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Summary

In forensic genetics, the main purpose has been to support the identification of
biological trace samples through DNA analysis. This has been done by using poly-
merase chain reaction to target and amplify certain short tandem repeat markers
and then separate the different amplified fragments by length using capillary elec-
trophoresis. The method has been the gold standard for decades and has been used
for generating practically all DNA-profiles stored in national databases around the
world. Because of the high level of standardization necessary, the old technology
will probably still be used for many years to come. However, massively parallel
sequencing platforms have become a promising alternative to the capillary elec-
trophoresis, by having the potential to both improve the current forensic routine
analysis and to provide information beyond identification. During the work with
this thesis, we have investigated these new possibilities and made contributions in
two important and challenging fields of forensic genetics.

DNA degradation is a key obstacle for a successful analysis. During degrad-
ation, the DNA molecules are cleaved into shorter fragments, and the more the
DNA is affected the less efficient the polymerase chain reaction will be. In the
worst cases, the short tandem repeat markers will not be sufficiently amplified to
be detected. In living cells, DNA associated with proteins or DNA present in higher
ordered structure is shielded against degradation. We performed whole genome se-
quencing on 4 degraded samples to investigate if this also applies to biological
trace material. The sequencing coverage data were adjusted and filtered for GC-
effect and low mappability regions respectively, and then used as an expression
for the relative amount of DNA present at any genomic region. High abundant
regions would be interpreted as regions resistant to degradation and vice versa.
However, we found the coverage data to be evenly distributed at the genomic level,
the chromosomal level and the sequence level and concluded that for biological
trace material, DNA degrades at an even rate throughout the genome. The lack of
certain robust DNA regions put a stop to our intention to target such regions in or-
der to develop a superior performing method for analysing degraded trace samples.
However, the fact that the degradation rate seems even throughout the genome is
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still highly relevant information when developing new MPS based methods.
Information on type of body fluid might be valuable in some cases. Testing

for body fluids has traditionally been done by detecting enzyme activity or im-
munoaffinity. However, these tests can be inaccurate and some have high false
positive rates. Alternatively, new gene expression based methods have been de-
veloped. These show higher accuracy by measuring body fluid specific mRNAs
and miRNAs but have yet not found a wide-spread use. As accurate body fluid
prediction is still challenging, we have developed another genetic-based method,
primarily meant as a supplement to the gene expression methods. Our method
takes advantage of the knowledge generated by health-related studies where it has
been shown that bacteria-rich body fluids have a reasonable steady bacterial com-
position across individuals. These studies have also developed standard laboratory
protocols and data handling workflows. In the laboratory, the bacteria in every
sample is detected by sequencing different regions in the 16S mRNA gene. The
subsequent data handling workflow starts with the building of taxonomic profiles
which each represent the bacterial composition of a sample. Then, the dimension
of the data is typically reduced by principal component analysis and used as input
for a mathematical model such as linear discriminant analysis.

For our initial experimental setup, we used saliva on skin as a study model and
sampled 6 different samples from 6 individuals. We used the mentioned stand-
ard procedures and tailored the design to measure method performance and the
effect from what we regarded as critical factors. Variance analysis of the results
confirmed the strong association between bacterial composition and body fluid,
but also a weaker effect from person was observed. Other factors such as PCR
technique (conventional and digital droplet PCR), sampling technique (tape and
synthetic swab) or technical replicates (parallel 1 and 2), had no significant effect.
A cross-validation using the experimental data gave an accuracy of 94%, but there
was a clear bias when comparing the experimental data to data from the Human
microbiome project. However, by changing from the standard to a customized
data handling workflow, we were able to remove this bias. The new data handling
workflow comprised of a combination of partial least square regression and linear
discriminant analysis. In addition, the taxonomic profiles were build using dir-
ect binning to taxa instead of the standard binning to taxonomic operational units.
When using data from the Human microbiome project for training the linear dis-
criminant regression model and data from the American gut project for testing, we
achieved an accuracy of 96%. Microbial data for feces, saliva, nasal and vaginal
body fluids were included in these data sets.

Although our method for body fluid prediction is still not ready for casework,
we have shown that it has the potential to provide high accuracy and that it seems
robust enough to be implemented without excessive intra-laboratory validation ef-
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forts. Further work is still needed to find the optimal calculation settings for highest
possible accuracy and to develop an interpretation tool for mixtures of body fluids.
In addition, a larger inter-laboratory validation study needs to be done.
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Chapter 1

Introduction

1.1 Background

The main application of genetics in forensics is to identify donors of biological
traces. A typical example would be if a blood stain was found on the suspect’s
shirt in a violent crime case. Through analysing the blood, a DNA-profile could
be deduced and if this matched the victim’s profile, he or she would be identified
as the donor. However, not all trace samples are this trivial. One sample might
be so degraded that the analysis is resultless. Another sample might contain DNA
from so many donors that the result is too complex to interpret. For a third sample,
the challenge might not lie in identifying the donor, but to link the DNA-profile to
activity or type of body fluid. While some of these problems will continue to be
insoluble, others might find a solution by the support of new technology.

The inspiration for this work has been the rapid development in DNA sequen-
cing during the last decade. The new technique, often referred to as massively
parallel sequencing (MPS), has led to affordable sequencing and is now access-
ible to the general forensic laboratory. The obvious advantage of MPS over the
currently used capillary electrophoresis technology is the high resolution of data
and superior capacity, and within this lies the potential for further development of
the forensic DNA analysis. This thesis presents two MPS based contributions to
support this development.

1.1.1 The DNA molecule

Deoxyribonucleic acid (DNA) is a long-chained molecule. It consists of two anti-
parallel DNA strands twisted into a α-helix structure. Each DNA strand is as-
sembled from 4 different building blocks called nucleotides.

DNA molecules are associated with proteins to form chromosomes, and these
are organized differently in different organisms. In bacteria, there is typically one
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large circular chromosome. In an animal or a plant cell, there are several different
chromosomes. These are tightly packed by being associated with histone proteins.
In the human cell, there are in total 23 pairs of chromosomes. Each pair has two
homologous chromosomes, one inherited from the mother and one from the father.
The first 22 pairs are called the autosomal chromosomes, and the last 23rd pair is
the sex chromosomes. In addition to nuclear DNA, the human cell also has shorter
circular stretches of DNA in the mitochondria. The total DNA in a cell is referred
to as the genome and this holds all the genetic information of the organism. In a
multicellular organism such as a human, the genome is identical from cell to cell.

The 4 different nucleotide building blocks each consists of a ribose molecule, a
triphosphate group and a nucleobase. The difference between the nucleotides lies
in the nucleobases. In the DNA strand, the phosphate groups link the ribose mo-
lecules together in an alternating chain-like fashion to build the ’DNA backbone’.
Each ribose molecule also binds to one of the 4 nucleobases. Thus, a single DNA
strand will have bases sticking out from the ’backbone’, and these will associate
with the bases on the antiparallel DNA strand to form the α-helix. The base called
adenine (A) associates with thymine (T) and guanine (G) associates with cytosine
(C). For each strand, the order of the bases defines the DNA sequence. The ends
of a strand are labelled as 5’-end and 3’-end respectively depending on which car-
bon in the ribose ring of the terminating base that has the free -OH group attached,
and the sequence of the strand is read from 5’ to 3’ end. As the two strands are
antiparallel to each other, sequences are read in opposite directions.

A gene is a stretch of sequence or successive parts of a sequence which codes
for a molecule that has a function. The sequence of a gene is read from the cod-
ing strand. In the cell, a gene sequence is transcribed into mRNA which is then
translated into proteins [1]. The protein-coding sequences of genes together with
non-protein-coding genes and regulatory sequences are the only genetic regions
known to be function related, and these constitute only a minor proportion of the
genome [2]. The larger part of the genome is non-coding and composed of repet-
itive sequences (such as LINEs, SINEs and tandem repeats), introns (non-coding
part of genes), retroviral elements (might originate from retrovirus), pseudogenes
(gene-like elements having lost functionality) etc. Whether these regions play a
role in cell physiology is highly debated [3, 4].

The DNA sequence is near identical from human to human with only ∼ 0.1%

being different [5]. These differences can appear as single nucleotide polymorph-
isms (SNPs), which are nucleotide differences at one base pair (bp) position, or
as indels, which are either insertion or deletion of a sequence. SNPs and indels
are found throughout the whole genome but are less frequent in coding regions be-
cause of evolutionary pressure [6]. Another form of variation is found in the mini-
and microsatellite DNA positioned in and around the chromosomal centromeres
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and telomeres [7]. These noncoding regions consist of repetitive sequence where
the number of successively repeated subunits differs between individuals. The min-
isatellites are sometimes referred to as variable number of tandem repeats (VNTRs)
and have a subunit length of ∼ 8− 100bp. Likewise, the microsatellites are named
short tandem repeats (STRs) and have a subunit length of ∼ 1− 7bp. There is also
other forms of genomic variation such as copy number variation (CNV), which has
repetition of longer segments of sequence, and Alu elements, which is transposable
and can vary in frequency. However, these are peripheral to or beyond the scope of
this thesis.

For further reading on the topic of general genetics see the textbook Genetics
by Meneely et al [8].

1.1.2 Human identification

The field of forensic genetics started with the VNTR markers in the mid-eighties
[9]. By measuring a combination of these from different parts of the genome, a
DNA profile could be deduced. As the number of combined VNTR markers got
larger, one was able to identify people from their DNA. This principle is still the
basis for determining paternity and other kinship, identifying bodies and remains
and to solve criminal cases by identifying biological traces. However, the applied
DNA typing methods have been adjusted to rapid technological and scientific de-
velopment.

The initial analysis technique was restriction fragment length polymorphism
(RFLP). This used restriction enzymes to cut the DNA strand close to the VNTR,
which were then labelled with a homologous probe and separated by gel electro-
phoresis. Radioactively labelled multi-locus probes were used for detection. These
created a complex pattern with a high power of discrimination, but their use was
labour intensive and they were difficult to apply for mixed samples with DNA from
more than one person. By the mid-eighties, they were replaced with the more effi-
cient single-locus probes [10].

From the early nineties, the VNTRs were gradually overtaken by STRs [11,
12]. The chosen STRs were composed of 3-4bp subunits, and dependent on the
STR, these subunits could all have the same sequence or form a pattern of differ-
ent sequences. Based on the composition of subunits, the STRs were categorized
into simple, compound and complex [13]. The new STR method used Polymerase
chain reaction (PCR) to increase method sensitivity, and several STR markers were
amplified simultaneously by using a multiplex of different primer pairs. The amp-
lification product was separated by capillary electrophoresis (CE), and the primers
were labelled with fluorescent dye to facilitate detection. This method was also
more suitable for degraded DNA and was far less labour intensive then RFLP. In
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addition, the statistical calculations and interpretation were simplified with the shift
to automated methods of analysis [14]. Since its introduction, the STR method has
been continuously optimized and is still the gold standard in forensic genetics. In
addition to the advantages already mentioned, a significant reason for the method’s
success is the large national and international DNA databases that have been built
based on STR profiles. Because of the considerable investment, it is difficult to
imagine the introduction of a new alternative method unless it is compatible with
the standard STR markers.

1.2 Limitations of human identification

The STR method outperformed RFLP when analysing degraded DNA, but it is still
not optimal. DNA is fragmented when degraded, and if the STR marker region is
broken, the PCR amplification will be disrupted for that particular DNA molecule.
The greater the degradation the more evident this problem will be when analyzing a
trace sample. As a result, the STR method can in the worst case fail completely, and
no result will be obtained. A marker that is extended as a long stretch of DNA will
be more vulnerable than a shorter marker. As an alternative, shorter markers such
as SNPs will be a good choice when analysing degraded DNA. An obstacle is that
SNPs are not compatible with the STR profiles registered in the DNA-databases.
A pure SNP based method will therefore only be useful in cases where both trace
and reference samples are analysed using the same markers. To compensate for the
high selectivity of the STRs, more SNP markers have to be included in the analysis
panel [15].

The interpretation of complex mixtures is dependent on large amounts of data
beyond the capacity of the CE. Using an alternative high capacity analysis platform
to add more STR markers is an obvious solution. Another feature of the STRs that
can be exploited in this respect is the sequence variation that is found both in the
flanking regions and in the repetitive regions [16, 17, 18, 19, 20]. By using this
increased STR polymorphism, 30% of the homozygous markers in CE generated
DNA profiles were heterozygous when derived from sequence data [19]. This will
also help to some extent with identifying stutters and other artefacts. Another lim-
itation for mixtures when using CE is detecting minor components. When the ratio
between minor and major component is around 1:20, the minor often has too many
allelic dropouts to be identified [21, 22].
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1.3 Beyond human identification

The forensic scientist’s main contribution to a criminal case is to assist in the iden-
tification of biological trace material through STR Profiling. A pure trace profile
has an extremely high discrimination power, and when matching a reference profile
representing a known person it will give an overwhelming supporting evidence if
the trace is from that person rather than from another unknown individual. With an
identified trace sample, the police may be able to solve the case. However, in other
cases, additional information beyond identification might be necessary to give a
certain biological trace any evidential value, or alternatively, to help the police in-
vestigation. The scientist’s toolbox is still not sufficiently equipped to provide such
additional information, but there is a large potential to exploit genetic information
beyond STRs [23]. There are numerous examples of how this could be beneficial.

The court seeks to link biological traces to the criminal act in order to answer
the ultimate question, "what actually happened?". Towards this effort, information
on the type of biological material (eg blood or semen) might be essential. The
STR profile does not provide such information, and in many cases, nothing can
be deduced from the sampling position. In addition, the alternative proposition of
the defence might be that the biological material was accidentally or innocently
transferred [24, 25, 26]. However, if there was information that the DNA was asso-
ciated with vaginal cells, the evidential value might increase. Presumptive testing
for blood, saliva and semen has been used in forensics for decades. Typically
an enzyme specific to a body fluid is being detected by a chemical reaction. In
addition to the presumptive tests, there are also some lateral flow immunoassays
available (http://www.ifi-test.com/). Although these tests have different
degrees of accuracy, all can provide false results, and their selectivity and spe-
cificity are typically not given. Promising alternative methods, most based on gene
expression measurements, have been reported [27, 28]. The European DNA pro-
filing group (EDNAP) has for example performed collaborative studies on mRNA
tests for blood [29], saliva and semen [30], menstrual blood and vaginal secretion
[31] and finally on skin [32].

If the perpetrator is unknown and the biological trace sample is still unidenti-
fied after a database search, the police investigation might be in need of additional
information for a quick solution to the case. The perpetrator’s characteristics would
obviously be beneficial in these cases. While the STR profile provides no such in-
formation, some characteristics can be derived from the genetic code. Even though
many traits can still not be derived from gene sequence, there have been several
successful studies on predicting hair, eye and skin colour [33], ancestry [34, 35] and
age [36, 37]. A few commercial forensic analysis kits have started to become avail-
able (http://www.Illumina.comandhttp://www.thermofisher.com).
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Monozygotic twins have identical STR profiles, but by performing extended
analysis it has also been possible to separate twins. Two alternative approaches
have been used to achieve this. The most resource demanding is to identify private
mutations in the two twins by doing whole genome sequencing (WGS) of their
reference samples and then target these loci in the trace sample [38]. A promising
alternative method is to analyse twin-differentially methylated sites (tDMSs) [39,
40]. This is obviously a more affordable approach, but future studies are needed to
prove if the method is applicable for forensic purposes.

A molecular autopsy is often performed on sudden cardiac death (SCD) cases
where the deceased is below 40 years [41]. These genetic analyses are performed
in cases with negative toxicology and pathology analyses. Different gene panels
are typically used, but in some cases, all genes have been sequenced by exome
sequencing. Lately, there has been a rapid advancement and discovery of novel
disease-related genetic markers, and this development is accelerating [42]. In ad-
dition to SCD, there are also tests for different lethal infections [43] and genetic
metabolic disorders which can cause poisoning in connection with medication and
drug abuse [44, 45].

Non-human DNA analysis can also be useful in forensics. Microbial forensics
is a newly emerging field, and several studies have applied microbial sequencing.
The potential to predict post-mortem intervals has been demonstrated by using
microbial composition data from human skin [46], human gut [47, 48] and mouse
models [49]. It has also been shown that microbial composition data can be used
to separate between samples taken from two different locations (phones or shoes)
[50], and that such data even has the potential to identify the donor if samples are
taken from touched objects [51, 52, 53, 54]. Microbial sequencing can also be used
to identify hazardous or infectious microbes in connection with bioterrorism [55,
56] and infectious disease transmitted during a criminal act [57, 58].

Wildlife forensics and forensic botany are other fields where non-human DNA
analysis has been beneficial. For animals, the Barcode for Life Consortium has
defined the mitochondrial cytochrome oxidase 1 (COI) gene as the standard locus
for identification at the species level [59]. For presumptive identification of indi-
vidual animals or for pedigree assignment, different STR- and SNP-panels have
been used dependent on species [60]. For plants, it has been more challenging to
define a standard barcode sequence. However, there seems to be general consensus
on that a combination of rbcL, matK, trnH-psbA spacer and the internal transcribed
spacer (ITS) sequences should be used for identification at the species level [61].

6



1.4 DNA sequencing

CE has been the workhorse in the forensic laboratory for decades and still is. The
currently used instrumentation, such as the 3500 Series (Thermo Fisher Scientific),
will produce a DNA profile consisting of nearly 30 markers. The new Spectrum CE
(Promega) will make it possible to include even more markers. However, the CE
technology is near its maximum capacity limits, and cannot offer what is needed to
improve the current methods and to bring new applications into forensic genetics.
Hence, there has to be a transition to new technology with higher capacity, and
Massively parallel sequencing (MPS) seems to be the obvious candidate [62].

Sanger sequencing has traditionally been the prime method for DNA sequen-
cing [63]. In its mass production form it was even used for sequencing the human
genome [64]. However, the Human genome project revealed the need for more
advanced sequencing technologies and was driven by the need for lower costs, the
first truly MPS platform was launched in the mid-2000s (eg 454 sequencer, 454
Life Sciences). Today high throughput platforms (eg NovaSeq, Illumina) can each
sequence several thousand human genomes a year to under 1000$ per genome [65].

There are several different MPS technologies. However, they share the basic
principle of parallel sequencing of a huge number of DNA fragments (typically
several million of DNA fragments are sequenced simultaneously by the same in-
strumentation). In that respect, it is an up-scaling of Sanger sequencing which uses
CE and is therefore limited to the number of parallel capillaries (eg 3730 DNA
Analyzer from Thermo Fisher is used for Sanger sequencing and has up until 96
parallel capillaries). With MPS the DNA regions of interest are typically sequenced
several times to exclude read errors by consensus. The number of times they are se-
quenced is denoted as the sequencing coverage. For example, when sequencing is
done with 30x coverage, the genetic regions have been sequenced 30 times on aver-
age. MPS technologies can be divided into two groups, dependent on the length of
DNA sequences that can be read. Short read platforms sequence fragments usually
between 50 and 400bp whereas long read platforms sequence fragments usually in
the range from 10,000 up to 100,000bp [65, 66]. Short reads are relatively cheap,
but cannot be used to derive the sequence of repetitive regions longer than the ac-
tual read length. Longer reads are more expensive, but can be used to explore these
longer regions and are therefore also essential for genome assembling [67].
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1.4.1 Sanger sequencing

The sequence of interest is typically first amplified by PCR and the amplified frag-
ments denatured to give single-stranded DNA fragments. In the sequencing reac-
tion mix itself, these single-stranded fragments are combined with several different
chemical components. A sequencing primer will bind to a region near the one end
of the fragments. Then for each fragment, a DNA polymerase enzyme attaches to
the primer and starts incorporating deoxynucleoside triphosphates (dNTPs include
dATP, dGTP, dCTP and dTTP) in a growing homologous strand. Beside these 4 or-
dinary dNTPs, there are also present 4 dideoxynucleotides triphosphates (ddNTPs)
which will stop the DNA synthesis if incorporated. The ddNTPs are added in low
amounts relative to the dNTPs to facilitate a reasonable long read length. Since the
reaction mix contains many single-stranded DNA fragments and the ddNTPs are
incorporated randomly, there will be many different fragment lengths created at the
end of the extension process. Nevertheless, the process is repeated several times by
PCR so that fragments corresponding to each position in the sequence have been
produced in sufficient amounts to be detected. Detection is possible as the ddNTPs
are labelled with individual fluorescent dyes. The fragments are separated by size
with CE and the sequence read directly from a fluorescent detector.

With Sanger sequencing, the read length is typically around 700bp and not
above 1000bp. Beyond this length, the CE platform will have problems separating
individual bases. Today Sanger sequencing is performed in smaller projects with
a limited amount of samples. For larger studies, it cannot compete with MPS
technology [68]. BigDye (Thermo Fisher) is one of many commercial kits available
for Sanger sequencing.

1.4.2 Massively parallel sequencing

Library preparation

Sample preparation for MPS sequencing is extensive (see figure 1.1 for an ex-
ample). In this process, the purified DNA extract is converted into a library con-
sisting of DNA fragments ready to be sequenced. Each of these fragments consists
of a portion of the sequence in question, often named insert, flanked by primers,
indexes and adaptors needed for sequencing. Dependent on technology, the library
fragments might also have other units incorporated. The length of each insert has
to fit the applied read length, but together the inserts represent all DNA that is to
be sequenced.

Initially, after DNA extraction and cleanup, there are different approaches for
selecting the genomic regions to be sequenced. When sequencing whole genomes
or longer DNA fragments, fragmentation is carried out directly by sonication [69]
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Figure 1.1: Illumina’s TrueSeq library preparation workflow as a generic example.
In the finished library fragment (bottom) the sequence in question/insert (orange) is
surrounded by sequencing primers (purple), index for sample identification (grey)
and adaptors (pink). Source: Kowalsky et al 2015 [74].

(eg by Focused-ultrasonicator, Covaris). If only shorter stretches of DNA are of in-
terest, target enrichment strategies are the obvious choice [70]. Here PCR and hy-
brid capture are two frequently used techniques. Many of the commercial forensic
kits use PCR amplification to target specific STRs, SNPs or indels (eg ForenSeq,
Illumina or Precision ID GlobalFiler, Thermo Fisher). As the majority of forensic
samples have low DNA levels, the PCR amplification is needed to enable detec-
tion. The available forensic kits use shorter fragments, but longer stretches of DNA
could also be targeted by PCR. However, fragment size should be kept below 10kb
[70]. If the fragment size is too long, the PCR product should be fragmented to fit
the chosen read length. Large PCR multiplexes are also a possibility, and by di-
gital PCR several thousand sites could be amplified at the same time (Digital PCR
solutions, RainDance Technologies). Alternatively to PCR, hybrid capture is an-
other target enrichment strategy. The DNA extract is then first fragmented and the
fragments of interest are "fished out" using array-based capture [71] or in-solution
capture [72]. For details and information of other target enrichment strategies, see
Kozarewa et al [73].

With the wanted DNA fragments enriched, different synthetic fragments have
to be attached to their ends dependent on sequencing technology. Generally, se-
quencing primer fragments will facilitate the binding of the sequencing primers
and adaptor fragments will help to anchor the fragments while sequencing. For
sample identification, indexes with unique sequence are typically ligated together
with the adaptors. Finally, DNA concentration of the library is measured so that
equimolar aliquots can be pooled and samples sequenced together.
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Short read sequencing

Before starting sequencing on a short read platform, the fragments in the library
needs to be amplified to give clusters of identical clones. This process is called
clonal amplification and is done to enable detection when reading each of the ori-
ginal fragments. The sequencing platforms rely on different technologies for clonal
amplification and sequence reading.

Illumina platforms such as HiSeq, NovaSeq and MiSeq are the most used plat-
forms, and they all use the same principle for sequencing [75, 65]. The read length
is typically between 150 and 300bp per read [65]. It is common to do paired-end
sequencing where inserts are read from both ends. The sequencing itself takes
place on a slide placed in a flow cell. The original library fragments attach to slide-
bound adaptors before being clonally amplified by so-called bride amplification
into a "lawn" of clusters (each cluster having fragments of identical sequence). The
sequence is read by flushing all 4 fluorescently-labelled 3’-O-azidomethyl-dNTPs
simultaneously over the cell. Similar to the ddNTPs used for Sanger sequencing,
the azidomethyl-dNTPs stops the extension, but in this case for each base incor-
porated. During incorporation, a light with a wavelength dependent on the base is
emitted. Hence, the sequence can be read by taking a photo of the flow cell for
each flushing cycle. To enable incorporation of a new base, the fluorescent moiety
and the 3’ block are removed just before the next flush cycle. The sequencing error
rate is typical ∼ 0.1% for the Illumina technology [65].

For Ion torrent platforms such as Ion S5 and PGM, individual library fragments
are attached to beads and amplified by clonal amplification using emulsion PCR.
For one bead this results in clones of the initial fragment covering the whole sphere.
Thus, the bead becomes equivalent to a cluster on the Illumina flow cell. The
beads are then distributed to individual wells on a sequencing chip where each
well has a pH sensor. The different dNTPs are flushed sequentially over the chip,
and if incorporated, H+ ions are released. The DNA sequence can then be read
from detection the pH shift. The number of H+ ions released is proportional to
the number of dNTPs incorporated simultaneously, and this is used to read homo-
polymer stretches of sequence (stretches that have the same base throughout the
whole sequence). The Ion torrent technology uses single-end sequencing where
the insert is read from one side only. The read length is typical 200 or 400bp,
and the error rate is ∼ 1%, mainly caused by difficulties in reading homo-polymer
stretches [65].

In addition to the mentioned technologies, there are alternative short read plat-
forms such as the relatively new GeneReader (Qiagen) system.
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Long read sequencing

The most common long read sequencing platforms are based upon single molecule
detection where the detector optics is sensitive enough to read the incorporation of
single dNTPs. Consequently, no PCR amplification is needed for cluster generation
as for the short read technologies. However, the long read technology still demands
a relatively large amount of input DNA (250–5000ng dependent on technology)
[62].

The Single-molecule real-time (SMRT) technology applied by Pacific Biosys-
tems is the most used technology for long read sequencing [65]. The sequencing
adaptors have a hairpin structure making the original double-stranded fragments
into a single-stranded circular molecule. The original fragment length can be up to
40kb. The sequencing reaction takes place in a zero-mode waveguide (ZMW) well
where an active polymerase complex is bound to the bottom [76]. The sequence
is read in real time as wavelengths corresponding to the incorporated fluorescent
dNTPs are emitted [77]. The circular shape facilitates reading the original frag-
ment in both directions and multiple times. By this, the random sequencing error
is reduced from 13% to 0.001% by consensus [65]. The SMRT technology can by
measuring polymerase kinetics also detect DNA methylation [78].

MinIon (Oxford nanopore technologies) is based on a technology where pro-
tein nanopores are inserted into an electrically resistant polymer membrane [79].
Leader and hairpin adaptors are ligated on each side of the double-stranded DNA
fragment. The leader adaptor helps the positioning of the fragment into the current
leading pore, and a motor protein pulls one of the DNA strands through the pore
[80]. The voltage across the pore is modulated according to the k-mer sequence
positioned in the pore at any given time, and these changes can be used to derive
the sequence. The signal outcome has more than 1000 levels, one for each type
of k-mer, and hence information on modification of bases in native DNA can also
be extracted. When the whole length of the fragment has been read through the
pore, the hairpin structure at the end will help the second complementary strand
being pulled into the pore and then read. Alternatively, if the hairpin adaptor is
not applied, only single strands will be read. The nanopore technology has a large
potential because of the long read lengths (up to 200kb), easy library preparation
and high mobility of the equipment, but the use has been limited by high error rates
(∼ 12%) [65]) and low robustness [66].

An alternative to the single molecule sequencing technologies is synthetic long
reads [81]. This technology uses the normal short read platforms, but the dif-
ference lies in the library preparation. One or a few longer DNA fragments are
captured in small reaction chambers (wells or emulsion droplets), and here they
are fragmented and labelled with a certain index. After short read sequencing, the
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fragments which originate from an original larger fragment can be isolated through
the common index and assembled into a local sequence. In this way, even longer
repetitive sequences can be assembled. The 10X Genomics emulsion-based system
can handle fragments up to 100kb [65].

For further information on MPS platforms and technologies there are several
complementary review papers [82, 83, 75, 84, 65, 66].

1.5 Bioinformatics

Bioinformatics is applied in many biological disciplines, but only sequencing re-
lated topics fall within the scope of this thesis. MPS produce massive amounts
of data and it would be impossible to interpret these without the support of in-
formatics. The need for extreme computing power has been so demanding that it
has pushed the evolution of large computer cluster systems [85]. From the start
of the MPS era scientists have developed their own software to fit their needs,
but also to help others by making the software available as freeware or open-
source. Even though much software has been short-lived, some tools have be-
come standard. Most of the work has been done in the Unix environment as
this is extremely fast and efficient. The disadvantage is that Unix is relatively
inaccessible to the average Windows user and requires some effort in the begin-
ning. As a consequence, semi-automatic platforms have surfaced, such as Galaxy
(https://galaxyproject.org/) where the user can get access to universal
workflows based on standard software. However, there is still no easy solution
and some customization is always needed.

The scope of sequence-related bioinformatics is large, but some main fields
of application are resequencing, de novo assembly and RNA-seq. Resequencing is
done for example to measure variation between individuals, identify certain species
or genotype individuals. De novo assembly is done for example when no reference
sequence exists and the reads have to be fitted together to derive one. RNA-seq
is used for example, to measure the level of mRNAs in tissues or individuals for
genetic expression studies. De novo assembly and RNA sequencing lie beyond the
scope of this thesis, and comprehensive information can be found elsewhere [86,
87]. As resequencing has been applied throughout the work with this thesis, it is
used below as an example to illustrate a generic workflow and the use of the most
important bioinformatics tools.

For resequencing, there has to be a reference sequence for comparison, and
such are typically available through online services. Whole genome reference
sequences are available for many organisms. A resequencing workflow typic-
ally starts with the output file from the sequencing platform. This file is nor-
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mally in a fastq format and includes reads from all the samples sequenced in
the same batch. For each read, the fastq format includes the sequence and the
corresponding base call quality. First, the data has to be demultiplexed into in-
dividual samples, which is made possible by the unique indexes used in the lib-
rary preparation. Demultiplexing is often supported by the sequencing platform
software. Overall read quality can be evaluated by tools like FastQC (http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/). Then the
raw reads are filtered based on base call quality and typically trimmed for regions
of poor quality base calls and adaptor sequence. Filtering and trimming are per-
formed by tools such as Trimmomatic [88] or Cutadapt [89]. The reads are then
mapped to their original genomic position by using the reference genome and soft-
ware such as Burrows wheeler aligner software (BWA) [90] or Bowtie [91]. The
output file from the mapping tool is typically in a Sequence alignment map (SAM)
format, which in addition to the information in the fastq file, also includes several
output parameters from the mapping process. This SAM file is often compressed
to the more efficient Binary alignment map (BAM) format by using a tool such
as SAMtools [92], and the resulting BAM file is then used by many downstream
applications. This is also the first point where the mapped reads can be visually in-
spected by the use of tools like Integrative Genomics Viewer [93]. If the aim is call-
ing variants, the BAM file first has to be prepared by sorting, adding metadata and
removing duplicates. This is typically done by using software such as SAMtools
and Picard (http://broadinstitute.github.io/picard/). In the variant
calling process, there is often first a realignment step, where local miss-alignments
are corrected, before the actual variant calling. These final steps are performed
by tools like GATK [94]. Comprehensive literature on resequencing can be found
elsewhere [95].

Sequencing studies demand solid funding, as sequencing is still relatively ex-
pensive. Luckily, the extent of sequencing can often be limited by using public
data available through online resources. The latest version of the human reference
genome is GRCh38, and this can be downloaded through the National centre for bi-
otechnology (NCBI) web page (https://www.ncbi.nlm.nih.gov/). For mi-
crobial resequencing, 16S reference sequences can be found in large data repositor-
ies such as the Silva database (https://www.arb-silva.de/), the Ribosomal
database project (RDP,https://rdp.cme.msu.edu/) and the Greengenes data-
base (http://greengenes.lbl.gov/). Beyond this, whole genome reference
sequences for a large variety of organisms can be accessed through large genomic
browsers like Ensembl (http://www.ensembl.org/index.html) and UCSC
genome browser (https://genome.ucsc.edu/). In addition to reference se-
quences, there is also available data from large consortiums on human diversity
like 1000 genomes project (http://www.internationalgenome.org/) and

13

http://www.bioinformatics.babraham.ac.uk/projects/ fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/ fastqc/
http://broadinstitute.github.io/picard/
https://www.ncbi.nlm.nih.gov/
https://www.arb-silva.de/
RDP, https://rdp.cme.msu.edu/
http://greengenes.lbl.gov/
http://www.ensembl.org/index.html
https://genome.ucsc.edu/
http://www.internationalgenome.org/


on microbial diversity like Human microbiome project (HMP - https://hmpdacc.
org/) and Earth microbiome project (EMP - http://www.earthmicrobiome.
org/). Identifying sequence of unknown origin is typically done by using Basic
local alignment search tool (BLAST - https://blast.ncbi.nlm.nih.gov/
Blast.cgi) which will search against reference databases such as NCBI gene-
bank (https://www.ncbi.nlm.nih.gov/genbank/), DNA dataBank of Ja-
pan (http://www.ddbj.nig.ac.jp/) and the European nucleotide archive (https:
//www.ebi.ac.uk/ena).

1.6 Biostatistics

Interpretation of MPS data also needs knowledge of biostatistics. Statistical calcu-
lations are often done in the R environment (R Development Core Team, https:
//www.r-project.org/) or in Python (Python Software Foundation, https:
//www.python.org/) and can be supported by the add-on modules like Biocon-
ductor [96] and Biopython [97], respectively.

The statistical platforms provide tools for basic calculation such as statistical
testing, regression and analysis of variance (ANOVA), and by combining these
with available open source packages, the individual scientist can create scripts for
customized data interpretation workflows. In the work with this thesis different
statistical tools and methods have been used, but pattern recognition has been es-
sential and will be discussed in more detail.

Pattern recognition is a part of machine learning or statistics more generally,
where regularities in a training dataset are used to predict characteristics of samples
in a new test dataset. The training and test datasets need to have the same format.
Linear discriminant analysis (LDA) and nearest neighbour (NN) are two alternative
models for pattern recognition. LDA is a linear model where a linear hyperplane
is used to separate groups of samples, whereas NN uses the nearest data points in
the training data set for classification of a new test sample. NN demands a large
training data set to map the space of all possible outcomes. Hence, NN models
have the potential for high accuracy, but may be unstable and overfitted. LDA
demands fewer data, and to compensate for this LDA makes huge assumptions.
As a consequence, LDA is stable, but without the potential for extremely accurate
predictions in very large data. Despite this, LDA is a popular method for pattern
recognition, much due to its simplicity, and the relatively low level of resources
needed for data collection.

LDA needs input data of full rank which means that all columns in the input
data matrix have to be independent of each other. If this is not the case, it is possible
to remove these dependencies before the LDA step by reducing the dimensions in
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the data, eg by using Principal component analysis (PCA) or Partial least square
regression (PLS). PCA transforms the dataset into a space of orthogonal principal
components where each component is chosen to include most possible of the re-
maining variance in the data. PLS finds the relationship between the independent
X data and the dependent Y data by calculating the direction in X-space which ex-
plains the largest possible part of the variation in Y-space. As PCA does not use the
dependent data it is defined as an unsupervised method. PLS, on the other hand,
uses the dependent data and is therefore defined as a supervised method.

For further reading on the topic of pattern recognition, the reader is recommen-
ded to read Hastie et al [98].

1.7 Current status of MPS in forensics

MPS has had much attention in forensic research for the last few years and has
been among the main topics at major conferences, lately at the International society
of forensic genetics (ISFG) conference in 2017 (http://www.isfg2017.org/).
However, implementation of new technology into the forensic routine laboratories
is naturally a long and consuming process. Among 33 European laboratories, 20
have already invested in MPS instrumentation or will do so in the coming few
years [99]. Most of the European laboratories are reporting that they are currently
evaluating MPS protocols for typing autosomal STRs and SNPs in addition to Y-
STRs. This is not surprising as many of these markers are included in the standard
CE based identity panels. To the author’s knowledge, only a few laboratories have
already implemented MPS as a routine method in casework. According to the same
survey, the laboratories view the largest hurdles for implementation of MPS as lack
of reporting standards, lack of DNA database compatibility, insufficient population
data and no adequate legislation.

The first sequencing studies on forensic relevant autosomal STRs was per-
formed from the beginning of the decade [100, 101, 19]. These were performed
with the 454 Genome Sequencer platforms (Roche), and Van Neste et al [101],
who used the Profiler Plus (Applied Biosystems) for amplification, reported of dif-
ficulties with a low level of full length reads and homopolymer sequencing errors.
Since then production of the 454 platforms has been terminated, and the most rel-
evant studies have been done on the PGM/S5 platforms (Thermo Fisher) or the
MiSeq platform (Illumina). A large majority of these studies have been done to
evaluate performance of different STR panels such as the commercially available
ForenSeq kit (Illumina) [102, 103, 104, 105, 106, 107, 108, 109] and prototype
versions of STR panels from Promega [110, 111, 112] and Thermo Fisher [113,
114]. There has also been performance studies on customized STR panels [115]
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and Y-STR panels [116, 117]. All these kits use PCR target enrichment as the
alternative hybrid capture strategies are not yet sensitive enough [62]. Summar-
ized, the performance equals that of the CE based STR kits when comparing the
standard validation parameters such as repeatability, concordance, inter- and intra-
locus balance and stutters percentage. The analytical threshold is reported to lie
in the region between 10 − 50pg of input DNA, and for 2 person mixtures, the
minor component is identified down to 1:20 ratio. Performance is also similar in
the presence of PCR inhibitors and for real case samples, and MPS even outper-
forms CE for degraded samples. The latter is caused by MPSs independence on
fragment size separation, and when the STRs can be reduced to their actual sizes
(mostly below 260bp [111]), valuable partial DNA profiles can be obtained even
for samples where mean fragment lengths are ∼ 200bp [114]. In connection with
these studies, there has also been pointed out some potentially underperforming
markers [104, 105] and raised concern about the limitations of interpretation soft-
ware and the relatively high cost of MPS forensic analysis [62]. In addition, MPS
also has longer runtime compared to CE [106]. Others have expressed the need for
joint standards on databasing, data storage and nomenclature [109].

Another important condition for seamless implementation of MPS in forensics
is representative population databases, and frequency data has been reported for
several populations such as Korean [118], Spanish [119], Greenlandic [120], Basque
[121], Dutch [111], Chinese [122] and US populations [112, 123, 104]. As men-
tioned above, there are isoalleles that have the same length but differ in sequence.
Isoalleles are mainly observed for the compound and complex STRs, and for 9
STR loci, the increase in numbers of alleles is > 30% [20]. In order to quantify
the lowest allele frequencies, the frequency databases have to be large (include
several thousand samples). Another issue is backwards compatibility towards CE
based DNA profiles and the ambiguity that can occur in some cases. For example,
if the flanking of a repetitive region contains an indel, the allele call derived from
counting numbers of repeats will be different from that obtained from measuring
STR length. Finally, STR variants uncovered by sequencing could potentially be
associated with disease. FGA and SE33 both contain exons in the flanking regions,
and one SNP in the flanking region of FGA is known to be associated with a rare
blood coagulation defect [124].

With the advent of MPS, the identity SNP markers have had increased atten-
tion because these can now be co-analysed with the STRs. The SNPs can be a
valuable supplement when more data is needed for mixture interpretation, or as an
alternative marker set for degraded DNA samples. There have been several per-
formance studies on the ForenSeq kit (Illumina) [102, 103, 104, 105, 106, 108,
109] and the AmpliSeq/Precision Identity kits (Thermo Fisher) [125, 126, 127,
128], in addition to a new 140 SNP panel (Qiagen) [129] and a customized 273
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Figure 1.2: The DNA commission of ISFG’s proposition on nomenclature for STR
sequence data where assignment is based on forward strand only. The start and
stop coordinates of the repeat region (blue) is proposed as anchor points. The STR
in the figure would be assigned as D13S317[CE12]-Chr13-GRCh38 82148025-
82148068 [TATC]12 82148001-A where the different parts can be explained as:
D13S317[CE12] is locus name and CE allele name, Chr13-GRCh38 is chromo-
some and version of reference genome, 82148025-82148068 [TATC]12 is start and
stop coordinates and repeat motif and 82148001-A is the location of sequence vari-
ant (SNP) in the flanking region. Source: Parson et al 2016 [133].

SNP panel [130]. Overall, the SNPs perform similarly to the STRs for the standard
validation parameters, including analytical threshold and detection of the minor
contributor in mixtures. As for the STRs, there has also been reported on a few
poor performing SNPs markers, especially when the samples have low DNA levels
[125, 104, 105, 128]. Those who have evaluated degraded DNA analysis report on
improved performance for the SNPs compared to the STRs. Guided by the degrad-
ation parameter of the latest quantification kits (Quantifiler Trio (Thermo Fisher)
or PowerQuant (Promega) it then becomes possible to choose SNP based analysis
exclusively for challenging degraded trace samples [126].

SNP panels for biogeographical ancestry are also commercially available, and
performance has been evaluated for the Forenseq kit (Illumina) [104, 105, 106, 131,
108] and the Precision ID Ancestry kit (Thermo Fisher) [120, 132]. In general, the
technical performance is similar to that of the identity STR and SNP panels men-
tioned above. The kits separate easily between individuals from the large popula-
tion groups roughly divided by continents [132, 108], but despite this, the Forenseq
panel has been found useful even in a society of multiple populations [131]. For
the Precision ID Ancestry kit, difficulties have been reported when sequencing a
few markers with homopolymeric sequence [132]. It has also been shown that
it is essential for accuracy to have representative data in the applied population
databases [120]. SNPs for phenotypic traits like eye, hair and skin colour provide
similar information as the biogeographical SNPs [33]. The phenotypic SNPs have
been included in the ForenSeq kit, and from the same studies as mentioned above,
performance is similar to the other SNP panels evaluated.
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The sequence STR data have to be compatible with the millions of CE gener-
ated DNA profiles stored in the national databases. To facilitate this, a common
nomenclature for sequencing data has to be established, and the DNA commis-
sion of ISFG has already published minimal requirements [133]. They propose
that sequencing data should be exported and stored as text strings to capture all
information and that only forward strand sequence should be given. A common
reference such as GRCh38 should be used, and the coordinates for start and stop
points of the repeat region are proposed as anchor points. To allow communication
of results, the simple STR nomenclature of the CE base DNA profiles could be
used, but the nomenclature should also include information on sequence variation
(see figure 1.2). However, the Commission believes that future software could re-
move the need for nomenclature by calculating the strength-of-evidence directly
from string based frequency databases. In addition to the commission’s recom-
mendations, there has also been published guidelines for publication of genetic
population data [134]. According to these, a minimum of 50 individuals should
be included per publication, and only high-quality full genotype profiles should be
submitted in string format. Quality control can be done by the already established
central curator system of STRidER (http://strider.online/) [135].

In addition to the commercial software provided by the vendors of the sequen-
cing platforms, there is also free community software available to support handling
of sequence data. Tools such as STRait Razor [136], STRinNGS [137], SEQ Map-
per [138] and ToaSTR [139] assign STRs from sequencing data, and SEQ Mapper
assign even SNP markers. FDSTools is a software for recognition and removal of
stutters and other analytical noise in order to facilitate detection of low-level minor
mixture components [140]. NOMAUT is a software under development by the EU
supported DNA-STR massive sequencing & international information exchange
(DNASeqEx) project which is planned to be a STR nomenclature web service for
sequence queries. In the ongoing STR sequencing project (STRSeq) STR data will
be maintained as GenBank records at NCBI, and tools will be developed to facilit-
ate interaction with the mentioned STRidER web portal. Even though much effort
has already been invested, it is evident that significant resources have to be put into
building new software in the coming years [62, 133].

1.8 Ethical and legal issues

The development of forensic genetics has always been accompanied by ethical
considerations and legal implication [141]. Currently, most countries have legis-
lation that prohibits deriving forensic genetic information for any other purpose
than identification. The extended MPS analysis of the standard STRs and SNPs
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for identification should not be in conflict with these restrictions. However, there
has been raised some concern regarding a few of these markers having sequence
variants that might be associated with ancestry or disease [112]. Another aspect
is that increased discrimination power could facilitate the use of extended familial
searching in the national databases [142].

Forensic DNA phenotyping (FDP), which includes biogeographical ancestry
or visible traits, has been more controversial. Several countries prohibit the use of
coding markers in forensics (eg Germany). To our knowledge, the Netherlands is
the only country which explicitly allows determination of biogeographical ances-
try, while the United Kingdom allow FDP without dedicated legislation [23, 143].
The general critical view is that these analyses may reinforce existing prejudice and
racist generalizations [144], and that the outcome is too broad and will stigmatize
large groups of people [145]. Mass screening of reference samples from such large
groups should also be avoided. Others have questioned the relatively high chance
of over-interpretation the outcome due to the probabilistic nature of these analysis
[146]. On the other hand, it has been argued that the visual appearance of a person
cannot be hidden and therefore cannot be considered as private data [143]. How-
ever, there seems to be a consensus that only forensic relevant information should
be obtained [142], and that no personality traits or disease associated information
should be reported [147]. However, there may be instances where these two con-
siderations might conflict [143].

For the studies included in this thesis, only a small number of anonymized
samples have been used. Where human whole genome sequencing has been done,
only coverage data has been relevant, and variant calling information, from which
personal trait information could have been inferred, has not been derived. The
studies have been approved by the local Data protection official for research where
this has been required. The same local authority has also considered the studies not
to fall within the responsibility of the Regional Committees for medical and health
research ethics (REK).

1.9 Selected topic 1: DNA degradation

The DNA molecule is stabilized by the double helix structure but has some weak
spots that can be targeted leading to DNA damage. In living cells, the DNA repair
mechanisms counterbalance this, but after death, the DNA damage accumulates.
Hydrolysis causes depurination and deamination leading to strand breakage and
base conversions respectively [148]. Oxidation also causes base and deoxyribose
lesions with the same consequences. Different reaction agents cause DNA cross-
linking which hinder DNA polymerase extension [149, 150, 151, 152]. DNA is
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also damaged by UV-radiation, extreme pH conditions, microbial growth and en-
zymes as nucleases. The speed of the degradation processes can be reduced by dry
state surroundings or low temperature [153].

In living cells DNA degradation is not random [154, 155]. This is due to the
nucleosome core particles where DNA is associated with histones. Each nucle-
osome has an octamer of histone proteins encircled by 147bp of DNA. In this
fundamental form, the DNA strand has nucleosomes with linker DNA in between,
like "beads on a string" [156]. The positioning of the nucleosomes in a certain
region can be static or vary between cells [157]. This "bead on a string" struc-
ture is defined as euchromatin and can be further wrapped into higher order struc-
tures called heterochromatin. The heterochromatin structure has been shown to
give additional protection against DNA damage when studied in vitro [158]. The
euchromatin structure is prevalent in the genome with only ∼ 6% having the het-
erochromatin structure [64]. The chromatin structure is also associated with gene
regulation [159]. The "open" euchromatin is found where genes are expressed and
the "closed" heterochromatin structure where genes are silenced.

The protective features of the DNA structure have been studied using in vitro
conditions or living cells and do not need to apply to DNA in biological trace ma-
terial. Biological traces contain dried and dead cell material and the DNA has often
been influenced by rough environmental conditions. A few forensic studies have
been done on nucleosome protection for both STR [160] and SNP markers [161].
For the latter, there was no significant improvement in performance compared to
the most robust established forensic SNP multiplex. Ancient DNA is a field related
to forensic genetics. During a sequencing study of an old hair sample, it was ob-
served a distinct coverage pattern claimed to be a result of DNA being protected in
the nucleosomes [162].

1.10 Selected topic 2: Microbiome

The study of the bacterial world, previously confined to a small minority of spe-
cies that could be cultivated in a lab, suddenly broke free by the advent of MPS.
Now, potentially all bacteria could be detected. The microbiome is defined as all
microorganisms in a particular environment, and MPS has been used to study mi-
crobiome diversity, shifts in microbiome composition, discover novel organisms
and more [163]. Large studies organized by the HMP and EMP consortiums have
alone produced enormous amounts of sequence data which is publically available
on their respective websites. In addition, there are large data repositories specific-
ally devoted to 16S rRNA gene data such as the Silva database (https://www.
arb-silva.de/), the Ribosomal Database Project (RDP, https://rdp.cme.
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msu.edu/) and the Greengenes database (http://greengenes.lbl.gov/).
The healthy human microbiome has been studied extensively. It has been found

to vary among individuals, but even more among various body sites or body fluids
[164, 165]. For a specific location though, the bacterial composition is relative
stable over time [166], or might vary slightly between community state types [167].
Others factors that may influence the bacterial composition is medication, diet and
the geographical and ethnical origin of the individual [168].

Microbiomes have mainly been investigated by barcode sequencing as opposed
to whole genome sequencing [169]. The prokaryotic 16S rRNA gene has by far
been the preferred barcode. This sequence is found in all bacterial species and is
roughly 1500bp long which is sufficient for bioinformatics methods. It is evolu-
tionarily preserved but has 9 hypervariable regions designated V1-V9, all with high
discrimination power [170]. Due to the limited read lengths of MPS, only a subset
of the regions can be selected for sequencing. Regions from between V2-V6 are
typically chosen.

Several biases can arise in the laboratory, and the most significant are intro-
duced in the extraction and PCR amplification steps [171]. In the extraction,
the main bias is a skewed bacterial composition which occurs as a result of un-
equal extraction efficiency between different bacteria. However, this can be mar-
ginalized by using bead-beating [172, 173, 174, 175, 176]. There is no stand-
ard extraction protocol, but MoBio Kits are used by many studies, including the
ones organized by HMP (https://hmpdacc.org/) and EMP (http://www.
earthmicrobiome.org/). In the PCR amplification step, the biases are more
complex. One bias is skewed distributions of PCR products resulting in false
bacterial composition. This can be minimized by using high ramp rates between
the denaturation and annealing steps, low annealing temperature, and by avoiding
longer extension times [177, 178]. Another PCR bias is chimera formation. These
are artificial PCR products that form when shorter PCR fragments from aborted
amplifications act as primers hybridizing to heterologous fragments in subsequent
PCR cycles [179]. If chimeras are not detected and removed in the data handling
workflow, they can lead to false detection of novel bacteria species. Digital droplet
PCR (ddPCR) is a bias-free alternative to conventional PCR (see Droplet Digital
PCR Applications Guide at www.bio- rad.com). Bias is removed by using micro-
droplets as reaction chambers with just one or a few fragments in each droplet.

The data handling of sequence data is comprehensive [180] (see figure 1.3).
First, the sequencing data are prepared for downstream analysis. This involves
merging of paired-end reads, quality filtering, removal of indexes and primer se-
quence and de-multiplexing of reads into individual samples. For each sample, the
sequencing data are typically clustered into operational taxonomic units (OTUs) to
build a taxonomic profile [181, 182]. This process involves first a de-replication
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step where all identical reads are grouped and sorted after abundance. Singletons
are removed before the remaining reads are clustered based on typically 97% sim-
ilarity to find the centroids sequences. The centroid sequences tend to be among
the most abundant sequences and minimizes the sum of distances to all other se-
quences in the cluster. The centroid sequences are filtered for chimeras and all
reads are clustered once more towards the centroid sequences using typically 97%
similarity. The clusters are defined as OTUs and the assembly of these and their as-
sociated read counts make up the taxonomic profile of the sample. The taxonomic
profiles for several samples are usually stacked on top of each other into an OTU
table for smoother data handling in the downstream analysis.

Figure 1.3: Typical microbiome data handling workflow from rawdata to taxo-
nomic profile.
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Chapter 2

Paper summaries

2.1 Paper I - Degradation in forensic trace DNA samples
explored by massively parallel sequencing

The original idea behind this paper was to investigate if certain DNA regions are
more resistant to degradation than others. A forensic panel with markers positioned
in such regions could improve analysis performance for degraded DNA and might
provide results where none has been obtained using the current panels. The chosen
markers for such a panel could be STRs for compatibility towards CE based STR
profiles, but SNPs would be preferable as these will maximize performance.

It is known that certain DNA regions in living cells are protected from degrad-
ing by being associated with proteins in the nucleosomes and by being present in
higher order structures. If this was also the case for degraded trace material, DNA
in regions susceptible to degradation should be found to a lesser degree than DNA
in regions resistant to degradation. Hence, by whole genome sequencing degraded
samples, we should literally be able to detect each fragment present at any genomic
region, and the coverage data could be used to map the robustness status at a very
high resolution.

For the experimental setup, the DNA was extracted from 25-30 years old blood
and semen stains. Based on the conventional forensic STR typing and Bioanalyzer
results, 4 samples with different degradation levels were chosen for whole genome
sequencing. In order for remove bias, the raw coverage data had to be adjusted for
GC effect and filtered for low mappability sequences before the final data inter-
pretation.

In summary, our experimental data indicated that DNA in the different gen-
omic regions degrades at the same rate, and showed no indication of regions more
susceptible or resistant towards degradation than others. The lack of regions robust
to degradation removes the possibility of using such regions to further improve
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analysis performance for degraded DNA. On the other hand, there are no regions
susceptible to degradation that should be avoided in this context.

2.2 Paper II - Body fluid prediction from microbial pat-
terns for forensic application

With this study, we evaluated if microbiome sequencing could potentially be used
for predicting bacteria-rich body fluids in a forensic setting. As a starting point,
we decided to use standard laboratory protocols and data interpretation workflows
from the health and environmental related microbiome studies. As a study model,
we mimicked a scenario often seen in rape cases where the perpetrator has left
saliva on the skin of the victim.

Initially, we had to find a suitable sampling media. The conventional cotton
swab had to be abandoned due to the low recovery of bacteria from the cotton for
the applied soaking volume. However, forensic tape and synthetic swabs proved to
be satisfactory. Saliva from 6 donors were deposited on the hands of 6 individuals
(one donor per individual), and from each individual we collected in total 6 differ-
ent sample types: pure saliva as reference, pure saliva on skin sampled with tape,
pure saliva on skin sampled with synthetic swab, diluted saliva on skin sampled
with tape, skin only sampled with tape and skin only sampled with synthetic swab.
The bacterial DNA of the samples were extracted, amplified by conventional PCR
or ddPCR and sequenced. In addition, 2 technical parallels were used for each
sample. In total 144 samples were analysed, exclusive the positive and negative
controls (36 original samples, 2 parallel PCR techniques, and 2 technical parallels).
For the data interpretation workflow, we built OTU based taxonomic profiles, used
PCA for visualization and dimension reduction and finally used LDA as model for
body fluid prediction.

We also used ddPCR for quantification of bacterial DNA, and the results showed
that the content of skin only samples was significantly lower compared to saliva
containing samples. This was convenient as our aim was to recognize saliva and
not skin. ANOVA showed that type of body site (saliva vs skin) had the main effect
on the taxonomic profiles. In addition, there was a weaker significant effect from
person (individual 1-6) and no effect from PCR technique (conventional PCR or
ddPCR), sampling technique (tape or synthetic swab) or technical replicates (par-
allel 1 and 2). From a 6-fold cross-validation, we achieved 94% accuracy, but a
clear bias was observed between our experimental data and data from the HMP
consortium.

In conclusion, the method is not ready for casework, but we showed that the
standard laboratory protocols can be applied without large adjustments and that the
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data interpretation workflow needs customization in an effort to reduce or remove
the observed bias between different datasets.

2.3 Paper III - Optimizing the body fluid recognition from
microbial taxonomic profiles

This article was a continuation of the work with the method for body fluid predic-
tion (paper II). From that last paper, it was evident that removal of the observed
bias between datasets was the key condition for a reasonable calibration effort de-
mand and thus a widespread use of the method. We expected the main solution to
lie in the data preparation workflow and therefore decided to customize this rather
than to search for the optimal pattern recognition model.

Initially, we settled on a model where PLS was used in combination with LDA.
PLS uses supervised learning and should be ideal for pattern recognition. In a
cross-validation experiment with HMP data, different combinations of calculation
settings were tested in order to optimize accuracy. The optimal combination of
these factors was: Taxonomic profiles based on OTUs with 0.98 identity threshold,
Aitchisons simplex transform withC = 1 pseudo-count and no regularization (r =
1) in the PLS step. Accuracy when using these settings was ∼ 98%.

In the data preparation workflow, the use of standard OTU based taxonomic
profiles was compared to an alternative approach where taxonomic profiles were
built from direct assigning of reads to taxa. When using the optimal calculation
settings from the cross-validation and training on HMP data and predicting on AGP
data, the accuracy collapsed when using standard taxonomic profiles. However,
the high accuracy levels from the cross-validation were nearly maintained when
the alternative taxonomic profiles were used (accuracy 96%).

The method is still not ready for casework, but by this work, we have taken a
promising step toward this aim. Our findings will be implemented in an R-package
for microbial forensics that we are currently developing.
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Chapter 3

Discussion

The forensic community is currently in the middle of a transition from CE to MPS
based methods [183, 62, 20]. The big leap in analysis capacity will improve the
routine analysis for identifying individuals, provide extended intelligence inform-
ation beyond identification and more. Even though earlier research results have
been actualized by the introduction of MPS, there is still a big knowledge gap to
be filled. MPS will also help speed up new research. This thesis includes con-
tributions in two central areas where MPS has provided new possibilities. Firstly,
DNA degradation is the main obstacle for a successful DNA analysis, and to over-
come this will provide useful results where no results have been obtained before.
Secondly, a reliable method for body fluid recognition to replace the currently used
presumptive tests will significantly increase confidence in the evidence evaluation
process.

3.1 Improving analysis of degraded trace samples

Earlier studies have shown that nucleosomes and higher order chromatin structures
protect the associated DNA from degradation in living cells under different condi-
tions [154, 155, 158]. With this study, we wanted to investigate if this also applies
to forensic trace material. If so, a forensic panel targeting markers in the robust
regions could improve analysis performance for degraded DNA (paper I).

For the experimental setup, we sequenced 2 degraded semen samples and 2
heavily degraded blood samples and downloaded sequence data for 2 undegraded
control samples from the 1000 genomes project’s webpage. We used the sequen-
cing coverage data adjusted for GC bias and filtered for low mappability regions, as
a measurement for DNA concentration in different genetic regions. We postulated
that for degraded samples the DNA concentration would correlate with robustness
at any given region. After evaluating the coverage data from the genomic level
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down to the level of a few bases, our conclusion is that DNA degrades at an even
rate throughout the genome. The data do not support the existence of specific
regions being more susceptible or resistant towards degradation than others. We
were therefore not able to fulfil our ambition of using markers positioned in robust
regions to customize a superior performing panel for degraded trace samples. How-
ever, our findings are highly relevant in the forensic community’s effort to develop
new MPS based SNP applications to improve analysis performance for degraded
DNA.

At the genome level, the variation of coverage was mainly random and not
largely dependent on external factors. The coverage also showed uniform and
symmetric density distribution which ruled out that large or many genomic regions
had extreme levels of coverage. At the chromosomal level, the coverage was sim-
ilar between the chromosomes, even for the heterochromatic inactivated female
X chromosome. This was a major finding, as the coverage for this chromosome
should have been significantly higher compared to the others if the heterochro-
matin structure protected against DNA degradation. The comparison of condensed
heterochromatic regions (H3K9me3 sites) and open euchromatic regions (promoter
sites) showed no difference in coverage levels either. At the base pair level, regions
of strongly-positioned nucleosomes did not show a repetitive pattern as expected
if nucleosome-associated DNA was protected against degradation. From a visual
inspection, the variation of coverage at this level seemed random.

The idea to use coverage as a measurement of the amount of DNA present in
different genetic regions is not new. It is a standard method in copy number vari-
ation (CNV) research and has been shown to give usable results even for shallow
whole genome sequencing (∼ 0.1x coverage) [184]. It is also established that the
coverage data are mainly affected by GC bias and low mappability regions and
should be corrected for these [185, 186]. Scheinin et al [184] performed the two
corrections simultaneous as the formalin-fixed paraffin-embedded (FFPE) samples
produced poor quality data. However, as this is a special case, we decided to fol-
low the general approach where the corrections are done independently. Another
potential bias is non-random DNA shearing in the library preparation step [187].
However, as we did not use size selection and each fragment in the library was
completely sequenced this should not be a significant bias in our case.

The 4 degraded samples included in the study where sequenced in the same
batch to produce similar numbers of reads per sample. However, we observed a
difference in the final coverage levels between the degraded (∼ 3x coverage) and
the heavily degraded (∼ 0.5x coverage) samples. The samples in both categories
lost similar amounts of read sequence during adapter trimming and merging of the
paired-end reads. This can mainly be explained by the short fragment size in the
library. However, the heavily degraded samples lost half of the reads in the map-
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ping to the reference genome, and then half of the mapped reads in the subsequent
quality filtering steps. The degraded samples lost only a fraction of the reads dur-
ing this part of the workflow. This difference is striking and might be caused by a
larger proportion of non-human DNA in the heavily degraded samples. For ancient
DNA, post-mortem DNA damage will complicate mapping [151, 188], but we re-
gard the level of such damage to be marginal in our case due to the different storage
conditions. The low coverage level for the heavily degraded samples should still be
fit for purpose as even lower levels have been used for CNV studies [184]. As the
final coverage data was evenly distributed in the genome, there is also no reason
to claim that this loss of reads introduced skewness. We also regard the 2 unde-
graded control samples suitable for purpose, even if these were not sequenced in
the same batch as the degraded samples. This is supported by these samples being
sequenced using the same sequencing technology and with the same coverage level
as we used for the degraded samples. By being fresh and optimal for sequencing,
it is also reasonable that the control samples had the highest final coverage level
(∼ 5x coverage).

It is also not necessarily straightforward to compare our experimental samples
with ancient DNA samples. After sequencing hair shafts of a 4000-yr-old Paleo-
Eskimo, Pedersen et al found coverage patterns corresponding to expected nucle-
osome positions, and this was interpreted as a consequence of nucleosome shield-
ing of the DNA strand [162]. However, ancient DNA has been exposed to signi-
ficantly different conditions than the typically biological trace sample. In addition
to the obvious differences in timespan and environment conditions, ancient DNA
samples are often taken from human or animal remains that have gone through
post-mortem apoptosis [189]. Apoptosis is also a part of the hair differentiation
process [190]. As mentioned before, the nucleosome-associated DNA escapes en-
zymatic degradation in apoptosis. Biological trace material will presumably not
be affected by this process because of immediate temperature drop after depos-
ition that will lower DNase activity [191] and a short drying period which will re-
move nearly all water and stop the biological reactions. Hence, Pedersen’s findings
for ancient DNA does not need to be contradictory to our conclusion for forensic
traces. If the observed shielding effect has occurred during apoptosis only, Peder-
sen’s findings could still fit our proposition that the nucleosome shielding effect is
removed by the possible dissociation of DNA and histones due to denaturation in
a near water-free environment.

As highly repetitive sequence in the centromeres and telomeres have not yet
been sequenced [64], our conclusion does not apply to these regions. Most centromeres
and telomeres regions have highly condensed heterochromatic structure, but with
no shielding effect observed in the other genomic regions, it is doubtful that this
effect should be present exclusively in these regions. As the forensic markers also
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are positioned elsewhere in the genome, it is difficult to see at present that these
regions will have any forensic relevance.

Our conclusion is based on sequence data for a limited amount of degraded
samples. Even though these 4 samples were chosen to cover a large span in de-
gradation level, they might not be representative for all samples. Some samples
will have degradation levels beyond the experimental samples. A significant pro-
portion of samples have been exposed to outdoor conditions, whereas the exper-
imental samples were stored indoors. There will probably also be special cases,
for example of active apoptosis, which, as mentioned above, might prevent de-
gradation of nucleosome-associated DNA. Although it is clear that a larger sample
set is needed to extensively map the variety of degraded trace samples, we regard
our study provides valuable information on the degradation process, and that our
conclusion will apply to a large proportion of forensically relevant trace samples.

3.2 Body fluid prediction from microbial composition pat-
terns

Our aim with this study was to provide a reliable method for body fluids recogni-
tion to replace the currently used presumptive tests and to be a supplement for the
mRNA based methods. The developmental process was divided into identifying a
robust laboratory protocol and to make a suitable data interpretation workflow. To
make such a comprehensive process efficient the problem had to be divided into
several steps. As a starting point we used a conventional laboratory protocol for
microbiome sequencing and a standard data interpretation workflow [180] (paper
II). The experimental setup was designed to evaluate the most critical factors in the
laboratory protocol. We used a real case scenario where saliva was deposited on
skin as a study model. In addition, we stress tested the data interpretation workflow
by training and testing on different datasets. Based on the results of this initial ex-
periment the second development step became customizing the data interpretation
workflow to optimize performance in a real case scenario (paper III).

First of all, we had to find the appropriate sampling method (paper II). The
standard cotton swab failed to release enough of the sampled bacteria to the soaking
solution. This was probably caused by the low liquid volume applied (200µL).
However, synthetic swabs and tape proved to be suitable as sampling media. That
the cotton swabs had to be abundant was disappointing as these are commonly used
in forensics, but both synthetic swabs and tape have been shown to perform equally
as good in a forensic setting [192, 193].

To evaluate the laboratory protocol, ANOVA was used to identify the signi-
ficant experimental factors influencing the taxonomic profiles. As the taxonomic
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profiles are multi-dimensional with many OTUs, PCA was used to project each
profile into the first, second and third principal axis (paper II). The score values of
each of these dimensions were sequentially used as the dependent variable in the
ANOVA. In conclusion, type of body site (saliva vs skin) had the main significant
effect, with person having a less, but still significant effect. This was expected
as it is known that eg diet can impact the personal microbial composition [168].
The effect was strongest for skin samples, and to neutralize the effect it might be
beneficial to collect a reference sample from the skin nearby the sampling site.
The ANOVA results showed no significant effect on the taxonomic profiles from
PCR technique (conventional PCR or ddPCR), sampling technique (tape or syn-
thetic swab) or technical replicates (parallel 1 and 2). The two latter results are
reassuring as these state the stability of the sampling and laboratory protocol, but
the lack of effect from the PCR technique was surprising. Beforehand we viewed
the PCR step to be the main critical factor in the laboratory due to several potential
PCR biases. To investigate this further we used ANOVA to test if PCR had effect
on chimera formation and microbial diversity, but still, no significant effects were
found. However, ddPCR tended to have a higher correlation between numbers
of reads and initial DNA inputs and more reproducible results with less variation
between technical replicates. This near trouble-free PCR amplification might be
explained by a dilution effect leading to lower probability for artefact formation.
This is encouraging as most forensic samples are low level.

Our initial data interpretation workflow used PCA in combination with LDA
paper II. This model was based on a standard workflow for microbiome analysis
where unsupervised learning is typically used to support explorative studies [180].
We also used the standard approach to make OTU based taxonomic profiles. A
cross-validation of the experimental data gave an accuracy of 94%. However,
when mimicking a real case scenario by training on the HMP dataset and test-
ing on the experimental data, a bias was evident for both skin and saliva samples,
and the accuracy collapsed as a consequence. The skin samples showed a lower
degree of similarity than the saliva samples between the two datasets. One obvious
explanation for this was that the HMP skin samples were taken from other body
sites than our samples (elbow cleavage and behind the ear compared to between
fingers). These body sites are known to have different microbial compositions
[194]. Another explanation could be that the HMP and our samples were collected
at different geographical locations [165]. Factors such as extraction, library pre-
paration and sequencing also probably contributed to the bias, but if so, the bias
would equally influence the skin and saliva samples. The observed bias between
the two datasets could have been overcome by strict standardization of the methods
used by different laboratories or by internal calibration in each laboratory, but both
these alternatives would have been inefficient and hindered a wide-spread use of
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the method. Without being able to identify critical steps with great improvement
potential in the laboratory protocol, we considered a larger part of the solution to
lie in a customized data handling workflow optimized for pattern recognition in-
stead of exploration. We pursued this in the next step of the method development
process.

Intuitively, a supervised model would fit our problem of pattern recognition
best. However, instead of searching for the optimal supervised model, we chose
to focus on one model and to find the calculation settings that would optimize
performance (paper III). We chose a model based on a combination of PLS and
LDA to investigate this closer, and still used the OTU based taxonomic profiles.
In a cross-validation using the HMP dataset, we obtained an optimal accuracy of
∼ 98% by using the following calculation settings: taxonomic profiles based on
OTUs with 0.98 identity threshold (OTU98), Aitchisons simplex transform with
C = 1 pseudo-count and no regularization (r = 1) in the PLS step. As for the
initial model, the accuracy collapsed when testing on a foreign dataset (training on
HMP data and testing on AGP data). The collapse was a consequence of overfit-
ting the model. A probable explanation was that when the OTU centroid sequences
from the training data were used to build taxonomic profiles for the test data, a
skewness was introduced in the profiles as a proportion of the reads were categor-
ized into wrong OTUs. This skewness would be worse for higher resolution. In
an attempt to remove the bias we assigned reads in both the training and test data-
sets directly to genus when building the taxonomic profiles. The same database
of reference reads was used for both datasets, and by introducing this common
anchor point we nearly managed to keep the high accuracy levels from the cross-
validation (∼ 96% accuracy). In the process, we used a lower taxonomic resolution
than what was found optimal during cross-validation (1640 different genera com-
pared to ∼ 25000 OTU98 bins), and this was a consequence of genus being the
highest taxonomic resolution supported by the applied taxMachine tool [195]. We
will evaluate accuracy at higher taxonomic resolutions when this is supported by a
new version of taxMachine. The other optimal calculation settings from the cross-
validation were still optimal. Other advantages of assigning read directly to taxa
are that it is magnitudes faster than any OTU finding workflow and the training and
test datasets no longer have to represent overlapping regions of the 16S gene.

The performance of the customized model was evaluated beyond accuracy (pa-
per III). The sensitivity is defined as the proportion of positives that are correctly
identified. From the cross-validation, the fecal, oral and vaginal samples all had
sensitivities ≥ 0.99. For the skin and nasal samples, the sensitivity was 0.97 and
0.84 respectively. Most of the misclassified nasal samples were predicted as skin
samples, probably as a result of contamination from skin microbiota surrounding
the nostrils. Specificity is defined as the proportion of negatives that are correctly
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identified, and this is the most important quality parameter in a forensic context
as a false positive result can lead to an incorrect verdict. The specificities were
0.99 for the vaginal, oral, fecal and nasal samples and 0.98 for the skin samples.
When training on HMP samples and testing on AGP samples and using direct as-
signed taxonomic profiles the sensitivities were 0.94 for the oral samples, 0.88 for
the skin samples and 0.97 for the fecal samples. The respective specificity values
were 0.99, 0.99 and 0.98. The numbers of nasal and vaginal samples in the APG
data were very low and thus no sensitivity and specificity values could be calcu-
lated for these. We will repeat the sensitivity and specificity calculation at a higher
resolution taxonomy when this is supported by a new version of taxMachine.

To get an estimate of the limit of detection (LOD) we evaluated if the number
of reads had effect on the taxonomic profiles (paper II). However, the ANOVA
showed no significance for such an effect. Of the 10 samples with the lowest
number of reads, only 2 samples were classified incorrectly and 1 of these had
below 100 reads. However, to determine the final LOD a larger sample set is
needed.

The skin samples were included in this study as many forensic traces with body
fluids are sampled from skin or from objects where skin microbiota can be present.
Hence, we wanted to study what influence skin microbiota would have on data in-
terpretation. First, we investigated the influence on mixtures, and found that skin
microbiota only contributed to a small proportion of the total bacterial DNA in the
saliva samples taken from skin (paper II). It is reasonable to believe that the same
quantity ratio will apply to other bacteria-rich body fluids such as vaginal secre-
tion, even though this has to be supported by empirical studies [196]. Our results
showed that the low-level contribution from skin microbiota only had a minor im-
pact on accuracy, but that accuracy could be further increased by controlling the
mentioned small significant effect from person on the taxonomic profiles. We con-
tinued our investigation of skin samples by studying the large proportion of pure
skin samples in the HMP dataset (paper III). The skin samples had a relatively
low sensitivity at 0.97 and were confused with all other types of body fluids. This
finding is not surprising since it is known that skin samples have a large variation
in bacterial composition [197, 198, 165], but underline the importance of having
security mechanisms in the final data interpretation tool to avoid false conclusions.
Such a mechanism could be eg outlier detection.

We investigated if variable selection would remove noise and thereby improve
method performance, but variable selection had little impact on accuracy (paper
III). Another motivation to study variable selection was to identify important bac-
teria that could be potentially be included in a PCR multiplex for a fast and cheap
qPCR based application. However, considered the low impact of variable selec-
tion on accuracy, the additional effort needed to define a stable panel of selected
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bacteria and the decreasing sequencing costs, we would not invest much effort into
developing a strong variable selection for the purpose of PCR multiplexing.

3.2.1 Future perspectives

It is challenging to predict body fluids at the low detection limits and the high
accuracy level demanded by a forensic method. Our method is still not ready for
casework, but the results are promising, and we see a clear roadmap leading to a
final method ready for casework.

To increase accuracy further the use of taxonomic profiles with higher resol-
ution than genus should be tested. This needs the support from a new version of
the taxMachine tool. In addition, finding the optimal model based on supervised
learning could contribute to higher accuracy, but it is unclear how much this will
increase an already high accuracy.

It is also evident that the method needs support from a few additional features
that must be developed. As a large proportion of trace samples are mixtures, it
will be essential to have a deconvolution tool to separate different microbiota. A
tool to detect outliers will help remove samples with taxonomic profiles that do not
resemble any of the known body fluid patterns. These samples could for example
be detected from the posterior probabilities and end up in an unclassified category.
Alternatively, there are statistical tools designed to detect outliers. The final method
should also support the use of reference samples from skin nearby the sampling
site as these samples would help to remove the observed effect from person on
especially the skin taxonomic profiles. The final method should also be validated
by an inter-laboratory collaborative study.

The future general use of MPS in forensics might consist of a basic panel for
identifying trace material and then special additional panels, dependent on case cir-
cumstances. If information on body fluid should be important for a specific sample,
it is reasonable to propose a combined use of mRNA and microbiome analysis to
optimize accuracy. This will demand the use of different sample preparation proto-
cols, but the resulting sequencing libraries can be pooled and sequenced together.
Although sample consumption always should be kept to a minimum in forensics,
using extra aliquotes of sample in a rational fashion could be defended.

Beside body fluid prediction, there are also other research possibilities within
microbial forensics. To the author’s knowledge little is known of bacterial growth
in deposited biological trace material, and novel knowledge might lead to a method
for time since deposition assessments. As mentioned above, there is also some re-
search activity of microbial activity in connection with decomposition of cadavers.
These studies aim to develop a more reliant method for post-mortem interval es-
timations and a screening tool for lethal infections detection.
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Chapter 4

Conclusion

MPS has created many new possibilities in forensics, both in research and eventu-
ally in routine casework. The work with this thesis has resulted in contributions in
two selected fields.

Our first study was the investigation of DNA degradation in biological trace
material by using coverage data from whole genome sequencing. Although the
sample size of 4 samples was limited, our results supported that DNA degrades at
an even rate throughout the genome and that there are no specific genomic regions
more susceptible or resistant to degradation than others. This put a stop to our
initial ambition of using robust DNA regions to develop a superior performing
method for analysing degraded trace samples. However, our conclusion is still
highly relevant information in the forensic community’s effort to develop new MPS
based methods.

The other contribution was a novel method for predicting bacteria-rich body
fluids based on microbial composition patterns. With this study, we introduced
a promising new tool to solve a very complex forensic problem. Our proposed
method follows a standard laboratory protocol for microbiome sequencing and then
uses a PLS/LDA based data handling workflow where the taxonomic profiles are
built from direct assignment of reads to taxa. By using optimal calculation set-
tings when training and testing on different datasets, we obtained an accuracy of
∼ 96%. Although this is a promising result, the method is not ready for casework.
Until then, there is still potential for accuracy optimization, a mixture deconvolu-
tion tool needs to be developed and an inter-laboratory validation study needs to
be performed. We see the final method as a robust method without the need of
excessive intra-laboratory validation efforts, and as a valuable supplement to the
mRNA based method for a highly reliable forensic body fluid prediction.
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1. Introduction

Standard forensic analysis using short tandem repeat markers
(STRs) is limited by the size of the markers when highly degraded
material is encountered. To overcome this problem, shorter
markers (mini STRs) were introduced [1], and in the latest
generation of routine analysis kits all fragment sizes are below
�350 bp [2,3]. This is close to the theoretical limitations for STRs.
Recently, single nucleotide polymorphisms (SNPs) have been
included in commercially available sequencing panels [4,5]. If
performance is to be further improved, it is important to establish
if there is variability in a marker’s resistance to degradation.
However, current knowledge on the robustness of genomic regions
to degradation in biological trace material is sparse [6–8].

DNA associates with proteins to form a complex called
chromatin. The basic chromatin structure has a repetitive pattern
of nucleosomes each consisting of�146 bp of DNAwrapped round
the histone octamer with linker DNA in between. Nucleosome
protection of the DNA strand in living cells has been observed in
radioactive radiation [9]. In apoptosis, or programmed cell death,
the nucleosomal associated DNA sequences escape enzymatic
cleavage [10]. This relatively open structured chromatin is named

euchromatin and constitutes most of the genome including the
genes (�94%) [11,12]. The remaining �6% of the genome has a
higher ordered structure which is stabilized by the association
between the nucleosomes and the linker histone H1. This structure
is called heterochromatin and has been shown to give additional
protection against DNA damage when studied in vitro [13]. Het-
erochromatin is further divided into two subgroups. Constitutive
heterochromatin is stable with the same positioning between cell
types, while facultative heterochromatin can also adopt the open
euchromatic form [14,15]. Sperm has its own chromatin structure
where less then 15% of the DNA is histone-bound and the vast
majority is associatedwith protamines which is further condensed
into toroids [16]. For living semen cells it has been shown that DNA
is more protected against degradation when associated with
protamines than histones [17].

In relation to forensic biology, few studies have been performed
on potential nucleosome protected DNA sequences using standard
STRs [18] and SNPs [19]. For the latter, the improvement in success
rate compared to the most robust established forensic SNP
multiplex was relatively small (�6%), but significantly higher
compared to the mini-STR assay. To our knowledge no study has
been performed to investigate DNA protection in biological trace
material further.

Massively parallel sequencing technology (MPS) provides an
opportunity to explore DNA degradation in much greater detail.
Each DNA region is typically sequenced several times, and the
number of times is expressed as the coverage. If one region has
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more DNA present compared to others, more DNA is available for
sequencing, and the relative coverage will be elevated. Thus the
coverage can be used as an expression of degradation level along
the DNA strand. However, the coverage is influenced by several
factors that must be adjusted for in order to use it quantitatively.

1. PCR used in the sequencing process causes a bias in the GC rich
regions to be underrepresented because amplification is less
efficient. In the AT rich regions the opposite effect is seen [20,21].

2. In regions with repetitive sequences the mapping can be
ambiguous, and readswill map to different sites in the reference
genome creating a bias [22].

The twin effects of GC bias and mappability bias, are the most
significant causes of inaccurate coverage [23]. Non-random DNA
shearing from the fragmentation step in the sequencing process
will have minor impact and is not considered in this context
[24]. See Covaris webpage for additional information (http://
covarisinc.com/).

To explore DNA degradation, and its impact in forensics, we
sequenced genomes of degraded DNA in semen and blood stains.
The coverage, adjusted for GC bias and mappability, was used to
measure the degradation level. In addition, we developed a
bioinformatics workflow to support the data analysis.

2. Materials and methods

2.1. Sample selection and preparation

A limited number of samples were chosen from ten candidate
samples. In order to optimize the possibility to detect differences in
degradation level along the DNA strands, we selected samples of
different cell types and different degrees of overall degradation. To
optimize the sequencing process, DNA concentration and fragment
size distribution in the samples were also important [25].

The candidate samples were collected from 25–30 year old
semen and blood stains. The sample material had been applied
onto cotton towels and dried. The towels were then put in separate
plastic bags before storing in cardboard boxes under dry conditions
at room temperature. The semen samples were extracted using
differential extraction [26] and the MinElute protocol (Qiagen) for
cleanup. Blood samples were extracted using the Chelex method
(Bio-Rad) without SDS/proteinase K treatment or any additional
cleanup stage. To evaluate the DNA quality the samples were
quantified using both the Quantifiler Duo kit/7500 RT-PCR
(Thermo Fisher) and the High Sensitivity DNA Kit/2100 Bioana-
lyzer (Agilent). In addition the fragment distributions were
evaluated from the Bioanalyser data. The samples were also STR
typed with ESX 17 (Promega). Based on the overall results, four
samples were chosen from the ten candidate samples. Two were
taken from the same semen stain (concentration �0.5 ng human
DNA/mL, moderately degraded and named Degraded1 and 2) and
two from different bloodstains of male and female origin
respectively (concentration �0.01 ng human DNA/mL, heavily
degraded and named HeavilyDeg1 and 2). For more details see
‘‘Choosing samples for sequencing’’ in supplement.

The Bioanalyzer results showed that the samples had a broad
size distribution ranging from 35 to several 1000 bp. This range
would lead to inefficient sequencing of the longest fragments. To
avoid this bias,mechanical shearingwas used, following the Covaris
sonicator protocol (http://covarisinc.com/). The aim was to gener-
ate 300 bp fragments to fit the chosen 150 bp read lengths used for
sequencing. In order to compensate for the low DNA quantity the
library preparation was carried out with the MicroPlex kit
(Diagenode) designed for the low DNA levels handled in chromatin
immunoprecipitation analysis (ChIP). During the library process

adapters and indexes were ligated to each end of the DNA
fragments. Paired-end sequencing, where each fragment was
sequenced from both ends, was used. A read length of 150 bp
was performed on a single lane on aHiSeq 2500 platform (Illumina).

2.2. Bioinformatics

The evaluation of the paired-end sequencing data showed that
the libraries had shorter fragment sizes than expected with a
median at around 100 bp (see ‘‘Size distribution of fragments in
library’’ in supplement for details). With a 150 bp read length from
both sides, nearly all fragments would be completely sequenced.
However those below 150 bp reads would include the adapter. To
remove the adapter sequences from the reads we used the
palindrome mode of Trimmomatic [27]. To remove the impact of
reads overlapping by different degrees in the middle of the
fragments, each pair was merged together by making a consensus
sequence of the overlapping middle part using the FLASH tool
[28]. A small fraction of the paired reads did not overlap and could
therefore not be merged (around 6% of fragments from 285–
425 bp). The regions in themiddle of these fragments made up less
than 1% of the total sequence, and were therefore not adjusted for.
Consequently it is reasonable to regard every fragment completely
sequenced and covered only once.

The merged and the non-merged datasets were separately
mapped and filtered before being combined to create a compre-
hensive dataset for coverage statistics. In this process the Burrows-
Wheeler Aligner software (BWA)with default settingswas used for
mapping against the hg19 reference genome (downloaded from
the UCSC webpage (http://genome.ucsc.edu/index.html)). Single-
end and paired-end approaches were used respectively [29]. The
resulting alignment files containing the mapped reads information
(BAM files) were filtered using the SAMtools software removing
reads of mapping quality below 37 (probability of mapping error
<1/10e3.7) [30]. In addition PCR duplicates were removed using
the Picard tool (http://broadinstitute.github.io/picard/). GC bias
was corrected using the deepTools package (computeGCbias and
computeGCbias tools) [31]. The filtered merged and non-merged
datasets were combined and sorted using SAMtools.

Whole genome coverage data in bedgraph format was derived
from the combined dataset using Igvtools (used default settings:
maximum zoom level to precompute (�z) = 7, window size over
which coverage is averaged ð�wÞ ¼ 25 and window functions to
use when reducing the data (�f) = mean) [32]. Regions with
reduced mappability [33] were removed from the dataset by
applying the intersect function of the Bedtools software [34]. The
annotation tracks wgEncodeDacMapabilityConsensusExcluda-
ble.bed and wgEncodeCrgMapabilityAlign100mer.bigwig were
used as template files (text files downloaded from the UCSC table
browser tool: https://genome.ucsc.edu). The original wgEnco-
deCrgMapabilityAlign100mer.bigwig was modified by standard
Unix commands cutting 200 bp from each side of the genomic
segments and then removing segments shorter than 400 bp.

Datasets for two control samples sequenced with comparable
parameters as the degraded samples were downloaded from the
1000 genomes project webpage (http://www.1000genomes.org/ –
blood samples named ERR233219 (female) and ERR257960
(male)). These datasets had been marginally filtered in advance.
Because of long library fragments (450 bp) compared to the read
length (2 � 100) the read pairs would neither contain adapter
sequence nor overlap each other as for the degraded samples.
Consequently all fragmentswould have sequence in themiddle not
covered by the read pairs. These uncovered regions were left
unadjusted as the fragmentation in the library preparation step
was assumed to be random thereby giving these regions an even
distribution across the genome for undegraded samples. Therefore,
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the control samplewasmapped to the reference genome as paired-
end reads only using BWA, and then further corrected and filtered
following the same workflow as for the degraded samples.

The filtered and corrected coverage datasets were used as a
measure of degradation along the DNA strands. Several different
approacheswere followed. Integrative Genomics Viewer (IGV) [32]
was used for visual evaluation. R software [35] was used for
calculations and plots.

To compare chromosomes, the coverage of each chromosome
was calculated by dividing the number of mapped bp by the total
number of mappable bp in the whole chromosome [11].

When comparing regions with different chromatin structure,
coverage of heterochromatic and promoter regions respectively
were extracted using genomic annotation tracks as targets. The
heterochromatin track was derived by merging six venous blood
H3K9me3 tracks downloaded by connecting the Blueprint track
hub to the UCSC table browser tool [36]. The tracks were converted
from hg38 to hg19 coordinates using the liftover tool at the same
website and further merged using Bedtools [37]. The promoter
track was derived from whole blood expression data of the GTEx
track downloaded from the UCSC table browser tool [38]. Active
promoter regions were defined as 2 kb upstream of genes with a
FPKM above 1 (RNA-seq data for a gene is typically normalized for
exon length and sequencing depth and given as fragments per
kilobase of exon per million fragments mapped (FPKM)). In
addition, we used the random function of Bedtools to generate a
track of randomly chosen genomic regions (10,000 � 1000 kb long
regions). The three track files were filtered, as the samples and
controls, for low mappability regions.

For a full list of software used in this study see ‘‘Software and
versions’’ in supplement.

3. Results and discussion

Initial evaluation of the sequencing data was done using
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), and the data showed generally good quality. No
overrepresented sequences such as adapter dimers was observed.
Sequencing blocking and miscoding lesions are caused by
oxidation, hydrolysis and free radicals in decomposing biological
material, and these effects are often a problem when sequencing
ancientDNA [39,8]. For this study the biologicalmaterial had been
stored under dry conditions at room temperature, and these
events should therefore be marginalized [7]. Nor did the FastQC
evaluation show indication of such.

The need for correcting the coverage data for mappability and
GC bias was evaluated. The uncorrected coverage data were
significant reduced in regions of low mappability when visually
compared to themappability annotated tracks using IGV. The need
for GC bias correction was demonstrated by plots from deepTools
as exemplified in Fig. 1.

In the final datasets coverage was �0.5� for the heavily
degraded samples, �3� for the degraded samples and �5� for the
controls. From the original sequence data the optimal theoretical
coverages were calculated to be 9�, 10� and 7� respectively. For
the degraded and heavily degraded samples however �2/3 of the
reads were lost in the adapter trimming and merging of the pair-
end reads. Adjusted for this, the degraded samples lost only a
fraction of the reads in the mapping and subsequent data filtering.
For the heavily degraded samples half of the reads did not map to
the hg19 reference which could be caused by nonhuman DNA in
the samples. In the subsequent filtering high mapping quality
thresholds left only half of the mapped reads in the final dataset.
However we regard the final datasets to be fit for purpose as even
lower coverage data has been used to determine copy number
variation (CNV) [40].

By visually evaluation the final datasets using IGV the degraded
and heavily degraded samples showed an even level of coverage
across all chromosomes which was similar to that observed for the
controls. The coverage at the STRs used in forensic routinework had
the same level as the rest of the genomes. High coverage peakswere
observed at positions around the centromeres and to a lesser extent
in the telomeres for the majority of chromosomes. These peaks
were observed in both the degraded samples and the controls and
were caused by long arrays of tandem repeats in these regions.

3.1. Variation of coverage

The difference between each pair of adjacent coverage values
was used to investigate the variation of coverage. The distribution of
differences for each samplewere compared to a normal distribution
with the same standard deviation, as shown in Fig. 2. All genome
data were used.

[(Fig._1)TD$FIG]

Fig. 1. As the hydrogen bonding between the GC bp is stronger than between the AT

bp, the polymerases used in the sequencing process are less efficient in the GC rich

regions. This results in GC bias with lower coverage in these regions. The samples

were checked for GC bias by dividing the genome into regions of 300 basepairs and

plotting number of reads as a function of the GC fraction. The resulting plot shows

that the number of reads or coverage decreases as the GC content increases. As the

coverage is used quantitatively the sequence data needed to be GC corrected.

[(Fig._2)TD$FIG]

Fig. 2. The distributions of variation of coverage along the chromosomes for all

samples including the controls were comparable to that of a normal distribution

with the same standard deviation. Consequently the variation in coverage is

principally random.
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[(Fig._3)TD$FIG]

Fig. 3. Distribution of whole genome coverage data plotted using the density function in R. The plots show uniform shapes for all samples and controls. In addition no

significant extreme values are observed. This indicates a reasonable constant level of DNA degradation across thewhole genome. For each plot sample 1 is representedwith a

solid line and sample 2 with a dotted line. Sample Degraded1 and Degraded2 have overlapping plots.

[(Fig._4)TD$FIG]

Fig. 4. The coverage values indicate that there is no difference in degradation level between the chromosomes. The controls show even more variation between

the chromosomes than the samples. Most heterochromatic regions are not included in the sequencing data, but for the female sample (Heavily degraded 2) the second

X-chromosome is silenced by heterochromatin and should give increased coverage values if heterochromatin protects against degradation. The lower than expected coverage

values for the Y-chromosomes are presumed to be caused by an artifact rather than degradation, while low coverage value was also observed for the control (Control2). The

X-chromosomes are colored red and Y-chromosomes colored blue.
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All sample and control distributions were comparable to the
normal distribution. Thus the variation in coverage is mainly
random and not largely dependent on external factors.

3.2. Coverage distribution between samples

For each sample and control, the frequency of all coverage data
were plotted as density plots (see Fig. 3).

Coverage distribution of the degraded samples is uniform and
comparable in shape to the controls. Additional peaks, extreme
values or significant skewed distributions would have indicated
regionswith accumulation of higher or lower coverage, but none of
these are observed. Thus degradation seems to have been uniform
throughout the genome.

3.3. Coverage distribution between chromosomes

The genome has in total only �6% heterochromatin, but
heterochromatin is not distributed evenly between and within
the chromosomes. According to International Human Genome
Sequencing Consortium (IHGSC) chromosomes 1, 9, 13, 14, 15, 16,
17, 21, 22 and Y have higher proportions of heterochromatin with
the Y-chromosome having the highest at 50 % heterochromatin
[11]. In order to allow direct comparison between samples each

chromosomal coverage value was normalized. This was done by
calculating the chromosomal coverage as a percentage of the sum
of all chromosomal coverages in the same sample. See Fig. 4 for bar
plots.

Fig. 4 shows that the coverage is evenly distributed between
chromosomes. Most of the heterochromatin regions are positioned
near the centromeres and telomeres and have long repetitive
sequences which results in gaps in the reference genome. It is
therefore not possible, to measure degradation directly from
coverage in these areas. From the IHGSC data the remaining
heterochromatin regions represent a relatively small part of the
chromosomes and was not expected to show a significant effect in
Fig. 4. In females, due to X-inactivation, we would expect a
significant increase in X-chromosome coverage compared to the
other chromosomes if heterochromatin protects against DNA
degradation. However Fig. 4 shows that the coverage of chromo-
someX for the female sample (HeavilyDeg2)was equal to the other
chromosomes in the sample and to the X-chromosome in the
female control (Control1). Lower coverage than expected
was observed for the Y-chromosome in the male samples
(HeavilyDeg1, Degraded1 and Degraded2). As coverage values in
non-repetitive regions of X- and Y-chromosomal are similar for
these samples we expect the lower overall coverage for the
Y-chromosome to be caused by the relatively complex structure of

[(Fig._5)TD$FIG]

Fig. 5. For whole blood (see heavily degraded samples left) there is no change in coverage between regions with open chromatin structure (promoter), condensed chromatin

structure (heterochrom) or randomly chosen regions. Sperm (see degraded samples in the middle) has a different chromatin structure than blood which is highly condensed

in a large proportion of the genome. The steady trend over the different genetic regions is also seen for sperm. These results support the contention that DNA degradation is

independent of higher order chromatin structure in biological trace material as opposed to DNA damage in living cells. The controls (see right) have an even coverage across

the tracks as expected when the DNA is not degraded. For each box the dot represents the mean and the width the relative number of data points.
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longer repeats in Y-chromosome [41]. The fact that the same trend
is seen in the male control (Control2) also support that this has
another cause than a higher degradation level of Y-chromosome.
The female sample (HeavilyDeg2) and control (Control1) show
small portions of reads mapped to the Y chromosome. These reads
originate from the X-chromosome, but have mapped to homolo-
gous regions on the Y-chromosome instead. However their
contribution is too small to have effect on the coverage values
for the X-chromosomes.

3.4. Coverage of different genomic regions

The highly condensed constitutive heterochromatin is believed
to occur at the same positions in all cell types and its position
correlates with the trimethylation of histone H3 on lysine 9
(H3K9me3) [42]. The heterochromatic regions’ counterpart is the
promoter regions of expressed genes with an open chromatin
structure to facilitate the transcriptional machinery’s access to the
DNA strand. It is expected that most promoter regions lie within
the first 2 kb upstream of genes.

The boxplots in Fig. 5 indicate no difference in the coverage
between the genomic regions investigated for all the degraded
samples. No obvious difference is seen between samples and
controls either. Due to the high number of data points (several
100,000 per boxplot) no statistical test was applied, but the
distribution of the pairwise difference between coverage values of
two and two tracks all had a mean close to zero. For blood (the
heavily degraded samples) the heterochromatin and the promoter
regions represent the two extremes of chromatin structure. Thus
there is no evidence that more condensed chromatin structure of
heterochromatin prevents DNA degradation. Sperm (the degraded
samples) has a different and more condensed chromatin structure
throughout the large proportion of the genome. Even though the
annotation tracks are derived from whole blood data and do not
represent different chromatin structures of semen, they still
represent different genetic regions.

There is a trend in the boxplots of increasing skewness for the
heavily degraded samples, but this might be caused by the
relatively low coverage. However the distribution of the coverage
for all tracks is narrow and comparable with the distributions seen
when comparing the coverage between samples and controls
above. The boxplots also show a number of outliers whichmay be a
result of the high numbers of datapoints.

3.5. Coverage in regions of strongly-positioned nucleosomes

Nucleosomes are dynamic andmove along the DNA strand, but
around �10% have been reported by Gaffney et al. to have
moderate to strong positioning in seven human lymphoblastoid
cell lines [43]. Pedersen et al. have sequenced DNA from ancient
hair shafts and reported a pattern of coverage peaks correspond-
ing to the strongly-positioned nucleosomes for a specific region in
chromosome 12 [44]. The positioning in this region was
postulated by Gaffney to be independent of cell type. Pedersen
hypothesized that the coverage pattern was caused by nucleo-
somes protecting the DNA from degradation. The coverage at the
same location for the four degraded sampleswere extracted using
Igvtools with a 1 bp window size (position chr12:34443733-
34453733 in hg19 converted from hg18 using the liftover tool in
UCSC genome browser: https://genome.ucsc.edu). No obvious
repetitive pattern was observed within or between the degraded
samples. However the coveragemight be too low to observe such a
pattern with maximum �3� compared to the 20� used in the
Pedersen study. In addition semen, with its different chromatin
structure, might not have strongly-positioned nucleosomes at the
same locus.

4. Conclusion

In this study we have investigated DNA degradation in
forensically relevant trace samples by massively parallel sequenc-
ing. The aim was to determine if parts of the genome are more
resistant to degradation than others. The answerwould be relevant
for choosing future forensic markers. Although the number of
samples was limited, several different approaches to measure
degradation from sequencing data supports the hypothesis that
degradation is uniform throughout the genome. A possible
explanation is dissociation of protein and DNA in degraded
forensic trace material. In addition, we demonstrate that whole-
genome sequencing is applicable for forensic trace samples with
minute amounts of degraded DNA. For the future, this indicates the
applicability of a broader range of MPS applications beyond the
targeted sequencing currently used in forensics.
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A B S T R A C T

The association of a DNA profile with a certain body fluid can be of essential importance in the evaluation
of biological evidence. Several alternative methods for body fluid prediction have been proposed to
improve the currently used presumptive tests. Most of them measure gene expression. Here we present a
novel approach based on microbial taxonomic profiles obtained by standard 16S rRNA gene sequencing.
We used saliva deposited on skin as a forensically relevant study model, but the same principle can be
applied for predicting other bacteria rich body fluids. For classification we used standard pattern
recognition based on principal component analysis in combination with linear discriminant analysis. A
cross-validation of the experimental data shows that the new method is able to successfully classify
samples from saliva deposited on skin and samples from pure skin in 94% of the cases. We found that
there is a person-effect influencing the result, especially from skin, indicating that a reference sample of
pure skin microbiota from the same person could improve accuracy. In addition the pattern recognition
methods could be further optimized. Although there is room for improvement, this study shows the
potential of microbial profiles as a new forensic tool for body fluid prediction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The short tandem repeat DNA-profile is used to identify the
person from which a biological trace originates. However, the DNA-
profile provides no information on how the trace was deposited. In
this context, information on type of body fluid can be of crucial
importance when evaluating biological evidence.

Classical presumptive tests are still preferred methods for body
fluid prediction in many laboratories [1]. Generally, a body fluid
specific enzyme catalyzes a chemical reaction, and the result is
visually detected, often as a color change. The tests are fast and
easy to use, but have high error rates as the target enzyme is also
present in low quantities in other body fluids [2,3]. In addition,
common household items and chemicals can give false results [4].
A few immunochromatographic lateral flow strip tests are
commercially available as an alternative [5,6], but even if these
tests are more specific, the presence of enzymes in other body

fluids still give false positive results for some tests. Traditionally, no
probabilistic statements have been associated with a presumptive
test result.

Lately several alternative detection technologies have been
reported to be applicable for body fluid prediction [7,8]. Most of
these measure gene expression using mRNA, miRNA or epigenetic
markers. The European DNA Profiling Group (EDNAP) has
performed collaborative studies on mRNA tests for blood [9],
saliva and semen [10] menstrual blood and vaginal secretion [11]
and finally on skin [12]. The chemically more stable miRNA
markers can also be used to differentiate between body fluids [13–
15]. However, both RNA methods currently lack a reliable
quantification method. In addition, there is often a large difference
in abundance between the RNA makers within a sample. This is
especially challenging for minor components in mixed samples
where it can be difficult to separate between real and background
signal. Another approach is to measure degree of methylation at
GpC islands. Although this has been promising [13,14], it is not yet
ready for implementation in casework as methylation levels can
differ between individuals, tissues and exhibit age or environmen-
tal dependency [8]. Since none of the aforementioned methods
will detect and separate all body fluids, it has been proposed to
combine their use, but even then some mixtures might be
challenging [7].
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As an alternative to gene expression measurements, microbial
markers have been proposed as a way to discriminate between
various body fluids [7,8]. The main idea is to look for the taxonomic
composition of bacteria in the various body fluids, and recognize
them based on specific patterns in this composition. The standard
genetic marker for taxonomic profiling of microbial communities
is the small subunit ribosomal RNA gene, also known as the 16S
gene. Large data repositories specifically devoted to 16S rRNA gene
data exist, e.g. the Silva database (https://www.arb-silva.de/), the
Ribosomal Database Project (RDP, https://rdp.cme.msu.edu/) and
the Greengenes database (http://greengenes.lbl.gov/). Microbiota-
based body fluid recognition is most likely best suited for bacteria-
rich body fluids such as saliva, vaginal secretion, feces and
menstrual blood, while sterile or nearly sterile body fluids such as
blood, semen and tears are probably more problematic to
recognize [16]. Other limitations may be geographical variation
[17] and drug use [18], but for a large proportion of cases such
limitations can be ruled out.

Since inception of the Human Microbiome Project (HMP) [19],
many efforts have been made to study the human microbiota by
amplicon sequencing of the 16S rRNA gene. While most such
studies have been health related and targeted the human gut, there
are also some studies with a forensic focus. In [20,21] a search for
body fluid-specific taxonomic markers was conducted, but with a
negative result. Although it would be convenient to have unique
markers to identify a specific body fluid, this may be unrealistic.
The taxonomic profile of a given body fluid is a vector of quantitative
values describing the bacterial composition. Provided that there is
sufficient specificity, body fluids can be identified. A large variety of
multivariate pattern recognition approaches are already available
for the data analysis part of this problem. Such methods have
already been used to separate microbiota from phones and shoes
[22] and could even potentially be used to identify persons based
on skin samples [23].

In microbiome sequencing two major sources of bias have
been thoroughly discussed in the literature. First, different DNA
extraction method may have an impact on microbial commu-
nity profiling [24–28]. However there seems to be consensus on
that a bead-beating  step increases the yield, and that the same
extraction protocol should be used throughout a study to ensure
reproducibility. The other source of bias is PCR amplification
which can result in artifacts such as chimeras [29] and skewed
fragment distributions [30–32]. Chimeras form when short
aborted extension products function as primers in later PCR
cycles to create full length artificial fragments. Chimeras and
other PCR artifacts are problematic for bacteria rich samples,
but little is known about artifact formation in samples with
low levels of bacterial DNA. Digital droplet PCR (ddPCR) use
micro droplets as reaction chambers with just one or a few
fragments in each droplet. This results in unbiased amplifica-
tion (see Droplet Digital PCR Applications Guide at www.bio-
rad.com).

Health related microbiota studies have investigated pure body
fluids sampled directly from the human body. In a forensic context
the conditions will be different and care should be taken when
adopting standardized lab protocols and bioinformatics work-
flows. Biological traces are typically collected with cotton swabs
[33] and stored in dry state until analysis [34]. Most trace samples
will have relatively low bacterial levels and require highly sensitive
methods [35] and appropriate routines to prevent contamination
[31]. Low bacterial levels might also enhance different biases e.g. in
the sampling [36,37] and PCR amplification [29,30,32] steps. Trace
samples are rarely single source, but often mixtures of different
body fluids. In addition the data interpretation should not be
exploratory as in many health studies, but based on pattern
recognition.

In this paper we present a study where we have investigated
potential effects of sampling and lab-protocols on the detection
and recognition of saliva deposited on human skin. This is a typical
example of a biological trace from a crime scene, and to our
knowledge the first study to demonstrate the identification of body
fluids from microbiota data in this context.

2. Materials and methods

2.1. Experimental setup

Six healthy persons participated in this study. They were told
not to eat or wash hands during a period of 1 h before the
experiment. Traces of both pure and diluted saliva were deposited
between the base of the fingers on the back of each participants
hands. The liquid was smeared in the sampling areas using the
pipette tip and then dried for 10 min before sampling. The
experiment was designed so that each of the six individuals had
saliva donated from another participant deposited onto their
hands (one donation per participant). All experiments were
performed on the same day.

The following samples were collected from each participant: (1)
Pure saliva sampled directly from the mouth (to be deposited on
another participant), (2) the trace consisting of 20 mL pure saliva
deposited between fingers, (3) the trace consisting of 20 mL saliva
diluted in PCR water (1:10) deposited between fingers and (4) a
sample from pure skin between fingers.

Initially three different sampling techniques were evaluated.
20 mL saliva were applied onto cotton swabs (Medical Wire),
synthetic swab (DNA Genotek) and tape (Scenesafe) and processed
in parallel with 20 mL pure saliva. Bacterial DNA extraction was
performed as described below, and recovery was measured for all
three techniques. The use of the cotton swab was discontinued
based on the results. Tape was used when sampling the left hand
and synthetic swabs when sampling the right hand. Diluted saliva
was only collected by tape from the left hand. Thus, we define 6
different types of samples:

1. Pure saliva from mouth.
2. Saliva deposited on skin, collected with tape.
3. Saliva deposited on skin, collected with swab.
4. Diluted saliva on skin, collected with tape.
5. Pure skin, collected with tape.
6. Pure skin, collected with swab.

One droplet of PCR grade water was added to the swab before
sampling to mimic standard procedure [38].

2.2. Soaking, extraction and quantification

The samples were first soaked to release the sample material.
The tape was cut with a sterile razor before being transferred to a
1.5 mL Eppendorf tube with 200 mL S.T.A.R. buffer (Roche
Diagnostics). The synthetic swab was placed in the associated
tube containing 1 mL soaking solution. The Eppendorf tubes were
put on a horizontal shaker at 1400 rpm and 56 �C for 30 min while
the tubes with the synthetic swab was briefly vortexed according
to producers recommendations. For each sample 150 mL soaking
solution was transferred to a 2 mL conical tube (Sarstedt) with
approximate 0.24 g acid-washed glass beads (<106 mm; Sigma
Aldrich). The samples were homogenized at 1800 rpm for 2 � 30 s
using FastPrep96 (MPBio) and then centrifuged at 13,000 g for
5 min. DNA was extracted using LGC mag midi kit (LGC Genomic)
following the manufacturer's recommendations. The resulting
DNA extracts were quantified by digital droplet PCR (Bio-Rad
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QX200) using PRK341F and PRK806R primers targeting the V3–V4
region of the prokaryotic 16S rRNA gene.

2.3. Library preparation and sequencing

16S rRNA gene was sequenced using Illumina-modified
PRK341F and PRK806R primer pair following the “Illumina 16S
metagenomic sequencing library preparation” protocol. The
protocol is available at http://illumina.com.

To evaluate the effect of PCR technique, we used both
conventional PCR (Applied Biosystems 2720) and ddPCR (Bio-
Rad QX200) techniques for the first step of 16S rRNA gene
enrichment. 30 and 40 cycles were used respectively. The
amplification product from the ddPCR was recovered by breaking
the emulsion according to the Droplet Digital PCR Applications
Guide at www.bio-rad.com (page 70). All PCR products were
amplified a second time with Illumina-modified primers. Finally
the samples were pooled in equimolar volumes and paired-end
sequenced on a Miseq platform using v3 chemistry. In total we
sequenced 144 samples; 36 extracts amplified in duplicates for
each of the two PCR techniques. We define the duplicates as
technical replicates. In addition 5 positive (Escherichia coli) and 13
negative controls was sequenced. The experimental setup is
illustrated in supplementary figure S1.

2.4. Taxonomic profiles

Conventional bioinformatics workflows were used to cluster all
reads into operational taxonomic units (OTUs). Our workflow was
built around the open source software VSEARCH [39]. First, read-
pairs were merged, including the filtering of low quality reads
(maxee = 1, see [40]). The de-multiplexing step included removal of
non-biological barcode and primer sequences. After de-replication,
all singleton sequences were removed before clustering using the
standard 97% identity value. The resulting OTU-centroid sequences
were chimera-filtered using the gold database of the Chimer-
aSlayer utility [41]. OTU centroids were given taxonomic assign-
ments using the taxMachine tool [42].

For each sample, a read-count vector was found by searching
with all reads against the OTU centroids, using the standard 97%
identity threshold. The taxonomic profile of a sample was found by
dividing this vector by the total read-count for the sample,
producing relative read-counts for each OTU. Finally all taxonomic
profiles were stacked into an OTU-matrix, one row for each sample.

2.5. Data analysis

Data analysis was performed in the R computing environment
[43] and in MATLAB 2016b (The MathWorks Inc., Natick, MA,
2000). All software used is listed in supplementary table S1.

Chimera were detected using VSEARCH as described above. The
proportion of chimera in each sample was used in an Analysis of
Variance (ANOVA) to investigate if there was significant difference
in chimera formation between sample types or between the two
PCR techniques.

Alpha-diversity for each sample was calculated as Simpson's
index of diversity (1-D) using the Vegan R-package [44]. Diversity
is dependent on the number of reads, and rarefaction is typically
used to remove this bias [45]. We randomly picked 1000 reads
from each sample using the “sample” function in R, and then
employed these reads as input for the “diversity” function of the
Vegan package. ANOVA was again used to investigate if there was
significant difference in diversity between sample types, the two
PCR techniques or the two sampling techniques.

Principal component analysis (PCA) was used to project the
high-dimensional taxonomic profiles onto a lower dimensional

space, used for graphical display or further data analysis. Principal
components are ordered by variance in the data set, i.e. the first
component is the linear combination of taxa with most variation.
Thus, the first components are most likely to contain any
systematic variation in the data. We used the first principal
component scores as response in an ANOVA to evaluate the effect
of person, sampling technique, sample type, technical replicate
and PCR technique. Main effects were included, but also the
interaction between technical replicate and PCR technique. This
ANOVA was also repeated for the second and third principal
component.

We also investigated the reproducibility of the data across
persons with respect to pattern recognition of the taxonomic
profiles. Samples were categorized into 2 classes, either Saliva
(sample types 1–4) or Skin (sample types 5–6) – see Section 2.1 for
definition of sample types. Data were split by person, and a cross-
validation was performed by training a classifier on data from 5
persons, and then predicting the class of the samples from the left
out person. As classifier we used the linear discriminant analysis
(LDA) implemented in the MASS-package in R. Due to the large
number of OTUs we have many more predictor variables than
samples in this data set, which permits the straightforward use of
LDA. This was performed by using PCA on the training data first,
and then truncated the data to 6 principal components, using these
scores when training the LDA classifier. The exact same centering/
rotation was used on the test-data during prediction. For further
reading on the subject of statistical learning and prediction we
refer to Hastie et al. [46].

We also compared our taxonomic profiles to those of similar
samples from the HMP. From the public data at http://hmpdacc.
org/ we downloaded reads for all samples. Only samples
amplifying the V3–V5 region of the 16S gene were used, as these
overlap with our data (V3–V4 region). We considered only samples
taken from the mouth or the skin, and categorized these as Saliva
and Skin. In total, this resulted in data from 2465 samples. Next, we
used our VSEARCH pipeline to find OTUs in these data, and
constructed an OTU-matrix in a similar way as described above.
Then these centroid sequences were used as a database, and we
constructed a new OTU-matrix for our experimental data,
matching the reads against the HMP centroids and assigning
them to the same OTUs. Finally, the OTU-matrices from HMP and
our experiments were assembled into one matrix, and a PCA was
conducted on this joint matrix.

3. Results

In these experiments we investigated if pure and diluted saliva
can be recognized by the microbiota taxonomic profiles in traces
collected from the hands of persons. We also tested various ways of
sample collection and PCR amplification, and compared the
obtained profiles to those in the public data sets from the HMP.

3.1. Microbiota raw data quality

It is reasonable to expect that it is more difficult to collect
sufficient quantities of microbial DNA from a deposited trace
compared to a sample taken directly from a body fluid. If the trace
is deposited on human skin, it is also infested by the natural skin-
microbiota, potentially masking or distorting the body fluid profile.

First, we tested three ways of sampling biological traces (cotton
swab, synthetic swab and tape). Median recovery for synthetic
swab and tape was determined from ddPCR quantification results
to be �90% and �60%, respectively (swab recovery had to be
adjusted for a 5� larger soaking volume than tape). See Fig. 1 for
details. In contrast, the cotton swab only had a few percent
recovery and was therefore not suitable for purpose. This was
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disappointing as cotton swabs have a widespread used in general
casework. However, in that respect, both synthetic swabs and tape
have been proven to perform equivalent to cotton swabs [47,48].

Fig. 1 shows the bacterial DNA concentration of the extracts for
the six different sample types. Data from each of the six
participants is included. Pure saliva sampled directly from the
mouth clearly contains the most, and even the diluted saliva
samples have considerable higher bacterial density than the
samples from skin only.

The OTU-finding workflows will discard a proportion of reads
based on various quality criteria. In our workflow, on average, 18%
of the read-pairs were impossible to merge, and thereby lost. Next,

on average 7% and 16% of the reads had no detectable barcode or
primer sequences, and were discarded. In total an average of 64% of
the original reads ended up in the final data set, with a small
variation between the various fastq-files. These numbers are in line
with other studies [49]. For details see supplementary table S2.

The chimera content was lower than �9% for all samples, with
the pure saliva samples having a tendency of a larger chimera
proportion than the other sample types (p = 0.0006). See supple-
mentary figure S5 for details. There was a large variation in the
number of reads between the samples in the final OTU table. 22
samples had a read count below 1000, and 2 of these were below
100. At the other end of the scale 10 samples had over 100,000
reads. See supplementary figure S2. The effect of the two PCR
techniques was evaluated using both chimera proportion and
diversity as response. ANOVA showed that the PCR techniques had
no significant effect on either chimera proportion or the Simpson's
index of diversity (p > 0.5). However ddPCR tended to have higher
correlation between number of reads and initial DNA inputs and
more reproducible results with less variation between technical
replicates (p = 0.002). See supplementary figures S3 and S4,
respectively.

3.2. Community characteristics

In total the OTU-finding workflow suggested 849 OTUs in the
data set. Of these, 607 were detected in skin-samples and 735 in
saliva. Assigning OTUs to a genus resulted in the skin samples
containing 285 and the saliva samples 288 different genera. Only
17 (6.0%) and 19 genera (6.6%), respectively had a relative
abundance more than 1%. See Fig. 2 for details.

The samples had a fairly high diversity with a median Simpson's
index of diversity at 0.92. ANOVA showed no significant difference
in diversity between the 6 sample types. See supplementary figure
S6. The sampling technique had no significant main effect on

Skin only, swab

Skin only, tape

Dilluted saliva on skin, tape

Saliva on skin, swab

Saliva on skin, tape

Pure saliva

0.00 0.02 0.04 0.06
pM

Fig. 1. Bacterial DNA concentration (pM) in extracts for the different sample types.
The swab samples were soaked in a 5� larger volume than the tape samples and this
has to be adjusted for when evaluating recovery. Quantification was done by ddPCR,
and data for all 6 participants are included in the boxplot (n = 144).
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Fig. 2. Genera with an abundance over 1% in the skin and the saliva samples.
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diversity, but tape showed a slight tendency to give higher
diversity than synthetic swabs when sampled from skin (p = 0.04).
See supplementary figure S7.

3.3. Taxonomic profiles

Taxonomic profiles are high-dimensional, and in order to
analyze for differences in profiles between various samples, we
first subjected the OTU-matrix to a PCA. The first principal
components will contain the largest data variations, most likely the
systematic differences between taxonomic profiles. The first three
components contained 44%, 19% and 12% of the total variation in
taxonomic profiles.

We successively used the scores of the first, second and third
principal component as a response in an ANOVA, testing the main
effects of different experimental factors. Using the first component
the most significant difference was between pure saliva and skin
(p < 10�16). In addition, diluted saliva on skin was also significantly
different from pure saliva (p < 10�3). We also found that two of the
persons were significantly different from the others (p < 10�3).
Sampling technique, PCR technique and technical replicate
(including the interaction effect of the two last factors) had no
effect on any of the first principal components taxonomic profiles.
For the second component we observed the same clear effects as
for the first component. In addition there was a weak significant
effect from PCR technique (p = 0.05). For the third component the
picture was a bit different. There was a weaker effect from sample
type (p = 0.009), new persons had an effect and PCR technique had
no effect. An overview of the ANOVA results is given in
supplementary table S3.

In Fig. 3 the samples are plotted in a PCA-plot using the two first
principal components. We first notice that saliva-samples (blue
and cyan) tend to group with a small variation (beta-diversity) in
the left part of the panel (negative scores on first principal
component), while skin-samples (tan) are scattered much more,
but mostly with positive scores along both axes. There are 4
notable exceptions, the cyan markers in the lower right corner.
There is a weak tendency for diluted saliva on skin (cyan) to be
located on the border between pure saliva (blue) and skin (tan).
The samples amplified with ddPCR (triangles) and conventional
PCR (circles) are randomly dispersed throughout. In addition
supplementary figure S8 shows that control samples separate well
from the experimental samples.

Ultimately the differences in taxonomic profiles are only
relevant if they make it possible to recognize a body fluid in a
trace. To investigate this, we trained the LDA classifier on data from

5 of the persons, and used this to classify samples from the last
person. PCA scores for the 6 first components were used to train
the LDA model. This was repeated in a 6-fold cross-validation,
leading to body fluid predicted for each sample once. In Table 1 we
show the results. In total, 135 out of 144 samples were correctly
recognized as either saliva (on skin) or skin.

Of the erroneously classified samples there were 5 false
positives (skin classified as saliva) and 4 false negatives (saliva
classified as skin). Only 2 of these were among the 10 samples with
fewest reads. The false negatives were the cyan samples positioned
in the lower right corner of Fig. 3. These are all from one person.
The false positives were located on the border between saliva and
skin. The posterior probabilities assigned by LDA, were for 4 of
these samples weakly in favour of the wrong class (see
supplementary figure S10 for details).

To compare our experimental data with a large data set of
“pure” body samples, we assigned our reads to the OTUs based on
2465 HMP samples. In Fig. 4 we have again plotted all samples in a
PCA plot. Samples from skin and saliva separate well in the HMP
data, even if there is a huge diversity within each group. Skin
samples tend to have a negative score along the first principal axis,
while saliva have positive scores. Our experimental data have a
notable shift in location compared to the HMP data, and are all
located near the border between skin and saliva. The saliva
samples are in most cases on the “correct” side, but skin samples
are not.

4. Discussion

The aim of this study was to investigate how well we can
recognize human saliva in a trace deposited on human skin, based
on the taxonomic profile from amplicon sequencing of the 16S
rRNA gene. We investigated the effect of several potential critical
experimental factors, to identify some bottlenecks.
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Fig. 3. The scores of the taxonomic profiles along the two first principal
components. Each marker corresponds to a sample. The coloring and marker
types indicate different sample types, as explained in the figure legend.

Table 1
Prediction results from cross-validation.

Person Incorrect Correct

Person 1 4 20
Person 2 1 23
Person 3 0 24

Person 4 0 24
Person 5 0 24
Person 6 4 20

Sum 9 135
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Fig. 4. PCA plot with both the experimental data and HMP data (zoomed in on
experimental data). The saliva samples are more similar than the pure skin samples.
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In order to discriminate saliva from skin, these sources need to
have taxonomic profiles which are distinctly different and also
sufficiently stable within each group. Since taxonomic profiles are
multi-dimensional (many taxa), we used PCA to project each
profile onto either the first, second or third principal axis, thereby
obtaining a single value (score) for each profile along each axis. We
used these values in an ANOVA to see which factors explain
differences in taxonomic profiles best.

Of all factors analyzed in our ANOVA, the sample type (saliva or
skin) had by far the largest significant effect. This is in line with
earlier studies [19,50] and confirms the potential for using 16S
profiles for this purpose. The largest difference was between pure
saliva and pure skin, with saliva deposited on skin as an
intermediate. This illustrates nicely how saliva deposited on skin
shows a profile which is a mixture of the two pure sources, and
therein lies the potential difficulty in recognizing saliva when
contaminated with skin bacteria.

The only other really significant effect found was between
persons. This means there is a bias due to person in the taxonomic
profiles. This has also been observed earlier [19,50]. The reason for
this is not fully understood, but diet could be one of several factors
[51]. Hence the effect from person is clearly an important factor
when evaluating method accuracy, but our results show that the
effect from person in most cases will not influence the prediction
result.

All other factors investigated (sampling technique, PCR-
technique, parallels), resulted in small or no effects on the
taxonomic profiles.

Sampling traces with either tape or synthetic swab seems to have
no effect, and the cotton swab was deemed useless even before
sequencing, since it did not collect sufficient amounts of DNA.

PCR artifacts might influence the profiles, and we included two
types of PCR in our study. Even though PCR technique had a modest
effect along the second principal component, the over-all picture is
that it has little impact on the taxonomic profiles, and surprisingly
little effect on chimera formation and alpha-diversity. This
observation suggests that chimera formation and other PCR
artifacts are less influential for samples with little DNA [30]. This
might be explained by a dilution effect leading to lower probability
for formation of PCR artifacts.

A reasonable high accuracy is supported by the cross-validation
results. An actual pattern recognition was performed by fitting an
LDA model using the PCA scores (component 1–6) as predictors
and saliva or skin as categorical responses. A per-person cross-
validation was used, i.e. all samples from one person were
predicted based on training data from the other 5 persons. This
resulted in �94% of the samples which where correctly classified as
either saliva or skin. In the interests of conservativeness, it is more
important to avoid false positive results (detecting saliva when
saliva is not present) rather than false negative results (not
detecting saliva when saliva is present). 4 of the 5 false positive
samples had intermediate posterior probabilities (0.7–0.9), indi-
cating rather uncertain predictions. In a real case, we would
probably include a third “inconclusive-category”, where uncertain
predictions would be notified. Positioning of a threshold for this
category could be guided on the basis of the confidence interval of
posteriors for correctly predicted samples, but should be set to
ensure a conservative prediction. The false negative samples were
all from one single person, and were all samples of saliva on skin
from this person. These samples had a profile where saliva was not
at all recognized, based on how it looks in the other persons. Also,
the skin-microbiota of this person was rather distinct, and the
mixture (saliva on skin) was clearly dominated by this skin
microbiota.

It is reasonable to expect that low read-counts would lead to
low resolution in the taxonomic profile thereby potentially causing

a prediction error. However this is not clearly supported by our
results. Two of the experimental samples had very low read-
counts, less than 100 reads. One of these was miss-classified, but
most of the other low read-count samples were correctly classified
(see supplementary figure S9). The ANOVA showed that read-
counts did not have a significant effect on the profiles. Thus, for
now read-counts as low as 100 gave similar results to much higher
numbers of reads, but larger data sets should be investigated to
verify that such low read-counts could be used for body fluid
prediction in casework.

There are a number of other factors that we did not investigate
and that might influence the data quality for the intended purpose.
One factor is the extraction procedure. However, as we use a bead-
beating step to optimize extraction performance, it is uncertain
how large this effect could be. Another factor is sampling site on
the skin. Other studies have shown that the microbiota differs
considerably between even nearby body sites [36,52]. It is also
worth noticing that even our own experimental skin samples,
which are taken from between the fingers, are more diverse and do
not cluster as tightly as the saliva samples in the PCA plot (see
Fig. 3). This implies that skin might be relative challenging to
predict, and especially hands. However the low level of bacterial
background from skin (see Fig. 1) is an advantage for recognizing a
deposited body fluid.

When comparing the experimental data to HMP data there is an
obvious bias for both sample types (see Fig. 4), but the skin samples
show a lower degree of similarity than the saliva samples. One
obvious explanation for the skewed bias is that the HMP skin
samples are taken from other body sites than our samples (elbow
cleavage and behind the ear compared to between fingers). These
body sites are known to have different microbial compositions
[36,52]. The sampling technique is also different, but the deeper
skin layers sampled for the HMP studies should not differentiate
significantly in composition from our surface samples [53].
Another explanation for the observed bias could be that the
HMP and our samples are collected at different geographical
locations [50]. Factors such as extraction, library preparation and
sequencing have also probably contributed to the bias, but if so,
these would have influenced skin and saliva samples equally.

As mentioned above, bias between datasets from different
studies is expected. Our results confirm this and emphasize the
need for harmonization of protocols and data interpretation.
However, these results also suggest the use of reference samples is
something to consider for future method-development. By this, we
mean samples taken from pure sources wherever it is possible. If
we suspect saliva has been deposited on the skin of some person,
much is gained by collecting samples from the same person's pure
skin as close to site as possible. Even smallish amounts of saliva can
be detected on a non-typical skin if we have the profiles of this
non-typical skin.

For this study we have adopted standard bioinformatics work-
flows that have already been incorporated in health and environ-
mental studies. Although accepted as suitable for such use, these
methods can be further optimized to fit the problem of pattern
recognition which is our purpose. Also, at present massively parallel
sequencing is needed to survey all bacteria in the samples. In a longer
perspective this does not need to be the case. As only bacteria
relevant for body fluid prediction need to be detected, a customized
multiplex in combination with quantitative PCR (qPCR) might be the
most efficient approach. This will, however, require a systematic
search for the discriminating taxa across a huge set of samples.

5. Conclusion

For this study we have used saliva deposited on skin as a study
model, but the principle can be used for other bacteria rich body
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fluids. We demonstrate that forensic trace samples can be
sequenced by following a standard microbial 16S gene sequencing
protocol, and that the resulting microbial composition profiles are
applicable for discriminating saliva from skin. Experimental
factors, such as PCR technology and sampling technique did not
have any significant effect on the taxonomic profiles. A cross-
validation of the experimental data gave correct classification in
94% of the cases. Although our results are promising, there are
several aspects that needs to be investigated before the method
can be used in casework. As we find a clear bias between our
experimental data and the HMP database, it is evident that the final
method needs standardized protocols and training datasets for
calibration. We find that there is a person-effect influencing the
taxonomic profiles, especially from skin, indicating that a method
for detecting a body-fluid deposited on skin should always be
accompanied by a reference-sample of pure skin microbiota from
the same person. In addition the pattern-recognition methods
could be optimized. Despite this, our results show the potential of
microbial taxonomic profiles as a new forensic tool for body fluid
prediction. The method will probably have limitations when it
comes to classifying bacteria poor body fluids, but could,
dependent on the final accuracy levels obtained, be a valuable
supplement to other body fluid determination techniques.
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Abstract1

Background: In forensics the DNA-profile is used to identify the person who left a biological trace, but2

information on body fluid can also be essential in the evidence evaluation process. Microbial composition data3

could potentially be used for body fluid recognition as an improved alternative to the currently used presumptive4

tests. We have developed a customized workflow for interpretation of bacterial 16S sequence data based on a5

model composed of Partial Least Squares (PLS) in combination with Linear Discriminant Analysis (LDA). Large6

data sets from the Human Microbiome Project (HMP) and the American Gut Project (AGP) were used to test7

different settings in order to optimize performance.8

Results: From the initial cross-validation of body fluid recognition within the HMP data the optimal overall9

accuracy was close to 98%. Sensitivity values for the fecal, oral and vaginal samples were all ≥ 0.99, and for the10

skin and nasal samples 0.97 and 0.84 respectively. Specificity values were high for all 5 categories, mostly11

> 0.99. This optimal performance was achieved by using the following settings: Taxonomic profiles based on12

operational taxonomic units (OTUs) with 0.98 identity (OTU98), Aitchisons simplex transform with C = 113

pseudo-count and no regularization (r = 1) in the PLS step. Variable selection did not improve the performance14

further. To test for robustness across sequencing platforms, we also trained the classifier on HMP data and15

tested on the AGP data set. In this case, the standard OTU based approach showed a severe decline in16

accuracy. However, by using taxonomic profiles made by direct assignment of reads to a genus, we were able to17

nearly maintain the high accuracy levels. The optimal combination of settings was still used, except the18

taxonomic level been genus instead of OTU98.19

Conclusions: We present an optimized workflow for recognizing body fluids based on 16S sequence data. The20

method was customized for pattern recognition, and shows high accuracy, comparable to the alternative mRNA21

based methods. In addition, the method was proven to be robust across data sets from different studies, which22

is a condition for reasonable standardization needs and a wide-spread use. A major finding was that to achieve23

this robustness, the taxonomic profiles should be based on a supervised (classify reads directly to pre-determined24

bins) rather than an unsupervised (clustering into OTUs) method. The performance may be improved even25

further by using higher resolution taxonomic bins. The methods resulting from this study makes up the core of26

an R-package for the recognition of human body fluids from 16S sequence data.27
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Background29

DNA analysis is used to identify a person from a biological trace found at a crime scene. However, a trace30

might not be crime related and could be a result of ’innocent’ activity or contamination [1–5]. In order to31

establish a picture of how the trace was deposited, it is helpful to determine from which part of the body32

the trace originates. Traditionally, presumptive tests have been used for body fluid recognition, but33

immunochromatographic lateral flow strip tests are also commonly used in forensic routine work [6, 7]. In34

addition some laboratories have also implemented gene expression based methods using mRNA and35

miRNA markers [8, 9]. Although not yet ready for casework, a novel microbiota-based recognition method36

is a promising alternative [10].37

Microbiota sequencing was made possible with the introduction of massively parallel sequencing (MPS). In38

the last few years this field has had exceptional interest, and both human [11,12] and environmental39

microbiota [13] have been thoroughly explored. For the majority of these studies, hypervariable regions of40

the 16S ribosomal gene have been used for taxonomic identification. The microbiota refers to the41

taxonomic composition of a microbial community, and is typically what we identify by 16S amplicon42

sequencing. Large amounts of raw data (reads) from such samples are now publicly available, e.g. in the43

NCBI/SRA database (https://www.ncbi.nlm.nih.gov/sra).44

Tools for handling, preparation and analysis of 16S amplicon data are numerous, e.g. [14–17]. We showed45

earlier that body fluids can be recognized using standard methods for raw data processing, using Principal46

Component Analysis (PCA) in combination with Linear Discriminant Analysis (LDA) for pattern47

recognition [10]. However, the potential of this approach can only be revealed by a systematic evaluation48

over larger data sets exploring various settings in the data analysis.49

Microbiota sequencing has primarily been conducted to explore new microbial communities. The data50

processing pipelines for discovering and exploring the ecology are not necessarily optimal when it comes to51

recognizing already characterized communities. To recognize a body fluid from microbiota data is a52

classical pattern recognition problem. Pattern recognition is a branch of machine learning where a model53

utilizes regularities in a training data set to classify samples in a new test data set. The training and test54

data sets need to have the same format, with the same predictor variables. In the case of using microbiota55

data for body fluid recognition, the predictor variables are the taxonomic bins that the reads are assigned56

to. The taxonomic resolution determines the number of predictor variables. The standard pipelines will in57
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general cluster reads into Operational Taxonomic Units (OTUs) using an identity threshold of 97% [18].58

Since we cannot hope to find taxa which are easily detected and unique to any body fluid [19,20], we must59

rely on fairly stable patterns of high or low abundances of several taxa. The optimal taxonomic resolution60

must be fine-grained enough to produce abundance patterns that permit discrimination between body61

fluids, but still coarse enough to yield reproducible results over many samples. In addition to the62

taxonomic resolution, there are several choices for data transformation that will affect the precision of a63

method for microbiota-based body fluid recognition [21,22].64

We have performed a systematic study on data processing and pattern recognition approaches, and65

quantified their effects on microbiota-based body fluid recognition. The findings will be implemented in an66

R-package for microbial forensics that we are developing.67

Methods68

Data69

Public data from the Human Microbiome Project (HMP) [23] were downloaded from http://hmpdacc.org/.70

The HMP sequenced 16S amplicons from various body sites of hundreds of people, and we assembled these71

into four body fluids (oral, nasal, vaginal, fecal). The data set also include samples from human skin. Such72

samples may also be relevant in a forensic setting, and are included as a fifth category in addition to the73

four body fluids. In table 1 we show how our categories include the original body sites annotated by HMP.74

The 16S gene has 9 hypervariable regions designated V1-V9, and the HMP amplicons are from two distinct75

regions, V1-V3 and V3-V5. Reads for 5035 samples were downloaded, but only 4936 samples had above76

100 reads and were used in this analysis. These public data have been subject to a careful preprocessing77

(de-multiplexing, removing contaminants, etc), see protocols at http://hmpdacc.org/ for all details. Each78

sample was downloaded as a FASTA file of reads, using the SRA toolkit79

(https://www.ncbi.nlm.nih.gov/sra). Table 1 shows a summary of the data.80

To test the body fluid recognition performance with these data, we used a 10-fold cross-validation. The81

data were split into 10 non-overlapping subsets or segments, where each segment in turn was used as a82

test-set and the remaining data as a training-set. The samples were first sorted by body fluid and then by83

person within each body fluid. Next, they were given a segment-number from 1 to 10 repeatedly84

throughout the data set to achieve maximum spread of body fluids across segments. However, within each85

body fluid all samples from the same person were given identical segment-number, to ensure data from the86

same person and body fluid was found within one segment.87
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As an external test-set we also downloaded public data from the American Gut Project (AGP) [24], again88

using the SRA toolkit. These data differ from HMP in several ways. Different sequencing technologies89

(Illumina, while HMP uses Roche 454) were used to obtain short reads ( 120 bp) from 9500 samples from90

almost as many persons. The vast majority of these samples are from feces, as suggested by the project91

title, but the data set also includes some samples from all the other categories in our study. Another92

difference is the extraction protocols used by the two projects (AGP uses the Mobio MagAttract PowerSoil93

kit while HMP uses the Mobio DNeasy PowerSoil Kit). The AGP data are from region V4 of the 16S gene.94

Taxon read-counts95

The first question we addressed was how to group the reads in a sample into a set of taxa. We focused on96

two distinct approaches, one of clustering into OTUs and one of direct taxonomic classification of all reads.97

We also explored different taxonomic resolution for both approaches.98

A standardized pipeline for OTU-finding was set up using the VSEARCH software [17]. For a training99

data set, the reads were filtered for chimera, clustered into OTUs, and singleton clusters discarded. We100

used three different clustering identity-thresholds, 0.97, 0.98 and 0.99, where the first is the standard. Next,101

all reads in each training set sample were assigned to OTUs by searching against the OTU centroids, using102

same similarity threshold for clustering. For each test set sample the steps were repeated, except for the103

clustering, where the OTUs found from the training set were used.104

We also tested an alternative approach where the OTU-clustering step was omitted by using the105

taxMachine function of the microclass package [25] which is available for installation in the R computing106

environment [26]. The taxMachine is a pre-trained 16S classifier which uses transformed K-mer counts107

(8-mers) in a Näıve Bayes classifier to assign 16S reads into one of 1774 genera. It has been trained on 38108

781 complete 16S sequences of high quality, producing a quick and accurate classifier with additional109

statistics indicating if classifications are outliers (typically new genera or bad quality reads) or close to the110

border between two known genera (low confidence in classified genus). See [25] for details. We explored111

two thresholds, where the recognition-probability was set to 10e− 4 (weak filtering) and 10e− 10 (strict112

filtering). The taxMachine only classify reads to a genus, but we also considered lower resolution113

taxonomic profiles, by assembling genus-classifications into family, order, class and phylum. Thus, the114

reads were divided into fewer taxa, with larger read-counts in each taxon.115
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From reads to profiles116

When we refer to a predictor in the text below, it could mean an OTU, a genus or any other taxonomic bin117

that we group the reads into by one of the methods mentioned above.118

The read-count for predictor j in sample i is denoted ci,j and all read-counts from sample i were arranged119

in a vector ci = (ci,1, ..., ci,p) where the predictors are sorted alphabetically. The total read-count for a120

sample has no information about body fluid, and we consider only the relative read-counts121

ri,j =
ci,j
mi

(1)

where mi =
∑p

j=1 ci,j , i.e. the total read-count from sample i. The vector ri = (ri,1, ..., ri,p) is what we122

denote the raw taxonomic profile for sample i. The data type of a raw taxonomic profile is known as123

compositional data, i.e. the elements are relative abundances that always sum to 1.0 [22].124

A number of pattern recognition methods may benefit from a transformation of the data prior to their use125

for training a classifier. A commonly used transformation for compositional data is known as the126

Aitchisons simplex transform [27]:127

xi,j = log2

(
ri,j

(
∏p

j=1 ri,j)
1/p

)
= log2(ri,j) −

1

p

p∑

j=1

log2(ri,j) (2)

i.e. the logarithm of the read-counts divided by their geometric mean in the sample. Such transformed128

values will always sum to 0 in each sample.129

This transform requires only nonzero read-counts. For body fluid recognition some taxa are prevalent in130

some body fluids, but absent in other, and such taxa are among the most valuable discriminating variables131

in the entire data set. To discard them is not an option. A simple way around this is to add a given value132

as a pseudo-count to all read-counts. Adding C pseudo-counts to all taxa means we get133

r′i,j =
ci,j + C

mi + pC
(3)

as the smoothed read-count for genus j in sample i. Next, ri,j is replaced by r′i,j in (2). The vector134

xi = (xi,1, ..., xi,p) is the transformed taxonomic profile for sample i. The adding of various numbers of135

pseudo-counts may have an impact on the performance of the pattern recognition algorithm, and in this136

analysis we tried out pseudo-counts C over several magnitudes to investigate this effect (C between 0.001137

and 100).138
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Pattern recognition139

The pattern recognition method we have used in this study is a combination of two well-known and much140

used supervised learning methods, Partial Least Squares (PLS) [28] and LDA [29]. PLS can in this context141

be viewed as a dimension reduction method which finds the linear combinations of predictors that best142

explain the difference between pairs of body fluids. A single parameter is tuned, the number of linear143

combinations, balancing the dimension reduction between too little explained variation and too much focus144

on local details. LDA is a linear classifier which assigns objects into groups based on their Mahalanobis145

distance to group centres. It estimates a common covariance for the included groups, making it robust, and146

uses Bayes rule for calculation of posterior probabilities of group affiliations.147

For the first step of the pattern recognition method taxonomic profiles for all samples in the training-set148

were assembled, as rows, into a matrix X. The dimensions of this matrix is (n× p) where n is the number149

of samples and p is the number of predictors. For each row of X there is a corresponding body fluid label150

in the (n× 1) vector y.151

We have in this case N = 5 categories (body fluids). We could have opted for one universal model152

recognising all five categories, but for reasons discussed later, we have taken a different approach. We split153

the problem into N(N − 1)/2 = 10 different two-category problems. This means ten separate submodels,154

each discriminating between two body fluids. In each submodel the two involved body fluids are dummy155

coded as 0 and 1, i.e. the label vector y has a corresponding numeric vector yd of zeros and ones.156

The training of a submodel starts by fitting a PLS-model to the training-set (yd,X). The reason for the157

PLS-step is that X has many columns (p predictors), with collinearity, making X ′X (close to) singular.158

This makes any subsequent LDA model fitting impossible. The PLS-step simplifies the problem. This is159

achieved by replacing the original (n× p) data matrix X by the (n× q) scores matrix Z from the160

PLS-model, where q << p. The latter matrix has orthogonal columns, and the number of dimensions q to161

include is found using the McNemar-test procedure described in [30], seeking the smallest dimension giving162

not significantly poorer prediction than the best possible. The stringency of this test can be adjusted,163

producing various degrees of dimension-reduction, and in this study we tried out several stringencies164

(stringency between 0.1 and 1). We refer to this as regularization below.165

Next, the reduced subset (y,Z) is used to train the LDA classifier. This means fitting a multivariate166

gaussian density to the scores Z of each category, assuming equal variances. We used flat priors in all167

cases, i.e. equal prior probability of both body fluids in all models.168

When a new sample taxonomic profile x is considered, it is classified by all the ten submodels and in each169
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case assigned by LDA a posterior probability for the two categories of the submodel. All categories are170

involved in four submodels, and by averaging the posterior probabilities over these four outcomes for each171

category, the new sample is assigned to the category with the largest average posterior probability.172

Variable selection173

It is more than likely that many of the predictors are not informative for discriminating between two174

specific body fluids. A variable selection procedure was implemented to see if a reduced set of taxa could175

improve the results. This variable selection was done independently for each of the ten submodels.176

We used the backward elimination algorithm described in [31], with some minor modifications. This means177

we start out using all predictors, and then gradually discard the least informative in each iteration until178

only one is left. The cross-validated classification error is monitored for each iteration, and the selected179

subset of predictors is the smallest subset producing not significantly poorer results than the optimum180

along the elimination path.181

The importance of each predictor is decided in the PLS-step of our pattern recognition method, using the182

VIP-criterion [31]. This criterion is defined only for two-category problems, and this is an important183

argument for splitting the entire problem into many two-category problems instead of one multi-category184

problem.185

Results and Discussion186

Optimization within HMP data187

Based on cross-validation inside the HMP data set, we explored how various factors influence the accuracy188

of classification. All combinations of factors were tested in a 10-fold cross-validation within the HMP data189

set to compute body fluid recognition accuracy. Thus, for each factor combination 10 accuracy values were190

computed. We tested the effect of each factor by using these accuracy-values as the dependent variable in191

an Analysis of Variance (ANOVA). The combination giving the best (largest) accuracy was found, and all192

other combinations were tested against this to see if they produced significantly poorer results. All factors193

and their levels are given in Table 2.194

First, we made a preliminary comparison within the coarse-level taxonomic profiles. In this case all reads195

from each sample were classified into known taxonomic bins at levels phylum, class, order, family or genus,196

and in this step a recognition-probability threshold was used to decide how well a read must be recognized197

to be assigned to a specific bin. We tried out two thresholds, 10−4 (weak) and 10−10 (strict). This analysis198
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produced two distinct results: First, the genus- and family-level taxonomic profiles produced much better199

results than the coarser resolutions. Second, using the weak threshold produced slightly better accuracies200

compared to the strict regime (p = 0.1). Thus, from this preliminary study we discarded the phylum, class201

and order taxonomic levels from further analysis, and used only the weak threshold (10−4) for the family202

and genus read classification.203

The full comparison of all remaining factors is displayed in Table 2. This revealed that the best204

combination produced an overall accuracy close to 98%, i.e. in 98 out of 100 samples we correctly205

recognized the body fluid. This indicates that body fluids can be recognized from microbiota data with a206

very high precision, and that method performance is comparable to that of mRNA based methods [32–34].207

In Figure 1 we display the details in the recognition of the different body fluids under optimal settings for208

both region V1-V3 and V3-V5 datasets. The vaginal, oral and fecal body fluids were extremely well209

recognized, having sensitivities ≥ 0.99. This is promising, since we regard these highly relevant in a210

forensic perspective. In addition, a reliable forensic test for feces is to our knowledge non-existing. The211

errors were predominately made for the nasal and skin samples. Nasal samples had the lowest sensitivity at212

0.84 and were typically miss-classified as skin (in 14.8% of the cases). As the samples are from the nostrils,213

the most obvious explanation for this is a contamination from the nearby skin microbiota. The skin214

samples were also sometimes difficult to recognize (sensitivity at 0.97), and were confused with all other215

types of body fluids. It is known that skin samples have a large variation in bacterial composition. Not216

only does the composition differ between body sites, but also between individuals for the same body217

site [12,35,36]. Recognizing skin samples based on microbiota is bound to be difficult, and it is not218

surprising that such samples are confused with all the different body fluids. For this study our main focus219

was to recognize body fluids, and skin was included as body fluid samples are often collected from skin. We220

have previously shown that skin microbiota has a relatively low DNA content compared to saliva when221

sampling with tape or synthetic swabs from saliva deposited on skin [10]. It is reasonable to believe that222

this quantitative ratio also applies for feces and vaginal secretion [37]. If empirical studies should verify223

this assumption, the impact of skin microbiota on body fluid samples collected from skin should be less224

problematic. Anyhow, a final tool applicable in casework should to be able to deconvolute mixtures as225

many trace samples will contain more than one body fluid. Such a tool should also improve accuracy for226

the nasal samples by separating between skin and nasal microbiota.227

Sensitivity and specificity are much used parameters to evaluate method performance (see table 3). The228

sensitivity is the proportion of positives that are correctly identified, mentioned above. The specificity is229
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the proportion of negatives that are correctly identified. Specificity is the most important parameter in a230

forensic context as a false positive result can lead to a wrong conviction. Hence, the specificity value needs231

to be high. In our case the specificity values were > 0.99 for the vaginal, oral and nasal samples and > 0.98232

for the skin and fecal samples, and we regard this as promising.233

The optimal accuracy was achieved using the combination: Taxonomic profiles based on OTUs with 0.98234

identity (OTU98), Aitchisons simplex transform with C = 1 pseudo-count and no regularization (r = 1) in235

the PLS step. This is the Reference-combination in Table 2. First, we notice that it was optimal with236

OTUs of a finer resolution than the standard 0.97 identity. However, from Table 2 the drop in accuracy to237

OTU97 or OTU99 was insignificant. The genus level model showed a significantly poorer accuracy of 0.01238

compared to the reference. This means that there was some variation in very specific species, or even239

strains, typical for some body fluids, and that this was lost when assigning reads to the genus level. Next,240

we notice that the Aitchison simplex transform seems to be beneficial for the pattern-recognition methods.241

It was optimal using this transform with C = 1 pseudo-count, but using C = 0.1 or C = 100 gave nearly242

the same result. The important difference was to C = 0, i.e. no transformation at all, which produced243

poorer results. The regularization in the PLS-step had little impact, and using no regularization was the244

best choice. The HMP reads are sequenced from two distinct regions of the 16S gene, and we observe that245

data from the V3-V5 region produced slightly better accuracies than those from V1-V3. However, since246

there are approximately twice as many samples from the V3-V5 region, this might explain the difference.247

Larger training data sets in general means better classification accuracies. Previous studies indicate that248

the discriminative power between various 16S regions is very small [38].249

Unless otherwise stated, we used the optimal combination of factors (reference-combination) in the analysis250

below.251

Variable selection252

A variable selection procedure was included to evaluate if selecting only a smallish number of OTUs would253

improve the classification results from the optimal results achieved above. Again, we used the HMP data254

and 10-fold cross-validation. Variable selection was performed separately for each pair-model, see Methods255

for details. Also, in the cross-validation there were 10 (slightly) different training data sets, hence 10256

(slightly) different sets of OTUs were found. Thus, variable selection had to be performed separately for257

each segment, producing 10 (slightly) different selections. Variable selection was performed using the258

optimal factor combination from above, but we used data for both regions V1-V3 and V3-V5 separately.259
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The overall result was that variable selection had little impact on the total classification accuracy. For260

V1-V3 region the accuracy improved from 0.97 to 0.98 after variable selection, and for V3-V5 region the261

difference was in reality zero. The mean number of selected OTUs for each model (body fluid pair) is given262

in supplementary table S1. The number of selected OTUs ranged from 9 (”nasal vs fecal”) to several263

hundred (e.g. ”nasal vs skin”). To investigate the selected OTUs further, their centroid sequences were264

classified to genera using taxMachine. Each body fluid is involved in 4 pair-models, and the selected265

genera for all these were summed to give the genera most frequently associated with a body fluid. An266

overview is given in figure 2. Note that the association of a genus with a body fluid does not imply that267

this genus is (highly) present in that body fluid, it could just as well be that its absence is important for268

body fluid recognition. In figure 2 the text size used for a genus is proportional to the expected relative269

abundance in the actual body fluid [39]. Overall, the most abundant genera of a body fluid seemed to be270

important for selection as these were all found among the top ranking associations. In addition, many were271

important for multiple body fluids. This was expected as many of the selected genera have a uniquely high272

abundance in only one or a few of the body fluids. Consequently, they will also be important as low level273

genera when identifying the other body fluids.274

Even if classification was not improved by variable selection, a reduced taxa model may still be of some275

interest. Currently, PCR multiplexing of a smallish number of taxa would be a fast and cheap way to276

obtain the required microbiota data for body fluid recognition. In addition PCR multiplexing is277

well-known in all forensic labs. However, we should remember that any selected variable in a multivariate278

problem means that we select some out of many other highly correlated variables, and unless we have huge279

training data sets we may end up with unstable results if we base them on too few taxa. Given the fast280

developments of sequencing technologies and decreasing sequencing costs, we would not invest much effort281

into developing a strong variable selection for the purpose of PCR multiplexing.282

Predicting AGP samples283

The results achieved by cross-validation within the HMP data can be seen as a best-case scenario, where284

both test- and training-set raw data have been obtained by the same protocols and sequencing technology.285

Since the HMP and AGP are two independent studies, using models trained on HMP data to recognize286

body fluids from the AGP data, is a more realistic scenario with respect to actual casework [40]. From the287

HMP data, models were trained on both region V1-V3 and V3-V5, using the optimal settings described288

above for all other parameters (no variable selection). Next, all AGP samples were classified, resulting in289
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accuracies of 0.73 and 0.76 for regions V1-V3 and V3-V5, respectively. For region V1-V3 the accuracy was290

expected to be low, since the AGP reads were from the V4 region. Assigning these reads to the OTUs291

found in the V1-V3 region must result in many errors. However, the model trained on the HMP data from292

region V3-V5 also showed considerably poorer accuracy than in the previous cross-validation (0.76293

compared to 0.98 previously). Figure 3 shows detailed results for all body fluids. The numbers of nasal and294

vaginal AGP samples were very low, and their respective accuracies are unreliable. The specificity values295

are comparable with the specificity values seen from the HMP cross-validation (the lowest specificity is still296

> 0.98). See table 3 for details.297

The severe loss in classification accuracy compared to the cross-validation within the HMP data illustrates298

that there are effects of protocols and sequencing technologies between HMP and AGP that influence how299

the taxonomic profiles will look like. A very high-resolution taxonomic profile, like OTUs with 0.98300

identity, will tend to overfit the model to the data in the training set, and is correspondingly easy to301

mislead once we have slightly different reads. For this reason we again tested the coarser approach, where302

reads are assigned directly to a genus instead of finding new OTUs from every training set. Reads from303

both HMP and AGP data sets were assigned directly to a genus using the taxMachine described above.304

Models were trained on the genus-profiles from the HMP data, and again we used separate models for the305

V1-V3 and V3-V5 regions. The previous optimal settings were used, except that models were now based on306

genus rather than OTU98. Samples from the AGP data set were classified according to their genus-profiles.307

The resulting overall accuracies were now 0.96 for both the V1-V3 and V3-V5 trained models.308

This, most astonishing result, shows that the accuracy for predicting AGP-samples is almost as high as for309

cross-validation within the HMP samples. Assigning reads to pre-defined genera results in a much higher310

reproducibility across experiments, and the profiles from HMP-data and AGP-data become very similar for311

the same body fluids. OTU-finding procedures have in general been designed to find all kinds of potentially312

interesting taxa when probing new microbial communities. We must expect several of these OTUs to be313

artefacts or at least not very robust to a change in sequencing protocols and technologies [41,42]. Assigning314

reads directly to pre-defined genera is much more robust in this perspective. The resolution is poorer, but315

also more stable, since the same number of reads is assigned to much fewer taxa, giving larger counts for316

each. In the HMP data sets, we find that reads are assigned to 1640 different genera, while OTU97, OTU98317

and OTU99 produce a resolution of ∼ 14000, ∼ 25000 and ∼ 65000 taxa, respectively. Another point is318

that the direct binning of reads with taxMachine is magnitudes faster than any OTU-finding pipeline.319

We also noticed that when we trained a model on the V1-V3 data, and predicted AGP-samples taken from320
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the V4-region, the results were just as good as if we trained on the V3-V5 region (accuracy 0.96). Direct321

binning of reads does not require the reads to be from any specific region of the 16S gene. This is obviously322

a huge advantage. As an illustration, we merged HMP-samples from both the V1-V3 and the V3-V5323

regions into one large training data set. We trained a model on this, and obtained an overall accuracy for324

the AGP samples of 0.96.325

From the cross-validation within HMP data, we saw that higher resolution profiles have a potential to326

improve body fluid recognition compared to genus-profiles. For this reason, we propose that in the future327

we should investigate the use of direct binning of reads, but into pre-defined taxa based on a finer328

resolution than genus. Currently, taxonomic classifiers like taxMachine or the RDP-classifier [43], will only329

make use of generic taxa and stop at the genus level. It is possible to re-train such tools on taxonomic bins330

purpose made for recognizing body fluids, and this could show to be the best choice.331

We have earlier proposed that the expected bias between forensic labs could be solved by332

standardization [10]. However, using the direct binning approach will probably reduce the standardization333

effort. This might also pave the way for using universal training data sets that can be shared between334

laboratories.335

For all experiments where AGP data were used for testing, we have confirmed that the used optimal336

settings still holds by repeating the set-up from the initial optimization experiment.337

Conclusions338

We present a customized workflow for recognizing body fluids from 16S sequence data by using a model339

composed of PLS in combination with LDA. For method development and evaluation we used large data340

sets from the HMP and AGP consortiums which each were categorized into fecal, nasal, oral, skin and341

vaginal samples.342

We used the standard approach to build taxonomic profiles where reads were assigned to OTUs. Method343

optimization was performed by testing combinations of different calculation settings in a cross-validation344

setup using HMP data. Method performance was generally high for the majority of combinations with only345

a few leading to substantial decrease in performance. Nevertheless we were able to identify optimal346

combination of settings as: Taxonomic profiles based on operational taxonomic units (OTUs) with 0.98347

identity (OTU98), Aitchisons simplex transform with C = 1 pseudo-count and no regularization (r = 1) in348

the PLS step. By using these settings, the fecal, oral and vaginal samples had sensitivities ≥ 0.99 and349

specificities > 0.99. This is promising as we regard these body fluids as highly relevant in a forensic setting.350
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Variable selection did not improve method performance significantly.351

When mimicking a real case scenario by training on HMP data and testing on AGP data, the performance352

using the OTU98 based model declined severely. However, this was overcome by using the alternative353

approach to build the taxonomic profiles. Instead of searching for OTUs in each training set, reads were354

assigned directly to pre-defined genera with the taxmachine tool. By using this approach we obtain a355

much more stable performance. The overall accuracy was now ∼ 0.96 and specificities ≥ 0.98 which is quite356

similar to what is achieved using the alternative mRNA based methods. Performance was best for the fecal357

and oral samples. To our knowledge, a forensic method for fecal recognition is non-existing. We confirmed358

that when replacing OTU98 by genus, all other optimal settings from the initial cross-validation still held359

when testing on the AGP data. Re-training a tool like taxMachine on a purpose-designed set of sequences360

for human body fluid recognition is probably the ultimate solution in this direction.361

In this study we have demonstrated the power of microbiota based body fluid recognition for forensic use.362

We have made no attempts to compare different pattern-recognition methods, and our choice of PLS in363

combination with LDA could very well be improved upon, however, not by much given the good accuracies364

already obtained. The method is, however, still not ready for casework as this demands inter-laboratory365

validation studies. Biological trace samples are often mixtures of several body fluids, and any366

casework-ready method should be able to deconvolute mixtures, or at least indicate which body fluids are367

present. Also, in forensics some kind of statement of reliability is needed. Currently, it is far from obvious368

how such statements should be computed and presented from the outcome of a pattern-recognition369

method. However, the methods and results presented here forms a core of an R-package we are developing370

for use in a forensic setting.371
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Figure 1 - Samples classified when cross-validating on HMP data494
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Figure 1: The number of samples assigned to the various body fluid categories after 10-fold cross-validation
in the HMP data. The rows indicate the true category of the samples, while the columns are the predicted
categories. The diagonal elements indicate the number of correctly classified samples for each body fluid.
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Figure 2 - Selected genus important for body fluid recognition495

Figure 2: The 10 most frequent genera selected for each body fluid. Text size is proportional with expected
abundance of a genus in a specific body fluid. For convenience, high abundance genera have been given
individual colors in the figure.

Figure 3 - AGP samples classified from models trained on HMP data496
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Figure 3: The number of samples assigned to the various body fluid categories after training on the HMP
data and tested on the AGP data. Only results for the V3-V5 region are shown. The left panel uses the
OTU98 based taxonomic profiles that turned out optimal in the cross-validation procedure (see Table 2),
and the right panel uses the taxonomic profiles given by direct assignment of reads to genus.
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Tables497

Table 1 - Summary of HMP data used498

Table 1: A summary of the data. Each sample belongs to a body fluid indicated in the left column. Then we
list, for each body fluid, the number of persons contributing, the total number of samples, median number
of reads per sample, average read-length (bases) in a sample and finally the original body site annotations
given by the Human Microbiome Project.

Body fluid Persons Samples Reads Length Original body site
Fecal 222 324 13980 416 Stool
Nasal 204 281 10471 425 Anterior nares
Oral 218 2827 11904 437 Attached/Keratinized gingiva, Buccal mucosa,

Hard palate, Palatine tonsils, Saliva,
Subgivingal plaque, Supragingivl plaque, Throat,
Tongue dorsum

Vaginal 103 406 12711 431 Mid vagina, Posterior fornix, Vaginal introitus
Skin 229 1040 10747 424 Antecubital fossa (left or right),

Retroauricular crease (left or right)

Table 2 - Optimizing accuracy supported by ANOVA499

Table 2: ANOVA results to investigate the different factors’ effect on accuracy when strictness is set to
weak and initial predictor levels phylum, class and order have been removed from the analysis. Reference
corresponds to Predictor=OTU98, Region=V3-V5, Pseudo-count C=1 and Regularization=1.0. In the esti-
mate column the accuracy for the reference settings is given at the top, and the negative differences relative
to this are given for the other combinations below. The p-value column gives the significant levels for the
comparison of accuracy obtained with the respective combinations of setting and the reference accuracy.

Test Estimate
(accuracy)

p-value

Reference 0.9808 < 2e− 16
Predictor=otu99 -0.0004 0.76
Predictor=otu97 -0.0003 0.82
Predictor=genus -0.0097 3e− 12
Predictor=family -0.0169 < 2e− 16
Region=V1-V3 -0.0081 < 2e− 16
Pseudo-count C=0 -0.0122 < 2e− 16
Pseudo-count C=0.01 -0.0028 0.02
Pseudo-count C=100 -0.0050 6e− 05
Regularization=0.1 -0.0042 8e− 05
Regularization=0.5 -0.0017 0.12

Table 3 - Sensitivity and Specificity500

Table 3: Comparison of sensitivity and specificity for different models. Left: Cross-validation within the
HMP region V3-V5 dataset. Right: Reads assigned directly to genus, training done with HMP region V3-V5
data and testing done on AGP region V3-V5 data. For both models the other optimal settings from table
2 were used. The numbers of nasal and vaginal samples were extremely low in the AGP data set, and
corresponding sensitivity and specificity values are not given in the table.

HMP region V3-V5 AGP region V3-V5
Body fluid Sensitivity Specificity Sensitivity Specificity
Nasal 0.842 0.998 - -
Oral 0.996 0.994 0.944 0.994
Skin 0.970 0.984 0.877 0.985
Vaginal 0.989 0.999 - -
Fecal 0.991 0.998 0.970 0.983
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Additional Files501

Supplementary Table 1 - Average number of variables selected502

Table S1: Average number of variable selected across selection matrices for the 10 data subsets.

Pair of Body
fluid

Region
V1-V3

Region
V3-V5

Fecal vs Nasal 9 9
Fecal vs Oral 27 21
Fecal vs Skin 88 85
Fecal vs Vaginal 17 16
Nasal vs Oral 49 44
Nasal vs Skin 379 454
Nasal vs Vaginal 107 54
Oral vs Skin 171 1039
Oral vs Vaginal 51 220
Skin vs Vaginal 19 136
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