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ABSTRACT

The properties of directional distributions in ocean wave spectra are studied, with an emphasis on sea states

with bimodal directional distributions in the high-frequency tails of single-peaked wave systems. A peak-

splitting tendency has been a challenge in the interpretation of results from some data-adaptive estimation

methods. After a survey of the theory, mathematical and numerical explanations are presented regarding

domains of uni- and bimodality for symmetric Burg and Shannonmaximum entropymethods. The study finds

that both the Burg and Shannon maximum entropy methods have a tendency to split peaks, and that the

domains of uni- and bimodality for these two methods depend on the Fourier coefficients input into the

algorithms. Comparisons of data-adaptive methods based on data collected near the Ekofisk oil field in

the North Sea and from nonlinear wave simulations are presented. The maximum likelihood (ML) method,

the iterative maximum likelihood (IML) method, and the Burg and Shannon maximum entropy methods are

applied.A large fraction of the directional wave spectra fromEkofisk shows bimodal features for distributions

above the spectral peak for all of the abovementioned methods. In particular, strong similarity in bimodal

features between the iterative maximum likelihood and the Burg maximum entropy methods are found. In

general, the bimodality is consistent with previous observations, and it seems to be associated with wave and

spectral development owing to nonlinear wave–wave interactions rather than being associated with the peak-

splitting tendency in the estimates from any of the algorithms. The bimodal directional distributions were

sometimes persistent and sometimes formed or decayed within the order of hours.

1. Introduction

Under second-order stationary and homogeneous

conditions, an ocean wave field h(x, t) is stochastically

characterized by the three-dimensional (k, v) spectrum

x(k, v). The complexity involved in obtaining estimates of

x has turned the research toward derived quantities like

the frequency spectrum S(v) and frequency-dependent

directional (angular) distributions D(u, v). However,

from here to claim that E(v, u)5 S(v)D(u, v) is the

directional wave spectrum is physically wrong and

often leads to confusion because the operation

x(k, v) /S(v)D(u, v) loses information. Well-known

studies such asMitsuyasu et al. (1975), Hasselmann et al.

(1980), and Donelan et al. (1985) observed and provide

parameterizations for unimodal directional distributions

with directional spread narrowest at the peak frequency

and broader toward both lower and higher frequencies.

Banner and Young (1994) reported numerical evidence

that directional distributions may in fact be bimodal

above the spectral peak of a single-peaked (in fre-

quency) wave system. Bimodal distributions have beenCorresponding author: Karsten Trulsen, karstent@math.uio.no
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measured with spatial arrays (Young et al. 1995), buoys

(Ewans 1998; Ewans and Van der Vlugt 1999; Wang and

Hwang 2000), and HF radars (Kahma et al. 2005, p. 313)

in fetch-limited sea states, and recently with a stereo video

system (Leckler et al. 2015) for young wind waves. Similar

observations with various other wave-measurement sys-

tems can be found in Wang and Hwang (2001), Hwang

et al. (2000), Hwang and Wang (2001), Wang and Hwang

(2003), and Long and Resio (2007).

Data from heave–pitch–roll measurement systems

[heave–slope (HS)] will be central in the following

analysis. Such systems provide data with few restrictive

assumptions about the wave field, apart from homoge-

neity and stationarity. The standard output from the

system is collocated time series of surface elevation and

surface slopes in two orthogonal directions. Data from a

spatially compact array may be interpolated into an HS

setting and analyzed as triplet data.

It is well known, since the pioneering work of

Longuet-Higgins (1976), that nonlinear energy transfer

tends to move wave energy along directions 6358 away
from a narrow peak in the wavenumber vector spec-

trum. The result has been verified using the full solution

to nonlinear interaction equations (Banner and Young

1994) and nonlinear Schrödinger equations based on

narrowband Gaussian initial spectra (Dysthe et al.

2003). In a recent study, Toffoli et al. (2010) have in-

vestigated the temporal evolution of directional wave

spectra based on the potentialEuler equations, applying a

higher-order spectral method (Dommermuth and Yue

1987) that is free of bandwidth constraints and without

any external forcing, such as wind input or breaking dis-

sipation. For a fairly narrowbanded spectrum, it is ob-

served that the energy of short waves redistributes in

agreement with Longuet-Higgins (1976). However, for

broadbanded waves the energy redistribution direction is

shifted, to some extent, away from directions 6358 de-
pending on the shapes of the initial directional distribu-

tions. Moreover, Morland (1996) has suggested that

energy transfer from the wind to the waves as a result of

inviscid critical layermechanismsmay give rise to double-

peaked distributions for high frequencies.

Despite all these indications from the theory and ob-

servations of bimodal distributions in the short-wave

region, uncertainties concerning peak-splitting tendency

of some of the estimation methods make definite con-

clusions about the shape difficult. Estimation of ocean

wave spectra mostly applies data-adaptive methods, and

the resulting interpretations depend on analysis tech-

niques and their underlying assumptions and principles.

Comparisons of several directional analysis methods

based on directional wave basin experiments obtained

from three different measuring systems were reported

by Benoit and Teisson (1994). They observed that the

maximum likelihood (ML)method (see, e.g., Isobe et al.

1984; Krogstad 1988) provides broader directional dis-

tributions compared to the target, and that it performs

poorly for sea states with narrow-peaked or bimodal

distributions. On the other hand, the iterative maximum

likelihood (IML) method (Oltman-Shay and Guza

1984) provides well-resolved directional distributions,

but it is less reliable for estimates obtained from wave

probe array when compared to Shannon maximum en-

tropy (SME) method (Hashimoto and Kobune 1986) or

Bayesian directional methods (Benoit and Teisson

1994). However, the internal iteration method used in

the SME method to determine the Lagrangian multi-

pliers experiences convergence problems if estimated

Fourier coefficients are near the edge of the infeasible

set (Krogstad 2012). An alternative estimation tech-

nique based on the Burg maximum entropy (BME)

principle was introduced by Lygre and Krogstad (1986).

When applied to certain theoretical distributions, the dif-

ferences between the BME and SME algorithms range

from the ability tomatch both broad and narrow peaks to a

strong tendency for peak splitting (Krogstad 2012). With

Fourier coefficients of certain theoretical unimodal distri-

butions as input [e.g., the cos-2s distributions], the BME

distribution shows two peaks that often have led to dis-

cussions about its physical significance. Our results show

that this peak-splitting tendency is not limited to the BME

method but that it also occurs, though somewhat weaker,

in other estimated distributions.

Nevertheless, several recent studies indicate that the

tendency to split spectral peaks may not be a problem

for the BME method when applied to real wave data.

Comparisons of HF radar spectra with the BME spectra

estimated from Fourier coefficients determined from

the HF radar spectra and with directional Waverider

BME estimates are reported in Kahma et al. (2005, p.

313). The shapes of the spectra estimated from these

three cases were consistent, including the bimodal fea-

tures. During the study of frequency–wavenumber

spectra of young wind waves, Leckler et al. (2015)

compared a BME-processed spectrum from HS time

series computed from 3D surface data with the original

spectrum. The observed bimodal spectra in both BME

and the original estimates are in reasonable agreement,

confirming that the bimodality is real and consistent

with Ewans (1998) observations. Moreover, since the

spectra are measured by a stereo video system, any

doubts concerning spurious peaks as a result of the

analysis technique may be ruled out. Recently,

Simanesew et al. (2016) reported estimates of ocean

wave spectra from four different directional analysis

methods. In many of the spectra reported, they found a
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striking agreement between the BME estimates and

both the IML and SME estimates, suggesting that the

bimodality in the BME distributions indeed is real.

Young (2010) examined both wavenumber and fre-

quency spectra of finite-depth wind-generated waves

using the wavelet directional method (Donelan et al.

1996). He observed bimodality in the (k, u) spectrum,

consistent with previous observations. Although the

corresponding (v, u) spectrum was unimodal, he sug-

gested that the possible bimodality in the (v, u) spec-

trum was probably masked in the high-frequency region

of the spectrum.

Our investigation, based on Ekofisk laser array data,

and comprehensive with respect to sea states, shows that

the BME estimates are generally consistent with the

IML and SME estimates. In particular, for the bimodal

sea states, we find strong similarity in bimodal features

between the BME and IML distributions. These two

methods simultaneously display the bimodal features in

the whole range of frequencies, while the SME di-

rectional distributions show these bimodal features for

relatively high frequencies.

2. Theory review

a. Wave spectra

The most common mathematical model of a wavy

ocean surface is a zero-mean weakly stationary (in time

t) and homogeneous [in space x5 (x, y)] stochastic field

h(x, t). This ensures the existence of a covariance

function, r(x, t)5E[h(x1 x1, t1 t1)h(x1, t1)], and, by

the Wiener–Khinchin theorem, the Fourier identity,

r(x, t)5

ð
k,v

ei(k�x2vt) dx(k,v). (1)

Here, k5 (kx, ky) is the wavenumber vector and v is the

angular frequency. The function x(k, v) is the 3D

wavenumber–frequency spectrum. An alternative deri-

vation of x, based on the stochastic integral represen-

tation for h(x, t), is also sometimes used (Kahma et al.

2005, section 2.2). In general, x will be a nonnegative

generalized function.

The leading-order solution to the equations and

boundary conditions for free surface waves leads to the

dispersion relation connecting k and possible v values.

We shall be concernedwith gravity waves on finite depth

for which v56s(k), where

s(k)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanhkh

p
, (2)

with k5 jkj. Here, g is the acceleration of gravity and h is

the depth. We refer to this as linear wave theory (LWT)

and the unique positive solution of Eq. (2) for k we

denote as kLWT 5 k(s).

The general three-dimensional spectrum x(k, v) may

also be written as

dx(k,v)5 S(v)f
v
(k) dv dk

x
dk

y
, (3)

where S(v) is the frequency spectrum and fv(k) is the

wavenumber vector distribution at frequency v, nor-

malized so that
Ð
k
fv(k) dkx dky 5 1 for all v 2 R.

For LWT, the fv(k) has nonzero contributions only

on the circle k5 kLWT and may be written as

f
v
(k)5 d(k2 k

LWT
)D(u,v) (4)

(Glad and Krogstad 1992). Here, D(u, v) defines the

distribution of k located on the intersection of the dis-

persion manifold and the plane v equal to a constant,

and u is the direction of k. Apart from large-area remote

sensing systems, direct field measurements of fv(k) are

out of reach. However, estimates of certainmoments are

possible from the standard HS systems. The moments

are integral expressions defined by

hG i(v)5
ð
k

G (k,v)f
v
(k) dk

x
dk

y
. (5)

The HS systems provide the following properties:

f1, hkxi, hkyi, hkxkyi, hk2
xi, hk2

yig (Glad and Krogstad

1992). Nevertheless, the leading-order moments are far

from determining the actual shape offv(k). An example

of slices of wavenumber distribution, fv(k), is shown in

Fig. 1 for a set of positive frequencies. The figure shows

numerical data from a higher-order modified nonlinear

Schrödinger equation. The LWT dispersion circle and

higher-order contributions are observed near the most

energetic parts of wave harmonics. Above the spectral

peak, the first-order harmonic shows a deviation from

the dispersion relation and it is situated within the dis-

persion circle. This deviation is due to nonlinear evolu-

tion, as explained by Krogstad and Trulsen (2010) and

Taklo et al. (2015).

Working with the full 3D spectrum is awkward, and it

is necessary to introduce a set of simplified functions by

integrating over k and v. The simplest is of course the

well-known frequency spectrum introduced above,

S(v) dv5 2

ð
k,[v,v1dv]

dx(k,v), v. 0. (6)

Themagnitude dx(k, v) is symmetric with respect to the

origin, dx(k, v)5 dx(2k, 2v), and has an integral

equal to Var(h), which explains the factor 2 in Eq. (6)

and in the following.
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We let C(k) be the integral over positive frequencies

keeping k fixed,

C(k) dk
x
dk

y
5 2

ð
dVk ,v.0

dx(k,v)

5 2

ð
v.0

S(v)f
v
(k) dk

x
dk

y
dv , (7)

where dVk [ [kx, kx 1 dkx]3 [ky, ky 1 dky]. Term C(k)

will in general have contributions from several fv dis-

tributions for each k, and there is no way to distinguish

between linear free- and bound-wave contributions

without further information about the fv functions.

Inversion from C(k) back to x is thus only possible as-

suming the dispersion relation,

dx(k,v)5
1

2
fC(k)d[v2s(k)]

1C(2k)d[v1s(k)]gdk
x
dk

y
dv . (8)

The transformation from C(k) to the commonly used

directional spectrum, E(v, u)5 S(v)D(u, v), is carried

out by a straightforward substitution of the dispersion

relation and a change in variables k/ (v, u),

E(v, u)5 S(v)D(u,v)5C[k(v), u]k(v)
dk(v)

dv
. (9)

b. Directional distributions

The directional distribution D(u, v) may be viewed

as a probability distribution function defined over the

direction u. Neglecting the v dependence for simplicity,

D(u) is a real, nonnegative, and 2p periodic function

with Fourier series,

D(u)5
1

2p

�
11 2�

n51

‘

r
n
cos[n(u2 u

n
)]

�
5

1

2p
�

n52‘

‘

c
n
e2inu ,

(10)

5
1

2p

�
11 2�

n51

‘

(a
n
cosnu1 b

n
sinnu)

�
,

where cn 5 an 1 ibn 5 rn e
inun for n. 0, c2n 5 cn*, and

c0 5 1. We refer to Kahma et al. (2005) regarding

properties of D. Considering an HS system, the cross-

spectrum from h(0, t), (›h/›x)(0, t), and (›h/›y)(0, t)

provides the moments from which we determine the

leading Fourier coefficients,

fa
1
, b

1
, a

2
,b

2
g 5 hk

x
i/k

RMS
, hk

y
i/k

RMS
, hk2

xi2 hk
y
i2

� �n
/k2

RMS, 2hkx
k
y
i/k2

RMSg (11)

(GladandKrogstad1992).Here,kRMS(v)5 (hk2
xi1 hk2

yi)1/2.
The main directional parameters—that is, the mean

wave direction u1 and the directional spread (circular

standard deviation of D; Mardia 1972) s1—are usually

expressed in terms of the Fourier coefficients,

u
1
(v)5 atan2(b

1
, a

1
), s

1
(v)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(12 r

1
)

q
, (12)

where r1 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 1 b2

1

p
. The angular skewness and kur-

tosis of the distribution may also be used to describe

the shape of the directional distributions (Mardia

1972; Fisher 1995; Kuik et al. 1988; Berens 2009).

However, contrary to the linear case, the circular

skewness and kurtosis do not bring in new in-

formation and they will not be considered further in

this study.

FIG. 1. Slices through the spectrum showing fv(k) for constant

frequencies. White solid circle, deep water dispersion relation;

yellow dashed–dotted circle, second-order contribution; and red

dashed circle, third-order contribution. Simulation with the MNLS

equation.
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We shall restrict ourselves to the leading complex

Fourier coefficients, fc2*, c1*, 1, c1, c2g, which may be

estimated directly by the HS systems. To ensure the

existence of a nonnegative distribution with an integral

equal to 1, it is necessary and sufficient that the Fourier

coefficients form a positive semidefinite sequence for

which the following matrix inequalities are valid:

				 1 c
1
*

c
1

1

				$ 0, (13)

							
1 c

1
* c

2
*

c
1

1 c
1
*

c
2

c
1

1

							$ 0, (14)

. . . ,

(Kahma et al. 2005). These inequalities are easily seen to

impose the following feasibility conditions on c1 and c2:

jc
1
j# 1

jc21 2 c
2
j# 12 jc

1
j2 (15)

for the first two Fourier coefficients. The second in-

equality may alternatively be written as

c
2
5 c21 1 z(12 jc

1
j2) , (16)

where z 2 C and jzj#1. See Kahma et al. (2005, section

2.5) for a complete algorithm.

1) SOME PROPERTIES OF ME DISTRIBUTIONS

We shall in the following consider two families of

maximum entropy (ME) directional distributions ob-

tained from estimates of feasible Fourier coefficients.

The solutions of both families are formulated as a

strictly concave functional for D with linear constraints.

The BME was first used by Burg (1975) in connection

with signal processing and later by Lygre and Krogstad

(1986) for the estimation of directional distributions in

ocean wave spectra. The solution, when it exists, is

unique. The idea is to maximize the entropy

H
B
(D)5

ðp
2p

lnjD(u)j du (17)

under linear constraints,ðp
2p

einu D(u) du5 c
n
, n5 1, 2, c

0
[ 1, (18)

which leads to a directional distribution of the form

D
B
(u)5

1

2p

s2
e

j12f
1
e2iu 2f

2
e2i2uj2 , (19)

where

f
1
5

c
1
2 c

2
c
1
*

12 jc
1
j2 , f

2
5 c

2
2 c

1
f

1
, and

s2
e 5 12f

1
c
1
*2f

2
c
2
* (20)

(Kay 1988). By introducing the representation from Eq.

(16) we obtain the following simplified expressions:

f1 5 c1 2 zc1*, f2 5 z, and s2
e 5 (12 jc1j2)(12 jzj2).

The SME method (Hashimoto and Kobune 1986;

Hashimoto 1997) is based on the entropy

H
S
(D)52

ðp
2p

D (u) lnjD(u)j du , (21)

which, apart from the 2p periodicity, is identical to the

entropy known from information theory. Maximizing

the entropy in Eq. (21) under the constraints in Eq. (18),

one obtains an expression for D containing the La-

grangian multipliers l5 flig, i5 0, . . . , 4,

D
S
(u)5 exp

"
2�

4

i50

l
i
e
i
(u)

#
, (22)

where fei(u)g5 f1, cosu, sinu, cos2u, sin2ug. It is obvi-
ous from Eq. (22) that DS is a strictly positive function

for all finite choices of li. A numerical algorithm, used to

determine the multipliers satisfying the constraints in

Eq. (18), is described in Krogstad (2012).

2) UNIMODAL AND BIMODAL REGIONS FOR

SYMMETRIC ME DISTRIBUTIONS

In the following we shall limit ourselves further to the

important class of symmetric distributions with respect

to some direction. To ensure that all Fourier coefficients

cn are real numbers, we change the orientation of u such

that the symmetry is relative to u5 0.

(i) Burg ME distributions

Referring to Eq. (19), the BME distribution becomes

the Poisson distribution (or wrapped Cauchy distribu-

tion) for f2 5 0. The opposite limit is the double-peaked

delta distribution obtained when c1 is set to 0. All non-

singular symmetric BME distributions are strictly posi-

tive. Thus, the stationary points u* ofD are equivalent to

the stationary points of the denominator in Eq. (19).

By setting dD(u*)/du5 0, one finds u* 2 f0, p,
6arccos[f1(12f2)/4f2]g. The last pair of solutions re-

quires that

				f1
(12f

1
)

4f
2

				# 1: (23)
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Equation (23) is identical to Eq. (2.129) in Kahma

et al. (2005). From Eq. (20) we have f1 5 r1(12 c2)/

(12 r21) and f2 5 (c2 2 r21)/(12 r21). With only the first

two solutions valid and a dominant peak of D at u5 0,

the minimum of D has to be located at 1808, and the dis-

tribution is unimodal (see Fig. 2a). The last pair of solu-

tions is symmetric with respect to u5 0 and therefore both

are maxima or both are minima. If both are maxima, then

the stationary points 0 and 1808 become local minima, and

the new solution has two maxima and hence is bimodal

(Fig. 2b). Finally, if both solutions in the last pair are

minima, then the distribution has local peaks at 0 and 1808
and the distribution is again bimodal (Fig. 2c).

Figure 3 gives an overview of r1 and r2 for symmetric

Burg ME distributions, and the shape of typical distri-

butions in the different regions. This figure, which allows

r2 or rather c2 to become negative, is an expanded ver-

sion of Fig. 2.5 in Kahma et al. (2005). To keep the re-

semblance with that graph, the ordinate axis shows
ffiffiffiffi
r2

p
for r2 . 0 and 2

ffiffiffiffiffiffiffijr2j
p

for r2 , 0. The infeasible part is

bounded by the coordinate axes and the black curve.

The rest of the domain is divided into three parts: one for

unimodal and two for bimodal distributions. Typical

distributions are inserted for each region. However, the

analysis has limited value when it comes to discrimi-

nating between uni- and bimodal distributions in gen-

eral, as demonstrated in Fig. 4.

The green curve is the relationship for the unimodal

Poisson distribution, whereas the magenta curve is the

cos-2s distribution (Longuet-Higgins et al. 1963) for

which the Burg ME distribution always has two peaks.

The cyan curve is the relationship for the unimodal von

Mises distribution, which is a special form of the SME

functions. It leaves the Burg ME unimodal region

slightly below r1 5 0:4 (s1 ’ 638).
With the von Mises Fourier coefficients as input, the

Burg ME distribution shows two peaks for distributions

with s1 & 638; . A popular example is shown in Fig. 5 for

the Poisson and cos-2s distributions. The Burg ME al-

gorithm maintains the shape of the unimodal Poisson

distribution, while it produces two false peaks for the

unimodal cos-2s distribution.

(ii) Shannon ME distributions

The Shannon ME distributions are symmetric if and

only if l2 and l4 are equal to zero, from which it im-

mediately follows that the Fourier coefficients b1 and b2

FIG. 2. Demonstration of stationary points for symmetric Burg ME distributions. Distribution with (a) only the

first two solutions valid, (b) all four solutions valid with the last pair being maxima, and (c) all four solutions valid

with the last pair being minima.

FIG. 3. Extended graph of r1, r2 allowing r2 to become negative

for Burg ME distributions, i.e., 1
ffiffiffiffi
r2

p
for r2 . 0 and 2

ffiffiffiffiffiffiffijr2j
p

for

r2 , 0. Apart from the infeasible region, the remaining domain is

divided into three regions as demonstrated by the three inset plots:

two bimodal and a unimodal in the middle.
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are equal to 0. Since l0 is only a normalization, one may

consider

D
0
(u)5 exp(l

1
cosu1 l

3
cos2u) (24)

and define

D(u)5
D

0
(u)ð ​ p

2p

D
0
(a) da

. (25)

We observe that D is bimodal for l1 5 0 with peaks at

2p/2 and p/2 when l3 is negative, and at 0 and p when

l3 is positive. The widths of the peaks decrease as l3

moves away from 0. The signs of l1 and l3 may vary but

in general D0(u2p, l1, l3)5D0(u, 2l1, l3). Assum-

ing l1 6¼ 0, if l3 5 0, then D will be a von Mises distri-

bution centered around p when l1 , 0 and around

0 when l1 . 0. Rewriting Eq. (24) as

D
0
(u)5 el1(cosu1bcos2u), b5

l
3

l
1

, (26)

one may compute the stationary points of D0 from

dD
0

du
52l

1
e(cosu1bcos2u)(sinu1 2b sin2u)5 0, (27)

which implies that

sinu1 2b sin2u5 sinu(11 4b cosu)5 0: (28)

Hence, u5 0 and p are always stationary points. More-

over, additional stationary points exist for

u*5 arccos



6

1

4b

�
, (29)

that is, jbj. 1/4. So far this mimics the BME case, with

flig replacing the Fourier coefficients. It is likely that

there is a 1/ 1 mapping between fl1, l3g and fr1, r2g;
assuming that this is the case, the unimodal domain in

fr1, r2g turns out to be somewhat different from the

FIG. 4. Infeasible and feasible domains. Burg ME unimodal re-

gion and some distributions within and outside of the unimodal

region. Poisson distribution (green) is completely within the Burg

ME unimodal region, cos-2s distribution (magenta) is completely

outside the unimodal region, and von Mises distribution (cyan)

leaves lower unimodal region at r1 ’ 0:4. Shown are the lower

bound for feasible distributions (solid black line) and the general

upper bound for unimodal distributions (black dashed curve).

FIG. 5. (left) Poisson and (right) cos-2s distributions. For both distributions, the directional spread is set to s1 5 358.
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previous. Note that here, instead of a distribution with

Fourier coefficients, we operate with Lagrangian mul-

tipliers; see Fig. 6.

The von Mises distribution is completely within the

Shannon ME unimodal region. It is interesting to ob-

serve, however, that both the Poisson and the cos-2s

distributions are not completely within the unimodal

region. The Poisson distribution crosses the Shannon

ME upper unimodal boundary at r1 ’ 0:45 (s1 ’ 608),
while the cos-2s distribution is expected to show two

peaks below r1 ’ 0:58 (s1 ’ 528). This means that with

the Poisson Fourier coefficients as input, the Shannon

ME distribution shows two peaks for input distributions

with s1 & 608: one main peak at the mean direction and

one small sidelobe at about 1808 offset from the mean

direction. With the cos-2s Fourier coefficients as input,

the ShannonME distribution shows two but less distinct

peaks on either sides of the mean direction for distri-

butions with s1 * 528.

c. Estimation of directional distributions

There exists a multitude of methods for estimating

directional distributions, which in turn produce pages of

intercomparison plots (Donelan et al. 2015). These al-

gorithms take time series input and follow it up with

multivariate spectral analysis. The spectral terms often

relate to Fourier coefficients or other parameters from

D(u, v). However, early attempts using truncated

Fourier series were not very successful (Longuet-

Higgins et al. 1963). It was not before the 1970s that

direction of arrival algorithms caused a significant step

forward (Capon 1969). From the mid-1980s the maxi-

mum likelihood and maximum entropy formulas have

turned out to be a good general choice for HS data.

There are also several ways of bringing in Bayesian and

inverse problem formalisms. A classic work is Long and

Hasselmann (1979).

To obtain estimates of directional distributions from

in situ measurements, we shall apply the following four

directional analysis methods: ML, IML, and the two

families of ME distributions. Both families are con-

structed based on HS-estimated Fourier coefficients

(Glad and Krogstad 1992; Ochi 2005). Unlike the ML/

IML algorithms, the HS systems additionally provide an

estimate for the RMS wavenumber kRMS(v), and hence

the ratio between kRMS and the LWT wavenumber, of-

ten called the check ratio:

CR(v)5
k
RMS

(v)

k
LWT

(v)
. (30)

The ML method was introduced by Capon (1969) in

signal processing and was later modified in the context

of ocean wave spectra (see, e.g., Davis and Regier 1977;

Isobe et al. 1984; Krogstad 1988; Krogstad et al. 1988).

This method has a known deficiency in that it tends to

fail to reproduce the cross-spectra when DML is used to

recompute the original spectra. As a consequence, it

FIG. 6. Relation between r1 and sign(r2)
ffiffiffiffiffiffiffijr2j

p
for Poisson dis-

tributions (green), von Mises distributions (cyan), and cos-2s dis-

tributions (magenta). Domain for unimodal Burg ME (red/blue

solid curves) and unimodal Shannon ME distributions (red/blue

dashed curves). Lower bound for feasible distributions (solid black

line), and general upper bound for unimodal distributions (black

dashed curve).

FIG. 7. Scatter diagram for Tp vsHs from the Ekofisk laser array

data. Selected records with Hs $ 2 m and UI$ 0:98 have been

considered in the analysis. Three curves of constant steepness are

also shown using �5
ffiffiffi
2

p
p2Hs/(gT

2
p).
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results in a smeared directional distribution. An

appealing improvement may be achieved using the IML

method introduced by Pawka (1983), which was

later linked to standard inverse problem algorithms

(Krogstad 1988; Ochi 2005). The method establishes an

iterative improvement to the conventional ML estimate

in order to deconvolve the smearing behavior of the ML

method. We refer to Simanesew et al. (2016) and the

references therein for further discussion about the ML

and IML methods.

3. Ekofisk laser array measurements

The Ekofisk laser array is a research system mounted

at the Ekofisk oil field in the North Sea since February

2003. It consists of four down-looking Optech lasers

mounted on a bridge connecting the Kilo and Bravo

platforms situated about 1 n mi (1 n mi 5 1.852 km)

northwest of the main Ekofisk complex. The lasers

are placed at the four corners of a 2.6 m 3 2.6 m

square structure located approximately 20m above

the mean surface of a 70-m-deep sea. Raw data are

collected continuously at 5 Hz with 1-mm accuracy.

The data stream is stored in 20-min files with 1-min

overlap.

The system was designed by the Norwegian Meteo-

rological Institute [Meteorologisk Institutt (MET Nor-

way)] in cooperation with the University of Miami, and

the data collection is carried out under the operational

responsibility of ConocoPhillips Inc. Extensive testing

of the array has been performed, some of which

is published (Krogstad et al. 2006; Krogstad and

FIG. 8. Ekofisk s1 (8). ML and IML spread against the HS spread. Red dots, ML; blue dots, IML; and black curve,

HS triplet.
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Trulsen 2010) and some documented in internal reports

(e.g., Machado and Krogstad 2004) that are available on

request from ConocoPhillips Inc.

Because of operational human health requirements

on laser light power, the system has been forced to run

with insufficient power, resulting in frequent dropouts in

unfavorable conditions with a weak return signal. The

raw data have been through a careful data check and

restoration. Moreover, each record contains a summary

of the data restoration and is downsampled to 1.7Hz.

The present analysis uses a fraction of the data from

several tens of thousands of records, focusing on a set of

20-min records with Hs . 2m and a unidirectivity index

(UI) greater than 0.98. The size of the UI is used here to

select records with one dominant wave field. The index

UI is defined as

UI5

									

ð ​ a
1
(v)1 ib

1
(v)

r
1
(v)

S(v) dvð ​
S(v)dv

									
. (31)

Figure 7 shows scatterplots of Hs and Tp for the above-

mentioned records, where curves of constant steepness

are also plotted using the definition �5
ffiffiffi
2

p
p2Hs/(gT

2
p).

Here Tp denotes the wave period corresponding to

the frequency at the spectral peak. It appears that

the overall steepness lies below 0.1, which is a fairly

extreme value.

Even if the full array consists of four lasers, the results

are virtually unchanged when using only three lasers be-

cause of the array’s compact size relative to the size of the

waves. This is actually convenient, since we are going to

FIG. 9. Unimodal directional wave spectrum measured at 1900 UTC 23 Sep 2007, Hs 5 2:34m. (top) Directional spectrum and (bottom)

directional distribution.

FIG. 10. Occurrences of bimodal directional distributions in the

Ekofisk laser array data from a set of records with Hs ’ 3:0m. For

the bimodal distributions, angular separation of two peaks starts in

the frequency range: (I) v/vp $ 3, (II) 2#v/vp , 3, and (III)

1#v/vp , 2.
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simulate anHS systemby interpolating elevation and slope

in the center of the triangle formed by the three remaining

sensors and their elevation recordings. Both the reduced

spatial array consisting of three lasers and the interpolated

HS system have their usual limitations. The former suffers

from spatial aliasing, since the shortest leg in the array is

2.6m, resulting in a limiting wavelength lSA 5 5:2m. The

corresponding frequency fSA ’ 0:56Hz, which is well be-

low the temporal Nyquist limit fs 5 0:85Hz.

4. Data analysis

The ML and IML analyses are performed on spatial-

array data, whereas the Burg and Shannon ME methods

are applied to interpolated HS triplet data. As far as the

Ekofisk compact array is concerned, it does not matter

whether the ML/IML analysis is performed on spatial-

array data or on the correspondingHS triplet data because

the results are virtually identical. Both the ML and IML

methods provide estimates of directional distributions

from which we may determine the four leading Fourier

coefficients. However, the HS system provides these

Fourier coefficients directly and independent of any addi-

tional assumptions beyond the existence of a 3D spectrum.

Apart from applying the same data series, the ML/IML

and HS algorithms have no direct connections. Figure 8

shows plots of ML/IML directional spread against the HS

triplet directional spread at four different frequencies for

1000 records. It is observed that the directional spread at

the peak varies within the range 208–658. The IML spread

is in fairly good agreement with the HS spread, while the

ML spread shows a significant positive bias relative to HS.

Figure 9 shows color plots of the directional spectrum

and the directional distribution of a typical unimodal sea

state based on various analysis methods. For the di-

rectional spectra, shown in the upper row, there is only a

minor difference among the methods, all showing clear

unimodality, which is also reflected in the directional

distributions shown in the lower row. Multimodality is a

persistent feature in the Ekofisk data, where a large

fraction of the directional spectra have evidence of bi-

modality for distributions above the spectral peak.

Figure 10 shows occurrences of bimodal distributions

for a set of records with Hs ’ 3:0m. We observe bi-

modality for high frequencies in more than 80% of the

spectra analyzed from nearly 1000 records. The angular

separation of the two peaks mostly starts in the fre-

quency range: 1#v/vp # 3. The spectrum in Fig. 11,

which in this case is bimodal, is compared by applying

the various analysis methods. The ML analysis of the

data gives a rather smeared directional distribution,

whereas the bimodal features are clear with ME and the

bimodality is less pronounced with ML. On the other

hand, the estimates from IML and both families of ME

FIG. 11. Bimodal directional wave spectrum measured at 1200 UTC 12 Oct 2004, Hs 5 4:6m. (top) Directional spectrum and (bottom)

directional distribution.
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FIG. 12. Development of bimodal directional distributions. Estimates are from a storm measured in the evening of 22 January 2007,

based on (upper middle) IML, (lower middle) BME, and (bottom) SME methods. (top) Estimates of directional spectra from the BME

method. Distributions are normalized by the maximum value, and the color scale is logarithmic.
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distributions show fairly good correspondence. For the

IML and BME directional distributions, the bimodality

shows up immediately above the spectral peak, while for

the SME distributions, it shows up for moderately high

frequencies. In numerous records, the angular separa-

tion of the two peaks for SME distributions occurs at

relatively higher frequencies compared to both IML and

BME distributions. The Burg ME algorithm provides

FIG. 13. Locations of peaks for bimodal directional distributions frommeasurements recorded between 0840 and

1840 UTC 12 Oct 2004 based on the ML, IML, BME, and SME methods. Asymptotic orientation of quartet

resonance of the ‘‘figure of 8’’ for gravity waves in the (v, u) plane (dashed lines).

FIG. 14. As in Fig. 13, but angular separations of the two peaks as a function of dimensionless frequency. Continuous

line is Ewans’s symmetric double Gaussian parameterization.
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relatively narrow directional distributions with pro-

nounced peaks and a wide bottom as expected.

In the following section, we analyze selected data

from storms that occurred during the period of 18–

23 January 2007. During this period the local wind

condition was unstable with the wind speed fluctuating

between 1 and 25ms21, and the significant wave height

reaching up to 9m. Figure 12 shows the development of

the bimodal directional distribution from initially a uni-

modal sea state, observed in the evening of 22 January

FIG. 15. As in Fig. 13, but comparisons are between

the BME peak separation, and the ML, IML, and SME

angular separations; a 1-to-1 regression (solid line).

FIG. 16. Scatterplot of r1 vs r1/22 for selected Ekofisk data; the number of records are as indicated in the titles.

Subplots are based on data withHs of (left) 5 and (right) 3.2m. Shown are the relationship for a boxcar distribution

(green curve), the domain for unimodal Burg ME distributions (red/blue solid curves), and the domain for uni-

modal Shannon ME distributions (red/blue dashed curves).
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2007. Estimates of directional spectra from BME are

shown in the upper row with estimates of the directional

distributions fromvariousmethods in the lower three rows.

The IML estimates are in the upper-middle row, the BME

estimates are in the lower-middle row, and the SME esti-

mates are in the last row. Our results are qualitatively

similar to Wang and Hwang (2001). At 1800 UTC, the

wave energy propagates along the mean wave direction;

however, as the wave field develops, the short waves are

aligned along two directions oblique to the mean wave

direction. Such a phenomenon in the ocean wave spectra

was already observed by Wang and Hwang (2001) and

attributed to nonlinear wave–wave interactions (Banner

and Young 1994; Ewans 1998; Longuet-Higgins 1976;

Dysthe et al. 2003; Toffoli et al. 2010). From the estimates

of directional spectra in the upper row it is evident that, in

this case, the bimodality does not seem to be associated

with either the presence of two distinct wave systems or

cases of newwavedevelopment alongside old ones.A10%

increase in steepness is observed between the spectra at

1800 and 2200 UTC.

In many of the spectra from the Ekofisk oil field, the

ML algorithm often provides broader peaks, while the

BME provides a narrow distribution compensated by a

wide bottom, in agreement with previous observations.

The SME distributions, while being nonsmeared, look

more like theMLdistributions around the spectral peak.

However, when there is bimodality, the SME distribu-

tions shows more detailed bimodal features for moder-

ate to high frequencies. On the other hand, IML

distributions are quite similar to the BME distributions

and lie somewhere in between the Shannon and Burg

ME distributions.

To further confirm that the IML and BME methods

provide virtually identical directional features, we con-

sider nearly fully developed bimodal distributions

from a number of neighboring records. The scatterplots

in Fig. 13 show locations of peaks for bimodal di-

rectional distributions from 31 records. The peaks are

computed as the local maxima of smoothed distribu-

tions. When there are several peaks, which is often the

case for ML and IML distributions, we simply choose

the two dominant ones. The overall shape of the distri-

butions is in agreement, with the main difference being

the existence of bimodality in the low-frequency range

for the ME estimates and not for the ML and IML es-

timates. We have no explanation for this discrepancy;

however, numerical evidence suggests that the distri-

butions widen below the spectral peak as a result of

nonlinear interactions (Simanesew et al. 2016). Near the

spectral peak, the two bimodal arms coincide with the

two dashed lines obtained by linear approximation of a

parametric curve with respect to v and u, namely, the

quartet resonance of the ‘‘figure of 8’’ for gravity waves

derived by Phillips (1960). The relevance of these

dashed lines for the directional redistribution of energy

is captured by the two-dimensional cubic Schrödinger
equation as discussed by Dysthe et al. (2003) in the k

space and is also discussed by Longuet-Higgins (1976).

Here u is the angle between two of the interacting waves.

Figure 14 shows scatterplots of angular separations

between the two peaks for frequencies above the spec-

tral peak, in the range vp #v# 4vp. For ML, IML, and

BME distributions, peak separation begins slightly

above the spectral peak, whereas for the SME distri-

butions, this happens at about twice the spectral peak.

FIG. 17. As in Fig. 16, but for the limits of the axes.
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We see that the separation of the two peaks increases

with frequency reaching up to 1408 at about 4 times the

spectral peak. Previous observations show a clear vari-

ation of the angular separation as a function of di-

mensionless frequency, based on data (Ewans 1998) and

exact nonlinear simulation (Young et al. 1995). As

shown in the figure, Ewans’s symmetric doubleGaussian

parameterization (Ewans 1998) clearly predicts the

variation with dimensionless frequency; however, it

appears to be a lower limit in this case. In Fig. 15, the

ML, IML, and SME angular separations are compared

with results from the BME. The ML is biased low and

the SME is biased high, while the IML shows remark-

able agreement with the BME angular separation.

Examples of the relationship between r1 and r2 are

shown in Fig. 16 for symmetric Burg/Shannon ME dis-

tributions and for the Ekofisk data based on estimates

of Fourier coefficients from HS systems. The de-

composition of the scatter diagram into three subsets—

similar to Fig. 3, which consists of one unimodal and two

bimodal regions—is valid only for symmetric BME and

SME distributions. One cannot prove in general that the

distribution is uni- or bimodal by looking at the locations

of (r1, r2) in the diagram. They are indicators only in the

sense that one may anticipate the shape of the distri-

bution if certain Fourier coefficients are applied to ei-

ther the BME or SMEmethod. We have used data from

four situations where Hs and the main wave direction

are reasonably steady, and data withHs below 3m have

also been removed.

Moreover, a stringent criterion has been imposed on

the data based on the directions of c1 and c2. One may

rotate the coordinate system so that c1 is real and c2 is

still complex. We shall redefine the Fourier coefficients

as Cn 5 cn/jcnj such that jCnj5 1 and compute

CP5 jC1 1C2j, where cn 5 an 1 ibn and n5 1, 2. The

parameter CP has the following implications for sym-

metric distributions where C1 and C2 are either parallel

FIG. 18. Numerical simulation with MNLS: Evolution of directional spectra from initially Gaussian spectra with initial spectral

widths sx and sy equal to (top) 0.05 and (bottom) 0.1, and with �5 0:1. Two dashed lines are as indicated in Fig. 13
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or antiparallel: CP. 1:90C1 and C2 are nearly paral-

lel, and CP, 0:10C1 and C2 are nearly antiparallel.

The x axis now shows r1 5 jc1j, and the y axis shows sign

(r2)
ffiffiffiffiffiffiffijr2j

p
(r2 56jc2j)—positive for nearly parallel and

negative for nearly antiparallel. For high values of r1
(corresponding to small spread), the scatters are seen to

cluster within the unimodal region and lie somewhere

above the boxcar distribution (green curve). As the

values of r1 decrease, the cluster of points drifts into

the bimodal type 2 region, densely populating within the

boxcar distribution. It is also clear that part of the scat-

ters for positive
ffiffiffiffi
r2

p
are outside the BME or SME dis-

tribution’s unimodal region, suggesting false peak

splitting (see Fig. 17 for a better view).

In summary, the data analysis and the numerical ex-

periments in section 2 suggest that there is peak-splitting

tendency in both the Burg and Shannon maximum en-

tropy algorithms for certain Fourier coefficients. How-

ever, many of the spectra, based on data from the

Ekofisk array, show evidence of bimodality for distri-

butions above the spectral peak. Since the bimodality is

consistently revealed in all four estimation methods, it is

less likely to be associated with spurious peaks gener-

ated by the analysis methods.

In addition, estimates of the directional spread ob-

tained from IML and HS algorithms are virtually iden-

tical as shown in Fig. 8. For the IML and BME

distributions, the bimodal features are also nearly identi-

cal. These two methods are dissimilar, yet they produce

quite similar distributions. This similarity grants a certain

confidence in the results. Thus, it may be recommendable

to include bothmethods in the estimation procedure when

additional information is needed.

5. Numerical simulations

Wehave employed theDysthe equation, also known as

the modified nonlinear Schrödinger (MNLS) equation,

FIG. 19. Numerical simulation withMNLS: Evolution of directional distribution from initially Gaussian spectra with initial spectral widths

sx and sy equal to (top) 0.05 and (bottom) 0.1, and with �5 0:1. Two dashed lines are as indicated in Fig. 13.
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for the temporal evolution of a directional wave field

(Dysthe 1979; Trulsen and Dysthe 1996; Trulsen et al.

2000). We aim to study the evolution of the wave spec-

trum, similar to the work of Dysthe et al. (2003), with a

focus on the development of bimodal distributions. The

MNLS equation accounts for nonlinear interactions that

can lead to frequency-dependent directional distributions

(Simanesew et al. 2016).

We employ the numerical method of Lo andMei (1985,

1987) with periodic boundary conditions in both the x

and y directions. Evolution in the temporal direction is

achieved with a splitting scheme in which the linear part is

integrated exactly in Fourier space and the nonlinear part

is integrated by finite differences. A spatial grid with

Nx 5Ny 5 256 points is used for simulating the wave field.

The computational domain in space is set to 50 charac-

teristic wavelengths in both directions. For the directional

analysis, the solutions are extracted at selected times.

All the simulations presented here are initialized by a two-

dimensional Gaussian spectrum, as given in Eq. (3) of

Dysthe et al. (2003),with given values of spectral bandwidths

in the x and y directions denoted by sx and sy, respectively.

The evolution is shown in Fig. 18 for sx 5sy 5 0:05 and for

sx 5sy 5 0:1. At t5 0, energy is concentrated around the

spectral peak (u5 0, v/vp 5 1) and propagates along the

direction u5 0. As t increases, nonlinear effects sub-

sequently move wave energy into oblique directions, thus

developing a bimodal wave field above the spectral peak.

Moreover, the energy redistribution seems to be significantly

faster with a broader initial spectrum, sx 5sy 5 0:1.

The corresponding directional distributions have

been extracted from the spectra above and are shown in

Fig. 19. In addition to generating the bimodal directional

distributions seen above the spectral peak, nonlinear

interactions are also responsible for the widening of the

directional distributions below the spectral peak and

hence the increase in the directional spread toward the

low frequencies. This is observed as a gradual widening

of the directional distributions from minimum near the

spectral peak to maximum both at lower- and upper-

frequency tails. While the simulation directly produces the

wavenumber spectrumC(k), conversion to the directional

spectrum E(v, u) requires an assumption of the linear

dispersion relation. The bandwidth for application of the

Schrödinger equation is limited to jk2kpj,kp 5 jkpj and,
consequently, conclusions about the bimodality cannot be

made for frequencies above v/vp 5
ffiffiffi
2

p
.

The maximum entropy methods are also applied

here to construct the directional spectrum from the

three-dimensional MNLS simulation within the time

interval from 200Tp to 250Tp. The estimates are based

on the Fourier coefficients defined in section 2. The

resulting spectra are shown in Fig. 20 along with the

two principal directions for energy transfer. Both

the BME and SME estimates show that the directional

spectra extend mainly along these two directions as ex-

pected. The BME spectrum shows more detailed bi-

modal features, consistent with the shape of the spectra

shown in Fig. 18.

6. Conclusions

In this study we present ocean surface wave di-

rectional analysis results from Ekofisk laser array

FIG. 20. Numerical simulation with MNLS: Estimates of Burg and Shannon ME directional spectrum from

a three-dimensional MNLS simulation of an initially Gaussian spectrum with initial spectral widths sx 5sy 5 0:1

and �5 0:08. Two dashed lines are as indicated in Fig. 13.
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measurements and from nonlinear numerical simula-

tions. We employ four directional analysis methods for

the estimation of directional spectra, namely, maximum

likelihood (ML), iterative maximum likelihood (IML),

Burg maximum entropy (BME), and Shannon maxi-

mum entropy (SME).

Previous studies suggest that BME directional esti-

mates have a tendency to split peaks, which, to the best

of our knowledge, has not been reported for the SME

estimates. Our data analysis and numerical experiments,

based on synthetic Fourier coefficients, suggest that

there is a peak-splitting tendency in both the BME and

SME estimates.

A large fraction of the directional wave spectra from

the Ekofisk array shows evidence of bimodality at the

higher frequencies for all four estimation methods. The

consistency in the results between the various estimation

methods suggests that the bimodality is real and that it is

associated with the waves’ own development rather than

being an artifact generated by the estimation methods.

The angular separation of the two peaks starts mostly

within the range of frequencies between the peak and

3 times the spectral peak and increases with fre-

quency, reaching up to about 1408 at about 4 times the

spectral peak.
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