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ABSTRACT

Amosaic approach to represent subgrid snow variation in a coupled atmosphere–land surface model (WRF–

Noah) is introduced and tested. Solid precipitation is scaled in 10 subgrid tiles based on precalculated snow

distributions, giving a consistent, explicit representation of variable snow cover and snow depth on subgrid

scales. The method is tested in the Weather Research and Forecasting (WRF) Model for southern Norway at

3-km grid spacing, using the subgrid tiling for areas above the tree line. At a validation site in Finse, themodeled

transition time from full snow cover to snow-free ground is increased froma fewdays with the default snow cover

fraction formulation tomore than 2months with the tiling approach, which agrees with in situ observations from

both digital camera images and surface temperature loggers. This in turn reduces a cold bias at this site by more

than 28C during the first half of July, with the noontime bias reduced from 258 to 218C. The improved rep-

resentation of subgrid snowvariation also reduces a cold bias found in the reference simulationon regional scales

by up to 0.88C and increases surface energy fluxes (in particular the latent heat flux), and it resulted in up to 50%

increase in monthly (June) precipitation in some of the most affected areas. By simulating individual soil

properties for each tile, this approach also accounts for a number of secondary effects of uneven snow distri-

bution resulting in different energy and moisture fluxes in different tiles also after the snow has disappeared.

1. Introduction

Inmid- to high-latitude regions, the seasonal snow cover

exerts an important influence on the energy transfer be-

tween the atmosphere and the land surface. With an al-

bedo typically much higher than that of the surface below,

the presence of snow reduces the amount of solar radiation

absorbed by the surface. The very low thermal conduc-

tivity of snow makes it an efficient insulator between the

atmosphere and the ground, further altering the surface

temperature and energy balance (Zhang 2005). Snow is

also an important energy sink during the melting season,

preventing the surface temperature from rising above the

melting point of ice. Finally, the storage of water in the

snowpack from the accumulation season into the melt-

ing season may significantly change the availability of

moisture for evapotranspiration and runoff. A realistic

representation of the snow cover and its related physi-

cal properties is therefore of key importance when simu-

lating land surface processes and interactions with the

atmosphere.

A major challenge when representing snow in land

surface models (LSMs) is the nonuniform distribution of

snow on the ground. A number of processes are re-

sponsible for variations in snow depth on different scales

(Clark et al. 2011). Depending on the resolution of the

model, some of these processes might be well repre-

sented, whereas others take place on too fine scales or

are related to processes that are not accounted for in the

model. In numerical weather prediction (NWP) models,

redistribution of snow by wind is an example of the

latter. Wind drift often dominates the local (,1km)

snow distribution pattern in nonforested mountainous

regions, if the elevation differences on the subgrid scale

are low (Clark et al. 2011). This results in an asymmetric

distribution pattern of snow depths at subgrid scales.

To represent the subgrid snow distribution, many

LSMs used in NWP models apply depletion curves to

relate mean snow depth or mass to the snow cover

fraction (SCF). These vary in sophistication, from a
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simple linear relationship between snowwater equivalent

(SWE) and SCF (e.g., Sellers et al. 1996) to more ad-

vanced parameterizations accounting for different

surface characteristics like surface roughness (e.g., Niu

and Yang 2007) or subgrid topographic variance (e.g.,

Swenson and Lawrence 2012). In recent years more pa-

rameterizations also account for different SCF–SWE re-

lationships for the accumulation and melt seasons (the

hysteresis effect) either by using different functions (e.g.,

Swenson and Lawrence 2012; Samuelsson et al. 2015) or

including snow density in the SCF formulation (e.g., Niu

and Yang 2007; Dutra et al. 2010). LSMs also differ in

how they apply the SCF: many models only use the SCF

to estimate effective parameters like albedo or surface

roughness used in a single surface energy balance (SEB).

This can, however, lead to early snowmelt (Liston 2004),

and someLSMs now simulate separate SEB for the snow-

covered and snow-free fractions of each grid cell. In at

least one regional climatemodel (RCA; Samuelsson et al.

2015) this also involves simulating different soil columns

for the snow-covered and snow-free fraction.

Another approach for representing subgrid snow

variations is to assume a probability distribution for

snow at the end of the accumulation season. One such

approach is described by Liston (2004), which assumes

lognormal distributions with uniform melt rates. The

SCF and mean snow depth can then be derived with

analytical solutions given the premelt distribution and

the accumulated melt. This scheme has the advantage of

using the observable coefficient of variance (CV) as the

only input parameter to determine the shape of the

distribution. However, the assumption of uniform melt

is not necessarily a good approximation (Pomeroy et al.

2004), and it has been demonstrated that certain nu-

merical criteria are not met for distributions with CV

values larger than about 0.75 (Swenson and Lawrence

2012). Finally, the scheme requires a clear distinction

between the accumulation season and the melting sea-

son, where snow accumulation during the melting sea-

son is accounted for in an ad hoc way.

In this study we introduce and test a tiling approach to

simulate subgrid snow variations. This method is similar

to the mosaic approach implemented in several LSMs to

represent different land surface types on subgrid scales

(e.g., Avissar and Pielke 1989; Koster and Suarez 1992),

but assumes different snow accumulation in each tile by

scaling solid precipitation according to a probability

distribution function. This method differs from the

probability distribution scheme described above (Liston

2004) in that the distribution is applied continuously to

the snow input in the LSM, rather than once to the total

accumulated snow. It therefore does not require a dis-

tinction between snow accumulation and snowmelt

seasons. The use of individual tiles with individual soil

columns also means that variations in other variables

affected by snow are accounted for. This includes vari-

ations in soil moisture and soil temperature that can

affect land–atmosphere exchange processes long after

the snow has melted.

The method is tested in the Weather Research and

Forecasting (WRF) Model with the Noah LSM and is

applied to the high-mountain regions of southern Nor-

way at 3-km grid spacing for a full year from September

2011 to September 2012. The scaling of snow accumu-

lation within each grid cell is based on lognormal dis-

tributions estimated for this region by Gisnås et al.

(2016), based on terrain sheltering indexes (Winstral

et al. 2002) calibrated with observed snow distributions

at snow maximum. The results are compared to a ref-

erence simulation with the standard representation of

SCF in WRF–Noah, to observations from a field site,

and to a gridded observational dataset.

2. Models and setup

The WRF Model (Skamarock and Klemp 2008) is a

mesoscale NWP model that is widely used for opera-

tional weather forecasting, weather research, and re-

gional climate simulations, with a large number of

different physical parameterization options. Here, we

apply WRF with two one-way nested domains with 15-

and 3-km grid spacing, respectively (Fig. 1), and with 60

vertical layers up to a model top of 50 hPa. The Noah

LSM, used as the lower boundary condition for the at-

mosphere, simulates four soil layers down to a depth of

2m below the surface, with the snowpack treated as a

part of the upper soil layer (Ek et al. 2003), and with a

single (blended) SEB for snow-covered and snow-free

fractions. Since version 3.6, the WRF–Noah modeling

system offers the option to include a mosaic approach

to represent different land classes within each grid cell

(Li et al. 2013), which is here exploited for implementing

the subgrid snow tiling.

Other physical parameterizations used in our simu-

lations broadly follow those used by Aas et al. (2015):

cloud microphysics is simulated with the two-moment

Morrison scheme (Morrison et al. 2005). The short- and

longwave radiation are simulated with the Rapid Ra-

diative Transfer Model for GCM applications

(RRTMG; Iacono et al. 2008). The Mellor–Yamada–

Janjić (MYJ) scheme is used to simulate the atmo-

spheric boundary layer, in conjunction with the Eta

surface-layer scheme (Janjić 2002). In the coarse-

resolution domain, cumulus convection is parameter-

ized with the Kain–Fritsch scheme (Kain 2004).

Boundary conditions are taken from ERA-Interim
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(Dee et al. 2011), updated every 6 h. ERA-Interim is

also used as the initial condition at the beginning of the

simulation, after which the model was run transiently

without reinitialization or nudging. Finally, to avoid

problems with numerical instabilities due to high ver-

tical velocities along the steep topography at the west

coast of Norway, the vertical velocity dampening op-

tion (w_damping) in WRF was turned on.

a. Subgrid tiling

In the original mosaic tiling formulation in WRF–

Noah (Li et al. 2013), each grid cell is divided into a user-

specified number of tiles N with different land types.

Each tile receives the same grid-average atmospheric

forcing but is simulated individually with its own set of

state variables from the surface through the four soil

layers. The surface variables needed for the coupling

withWRF are derived as averages of all tiles within each

grid cell. For most parameters (e.g., sensible and latent

heat fluxes, emissivity, and albedo) this is simply com-

puted as the area-weighted average of all of the tiles. For

skin temperature and surface roughness length, the

following two equations are used, respectively:
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where i indicates the tile number, «i is the emissivity, Ti is

the surface temperature, z0i is the roughness length, and

Ai is the normalized area of the ith tile. It should be noted

that the sensible and latent heat fluxes are simulated in

WRF–Noah through bulk transfer formula with stability-

dependent exchange coefficients for heat and moisture

(Chen et al. 1997). These exchange coefficients are cal-

culated in the surface layer of the WRF Model rather

than the LSM and hence use the gridcell-averaged

properties from all the tiles. This means that the same

stability is assumed for all tiles in a grid cell, although the

fluxes are different because of different temperature and

moisture gradients between the individual tiles and the

first atmospheric layer. When representing snow varia-

tions on scales down to a few meters in wind-exposed

regions like high-mountain southern Norway, we take

this to be an adequate approximation. However, for

larger-scale snow variations or calm conditions, it may be

better to calculate individual exchange coefficients for

each tile. This would likely increase the differences be-

tween the tiles, as increased stability would delay themelt

of the tiles with the largest snow accumulation.

The mosaic tile architecture is utilized for the subgrid

snow tiling in this study, but with some important modi-

fications: we use the same (dominant) land surface type

for all tiles within a grid cell, implying that without any

snow all of the N tiles in a grid cell would be identical.

Furthermore, each tile represents an area of identical

size. The nonuniform snow distribution within each grid

cell is then accounted for by scaling the amount of solid

precipitation received by each tile with a scaling factor f.

For tile number i, the amount of snow received during a

snow event, represented with a gridcell-averaged snow

accumulation S, is then given as Si 5 fiS. We assume that

no snow is redistributed between different grid cells, so

that the average of these scaling factors in each grid cell is

equal to 1. Liquid precipitation (including the liquid

fraction of mixed precipitation) is uniformly distributed

within a grid cell, implying that the water and energy

input from rain-on-snow events is the same in all N tiles.

The scaling factors fi (Fig. 2, top) are based on log-

normal probability distribution functions determined by

FIG. 1. (a) Innermost WRF Model domain (3 km) with model

topography. Colored area shows elevations .1000m MSL and the

red dot indicates the location of Finse. (b) Finse field site with sur-

roundings. Red and black dots show locations of automatic weather

stations (AWSs) and temperature loggers, respectively.
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CV. These are aggregated into 10 equally sized tiles by

calculating mean values for every 10% of the area from

the distribution. Individual CV values were derived for

each grid cell from a terrain parameterization (Winstral

et al. 2002) over a 10-m-resolution digital terrain model,

accounting for wind effects during the accumulation

season. The snow distribution scheme, described in de-

tail in Gisnås et al. (2016), is calibrated with snow depth

data from a large-scale airborne laser scan (Melvold and

Skaugen 2013) conducted over the Hardangervidda

mountain plateau in southern Norway. Independent

snow distribution observations obtained from ground-

penetrating radar surveys were used for validation

(Gisnås et al. 2016).
We apply the mosaic snow tiling to nonforested and

nonglaciated grid cells only, that is, grassland and tun-

dra. For the analysis we focus on regions above 1000m

MSL, which are characterized by relatively large snow

accumulation and substantial redistribution by wind.

b. Snow cover fraction

The snow cover fraction in standardNoah is estimated

as a function of SWE and a vegetation-dependent ref-

erence SWE Wmax, according to the following equation

(Barlage et al. 2010):
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Our subgrid tiling with nonuniform snow distribution

makes this SCF parameterization less relevant as the

gridcell-average SCF is to a first order determined by the

tiles. However, with a limited number of tiles there is

still a need for parameterizing SCF within each tile, but

in a way that accounts for the fact that this is partially

resolved by the tiles. To solve this, we apply the original

SCF formulation in Noah within each tile, but with a

Wmax scaled by the scaling factor for the tile

with smallest accumulation f1. This gives

WmaxMS
5WmaxRS

( f1), whereMS denotes the mosaic snow

simulation and RS denotes the reference simulation. In

this way we obtain a gradual transition from fully pa-

rameterized SCF (i.e., N 5 1) to a more and more re-

solved SCF, as an increasing number of tiles is associated

with a smaller f1. In addition, the minimum amount of

snow accumulation required to achieve a full snow cover

in a grid cell is the same as in the original formulation,

although a snow accumulation event smaller than Wmax

will initially result in a higher SCF (Fig. 2, bottom).

3. Site description and validation data

The model is applied to southern Norway, extending

from 588 to 638N. Both the topography and climate in

Norway are dominated by the Scandinavian mountain

range. The landscape in the western parts is dominated

by steepmountains and deep fjords, while on the eastern

side the mountains are gentler and decrease gradually in

height eastward from the ridge.With peaks up to 2469m

MSL (Galdhøpiggen), the mountain range acts as an

effective barrier for the moist air from the Atlantic

Ocean. This results in a strong precipitation gradient

from the maritime coastal climate, receiving more than

3000mm in annual precipitation in some areas, to the

more continental and drier climate to the east, where the

driest weather stations receive less than 300mm of an-

nual precipitation. More than half of the landmass in

southern Norway is composed of large plateaus and

u-shaped valleys above 600m MSL, storing major parts

of the precipitation as seasonal snow.Asmuch as 25%of

the area is located above the alpine tree line at eleva-

tions higher than 1000m MSL. These areas are highly

exposed to strong westerly winds from the Atlantic

Ocean, resulting in heavy redistribution of the snow

cover. Consequently, themountain catchments feature a

longmelt season, often lasting longer than 1month, with

related large variations in the timing of runoff (Gisnås
et al. 2014).

a. The Finse field site

Finse (1222m MSL) is located in the upper part

of a valley at the northern margin of Hardangervidda,

the largest mountain plateau in northern Europe.

Hardangerjøkulen plateau glacier, the sixth-largest

FIG. 2. (top) Scaling factors for the 10th percentile, median, and

90th percentile CV values for all nonvegetated grid cells. (bottom)

Gridcell-average SCF in MS and RS as a function of accumulated

SWE (before any melt).
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glacier in mainland Norway, is located a few kilometers

south of the field area (Fig. 1b). The area is located

within the low alpine zone and is climatically situated in

the transition zone between the maritime climate along

the west coast and the more continental eastern parts of

southern Norway. Maximum summer temperatures

normally reach more than 208C, while winter tempera-

tures can be lower than 2308C. The mean annual air

temperature for 1960–90 was 22.28C, with an average

measured annual precipitation of about 1000mm.

However, because of high undercatch at the pre-

cipitation gauge, the actual amount of solid precipitation

is likely to be between 40% and 80% higher (Mohr

2008). More than half of the precipitation falls as snow,

normally starting to accumulate in late October, while

snowmelt generally lasts until midsummer. The pre-

vailing wind directions are westerly, and the exposed

mountain setting in combination with strong winds

during winter season results in high spatial variability of

snow depths (Gisnås et al. 2014). In 2012, the average

snow depth in the field area at snow maximum was

around 2m, with a pronounced spatial variability (CV

close to 1). The bulk snow density, measured in four

snow profiles, two at each of themeteorological stations,

was relatively high in 2012 (27 February: 400–450kgm23;

22 March: 472–475kgm23).

Themodeled SCF was compared to SCF derived from

26 ground surface temperature (GST) loggers distrib-

uted over a 500m 3 500m area near Finse (Fig. 1;

Gisnås et al. 2014). The loggers are installed a few cen-

timeters below the ground surface, logging the temper-

ature with 2-h temporal resolution. The presence of

snow at each GST logger was determined from the daily

average GST (,0.58C) and the diurnal temperature

amplitude (,1.08C) and variation (,0.48C), as de-

scribed in Lewkowicz (2008). The daily SCF was de-

termined as the fraction of snow-covered GST loggers.

The resulting SCFs for the melt season were compared

to digital camera images overlooking the area around

the Finse research station, located 1.2 km from the field

area (images available online at www.finse.uio.no/news/

webcam/). Furthermore, the images were used to qual-

itatively evaluate the simulated SCF. Both the temper-

ature loggers and the digital camera images represent

areas considerably smaller than the size of a grid cell in

our simulation and hence cannot provide the exact SCF

for a model grid cell. The length of the melting season

in a larger region will, however, not be shorter than what

is observed in a smaller area with both of these methods.

In situ observations thus provide aminimum time period

for the transition from fully snow-covered to snow-free

surface conditions. When comparing simulated and ob-

served SCF at Finse, we therefore focus on the length of

the period with partial snow cover, rather than the exact

values of SCF.

b. SeNorge2

The modeled temperature and precipitation fields are

evaluated with the seNorge2 dataset, which is a daily

gridded air temperature and precipitation product pro-

vided by the Norwegian Meteorological Institute. The

dataset is based on in situ observations of air tempera-

ture and precipitation from the official climate database,

interpolated to 1 km 3 1km resolution. The in-

terpolation of both variables is performed separately

using optimal interpolation (OI). The spatial in-

terpolation relies on the scale-separation concept,

where a priori information on the grid is combined with

point observations. A priori information is estimated

from the observations and serves as a large-scale rep-

resentation of the data. In the case of temperature, the

large-scale field can represent several regional vertical

temperature profiles, both allowing for ground-based

inversions as well as temporal changes of the vertical

profiles at every time step. In a second step, the large-

scale background field is modified on a local basis by a

few neighboring stations, employing an OI as described

in Uboldi et al. (2008). A spatial consistency test is in-

cluded in the spatial interpolation (Lussana et al. 2010).

For precipitation, given the complexity of interaction

between scales, a two-step scale-separation scheme has

been extended to a multiscale-separation scheme. This

is implemented through an iterative OI from the coarser

to the local scale, where the parameters of the iterative

OI are estimated independently for each precipitation

event. For both temperature and precipitation, the ac-

tual resolution of the predicted field is specified by the

local observation density, which is variable through

the spatial domain. For comparison with WRF, we use

the average of the nine seNorge2 grid cells within each

WRF grid cell.

4. Results

To evaluate the effect of the mosaic snow approach,

we consider snow (SWE and SCF), 2-m air temperature

T2, surface energy balance, and precipitation. These

variables, both from the mosaic snow (i.e., MS) and the

reference (default SCF) simulation (i.e., RS), are com-

pared with observations. We evaluate the results for the

Finse field site in detail and for all nonforested, non-

glaciated grid cells above 1000m MSL in general. Fi-

nally, we assess changes in the daily and monthly

precipitation on the regional scale, as an indication of

the effect of changed snow representation on the cou-

pled land–atmosphere system.
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a. Finse field site

The difference between MS and RS is most pro-

nounced during snowmelt periods. At Finse, this be-

comes evident both for a minor melt event in November

and the main melt period beginning in mid-May (Fig. 3).

In November, both simulations show a period of melt,

but onlyMS shows a reduction in SCF. This drop in snow

cover is confirmed by automatic camera images, which

show a substantial reduction in SCF in November. Both

simulations show about the same maximum SWE, the

same onset of snowmelt in mid-May, and a similar melt

pattern until early June. After that, the first tiles in MS

start to become snow free. From this point on, MS

shows a slower melt rate as the snow is confined to a

smaller area than in RS, despite the albedo being larger

in RS during most of this period (not shown). This re-

sults in a significantly longer melt period in MS, with

substantial amounts of snow remaining throughout

summer and a partial snow cover lasting from early June

until the end of summer. Although showing an earlier

onset of melt, both the automatic camera images (Fig. 3,

bottom) and the temperature loggers (Fig. 3, middle)

indicate a period with fractional snow cover similar in

length as MS. This is in sharp contrast to RS, which

shows a transition time from full snow cover to com-

pletely snow-free ground of just a few days.

The late bias in snowmelt seen in both simulations is in

agreement with an apparent positive bias in snow ac-

cumulation: estimates of SWE from snow pits and

ground-penetrating radar at two times late in the accu-

mulation season indicate that the maximum SWE in

both simulations could be 400–500mm too high. This

could be a result of local conditions not captured by the

model or a more general overestimation of precipitation

in the whole region. On the other hand, it could also be a

result of the observations representing only a small (and

possibly unrepresentative) part of the model grid cell. In

RS, this late bias in snowmelt probably delays the

transition from snow-covered to snow-free ground by

about two weeks. In MS, it likely shifts the entire melt

period, but with a stronger effect in the tiles with larger

accumulation. This can therefore explain why snow re-

mains throughout the whole summer in one tile, which is

not seen in the automatic camera images and the GST

loggers.

The effect of subgrid tiling and partial snow cover is

clearly visible in the air temperature in the melting

season (Fig. 4). The large negative T2 bias seen in the

reference simulation is considerably reduced inMS. The

mean diurnal T2 cycle during the first 15 days of July

(Fig. 4, bottom) reveals that this is mainly a result of

higher daytime temperatures in the observations and

MS. While RS shows only a mean diurnal temperature

difference of about 18C, the observations and MS yield

48C during this period. In addition, MS shows an earlier

peak in daytime temperature than the reference simu-

lation, which is also in better agreement with

observations.

The surface energy fluxes differ substantially between

the two simulations, as well as between the individual

tiles in MS (Fig. 5). The appearance of snow-free tiles

from early June results in a higher total sensible heat flux

(Fig. 5a) and latent heat flux (Fig. 5b) to the atmosphere

in MS. From late July, the ground becomes snow free in

FIG. 3. (top) SWE at Finse from September 2011 to August 2012

simulated with MS and RS. (middle) SCF at Finse fromMS (blue),

RS (green), and estimated from temperature loggers (red).

(bottom)Digital images fromFinse field station on 1 Jun, 1 Jul, and

1 Aug 2012.

FIG. 4. (top) Daily mean temperature at Finse from RS (green),

MS (blue), and observations (red). Observed temperatures are

taken as the average of the two automated weather stations at the

field site (Fig. 1b). (bottom) Diurnal temperature cycle at Finse

during the first 15 days of July (shown as gray area in top).
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RS, leading the sensible heat flux to abruptly rise above

the level shown by MS, where it remains for the rest of

the season. In contrast, the latent heat flux is larger in

MS throughout the season, which represents a consis-

tently larger flux of moisture to the atmosphere when

subgrid snow tiles are included. Early in the summer

season, this increase comes from the snow-free tiles that

become warmer and evaporate more water, whereas an

increased sublimation from the snow-covered tiles is

responsible for the larger moisture flux toward the end

of the summer (Fig. 5b). However, it must be noted that

Noah has been found to simulate considerably larger

snow sublimation than other LSMs in previous studies

(Sheffield et al. 2003; Chen et al. 2014). It is therefore

possible that the large positive latent heat fluxes from

the snow-rich tiles in August are too high, especially

considering that the atmosphere is typically relatively

warm and moist in this region in late summer.

Another distinct difference between the two simula-

tions is a larger ground heat flux/snow heat flux in MS

than in RS (Fig. 5c). In particular, the tile with the

smallest snow accumulation (thin red line) absorbs a

large amount of energy during the first weeks after it

becomes snow free. On the other hand, this tile loses

more energy to the atmosphere during the winter season

(not shown) as the shallower snowpack provides less

insulation from the colder atmosphere. In general, it is

clear that accounting for different SEB for snow-

covered and snow-free ground has a substantial effect

on the energy and moisture fluxes, especially during the

transition period from snow-covered to snow-free con-

ditions. However, the ground heat flux is also affected

during other times of the year.

b. High-mountain areas of southern Norway

A more or less binary SCF is found on the regional

scale in RS. Figure 6 shows the SCF on 15 June, 15 July,

and 15 August in both simulations, displaying very few

grid cells with partial snow cover in RS, but large areas

with partial snow cover in MS. Comparing the corre-

sponding daily mean temperatures with the gridded

observational dataset seNorge2 (Fig. 7) reveals that this

binary SCF in RS results in a bimodal temperature

pattern in this region. On all three dates RS shows a

clear distinction between T2 values at snow-covered and

snow-free grid cells, with a very small overlap and a

considerable negative bias for snow-covered grid cells

compared to seNorge2 temperature data. With the

subgrid snow tiling (for which a large number of grid

cells feature partial snow cover), this bimodal pattern is

removed and a more continuous range of temperatures

is simulated. In June and July the cold bias is reduced by

FIG. 5. Simulated sensible heat flux (HFX), latent heat flux (LH), and ground heat flux

(GRDFLX) at Finse between 1 Jun and 31Aug 2012 shown as 5-day running averages. (a)HFX

with (blue) and without (green) snow distribution tiles. Each individual tile is shown with thin

lines from red (low snow accumulation) to cyan (high snow accumulation). (b) As in (a), but for

LH. (c) As in (a), but for GRDFLX.
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FIG. 6. SCF on (a),(b) 15 Jun; (c),(d) 15 Jul; and (e),(f) 15 Aug for (left) RS and (right) MS.
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FIG. 7. Daily mean temperatures at each nonvegetated and nonglaciated grid cell above 1000m on (a),(b) 15 Jun;

(c),(d) 15 Jul; and (e),(f) 15 Aug for (left) RS and (right) MS. Color of dots indicates amount of snow cover in the

respective grid cell: red, SFC . 0.8; green, SCF 0.2–0.8; and blue, SCF , 0.2.
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0.88 and 0.28C in MS, respectively, while the difference

in average bias is small in August.

Figure 8 displays the mean SWE and SCF in the re-

gion shown in Fig. 6. The regional averages roughly

follow the pattern of the Finse field site (Fig. 3), with

some differences between the two simulations during

the small melt period in November, but otherwise very

similar results up until the main melt season. From the

start of the main melting season about mid-May, both

average SCF and melt rate are higher in RS. This con-

tinues until late July, when the average SCF becomes

larger in MS: in RS almost all grid cells have become

snow free by this time, while snow is still present in MS

(but confined to a few tiles in each grid cell). Although

the differences between RS and MS are smaller for the

averages over a larger region (including different ele-

vations and snow amounts) compared to an individual

grid cell, the slower melt and larger amount of snow

remaining late in the summer are characteristic features

of MS compared to RS. In addition, the SCF and albedo

are higher in MS during most of the melt season.

The average SEB over the region and the difference in

albedo between the two simulations are shown in Fig. 9.

With the exception of energy consumed by snowmelt, all

energy fluxes have larger magnitudes in MS during most

of the melt period (May–July), with the largest increases

found for sensible (43%) and latent (45%) heat fluxes in

June. This is a combined effect of lower albedo in MS

during most of the melting season (Fig. 9, bottom), re-

sulting in more absorbed solar radiation, and the snow-

free areas, allowing for larger average skin temperatures

with corresponding higher longwave outgoing radiation

and turbulent fluxes to the atmosphere. From early

August, the albedo in MS becomes larger than in RS

because of the larger amount of snow remaining in the

domain (Fig. 8), which also leads to smaller sensible heat

flux. However, similar to the findings for Finse, the la-

tent heat flux is consistently larger in this mountain re-

gion throughout the summer, probably because of

sublimation from the remaining snowpack and higher

soil moisture content leading to increased evaporation.

c. Regional precipitation

We evaluate the effect of enhanced energy and

moisture fluxes on the coupled land–atmosphere system

by comparing the precipitation fields of the two simu-

lations to each other and to observations. Although the

relationship between surface energy andmoisture fluxes

and precipitation is highly nonlinear, this gives an in-

dication of the impact of introducing snow tiles on the

mesoscale weather. To quantify this effect, we compare

the accumulated monthly precipitation during June

(Fig. 10), which is the month with the largest difference

in surface fluxes between the two simulations (Fig. 9). In

most of the domain, the changes in precipitation are not

statistically significant when comparing daily pre-

cipitation changes over a month. However, in the region

where the difference in SCF is most pronounced (see

Fig. 6), a considerable area with increased precipitation

is found, which is statistically significant within a 95%

confidence interval (CI) generated via bootstrapping

(Fig. 10b). To compare these changes to the gridded

observational dataset (seNorge2), we average over a

larger region surrounding this area (see Fig. 10). Within

this region, an increase in mean daily precipitation from

FIG. 8. (top) SWE averaged over nonvegetated, nonglaciated

grid cells above 1000m simulated with MS and RS. (bottom) As in

(top), but for SCF.

FIG. 9. (top) SEB fluxes averaged over all nonvegetated and

nonglaciated grid cells above 1000m shown as 10-day running av-

erages. Solid and stippled lines represent MS and RS, respectively.

Positive values represent fluxes to the surface. In the legend,

RNET represents net radiation and SNOWM represents snow-

melt. (bottom)Albedo difference (MS2RS) in the same region as

in top.
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2.4 (with a range of 1.8–3.2)mm to 2.7 (with a range of

2.0–3.2)mm is found (intervals showing 95% CI from

bootstrapping), which is accompanied by an increased

correlation with daily precipitation from seNorge2 from

0.83 (with a range of 0.74–0.91) to 0.89 (with a range of

0.82–0.95). Although not statistically significant, this

suggests that the enhanced precipitation observed in

Fig. 10b is in better agreement with precipitation esti-

mated from observations.

5. Discussion

The standard SCF formulation in Noah is not capable

of simulating the extended snowmelt season in the

southern Norwegian mountain areas properly. While

both automatic camera images and temperature loggers

indicate partially snow-covered ground for more than

2 months at Finse, the model simulates this transition

within a few days in RS, both at Finse and in the studied

mountain region in general. With the introduced

method of subgrid tiles, this transition time is sub-

stantially increased, resulting in a much larger number

of partially snow-covered grid cells in the whole region.

This results in higher mean temperatures with larger

amplitude of the diurnal cycle, increased SEB fluxes

with up to 45% increase in latent heat flux, more snow

remaining in late summer, andmore than 50% increase in

monthly precipitation in the most affected areas. Com-

pared to observations, the temperature changes and the

increased duration of fractional snow cover are sub-

stantial improvements, while the changes in energy and

moisture fluxes remain to be validated. The latter

represent important changes in the coupled land–

atmosphere system and the surface and subsurface

hydrology, but fewer observations exist for validation.

Similarly, the changes in precipitation were found to be

statistically significant only in localized regions, and

comparison with observations can only give a weak in-

dication that this represents an improvement of model

performance. However, the mean precipitation increase

in the subregion shown in Fig. 10 (about 7.5mm) corre-

sponds quite well with the mean increase in evaporation/

sublimation in the region with snow tiles (about 10mm)

in June, suggesting a strong link between these changes.

Altogether, the results suggest that the subgrid tiling

approach offers a significant improvement over the

standard Noah SCF scheme, both on local and regional

scales. The question then arises if similar model im-

provements could be achieved by tuning the current

SCF parameterization or by replacing it with a more

FIG. 10. (a) Simulated precipitation in 3-km domain during June 2012 in the MS. (b) Difference in precipitation

between MS and RS during June 2012 in the 3-km domain, significant to the 95% confidence level using a paired

Student’s t test.
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advanced parameterization, avoiding the computational

cost of simulating a number of tiles in each grid cell.

a. Comparing the tiling approach to other SCF
schemes

The SCF algorithm in Noah is relatively simple, re-

quiring only SWE andWmax. Based on Fig. 3,Wmax must

be increased to about 1300mm (50 times its current

value!) in order to attain a partial snow cover at Finse in

early June, as obtained inMS. Such an increase is clearly

not applicable for other tundra regions where the snow

accumulation is smaller. This is a general problem with

formulations that relate snow cover to a fixed reference

SWE or snow depth. These schemes cannot reproduce

the observed hysteresis effect between accumulation

and melt and will generally yield a too low SCF in the

accumulation season or a too high SCF in the melting

season in regions with high snow accumulation.

To account for a hysteresis effect, several schemes use a

functional dependency of SCF on the snow density, for

example, Noah-MP (Niu et al. 2011) and HTESSEL

(Dutra et al. 2010). Snow density is used as a proxy for

snow age, so that denser snow (typical for the melting

season) results in a lower SCF than for the same snow

depth with lower density. As pointed out by Swenson and

Lawrence (2012), the relation between SCF and snow

density is not clear from a physical point of view, as the

fractional snow cover observed during snowmelt is a result

of horizontal inhomogeneity rather than vertical com-

paction of the snow. Furthermore, Wrzesien et al. (2015)

found that the SCF scheme in Noah-MP also resulted in a

binary SCF in the mountain region of the Sierra Nevada

with the default parameters inWRF–Noah-MP, although

Noah-MP has a more sophisticated SCF scheme than

Noah. They found that extensive tuning of the schemewas

required to match the observed spread in SCF values

during early winter, which in turn resulted in too early

snowmelt. It therefore seems that this SCF scheme is not

able to capture the observed SCF in regions with large

snow accumulation and a long transition period from

snow-covered to snow-free ground.

Another way of accounting for the hysteresis effect is

to relate SCF to the ratio of SWE to the maximum SWE

during the melt season, as in the newer versions of CLM

(Swenson and Lawrence 2012) and RCA (Samuelsson

et al. 2015). This allows for fractional snow cover quickly

after the onset of snowmelt, even when the SWE is large,

in agreement with observations for Finse (Fig. 3). In

Noah this could be achieved by setting Wmax to the

maximum value of SWE. However, a problem with this

approach arises when periods of melting and accumu-

lation interrupt each other as observed at Finse (Fig. 3).

This issue also arises with SCF schemes that assume a

probability function for snow distribution that is com-

bined with the average snowmelt to find the SCF at any

given time, as done by Liston (2004).

With the tiling approach, the hysteresis effect is well

represented without additional assumptions when ac-

cumulation andmelt are alternating. This also allows for

independent development of the snowpack in each tile.

For instance, the snow that remained during the melting

episode at Finse in November 2011 (Fig. 3) will have

different properties than the fresh snow arriving later in

the accumulation season. Even with the relatively sim-

ple snow physics in Noah, this results in varying snow

density between the individual tiles. With more ad-

vanced snow schemes the effect of using tiles could be-

come even more important, as individual snow

temperature and moisture conditions would be resolved

for each tile. By capturing this, as well as variations in

subgrid soil temperatures and moisture, the mosaic ap-

proach has the potential to even simulate varying melt

rates on subgrid scales, to the extent that this is related

to the history and properties of the snowpack itself. This

is therefore an improvement over the assumption of

uniform melt (e.g., Liston 2004), although the main

processes leading to nonuniform melt rates are usually

related to variations in energy input from the atmo-

sphere, which is not accounted for here.

Another improvement is the representation of indi-

vidual SEB in the individual tiles. While some LSMs

simulate individual SEBs for a snow-covered and snow-

free fraction, Fig. 6 shows that the individual tiles be-

have differently also after the snow has melted. The

importance of these differences will vary from region to

region and on the overall objective of the simulation.

For NWP applications, in general only the average

fluxes of energy and moisture are of interest. These

fluxes were substantially different in our mosaic simu-

lation, but it is possible that a similar performance could

be achieved with an improved SCF scheme introducing

separate snow-covered and snow-free SEB simulations.

For other applications, like climate simulations where

thawing of permafrost and related release of carbon

from the soil is important (Schuur et al. 2008; McGuire

et al. 2009), the subgrid variations in soil properties

would be important to capture. In summary, a number of

physical processes related to variations of snow depths

in subgrid scales are explicitly accounted for with the

mosaic snow approach. It therefore provides a more

physical representation of subgrid variations related to

snow than standard SCF formulations.

b. Guidance for future applications

Themosaic snow approach offers the possibility to use

any observed, modeled, or in other ways assumed snow
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distribution, without any constraint to its shape. The

limitation is the number of tiles, which must be selected

to balance the added computational cost against the

added value of resolving a larger number of

snow depths.

With the 10 tiles used in this study, we found an in-

crease in wall clock computation time of 2%–3%. This is

substantially less than the 15% increase found by Li

et al. (2013) for eight tiles using the same tiling method.

The relative increase in computational time depends on

the number of grid cells that the tiling is applied to and

the overall computational cost of the other components

of the model. As we simulated more than twice as many

vertical layers in the atmosphere as Li et al. (2013) (60

compared to 28), and only applied the tiling to about

42% of the finest (and not the parent) domain, a smaller

relative increase was expected. The amount of added

computational cost that can be afforded will depend on

the purpose of the simulation. However, compared to

increasing the horizontal resolution, the tiling approach

represents a very modest increase in computational cost

even if applied to all grid cells. If computational re-

sources are limited, this method could be applied only

for parts of the year (in particular the melting season),

but the effects of spatially variable snow and soil prop-

erties for the other time periods could then not be

simulated.

The number of tiles used is in principle unlimited.

Figure 3 (bottom) indicates that the SCF curve is highly

dependent on this number in our simulation, but a

considerable improvement over the default formulation

should be possible even with just a few tiles. This has

been confirmed with simulations of SCF using a sim-

plifiedmodel with idealized accumulation andmelt. This

method should therefore be explored further, although a

larger number of tiles are probably needed to simulate

the average albedo and energy fluxes more accurately.

Furthermore, if the aim is to simulate the exact amount

of SWE at any given point in time, or the exact timing of

the completemelt-out of snow in a region, the number of

tiles would have to be increased even further. It would

then be relevant to use tiles with different areal fractions

to better represent the tails of the distribution.However,

the inaccuracies introduced with a limited number of

tiles is likely to quickly become small compared to the

uncertainty in winter accumulation or input distribution

used to define the scaling factors, even for a low number

of tiles.

In our simulations we use the lognormal distribution

with the single shape parameter as basis for the scal-

ing factors. The lognormal distribution is commonly

used to describe subgrid snow variations, and the

shape parameter, CV, is reported in a large number of

observational studies (Liston 2004; Clark et al. 2011;

Winstral and Marks 2014). Based on the work of Gisnås
et al. (2016), we have here used spatially variable dis-

tributions, applied only to nonforested, nonglaciated

grid cells. However, we note that the input distributions

are relatively similar (Fig. 2, top), and using a single CV

value based on observations would probably be a satis-

factory option in most cases. Typical CV values for

different land categories are provided by Liston (2004)

and Clark et al. (2011), offering a good starting point to

define snow distributions in areas where direct obser-

vations are not available. Both of these studies also in-

clude CV values for forested regions. Although the

current study applies the tiling only to nonforested grid

cells (i.e., the environment for which the distributions

were compiled from field observations), the method in-

troduced here should be applicable to regions with more

pronounced vegetation as well. Similarly, we have here

applied the method only to the fine (3km)-resolution

domain. Basing the input distributions on terrain shel-

tering indexes would be less relevant in the coarse

(15km)-resolution domain, as the snow distribution is

dominated by other factors on this scale. Nevertheless,

the concept should again be applicable on this and even

larger scales, given that appropriate input distributions

are available. In general, larger or more topographically

rugged regions might be better represented by a com-

bination of several lognormal distributions (Kerr et al.

2013) or broader distributions (Swenson and Lawrence

2012). Development of scale and topographically de-

pendent distributions would therefore be desirable in

order to generalize the current method. Compared to

the reference simulation with the default Noah SCF

scheme, the snow tiling approach appears to offer an

improvement for even a small number of tiles and with a

quite uncertain input distribution.

c. Extension to multivariate mosaic approaches

The study region is characterized by little or no veg-

etation and high wind speeds, resulting in relatively

broad snow distributions. Snow is therefore a dominant

factor for subgrid variations in SEB, especially during

the snowmelt period (Gisnås et al. 2014). However, in

many regions, subgrid variations on the surface are

dominated by other factors, such as variations in vege-

tation type and cover, as well as elevation. Several

studies have therefore explored the possibilities for

multivariate mosaic schemes (Fiddes and Gruber 2012;

Newman et al. 2014). Such approaches have the poten-

tial to capture subgrid variations of several parameters

with a relatively small increase in computational time.

However, such schemes might underrepresent the vari-

ation of snow depths within a grid cell unless the
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processes involved in the redistribution of snow are

adequately accounted for. In some cases it may there-

fore be better to directly input the assumed distribution

similarly to what is shown here.

6. Conclusions

In this study, we have tested a mosaic approach to

represent subgrid snow variations by distributing solid

precipitation in subgrid tiles based on predefined snow

distributions. The results were evaluated with a refer-

ence WRF–Noah simulation as well as point and grid-

ded observations in the high-mountain region of

southern Norway. These comparisons revealed a num-

ber of improvements with the mosaic snow approach.

The transition time from fully snow-covered to snow-

free ground is increased from a few days to several

months, in agreement with in situ observations. This im-

proved representation of the fractional snow cover

reduces a cold temperature bias found in the reference

simulation during the melting season both at point and

regional scales. At the Finse field station the temperature

bias at local noon was reduced by 48C during the first half

of July, accompanied by an improved representation of

the phase of the diurnal temperature cycle. On a regional

scale, the mosaic snow approach removed the bimodal

temperature pattern observed in June, July, and August,

related to the almost binary SCF in the reference simu-

lation. Furthermore, average biases were reduced by 0.88
and 0.28C on 15 June and 15 July, respectively.

Heat and moisture fluxes from the surface were also

considerably altered, with larger energy fluxes as a result

of decreased albedo and increased skin temperatures

during themelting season. However, themoisture flux in

the mosaic approach exceeded the reference simulation

even after the albedo and temperature became lower in

late summer, as a result of more snow remaining

throughout summer. The effect of these changes also

revealed itself through precipitation increases of up to

about 50% in certain regions.

Some of these improvements could have been

achieved by implementation of an improved SCF pa-

rameterization, combined with separate calculations of

the surface energy balance for snow-covered and snow-

free ground. There are, however, additional physical

processes related to subgrid snow variations that are

accounted for with subgrid tiling. In addition, the pre-

sented approach can account for the hysteresis effect

while treating the accumulation season and melting

season in a consistent way. Hence, it must be regarded as

one of the most physically consistent approaches to ac-

count for subgrid variations of snow depths in coupled

land surface–atmosphere models.
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