search for each of our descriptors we first create
two integer arrays of the same length as the descriptor count to hold the
begin and end position for each descriptor. Each thread is given an index
based on the specific block and thread index, and we retrieve the specific
section by hashing the descriptor keys and comparing the keys with the
different keys in the linked list in the acquired pool. If we find a match,
we set the begin and end index for the corresponding position in our two
integer arrays. If the key does not match any hash entry, we set the section
equal to the entire descriptor set.

Sort descriptors based on indirect lookup table

In our initial implementation we did not perform this operation and used
the previously computed indirect lookup table to locate the descriptors
in the interval. However, as we experienced a slow execution time, we
speculated that this was due to our non-linear memory reads. Therefore we
created a kernel which sorts the descriptors based on the indirect lookup
table. The kernel copies descriptors from the original descriptor memory to
the previously used transposed descriptor memory, thus synchronisation
is not needed. Strided memory access can hurt performance, so the kernel
reads from and writes to global memory with 128 threads per block. Each
thread reads a single floating point value from the blocks designated
descriptor using its thread ID to locate the correct position. Further, it
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writes the floating point value to the corresponding position in the new
descriptor location found through the indirect lookup table. This way both
memory reads and writes are coalesced. Sorting the descriptors reduced
the algorithms running time by 20%.

Compute hamming distance in section

This function measures the hamming distance between the descriptors in a
section to find the best match. Bits are compared in iteratively lower levels
until we find the two best matches. When implementing this concept, we
realised that hamming distance between floating point vectors is imprecise
to a much higher degree than with the unsigned char representation, and
as a consequence, the number of correct matches reduces to a point where
the matcher is no longer useful. Therefore, we did not optimise the kernel
further. The concept still showed great promise concerning running time,
completing in 1

2 of the dot product match time, with a kernel running one
thread per block. Running one thread per block is inefficient as 31 out of
32 threads in a warp will be idle, so the kernel had considerable room for
improvement.

Compute dot product in section

The main difference between this kernel and the previously explained dot
product kernel is that this kernel only computes the dot product against the
descriptors within the given section retrieved in the get section kernel. We
initially used the global begin and end index arrays in the loop, however,
after writing these to local variables before the loop and using these local
variables in the loop reduced the algorithms running time by 5%.

GPU implementation Conclusions

When we compared this ANN search to the exhaustive NN search, we saw
that the exhaustive dot product search is faster. We found this strange as
we had hypothesised that our ANN algorithm would perform similarly
to the hamming distance comparison, and closer to the other approximate
searches than to the exhaustive search. After profiling the algorithm with
the NVIDIA Visual Profiler, we saw that the main bottleneck was not the
preprocessing steps as we had initially thought; it was responsible for no
more than 5% of the running time on our largest image set. Computing the
dot product of a section spent the remaining 95% of execution time.

This realisation led us to several experiments. The first experiment was to
preprocess the original descriptor memory instead of allocating new buf-
fers. After acquiring a search interval, the descriptors would be transposed
back to their original state before the dot product was computed. The per-
formance gained by this was minimal at best. Further, we tried sorting the
original memory instead of using the indirect lookup array as we believed
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that the non-linear memory access could be at fault for the slow perform-
ance. This assumption was correct, reducing the algorithms running time
by 20%. Further, we removed all repeated global reads by creating local
copies, which reduced the running time by an additional 5%. However,
when compared to the exhaustive searches on our largest image set it only
performed slightly better than the Euclidean distance and worse than the
dot product which completes in 2

3 of the time. Therefore, it is still faster to
run the dot product against all descriptors in comparison to the dot product
of a reduced range. We are not sure what the cause of this is, as the profil-
ing results show very similar values if we ignore the running time.

7.3 Ideas that did not work

Not all of our ideas had the desired effect we were looking for. Some of
them did not give us a speedup, and some did not give us the correct
matches.

7.3.1 Smart exhaustive search

We created an Approximate Nearest Neighbour search based on the
exhaustive search algorithm. This algorithm would retain information
about matched descriptors, removing them from the database set such that
the number of descriptors to compare against would be reduced for every
match found. We implemented this using a distance threshold between
best and second best match. If the ratio was sufficiently large, we would
put the last element in the database set in the position of the match we
found. This would ensure its removal and at the same time shrink the
database set. The main problem with this algorithm was that the more
descriptors we removed, the chance for the other descriptors finding their
correct second best match was reduced. This resulted in many false positive
matches being accepted. The speed increase was also minimal, as most
descriptor sets on average are several times larger than the number of
matches. Therefore we only saw a small runtime reduction of around five
to ten percent. After running our tests, it became clear that this algorithm
sacrificed too much precision for the small speedup we achieved, thus we
concluded this ANN algorithm to be inadequate.

7.3.2 Binary tree from transposed descriptor

Our initial reason to use transposed descriptors came from the idea of
building a binary search tree for the Nearest Neighbour search. We
thought this would prove an interesting Nearest Neighbour algorithm as
a binary tree would nicely reflect the structural relationships in the data
and provide efficient searching considering that tree search is an operation
of logarithmic running time. This tree would have a depth of 128 as the
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SIFT descriptor has 128 elements. We would initially build this tree with all
the descriptors from one descriptor set. When matching descriptors in the
tree, we would search the tree one node at a time, going to the left or right
branch depending on the bit at the equivalent position in the transposed
query descriptor. This concept is illustrated in figure 7.4 on page 80.
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Figure 7.4: binary tree

Implementation

After searching the tree and reaching a leaf node, this node could either
contain a pointer to a new binary tree consisting of the next bit level, or a
begin and end index to a sorted descriptor array. For traversing the new
binary tree, the descriptor count should be over a previously set threshold
that balances the extra work of searching a new tree to the number of
descriptors possibly removed from the set. As we need two descriptors
for the distance threshold, a pool containing only a single entry would add
the descriptors in the pools on its right and left side to its set.

Problem

The main problem with this algorithm is that the search of the tree made
the elements near the start of the descriptor matter more than the elements
further back. As all elements of the SIFT descriptors have equal weight,
this would lead to many false negatives as an early branch in the wrong
direction could disqualify a close match. As a result of this, we had to scrap
this algorithm as it would not give robust results concerning the equal
weight of each element in the bit sequence. However, as this method would
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work for complete matches within a bit level, we continued to develop a
modified version of this idea.

7.3.3 Hamming distance

The main problem with using hamming distance as comparison mechan-
ism on the transposed descriptors is that the best match in one bit-level not
necessarily leads to the nearest neighbour. To illustrate this, we give a small
example. Let us say we have a database with the following bit sequences.

Binary Decimal
1111 15
1110 14
1011 11

If we then would like to match a new binary sequence 1100 (12 decimal)
against this database using bit-level hamming distance the problem with
this technique becomes apparent. When looking at the decimal numbers,
it is obvious that 1011 (11 decimal) is the nearest neighbour of 1100 (12
decimal). However, using our proposed hamming distance for comparison,
this bit sequence would be excluded as it is not the best match after
the second comparison, where 1111 (15 decimal) and 1110 (14 decimal)
both are a match, while 1011 (11 decimal) is not. As a result of this,
the Nearest Neighbour implementation using bit-level hamming distance
as comparison operator on transposed descriptors cannot guarantee
correctness, and thus it will be an approximate Nearest Neighbour search.
This explains the poor match results discussed in section 7.2.15 on page 78.
Further, it raises the question around the precision loss when matching a
complete bit-level as we do in our proposed ANN matcher. Experiments
show that the precision loss is minimal as several levels after each other are
complete matches.

7.3.4 Bloom filter

A Bloom filter is a fast and memory efficient data structure which can check
if a specific element is part of a set. While The Bloom filter can determine
if an element is not present in a set, it can not guarantee that an element is
part of the set due to its overlapping nature. As such, it is a probabilistic
data structure, because it can return a false positive answer. The standard
Bloom filter implementation is a large array of size N/8 initialised to zero.
Thus, considering each bit as a separate bin, the filter has N entries. A
Bloom filter also has M keys. The size of M will determine the probability
for the Bloom filter to return a false positive answer. Therefore the number
of hash functions M is a trade-off between speed and accuracy. The Bloom
filter accuracy can also be increased or decreased by changing its size, as a
larger filter will have less overlaps. The procedure for adding an element
to the Bloom filter is quite simple. For each hash function we have in the
Bloom filter, we set the bit at the given hash position. Whether we have
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previously set the specified bit is not of concern. Thus, it is easy to see that
an element not inserted in the Bloom filter still could have all its bits set
from other elements. A illustration of a Bloom filter is provided in figure 7.5
on page 82.

Figure 7.5: Element x, y and z inserted in a Bloom
filter. The query by element w will yield a negative

return as not all bits corresponding to w is set in
the Bloom filter. Three hash functions is used.

Idea

Our idea was to improve efficiency by creating a Bloom filter which
would function as a fast check to see if the element we are looking for
does not have a potential match. If the quick check yields a positive
response, we query the lookup table. As with the lookup table, we use
all 128 bits from a specific bit level as keys. Depending in the descriptor
representation used, (vector of floating point numbers or unsigned chars)
we will start with the 3rd most significant bits(floating point) or the most
significant bits(unsigned char). The Bloom filter would be very fast to set
up, especially on the GPU by using bytes instead of bits for parallel inserts.
If two threads set two different bits inside a byte at the same time, it would
lead to a potential race condition. However, this would not be a problem
if bytes were used instead of bits as all the slots we write in would always
contain one. Writing one to a byte several times might be unnecessary,
but as the alternative would be to perform a synchronisation mechanism
between the threads, this would not matter.

Bloom filter conclusions

The reason we originally thought this would work was due to the poor
performance of our hash table. The main problem was that several keys
hashed to similar values in the hash table. Because of this, we store the
values as a linked list and check against the lookup table to compare the
incoming descriptor against all keys in the list until we are at the end of
the list or we find a match. However, several factors made the Bloom filter
obsolete. Firstly, overlapping keys became much less of a problem after
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improving the hash function used. Secondly, the non-existent keys would
often not hash to the same value as other keys, and it would hash to an
empty bin, quickly determining that no suitable match exist. Therefore, the
hash table is both faster and more precise, as the hash table only needs one
hash function, while the Bloom filter would use at least two hash functions
to limit false positive results.

7.4 Results

This study documented examples of two variations of an Approximate
Nearest Neighbour compensation strategy used to reduce the runtime of
the Nearest Neighbour descriptor matching process. This section describes
and discusses overall running time results, as well as results compared to
matching correctness. We will compare our results against each other as
well as the two state of the art ANN algorithms, k-d tree [53] and cascade
hashing [16]. For the benefit of being able to compare the Approximate
Nearest Neighbour solutions to the Nearest Neighbour solutions as well,
we will use the same image test sets as can be seen in section 6.6 on page 54
and the benchmark will be the standard exhaustive search algorithm using
the Euclidean distance metric.

Figure 7.6: ace trans hamming
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Figure 7.7: ace trans dot

Figure 7.8: ace k-d tree

Figure 7.9: ace cascade hashing
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Algorithm Matches Runtime Speedup
Exhaustive search 122 32 ms 1x

Transpose hamming 146 26 ms 1.2x
Transpose dot product 121 10 ms 3x

ANN k-d tree 123 60 ms 0.5x
Cascade hashing 126 10 ms 3x

Table 7.2: CPU test on Ace

The tests on the low resolution image set Ace shows us that there is
small differences between the methods. All of the solutions has a relative
similar number of matches, but both our hamming distance proposal and
the Cascade hashing solution has to many incorrect matches. This is
probably because they both rely on hamming distance, which does not
take into consideration the bit significance which can be a big problem on
the relatively large dimension of 128 the features in our tests have. The
runtime of our Transpose dot product solution is encouraging, and with its
precise matches, it seems like the best option for low resolution images at
this stage.

Figure 7.10: col trans hamming

Figure 7.11: col trans dot
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Figure 7.12: col k-d tree

Figure 7.13: col cascade hashing

Algorithm Matches Runtime Speedup
Exhaustive search 540 3363 ms 1x

Transpose hamming 891 1310 ms 2.5x
Transpose dot product 541 970 ms 3.5x

ANN k-d tree 559 234 ms 14x
Cascade hashing 590 83 ms 40x

Table 7.3: CPU test on Col

On the HD image set of Colosseum we see that our solutions are
faster than the exhaustive search, but they are falling behind the other
approximate searches. The matches from the transpose hamming distance
solution is not as good as they should, while our transpose dot product still
produces matches close to the ones the exhaustive search provides. The k-d
tree solution is so much faster than our solutions, and with similar matches
as the exhaustive search it is clearly a better option on this data set. Again
the Cascade hashing is the absolute fastest solution, however, the matches
are not as good as the k-d tree solution.
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Figure 7.14: trans ham NY

Figure 7.15: trans dot NY

Figure 7.16: k-d tree NY

Figure 7.17: cascade hashing NY
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Algorithm Matches Runtime Speedup
Exhaustive search 4166 14980 ms 1x

Transpose hamming 4357 6442 ms 2x
Transpose dot product 4153 4493 ms 3x

ANN k-d tree 4159 481 ms 31x
Cascade hashing 3772 183ms 82x

Table 7.4: CPU test on NY

On the New York image set, we see that the difference between the
solutions is even greater. Both our solutions have to an extent the same
speedup as on the Colosseum tests, while both the k-d tree solution and the
cascade hashing are running away from our solutions regarding speedup.
There is not so easy to compare the matches on this data set, but both the
k-d tree solution and our dot product has a similar number of matches
compared to the exhaustive search. The cascade hashing and our hamming
distance solution has a more dissimilar number of matches, which would
suggest that the matches are not as good as the other solutions.

Algorithm Matches Runtime Speedup
Exhaustive search 752 3.627 ms 1x

Transpose hamming 220 20.517 ms 0.2x
Transpose dot product 720 21.055 ms 0.2x

ANN k-d tree* 755 118 ms 0.03x

Table 7.5: GPU test on Ace
Done with NVIDIA Visual Profiler

*ANN k-d tree done on CPU

Algorithm Matches Runtime Speedup
Exhaustive search 5550 519 ms 1x

Transpose hamming 5594 305 ms 1.7x
Transpose dot product 5815 739 ms 0.7x

ANN k-d tree* 5970 1997 ms 0.3x

Table 7.6: GPU test on Col
Done with NVIDIA Visual Profiler

*ANN k-d tree done on CPU
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Algorithm Matches Runtime Speedup
Exhaustive search 24999 3173 ms 1x

Transpose hamming 4915 1082 ms 2.9x
Transpose dot product 19432 3255 ms 1x

ANN k-d tree* 25668 4864 ms 0.7x

Table 7.7: GPU test on NY
Done with NVIDIA Visual Profiler

*ANN k-d tree done on CPU

The GPU tests show that our ANN solutions did not bring anything
to the table. On the low-resolution images, our algorithm is ten times
slower than the exhaustive search and not a viable option. However, as the
number of features increases on the HD images, the solution is improving
compared to the exhaustive search giving it almost the same runtime on the
largest image set of New York. This improvement shows that our solution
is best suited for large inputs. However, our ANN is still not good enough,
as the exhaustive search is faster. The hamming distance does also provide
way too few matches on two of the tests, which suggest that this method
does not work as intended. One thing to note is that the ANN k-d tree and
our ANN solutions scales well, and does considerably better on the larger
image sets. Even though these algorithms are slower for all our tests, it is
likely that they could provide a speedup on larger descriptor sets. When
comparing our ANN dot product to the k-d tree, we see that our ANN is
faster. However, the run-time gap is less for our largest image set (NY)
than for our HD image set (Col) which suggests that the k-d tree algorithm
scales better with increased descriptor set size.

7.5 Conclusion

Our approximate searches did not yield the results we wanted. They do
find an acceptable number of correct matches at least for the transpose dot
product version, and they do provide some speedup on the CPU over the
Euclidean distance exhaustive search. However, they do not compete well
enough with the already existing solutions available. The GPU tests show
that the ANN algorithms perform decently, but the exhaustive search is a
better alternative since it is faster and more precise, due to the predictable
nature of the exhaustive search which is suitable for parallelisation.

Since the exhaustive search is the best solution on these tests, we can also
conclude that our dot product solution still is the best option as it offers
a significant speedup on the original GPU L2 implementation.If the GPU
option is unavailable, there would be a discussion between the ANN k-d
tree and dot product solution, and whether the diminishing matches the
approximate search have will weigh more than the speedup accomplished.

The main problem with the approximate searches is the quality of the
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matches. Most of the solutions can be tweaked to achieve a higher percent-
age of correct matches, but this will be at the cost of the overall runtime.
The already existing ANN k-d tree solution in OpenMVG is an excellent
example of this, as it is very effective when providing up to 80-90% correct
matches. When the correctness is above this percentage, it will quickly de-
teriorate, and as it reaches 100%, it will either be as slow as the exhaustive
search or even slower [53].
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Chapter 8

Conclusions

8.1 Problems and solutions

Many things can go wrong when manipulating parts of such a large
program OpenMVG is. If one small domino brick of the program falls,
all other parts will usually follow. On the other hand, there is almost worse
if the program runs "fine" even though the part we change has some faults,
as this is harder to detect. So one of the most important things to consider
is to verify the results often to avoid complications later on. Since this is
a large and complex program, it is also difficult to find the flow of it, and
know where to look if something is wrong as there are many dependencies
each part of the program has.

8.1.1 Getting to know the code

One of our first issues was to understand how some of the variables and
data were structured, and how to access them. There was a lot of trying
and failing, and we would change small lines in the code incrementally to
learn how things worked. This process made us more familiar with the
code itself, and it made things a lot easier over time.

8.1.2 Finding errors

Another issue is to detect errors and to pinpoint where they are. The
compiler will in many cases do this for us, and report problems in the code,
but there are also errors that will slip past it. It is often faults that are not
necessarily errors, but issues that provide wrong variables and calculations
resulting in negative results. The problem with this is that even though
there is only one small error, it will often give the impression that there are
many of them as all the parts depend on each other.
In cases like these, we would start at the earliest point possible in the code,
and verify each result from there on. After a while we learned that it was
easier to do this before any errors occurred, so we did a lot of unnecessary
checks, but in the long term, it helped us a lot. We also kept external
methods to a minimum, writing most of the solutions to get a more in-
depth understanding of the code.
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8.1.3 GPU issues

Programming on a GPU presents a whole other range of difficulties com-
pared to CPU programming. Memory has to be allocated between the CPU
and the GPU, and there are challenges regarding shared memory. Con-
current programming is all about doing as much as possible at the same
instance, dividing larger problems into multiple smaller and let an inde-
pendent thread handle each of them.
One of the issues regarding parallel computing is that there is no fixed rank-
ing between the different threads, all of them will execute their code as soon
as they are allowed, and there is no way of telling which order they are ex-
ecuting. Random ordering makes it harder to find errors, as the code may
or may not execute correctly depending on the order of the threads. One
of the most common issues we encountered were race conditions, and this
occurred when multiple threads read or wrote to the same memory which
led to one thread reading a variable too early or too soon depending on the
other threads behaviour. There are many different solutions to avoid issues
like this, from atomic operations to locks, allowing only one thread at a
time accessing a specific memory location. However, these types of solu-
tions will often slow down the program as there is no longer concurrency,
as threads have to wait to access different sections of the memory. It is far
better to avoid threads using the same memory locations, to make them as
independent as possible. Letting each thread do all its calculations before
merging them at the end is the best practice.

Thrust sort equality issues

As we were trying to implement the thrust sort function, we stumbled on
a problem that at first seemed very complicated, but as it later turned out
were quite simple. Our purpose was to sort our transposed descriptors
with thrust, but the sort function had some strange effects on our data.
Each descriptor has an index, and we sorted the indexes based on the value
of the transposed descriptors. After the sort, some of the indexes were
missing, and duplicates replaced them. This behaviour was not what we
expected, and there were not any similar cases that other had experienced
as we explored this issue on thrust forums.
In the end, we learned that the thrust sort function could not handle
equality. Thus, it did not know what to do when some of the data it
was sorting had the same value, and the behaviour in these cases was
unspecified. The solution to this was to change the sort parameters and
create a new parameter for equality thus giving the sort function a standard
behaviour each time the parameters were equal.

8.1.4 Measuring the results

The last issue is regarding the measurement of our work. A program today
could work fine on the computer the programmer uses, but that may not
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be the case when using it on different hardware. We did do a timed test on
our machine, but there is no way of guaranteeing the results we got. Our
approach was to merge both physical tests and theoretical calculations. We
do not claim that the test results are 100% accurate, but they do tell us
something about the performance of our implementations.

8.2 Work approach

Since the beginning of this project to the end, it became clear that there
was room for much improvement. At the same time, it revealed to be a
tough process, and there were several mountains to climb before reaching
the end. The learning curve was steep, and there was lots of new theory
to look into before we were able to change anything. Our approach to it
was to do everything in small iterations and try to verify every result on
the way. By this method, we were able to gradually improve the program
step-by-step continuously exploring new ideas and changes on the way.
We focused on one problem at a time and did not explore other parts until
we either were satisfied with our code or if the conclusion was that the idea
was a dead end. One thing that helped a lot was to make most of the code
separately from the program, and verifying it before implementing it.

8.3 Our implementations

In the end, we provided three different solutions to improve the Nearest
Neighbour search. Two of them changed the metric to do fewer operations
so that the exhaustive search would perform better. The last solution was
more complex and based on changing the memory layout for the data set
and performing a different search algorithm to find the potential matches.

8.3.1 Arc length

The arc length would explore the possibility of enhancing the matching
process. Our initial thought was that this could have the same runtime
as the Euclidean distance, but after looking at the calculation needed, we
feared that this would have a negative impact on the runtime. However,
after we took into consideration that we were calculating the length of nor-
malised vectors, we managed to speed up the algorithm, by replacing these
calculations with a constant. The use of a constant led to improving the
complexity from O(6n) to O(2n) making it potentially more efficient than
the Euclidean distance.

So what have we learned? The arc length calculation allows us to provide
the distance threshold as an arc length on the sphere which gives the same
precision as the Euclidean distance algorithm with faster execution time.
Additionally, It is an interesting method to describe how close to each other
the descriptors are allowed to be as the distance threshold now can be
provided as an angle. It gives equal performance to the Euclidean distance
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algorithm for lower inputs and has some speedup for larger inputs. This
method needs a review of the distance threshold to secure a larger amount
of matches.

Since the solution is faster, it is a viable alternative to the Euclidean dis-
tance. There is also a potential for this method to be even faster by replacing
the inverse cosine calculation with a lookup table.

8.3.2 Dot product

In the dot product solution, we wanted to improve the runtime without di-
minishing the precision of the matches. We knew that this implementation
would have fewer calculations than the Euclidean distance, but we were
not sure how the quality of the matches would be. After doing some tests,
we saw that both the number of matches and their quality were the same,
and the runtime already on the small test set were twice as fast as the ori-
ginal implementation. When escalating the size of data, the overall runtime
revealed to be progressively better, showing that the solution scales well on
large data sets.

Having found a solution that worked, we decided to implement it on the
GPU in the PopSIFT framework as well. Since the GPU implementation
of the Euclidean distance algorithm already was a significant improvement
on the original implementation, there was a question if our solution would
manage to improve the runtime at all. However, after running a few tests,
we saw that our solution did have a positive impact on the runtime. The
difference was not as considerable as on the CPU implementation where
we got a speedup of 4.5x, but it was enough to see the benefits of our solu-
tion. The improvements we got with a speedup of around 1.6x reflected the
expected enhancements the mathematical formula suggested. The reason
we got fewer improvements on the GPU in comparison to the CPU was that
the CPU Euclidean distance implementation in OpenMVG did not take ad-
vantage of the unsigned char representation and used additional floating
point variables.

Our dot product calculation solution improves the program both on the
CPU and the GPU, and since the speedup is present for every input size,
the solution could easily replace the original implementation without any
drawbacks on both platforms. Since the final calculation used for the dis-
tance threshold is such a small part of the solution, we can choose between
the Euclidean distance and the arc length at this point without losing per-
formance. That means that using the dot product could work for all pro-
grams matching normalised vectors, especially if there is a need for exact
results which approximate searches not necessarily can provide.
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8.3.3 Tree structure of transposed descriptors

The last algorithm we explored was the tree structure of transposed
descriptors. After testing on several different image sets, we concluded that
this algorithm produces a moderate improvement in execution time com-
pared to the Euclidean distance exhaustive search when there are enough
descriptors to group them. On data sets with less than 1000 descriptors, it
is likely that the pool size will be substantial, thus reducing the potential
efficiency of the algorithm. Still, the execution time is not slow, as some
grouping of the data is likely to occur. On datasets with size above 10000
descriptors, the algorithm starts to improve its efficiency as more group-
ing occurs, reducing the search area to a small subset of the database for
most descriptors. The algorithm continues to grow in efficiency with larger
descriptor numbers due to descriptor equality in increasingly lower key
levels.

When compared to the k-d tree and cascade hashing algorithms, it is clear
that this is an inferior algorithm regarding execution time. The main prob-
lem is that the SIFT descriptors have a similar bit structure to each other, as
they are in the interval [0, 1

2 ]. Therefore, specific groups are likely to contain
large chunks of the descriptors, unless the descriptor set is large enough to
split further. As we compute the best and second best match within a group
through an exhaustive search, this slows the algorithm down considerably.

When it comes to quality of matches, this algorithm is an Approximate
Nearest Neighbour because an incomplete bit level key potentially can be
better than the complete bit level match. However, as we only sort on full
bit level matches, our matching results are more precise than the ANN solu-
tions we used as a comparison. In conclusion, we are of the opinion that
this algorithm is not fast enough to justify the loss of precision.

8.4 Future work

There is still more to explore regarding the exhaustive search algorithm. We
feel that there are more potential improvements regarding the calculations.
For instance, the exhaustive search behaves the same each iteration and
is still the main bottleneck in the matching part. There are different
approaches to improve this further, but we did not find the time to explore
these. On the CPU side, there is the possibility to parallelise using multiple
cores. Another option would be to write parts of the code in assembly to
remove all unnecessary operations and get an even greater speed on the
calculations. The main problem with these solutions is that they would
make the algorithm architecture dependent and not generic.

8.4.1 Implementing dot product in other methods

Since we proved that the dot product was capable of improving the
exhaustive search without losing precision, there is also a high possibility
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of doing so on other methods used. The first thing to look at would be the
solutions that do many calculations with Euclidean distance and change
it to dot product to enhance the performance. Another solution will be to
see if there is any solution that could be changed to do more calculations
and then use dot product on these, as a way to improve the precision of
the method. In either case, it would be exciting to see the benefits it could
yield.

8.4.2 Transposed descriptors ANN

We still think that our approximate search based on transposing the
descriptors and building a tree structure could be beneficial. This solution
was much more complex than our other methods, and many parts probably
could be solved differently.

8.5 Conclusion

We managed to implement a new metric in dot product calculation instead
of using Euclidean distance, thus making exhaustive search more attractive
to use in place of the Approximate Nearest Neighbour searches. We also
managed to implement arc length calculation as an alternative, although
not as efficient as our dot product solution proved to be, it has the poten-
tial to be even more effective with the implementation of an inverse cosine
table. Our approximate searches did work to some extent; however, they
did not generate the desired results we were after.

With our new metric, the exhaustive search performs 4.5 times faster on
standard HD images and is performing almost as fast as the ANN k-d tree
solution on the CPU. On the GPU, the dot product is the best option avail-
able, and it is also the best solution compared to the approximate searches
on the CPU. It is as precise as the Euclidean distance, so there are no obvi-
ous reasons not to use this method instead.

Depending on the scenario there will still be a discussion whether to use
exhaustive searches or approximate searches, and there is still a big gap
between them when the size of the images grows larger. There are some
reasons why the exhaustive search is the ideal solution. The main reason
is that it will always find the correct matches regardless of the number of
features. The runtime is easier to predict as it will always explore all pos-
sible matches, in the same manner, each iteration. Its rigid design does also
make it ideal for parallel programming. The drawback of the exhaustive
search is its sensitivity against large images because of its exponential com-
plexity. The runtime will drastically increase for high-resolution images
with a large number of features.

The approximate searches have many advantages regarding time complex-
ity. However, none of them can guarantee the correctness of the matches
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provided. Some of the solutions are more sensitive to dimensionality, es-
pecially the ones that rely on storing the features in tree structures. Since
many of the approximate searches preprocess the data, they will often need
a large number of features to be effective. This preprocessing means that if
there is no consistency in the input images regarding the resolution, the be-
nefits of the approximate searches can quickly diminish. The solutions that
have speedup on all the images will in these cases be the obvious choice.
However, most of these have such a low percentage of correct matches to
be considered in the first place, as the cascade hashing results in our tests
indicated.

We do not have a comprehensive rule to determine whether a NN-only,
ANN-only, or hybrid approach will work best, but understanding the dif-
ferences between NN and ANN allows us to select the appropriate al-
gorithm on a case-by-case basis.
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