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Abstract

This paper presents a tractable dynamic game in which agents jointly use a resource. The

resource replenishes fully but collapses irreversibly if the total use exceeds a threshold. The

threshold is assumed to be constant, but its location may be unknown. Consequently, an

experiment to increase the level of safe resource use will only reveal whether the threshold

has been crossed or not. If the consequence of crossing the threshold is disastrous (i.e.,

independent of how far the threshold has been exceeded), it is individually and socially

optimal to update beliefs about the threshold’s location at most once. The threat of

a disastrous regime thereby facilitates coordination on a “cautious equilibrium”. If the

initial safe level is sufficiently valuable, the equilibrium implies no experimentation and

coincides with the first-best resource use. The less valuable the initial safe value, the more

the agents will experiment. For sufficiently low initial values, immediate depletion of the

resource is the only equilibrium. When the regime shift is not disastrous, but the damage

depends on how far threshold has been exceeded, experimentation may be gradual.
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1 Introduction

Many ecosystems are threatened by collapse if overused. Examples include the eutrophication

of lakes due to agricultural runoff (Scheffer et al., 2001), sudden shifts in vegetation cover due

to land-use changes (Anderies et al., 2002; Dekker et al., 2007), and the collapse of fish stocks,

such as Canadian cod or capelin in the Barents Sea (Frank et al., 2005; Hjermann et al.,

2004). In the climate system, drivers of a potential regime shift could be a disintegration of

the West-Antartic ice sheet (Feldmann and Levermann, 2015), a shutdown of the thermohaline

circulation (Nævdal and Oppenheimer, 2007), or a melting of Permafrost (Lenton et al., 2008).

The danger that a disastrous regime shift occurs once a threshold – or tipping point –

is crossed, obviously imperils the sustainable provision of ecosystem services. However, the

existence of a catastrophic threshold may also be beneficial in the sense that it enables non-

cooperative agents to coordinate their actions (Barrett and Dannenberg, 2012). This aspect

is important because most real-world problems are characterized by the presence of many

interacting agents and the absence of central enforcement. Moreover, a key feature of tipping

points is that their exact location is almost always unknown. This threshold uncertainty may

induce a “safe minimum standard of conservation” (Mitra and Roy, 2006), but, depending on

the trade-off between the cost of control and the gain from risk reduction, it may also lead to

less precaution (Brozović and Schlenker, 2011).

In this paper, I develop a dynamic game in which agents jointly use a replenishing resource

that loses (some or all) its productivity upon crossing some (potentially unknown) threshold.

In order to isolate the effect of threshold uncertainty on the ability to cooperate, I abstract –

as a first step – from the dynamic common pool aspect of non-cooperative resource use.

The model is presented in section 2. It is general and applicable to many different settings,

but to fix ideas, consider the problem of saltwater intrusion in a freshwater reservoir: The

reservoir is used by several agents. Its overall volume is approximately known, and the annual

recharge (due to rainfall or snowmelt) is sufficient to fully replenish it. However, the agents

fear that saltwater may intrude and irreversibly spoil the resource once the water table falls

too low. Further, suppose the geology is so complex that it is not known how much water

must be left in the reservoir to avoid intrusion. Saltwater intrusion has not occurred in the

past, so that the current level of total use is known to be safe. Thus, the agents now face

the trade-off whether to expand the current consumption of water, or not. If they decide to

expand the current level of use, by how much should extraction increase, and in how many

steps should the expansion occur? Moreover, could it be in one agent’s own best interest to

empty the remaining reservoir even when all others take just their share of the historical use?

In section 3.1, I expose the underlying strategic structure of the game by considering the

case where the location of the threshold is known. I show that there is a Nash equilibrium

where the resource is conserved indefinitely and a Nash equilibrium where the resource is

depleted immediately. In terms of the above example, the former equilibrium will only exist

if sharing the amount of water that leaves just enough in the reservoir to avoid intrusion is

sufficiently valuable compared to the incentives to deviate and empty the reservoir.

When the location of the threshold is fixed but unknown, any increase in resource use will
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– in the absence of passive learning – only reveal whether the updated state is safe or not.

The agents will not obtain any new information on how much closer they have come to the

threshold.1 I call this type of learning “affirmative”. When the consequence of crossing the

threshold is disastrous in the sense that it does not matter by how far the threshold has been

overstepped, then there is no point in splitting any given increase in resource use in several

steps. Any experimentation is – if at all – undertaken in the first period. Moreover, the degree

of experimentation is decreasing in the value of current use that is known to be safe.

This means that both in the sole-owner’s solution (section 3.2) and in the non-cooperative

game (section 3.3), the steady-state consumption level will depend on history: When the

current level of resource use is sufficiently valuable, coordination on not expanding the set

of safe consumption values is a Nash equilibrium. If it is socially optimal to use the water

reservoir at its current level, this Nash equilibrium will in fact coincide with the first-best

resource use. If preserving the status quo is not sufficiently valuable, agents may still refrain

from depleting the resource, but they will increase their consumption by an inefficiently high

amount. However, provided that the increase in consumption has not caused the disastrous

regime shift, the players can coordinate on keeping to the updated level of consumption, which

is, ex post, socially optimal.

The “once-and-for-all” dynamics of experimentation and resource use under “affirmative

learning” are robust to several extensions that are explored in section 4. While the threat of

the threshold may no longer induce coordination on the first-best when the externality relates

to both the (endogenous) risk of passing the threshold and resource itself, the threshold may

still encourage coordination on a time-profile of resource use that is, in expected terms, Pareto-

superior compared to the Nash equilibrium without a threshold. As I show in section 4.4,

repeated experimentation will take place only if the post-threshold value depends negatively

on the pre-threshold degree of experimentation, and if this effect is sufficiently strong.

Section 5 concludes the paper and points to important future applications of the modeling

framework. All proofs are collected in the Appendix.

Relation to the literature

This paper links to three strands of the literature. First, it contributes to the literature on

the management of natural resources under regime-shift risk by explicitly analyzing learning

about the location of a threshold in a tractable dynamic model. Second, the paper extends

the literature on coordination in face of a catastrophic public bad, that has hitherto been

analyzed in a static setting. Third, it relates to the broader literature by characterizing

optimal experimentation in a set-up of “affirmative learning”.

The pioneering contributions that analyze the economics of regime shifts in an environ-

mental/resource context were Cropper (1976) and Kemp (1976). There are by now a good

dozen papers on the optimal management of renewable resources under the threat of an irre-

versible regime shift (see Polasky et al., 2011, for a summary). Most previous studies translate

the uncertainty about the location of the threshold in state space into uncertainty about the

1Empiricists will agree that there is no learning without experiencing.
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occurrence of the event in time. This allows for a convenient hazard-rate formulation (where

the hazard rate could be exogenous or endogenous), but it has the problematic feature that,

eventually, the event occurs with probability 1. In other words, even if the agents were to

totally stop extracting/polluting, the disastrous regime shift would be inevitable. Arguably,

it is more realistic to model the regime shift in such a way that when it has not occurred

up to some level, the agents can avoid the event by staying at or below that level (Tsur and

Zemel, 1994; Nævdal, 2003; Lemoine and Traeger, 2014). To the best of my knowledge, this

paper is the first to apply this modeling approach to a non-cooperative game.

In general, the literature in resource economics has been predominantly occupied with

optimal management, leaving aside the central question of how agent’s strategic considerations

influence and are influenced by the potential to trigger a disastrous regime shift. Still, there

are a few notable exceptions: Crépin and Lindahl (2009) analyze the classical “tragedy of

the commons” in a grazing game with complex feedbacks, focussing on open-loop strategies.

Ploeg and Zeeuw (2015b) compare the socially optimal carbon tax to the tax in the open-loop

equilibrium under the threat of a productivity shock due to climate change. Reverting to

numerical methods, Kossioris et al. (2008) analyze feedback equilibria in a “shallow lake”

model. They show that, as in most differential games with renewable resources, the outcome

of the feedback Nash equilibrium is in general worse than the open-loop equilibrium or the

social optimum. In this paper, I am able to solve for the feedback equilibrium analytically by

simplifying the dynamics of resource use.

Fesselmeyer and Santugini (2013) introduce an exogenous event risk into a non-cooperative

renewable resource game à la Levhari and Mirman (1980). As in the optimal management

problem with an exogenous probability of a regime shift, the impact of shifted resource dy-

namics is ambiguous: On the one hand, the threat of a less productive resource induces a

conservation motive for all players, but on the other hand, it exacerbates the tragedy of the

commons as the players do not take the risk externality into account. As risk is exogenous in

Fesselmeyer and Santugini (2013), they can obtain analytical solutions in the Levhari-Mirman

framework, but their model does not allow learning or adaptions to an evolving regime-shift

risk. Sakamoto (2014) analyzes a non-cooperative game with an endogenous regime shift

hazard by combining analytical and numerical methods. He shows that the regime-shift risk

may lead to more precautionary management, also in a strategic setting. Miller and Nkuiya

(2016) also combine analytical and numerical methods to investigate how an exogenous or

endogenous regime shift affects coalition formation in the Levhari-Mirman model. They show

that an endogenous hazard rate increases coalition sizes and it allows the players, in some

cases, to achieve full cooperation. Using a different model setup that allows analytic solutions,

this paper corroborates that the effect of a regime shift is qualitatively the same in a non-

cooperative setting as under optimal management: for some combinations of parameters it

induces more caution and for some combinations it induces less caution. Moreover, both the

literature on optimal resource management under regime-shift risk and its non-cooperative

counterpart have not explicitly addressed learning about the unknown location of the tipping

point, which is the main focus of the present work.
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There is a related literature on strategic experimentation in one-armed bandit problems

(e.g.: Bolton and Harris, 1999; Keller et al., 2005; Bonatti and Hörner, 2015) that differs

from the current paper in that there are no structural irreversibilities. Learning is then

“informative” in the sense that agents obtain a random sample on which they base their

inference about the state of the world and it pays to obtain repeated samples (but only

finitely many in most cases) as this improves the estimate. The public nature of information

introduces free-rider incentives in a strategic setting, so that learning is often sub-optimally

slow. Here, experimentation will be overly aggressive in most cases.

The current paper is closely related to three articles that discuss the role of uncertainty

about the threshold’s location on whether a catastrophe can be avoided. Barrett (2013)

shows that players in a linear-quadratic game are (in most cases) able to form self-enforcing

agreements that avoid catastrophic climate change when the location of the threshold is

known, but not when it is unknown. Similarly, Aflaki (2013) analyzes a model of a common-

pool resource problem that is, in its essence, the same as the stage-game developed in section

3. Aflaki shows that an increase in uncertainty leads to increased consumption, but that

increased ambiguity may have the opposite effect. Bochet et al. (2013) confirm the detrimental

role of increased uncertainty in the stochastic variant of the Nash Demand Game: Even

though “cautious” and “dangerous” equilibria co-exist (as they do in my model), they provide

experimental evidence that participants in the lab are not able to coordinate on the Pareto-

dominant cautious equilibrium.2 However, the models in Aflaki (2013), Barrett (2013), and

Bochet et al. (2013) are all static. Here, I show that the sharp distinction between known and

unknown location of a threshold does not survive in a dynamic context. More uncertainty

still leads to increased consumption, but this is now partly driven by the increased gain from

experimentation.

As noted above, a key result of my model is that it is a Nash equilibrium to experiment once

or never. Although I am unaware of an earlier comparable application to a strategic setting,

results on optimal experimentation in the context of affirmative learning have appeared at

various places before. For example, the classical book of Dubins and Savage (1965) analyzes

circumstances under which it is optimal for gamblers to expose themselves to uncertainty in as

few rounds as possible. Riley and Zeckhauser (1983) discuss price-negotiation strategies where

the seller does not know the valuation of the buyer. They find that “[a] seller encountering

risk-neutral buyers one at a time should, if commitments are feasible, quote a single take-

it-or-leave-it price to each.” Another well-known study is from Rob (1991), who analyzes

optimal and competitive capacity expansion when market demand is unknown. Rob finds

that learning will take place over several periods. In his model, experimenting too much (in

the sense of installing more capital than is needed to satisfy the revealed demand) is very

costly compared to experimenting too little several times (so that the true size of the market

remains unknown). Consequently, learning takes place gradually. Under competition, learning

2Bochet et al. (2013, p.1) conclude that a “risk-taking society may emerge from the decentralized actions
of risk-averse individuals”. Unfortunately, it is not clear from the description in their manuscript whether
the participants were able to communicate. The latter has shown to be a crucial factor for coordination in
threshold public goods experiments (Tavoni et al., 2011; Barrett and Dannenberg, 2012). Hence, it may be
that what they refer to as “societal risk taking” is simply the result of strategic uncertainty.
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is even slower due to the private nature of search costs but the public nature of information.

In an application to environmental economics, Costello and Karp (2004) investigate opti-

mal pollution quotas when abatement costs are unknown. In their model, the initial quota is

binding with probability 1, but an increased quota may be slack (which is inefficient). While

the information gain from a marginal increase in quota is small, there is no additional harm

from experimenting too much. In line with the baseline model of the current paper, this

feature leads to the conclusion that any experimentation takes place in the first period only.

Similarly, Groeneveld et al. (2013) show that the upper bound of the belief about the thresh-

old’s location is updated only once in their model of a reversible flow-pollution threshold.

Lemoine and Traeger (2014) find that learning occurs over several periods. In section 4, I

analyze two features that are present in their climate-change application and that may both

induce repeated experimentation: First, as in Rob’s model, the damage of the regime shift

is larger the farther the threshold has been overstepped. Second, the dynamics of capital

accumulation in Lemoine and Traeger (2014) effectively imply a constraint on the choice set.

This leads mechanically to repeated experimentation.

When analyzing learning in a strategic setting, I point out that there are three different

forces at work: First, the immediate gains from experimentation are certain and private

while the cost of experimentation in terms of an increased regime-shift risk are borne by all.

These two forces lead to more experimentation than socially optimal, but they are, to some

extent, attenuated by the public nature of information: all agents gain from an expansion

of the set of safe consumption values, provided the experiment has not triggered the regime

shift. I provide sufficient conditions for when non-cooperative learning is more aggressive than

socially optimal. Furthermore, I show that experimentation is decreasing in the value of the

state that is known to be safe: The more the agents know that they can safely consume, the

less will they be willing to risk triggering the regime shift by enlarging the set of consumption

opportunities. This aspect has, to the best of my knowledge, not yet been appreciated.

Analyzing how strategic interactions shape renewable resource use under the threat of a

disastrous regime shift is important beyond mere curiosity driven interest. It is probably fair to

say that international relations are characterized by an absence of supranational enforcement

mechanisms which would allow to make binding agreements. But also locally, within the

jurisdiction of a given nation, control is seldom complete and the exploitation of many common

pool resources is shaped by strategic considerations. Extending our knowledge on the effect

of looming regime shifts by taking non-cooperative behavior into account is therefore a timely

contribution to both the scientific literature and the current policy debate.
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2 The model

This section presents the basic model setup (resource dynamics; agents, choices, and payoff;

regime-shift risk) and discusses a number of tractability assumptions.

Resource dynamics

• Time is discrete and indexed by t = 0, 1, 2, ....

• Each period, agents can, in total, consume up to the available amount of the resource.

There are two regimes: In the productive regime, the upper bound on the available

resource is given by R, and in the unproductive regime, the upper bound is given by r

(with r < R).

• The game starts in the productive regime and will stay in the productive regime as long

as total consumption does not exceed a threshold T . The threshold T is the same in all

periods, but it may be known or unknown.

• To highlight the effect of uncertainty about the threshold, I define the state variable st,

denoting the upper bound of the “safe consumption possibility set” at time t. That is,

total resource use up to st has not triggered a regime shift before, and it is hence known

that it will not trigger a regime shift in the future (i.e. Prob(T ≤ st) = 0).

Agents, choices, and payoff

• There are N identical agents. Each agent i derives utility from consuming the resource

according to some general function u(cit), where cit is the consumption of agent i at time

t. I assume that u is continuous, increasing (u′ > 0), concave (u′′ ≤ 0), and bounded

below by u(0) = b.

• For clarity, I split the agent’s per-period consumption in two parts: cit = st
N + δit. This

means:

1. The agents obtain an equitable share of the amount of the resource that can be

used safely.

2. The agents may choose to consume an additional amount δit, effectively pushing

the boundary of the safe consumption possibility set at the risk of triggering the

regime shift.

• In other words, δit is the effective choice variable with δit ∈ [0, R − st − δ−it ], where δ−it
is the expansion of the safe consumption set by all other agents except i. I denote δ

without superscript i as the total extension of the safe set, i.e. δt =
∑N

i=1 δ
i
t.

• The objective of the agents is to choose that sequence of state-dependent decisions

∆i = δi0, δ
i
1, ... which, for given strategies of the other agents ∆−i, and for a given initial

value s0, maximizes the sum of expected per-period utilities, discounted by a common
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factor β ∈ (0, 1). I concentrate on Markovian strategies because they are “the simplest

form of behavior that is consistent with rationality” (Maskin and Tirole, 2001, p.193).

The probability of triggering the regime shift

• Let the probability density of T on [0, A] be given by a continuous function f such that

the cumulative probability of triggering the regime shift is a priori given by F (x) =∫ x
0 f(τ)dτ . F (x) is the common prior of the agents, so that we are in a situation of risk

(and not Knightian uncertainty).

• The variable A with R ≤ A ≤ ∞ denotes the upper bound of the support of T . When

R < A, there is some probability 1−F (R) that using the entire resource is safe and the

presence of a critical threshold is immaterial. When R = A using the entire resource

will trigger the regime shift for sure. Both R and A are known with certainty.3

• Knowing that a given consumption level s is safe, the updated density of T on [s,A]

is given by fs(δ) = f(s+δ)
1−F (s) (see Figure 1). The cumulative probability of triggering the

regime shift when, so to say, taking a step of distance δ from the safe value s is:

Fs(δ) =

∫ δ

0
fs(τ)dτ =

1

1− F (s)

∫ δ

0
f(s+ ξ)dξ =

F (s+ δ)− F (s)

1− F (s)
(1)

So that Fs(δ) is the discretized version of the hazard rate. I assume that the hazard

rate does not decrease in s.

• The (Bayesian) updating of beliefs is illustrated in Figure 1. Note that it is only revealed

whether the state s is safe or not, but no new knowledge about the relative probability

that the threshold is located at s1 or s2 (with s1, s2 > s) has been acquired.

0 s R

D
en
si
ty

Figure 1: Updating of belief upon learning that T > s: Grey area is F , blue hatched area is Fs.

3The idea that a system is more likely to experience a disastrous regime shift the lower the amount of the
resource that has been left untouched could simply be included in the belief F (x). Additive disturbances, such
as stochastic (white) noise, are independent of the current state and would not affect the calculations in a
meaningful way. They could be absorbed in the discount factor.
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• The key expression that I use in the remainder of the paper is Ls(δ), which I call the

conditional survival function. It denotes the probability that the threshold is not crossed

when taking a step δ, given that the event has not occurred up to s. Let L(x) = 1−F (x):

Ls(δ) = 1− Fs(δ) =
1− F (s)− (F (s+ δ)− F (s))

1− F (s)
=
L(s+ δ)

L(s)
(2)

The conditional survival function has the following properties:

– It decreases with the step size δ: ∂Ls(δ)
∂δ = −f(s+δ)

1−F (s) < 0.

– It decreases with s: ∂Ls(δ)
∂s = −f(s+δ)(1−F (s))+(1−F (s+δ))f(s)

[1−F (s)]2
≤ 0 ⇔ f(s)

1−F (s) ≤
f(s+δ)

1−F (s+δ) (as the hazard rate is non-decreasing).

Clarifications and tractability assumptions

• It is well known that the static non-cooperative game of sharing a given resource has

infinitely many equilibria: Even when the agents are assumed to be symmetric, any

given division of the total resource is an equilibrium. Moreover, the game requires a

statement about the consequences when the sum of consumption plans exceeds the total

available resource. Here, I assume that each agent gets an equal share. This assumption

could be justified by relying on a cooperative bargaining solution such as Nash (1953)

or as the outcome of a non-cooperative bargaining game where each agent is allowed to

make a take-it-or-leave-it offer with equal probability (Harstad, 2012). The important

assumption of symmetry is further discussed in section 5.

• The agent’s prior F (x) is fixed. The absence of any passive learning (an arrival of

information simply due to the passage of time) is justified in a situation where all

learning opportunities from other, similar resources have been exhausted. The only way

to learn more about the location of the threshold in the specific resource at hand is to

experiment with it.4

• The regime shift is irreversible. Moreover, I consider the regime shift to be disastrous,

in the sense that crossing the thresholds breaks all links between the pre-event and the

post-event regime. Because the post-event value function is then independent of the

pre-event state, I set, for simplicity’s sake, r = 0 and b = 0. In section 4.4, I discuss the

case when the post-event value function depends on the pre-event state.

• The model abstracts from the dynamic common pool problem in the sense that the

consumption decision of an agent today has no effect on the consumption possibilities

tomorrow, except that a) the set of safe consumption possibilities may have been enlarged

and b) the disastrous regime shift may have been triggered. This assumption is relaxed

in section 4.2.
4An everyday example is blowing up a ballon: We all know that they will burst at some point, and we have

blown up sufficiently many balloons, or seen our parents blow sufficiently many balloons to have a good idea
which size is safe. But for a given balloon at hand, I do not know when it will burst.
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3 Social optimum and non-cooperative equilibrium

In this main part of the paper, I will first expose the underlying strategic structure of the

model by analyzing the situation when the threshold is known (section 3.1). In section 3.2,

I describe the optimal course of action in absence of strategic interactions to highlight that

any experimentation is – if at all – undertaken in the first period. Moreover, experimentation

is decreasing with the value of the consumption level that is known to be safe. I then show

that this feature of learning may allow for a cautious non-cooperative equilibrium: Either

the resource is conserved with probability 1 or the agents experiment once (section 3.3). The

degree of experimentation will be inefficiently large in most cases, but if the threshold has not

been crossed, staying at the updated safe level is – ex post – socially optimal. In section 3.4, I

analyze how optimal and non-cooperative resource use shifts with changes in the parameters.

Finally, I provide an instructive example for which I derive closed-form solutions (section 3.5).

3.1 Known threshold location

When the threshold T is known, the first-best resource use, maximizing the sum of agent’s

utilities, is to equitably share just the amount of the resource that can be used safely if and

only if Nu(R/N) ≤ N u(T/N)
1−β .

Intuitively, when T is small, too much of the resource must be left untouched to ensure its

future existence. As a consequence, it is socially optimal to cross the threshold and consume

the entire resource immediately. When T is large, however, the per-period utility from staying

at the threshold is sufficiently high so that the first-best is to indefinitely use exactly that

amount of the resource which does not cause the regime shift. Whether a given T is large

enough to induce conservation depends on the overall amount of the resource R and the

discount factor β. The more of the resource must be left untouched, or the more the future is

discounted, the less willing one is to sacrifice today’s consumption of R to ensure continued

consumption of T . Thus, I define the critical value T ∗c such that immediate depletion is

first-best when T < T ∗c and staying at T is first-best when T > T ∗c . That is, T ∗c is given by

u(R/N)− u(T/N)
1−β = 0.

In the non-cooperative game with a known threshold, immediate depletion is always a

Nash equilibrium. Clearly, an agent’s best reply when the other agents cross the threshold is

to demand the maximal amount of the resource as well. However, also here there will be a

critical value Tncc so that staying at the threshold T is also Nash equilibrium when T ≥ Tncc .

In fact, as Proposition 1 states, there will always be a parameter combination so that the

first-best of staying at T can be supported as a Nash equilibrium. Similarly, when T < T ∗c ,

the Nash-equilibrium of immediate depletion will again be socially optimal.

As the setup is stationary, it is clear that if staying at the threshold can be rationalized in

any one period, it can be done so in every period. The payoff from avoiding the regime shift

is u(T/N)
1−β . Conversely, the payoff from deviating and immediately depleting the resource when

all other players intend to stay at the threshold is given by u
(
R− N−1

N T
)
. The lower T is,

the lower the payoff from staying at the threshold, and the higher the payoff from deviating.

10
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I can therefore define a function Ψ that captures agent i’s incentive to grab the resource when

all other agents stay at T :

Ψ(T,R,N, β) = u

(
R− N − 1

N
T

)
− u(T/N)

1− β
(3)

The function Ψ is positive at T = 0 and declines as T gets larger. Staying at the threshold

can be sustained as a Nash equilibrium whenever Ψ ≤ 0. The critical value Tncc is implicitly

defined by Ψ(Tc, R,N, β) = 0. Note that T ∗c < Tncc because u
(
R
N

)
< u

(
R− N−1

N T
)

as N > 1

and R > T .

Proposition 1. When the location of the threshold is known with certainty, then there exists,

for every combination of β, N , and R, a value Tncc such that the first-best of staying at T

can be sustained as a Nash equilibrium when T ≥ Tncc , where Tncc is defined by Ψ = 0. The

critical value Tncc is higher, the larger N or R are, or the smaller β is.

Proof. The proof is placed in Appendix A.1

In other words, when T is known and T ≥ Tncc , the game exhibits the structure of a

coordination game with two Nash equilibria in symmetric pure strategies. Here, as in the

static game from Barrett (2013, p.236), “[e]ssentially, nature herself enforces an agreement

to avoid catastrophe.” When staying at or below the threshold is not sufficiently valuable,

immediate depletion is the only equilibrium.

Having exposed the underlying strategic structure of the game, I now turn to the situation

when the location of the threshold is unknown: First, I disregard strategic interactions and

study optimal experimentation of a single agent. Then, I analyze the non-cooperative game

with unknown location of T .

3.2 Optimal experimentation when the location of T is unknown

Consider the problem of a single decision maker (a “sole-owner”) with the following objective:

max

∞∑
t=0

βtu(ct) subject to: Rt+1 =

 Rt if ct ≤ T

0 if ct > T or Rt = 0
; R0 = R. (4)

Starting from a historically given safe value st, and a belief about the location of the

threshold, the sole-owner has in principle two options: She can either stay at st (choose

δ = 0), thereby ensuring the existence of the resource in the next period. Alternatively, she

can take a positive step into unknown territory (choose δ > 0), potentially expanding the set

of safe consumption possibilities to st+1 = st + δ, albeit at the risk of a resource collapse.

Recall that Ls(δ) is the probability of surviving (that is, not crossing the threshold when

taking a step of size δ from the safe value s). We can thus write the sole-owner’s Bellman

equation as:

11
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V (s) = max
δ∈[0,R−s]

{
u(s+ δ) + βLs(δ)V (s+ δ)

}
(5)

The crux is, of course, that the value function V (s) is a priori not known. However, we

do know that once the sole-owner has decided to not expand the set of safe consumption

possibilities, it cannot be optimal to do so at a later period: If δ = 0 is chosen in a given

period, nothing is learned for the future (st+1 = st), so that the problem in the next period is

identical to the problem in the current period. If moving in the next period were to increase

the payoff, it would increase the payoff even more when one would have made the move a

period earlier (as the future is discounted).

To introduce some notation, let s∗ be a member of the set of admissible consumption

values [0, R] at which it is not optimal to expand the set of safe consumption values (as the

threat of a disastrous regime shift looms too large). Denote this set of values by S and let s∗

be the smallest member of S. In Appendix A.2, I show that S must exist and that it is convex

when the hazard rate is non-decreasing. Thus, for s ≥ s∗, it is optimal to choose δ = 0. In

this case, we know V (s). It is given by V (s) = u(s)
1−β .

This leaves three possible paths when starting from values of s0 that are below s∗. The

decision maker could: 1) make one step and then stay, 2) make several, but finitely many

steps and then stay, and 3) make infinitely many steps. I now argue that 1) is optimal.

Suppose that a value at which it is optimal to remain standing is reached in finitely many

steps. This implies that there must be a last step. For this last step, we can explicitly write

down the objective function as we know that the value of staying at s∗ forever is u(s∗)
1−β . Denote

by ϕ(δ; s) the sole-owner’s valuation of taking exactly one step of size δ from the initial value

s to some value s∗ and then staying at s∗ forevermore, and denote by δ∗(s) the optimal choice

of the last step. Formally:

ϕ(δ; s) = u(s+ δ) + βLs(δ)
u(s+ δ)

1− β
. (6)

This yields the following first-order-condition for an interior solution:

ϕ′(δ; s) = u′(s+ δ) + β

[
L′s(δ)

u(s+ δ)

1− β
+ Ls(δ)

u′(s+ δ)

1− β

]
= 0. (7)

With these explicit functional forms in hand, I can show that it is better to traverse any

given distance before remaining standing in one step rather than two steps (see Appendix

A.2). A fortiori, this holds for any finite sequence of steps. Also an infinite sequence of steps

cannot yield a higher payoff since the first step towards s∗ will be arbitrarily close to s∗ and

concavity of the utility function ensures that there is no gain from never actually reaching s∗.

Let g∗(s) be the interior solution to the first-order-condition (7). Note that we need not

have an interior solution so that δ∗(s) = 0 when ϕ′(δ; s) < 0 for all δ and δ∗(s) = R− s when

ϕ′(δ; s) > 0 for all δ. The first corner solution arises when s ≥ s∗. Similarly, I define a critical

12



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

value s∗ so that the second corner solution arises when s ≤ s∗. (In most cases, this corner

solution is not relevant.) That is, the optimal expansion of the set of safe consumption values

is given by:

δ∗(s) =


R− s if s ≤ s∗ (8a)

g∗(s) if s ∈ (s∗, s∗) (8b)

0 if s ≥ s∗ (8c)

The optimal consumption pattern is summarized by the following proposition:

Proposition 2. There exists a set S so that for s ∈ S, it is optimal to choose δ∗(s) = 0.

That is, if s0 ∈ S, the optimal use of the resource is s0 for all t. If s0 /∈ S, it is optimal

to experiment once at t = 0 and expand the set of safe values by δ∗(s0). When this has not

triggered the regime shift, it is optimal to stay at s1 = s0 + δ∗(s0) for all t ≥ 1.

Proof. The proof is given in Appendix A.2.

In other words, any experimentation – if at all – is undertaken in the first period. The

intuition is the following: Given that it is optimal to eventually stop at some s∗ ∈ S, the

probability of triggering the regime shift when going from s0 to s∗ is the same whether the

distance is traversed in one step or in many steps. Due to discounting, the earlier the optimal

safe value s∗ is reached, the better.5

Moreover, the degree of experimentation depends on history. When the second-order con-

dition is fulfilled6 it can be shown that the optimal step size δ∗(s) is declining in s (Proposition

3). The intuition for this effect is clear: The more valuable the current safe level of use, the

less the sole-owner can gain from an increased use, but the more she can lose should the

experiment trigger the regime shift. In other words, the more the decision maker knows, the

less she wants to learn. In fact, this implies that the largest step is undertaken when s = 0,

which is reminiscent Janis Joplin’s dictum that “freedom is just another word for nothing left

to lose”.

Proposition 3. The optimal step size δ∗(s) is decreasing in s for s ∈ (s∗, s∗).

Proof. The proof is placed in Appendix A.3.

With this characterization of the optimal experimentation in absence of strategic interactions

in place, I turn to the non-cooperative game.

5The astute reader will wonder whether the adopted timing “action - consumption - reaction” is critical
for the result of immediate experimentation. In Appendix A.2, I show that immediate experimentation is also
optimal under the alternative timing assumption of “action - reaction - consumption” (i.e. when utility in the
first period is only obtained when the regime shift has not occurred).

6The second-order condition is fulfilled when
(

1−β
β

+ Ls(δ
∗)
)
u′′+2L′s(δ

∗)u′+L′′s (δ∗)u < 0. Note that while

the first term is negative because β ∈ (0, 1), Ls(δ
∗) ≥ 0, and u′′ ≤ 0, and the second term is also negative

because u′ > 0 and L′s(δ
∗) < 0, the third term L′′s (δ∗)u may be positive.

13
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3.3 Non-cooperative equilibrium when the location of T is unknown

For a given value of the total consumption that is known to be safe, and a given state-

dependent strategy of the other players that extends, in sum, the set of consumption values

by δ−i, the Bellman equation of agent i is:

V i(s, δ−i) = max
δi∈[0,R−s−δi]

{
u(s/N + δi) + βLs(δ

i + δ−i)V i(s+ δ, δ−i)
}

(9)

Also here, the crux is that agent i’s value function V i is a priori unknown. However, as

the analysis in the previous section has highlighted, we do know that s divides the state space

into a safe region and an unsafe region. Moreover, due to the stationarity of the problem, we

know that if the agents can coordinate to stay in the safe region once, they can do so forever.

Below, I will show that there indeed exists a set Snc where for any s ∈ Snc staying at s is an

equilibrium. However, just as in the case when the threshold’s location is known, immediate

depletion is always also a Nash equilibrium. But different from the case when the threshold’s

location is known, immediate depletion need not be the best-reply when s /∈ Snc. Rather, the

agents may coordinate on expanding the set of safe consumption values by some amount δnc

and this experiment need not trigger the regime shift. Provided that the regime shift has not

occurred, the set of safe consumption possibilities will be expanded up to a level where it is

a Nash equilibrium to not expand it further. Parallel to the socially optimal experimentation

pattern, it will be a Nash equilibrium to reach the set Snc in one step. This “cautious” pattern

of non-cooperative resource use is summarized by the following proposition.

Proposition 4. There exists a set Snc such that for s0 ∈ Snc, it is a symmetric Nash

equilibrium to stay at s0 and consume s0
N for all t. For s0 /∈ Snc, it is a Nash equilibrium to

take exactly one step and consume s0
N + δnc(s0) for t = 0 and – when this has not triggered

the regime shift – to stay at s1 = s0 +Nδnc(s0), consuming s1
N for all t ≥ 1.

Proof. The proof is given in Appendix A.4

The key intuition for the existence of this “cautious equilibrium” is that 1) for high values

of s, staying at s is individually rational when all other agents do so, too, and 2) that when

s /∈ Snc, no agent has an incentive to deviate from a one-step experimentation that expands

the set of safe consumption values into the region in which staying is optimal. Of course,

there will always also exist an “aggressive equilibrium” in which the resource is depleted

immediately, simply because the best-reply for player i when all other players plan to expand

the consumption set by R−s
N is to choose R−s

N as well. Note that, for a given s, both the

“cautious” and the “aggressive equilibrium” are unique.7

7Uniqueness of the latter type of equilibrium simply follows from the assumption that in case of incompatible
demands, the resource is shared equally among the players. Uniqueness of the symmetric “cautious equilibrium”
(should it entail δnc(s) < R−s

N
) can be established by contradiction. Suppose all other players j 6= i choose to

expand the consumption set to a level at which – should the threshold have not been crossed – no player would
have an incentive to go further. Player i’s best-reply cannot be to choose δi = 0 in this situation as the gain
from making a small positive step (which are private) exceed the (public) cost of advancing a little further.
Hence, the only equilibrium at which the players expand the consumption set once is the symmetric one.
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Let φ denote the payoff for agent i when she takes exactly one step of size δi and then

remains standing and the strategy of the other agents, ∆−i = {δ−i, 0, 0, 0, ...}, is also to take

only one step (of total size δ−i):

φ(δi; δ−i, s) = u
( s
N

+ δi
)

+ βLs(δ
i + δ−i)

u
(
s+δi+δ−i

N

)
1− β

(10)

The corresponding first-order-condition for an interior maximum is:

φ′(δi; δ−i, s) = u′
( s
N

+ δi
)

+ βL′s(δ
i + δ−i)

u
(
s+δi+δ−i

N

)
1− β

+ β
1

N
Ls(δ

i + δ−i)
u′
(
s+δi+δ−i

N

)
1− β

= 0

(11)

Denote the interior solution to the first-order-condition (if it exists) by g(δ−i, s). Three

forces determine g: The first term represents the gain from a marginal increase in current

utility. For a given s, this term is larger the more agents there are (as u′′ ≤ 0). The second

term represents the marginal decrease in the probability of surviving, which is evaluated

at the updated safe consumption value. As agent i obtains only 1
N th of the updated safe

consumption value, these cost weigh less the more agents there are. Third, conditional on

survival, there is the marginal utility gain from an expanded safe consumption set. As this

benefits all agents equally, it is devalued by the factor 1
N .

The first two terms capture the “tragedy of the commons” with respect to the regime

shift risk in the sense that the current gains from an experiment are private but the cost in

terms of increased risk are public and shared by all. Therefore, the first two terms push for

a sub-optimally large expansion. However, the third term pulls in the opposite direction as

the agents do not take the informational value that their experiment has for the other agents

into account. Without further assumptions on functional forms, one cannot exclude the

possibility that there may be cases where non-cooperation implies too little experimentation.

A sufficient condition for when the first two terms outweigh the informational externality is
N
N+1 ≥ u′(RN )

/
u′( R

N+1); see Proposition 5(b). Moreover, section 3.5 highlights how the non-

cooperative expansion of the set of safe consumption possibilities is inefficiently large for the

illustrative example. Nevertheless, experimentation is still “cautious” in the sense that it does

not trigger the regime shift with probability 1.

Clearly, for a given s and δ−i there need not be an interior solution. When the gain from

expanding the set of safe consumption values is small, but the threat of triggering the regime

shift is large, it may be individually rational to choose δi = 0. Conversely, when the gain

from expanding the set of safe consumption values is large and/or it is unlikely that there is

a regime shift, it may be individually rational to choose δi = R− s− δ−i.
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For a symmetric step size δ−i = (N − 1)δi, we can write equation (11) as follows:

φ′(δnc; s) = u′
( s
N

+ δnc
)

+ β

[
L′s(Nδ

nc)
u
(
s
N + δnc

)
1− β

+
1

N
Ls(Nδ

nc)
u′
(
s
N + δnc

)
1− β

]
= 0 (12)

Let gnc(s) be the individual symmetric interior non-cooperative expansion. It is implicitly

defined by φ′(δnc; s) = 0. Noting the similarity of (12) to (7) when replacing δ∗ with Nδnc,

it is possible to show that gnc(s) is decreasing in s. We can therefore define snc, the smallest

member of the set Snc, by gnc(snc) = 0. In other words, for s ≥ snc, the threat of triggering a

disastrous regime shift is sufficiently large so that the agents find it in their own best interest

to stay at s when all other agents do so, too. Conversely, we can define the value snc by the

other corner solution gnc(snc) = R−s
N . In other words, for s ≤ snc, the threat of triggering a

regime shift is so small compared to the gains from increasing one’s own consumption that it

is individually rational to use the resource up to its maximal capacity R.

To sum up, in the non-cooperative game when the location of T is unknown, there is a

“cautious equilibrium” that is described by the following set of Markov-strategies:

δnc(s) =


R− s
N

if s ≤ snc (13a)

gnc(s) if s ∈ (snc, snc) (13b)

0 if s ≥ snc (13c)

Figure 2 illustrates the aggregate expansion of the set of safe consumption possibilities in

the cautious equilibrium and contrasts it with the optimal expansion of a sole-owner.

In short, the game has the structure of a coordination problem. Clearly, the “cautious

equilibrium” Pareto-dominates the “aggressive equilibrium”.8 Without strategic uncertainty,

the cautious equilibrium would thus be the outcome of the game. But what happens when

the agents are uncertain about the other agents’ behavior? As the disastrous regime shift

is irreversible, there is no room for dynamic processes that lead agents to select the Pareto-

dominant equilibrium (Kim, 1996). Therefore, I turn to the static concept of risk-dominance

(Harsanyi and Selten, 1988).

Since the game is symmetric, applying the criterion of risk-dominance has the following

intuitive interpretation: The cautious equilibrium is selected if the expected payoff from

playing cautiously exceeds the expected payoff from playing aggressively when agent i assigns

probability p to the other agents playing aggressively. Whether the cautious or the aggressive

equilibrium is risk-dominant depends both on this probability p as well as on the safe value s.

We can, for a given safe value s, solve for the probability p∗ at which agent i is just indifferent

between playing cautiously or aggressively:

8This follows immediately from the fact that, by definition, δnc(s) is the interior solution to the symmetric
maximization problem (9) (with δ−i = (N −1)δnc) where the policy δ(s) = R− s was an admissible candidate.
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s* snc s* snc R

Initial safe value s

R-s

Figure 2: Illustration of policy function δ(s). The blue circles represent the optimal expansion δ of the
safe consumption set s (on the y-axis) as a function of the safe consumption set (on the x-axis) when
N=1 (where obviously s ≤ R and δ ∈ [0, R−s]). For values of s below s∗, it is optimal to consume the
entire resource (choose δ(s) = R−s). For values of s above s∗, it is optimal to remain standing (choose
δ(s) = 0). The red dashed line plots the cautious non-cooperative equilibrium, showing how s∗ ≤ snc

and s∗ ≤ snc (in some cases we may even have snc < s∗). It illustrates how even the “cautious”
experimentation under non-cooperation implies excessive risk-taking. The figure also shows that the
non-cooperative outcome may coincide with the sole-owner’s choice for very low and high values of s.

p∗·π[all aggressive] + (1− p∗)·π[only i aggressive] = p∗·π[only i cautious] + (1− p∗)·π[all cautious]

⇔

p∗ =
π[all cautious] − π[only i aggressive]

(π[all cautious] − π[only i aggressive])− (π[only i cautious] − π[all aggressive])

In the above calculation, π[all aggressive] refers to the payoff of playing aggressive when all

other agents play aggressively, π[only i aggressive] refers to the payoff of playing aggressive when

all other agents play cautiously, etc. In order to explicitly solve for the value of p∗, we need to

put more structure on the problem. For the specific example developed in section 3.5 below,

we can calculate and plot p∗ as a function of s (see Figure 3). The grey area below the line

drawn by p∗ shows the set of values for which agent i prefers to play cautiously. Figure 3

illustrates how robust the cautious equilibrium is in this example: Even when the agents think

that there is a 50% chance that all other agents play the aggressive strategy, it still pays to

play cautiously for a wide range of initial values s. (Clearly, p∗ is not defined for s < snc when

the cautious and the aggressive equilibrium coincide.)

17



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

p*

Region where playing cautious is risk-dominant

snc snc R

Initial safe value s
0.
25

0.
5

0.
75

1

P
ro

ba
bi

lit
y 

th
at

 o
pp

on
en

ts
 p

la
y 

ag
gr

es
si

ve
ly

Figure 3: The black line plots p∗ as a function of s for u(c) =
√
c, f = 1

A and β = 0.8, A = R = 1 and
N = 10. It shows, for a given value of s the maximum value that agent i can assign to the probability
that all other agents play aggressively and still prefer to play cautiously.

3.4 Comparative statics

In this section, I analyze how the consumption pattern in the cautious equilibrium shifts with

changes in the parameters. Recall that gnc is defined as the interior solution φ′ = 0 where φ′

is given by (12). The effect of an increase in a parameter a in the interior range s ∈ (snc, snc)

is given by dgnc

da = − ∂φ′/∂a
∂φ′/∂gnc . Further, recall that I assume that the second-order condition

holds for s ∈ (snc, snc). Thus, to show that aggregate experimentation (the total expansion

of the set of safe consumption values) is larger the higher the parameter a, it is sufficient to

show that ∂φ′

∂a > 0 (since the second-order condition implies that ∂φ′

∂gnc < 0). Because gnc is

monotonically decreasing in s, it is also sufficient to show that, for a given value of R, neither

boundary snc or snc decreases and at least one boundary increases with a. The reason is that

for a given value of R, an upward shift of snc or snc (and no downward shift of the respective

other boundary) implies that all new values of gnc must lie above the old values of gnc (see

Figure 2).

Proposition 5 summarizes the comparative statics results with respect to β,N,R and the

agent’s prior belief about the location of the threshold.

Proposition 5.

(a) The boundaries snc and snc, and aggregate experimentation in the cautious equilibrium,

Ngnc, decrease with β.

(b) A sufficient condition for aggregate experimentation to increase with N is that N
N+1 ≥

u′(RN )
/
u′( R

N+1).

(c) The more likely the regime shift (in terms of a first-order stochastic dominance), the

larger the range where a separate cautious Nash-equilibrium exists and the lower aggre-

gate experimentation.

(d) An increase of R to R̃ for an unchanged risk of the regime shift (i.e. R < R̃ ≤ A)

decreases snc and leads to a larger range where a separate cautious equilibrium exists.
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Proof. The proofs are given in Appendix A.5.

The first comparative static result conforms with basic intuition: The more patient the

agents are, the more they value the annuity of staying at s, and the more cautious they are.

The second result provides a sufficient condition for when an increase in the number of

agents exacerbates the “tragedy of the commons” in terms of aggregate experimentation. As

discussed in relation to equation (11) above, there are three effects that an increase in N has

on a given agent’s incentives to expand the set of safe consumption values: First, a larger N

implies that the marginal utility from a larger δi today increases. Second, a larger N means

that the cost of an experiment in terms of an increased regime shift risk are diluted. Third,

also the gain in marginal utility from an experiment that did not trigger the regime shift is

shared among more agents. While the first two effects push towards a larger expansion, the

last effect pulls in the other direction. When N
N+1 ≥ u′(RN )

/
u′( R

N+1), it is guaranteed that

the first two effects dominate. Technically, this is shown by arguing that the range where a

separate cautious equilibrium exists must shrink when N
N+1 ≥ u

′(RN )
/
u′( R

N+1).

The third comparative static result also conforms with basic intuition: The more dangerous

any step is, the more cautiously the agents experiment.

The last comparative statics result highlights the difference to the situation when the

location of the threshold is known with certainty. In that situation, an increase in R leads

to an increase in Tc, which shrinks the range in which the socially optimal outcome is a

Nash equilibrium (Proposition 1). Here, immediate depletion is not necessarily the dominant

strategy. An increase in R essentially means that the scope for an interior solution is widened

so that the range for which immediate depletion is the only Nash equilibrium shrinks.

3.5 Specific example

For a given utility function and a given probability distribution of the threshold’s location it

is possible to solve for δ∗(s), δnc(s) and calculate the value function V (s). To obtain closed

form solutions, I assume that u(c) =
√
c and that the agents believe that every value in [0, A]

is equally likely to be the threshold, i.e. f = 1
A , and accordingly Ls(δ) = A−s−δ

A−s .

I first define the first-best. The problem of maximizing the sum of agent’s utilities is:

max
δi

N∑
i=1


√

s

N
+ δi + β

A− s−
∑
δi

A− s
·

√
s
N + δi

1− β


Because the agents are assumed to be identical, we can write the optimal total expansion

of the set of safe consumption possibilities as:

∑
δi = Nδ∗ =

A− (1 + 2β)s

3β

Note that in this specific example, the socially optimal experimentation is invariant to N , i.e.
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it is the same as the optimal experimentation of a sole-owner. Clearly, δ∗ is decreasing in β

and s. There will only be an interior solution to (7) when s ∈ [s∗, s∗]. We have:9

s∗ = max

{
0,
A− 3βR

(1− β)

}

s∗ = min

{
A

1 + 2β
,R

}
Let us now consider the cautious equilibrium of the non-cooperative game. Solving (12)

for the interior equilibrium gnc, we have that total non-cooperative expansion is given by:

Nδnc(s) =


R− s if s ≤ snc

Ngnc =

(
(1− β)N + β

)
A−

(
(1− β)N + 3β

)
s

3β
if s ∈ (snc, snc)

0 if s ≥ snc

where

snc = max

{
0,

(
(1− β)N + β

)
A− 3βR

(1− β)N

}

snc = min

{(
(1− β)N + β

)
A

(1− β)N + 3β
,R

}

The closed form solutions make it easy to confirm the comparative statics results.

First, an increase in the discount factor implies that each agent is more patient and values

the preservation of the resource for future consumption more. Thus, the boundaries snc and

snc and aggregate experimentation decrease with β, which can be readily confirmed by noting

that the denominator of ∂gnc

∂β is 3N(s−A), which is negative because s ≤ A.

The second comparative static result provides a sufficient condition for when an increase

in N leads to more experimentation. This condition is not fulfilled for this specific example

as N
N+1 < u′(RN )

/
u′( R

N+1) =
√

N
N+1 . However, N

N+1 < u′(RN )
/
u′( R

N+1) is not a necessary

condition. In fact, it is straightforward to check for this specific example that ∂Ngnc

∂N =

gnc + N 1−β
3β (A − s) > 0 (as A ≥ s by definition). In other words, any non-cooperative

experimentation will be inefficiently large, and more so the larger N .

Third, a monotonic increase in the risk of a regime shift is here equivalent to a decrease

in A (say, from A to Â). Clearly, when R is unchanged (so that R < A and R ≤ Â when

Â < A), a lower A means a lower snc, a lower snc, and a decreased expansion of the set of

safe consumption values when s ∈ (snc, snc) because ((1−β)N +β) > 0 for N ≥ 1. The same

holds when A = R and R̂ = Â with Â < A, because R only appears in the condition for snc

9At s∗ it is optimal to consume the entire resource, so that s∗ is found by solving R− s∗ = A−(1+2β)s∗

3β
. At

s∗ it is optimal to remain standing, so that s∗ is found by solving 0 = A−(1+2β)s∗

3β
.

20



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

and snc > 0⇔ (1− β)N − 2β > 0.

Finally, when R increases to R̃ but A remains unchanged (so that R < A and R̃ ≤ A), it

only has an effect on snc (provided that snc < R). Provided that snc > 0, it is plain to see

that ∂snc

∂R = − 3β
(1−β)N < 0. The range where a separate cautious equilibrium exists is larger.

Figure 4 plots the value function of a given agent for a uniform prior (with A = R = 1) and

a discount factor of β = 0.8, illustrating how it changes as the number of agents increases.

The more agents there are, the greater the distance of the non-cooperative value function

(plotted by the red dashed line) to the socially optimal value function (plotted by the blue

open circles). In particular when N = 10, one sees the region (roughly from s = 0 to s = 0.2)

where there is no separate cautious equilibrium. Furthermore, the value when it becomes

individually rational to remain standing, s̄nc, is relatively large (roughly 0.62). All in all

however, this example shows that the threat of a irreversible regime shift is very effective

when the externality applies only to the risk of crossing the threshold.10 In particular, for

s ≥ snc, the cautious equilibrium coincides with the social optimum.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

N=5

s* snc

Social Optimum
Non-cooperation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

N=10

s*snc snc

Social Optimum
Non-cooperation

Figure 4: Illustration of the value a given agent derives from the socially optimal and non-cooperative
use of the resource with u =

√
s
N + δi, β = 0.8, and A=R=1 for N=5 and N=10. Note that the

individual value, also in the social optimum, is lower when N=10 than N=5, simply because the
resource is shared among more agents.

4 Extensions

The paper’s main results do not rely on specific functional forms for utility or the probability

distribution of the threshold’s location. Tractability is achieved by considering extremely

simple resource dynamics, namely the resource remains intact and replenishes fully in the

next period as long as resource use in the current period has not exceeded T . In other words,

there is no common-pool externality relating to the resource dynamics itself. In this part of the

10At least for this specific utility function and these parameter values. Note that β = 0.8 implies a unrea-
sonably high discount rate, but it was chosen to magnify the effect of non-cooperation for a small number of
agents.
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paper, I explore to what extent the main results are robust to more general resource dynamics

(section 4.1 and 4.2). Moreover, I show that the result of once-and-for-all experimentation

does not rely on the assumption that the regime shift occurs immediately if the threshold is

crossed (section 4.3). However, once-and-for-all experimentation may no longer be optimal

when the regime shift is not disastrous in the sense that the post-event value function depends

on the extent to which the threshold has been overstepped (section 4.4).

4.1 Growing R and constraints on the choice set

In this subsection, I shall relax the assumption that R is constant. Instead, I consider the

case that R grows according to some function G(R). However, I maintain the assumption

that f and A are fixed, so that Rt converges to some R∞ ≤ A with time. This situation

may mechanically lead to repeated experimentation as long as the upper bound of the feasible

choice set in the respective period is binding. As a consequence, the overall consumption plan

will be more cautious.

Formally, the resource dynamics can be expressed as:

Rt+1 =

 Rt +G(Rt) if
∑

i c
i
t ≤ T

0 if
∑

i c
i
t > T or Rt = 0

(15)

where G(R) > 0 for R ∈ (0, R∞), G(R∞) = 0, and R0 < R∞ ≤ A.

Let us first consider the social optimum. As the set of safe values at which no more

experimentation is optimal, S, depends only on the belief about the location of the threshold

F and not on R, it will be optimal to expand the set of safe consumption values as long as

Rt /∈ S. Specifically, in this initial phase, it will be optimal to choose δ∗t = Rt − st−1. Once

Rt ∈ S for some t (say at t = τ), it will be optimal to choose one last step δ∗(sτ ) (which may

be of size zero) and to remain at sτ+1 = sτ + δ∗(sτ ) for all remaining time.

Note that constraints on the choice set (such that δ ∈ [0, δmax] where δmax < R − st for

some period t = 0, ..., τ) will lead to repeated experimentation for the same mechanistic reason:

When the first-best unconstrained expansion is δ∗(s0), but δmax is such that it requires several

steps to traverse this distance, then the safe value s will be updated sequentially (conditional

on not causing the regime shift, of course). The optimal plan prescribes choosing δmax for

some period t = 0, ..., τ and then choose δ∗(sτ ). Because ∂δ∗(s)
∂s < 0 (Proposition 3), this

implies an overall more cautious plan (that is:
∑τ

t=0 δmax + δ∗(sτ ) < δ∗(s0)).

The exact same reasoning applies in the non-cooperative game. Given that the agents

coordinate on the cautious equilibrium, the set Snc does not depend on R. Consequently,

the equilibrium path prescribes choosing δnct = Rt−st−1

N for some period t = 0, ..., τ and then

staying at sτ+1 for the remaining time (even though Rt may continue to grow). Note that this

rests on the assumption that all agents rationally anticipate the evolution of Rt. Analyzing

the effect of uncertainty about G(R) could be very interesting, but is left for future work.

That said, even with perfect knowledge about G(R), strategic uncertainty will matter a lot in
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the real world. Given that a real-world agent knows that the incentive to grab is increasing

through time and he or she is uncertain whether the other agents will actually stick to the

cooperative choice, he or she will have strong incentives to pre-empt the other agents.

The discussion in this subsection highlights how the result of once-and-for-all experimen-

tation is linked to the assumption of an unconstrained choice set δ ∈ [0, R−s]. The discussion

further sheds light on the difference of this model to e.g. the climate change application of

Lemoine and Traeger (2014): One reason for the gradual approach in their model is that

their assumed capital dynamics implicitly translate into a constrained choice set (as it is very

reasonable in their setting, capital cannot be adjusted instantly and costlessly).

4.2 Non-renewable resource dynamics

So far, I have assumed that the resource replenishes fully every period unless the threshold

has been crossed. In other words, the externality was only related to the risk of crossing the

threshold. Here, I study the opposite case of a non-renewable resource to analyze the effect of

a disastrous regime shift when the externality relates both to the risk of crossing the threshold

and to the resource itself. Specifically, I consider the following model of extraction from a

known stock of a non-renewable resource:

max
cit

∞∑
t=0

βtu(cit) subject to: Rt+1 =

 Rt −
∑

i c
i
t if

∑
i c
i
t ≤ T

0 if
∑

i c
i
t > T

; R0 given (16)

A simple interpretation of this model could be a mine from which several agents extract

a valuable resource. If aggregate extraction is too high in a given period, the structure of the

shafts may collapse, making the remainder of the resource inaccessible.11

I assume that the utility function is of such a form, that in a world without the threshold,

there is a non-cooperative equilibrium in which positive extraction occurs in several periods.

Due to discounting, it is clear that the extraction level will decline as time passes, both in

the social optimum and in the non-cooperative equilibrium. Due to the stock externality, it is

clear that the extraction rate in the non-cooperative equilibrium is inefficiently large (see e.g.

Harstad and Liski, 2013). To introduce some notation, let c̃nc(Rt) be the total non-cooperative

extraction level (as a function of the resource stock Rt) in absence of the regime shift risk.

The threat of a regime shift has the potential to limit non-cooperative extraction below

c̃nc(Rt) and thereby improve welfare. Also in the case of a non-renewable resource, with

dynamics given by (16), it is possible to show that experimentation continues to exhibit once-

and-for-all dynamics.12 Thus, for a given value s0, agents will either experiment once to learn

11Granted, in spite of this natural interpretation, two things are peculiar about this model setup: First, any
player can extract any amount up to Rt. (The option to introduce a capacity constraint on current extraction –
though realistic – would come at the cost of significant clutter without yielding any apparent benefit.) Second,
the assumption that R0 is known and that T is constant means that this is not a problem of eating a cake of
unknown size. This problem has since long been dealt with in the literature (see e.g. Kemp, 1976; Hoel, 1978)
and is not considered here.

12The proof is omitted because it follows the same steps as the proof of Proposition 4. In particular, the
argument that agent i’s payoff is higher when expanding the set of safe values in one step rather than two
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whether they can safely extract snc1 = s0 + Nδnc(s0), or they will not experiment at all. As

the extraction path will decline, snc1 will only be binding on the per-period extraction for an

initial phase (say until t = τ , where τ is implicitly defined by c̃nc(Rτ ) = snc1 . After time

period τ , the extraction path will follow the same non-cooperative path as in the absence of

a regime shift.

Consequently, the threat of a regime shift cannot induce coordination on the intertemporal

first-best.13 Nevertheless, the threat of a regime shift may induce an equilibrium that is, in

expected terms, Pareto-superior to a situation without the regime shift risk: While the agents

would obviously be better off without the regime shift risk when the initial experiment triggers

the collapse, the agents benefit from the initial constraint on the per-period extraction (up to

t = τ) when the regime shift is not triggered by the initial experiment.

4.3 Delay in the occurrence of the regime shift

In this subsection, I depart from the assumption that all agents observe immediately whether

last period’s expansion has triggered the regime shift or not, but consider a situation where the

agents observe only with some probability whether they have crossed the threshold. In fact,

it is not unreasonable to model that the true state will manifest itself only after some delay.

For example, the process of saltwater intrusion, though irreversible once the water table has

fallen under a critical level, may take time to unfold (for a recent paper that focusses on this

effect in the context of optimal climate policies, see Gerlagh and Liski (2014)). Hence, as time

passes the agents will update their beliefs about whether the threshold has been located on the

interval [st, st+ δt]. How does this learning affect the optimal and non-cooperative strategies?

This becomes an extremely difficult question as the problem is no longer Markovian.

Nevertheless, it is possible to show that also when crossing the threshold at time t triggers

the regime shift at some (potentially uncertain) time τ > t, it is still socially and individually

rational to experiment – if at all – in the first period only. The key is to realize that yesterday’s

decisions are exogenous today. This means that threat of a regime shift can be modeled as

an exogenous hazard rate: Let ht be the probability that the regime shift, triggered by events

earlier than and including time t, occurs at time t (conditional on not having occurred prior

to t, of course). The agent’s problem in this situation can be formulated as:

V i(s,∆−i) = max
δi∈[0,R−s]

{
u(s+ δi) + (1− ht)βLs(δi + δ−i)V i(s+ δ,∆−i)

}
(17)

The structure of (17) is identical to the one in equation (9), only the effective discount factor

decreases by (1− ht). Agents anticipate how the effective discount factor changes with time,

but their belief about the location of the threshold, given that it has not been crossed by the

rests on a comparison of the risk encountered by the two strategies and that staying after the first expansion
is sub-optimal for agent i. Neither of these two arguments use the specific form of the continuation value (it
is irrelevant when comparing the regime-shift risk and held constant in the second argument).

13Except in the very special case that snc1 = s0 = c∗(RT ) where c∗(RT ) is the socially optimal extraction at
the finite exhaustion period T
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current step, is not affected. Thus, the learning dynamics are unchanged.

In other words, the once-and-for-all dynamics of experimentation are robust to a delay in

the occurrence of the regime-shift. This does of course not imply that the optimal decision

under the two different models will be the same. It will almost surely differ, as delaying

the consequences of crossing the threshold decreases the costs of experimentation. Yet, as

the agents only learn that they have crossed the threshold when the disastrous regime shift

actually occurs, they cannot capitalize on this delay by trying to expand the set of safe

consumption possibilities several times.

4.4 Non-disastrous regime shift

A central feature of the baseline model was that the regime shift is disastrous: Crossing the

threshold breaks any links between the state before and after the regime shift. The pre-

event choices did not matter for the post-event value. This structure allowed me to simply

normalize the continuation value in case of a regime shift to zero. For some applications,

this independence of the post-event value is a fitting description. However, when the system

under consideration is large, and the threshold effect on the damage is not truly catastrophic,

but just one of many parts in the equation, a model with independent post-event value is not

adequate. In such a setting, one would need to take into account how the continuation value

depends on how far the set of consumption values has been expanded before the regime shift.

Denote the function that captures how the post-event continuation value depends on the

pre-event expansion by W (st+1) (where st+1 = st + δt). How W would depend on the pre-

event values of the state st and the choice variable δt is not generally clear. For example, Ren

and Polasky (2014) discuss under which conditions regime-shift risk implies more cautionary

or more aggressive management of renewable resources. In particular, they highlight the role

of an “investment effect” that induces incentives for more aggressive management: Harvesting

less (investing in the renewable resource stock) pays off badly should the regime shift occur.

Ren and Polasky go on to show how these incentives are balanced (and potentially overturned)

by the “risk reduction effect” and a “consumption smoothing effect” (that leads to more

precaution in their application). Similarly, the capital stock in a climate change application

likely has an ambiguous effect (Ploeg and Zeeuw, 2015a). On the one hand, it buffers against

the adverse effects of the regime shift and hence smoothes consumption over regimes. On the

other hand, a higher capital stock implies more intense use of fossil fuels, which aggravates

climate damages.

Regardless of whether W ′(st+1) > 0 or W ′(st+1) < 0, the fact that the pre-event choices

matter for the post-event value means that it is no longer immaterial by how much one has

stepped over the threshold. I argue that 1) even when the regime shift is not disastrous, there

will still be a set S or Snc at which it is socially or individually rational to not experiment

further, and 2) I point out that a necessary condition for a gradual approach to S is that the

post-event value declines sufficiently strongly in st+1. As the analysis of the different forces

at play is the same for the non-cooperative game, I concentrate on the sole-owner case for

the general discussion below. With help of the concrete example, I then explicitly compare

25



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

optimal experimentation in the absence of strategic interaction to the “cautious” equilibrium

of the non-cooperative game.

To put some structure to the argument, I write down the Bellman equation of the sole

owner before the regime shift has occurred:

V (s) = max
δ∈[0,R−s]

{
u(s+ δ) + β

[
Ls(δ)·V (s+ δ) + (1− Ls(δ))·W (s+ δ)

]}
(18)

The sole-owner seeks to choose that expansion of the set of consumption values that

maximizes her current utility plus the discounted continuation value. With probability Ls(δ),

the step of size δ turns out to be safe and the continuation value is given by V (s+ δ). With

probability (1− Ls(δ)), the threshold is located on the interval between s and s+ δ and the

continuation value is given by W (s+ δ).

It will still be the case that there is a non-empty set S for which the optimal choice is

δ∗ = 0. The reason is that, as long as the regime shift is a negative event (V (s) > W (s)), the

gains from further expansion of the set of safe consumption values are bounded above, while

the risk of triggering the regime shift grows exceedingly large as s→ R.

To obtain more insights about how the optimal expansion choice is changed by the exis-

tence of an endogenous continuation value, consider the derivative of the RHS of (18) (denoting

this function by ϕ′ again should not cause confusion):

ϕ′ = u′ + β
[
L′s(δ)(V −W ) + Ls(δ)·V ′ + (1− Ls(δ))·W ′

]
= 0 (19)

The size of δ∗ that solves equation (19) is determined by three factors: First, there is

the gain in marginal utility u′. Second, there is the term involving L′s(δ) which captures the

increased risk of the regime shift. This term is negative as before. Third, the optimal choice

of δ is affected by the marginal continuation value. Previously, only the event of not crossing

the threshold mattered here. Now, the event of crossing the threshold also has to be evaluated

explicitly.

Analyzing how an endogenous post-event value affects δ∗, I first note that the negative

term L′s(δ)(V − W ) decreases in absolute value. When the second-order condition for an

interior solution is satisfied, ϕ′ is a decreasing function in the neighborhood of δ∗. A decrease

in absolute value of the term L′s(δ)(V −W ) shifts the function upwards. Intuitively, a non-zero

continuation value in case of a regime shift pushes for a larger current consumption. However,

when W ′ < 0, the term (1 − Ls(δ))·W ′ is negative, which, ceteris paribus, leads to a lower

value of δ∗. If, and only if, the post-event value declines sufficiently strongly in st+1 will the

optimal δ∗ be so small that for st /∈ S, we have st + δ∗t = st+1 /∈ S. The approach to S will

then be gradual, implying periods of repeated experimentation.

To illustrate more concretely how these effects play out, I assume specific functional forms.

As in section 3.5, I set u(c) =
√
c and assume a uniform distribution for the location of the

threshold so that Ls(δ) = A−s−δ
A−s with A = R. For the post-event continuation value, I

26



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

assume that the resource loses all its productivity once the regime shift occurs. In other

words, W is the highest value that can be obtained when spreading the consumption of the

now non-renewable resource rt = R − st − δt over the remaining time horizon. We have

W ∗(st + δt) =
√

R−(st+δt)
1−β2 . Clearly, W ′(st + δt) < 0.

For a square-root utility function and without exogenous constraints on extraction, the

number of agents cannot be too large in order to have an interior equilibrium with positive

extraction over the entire time path in the non-cooperative game. Here I chooseN=2. We have

Wnc(st + δit + δ−it ) =

√
R−(st+δit+δ

−i
t )

1−β2+
√

1−β2
. The analytic closed form solutions are not particularly

instructive. Instead, I present the results graphically.
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,ŝ
nc

0.6

0.
2

0.
4

0.
6

Safe value s

Figure 5: Illustration of optimal experimentation when pre-event choices matter for post-event value.
Parameters and functional forms: u(c) =

√
c, N=2, A=R=1, Ls(δ) = 1−s−δ

1−s ; for β = 0.75 and β=0.95.

Figure 5 plots the first-period expansion δ as a function of s for a high and a low value

of the discount factor. The blue dotted line shows the optimal expansion of a sole-owner and

the light-blue area indicated, for a given s, by how much this first step falls short of the total

step size (experimentation stops when ŝ∗ is reached). Note how the first experiment is a much

larger fraction of the eventual area that is explored when β = 0.75 instead of β = 0.95.

The red dashed line shows the corresponding total expansion in the non-cooperative case.

Note that here, no second step is taken – any experimentation is undertaken in the first period

only. This is however not a general result: for very high values of β (0.998 and above; not

shown here) the cautious non-cooperative equilibrium also implies repeated experimentation.

Conversely, the lower is β, the steeper the first-period expansion as a function of s. Thus,

non-cooperation has two effects: not only is the non-cooperative experimentation inefficiently

large, the approach to the set at which it is optimal to cease experimenting is inefficiently

fast. The latter aspect is caused by the fact that the sole-owner’s marginal continuation value

declines more steeply than its non-cooperative counterpart: The agents do not internalize the

additional damage from the extent by which the threshold has been crossed.
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5 Discussion and Conclusion

The threat of a disastrous regime shift can be beneficial because it allows coordination on

a Pareto-dominant equilibrium, even when the location of the threshold is unknown. When

the consequence of the regime shift is catastrophic, and learning is only affirmative, it is

socially optimal and a Nash equilibrium to update beliefs only once (if at all). For a suffi-

ciently valuable level of safe use, the threat of loosing the productive resource discourages any

experimentation and effectively enforces the first-best consumption level. When the agents

experiment, the expansion of the consumption set is in most cases inefficiently large. How-

ever, when the experiment has not triggered the regime shift, staying at the updated level

is ex post socially optimal. In addition to this “cautious” Nash equilibrium there is always

also an “aggressive” Nash equilibrium, in which the agents immediately deplete the resource.

When the initial value of safe use is not valuable enough, immediate depletion will be the only

equilibrium.

Empirically, we do not observe many resources where the safe level of use is updated once

and the resource then either collapses or is used sustainably at the updated level. Whereas

my model isolates the threat of a disastrous regime shift, many additional aspects that dilute

the sharp once-and-for-all learning dynamics are likely to matter in the real world. In this

paper, I explore the conditions under which the once-and-for-all learning dynamics and the

existence of a “cautious” Nash equilibrium emerge. Importantly, I show that the threat of

the disastrous regime shift loses importance when the externality applies both to the risk

of triggering the regime shift and to the resource itself. Nevertheless, it can still act as a

“commitment device” to at least dampen non-cooperative extraction.

These conclusions have been derived by developing a dynamic model that has placed only

minimal requirements on the utility function and the probability distribution of the threshold.

Nevertheless, there are a number of structural assumptions that warrant discussion.

First, a prominent aspect of this model is that the threshold itself is not stochastic. The

central motivation is to isolate the effect of uncertainty about the threshold’s location. This

is arguably the core of the problem: We don’t know which level of use triggers the regime

shift. This assumption is consistent with Lemoine and Traeger (2014, p.28) who argue, “we

would not actually expect tipping to be stochastic. Instead, any such stochasticity would

serve to approximate a more complete model with uncertainty (and potentially learning) over

the precise trigger mechanism underlying the tipping point.” This being said, it would still

be interesting to investigate how the choice between a hazard-rate formulation (as in Polasky

et al., 2011 or Sakamoto, 2014) or a threshold formulation influences the outcome and policy

conclusions in an otherwise identical model.

Second, to focus on the coordinating effect of the threat of the regime shift, I have as-

sumed identical agents. One dimension along which players could differ is their valuation of

the future. However, it is likely that a contract that gives a larger share of the gains to more

impatient players could smooth out any such differences. One could also investigate the effect

of heterogenous beliefs about the existence and location of the threshold. Agbo (2014) and

Koulovatianos (2015) analyze this in the framework of Levhari and Mirman (1980). In the
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current set-up, such a heterogeneity could lead to interesting dynamics and possible multiple

equilibria, where some players rationally do not want to learn about the probability distribu-

tion of T whereas other players do invest in experimentation. Another dimension along which

players could differ is their size or the degree to which they depend on the resource. As larger

players are likely to internalize a larger part of the externality than smaller players, different

sets of equilibria may emerge. Especially in light of the discussions surrounding a possible cli-

mate treaty (Harstad, 2012; Nordhaus, 2015), it is topical to analyze situations where groups

of players can form a coalition to ameliorate the negative effects of non-cooperation.

Third, I have assumed the regime shift to be irreversible. This is obviously a considerable

simplification. Groeneveld et al. (2013) have analyzed the problem of how a sole-owner would

learn about the location of a threshold in a setting where repeated crossings are allowed, but

the exact location of the threshold remains unknown upon crossing it. If one presumes that

crossing the threshold implies that one learns where it is, the game turns into a repeated game.

This may imply that cooperation is sustainable for sufficiently patient agents (van Damme,

1989). However, there could also be cases where irreversibility emerges “endogenously” when

it is possible – but not an equilibrium – to move out of a non-productive regime. The

tractability of the current modeling approach may prove fruitful to further explore this issue.

A final, related, point is the fact that I have concentrated on Markovian strategies. When

the agents are allowed to use history-dependent strategies, the threat of a threshold may allow

them to coordinate on the social optimum in all phases of the game. They could simply agree

on expanding the set of safe consumption possibilities by the socially optimal amount and

threaten that if any agent steps too far, this triggers a reaction to deplete the resource in the

next period. This obviously begs the question of renegotiation proofness, but it is plausible

that a contract that is binding for two periods is already sufficient to achieve the first-best.

The threat of a disastrous regime shift is a very strong coordinating device. This is true

irrespective of whether the threshold’s location is known or unknown, because the agents

learn only after the fact whether the disastrous regime shift has occurred or not. Would a

catastrophic threshold lose its coordinating force when the agents can learn about its location

without the risk of crossing it? Importantly, an extension of the model along these lines would

speak to the recent debate on “early warning signals” (Scheffer et al., 2009; Boettiger and

Hastings, 2013) and is the task of future work.
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Appendix

A.1 Proof of Proposition 1

Recall that Proposition 1 states that when the location of the threshold is known with certainty, then there

exists, for every combination of β, N , and R, a value Tncc such that the first-best of staying at T can be

sustained as a Nash equilibrium when T ≥ Tncc , where Tncc is defined by Ψ = 0. The critical value Tncc is

higher, the larger N or R are, or the smaller β is.

It is useful to replicate equation (3) that describes the gain from immediate depletion over staying at T

when all other agents stay at T :

Ψ(T,R,N, β) = u

(
R− N − 1

N
T

)
− u(T/N)

1− β (3)

To show that a value Tc, defined by Ψ = 0, always exists, I first note that Ψ declines monotonically in

T : ∂Ψ
∂T

= −N−1
N

u′
(
R− N−1

N
T
)
− 1

N
u′(T/N)

1−β < 0 as u′ > 0, N ≥ 1 and β ∈ (0, 1). Then, I show that Ψ is

larger than zero at T = 0: Ψ(0, R,N, β) = u(R) > 0. Finally, I show that Ψ is smaller than zero as T → R:

limT→R Ψ = − β
1−βu(R/N) < 0 as β ∈ (0, 1) and u(R/N) > 0. Thus, by the mean value theorem, for every

combination of β, N , and R, there must be a value of T at which Ψ = 0.

Now, to show that staying at T > Tc is indeed the socially optimal action (the first-best), I show that

dTc
dN

> 0. This means that the critical value at which staying is a Nash equilibrium is higher the larger N is,

which implies that Tc is smallest when N = 1 (the sole-owner case). As Ψ is monotonically declining in T ,

it will be socially optimal to stay at T for all values of T that are larger than the social-planner’s Tc. Tc is

implicitly defined by Ψ = 0 and dTc
dN

is therefore given by dTc
dN

= − ∂Ψ/∂N
∂Ψ/∂T

.

We know that the denominator is negative, so that dTc
dN

> 0 when the numerator is positive. We have:

∂Ψ
∂N

= T
N2

(
u′
(
R− N−1

N
T
)
− u′(T/N)

)
> 0.

Finally, it remains to show that Tc is higher the larger R is and the smaller β is. Again, a sufficient

condition for the former statement is ∂Ψ
∂R

> 0, which holds because ∂Ψ
∂R

= u′
(
R− N−1

N
T
)
> 0. A sufficient

condition for dTc
dβ

< 0 is that ∂Ψ
∂β

< 0 which holds because ∂Ψ
∂β

= −u(T/N)

(1−β)2
< 0.

A.2 Proof of Proposition 2

Recall that Proposition 2 consists of two parts: First, it states that there exists a set S so that for s ∈ S, it is

optimal to choose δ(s) = 0. That is, if s0 ∈ S, the socially optimal use of the resource is s0 for all t. Second,

the proposition states that if s0 /∈ S, it is optimal to experiment once at t = 0 and expand the set of safe values

by δ∗(s0). When this has not triggered the regime shift, it is socially optimal to stay at s1 = s0 + δ∗(s0) for all

t ≥ 1.

Part (1) First, I show that there is a non-empty set S ⊂ [0, R] at which it is optimal to stay. Assume

for contradiction that for all s in [0, R]:
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max
δ∈(0,R−s]

{
u(s+ δ) + βLs(δ)V (s+ δ)

}
> u(s) + βV (s) (A-1)

Then there is a value of δ such that:

V (s)− L(s+ δ)

L(s)
V (s+ δ) <

u(s+ δ)− u(s)

β
(A-2)

Now as u is concave, positive, and bounded above by u(R), we know that for an s sufficiently close to R,

the numerator of the RHS of (A-2) is bounded above: u(s+ δ)−u(s) < βKδ. Using this and multiplying both

sides by L(s) as well as dividing both sides by δ we have:

L(s)V (s)− L(s+ δ)V (s+ δ)

δ
< KL(s) (A-3)

Now, take the limit as s→ R. Because δ ∈ (0, R− s], we have that δ → 0 when s→ R so that the LHS of

(A-3) is the negative of the derivative of L(s)V (s): lims→R− ∂[L(s)V (s)]
∂s

= f(R)V (R), which is positive while

the RHS of (A-3) vanishes when F (R) = 1. Thus, we have a contradiction and there must be some s at which

it is optimal to choose δ(s) = 0. When there is a positive probability that there is no threshold on [0, R] (that

is, F (R) < 1), the RHS of (A-3) does not vanish. Nevertheless, there will always be value of s, namely s = R,

at which it is optimal to stay – simply because there is no other choice.

Thus, the set S is not empty. Moreover, when the hazard rate is not decreasing with s (that is when

∂Ls(δ)
∂s

= −f(s+δ)(1−F (s))+(1−F (s+δ))f(s)

[1−F (s)]2
< 0 ⇔ f(s)

1−F (s)
< f(s+δ)

1−F (s+δ)
), it can be shown that the set S is convex,

so that S = [s∗, R] where s∗ is defined in the main text as the lowest value of s at which it is optimal to never

experiment. First, note that convexity of S is trivial when s∗ = R. Consider then the case that s∗ < R. By

definition, the first-order condition (equation (7) in the main text) must just hold with equality for s∗:

ϕ′(δ; s) = 0 ⇔ u′(s∗) = β
f(s∗)

1− F (s∗)

u(s∗)

1− β

S is convex if for any s ∈ (s∗, R] we have ϕ′ < 0 (i.e. a boundary solution of δ∗ = 0). That is:

u′(λs∗ + (1− λ)R) < β
f(λs∗ + (1− λ)R)

1− F (λs∗ + (1− λ)R)

u(λs∗ + (1− λ)R)

1− β for all λ ∈ (0, 1] (A-4)

Because u′ > 0 and u′′ ≤ 0, the term on the LHS of (A-4) is smaller the larger λ is. Because u′ > 0 the

rightmost fraction of (A-4) is larger the larger λ is, and β is a positive constant. The term in the middle is the

hazard rate, which is non-decreasing by assumption.

Part (2) When s0 /∈ S, it is not optimal to stay. Thus, it is optimal to expand the set of safe consumption

values by choosing δ > 0. Due to discounting, it cannot be optimal to approach S asymptotically but never

actually reach it. Thus, there must be a last step from some st /∈ S to st+1 = st + δt with st+1 ∈ S. Below, I

33



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

show that it is in fact optimal to take only one step. It then follows that when s0 /∈ S, it is optimal to choose

s0 + δ∗(s0) for t = 0 and, if the resource has not collapsed, s1 for all t ≥ 1.

Denote δ∗(s̃) the optimal last step when starting from some value s̃ /∈ S and s∗ = s̃+ δ∗ with s∗ ∈ S. The

following calculations show that going from some s to s̃ (by taking a step of size δ̃) and then to s∗ (by taking

a step of size δ∗) yields a lower payoff than going from s to s∗ directly (by taking a step of size δ̂ = δ̃+ δ∗; see

the box below for a sketch of the involved step-sizes).

s s̃ s∗

δ̃ δ∗

δ̂

R̂s

That is, I claim:

u(s+ δ̃) + βLs(δ̃)

(
u(s+ δ̃ + δ∗) + βLs+δ̃(δ

∗)
u(s+ δ̃ + δ∗)

1− β

)
≤ u(s+ δ̂) + βLs(δ̂)

u(s+ δ̂)

1− β (A-5)

The important thing to note is that: Ls(δ̃)Ls+δ̃(δ
∗) = L(s+δ̃)

L(s)
L(s+δ̃+δ∗)
L(s+δ̃)

= L(s+δ̃+δ∗)
L(s)

= Ls(δ̃+δ∗). Hence, (A-5)

can, upon using δ̂ = δ̃ + δ∗ and splitting the RHS into three parts (t = 0, t = 1, t ≥ 2), be written as:

u(s+ δ̃) + βLs(δ̃)u(s+ δ̂) + β2Ls(δ̂)
u(s+ δ̂)

1− β ≤ u(s+ δ̂) + βLs(δ̂)u(s+ δ̂) + β2Ls(δ̂)
u(s+ δ̂)

1− β

which simplifies to: u(s+ δ̃) ≤
[
1 + β

(
Ls(δ̂)− Ls(δ̃)

)]
u(s+ δ̂)

u(s+ δ̃) ≤

[
1 + β

L(s+ δ̂)− L(s+ δ̃)

L(s)

]
u(s+ δ̂) (A-5’)

Because the term in the squared bracket is smaller than 1 (as L(s+ δ̂) < L(s+ δ̃)), it is not immediately obvious

that the inequality in the last line holds. However, we can use the fact that because s̃ /∈ S, and because δ∗ is

defined as the optimal last step from s̃ into the set S, the following must hold:

u(s̃)

1− β < u(s̃+ δ∗) + βLs̃(δ
∗)
u(s̃+ δ∗)

1− β .

Using the fact that s̃ = s+ δ̃ and that s̃+ δ∗ = s+ δ̂, this can be re-arranged to give:

u(s+ δ̃)

1− β < u(s+ δ̂) + β
L(s+ δ̂)

L(s+ δ̃)

u(s+ δ̂)

1− β

⇔

u(s+ δ̃) <

[
1 + β

L(s+ δ̂)− L(s+ δ̃)

L(s+ δ̃)

]
u(s+ δ̂) (A-6)

Since L′(s) < 0, we know that L(s+δ̂)−L(s+δ̃)

L(s+δ̃)
< L(s+δ̂)−L(s+δ̃)

L(s)
< 0. Therefore, combining (A-5’) and (A-6)

establishes the claim and completes the proof:

u(s+ δ̃) <

[
1 + β

L(s+ δ̂)− L(s+ δ̃)

L(s+ δ̃)

]
u(s+ δ̂) <

[
1 + β

L(s+ δ̂)− L(s+ δ̃)

L(s)

]
u(s+ δ̂) (A-7)
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As pointed out in footnote 5, it may not immediately obvious that the assumption on the timing adopted

in the model (“action - consumption - reaction”) is innocuous. Below, I show that immediate experimentation

is also optimal under the alternative timing assumption of “action - reaction - consumption”.

Consider two plans, “A” and “B” (where plan A implies cautious experimentation and plan B immediate

experimentation). Under the timing assumption of “action - reaction - consumption”, I decide in plan A to

expand the set of safe values by δ̃, but before I obtain the utility from consuming s+ δ̃ I must first see whether

the regime shift occurs or not (the latter event happens with probability Ls(δ̃). The payoff from period 2 and

the remaining periods follows the same logic. The expected payoff from plan A is therefore:

PA = Ls(δ̃)u(s+ δ̃) + βLs(δ̂)u(s+ δ̂) + β2Ls(δ̂)
u(s+ δ̂)

1− β (A-8)

The payoff from “plan B” is almost identical, only that all uncertainty is revealed before any utility from

consumption is obtained:

PB = Ls(δ̂)u(s+ δ̂) + βLs(δ̂)u(s+ δ̂) + β2Ls(δ̂)
u(s+ δ̂)

1− β (A-9)

As can be clearly seen from (A-8) and (A-9) PA < PB when Ls(δ̃)u(s+ δ̃) < Ls(δ̂)u(s+ δ̂). As Ls(δ̃) = L(s+δ̃)
L(s)

,

and s+ δ̃ = s̃, this is equivalent to:

u(s̃) <
L(s∗)

L(s̃)
u(s∗) (A-10)

Now, the same argument as above can be used. Because s̃ /∈ S, and because δ∗ is defined as the optimal last

step from s̃ into the set S, the following must hold:

u(s̃)

1− β < Ls̃(δ
∗)u(s∗) + βLs̃(δ

∗)
u(s∗)

1− β (A-11)

Simple reformulation then yields (A-10).

A.3 Proof of Proposition 3.

Proposition 3 states that the optimal step size δ∗(s) is decreasing in s for s ∈ (s∗, s∗).

Recall that δ∗(s) is implicitly defined by the solution of ϕ′(δ∗; s) = 0 for s ∈ (s∗, s∗), where ϕ′ is:

ϕ′(δ∗; s) = u′(s+ δ∗) +
β

1− β
[
L′s(δ

∗)u(s+ δ∗) + Ls(δ
∗)u′(s+ δ∗)

]
(7)
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I assume that the second-order condition ϕ′′ < 0 is satisfied:

ϕ′′(δ∗; s) = u′′ +
β

1− β

(
L′′s (δ∗)u+ 2L′s(δ

∗)u′ + Ls(δ
∗)u′′

)
< 0 (A-12)

To show that δ∗ is declining in s, I can use the implicit function theorem and need to show that:

dδ∗

ds
= −

∂
[
ϕ′(δ∗; s)

]
/∂s

∂
[
ϕ′(δ∗; s)

]
/∂δ∗

< 0

The denominator is negative when the second-order condition is satisfied. Therefore, a sufficient condition for

dδ∗

ds
< 0 is that ∂[ϕ′(δ∗;s)]

∂s
< 0 holds. In other words, we must have:

∂[ϕ′(δ∗; s)]

∂s
= u′′ +

β

1− β

(
∂L′s(δ

∗)

∂s
u+ L′s(δ

∗)u′ +
∂Ls(δ

∗)

∂s
u′ + Ls(δ

∗)u′′
)
< 0 (A-13)

Noting the similarity of (A-13) to the second-order condition (A-12), and realizing that (A-12) can be

decomposed into a common part A and a part B, and that (A-13) can be decomposed into the common part

A and a part C, a sufficient condition for (A-13) to be satisfied is that B > C.

[
u′′ +

β

1− β

(
L′sL(δ∗)u′ + Ls(δ

∗)u′′
)]

︸ ︷︷ ︸
A

+
β

1− β

(
L′′s (δ∗)u+ L′s(δ

∗)u′
)

︸ ︷︷ ︸
B

< 0 (A-12’)

[
u′′ +

β

1− β

(
L′s(δ

∗)u′ + Ls(δ
∗)u′′

)]
︸ ︷︷ ︸

A

+
β

1− β

(
∂L′s(δ

∗)

∂s
u+

∂Ls(δ
∗)

∂s
u′
)

︸ ︷︷ ︸
C

< 0 (A-13’)

In order to show that L′′s (δ)u+L′s(δ)u
′ >

∂L′s(δ)

∂s
u+ ∂Ls(δ)

∂s
u′, I use the first-order condition for an interior

solution from (7) to write u′ in terms of u:

u′ =
−L′s(δ)

1−β
β

+ Ls(δ)
u

Upon inserting and canceling u, I need to show that:

L′′s (δ) + L′s(δ)

[
−L′s(δ)

1−β
β

+ Ls(δ)

]
>
∂L′s(δ)

∂s
+
∂Ls(δ)

∂s

[
−L′s(δ)

1−β
β

+ Ls(δ)

]
(A-14)

Recall that Ls(δ) = L(s+δ)
L(s)

and hence:

L′s(δ) =
L′(s+ δ)

L(s)

∂Ls(δ)

∂s
=
L′(s+ δ)L(s)− L(s+ δ)L′(s)

[L(s)]2

L′′s (δ) =
L′′(s+ δ)

L(s)

∂L′s(δ)

∂s
=
L′′(s+ δ)L(s)− L′(s+ δ)L′(s)

[L(s)]2
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Tedious but straightforward calculations then show that (A-14) is indeed satisfied.

[
1− β
β

+
L(s+ δ)

L(s)

]
︸ ︷︷ ︸

a

L′′(s+ δ)

L(s)
−
[
L′(s+ δ)

L(s)

]2

>

[
1− β
β

+
L(s+ δ)

L(s)

]
︸ ︷︷ ︸

a

∂L′s(δ)

∂s
−
∂Ls(δ)

∂s
L′s(δ)

⇔

a
L′′(s+ δ)

L(s)
−
[
L′(s+ δ)

L(s)

]2

> a
L′′(s+ δ)L(s)− L′(s+ δ)L′(s)

[L(s)]2
−
∂Ls(δ)

∂s
L′s(δ)

⇔

aL′′(s+ δ)L(s)− [L′(s+ δ)]2 > a
(
L′′(s+ δ)L(s)− L′(s+ δ)L′(s)

)
−
(
L′(s+ δ)L(s)− L(s+ δ)L′(s)

)L′(s+ δ)

L(s)

⇔

− [L′(s+ δ)]2L(s) > −aL′(s+ δ)L′(s)L(s)− L′(s+ δ)L(s)L′(s+ δ) + L(s+ δ)L′(s)L′(s+ δ)

⇔

aL′(s+ δ)L′(s)L(s) > L(s+ δ)L′(s)L′(s+ δ)

⇔

aL(s) > L(s+ δ) ⇔
[

1− β
β

+
L(s+ δ)

L(s)

]
L(s) > L(s+ δ) ⇔

1− β
β

L(s) > 0. True because β, L ∈ (0, 1).

A.4 Proof of Proposition 4.

Recall that Proposition 4 states that There exists a set Snc such that for s0 ∈ Snc, it is a symmetric Nash

equilibrium to stay at s0 and consume s0
N

for all t. For s0 /∈ Snc, it is a Nash equilibrium to take exactly

one step and consume s0
N

+ δnc(s0) for t = 0 and – when this has not triggered the regime shift – to stay at

s1 = s0 +Nδnc(s0), consuming s1
N

for all t ≥ 1.

Preliminarily, note that the game’s stationarity implies that if it is a Nash equilibrium to stay at some s

in any one period, it will be a Nash equilibrium to stay at that s in all subsequent periods.

The first part of the proof, showing the existence of Snc, is parallel to the first part of the proof of

Proposition 2 and is not repeated here. It rests on the same argument, namely that there is some s at which

the gains from increasing consumption are small compared to the expected loss, even when the short term gain

does not have to be shared among all N agents.

To prove the second part of the proposition, I need to show that, for s0 /∈ Snc, any agent i prefers to

reach the set Snc in one step rather than two when the strategy of all other agents is to first take one step of

fixed size and then a second feedback step δ−i∗(s1) that ensures reaching snc ∈ Snc. Importantly, I use the

symmetry of the agents, that is, the second step δ−i∗(s) is given by δ−i∗(s) = (N − 1)δi∗(s) where δi∗(s) is

the state-dependent best reply defined by equation (11) in the main text. Moreover, I assume that all agents

coordinate on staying at snc whenever it is reached.

The setup is the following: All agents stand at s0 at the beginning of the first period. All agents except i

take a step of fixed size and their combined expansion is given by δ̃−i. If agent i chooses the same symmetric

fixed step, her expansion being denoted by δ̃i, the state s̃ /∈ Snc is reached (provided the regime shift has not

occurred). That is, s0 < s̃ < snc and s̃− s0 = Nδ̃i. Agent i can also choose her first step so that snc is already
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reached in the first period. Denote this step that expands the set of safe consumption values from s0 to snc

when the total expansion of all other agents taken together is δ̃−i by δ̂i∗(s0). The size of the step δ̂i∗(s0) is

thus δ̂i∗(s0) = snc − s0 − δ̃−i. Because all other agents remain at snc once it is reached, agent i’s payoff is in

this case:

π(1) = u
(s0

N
+ δ̂i∗(s0)

)
+

β

1− βLs0(δ̂i∗ + δ̃−i)u

(
snc

N

)
(A-15)

When agent i takes two steps, first a step of size δ̃i to the value s̃ (with s̃ /∈ Snc) and then a second step δi∗(s̃)

of size δi∗(s̃) = snc − s̃− δ−i∗(s̃), her payoff is:

π(2) = u
(s0

N
+ δ̃i

)
+ βLs0(δ̃i + δ̃−i)

(
u

(
s̃

N
+ δi∗

)
+

β

1− βLs̃(δ
i∗ + δ−i∗)u

(
snc

N

))
(A-16)

I now show that π(2) < π(1). For clarity, rewrite (A-15) and (A-16) by splitting it in three terms (t = 0, t =

1, and t ≥ 2) and using the fact that Ls0(δ̂i∗ + δ̃−i) = Ls0(δ̃i + δ̃−i)Ls̃(δ
i∗ + δ−i∗) = L(snc)

L(s0)
:

π(1) = u
(s0

N
+ δ̂i∗(s0)

)
+ β

L(snc)

L(s0)
u

(
snc

N

)
+ β2L(snc)

L(s0)

u(snc/N)

1− β (A-15’)

π(2) = u
(s0

N
+ δ̃i

)
+ β

L(s̃)

L(s0)
u

(
s̃

N
+ δi∗(s̃)

)
+ β2L(snc)

L(s0)

u(snc/N)

1− β (A-16’)

Thus, π(2) < π(1) if:

u
(s0

N
+ δ̃i

)
< u

(s0

N
+ δ̂i∗(s0)

)
+ β

[
L(snc)

L(s0)
u

(
snc

N

)
− L(s̃)

L(s0)
u

(
s̃

N
+ δi∗(s̃)

)]
(A-17)

First, by symmetry of the agents and the definition of δi∗(s̃), we have s̃
N

+ δi∗(s̃) = s̃+Nδi∗(s̃)
N

= snc

N
.

u
(s0

N
+ δ̃i

)
< u

(s0

N
+ δ̂i∗(s0)

)
+ β

L(snc)− L(s0)

L(s0)
u

(
snc

N

)
(A-17’)

Similarly, we have s0
N

+ δ̃i = s0+Nδ̃i

N
= s̃

N
:

u

(
s̃

N

)
< u

(s0

N
+ δ̂i∗(s0)

)
+ β

L(snc)− L(s̃)

L(s0)
u

(
snc

N

)
(A-17”)

Now, note that s0
N

+ δ̂i∗(s0) = s0+Nδ̂i∗(s0)
N

and that the step δ̂i∗(s0) is larger than the symmetric step that

would be necessary to reach snc from s0. Formally: δ̂i∗(s0) = snc− s0− δ̃−i > snc−s0
N

⇔ Nsnc−Ns0−N(N −

1)δ̃i > snc− s0 ⇔ snc− s0 > Nδ̃i = s̃− s0 which is true by construction. It follows that s0+Nδ̂i∗(s0)
N

> snc

N
and

we therefore have u
(
snc

N

)
+ β L(snc)−L(s̃)

L(s0)
u
(
snc

N

)
< u

(
s0
N

+ δ̂i∗(s0)
)

+ β L(snc)−L(s̃)
L(s0)

u
(
snc

N

)
so that a sufficient

condition for π(2) < π(1) is:
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u

(
s̃

N

)
< u

(
snc

N

)
+ β

L(snc)− L(s̃)

L(s0)
u

(
snc

N

)
(A-18)

Parallel to the argument in Proposition 2, we can use the fact that because s̃ /∈ Snc we must have

u(s̃/N)

1− β < u

(
s̃

N
+ δi∗(s̃)

)
+ βLs̃(δ

i∗(s̃) + δ−i∗(s̃))
u(snc/N)

1− β

Using that agents are symmetric, we have s̃
N

+ δi∗(s̃) = snc

N
and re-arranging shows that (A-18) holds, so that

π(2) < π(1) as claimed.

A.5 Proof of Proposition 5.

Let me repeat the argument from the main text: The effect of an increase in a parameter a in the interior

range s ∈ (snc, snc) is given by dgnc

da
= − ∂φ′/∂a

∂φ′/∂gnc . Thus, to show that aggregate consumption is higher the

higher the parameter a, it is sufficient to show that ∂φ′

∂a
> 0 (because the second-order condition implies that

∂φ′

∂gnc < 0). Because gnc is monotonically decreasing in s, it is also sufficient to show that, for a given value of

R, neither boundary snc or snc decreases and at least one boundary increases with a. The reason is that for a

given value of R an upward shift of snc or snc (and no downward of the respective other boundary) necessarily

implies that all new values of gnc must lie above the old values of gnc.

(a) The boundaries snc, snc, and aggregate consumption in the cautious equilibrium, Ngnc, decrease with β.

Here, it is simple to show that ∂φ′

∂β
< 0. We have ∂φ′

∂β
= [...]

(1−β)2
, where the term in the squared brackets [...]

is the term in the squared brackets of equation (12). We know that this term must be negative for an interior

solution because u′ > 0.

(b) An increase in N leads to higher resource use in the cautious equilibrium when N
N+1

≥ u′(R
N

)
/
u′( R

N+1
).

Here, I argue that both snc and snc increase when adding another player and N
N+1

≥ u′(R
N

)
/
u′( R

N+1
):

First, for a given number of players N we have at a given snc = ŝ that

φ′(
R− s
N

; ŝ) = u′
(
ŝ

N
+
R− ŝ
N

)
+

β

1− β

[
L′ŝ(Nδ

nc)u

(
R

N

)
+

1

N
Lŝ(Nδ

nc)u′
(
R

N

)]
= 0

I now show that for N + 1 we have φ′(R−s
N+1

; ŝ) > 0 when N
N+1

≥ u′(
R
N

)

u′(
R

N+1
)
:

φ′(R−s
N+1

; ŝ)− φ′(R−s
N

; ŝ) > 0

⇔

u′( R
N+1

)− u′(R
N

) +
β

1− β

[(
u( R

N+1
)− u(R

N
)
)
L′ŝ + Lŝ

(
1

N + 1
u′( R

N+1
)− 1

N
u′(R

N
)

)]
> 0

The first part of the last line is positive due to concavity of u, the first term in the squared bracket is positive

since L′s < 0 and u( R
N+1

) < u(R
N

), and the last term in the squared bracket is positive whenever N
N+1

≥ u′(
R
N

)

u′(
R

N+1
)
.
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Thus, when N
N+1

≥ u′(
R
N

)

u′(
R

N+1
)
, it is guaranteed that φ′(R−s

N+1
; ŝ) > 0, which implies that for N + 1 the upper

bound of the choice set is a binding constraint at ŝ and that the corresponding smallest value of s at which

the agents can coordinate on cautious experimentation is larger. Note that N
N+1

≥ u′(
R
N

)

u′(
R

N+1
)

is not a necessary

condition: Of course, we may have φ′(R−s
N+1

; ŝ) − φ′(R−s
N

; ŝ) > 0 also when N
N+1

<
u′(

R
N

)

u′(
R

N+1
)

as the specific

example in section 3.5 shows.

Second, for a given number of players N we have at a given snc = š that

φ′(0; š, N) = u′
(
š

N

)
+

β

1− β

[
L′š(0)u

(
š

N

)
+

1

N
u′
(
š

N

)]
= 0

Clearly, we can make exactly the same argument as above to show that φ′(0; š, N+1) > 0 when N
N+1

≥ u′(
R
N

)

u′(
R

N+1
)
.

(c) The more likely the regime shift (in terms of a first-order stochastic dominance), the larger the range

where a separate cautious Nash-equilibrium exists and the lower aggregate consumption.

Suppose that for some given value ŝ, equation (12) has an interior solution that defines gnc:

φ′(δnc; ŝ, L) = u′
(
ŝ

N
+ δnc

)
+

β

1− β

[
L′ŝ(Nδ

nc)u

(
ŝ+Nδnc

N

)
+

1

N
Lŝ(Nδ

nc)u′
(
ŝ+Nδnc

N

)]
= 0 (12)

I now show that a more likely regime shift (in terms of a first-order stochastic dominance) means a change

in Ls to L̃s in such a way that φ′(δnc; ŝ, L̃) < 0 so that for every s ∈ (snc, snc) we have that the resulting

interior solution g̃nc is smaller than the orginal gnc. As a consequence, the range where a separate cautious

Nash-equilibrium exists will also be larger.

A first-order stochastic dominance means that F̃ ≥ F (where the inequality is strict for at least one

s). Because the hazard rate is non-declining, this means that F̃ (s+δ)−F̃ (s)

1−F̃ (s)
≥ F (s+δ)−F (s)

1−F (s)
and consequently

L̃s ≤ Ls. This implies also that L̃′ŝ = −f̃(s+δ)

1−F̃ (s)
< −f(s+δ)

1−F (s)
= L′ŝ < 0. Thus, both the negative first term and the

positive second term in the squared bracket of (12) are smaller, which implies that φ′(δnc; ŝ, L̃) < 0.

(d) An increase of R to R̃ for an unchanged risk of the regime shift (i.e. R < R̃ ≤ A) decreases snc and

thus leads to a larger range where a separate cautious equilibrium exists.

Note that R does not affect equation (12) when R < R̃ ≤ A, but it has an effect on the first value snc:

As the diagonal line defining the upper bound of δ shifts outwards, and gnc(s) is a downward sloping function

steeper than R− s, the first value at which it is not optimal to deplete the resource, snc, must be smaller when

R increases to R̃.
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Highlights

• Thresholds may benefit non-cooperative agents by facilitating coordination.

• Learning depends on history: higher initial safe level implies less experimentation.

• For high initial value, preserving the resource with certainty is a Nash equilibrium.
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