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A B S T R A C T
Objectives: To estimate a five-level EuroQol five-dimensional ques-
tionnaire (EQ-5D-5L) value set for China using the health preferences
of residents living in the urban areas of the country. Methods: The
values of a subset of the EQ-5D-5L–defined health states (n ¼ 86)
were elicited using the time trade-off (TTO) technique from a sample
of urban residents (n ¼ 1271) recruited from five Chinese cities. In
computer-assisted personal interviews, participants each completed
10 TTO tasks. Two additive and two multiplicative regression models
were evaluated for their performance in describing the relationship
between TTO values and health state characteristics using a cross-
validation approach. Final values were generated using the best-
performed model and a rescaling method. Results: The 8- and
9-parameter multiplicative models unanimously outperformed the
20-parameter additive model using a random or fixed intercept
in predicting values for out-of-sample health states in the
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cross-validation analysis and their coefficients were estimated with
lower standard errors. The prediction accuracies of the two multi-
plicative models measured by the mean absolute error and the
intraclass correlation coefficient were very similar, thus favoring
the more parsimonious model. Conclusions: The 8-parameter multi-
plicative model performed the best in the study and therefore was
used to generate the EQ-5D-5L value set for China. We recommend
using rescaled values whereby 1 represents the value of instrument-
defined full health in economic evaluation of health technologies in
China whenever the EQ-5D-5L data are available.
Keywords: cross-validation, EQ-5D-5L, modeling, time trade-off.
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Introduction

Preference-based instruments are widely used to estimate
quality-adjusted life-years (QALYs) in cost-utility analysis of
new health programs or technologies [1]. Consisting of a descrip-
tive system and predetermined utility values, preference-based
instruments provide an alternative approach to generating utility
values through direct valuation.

The EuroQol Group’s three-level EuroQol five-dimensional ques-
tionnaire (EQ-5D-3L) is the most frequently used preference-based
instrument worldwide [2]. The descriptive system of the EQ-5D
comprises five dimensions: mobility (MO), self-care (SC), usual
activities (UA), pain/discomfort (PD), and anxiety/depression (AD);
each dimension is described at three levels (roughly corresponding
to no problems, moderate problems, and extreme problems). A large
number of national value sets, each consisting of the utility values
of the 243 EQ-5D-3L health states to the general population, have
been generated to provide health technology appraisers with the
most relevant quality-of-life weights for calculation of QALYs [3].

Recently, the EQ-5D has been expanded, such that each dimen-
sion is described at five levels, corresponding roughly to no, slight,
moderate, severe, and extreme problems. The new version is
referred to as the EQ-5D-5L [4]. Several national value sets for the
EQ-5D-5L have been published [5–10], and more are on the way.

The purpose of this study was to estimate the EQ-5D-5L value
set on the basis of health preferences of urban residents of China.
The Chinese version of the EQ-5D-5L description system for China
has demonstrated some advantages over the EQ-5D-3L [11–13].

Methods

The study was part of a multinational research project coordinated
by the EuroQol Research Foundation. Using a cross-sectional survey
designed according to a research protocol and a computerized
interview program that were developed by the EuroQol Group [14],
we collected the preferences data needed for estimating an EQ-5D-5L
value set from a sample of the general urban population in China.
The detailed study design is described here.

Sampling and Recruitment

A sample of the general population living in urban China was
recruited. Because of limited resources, a nonprobability sampling
method was used to recruit community-dwelling residents from
ociety for Pharmacoeconomics and Outcomes Research (ISPOR).
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five metropolitan areas, namely, Beijing, Shenyang, Nanjing,
Chengdu, and Guiyang. These areas were selected as representa-
tives of cities of varying population size, geographical region, and
economic development. In each area, quotas were set to recruit 250
participants whose characteristics in age, sex, and educational
attainment resembled those of the target population, and partic-
ipants were recruited through personal contact by a local data
collection team from five or more different locations. Recruiting
was conducted in publicly accessible places such as streets, shop-
ping centers, parks, and university campuses, and in places with
restricted access such as residential areas, schools, and factories.
Inclusion criteria were that participants 1) were 18 years or older, 2)
were literate and able to read text from a computer screen, 3) were
able to understand survey questions, and 4) gave informed consent.

Data Collection Procedures

All consenting participants were invited to a face-to-face, one-on-one
computer-assisted personal interview. A total of 20 graduate stu-
dents and junior lecturers from five local universities, one university
in each city, conducted the interviews. All the interviewers partici-
pated in a half-day training workshop on the study design, interview
protocol, and computer software program designed for the study and
on recruitment and interview skills. All interviews were conducted
using a laptop computer for displaying questions and recording
responses. During the data collection period, completed interviews
were uploaded and analyzed on a daily basis. Whenever very short
interviews or unusual response patterns were identified, the inter-
viewers were contacted for clarification and retraining if necessary.

Interview

All interviews were conducted using the EuroQol Valuation
Technology (version 1.0) program [14]. The interview had four
sections. The first section familiarized participants with the
EQ-5D-5L descriptive system by asking them to describe their
own health using the EQ-5D-5L questionnaire. The second sec-
tion contained 10 time trade-off (TTO) tasks, each for valuing a
different EQ-5D-5L health state. The third section was designed to
value selected EQ-5D-5L health states using discrete choice
experiment (data not used in the present study). The last section
assessed participants’ socioeconomic characteristics.

The TTO tasks used a “composite” TTO technique whereby
“better than dead” and “worse than dead” health states were valued
by conventional TTO and lead-time TTO, respectively [14,15]. The
composite TTO was described in detail elsewhere [14,16]. Briefly, for
an impaired health state considered better than dead, the task is to
elicit the x (0–10) value at which a respondent is indifferent between
two alternatives: 1) living in full health for x years followed by death
and 2) living in the impaired health state for 10 years followed by
death. The utility value of the impaired health state is x/10. For
health states considered worse than dead, the two alternatives are
1) living in full health for x years followed by death and 2) living in
full health for 10 years and then in the impaired health state for
another 10 years before death. The utility value is given by (x�10)/
10. The values were bounded at �1 and 1, with 0 corresponding to
death. The state of “in a wheelchair” was used as an example to
make sure participants understood the concept of composite TTO
before proceeding to the 10 formal valuation tasks.

Health States

By convention, the EQ-5D-5L health states are presented in a
short form using five-digit numbers in which the digits represent
the levels of functioning for the dimensions in order of presenta-
tion (MO, SC, UA, PD, and AD). Thus, state 11111 represents no
problems on any dimension, whereas state 55555 represents
extreme problems on all five dimensions.
In this study, 86 EQ-5D-5L health states were valued using the
composite TTO technique, including the 5 mildest imperfect health
states (i.e., 21111, 12111, 11211, 11121, and 11112), state 55555, and 80
other states of varying severity. The 86 health states were grouped
into 10 health state blocks, all of which contained 1 mildest health
state, state 55555, and 8 block-unique health states. Each participant
was randomly assigned a health state block for TTO valuation.

Data Analysis

The aim was to determine a regression model on the basis of the
observed values for the 86 health states, which would then be
used to generate values for all the 3125 health states defined by
the EQ-5D-5L system. We elected to predict utility values on the
basis of only health state characteristics. Our data analysis
involved four stages: model construction, model evaluation,
model estimation, and value adjustment.

Model construction
Four core regression models were tested on the basis of their
performance in a recent study of regression models for the EQ-5D-
5L (K. Rand-Hendriksen, unpublished data). The standard, additive
20-parameter model, referred to as ADD20, has parameters repre-
senting levels 2, 3, 4, and 5 for each dimension. Let α represent the
intercept, xdl, the dummy variable indicating the presence of prob-
lems on dimension d at level l and βdl the coefficient representing the
estimated disutility of having problems on dimension d at level l (e.
g., βMO3 representing the disutility of having moderate problems on
mobility). The mathematical function of ADD20 is as follows:

y¼αþΣlΣdβdlxdlþe¼αþ
βMO2xMO2þβSC2xSC2þβUA2xUA2þβPD2xPD2þβAD2xAD2þ
βMO3xMO3þβSC3xSC3þβUA3xUA3þβPD3xPD3þβAD3xAD3þ
βMO4xMO4þβSC4xSC4þβUA4xUA4þβPD4xPD4þβAD4xAD4þ
βMO5xMO5þβSC5xSC5þβUA5xUA5þβPD5xPD5þβAD5xAD5þe

The second model was an 8-parameter multiplicative model,
hereafter referred to as MULT8. This is a constrained variant of
ADD20, in which five parameters representing the disutility of
having problems at level 5 on each of the five dimensions (βMO, βSC,
βUA, βPD, and βAD) are multiplied by parameters for levels 2, 3, and 4
(L2, L3, and L4). Thus, the disutility of having moderate problems
on mobility is βMO � L3. The mathematical function of MULT8 is as
follows (note that xdl still represents the dummy variable repre-
senting the presence of problems on dimension d at level l):

y¼αþ
X

l

X
d
βdxdl

� �
Llþe¼αþ

βMOxMO2þβSCxSC2þβUAxUA2þβPDxPD2þβADxAD2
� �

L2þ

βMOxMO3þβSCxSC3þβUAxUA3þβPDxPD3þβADxAD3
� �

L3þ

βMOxMO4þβSCxSC4þβUAxUA4þβPDxPD4þβADxAD4
� �

L4þ

βMOxMO5þβSCxSC5þβUAxUA5þβPDxPD5þβADxAD5þe

The third model, referred to as MULT9, extends MULT8, with an
additional parameter L5 to distinguish level 5 for PD and AD
(described using the label “extreme”) from level 5 for MO, SC, and
UA (described using the label “unable to”). Thus, MULT9 assumes
that the relative distance between the levels is shared across
dimensions, with the exception of the distance between levels 4
and 5, which is shared across the first three and the last two
dimensions only. Themathematical function of MULT9 is as follows:

y¼αþ

βMOxMO2þβSCxSC2þβUAxUA2 þ βPDxPD2þβADxAD2
� �

L2þ



� �
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βMOxMO3þβSCxSC3þβUAxUA3 þ βPDxPD3þβADxAD3 L3þ

βMOxMO4þβSCxSC4þβUAxUA4 þ βPDxPD4þβADxAD4
� �

L4þ
ðβMOxMO5þβSCxSC5þβUAxUA5ÞþðβPDxPD5þβADxAD5ÞL5þe

ADD20 was estimated using ordinary least squares with a
fixed constant/intercept (ADD20f), and using a random intercept

at the level of individual study participants (ADD20r). ADD20r
corresponds to the method described as random effects or gener-
alized least squares in several EQ-5D valuation studies [17]. On the
basis of a previous study in which MULT8 or MULT9 performed
poorly with a fixed intercept (K. Rand-Hendriksen et al., 2016;
unpublished data), only the random intercept variants of these
models were estimated. Hence, four core models were evaluated
in the analysis, namely, ADD20f, ADD20r, MULT8r, and MULT9r.

Each core model function was also tested with each of the
following three sets of interaction terms:
1.
 The N5 model, an extension of the EQ-5D-3L N3 model [17]:
With N5, the core models were expanded with four additional
dummy variables labeled N2, N3, N4, and N5, representing the
presence of any problems at levels 2 through 5, respectively.
2.
 An extended D1 model based on the model used to fit the US EQ-
5D-3L value set [18]: With D1, the four core models were
expanded with terms representing the number of dimensions
beyond the first at levels 2 through 5 (i2, i3, i4, and i5); the squares
of these terms (i22, i32, i42, and i52) were also included. To avoid
exacerbating the multicollinearity of the models, a constant term
was maintained, rather than the D1 term, representing the
number of dimensions beyond the first (not at level 1) [19].
Table 1 – Characteristics of participants (N ¼ 1271).
3.
Characteristics N %

Age group (y)
18–29 313 24.63
30–39 244 19.20
40–49 272 21.40
50–59 220 17.31
60þ 222 17.47

Sex
Female 634 49.88
Male 637 50.12

Education
Primary or lower 138 10.86
Junior high school 396 31.16
Senior high school 446 35.09
College or higher 291 22.90

Employment status
Full-time employee 378 29.74
Temporary worker 301 23.68
Individual freelancer 148 11.64
Retired 240 18.88
Student 115 9.05
Unemployed 48 3.78
Other 41 3.22

Residence of origin
City 749 58.93
County 82 6.45
Township or village 440 34.62

Health insurance
Urban employee 551 43.35
New rural 289 22.74
Urban residence 339 26.67
Commercial 156 12.27
No 56 4.41
Other 171 13.46
The four core models were expanded using a single parameter
taking on values representing the square root of the number
of movements away from full health (i.e., a city block-metric).

Model evaluation
The core models and their derivatives were evaluated for iden-
tifying the best one by analyzing their predictions. First, model
predictions were examined for logical consistency (monotonic-
ity), which means that worse health states should have lower
TTO values than objectively better health states. Models predict-
ing logically inconsistent values would be discarded. Second,
prediction accuracy was assessed by comparing predicted and
observed mean values for health states valued in the study. The
mean absolute error (MAE) and intraclass correlation coefficient
(ICC) were calculated to assess overall prediction accuracy. Lower
MAE and higher ICC values indicated better accuracy. Model
parsimony was used as the selection criterion in case two or
more models had similar prediction accuracy.

Operationally, model evaluation was conducted in the manner
of cross-validation. We repeatedly split the TTO data into two
parts, fitted each model to one part of the data, and used the fitted
models to predict values over the left-out part of the data. Two
cross-validation methods were used. In the first method, all
observations for a single health state were split out, all models
were fitted to the remaining 85 observed health states, and the
value of the left-out health state was predicted using each fitted
model. This was repeated for each of the 86 observed health
states. In the second method, health states were left out by block,
as defined by the EuroQol Valuation Technology program. As in
the first method, all models were fitted to the remaining data, and
values for the health states in the left-out block were predicted.
This was repeated for each of the 10 fixed health state blocks.

Model estimation
After model evaluation, coefficients of the most promising
models were estimated using the entire set of data. Because of
the nonlinear nature of some of the MULT8r and MULT9r, and the
non-normal error distributions observed in TTO data, standard
errors (SEs) and 95% confidence intervals (CIs) of model coeffi-
cients were estimated using bootstrapping. A total of 10,000
bootstrap samples were drawn at the level of individual study
participants, and all models were fitted to each bootstrap sample.

Value adjustment
We applied linear adjustment to model-predicted values using the
formula Valueadjusted ¼ Valuepredicted/(1 – intercept). This additional
step was for removing the effect of the nonzero intercept in all
models, which leads to a predicted value of less than 1 for full
health (11111). Although most previous studies of this kind chose
to adjust only the value for 11111 (to 1), we elected to adjust all the
values to preserve the relative utility of all the health states.

All analyses were performed using R statistical package
version 3.3.0 (R Development Core Team, Vienna, Austria) [20].
ADD20f and ADD20r were fitted using the built-in functions lm
and nls. MULT8r and MULT9r were fitted using a nonlinear mixed-
effects function from the nlme package [21].
Results

A total of 1332 individuals (response rate 68.6%) were recruited for this
study. Among these, 1296 (97.3%) successfully completed the inter-
view. After excluding those who were younger than 18 years at the
time of interview (N ¼ 25), 1271 individuals were included in the final
analysis. The full sample characteristics are presented in Table 1.



Table 2 – Model fit results in cross-validation tests and for full data set.

Cross-validation method ADD20f ADD20r MULT8r MULT9r

Mean absolute error
Method 1: leave-out by state 0.0447 0.0426 0.0398 0.0398
Method 2: leave-out by block 0.0437 0.0420 0.0408 0.0409
Full data set 0.0339 0.0349 0.0370 0.0365

Intraclass correlation
Method 1: leave-out by state 0.9796 0.9820 0.9831 0.9838
Method 2: leave-out by block 0.9866 0.9880 0.9882 0.9886
Full data set 0.9882 0.9876 0.9854 0.9864

Number of nonmonotonic models*

Method 1: leave-out by state 0 0 0 0
Method 2: leave-out by block 1 0 0 0
Full data set 0 0 0 0

Note. Boldfaced figures indicate the smallest observed mean absolute error.
ADD20f and ADD20r, additive 20-parameter model with a fixed/random constant/intercept; MULT8r and MULT9r, 8- and 9-parameter
multiplicative model with a random intercept.
* The total number of models fitted was 86, 10, and 1 for method 1, method 2, and full data set, respectively.
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All four main models gave logically consistent (monotonic)
predictions in the cross-validation analysis and when fitted on
the full set of data, except that ADD20f was not fully monotonic
in cross-validation analysis by health state block. In terms of
MAE, MULT8r and MULT9r performed the best when the first
(leave-out by state) and second (leave-out by block) cross-
validation methods were used, respectively (Table 2). ADD20r,
MULT8r, and MULT9r displayed very small differences in terms of
ICC, whereas ADD20f performed slightly worse.

The three groups of interaction terms were all rejected. The
addition of the N5 terms to the four core models resulted in
logically inconsistent models with substantially impaired predic-
tive accuracy. The models with D1 terms added were less prone
to logical inconsistency than the ones with the N5 terms, but
those too substantially impaired predictive accuracy. The addi-
tion of the square-root city block-metric term resulted in logically
inconsistent coefficients when added to ADD20r, and substan-
tially changed the predicted values when added to ADD20f,
Fig. 1 – Observed mean and model predicted values for the EQ-5D
high to low by observed mean values. (B) Values (rescaled) for a
predicted by MULT8r. C-TTO, composite time trade-off; EQ-5D-5L
8-parameter multiplicative model with a random intercept.
MULT8r, and MULT9r, with a widened gap between the full
health and the second-best state, and smaller differences
between worse states. (Results are available on request.)

The four models were generally similar in predictions
(Fig. 1A). Reflecting the larger number of observations per fitted
parameter in the nonlinear models, the bootstrap-based SEs for
MULT8r and MULT9r were smaller than those for ADD20f and
ADD20r (Tables 3 and 4). The constant/intercept term was in the
range of 0.121 (MULT8r) to 0.127 (ADD30f and ADD20r). The right
axis of Figure 1B illustrates the effect of rescaling to the value of
11111 predicted by MULT8r.

MULT8r and MULT9r performed better than both ADD20f and
ADD20r in terms of predictive accuracy. On the basis of the
parsimony criterion, MULT8r was chosen as the basis for gen-
erating the final EQ-5D-5L value set for China. The parameters
(SEs) of the four models estimated using the full sample data are
presented in Table 3 and their counterparts for generating the
rescaled values are presented in Table 4. A full set of predicted
-5L health states. (A) Values for 86 health states ordered from
ll 3125 health states ordered from high to low by values
, five-level EuroQol five-dimensional questionnaire; MULT8r,



Table 3 – Estimated coefficients (SEs) of the fitted models on all data.

Model ADD20f ADD20r MULT8r* MULT9r*

Coefficient SE† Coefficient SE† Coefficient SE† Coefficient SE†

Nonlinear parameter
Intercept – – 0.121 0.009 0.125 0.010
MO – – 0.303 0.010 0.312 0.011
SC – – 0.222 0.010 0.224 0.010
UA – – 0.205 0.009 0.205 0.009
PD – – 0.266 0.010 0.294 0.017
AD – – 0.227 0.010 0.255 0.017
L2 – – 0.191 0.018 0.169 0.020
L3 – – 0.458 0.019 0.429 0.021
L4 – – 0.832 0.016 0.785 0.024
L5 – – – 0.875 0.047

Linear parameter
Intercept 0.127 0.015 0.127 0.010 0.121 0.009 0.125 0.010
MO2 0.056 0.012 0.050 0.010 0.058 0.006 0.053 0.006
MO3 0.121 0.014 0.118 0.011 0.139 0.007 0.134 0.007
MO4 0.230 0.014 0.227 0.012 0.253 0.010 0.245 0.010
MO5 0.316 0.013 0.307 0.012 0.303 0.010 0.312 0.011
SC2 0.041 0.014 0.048 0.010 0.043 0.005 0.038 0.005
SC3 0.127 0.014 0.124 0.011 0.102 0.006 0.096 0.006
SC4 0.186 0.018 0.186 0.013 0.185 0.009 0.176 0.010
SC5 0.233 0.011 0.235 0.011 0.222 0.010 0.224 0.010
UA2 0.036 0.013 0.049 0.010 0.039 0.005 0.035 0.005
UA3 0.099 0.018 0.095 0.012 0.094 0.006 0.088 0.006
UA4 0.165 0.014 0.171 0.012 0.171 0.008 0.161 0.009
UA5 0.201 0.012 0.206 0.010 0.205 0.009 0.205 0.009
PD2 0.045 0.011 0.041 0.009 0.051 0.005 0.050 0.005
PD3 0.106 0.014 0.114 0.012 0.122 0.007 0.126 0.008
PD4 0.235 0.015 0.231 0.012 0.221 0.010 0.231 0.010
PD5 0.250 0.014 0.251 0.013 0.266 0.010 0.258 0.011
AD2 0.024 0.015 0.023 0.010 0.043 0.005 0.043 0.005
AD3 0.109 0.018 0.104 0.013 0.104 0.007 0.109 0.007
AD4 0.195 0.016 0.187 0.012 0.189 0.009 0.200 0.010
AD5 0.217 0.013 0.221 0.012 0.227 0.010 0.223 0.010

ADD20f and ADD20r, additive 20-parameter model with a fixed/random constant/intercept; Dimensions: MO, mobility; SC, self-care; UA, usual
activities; PD, pain/discomfort; and AD, anxiety/depression; MULT8r and MULT9r, 8- and 9-parameter multiplicative model with a random
intercept; SE, standard error.
* Nonlinear models in 20-parameter form for comparison purposes.
† All estimates of SEs were derived by fitting the models using bootstrapping with 10,000 resamples. Bootstrap samples were performed at the
level of individual study participants.
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values for all 3125 health states, including SEs and 95% CIs, is
available in CSV format (see Digital Content File 1 in
Supplemental Materials found at http://dx.doi.org/10.1016/j.jval.
2016.11.016). Using the recommended MULT8r in Table 4, the
values for 11211 (the second-best state) and 55555 (the worst
state) are 0.955 and �0.391, respectively.
Discussion

With the advance of evidence-based decision making in health
policy, economic evaluation has been considered as an important
tool for drug pricing and reimbursement in China. Recently
published pharmacoeconomic guidelines recommend cost-
utility analysis and instruments that can generate utility values
reflecting the health preferences of the general Chinese popula-
tion for calculation of QALYs [22]. Therefore, the availability of a
national EQ-5D-5L value set will propel the development of
pharmacoeconomics and its use in the official decision-making
process of the country.
With the exception of Canada [7], published EQ-5D-5L valu-
ation studies in the United Kingdom [5], Japan [6], Uruguay [8], the
Netherlands [9], and Korea [10] have used a 20-parameter model
for generating their final value sets. It is not surprising that the 20-
parameter model performed well in those studies, given that the
health states and the number of observations per health state
presently used in the computer-assisted EQ-5D-5L valuation tool
were determined with the 20-parameter model in mind. In this
study, however, we decided to inform model selection using
cross-validation as a proxy for assessing predictive accuracy
outside the scope of the observed health states, rather than
model fit on the observed data set. The distinction is important;
in terms of model fit on the observed data set, the 20-parameter
model will always and without exception perform equal to or
better than the 8- and 9-parameter models tested here because
the 8- and 9-parameter models are constrained variants of the 20-
parameter model (see Tables 3 and 4 in which MULT8r and
MULT9r have been presented in the 20-parameter format). When
model selection is informed by fit on the observed data, models of
increased complexity will be preferred. Nevertheless, increasing

http://dx.doi.org/10.1016/j.jval.2016.11.016
http://dx.doi.org/10.1016/j.jval.2016.11.016
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Table 4 – Rescaled coefficients (SEs) of the fitted models for predicting values anchored at 0 (dead) and 1 (11111).

Model ADD20r MULT8r* MULT9r*

Coefficient SE† Coefficient SE† Coefficient SE†

Nonlinear parameters
MO – 0.345 0.012 0.356 0.013
SC – 0.253 0.011 0.256 0.011
UA – 0.233 0.010 0.234 0.010
PD – 0.302 0.012 0.336 0.020
AD – 0.258 0.011 0.291 0.019
L2 – 0.191 0.018 0.169 0.020
L3 – 0.458 0.019 0.429 0.021
L4 – 0.832 0.016 0.785 0.024
L5 – – 0.875 0.047

Linear parameters
MO2 0.057 0.011 0.066 0.006 0.060 0.007
MO3 0.136 0.013 0.158 0.008 0.153 0.008
MO4 0.260 0.013 0.287 0.012 0.279 0.011
MO5 0.351 0.015 0.345 0.012 0.356 0.013
SC2 0.055 0.011 0.048 0.005 0.043 0.005
SC3 0.142 0.013 0.116 0.007 0.110 0.007
SC4 0.213 0.015 0.210 0.010 0.201 0.011
SC5 0.269 0.012 0.253 0.011 0.256 0.011
UA2 0.056 0.011 0.045 0.005 0.040 0.005
UA3 0.109 0.014 0.107 0.006 0.100 0.007
UA4 0.196 0.013 0.194 0.009 0.184 0.010
UA5 0.236 0.012 0.233 0.010 0.234 0.010
PD2 0.047 0.010 0.058 0.006 0.057 0.006
PD3 0.131 0.013 0.138 0.008 0.144 0.009
PD4 0.264 0.014 0.252 0.011 0.264 0.013
PD5 0.287 0.014 0.302 0.012 0.294 0.012
AD2 0.027 0.012 0.049 0.005 0.049 0.005
AD3 0.119 0.015 0.118 0.007 0.125 0.008
AD4 0.215 0.014 0.215 0.010 0.228 0.012
AD5 0.253 0.013 0.258 0.011 0.255 0.011

Note. Rescaling was done by dividing the dimension parameters (MO, SC, UA, PD, and AD) in the nonlinear models, and all parameters in the
linear models, by (1�intercept). SE estimates recalculated using bootstrapping, because the uncertainty around the intercept will influence
uncertainty for all parameters.
ADD20r, additive 20-parameter model with a random intercept; Dimensions: MO, mobility; SC, self-care; UA, usual activities; PD, pain/
discomfort; and AD, anxiety/depression; MULT8r and MULT9r, 8- and 9-parameter multiplicative model with a random intercept; SE,
standard error.
* Nonlinear models in 20-parameter form for comparison purposes.
† All estimates of SEs were derived by fitting the models using bootstrapping with 10,000 resamples. Bootstrap samples were performed at the
level of individual study participants.
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complexity comes at the risk of overfitting to random variance,
effectively reducing predictive accuracy and validity beyond the
observed data [23]. Cross-validation methods, although imperfect,
can reveal situations in which simplified models improve pre-
dictions. Indeed, the 8- and 9-parameter models we tested here
outperformed the 20-parameter model in the Singaporean and
Spanish EQ-5D-5L valuation data sets (K. Rand-Hendriksen et al.,
2016; unpublished data), suggesting that China is not the only
country where the more parsimonious 8- and 9-parameter models
could be applied. The concept of the constrained models may be
applied to other health descriptive systems that use a common
set of descriptors in all or multiple dimensions. For example, the
same set of frequency descriptors (none/a little/some/most/all of
the time) is used in three of the six dimensions of the six-
dimensional health state short form [24].

Nonlinear regression models are not without drawbacks.
From a practical perspective, methods for fitting nonlinear
regression models are not taught as extensively as linear regres-
sion, and methods for fitting such models are less accessible than
linear regression methods (STATA [StataCorp LP, College Station,
TX] provides linear mixed-effects models and nonlinear regres-
sion functions, but we have not found any functions in STATA
able to fit nonlinear mixed-effects regression, required for
MULT8r and MULT9r). Furthermore, although the nonlinear
regression functions that are available (at least in R and STATA)
readily provide estimates of SEs for the fitted coefficients, these
cannot be used directly to calculate SEs for predicted values,
because the product of two Gaussian random variables is not
itself a Gaussian random variable. For this reason, in addition to
the non-normality of TTO distributions, we used bootstrapping to
estimate SEs and CIs for all models in this study. Details and
codes for fitting the various regression models in R and STATA
can be found in a separate study (K. Rand-Hendriksen et al., 2016;
unpublished data). To facilitate future research, anonymized raw
TTO data for the 1271 included study participants are also
available for download in CSV format (see Digital Content File 2
in Supplemental Materials found at http://dx.doi.org/10.1016/j.
jval.2016.11.016).

http://dx.doi.org/10.1016/j.jval.2016.11.016
http://dx.doi.org/10.1016/j.jval.2016.11.016
http://dx.doi.org/10.1016/j.jval.2016.11.016


V A L U E I N H E A L T H 2 0 ( 2 0 1 7 ) 6 6 2 – 6 6 9668
Although the nonzero intercept in our models clearly
described the data, we chose to remove it by rescaling so that 1
represents the estimated value of state 11111, rather than the
maximum possible value in the TTO task. The rescaling was done
on the basis of two separate lines of reasoning. First, there is
reason to believe that values for mild states are biased down-
ward. Because the scale is capped at 1, errors or random variance
for mild states will be capped upward, but not downward.
Second, from the point of ethics, we have to consider that the
intended use of the EQ-5D value sets is to inform priority setting
in health care. Allowing a large constant term would favor, and
therefore could result in overinvestment in, treatments for very
mild health problems. For instance, a value of 0.9 for slight
problems walking about would imply that correcting a limp for
10 years is as valuable as prolonging a life in full health for
1 year. Our rescaling method maintains the relative impact
of all transitions between the 3125 health states, while
avoiding controversies that would otherwise occur when using
the value set to appraise technologies targeting very mild health
problems.

In this study, we did not exclude any observations or
participants from our analysis on the basis of logical inconsis-
tency or idiosyncratic behaviors of participants or interviewers.
As in other studies [10,25], some of the participants in this study
gave logically inconsistent values, that is, valuing logically
better states as more undesirable than worse states (e.g., 11112
is logically better than 11113). We also found that logical
inconsistency was associated with certain interviewers and
decreased toward the end of the survey, suggesting existence of
interviewer effects (Z. Yang et al., 2016; unpublished data). In
addition, a small number of participants valued all 10 health
states as worse than dead, as good as full health, or of the same
desirability. Although excluding these minorities improved
model fit, the representative of the study sample was impaired,
and we had no strong evidence for the invalidity of that part
of data.

The EQ-5D-5L values estimated in this study are concordant
with the EQ-5D-3L value set for China in some ways, indicating
face validity [26]. First, the rank orders of disutility associated
with problems at the worst level of the different health dimen-
sions according to the two value sets are very similar—mobility,
pain/discomfort, and usual activities were ranked at the first,
second, and fifth place, respectively, in both systems. Second, the
values for the EQ-5D-5L mildest states (0.934–0.955) are higher
than those for the EQ-5D-3L mildest states (0.856–0.887). This is
logical because the former involves only slight problems, whereas
the latter involves moderate problems in one dimension. It
should be noted, however, that the values of the worst health
states defined by the EQ-5D-5L and the EQ-5D-3L are�0.149
and �0.391, respectively, although the two worst states were
almost identical. This difference could be due to the different
TTO methods used to value worse than dead health states in the
two studies: lead-time TTO in the present study and conventional
TTO in the Chinese EQ-5D-3L valuation study. The difference
could also be due to the different ways of handling negative
values in the two studies. Regardless of the reasons, the two
value sets are not equivalent and should not be used
interchangeably.
Conclusions

We found that the simplest model tested, the nonlinear 8-
parameter model, performed the best in predicting values for
observed health states in cross-validation. We recommend using
rescaled values predicted by the 8-parameter model as presented
in Table 4 (column 3) to assess health programs and technologies
in China whenever the EQ-5D-5L data are available.
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