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Using a nonlinear evolution equation we examine the dependence of the dispersion of
directional surface gravity waves on the Benjamin-Feir index (BFI) and crest length.
A parameter for describing the deviation between the dispersion of simulated waves
and the theoretical linear dispersion relation is proposed. We find that for short crests
the magnitude of the deviation parameter is low while for long crests the magnitude is
high and depends on the BFI. In the present paper we also consider laboratory data of
directional waves from the Marine Research Institute of the Netherlands (MARIN). The
MARIN data confirms the simulations for three cases of BFI and crest length.
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1. Introduction

Linear wave theory is used for a wide range of applications in ocean engineering (Goda
2000; Tucker & Pitt 2001) and assumes that the water surface can be modeled as a linear
superposition of non-interacting waves satisfying the linear dispersion relation (LDR).
The LDR for surface gravity waves on deep water is

ω = Ω(k) ≡ (gk)1/2 (1.1)

where ω is angular frequency, g is acceleration due to gravity, k is wavenumber and Ω is
angular frequency according to LDR.

The inversion of marine radar imagery currently relies on linear wave theory as a pre-
requisite. The analysis of marine radar imagery consists of applying a three-dimensional
band-pass filter that supresses those spectral contributions that do not satisfy the LDR
(Nieto Borge et al. 2004).

Krogstad & Trulsen (2010) simulated unidirectional waves using the nonlinear Schrödinger
(NLS) equation and the modified nonlinear Schrödinger (MNLS) equation of Dysthe
(1979). From wavenumber-frequency spectra they found that the spectral contribution
deviated from LDR due to nonlinear evolution. The deviation was also demonstrated
from simulations of unidirectional waves by Gibson & Swan (2006) using the Zakharov
(1968) equation and a fully nonlinear wave model by Bateman et al. (2001), and also by
Houtani et al. (2015) using a higher order spectral method.

Taklo et al. (2015) reported experiments and simulations, using the Zakharov (1968)
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equation, of unidirectional waves. For narrow-banded waves the experiments confirmed
the numerical predictions by Gibson & Swan (2006), Krogstad & Trulsen (2010) and
Houtani et al. (2015). For broad-banded waves the experiments showed that the LDR
was satisfied, suggesting validity of linear wave theory. The Zakharov equation was in
good agreement with the experiments.

In this paper we examine deviation from LDR for directional waves simulated using
the NLS and MNLS equations. We propose a parameter for describing deviation between
dispersion of simulated waves and LDR. We parameterize the result as in Gramstad &
Trulsen (2007) using BFI and inverse crest length L−1

c .

Our Benjamin-Feir index is defined as

BFI =
ǫ

∆ω/ωp
(1.2)

where ǫ is wave steepness, and ∆ω and ωp are bandwidth and peak frequency of frequency
spectrum, respectively (Alber 1978; Alber & Saffman 1978; Crawford et al. 1980; Onorato
et al. 2001; Janssen 2003). The BFI will be further specified below. Our non-dimensional
crest length is defined as

Lc =
kp
∆ky

(1.3)

where kp is peak wavenumber, the peak wave vector is in the x-direction, and ∆ky is
transversal bandwidth in the y-direction.

A presentation of numerical simulations is given in §2 and numerical results are pre-
sented in §3. The MARIN data are considered in §4. A discussion is given in §5 and
concluding remarks are given in §6.

2. Numerical simulations

Simulations were performed with the NLS equation and the MNLS equation of Dysthe
(1979). These employ an expression for surface elevation on the form

η = η̄ +
1

2

(

Beiχ +B2e
2iχ +B3e

3iχ + ...+ c.c.
)

(2.1)

where i=
√
−1 is the imaginary unit, c.c. denotes complex conjugate and B is the first

harmonic complex amplitude of the waves. We let the phase function be χ = (kp ·x−ωpt)
where x = (x, y) is the horizontal position vector, t is time, kp = (kp, 0) is the peak wave
vector and ωp = Ω(kp) = (g|kp|)1/2 is the LDR peak frequency.

The zeroth harmonic, η̄, and the complex amplitudes of the higher harmonics,B2, B3, ...,
can be expressed in terms of B, see Toffoli et al. (2010) equation (3.4). We shall only be
concerned about the spectral contribution of η close to the peak kp and ωp. For this rea-
son we only consider the contribution from B for reconstruction of the surface elevation
in (2.1).

The MNLS equation is

∂B

∂t
+ LB +

iωpkp
2

2
|B|2B +

3ωpkp
2

|B|2 ∂B
∂x

+
ωpkp
4

B2 ∂B
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+ ikp

∂φ̄

∂x

∣

∣

∣

∣

∣

z=0

B = 0 (2.2)

where ∗ denotes complex conjugate.



On dispersion of directional surface gravity waves 3

The induced mean flow φ̄ is governed by

∂φ̄

∂z
=

ωp

2

∂|B|2
∂x

at z = 0, (2.3)

∇2φ̄ = 0 for −∞ < z < 0, (2.4)

∂φ̄

∂z
= 0 at z → −∞ (2.5)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z).
The differential operator L accounts for linear dispersion. Following Trulsen et al.

(2000) it can be written in exact form

L = i

((

g

(

(

kp − i
∂

∂x

)2

− ∂2

∂y2

)1/2
)1/2

−
(

gkp

)1/2
)

. (2.6)

By considering the first three terms of (2.2) the NLS equation is recovered.
Most of the simulations are initialized with a Gaussian wave vector spectrum

Ψ(k) =
a2c

4πσxσyk2p
exp

[

−1

2

((

(kx − kp)

σxkp

)2

+

(

ky
σykp

)2)]

(2.7)

symmetric around the peak wave vector kp = (kp, 0) where k = (kx, ky) is the horizontal
wave vector and σx and σy are non-dimensional longitudinal and transversal bandwidths,
respectively. The characteristic amplitude of the surface elevation η is ac = (2〈η2〉)1/2
where 〈·〉 denotes statistical averaging. The spectrum fulfils the normalization criterion

∫ ∫

Ψ(k)dkxdky =
a2c
2
. (2.8)

The average steepness is ǫ = ackp. We perform simulations with ǫ = 0.04, 0.06, 0.08
and 0.10. The highest steepness ǫ = 0.10 corresponds to the average maximum steepness
observed in the ocean as demonstrated by figure 2 in Socquet-Juglard et al. (2005).
For comparison with the MARIN laboratory data we perform simulations initialized

with a JONSWAP spectrum,

E(ω, θ) =
αg2

ω5
exp

[

− 5

4

(

ωp

ω

)4]

γ
exp

[

−
(ω−ωp)2

2σ2ω2
p

]

D(θ) (2.9)

with Phillips factor α, peak enhancement factor γ = 3.3 and

σ =

{

0.07 ω 6 ωp

0.09 ω > ωp.
(2.10)

The directional spreading used for initialization was

D(θ) =
Γ(N

2
+ 1)

√
πΓ(N

2
+ 1

2
)
cosN θ for |θ| 6 π/2 (2.11)

where Γ is the Gamma function, N is a spreading parameter and θ is the direction.
Simanesew et al. (2016) showed that this initially frequency-independent directional
spreading evolved into a frequency-dependent directional spreading when simulated with
the MNLS equation.

For initialization of simulations the spectrum (2.9) is transformed to a wave vector
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spectrum

Ψ(k) = E(Ω(k), θ)k−1 dΩ

dk
(2.12)

where k = (k cos θ, k sin θ) and ω = Ω(k) according to the LDR.
To solve the model equations numerically we use the method described by Lo & Mei

(1985, 1987) with periodic boundary conditions in both horizontal directions. In order to
employ the narrow-banded models we truncate the spectra within |k− kp| 6 kp around
the peak kp. We let x and y be the longitudinal and transversal coordinates, respectively.
The computational domain extends over 70 peak wavelengths λp in both the x and y-
directions. For directional waves we use a uniform grid of Nx × Ny = 512 × 512 nodes.
For unidirectional waves we use a uniform grid of Nx = 512 nodes along the x-axis. In
time we let the waves evolve for 150 peak periods Tp.

We perform a number of unidirectional and directional simulations with the Gaus-
sian spectrum (2.7) for steepnesses ǫ = 0.04, 0.06, 0.08 and 0.10. For all steepnesses we
perform simulations for longitudinal bandwidth σx between 0.07 and 0.49 and transver-
sal bandwidth σy between 0 and 0.50, in steps of 0.02. The number of simulations is
4×22×26=2288. In addition we perform 3 simulations with the JONSWAP spectrum
(2.9)–(2.12) for comparison with the MARIN laboratory data.

From surface elevations η(x, y, t), the (kx, ky, ω)-spectra are obtained by discrete Fourier
transform. In the following we present (k, ω)-spectra obtained by transforming (kx, ky, ω)-
spectra from Cartesian to polar coordinates using the relations kx = k cos θ and ky =
k sin θ and by integrating over θ.
To describe deviation between dispersion of simulated waves and LDR we propose the

following deviation parameter

δ =

∫ ∫

(

ω − Ω(k)
)

S1(k, ω)dωdk

ωp

∫ ∫

S1(k, ω)dωdk

. (2.13)

In (2.13), Ω(k) is given by (1.1), S1 is the (k, ω)-spectrum from the simulations and ωp

is the peak frequency of the initial spectrum (2.7). The integrals are evaluated over the
spectral domain within |k − kp| 6 kp. Equation (2.13) can be regarded as a normalised
first moment of deviation from LDR.

For comparison of simulated waves with LDR we compute the root mean square (RMS)
wavenumber

kRMS(ω) =









∫ ∫

k2S2(kx, ky, ω)dkxdky
∫ ∫

S2(kx, ky, ω)dkxdky









1/2

(2.14)

corresponding to each frequency ω where k = (k2x + k2y)
1/2 and S2 is the (kx, ky, ω)-

spectrum from the simulations.
The bandwidths ∆ω and ∆ky used for BFI (1.2) and Lc (1.3), respectively, were

determined from the initial spectrum (2.7) using half-width at half-peak (HWHP). The
bandwidth ∆ω was found by rewriting (2.7) to a k-spectrum using polar coordinates
and ∆ω was computed from ∆ω = ωp((1 + ∆k/kp)

1/2 − 1) where ∆k is HWHP of
the k-spectrum. The bandwidth ∆ky was computed from HWHP of the ky-spectrum
corresponding to (2.7).

While ∆ky depends on σy only, ∆ω depends on both σx and σy. As a consequence the
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data of BFI and Lc are nonuniformly distributed given a uniform grid for σx and σy. In
the following we present the scalar field of δ (2.13) as a function of BFI and inverse crest
length L−1

c . In order to plot δ(BFI, L−1
c ) the scalar field is fitted to a uniform grid by

cubic interpolation. As a consequence of the grid the upper right corners of the contour
plots of δ are empty, see figure 5.

For the highest steepness ǫ = 0.10, BFI ranges from 0.39 to 2.63. For the lowest
steepness ǫ = 0.04, BFI ranges from 0.15 to 1.05. For σy between 0 and 0.50, Lc ranges
from 1.70λp up to unidirectional waves. Correspondingly, L−1

c ranges from 0 to 0.59.
There have been recent attempts to combine BFI and directionality into a single di-

rectional BFI (Waseda et al. 2009; Mori et al. 2011; Xiao et al. 2013) with the purpose
of parameterizing kurtosis and rogue wave occurence. Our purpose is different, to pa-
rameterize the deviation from the LDR, however, by comparing our results of δ to the
directional BFI of Mori et al. (2011) we find that it could be a suitable parameter for
identifying the deviation.

3. Numerical results

Figure 1 shows (k, ω)-spectra from directional simulations with the highest steepness
ǫ = 0.10 and the narrowest initial bandwidths σx = 0.07 and σy = 0.02. Colours show
spectral energy density in decibel (dB) relative to the peak. White dashed curves show
LDR, Ω(k), from (1.1). Upper and lower panes show spectral evolution with regard to
the NLS and MNLS equations, respectively. Left panes show the (k, ω)-spectra during
the first fifty peak periods t/Tp ∈ [0, 50]. Center panes show t/Tp ∈ [50, 100] and right
panes show t/Tp ∈ [100, 150].

Figure 1 shows the qualitative difference between spectral evolution for the NLS and
MNLS equations. For the NLS equation, the spectral energy density grows symmetrically
around the peak while for the MNLS equation it grows asymmetrically to wavenumbers
and frequencies above peak.

Within t/Tp ∈ [0, 50] the waves quickly evolve into a state where spectral energy
density deviates from the LDR. The white dotted curves show the RMS wavenumber,
kRMS(ω) from (2.14), which confirms the deviation. For the NLS equation the deviation
is pronounced both above and below peak while for the MNLS equation the deviation
is pronounced only above peak. Above peak the MNLS equation contributes to a more
pronounced deviation than the NLS equation during the time considered. Within t/Tp ∈
[100, 150] the spectral energy density is spread out to a rather broad distribution and
starts to relax toward the LDR.

We performed simulations over longer times up to 200Tp which revealed that the
directional waves eventually reach a quasi-stationary state with relaxation toward the
LDR. Our narrow-banded unidirectional waves show deviation during the entire time up
to 200Tp. The unidirectional waves do not reach a quasi-stationary state with relaxation
toward the LDR. Thus a qualitative difference between directional and unidirectional
wave propagation is observed. Qualitative difference was also observed by Gramstad &
Trulsen (2007).

Figure 2 shows spectral evolution from directional simulations of the MNLS equation
for steepnesses ǫ = 0.04, 0.06 and 0.08 and the narrowest initial bandwidths. Upper, mid-
dle and lower panes show spectral evolution for ǫ = 0.04, 0.06 and 0.08, respectively. The
waves evolve on Benjamin-Feir (BF) timescale (ǫ2ωp)

−1 thus for different ǫ ranging from
0.04 to 0.10 characteristic time scales differ by approximately one order of magnitude.
For ǫ = 0.04, 0.06, 0.08 and 0.10, BF time scale covers 100, 44, 25 and 16Tp, respectively.
Figure 2 and the lower panes of figure 1 show that the occurence of deviation depends
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Figure 1. Evolution of (k, ω)-spectra of directional wave field with ǫ = 0.10 and σx = 0.07
and σy = 0.02. Colours: Spectral energy density in dB. White dashed curves: LDR Ω(k) from
(1.1). White dotted curves: RMS wavenumber kRMS(ω) from (2.14). First column, t/Tp ∈ [0, 50];
second column, t/Tp ∈ [50, 100] and third column, t/Tp ∈ [100, 150]. Upper panes: NLS equation.
Lower panes: MNLS equation.

on the characteristic time scales. For waves with high steepness deviation occurs, and
relaxes toward LDR, sooner than for waves with lower steepness.

Figure 3 shows a selection of (k, ω)-spectra of directional waves simulated with the
MNLS equation with ǫ = 0.10 and different combinations of initial bandwidths σx and σy

given in the titles of the panes. The spectral estimates are taken from t/Tp ∈ [100, 150] to
observe occurence of deviation farthest from initialization. The upper left pane is identical
to the lower right pane of figure 1. First column corresponds to σx = 0.07, second column
σx = 0.23 and third column σx = 0.49. First row corresponds to σy = 0.02, second row
σy = 0.26 and third row σy = 0.50.

From figure 3 it is observed that the occurence of deviation depends on the initial
bandwidths. For combinations of broad bandwidths corresponding to the four panes in
the lower right corner of figure 3, deviation does not occur. To first order in magnitude,
i.e. dB>-10, and within the spectral radius of the simulations the spectral distribution
resembles the shape of the LDR. Nevertheless, above peak the spectral distribution is
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Figure 2. Evolution of (k, ω)-spectra of directional wave fields simulated using the MNLS
equation with different ǫ and σx = 0.07 and σy = 0.02. Colours: Spectral energy density in dB.
White dashed curves: LDR Ω(k) from (1.1). White dotted curves: RMS wavenumber kRMS(ω)
from (2.14). First column, t/Tp ∈ [0, 50]; second column, t/Tp ∈ [50, 100] and third column,
t/Tp ∈ [100, 150]. Upper panes, ǫ = 0.04; middle panes, ǫ = 0.06 and lower panes, ǫ = 0.08.

shifted slightly toward wavenumbers and frequencies above LDR. This will be further
explained below.

The simulations with ǫ = 0.04, 0.06 and 0.08 show qualitatively similar results to those
observed in figure 3 with occurence of deviation for combinations of narrow bandwidths.
For ǫ = 0.08 the shift above peak is observed for combinations of broad bandwidths
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Figure 3. (k, ω)-spectra of directional wave fields from time interval t/Tp ∈ [100, 150] simulated
using the MNLS equation with ǫ = 0.10 and combinations of different σx and σy given in the
title of the panes. Colours: Spectral energy density in dB. Colour bar in dB. White dashed
curves: LDR Ω(k) from (1.1). White dotted curves: RMS wavenumber kRMS from (2.14).

similarly to that observed for ǫ = 0.10 while for ǫ = 0.06 and 0.04 the shift is less
evident.

Figure 4 shows (k, ω)-spectra of ǫ = 0.10 and 0.04 and broadest initial bandwidths σx =
0.49 and σy = 0.50. Left pane corresponds to lower right pane of figure 3. For ǫ = 0.10 it
is observed that the spectral distribution is shifted toward wavenumbers and frequencies
above LDR. For ǫ = 0.04 the shift is less evident. The RMS wavenumber confirms
the observation. Thus when the steepness is high, nonlinear evolution can cause a shift
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Figure 4. (k, ω)-spectra of directional wave fields from time interval t/Tp ∈ [100, 150] simulated
using the MNLS equation with ǫ = 0.10 and ǫ = 0.04 and combinations of the broadest band-
widths σx and σy given in the title of the panes. Colours: Spectral energy density in dB. Colour
bar in dB as in figure 3. White dashed curves: LDR Ω(k) from (1.1). White dotted curves: RMS
wavenumber kRMS from (2.14). Black dashed curves: Radar filter ω(k±∆k)±∆ω as a function
of k where ∆k and ∆ω are the resolutions along the wavenumber and frequency axes given by
the discrete Fourier transform.

from the LDR for broad-banded waves. The black dashed curves show ω(k ±∆k)±∆ω
as a function of k where ∆k and ∆ω are the resolutions along the wavenumber and
frequency axes given by the discrete Fourier transform. These curves are commonly used
as a criterion for the interpretation of marine radar images to filter out those spectral
contributions that do not satisfy the LDR (Nieto Borge et al. 2004). For ǫ = 0.10 the
spectral energy density is distributed along ω(k+∆k)+∆ω above LDR while for ǫ = 0.04
the spectral energy density is distributed below ω(k +∆k) + ∆ω and closer to LDR.

Figure 5 shows δ (2.13) as a function of BFI and L−1
c for 2288 simulations of the MNLS

equation with ǫ = 0.04, 0.06, 0.08 and 0.10. The spectral estimates for δ are taken from
t/Tp ∈ [100, 150]. Note that the BFI axes are different due to the different steepnesses
involved. Symbols show the locations of spectra with bandwidths corresponding to diag-
onal panes of figure 3. Triangle symbols show the locations of data points corresponding
to BFI and L−1

c estimated from the MARIN data and will be further explained in §4.
For all steepnesses we find that the deviation from the LDR is most pronounced when
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Figure 5. Colours: Deviation parameter δ (2.13) as function of BFI and inverse crest length
L−1

c for ǫ = 0.04, 0.06, 0.08 and 0.10. Colour bar: Magnitude of δ. Symbols showing location of
data points corresponding to the initial bandwidths of the (k, ω)-spectra shown in the diagonal
panes of figures 3: 2, σx = 0.07 and σy = 0.02; 3, σx = 0.07 and σy = 0.50; ×, σx = 0.49
and σy = 0.02; ∗, σx = 0.49 and σy = 0.50 and •, σx = 0.23 and σy = 0.26. Symbols showing
location of data points corresponding to the BFI and inverse crest lengths L−1

c estimated from
MARIN data: �, W1; △, W2; �, W3.

the BFI is high and crests are long, and the deviation increases when the BFI increases.
The highest magnitudes of δ were found for ǫ = 0.10. In particular, the highest magnitude
for δ was found for the highest BFI given for unidirectional waves with ǫ = 0.10. For
ǫ = 0.10 there is a sharp transition between high and low magnitudes of δ when crests
are long and the BFI is high. Also, the magnitude of δ is significantly higher for ǫ = 0.10
compared to other steepnesses and covers a wider range relative to the lowest steepness.

Another feature observed from figure 5 is oscillations of isolines of δ for high BFI
and long crests seen for ǫ = 0.06, 0.08 and 0.10. This is a consequence of nonuniformly



On dispersion of directional surface gravity waves 11

distributed data of BFI and L−1
c discussed at the end of §2. The peaks of oscillations

appear at locations of the nonuniformly distributed data of BFI and L−1
c . Nevertheless,

the choice for BFI and L−1
c should be sufficient to capture the essential result of deviation

for high BFI and long crests.
Instead of the Gaussian initial spectrum (2.7) we could have used a JONSWAP spec-

trum (2.12). Gramstad & Trulsen (2007) showed in their figure 3 that with a JONSWAP
spectrum it is not possible to obtain BFI as high as those obtained from the Gaussian
spectrum here. We have used the Gaussian spectrum in order to examine a wider range
of BFI.

4. Laboratory data

The laboratory data were collected from MARIN’s Seakeeping and Manoeuvring Basin.
The basin is 170 m × 40 m and the water depth was h = 5 m. Waves were generated
along one of the short side-walls of the basin. The basin was equiped with flap type
wave makers, adjustable wave absorbing beaches and a carriage consisting of a 10×10
array of resistance type wave probes. The probes consisted of thin wires. The sampling
rate of the probes was 100 Hz. The 10×10 array was fixed to a carriage which could
be positioned at any location in the basin. The wave fields were repeatable, see Naaijen
et al. (2009). Spatio-temporal measurements were achieved by positioning the carriage
at different locations in repetitions of the same wave field. We refer to this collection of
spatio-temporal measurements as the synthetic array.

Three directional wave fields were generated. We name the wave fields W1, W2 and
W3. Figure 6 shows the locations L1–L12 of the 10×10 array in the basin. The main
wave direction was in the x-direction of the basin. The distance from the wave makers to
the center of location L12 was 7.0 m. The length of the synthetic array in the x and y-
directions was 25.6 m and 26.8 m, respectively. In the following we consider measurements
from two sub-arrays, named sub-array 1 and 2, indicated in figure 6. Sub-array 1 consisted
of measurements from locations L1, L2, L3, L4, L8 and L12 along the main wave direction.
Sub-array 2 consisted of measurements from locations L5–L11 perpendicular to the main
wave direction. For wave fields W1 and W3 only measurements from locations L7–L9
were available perpendicular to the main wave direction.

The MARIN wave fields were initialized with a JONSWAP spectrum (2.9)–(2.12) with
different directional spreading. Simanesew et al. (2016) analyzed these wave fields with
respect to directional spreading and found that even though the waves were generated
with frequency-independent directional spreading they naturally evolved into frequency-
dependent directional spreading similar to that observed in the ocean.

Table 1 shows initial parameters for W1, W2 and W3 estimated from sub-array 2. The
location of sub-array 2 is close to the wave makers and is suitable for obtaining an estimate
of initial parameters. From directional data of sub-array 2 we computed (ky, ω)-spectra.
The (ky, ω)-spectra were obtained from uniform discrete Fourier transform of time series
and nonuniform discrete Fourier transform (Fessler & Sutton 2003) of data along the
y-axis. In order to use directional data from all probes in sub-array 2 we computed a
collection of (ky, ω;x)-spectra from 10 extracts along the y-direction and averaged over
x to obtain the (ky, ω)-spectrum. Extract number 1 is shown in figure 6 and extracts
number 2–10 are those that follow along the x-direction.

The initial peak frequencies ωp of W1, W2 and W3 were estimated from ω-spectra
obtained from projection of (ky, ω)-spectra onto the ω-axis, and peak wavenumbers
kp = ω2

p/g were then obtained from LDR. The peak frequencies ωp and wavenumbers
kp are given in table 1. For W1 the synthetic array covered about 16λp along the main
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L1 L2 L3 L4 L8 L12

L7

L6

L5

L9

L10

L11

x

y

26.8 m

Extract #1 of
sub−array 1

Extract #1 of
sub−array 2

Sub−array 1
Sub−array 2

25.6 m 7.0 m

Main wave direction

Wave makers

Figure 6. Top-view of the MARIN basin showing actual ratio between width and length of
the synthetic array.

wave direction and 17λp perpendicular to the main wave direction. For W2 and W3
the synthetic array covered about 15λp along the main wave direction and about 16λp

perpendicular to the main wave direction. The non-dimensional water depth kph was
about 20 for W1 and 19 for W2 and W3. The wave fields were generated for 579Tp. The
first 100Tp and last 429Tp were removed and the remaining 50Tp were used for spectral
estimates. The spectra were ensemble averaged by 2 non-overlapping intervals of surface
elevation of length 25Tp collected from total time interval of 50Tp. The time intervals of
about 25Tp were smoothed by 10 iterations of a 3-point moving average.

Peak frequencies ωp were also estimated from ω-spectra obtained from time series at
each of the 10×60 probes in sub-array 1. These peak frequencies were similar to those
given in table 1 and relatively constant along the basin.

From table 1 we notice that W1, W2 and W3 have identical steepness, practically
similar BFI, and noticeably different crest length. The data points of BFI and inverse
crest length L−1

c from MARIN data are plotted in figure 5 for the simulations with
steepness ǫ = 0.04 in §3. The data points are situated away from highest values of
δ, indicating that deviation due to nonlinear evolution should not be observable from
the MARIN data. Figure 5 is obtained from simulations of Gaussian spectra while the
MARIN data had JONSWAP spectra, nevertheless the comparison should be reasonable
for the relatively low BFI and short crests involved.

The steepness was also estimated from time series at each of the 10×60 probes in
sub-array 1 and was similar to the steepness estimated from sub-array 2 given in table
1. Thus the wave fields were not attenuated along the main wave direction.
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Wave field ωp [s−1] Tp [s] kp [m−1] λp [m] ǫ [-] ∆ω/ωp [-] BFI [-] Lc [-] N [-]

W1 6.29 1.00 4.04 1.56 0.04 0.100 0.40 3.06 17
W2 6.04 1.04 3.72 1.69 0.04 0.104 0.38 2.42 11
W3 6.04 1.04 3.72 1.69 0.04 0.104 0.38 1.69 5

Table 1. Parameters from the MARIN wave fields estimated from sub-array 2 in the basin:
ωp, peak frequency; Tp, peak period; kp, peak wavenumber; λp, peak wavelength; ǫ, steep-
ness; ∆ω/ωp, HWHP frequency bandwidth; BFI, Benjamin-Feir index; Lc, crest length and N ,
spreading parameter given for MNLS simulations for initial spectrum (2.9).

The left panes of figure 7 show (kx, ω)-spectra of W1, W2 and W3 obtained from sub-
array 1. In order to use the directional data from all probes in sub-array 1 we computed
a collection of (kx, ω; y)-spectra from 10 extracts along the x-direction in the basin and
averaged over y to obtain the (kx, ω)-spectrum. Extract number 1 is shown in figure 6
and extracts number 2–10 are those that follow along the y-direction. The (kx, ω)-spectra
were obtained by uniform discrete Fourier transform of the time series and nonuniform
discrete Fourier transform (Fessler & Sutton 2003) of the data along the x-axis.
The axes of the left panes of figure 7 are normalized by the peak frequencies ωp es-

timated from the ω-spectra obtained from projection of the (kx, ω)-spectra of W1, W2
and W3 onto the ω-axis, and the peak wavenumbers kp = ω2

p/g from LDR. The peak
frequencies ωp and wavenumbers kp were similar to those given in table 1.
In order to compare distributions of (kx, ω)-spectra with linear wave theory we compute

lim
ky→0

Ω(k) = (g|kx|)1/2 (4.1)

i.e. LDR (1.1) in the limit that ky = 0. In figure 7, the white dashed curves show (4.1).
The (kx, ω)-spectra from the MARIN data reveal contributions around (4.1) and the

peaks of the spectra are in accordance with (4.1). When waves satisfying LDR are pro-
jected onto the (kx, ω)-plane the curve (4.1) should be a lower bound for contributions
in the projected spectral plane. There is no indication of deviation from LDR for the
MARIN spectra. Additional distributions are seen away from peak. These are caused by
aliasing as a consequence of gaps between the measurement locations in the basin. The
white dotted curves show the RMS wavenumber kRMS (2.14). The RMS wavenumber
is distributed close to peak but as a consequence of aliasing the estimate of the RMS
wavenumber is slightly inaccurate.

The right panes of figure 7 show (kx, ω)-spectra obtained from simulations of the
MNLS equation. The simulations were initialized with the JONSWAP spectrum (2.9)–
(2.12) with α chosen such that ǫ = 0.04 identical to the steepness of the MARIN wave
fields. The directional spreading was determined by the spreading parameter N given for
the spreading function D(θ) (2.11). The spreading parameters N that corresponded to
Lc of the MARIN wave fields were used for simulations and are given in table 1.

The MARIN wave fields were simulated on a computational domain extending over
70λp in both the x and y-directions. A uniform grid of Nx × Ny = 512 × 512 nodes
was used. From this domain, sub-domains with spatial coverage identical to that of
MARIN sub-array 1 were selected i.e. 16λp for W1 and 15λp for W2 and W3 along
main wave direction. Within the sub-domains the nodes corresponding to gaps between
measurement locations in sub-array 1 were removed in order to simulate the nonuniform
spatial coverage. The simulated wave fields evolved for 150Tp and as for the MARIN
wave fields we removed the first 100Tp and used the next 50Tp for spectral estimates.
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Figure 7. Left panes: (kx, ω)-spectra obtained from sub-array 1 in the MARIN basin. Right
panes: (kx, ω)-spectra obtained from simulations of the MNLS equation. Colours: Spectral en-
ergy density in dB. Colour bar in dB. White dashed curve: (4.1). White dotted curves: RMS
wavenumber kRMS from (2.14).
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Considering the group velocity cg of the peak, the sub-domains were not affected by the
periodic boundary conditions of the simulations. Waves leaving the sub-domains would
propagate with cg in the full domain without reaching the boundary of the sub-domain
during the time of 50Tp used for the spectral estimates.

5. Discussion

A number of directional waves have been simulated with the NLS and MNLS equations
for ranges of steepness and bandwidth. From the (k, ω)-spectra the deviation from LDR
has been observed for narrow-banded directional waves.

For the NLS and MNLS equations the deviation is qualitatively different. The NLS
equation shows deviation both above and below peak while the MNLS equation shows
deviation only above peak. For the highest steepness the MNLS equation shows a more
pronounced deviation above peak than the NLS equation during the 150Tp considered.
We performed simulations over longer times up to 200Tp which revealed that the

narrow-banded directional waves eventually reach a quasi-stationary state with relaxation
toward LDR. Our unidirectional waves show deviation during the entire time up to
200Tp and do not relax toward LDR. Thus, qualitative difference between directional
and unidirectional wave propagation is observed.

In accordance with the BF timescale deviation occurs and relaxes sooner for directional
waves with high steepness than for waves with lower steepness.

A proposed deviation parameter δ shows that the dispersion of the directional waves
deviates from the LDR when BFI is high and crests are long. The magnitude of δ increases
when BFI increases. The result is evident for all steepnesses considered.
For broad-banded steep waves the spectral energy density is distributed around ω(k+

∆k) + ∆ω, often used as the upper bound of radar filters above the LDR, where ∆k
and ∆ω are the resolutions along the wavenumber and frequency axes. This may help
to improve analysis of marine radar imagery where the filter is used to supress those
spectral contributions that do not satisfy the LDR, see Nieto Borge et al. (2004).

The MARIN data confirms the simulations for three cases of BFI and Lc situated away
from the highest values of the deviation parameter δ.
Considering ωp, kp and ǫ for the MARIN wave fields given in table 1, and BF timescale

τ = (ǫ2ωp)
−1, the characteristic distances are cgτ ≈ 77 m for W1 and 84 m for W2 and

W3. The length of the synthetic array along main wave direction in the MARIN basin,
25.6 m, does not cover the BF scale. The MARIN array covers 15–16λp along main
wave direction, considerably less than the 70λp of the simulations presented in §3 which
cover the BF scale. We computed (kx, ω)-spectra for directional waves with ǫ = 0.04
using the Gaussian spectrum (2.7) with narrow bandwidths instead of the JONSWAP
spectrum shown in the right panes of figure 7. These spectra showed deviation from
LDR. The simulations have periodic boundary conditions, different from the basin where
waves have finite time to evolve from the wave maker to the damping beach. From
the simulations in §3 we have seen that deviation occurs late for low steepness within
the 150Tp considered. A basin with sufficient coverage to capture the late occurence of
deviation for low steepness required to reveal the deviation. Thus due to the combinations
of relatively broad frequency bandwidths, short crests and limited spatial coverage it
should not be expected that deviation due to nonlinear evolution should be observable
from the MARIN data.

For unidirectional waves the deviation was observed experimentally and numerically by
Taklo et al. (2015) and numerically by Gibson & Swan (2006), Krogstad & Trulsen (2010)
and Houtani et al. (2015). The experiments of Taklo et al. (2015) employed ǫ = 0.10
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which is higher than ǫ = 0.04 of the MARIN wave fields. The simulated unidirectional
narrow-banded waves with ǫ = 0.04 in §3 reveal deviation late during the time considered,
similar to that of the directional waves shown in the upper right pane of figure 2. Thus
a sufficiently long narrow wavetank could capture the deviation for low steepness.

6. Conclusion

We have examined the dependence of the dispersion of directional surface gravity waves
on BFI and crest length. A parameter for describing the deviation between the disper-
sion of simulated waves and the theoretical linear dispersion relation has been proposed.
The deviation is most pronounced when BFI is high and crests are long. The deviation
increases when BFI increases. We have also considered laboratory data of directional
waves from MARIN. The MARIN data confirms the simulations for three cases of BFI
and crest length.
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