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Abstract

In thesis we discuss a new "derivative-free" formula for the computation
of the price sensitivity,"Delta" with respect to the past given in [2]. This can
be achieved by an appropriate relationship between the Malliavin derivative
and a functional directional derivative. Further, we develop a novel numerical
implementation method with respect to the representation for the "Delta". As
an example we compute the "Delta" for specific claims in the case of a labor
income model with memory, by using Monte Carlo techniques.
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Notation and Symbols
We shall make use of the following notation in this thesis, and some of the
notation will be introduced as we go along.

Spaces

N the set of all natural number, {1, 2, 3, . . . }.
Rd the set of all d-dimentional column vectors with real entries.
Rd×m all d×m matrices with real entries.
L2[a, b] Hilbert space.
C2([0,∞),R) twice continuous differentiable on [0,∞)× R with continuous extensions of the

partial derivatives to [0,∞)× R.
L2(Ω) Hilbert space of square integrable real-valued random variable on Ω

with inner product < X,Y >= E(XY ).

Other notation

< x, y > < x, y >=
∑d
i=1 xiyi, the inner product on Rd.

| · | the Eclidean norm in Rd.
‖ · ‖ L2-norm.
1A the indicator function of the event A.

If A occurs then 1A = 1, otherwise 1A = 0.
B(Rd) the Borel σ-algebra on Rd.
Ac complement of event A.
N the family of all null sets.
X

d
= Y the stochastic variables X and Y are equal in distribution.

X ∼ Θ the stochastic variable X is Θ-distributed.
P << Q the probability measure P is absolutely continuos with respect to

the probability measure Q.
P ∼ Q P and Q are equivalent probability measures.
EQ[·] the expectation under the probability measure Q.
∀ for all.
� marks the end of a proof.

Abbreviations

a.s. almost surely, with probability 1.
i.i.d. independent and identically distributed.
SDE stochastic differential equation.
SDDE stochastic delay differential equation.
SFDE stochastic functional differential equation.
SLLN strong law of large numbers.
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Chapter 1

Introduction

In recent years there has been an increased interest among scholars and practition-
ers in the financial mathematics and economics literature to better understand
the impact of memory presence in stock prices, commodities and other assets or
goods. To understand the effects, stochastic models that take market memory
into account have been developed.

Models considering memory presence have been e.g. used to explain the
phenomenon of random cyclical fluctuations in markets, see [11]. On the other
hand fluctuations may also be due to violation of market efficiency theory where
inside who have access to financial information prior to the beginning of the
trading period. See [17], where the author uses stochastic delay equations for
the modeling of the latter effects. See also [1] and the references therein.

In this thesis we will study the price sensitivities of financial claims also
called "Greeks", in markets with memory. These are quantities representing
the market sensitivities of financial derivatives to the variation of the model
parameters. The main case here will be the analysis of the so-called "Delta",
which measures the asset price sensitivity with respect to input data η from the
past and which typically takes the form

∆(η) :=
∂

∂η
p(η),

where

p(η) = EQη [
Φ(ηST )
ηN(T )

]

is the price of the claim (or option) Φ(ηST ) with respect to the underlying
asset process ηSt, 0 ≤ t ≤ T at maturity T. Here Φ is the pay-off function,
ηN(t), 0 ≤ t ≤ T the numéraire (based e.g. on the discounting process), and
Qη a certain probability measure (e.g. risk neutral measure). We assume that
ηSt, 0 ≤ t ≤ T is a commodity or stock price process on a market with "memory"
η, described by a stochastic delay equation, [13].

The main objective of the master thesis is the computation of the "Delta" of
option prices with respect to a specific market model with memory by using a
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new "derivative-free" representation of price sensitivities (Bismut-Elworthy-Li
formula), based on Malliavin calculus [2].

Objectives of the thesis
The objectives of this thesis are the following:

• Discussion of a new Bismut-Elworthy-Li formula for the computation of
"Deltas" of option price with respect to a model for labor income, [3].

• Development of a new numerical implementation method with respect to
the representation formula for the "Delta".

• Implementation of the numerical method in the case of specific claims
based on a stochastic labor income model with memory.

Outline of the thesis The thesis is structured such that it should be self-
contained for the reader. Therefore, have we given all the necessary tools to be
able to read and understand the contents of this thesis, as we go along.

Chapter 2 serves as an introduction to basic probability theory and other
important concepts to be used later on. Chapter 3 is dedicated to the Malliavin
calculus and applications, and chapter 4 is devoted to stochastic differential delay
equations and their applications to finance. Chapter 5 is aimed to discuss the
sensitivity of claims with respect to the initial paths of solutions to stochastic
delay equations. In chapter 6 we introduce a new numerical method for the
implementation of the Bismut-Elworthy-Li formula based on Malliavin calculus.
Moreover we simulate specific sensitivities with respect to that formula in the
case of a labor income model. Finally in 7 we give a summary of our results and
discuss ideas for future research work. Chapters 4 and 5 are the motivation for
chapter 6 and address the question here, why we are interested in computing
"Deltas". The statistical background and some proofs can be found in Appendix
A. The statistical software R will be used through the thesis, and the computer
code will be found in Appendix B.
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Chapter 2

Probability theory

In this chapter we will give an introduction to selected parts of probability theory
and stochastic analysis. This will be used throughout the thesis, and will be
beneficial for the reader to be familiar with.

2.1 Brownian Motion
A Brownian motion moves so rapidly and irregularly that almost all of its sample
paths are nowhere differentiable. A process like this is very important as it
provides an easy way of modeling the "noisy" part of a model, and will be used
in problems encountered in this thesis. The purpose of this section is to briefly
treat the mathematical definition and construction of Brownian motion. Stock
price is an example where we try to model a phenomenon that we can not be
certain of how it evolves over time.

Definition 2.1.1. (Brownian Motion). A stochastic process B = {Bt}0≤t≤T
on the probability space (Ω,F , P ) is called Brownian Motion if the following
properties hold:

(i) B0 = 0, P-a.e. (A.2.7).

(ii) B has independent increments:
Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn −Btn−1 independent if
0 ≤ t0 < t1 < · · · < tn ≤ T.

(iii) B has Gaussian increments:
Bt −Bs

d
= Bt−s, 0 ≤ s < t and

Bt−s ∼ N (0, t− s).

Note here that the Brownian motion is defined without its dimension, which
means it is one-dimensional. The paths of Brownian motion are also easy to
simulate, and we arrive at the following Algorithm. Figure 2.1 is an example of
such a path of Brownian motion. This will be used later in this thesis, when we
try to solve the problem numerically.

10



Algorithm 2.1 Path of Brownian motion
1: Data: time horizon T ; partition n
2: ∆t← T/n . Subinterval width
3: generate ξi ∼ N (0, 1), i = 0, . . . , n− 1 . ξ ∼ a Gaussian stochastic variable
4: B0 ← 0
5: for i = 0, . . . , n− 1 do
6: Bti+1 ← Bti + ξi

√
∆t

7: return {Bti}ni=0

Here we assume Π = {0 = t0 < · · · < tn = T} with

|Π| = sup
0≤i≤n−1

|ti+1 − ti|

= ∆t

= T/n

such that
ti := i∆t, i = 0, . . . , n.

By letting ξ be a standard Gaussian stochastic variable, we have from the
Gaussian increments of the Brownian motion:

Bti+1
−Bti

d
= ξ
√

∆t, i = 0, . . . , n− 1,

such that

Bti+1 = Bti + (Bti+1 −Bti)
d
= Bti + ξ

√
∆t, i = 0, . . . , n− 1.
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Figure 2.1: Brownian motion is plotted with equidistant partitioning Π of [0, 30]
with |Π| = ∆t = 3/100.

2.2 Itô’ Integral and Itô Formula
In this chapter we will define the Itô integral and discuss the Itô formula, which
constitute the foundation of stochastic analysis. The Itô formula is a sort of
chain rule in connection with Itô calculus, and can only be interpreted in the
integral form

∫ t

0

f(t, ω)dBt(ω). (2.1)

Let us introduce some basic definitions first.

Definition 2.2.1. (Filtration Ft). Let {Ft}0≤t≤T be a family of σ-algebras on
(Ω,F , P ) such that

Ft1 ⊂ Ft2 (⊂ F)

for all 0 ≤ t1 ≤ t2 ≤ T . Then {Ft}0≤t≤T is called filtration on (Ω,F , P ).

Definition 2.2.2. (Adaptedness). A process (Xt)t∈T on (Ω,F , P ) for an interval
T is called adapted to the filtration {Ft}t∈T , if Xt is {Ft}-measurable for every
t ∈ T .
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Definition 2.2.3. Let L2([a, b],Ω) denote the class of functions f(t, ω), satisfy-
ing the following:

(i) f(t) is adapted to the filtration {Ft} and,

(ii)
∫ b
a
|f(t)|2dt <∞ a.s.

Definition 2.2.4. (Martingale). A stochastic process Mt = {Mt}t≥0 is called a
martingale with respect to the filtration {Ft} if,

(i) Mt is {Ft}-measurable ∀ t,

(ii) E[|Mt|] <∞ ∀ t, and

(iii) E[Mt|Fs] = Ms ∀ s ≤ t.

Definition 2.2.5. (Local martingale). An {Ft}-adapted stochastic process
(Xt)a≤t≤b, is called a local martingale with respect to {Ft} if there exists a
sequence of stopping times {ρn}∞n=1 such that

1. ρn increases monotonically to b a.s. as n→∞,

2. for each n, Xt∧ρn is a martingale with respect to {Ft : a ≤ t ≤ b}.

By choosing ρn = b we have that a martingale is a local martingale, but
a local martingale may not be a martingale. For this we need the following
theorem from [12].

Definition 2.2.6. Let L2
ad([a, b]× Ω) be a class of processes

f(t, ω) : [0,∞)× Ω→ R

on a probability space (Ω,F , P ), such that

(1) (t, ω)→ f(t, ω) is B ×F -measurable, where B denotes the Borel σ-algebra
on [0,∞).

(2) f(t, ω) is {Ft}-adapted, where {Ft} is generated by the Brownian motion
and the P -null sets.

(3) E[
∫ b
a
f(t, ω)2dt] <∞.

Theorem 2.2.7. (Martingale property). Let f ∈ L2
ad([a, b] × Ω). Then the

stochastic process

Xt =

∫ t

a

f(s, ω)dBs(ω), a ≤ t ≤ b, (2.2)

is a martingale with respect to the filtration {Ft : a ≤ t ≤ b}.
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Proof. Given in Appendix A.3.

Definition 2.2.8. (Semimartingale). Let S = (St)0≤t≤T be a {Ft}-adapted
process. Then S is a semimartingale if:

St = S0 +Mt + Vt, 0 ≤ t ≤ T,

whereM = (Mt)0≤t≤T is a {Ft}-adapted local martingale, and V = (Vt)0≤t≤T
is a {Ft}-adapted process with finite variation over [0, T ].

Definition 2.2.9. (Stochastic integral of elementary process). Let (Yt)0≤t≤T
be a process of the form

Ys =

n−1∑
i=1

τi1
(s)
[ti,ti+1], 0 ≤ t ≤ T,

where 0 = t0 < t1 < · · · < tn = T .

Assuming that YT is a random variable on (Ω,FT , P ) and τi is a random
variable on (Ω,Fti , P ), i = 1, . . . , n such that

n
max
i=1
|τi| ≤ C <∞

for a constant C. Then Yt, 0 ≤ t ≤ T is called elementary process.

With these definition in hand, let us look at the Itô-integral of Yt.

Definition 2.2.10. (Itô integral). A measurable stochastic process Ys on
(Ω,FT , P ) is called Itô integrable on [0, T ], if:

1. Ys is adapted with respect to a filtration {Ft}, which is generated by the
Brownian motion and the P -null sets, and

2.
∫ T

0
E[Y 2

s ]ds <∞.

For the above processes Ys it is known that there exist elementary processes
Y

(n)
t , n ≥ 1 such that

E

[∫ T

0

(Y (n)
s − Ys)2ds

]
→ 0.

The latter implies the existence of a random variable X, such that

Var

[∫ T

0

Y (n)
s dBs −X

]
→ 0.

The random variable X is called Itô-integral, or stochastic integral of Yt with
respect to Bt and we write ∫ T

0

YsdBs = X.

Then we have the following property of Itô-integrals
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i)
∫ T

0
(αYs + βZs)dBs = α

∫ T
0
YsdBs + β

∫ T
0
ZsdBs (linearity).

ii) E[
∫ T

0
YsdBs] = 0.

iii) Itô isometry:

Var

[∫ T

0

YsdBs

]
= E

[∫ T

0

Y 2
s ds

]
. (2.3)

iv) Define Mt =
∫ t

0
YsdBs. Then the process Mt is martingale with respect to

{Ft}, that is
E[Mt|Ft] = Ms, t ≥ s.

v) There exists a continuous version of Mt =
∫ t

0
YsdBs.

We may assume that (t 7→Mt) is continuous P-a.e.

2.2.11 The Itô Formula
The Itô formula may serve as a tool to evaluate stochastic integrals.

Theorem 2.2.12. (Itô Formula for Brownian Motion). Assume that the Brown-
ian motion Bt starts at x, and let f : R→ R be a twice continuously differentiable
function. Then,

f(Bt) = f(x) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bt)ds. (2.4)

Definition 2.2.13. Let Bt be one-dimensional Brownian motion on (Ω,F , P ).
A process Xt is an Itô process if there exist an Itô integrable stochastic process
Yt and an adapted process Zt, such that

Xt = x+

∫ t

0

Zsds+

∫ t

0

YsdBs, 0 ≤ t ≤ T, (2.5)

where we assume that

E[

∫ t

0

|Zs|ds] <∞, t ≥ 0,

and this leads to the adaptedness of Xt. For Zt = 0 the semimartingale Xt

reduces to an Itô integral, which is a martingale.

We have the following shorthand notation for equation (2.5), given as

dXt = Zdt+ Y dBt. (2.6)
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Theorem 2.2.14. (General Itô Formula). Let Xt be an Itô process of the
form (2.5), and assume that g(t, x) is a function which is once continuously
differentiable in t and twice continuously differentiable in x. Then

g(t,Xt) = g(0, x) +

∫ t

0

Ys
∂g(s,Xs)

∂x
dBs

=

∫ t

0

∂g(s,Xs)

∂t
+ Zs

∂g(s,Xs)

∂x
+

1

2
Y 2
s

∂2g(s,Xs)

∂x2
ds. (2.7)

Proof. Given in Appendix A.3

Theorem 2.2.15. (Itegration by parts). Let

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs,

and

Yt = Y0 +

∫ t

0

K̃s +

∫ t

0

H̃sdBs

be Itô processes, then

Xt · Yt = X0 · Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs +

∫ t

0

Hs · H̃sds

where the last part is the quadratic variation < X,Y >t of X and Y .

To prove the Wiener Itô expansion later in chapter 3, we need the following
Itô Representation Theorem.

Theorem 2.2.16. (The Itô representation theorem). Let F ∈ L2(FT , P ), then
there exists a unique stochastic process f(t, ω) ∈ L2

ad([0, T ]× Ω) such that

F (ω) = E[F ] +

∫ T

0

f(t, ω)dB(t). (2.8)

Theorem 2.2.17. (Martingale representation theorem). There exists a unique
stochastic process g(s, ω) such that g ∈ L2([a, b],Ω) for all t ≥ 0 and

Mt(ω) = E[M0] +

∫ t

0

g(s, ω)dB(s), a.s. for all t ≥ 0.

The following theorem is a tool to explicitly construct risk neutral measures
Q i financial applications.
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Theorem 2.2.18. (Girsanov’s theorem). Assuming (Xt)0≤t≤T to be a real
valued {Ft}-adapted process on the probability space (Ω,F , P ), and letting Yt
be an Itô process of the form

Yt = Bt +

∫ t

0

Xsds, 0 ≤ t ≤ T.

Define the process

Zt = e−
∫ t
0
XsdBs− 1

2

∫ t
0
|Xs|2ds, 0 ≤ t ≤ T. (2.9)

Assuming that Xt satisfies the Novikov condition, that is

E[e
1
2

∫ T
0
|Xs|2ds] <∞. (2.10)

Then the Girsanov’s transformation Q of the measure is P defined by the
probability measure

Q(A) := E[1A · ZT ]. (2.11)

Then Yt is a Brownian motion under Q, so Yt has independent and normal
stationary increments with respect to Q.

2.3 Monte Carlo method
Stochastic modeling, takes one or more random variables to predict the future
outcome. Computerized mathematical simulation techniques such as the Monte
Carlo method offers a unique insight into processes, which are not directly
observable in physical experiments.

The Monte Carlo technique relies on repeated random sampling to obtain
numerical results, and evaluate portfolios. We use this technique to approximate
the solution to our problem later on.

Say we have a transformation δ(·) of a stochastic variable ξ, where ξ has some
probability distribution Θ. Then by sampling repeatedly from that distribution
Θ, we can approximate the solution. The following theorem is the foundation of
Monte Carlo techniques.

Theorem 2.3.1. (Kolmogorov’s Strong Law of Large Numbers). Assume that

E[|X1|] <∞,

where (Xn)n∈N is a sequence of i.i.d. stochastic variables with values in R,
then

1

l

l∑
n=1

Xn −→
l→∞

E[X1], a.s.
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To solve stochastic problems numerically, the given Theorem 2.3.1 or Strong
Law of Large Numbers (SLLN) are key results. Then we may approximate the
mean of δ(ξ) by:

E[δ(ξ)] ≈ δ̄ :=
1

l

l∑
i=1

δ(ξi), (2.12)

where l ∈ N is large and {ξi}i∈N is a sequence of i.i.d. stochastic variables with
distribution Θ. Let us give this in the following Algorithm 2.2.

Algorithm 2.2 Monte Carlo simulation

1: Data: Function δ(·); distribution Θ; fixed l ∈ N
2: generate ξi ∼ Θ, i = 0, . . . , l
3: δ̄ ← 1

l

∑l
i=1 δ(ξi)

4: return Z̄
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Chapter 3

Malliavin Calculus

Malliavin calculus is known as the stochastic calculus of variations. More pre-
cisely, computations of sensitivity parameters of option price also known as
”Greeks”. The Malliavin calculus was introduced by Paul Malliavin in the 1970´s.
His aim was to give a probabilistic proof of Hörmander´s theorem. [15] When
Paul Malliavin introduced the infinite-dimensional calculus in 1978, his motiva-
tion was to deal with Brownian motion and the application to regularity results
for solutions of SDEs.

This chapter is mainly based on [6] and [4]. We aim to state central theorems
and definitions, which will be in hand to discuss our objectives of this thesis.
The first section 3.1, will describe the construction of the Wiener-Itô chaos
expansion. In section 3.2 the Skorohod integral will be defined and Section 3.3
will be fundamental for the development of the Malliavin calculus. In Section
3.4 we will give an important result from the efforts of the previous sections.
Further in section 3.5 the Clark-Ocone Formula will be stated, and finally in
section 3.6 result for the "Greeks" will be presented.

3.1 Wiener-Itô Chaos Expansion
Letting (Ω,F , P ) be a fixed complete probability space and letting W = Wt =
W (ω, t), ω ∈ Ω be a one-dimensional Brownian motion (Wiener process) with
respect to P as in Definition 2.1.1. Further, the integral of a deterministic
function f ∈ L2[0, T ] over a fixed, finite interval [0, T ] with respect to Brownian
motion,

I(f) =

∫ T

0

f(t)dW (t),

as a Wiener integral. Then we have that this Wiener integral is measurable
with respect to the Brownian σ-algebra.

Definition 3.1.1. (Symmetric function). A real function g : Tn → R is called
symmetric if
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g(tσ1 , . . . , tσn) = g(t1, . . . , tn), (3.1)

for all permutations σ = (σ1, . . . , σn) of {1, 2, . . . , n}.

For a function f , f̃ denotes the symmetrization of f given by

f̃(t1, . . . , tn) =
1

n!

∑
σ

f(tσ1
, . . . , tσn). (3.2)

f̃ = f , if and only if f is symmetric. Further, L̃2([0, T ]n) ⊂ L2([0, T ]n) denotes
the space of symmetric square integrable Borel functions on [0, T ]n.

Example 3.1.2. The symmetrization f̃ of the function

f(t1, t2) = t21 + t2sin(t1), (t1, t2) ∈ [0, T ]2,

is

f̃(t1, t2) =
1

2!

∑
σ

t21 + t2sin(t1)

=
1

2
[t21 + t22 + t2sin(t1) + t1sin(t2)],∈ [0, T ]2

for n = 2 and σ ∈ S2 = {(1, 2)(2, 1)}.

Definition 3.1.3. If g ∈ L̃2([0, T ]n) we define

In(g) =

∫
[0,T ]n

g(t1, . . . , tn)dW (t1) . . . dW (tn) = n!Jn(g),

Jn(g) is defined to be the n-fold iterated Itô integral:

Jn(f) =

∫ T

0

∫ tn

0

· · ·
∫ t3

0

∫ t2

0

f(t1, . . . , tn)dW (t1)dW (t2) . . . dW (tn−1)dW (tn),

and because of the construction of Itô integrals, Jn(f) belongs to L2(P ) which
is the space of square integrable random variables. Then we have the following
proposition.

Proposition 3.1.4. Let f ∈ L2([0, T ]n), n ≥ 1. Then

(1) In(f) = In(f̃), where f̃ is the symmetrization of f .

(2) E[In(f)] = 0.

(3) E[In(f)2] = n!‖f̃‖2L2([0,T ]n).

With this we are finally able to state the following on the Wiener-Itô chaos
expansion.
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Theorem 3.1.5. (TheWiener-Itô chaos expansion). Let ξ be a {FT } -measurable
random variable in L2(P ). Then there exists a unique sequence {fn}∞n=0 of func-
tions fn ∈ L̃2([0, T ]n) such that

ξ =

∞∑
n=0

In(fn) (3.3)

where the convergence is in L2(P ). Moreover, we have the isometry

‖ξ‖2L2(P ) =

∞∑
n=0

n!‖fn‖2L2([0,T ]n). (3.4)

Sketch of proof. Use the Itô representation theorem 2.2.16 to write:

ξ = E[ξ] +

∫ T

0

ϕ1(s1)dW (s1), (3.5)

where ϕ(s1), 0 ≤ s1 ≤ T , is {Ft}-adapted such that

E
[ ∫ T

0

ϕ2(s1)ds1

]
≤ E[ξ2]. (3.6)

Apply the Itô isometry again to {Ft}-adapted processes
ϕ1(s1), ϕ2(s2, s1), . . . , ϕn+1(sn+1, sn, . . . , s1) for 0 ≤ sn+1 ≤ sn ≤ · · · ≤ s1 ≤ T .

Define

g0 = E[ξ],

g1(s1) = E[ϕ1(s1)],

g2(s2, s1) = E[ϕ2(s2, s1)],

...,
gn+1(sn+1, . . . , s1) = E[ϕ1(sn+1, . . . , s1)].

Then after n steps

ξ =

n∑
k=0

Jk(gk) +

∫
Sn+1

ϕn+1dW
⊗(n+1),

where the expression∫
Sn+1

ϕn+1dW
⊗(n+1) :=

∫ T

0

∫ tn+1

0

· · ·
∫ t2

0

ϕn+1(t1, . . . , tn+1)(t1) . . . dW (tn+1)

is the (n+ 1)-fold iterated integral of ϕn+1.

The second part of the sum above converges to zero, if we extend gn to [0, T ]n

by putting
gn(t1, . . . , tn) = 0, (t1, . . . , tn) ∈ [0, T ]n\Sn.
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Now by defining fn := g̃n to be the symmetrization of gn, we have

In(fn) = n!Jn(fn)

= n!J(g̃n)

= Jn(gn).

3.2 Skorohod integral
In this section the aim is to go further and look at an extension of the Itô integral
to integrands that not necessarily are adapted to the filtration {Ft}, namely the
Skorohod integral. The Skorohod integral is a stochastic integral developed by A.
Skorohod in 1975 [14].

Letting u(t) = u(t, ω) for t ∈ [0, T ] and ω ∈ Ω be a measurable stochastic
process such that,

(i) u(t) is a {FT }-measurable random variable and,

(ii) E[u2(t)] ≤ ∞ for all t ∈ [0, T ].

With this we can apply the Wiener–Itô chaos expansion (3.3) to the random
variable u(t) = u(t, ω). Then for each t ∈ [0, T ] there are symmetric functions

fn,t = fn,t(t1, . . . , tn), (t1, . . . , tn) ∈ [0, T ]n

in L̃2([0, T ]n), n ∈ N such that u(t) has the chaos expansion

u(t) =

∞∑
n=0

In(fn,t).

Considering fn as a function of n+ 1 variables, with the functions fn,t, n ∈ N
depend on the parameter t ∈ [0, T ]. Hence, we can write

fn(t1, . . . , tn, tn+1) = fn(t1, . . . , tn, t) := fn,t(t1, . . . , tn).

The symmetrization f̃n of fn is given by

f̃n(t1, . . . , tn+1) =
1

n+ 1

[
fn(t1, . . . , tn+1) + fn(t2, . . . , tn+1, t1)

+ · · ·+ fn(t1, . . . , tn−1, tn+1, tn)
]
. (3.7)

With this we can define the Skorohod integral from [6]:

Definition 3.2.1. (Skorohod integral). Let u(t), t ∈ [0, T ], be a measurable
stochastic process such that for all t ∈ [0, T ] the random variable u(t) is {FT }
-measurable satisfying the conditions above and E[

∫ T
0
u2(t)dt] < ∞. Let its

Wiener–Itô chaos expansion be
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u(t) =

∞∑
n=0

In(fn,t) =

∞∑
n=0

In(fn(·, t)).

Then the Skorohod integral of u is defined by

δ(u) :=

∫ T

0

u(t)δW (t) :=

∞∑
n=0

In+1(f̃n) (3.8)

when convergent in L2(P ). Here f̃n, n ∈ N are the symmetric functions (3.7)
derived from fn(·, t), n ∈ N.

We say that u is Skorohod integrable, and we write u ∈ Dom(δ) if the series
in (3.8) converges in L2(P ).

Remark 3.2.2. A stochastic process u belongs to Dom(δ) iff.:

E[δ(u)2] =

∞∑
n=0

(n+ 1)!‖f̃n‖2L2([0,T ]n+1) <∞. (3.9)

Now let us state the following theorem:

Theorem 3.2.3. Let u = u(t), t ∈ [0, T ], be an Itô integrable process. Then u
is Skorohod integrable and its Skorohod integral coincides with the Itô integral
such that,

∫ T

0

u(t)δW (t) =

∫ T

0

u(t)d(t). (3.10)

3.3 The Malliavin Derivative
The Malliavin derivative can be constructed in several ways. In this section
the construction is based on the chaos expansion given above. The following
definition is the Malliavin derivative.

Definition 3.3.1. (The Malliavin derivative). Let F ∈ L2(P ) be {FT } -
measurable with chaos expansion

F =

∞∑
n=0

In(fn),

where fn ∈ L̃2([0, T ]n), n ∈ N are symmetric functions. Then we say that
F ∈ D1,2 if

‖F‖2D1,2
:=

∞∑
n=1

nn! ‖fn‖2L2([0,T ]n) <∞. (3.11)
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If F ∈ D1,2, define the Malliavin derivative DtF of F at time t as the
expansion

DtF :=

∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, T ]. (3.12)

Before going any further we need to state some fundamental results for
Malliavin derivatives borrowed from [6].

Theorem 3.3.2. (Closability of the Malliavin derivative). Suppose F ∈ L2(P )
and Fk ∈ D1,2, k ∈ N, such that

• Fk → F, k →∞, in L2(P )

• {DtFk}∞k=1 converges in L2(P × λ), where λ is the Lebesgue measure.

Then F ∈ D1,2 and DtFk → DtF, k →∞, in L2(P × λ).

Theorem 3.3.3. (Product rule for the Malliavin derivative). Suppose F1, F2 ∈
D0

1,2. Here D0
1,2 is the set of all F ∈ L2(P ), whose chaos expansion has only

finitely many terms. Then F1, F2 ∈ D1,2 and the product F1F2 ∈ D1,2 with

Dt(F1F2) = F1DtF2 + F2DtF1. (3.13)

Let us now consider the case when fn = f⊗n for some f ∈ L2([0, T ]), that is

fn(t1, . . . , tn) = f(t1) · · · f(tn).

Here ⊗ denotes the tensor power, and gives us the following definition.

Definition 3.3.4. (Tensor product). The tensor product f ⊗ g of two functions
f and g is defined as

(f ⊗ g)(x1, x2) = f(x1)g(x2),

and the symmetrized tensor product f⊗̂g is the symmetrization of f ⊗ g.
Then we have

In(fn) = ‖f‖nhn

(
θ

‖f‖

)
(3.14)

where ‖f‖ = ‖f‖L2([0,T ]), θ =
∫ T

0
f(t)dW (t) and the Hermite polynomials hn of

n order is defined by

hn(x) = (−1)ne
1
2x

2 dn

dxn
(e−

1
2x

2

), x ∈ R and n ∈ N.

A basic property of the Hermite polynomials is that
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h′n(x) = nhn−1(x). (3.15)

We have from (3.12) that

DtIn(fn) = nIn−1(fn(·, t))
= nIn−1(f⊗(n−1))f(t)

= nfn−1hn−1

(
θ

‖f‖

)
f(t). (3.16)

Then we have that

Dthn

(
θ

‖f‖

)
= h′n(x)

(
θ

‖f‖

)(
f(t)

‖f‖

)
, (3.17)

and by choosing n = 1, we get

Dt

∫ T

0

f(s)dW (s) = f(t). (3.18)

Similarly by (3.15) and induction for n = 2, 3 . . . , we have

Dt

(∫ T

0

f(s)dW (s)
)n

= n
(∫ T

0

f(s)dW (s)
)n−1

f(t). (3.19)

3.4 Chain rule
Let g : Rd → R be a continuously differentiable function in C1 with bounded
partial derivatives. For fixed p ≥ 1 and F = (F 1, . . . , F d) a random vector such
that F i ∈ D1,2 for any i = 1, . . . , d. Then g(F ) ∈ D1,2, and

D(g(F )) =

d∑
i=1

∂ig(F )DF i.

This can be extended in the case where g is a Lipschitz function [14].

Proposition 3.4.1. Let g : Rd → R be a Lipschitz function, that is for some
constant K > 0,

|g(x)− g(y)| ≤ K ‖ x− y ‖
for all x,y ∈ Rd. Suppose that F = (F 1, . . . , F d) a random vector such that

F i ∈ D1,2 for any i = 1, . . . , d. Then g(F ) ∈ D1,2, and there exists a random
vector G = (G1, . . . , Gd) bounded by K such that

D(g(F )) =

d∑
i=1

GiDF
i
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and if g ∈ C1(Rd), then

D(g(F )) =

d∑
i=1

∂ig(F )DF i.

With this let us state the following rule, for one dimension:

Theorem 3.4.2. (Chain rule). Let F ∈ D1,2 and g ∈ C1(R) with bounded
derivative. Then g(F ) ∈ D1,2 and

Dtg(F ) = g′(F )DtF. (3.20)

where g′(x) is the derivative of g(x).

With all these results, we are now able to state the relationships between the
Malliavin derivative and the Skorohod integral. The following theorem shows
that the Malliavin derivative is the adjoint operator of the Skorohod integral.

Theorem 3.4.3. (Duality formula). Let F ∈ D1,2 be {FT }-measurable and let
u still be a Skorohod integrable stochastic process. Then

E
[
F

∫ T

0

u(t)δW (t)
]

= E
[ ∫ T

0

u(t)DtFdt
]
.

Proof. Given in Appendix A.3

Theorem 3.4.4. (Integration by parts). Let u(t), t ∈ [0, T ], be a Skorohod
integrable stochastic process and F ∈ D1,2 such that the product Fu(t), t ∈ [0, T ],
is Skorohod integrable. Then

F

∫ T

0

u(t)δW (t) =

∫ T

0

Fu(t)δW (t) +

∫ T

0

u(t)DtFdt. (3.21)

Proof. Given in Appendix A.3

3.4.5 A Fundamental Theorem
Finally we have the fundamental theorem, which gives us a useful connection
between differentiation and Skorohod integration.

Theorem 3.4.6. (The fundamental theorem). Let u(s) for s ∈ [0, T ], be a
stochastic process such that

E
[ ∫ T

0

u2(s)ds
]
<∞ (3.22)

and assume that for all s, t ∈ [0, T ], u(s) ∈ D1,2 and Dtu ∈ Dom(δ) is
Skorohod integrable. Moreover, assume
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E
[ ∫ T

0

(δ(Dtu))2dt
]
<∞. (3.23)

Then
∫ T

0
u(s)δW (s) is well-defined and belongs to the space D1,2, and

Dt

( ∫ T

0

u(s)δW (s)
)

=

∫ T

0

Dtu(s)δW (s) + u(t). (3.24)

Proof. First of all we need to prove (3.24) with the help of the symmetrization
function (3.1.1), and the prove that δ(u) is well-defined and belongs to D1,2 then
finally prove (3.24)

The detailed proof of Theorem 3.4.6 is given in A.3

3.5 The Clark-Ocone Formula
In this section we will give some generalization of the Clark-Ocone formula. In
our case, this is a central result in the application of the sensitivity analysis. The
Clark–Ocone formula is also used in the application to hedging in mathematical
finance.

The following result shows that any random variable F ∈ D1,2 can be written
as the sum of its expectation and a stochastic integral of conditional expectations
(Definition A.2.3) of its Malliavin derivative.

Theorem 3.5.1. (The Clark–Ocone formula). Let F ∈ D1,2 be {FT } -measurable.
Then

F = E[F ] +

∫ T

0

E[DtF |Ft]dW (t). (3.25)

Proof. For those interested, it is given as proof of Theorem 3.11 in [6]

3.5.2 The Clark–Ocone Formula under Change of Mea-
sure

This section will consider the Clark–Ocone formula under change of measure.
Assuming F to be a {FT }-measurable random variable, then the Clark–Ocone
formula expresses F as a stochastic integral with respect to a process of the form

W̃ (t) =

∫ t

0

u(s)ds+W (t) 0 ≤ t ≤ T (3.26)

where u(s), s ∈ [0, T ], is a given {Ft}-adapted stochastic process satisfying
the Novikov condition (2.10). Then by Girsanov’s theorem 2.2.18, the process
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W̃ (t) = W̃ (ω, t), for ω ∈ Ω, t ∈ [0, T ], is a Wiener process (with respect to the
filtration {Ft}) under the new probability measure Q defined on (Ω,FT ) by

Q(dω) = Z(T, ω)P (dω), (3.27)

where Z(t) is defined as in (2.9).

From [6] we have the following Theorem

Theorem 3.5.3. (The Clark-Ocone formula under change of measure). Let
F ∈ D1,2 be {FT } -measurable. Suppose that

EQ[|F |] <∞ (3.28)

EQ

[ ∫ T

0

|DtF |2dt
]
<∞. (3.29)

Also assume that u(s) ∈ D1,2 for all s, Z(T )F ∈ D1,2 and

EQ

[
|F |
∫ T

0

(∫ T

0

Dtu(s)dW (s) +

∫ T

0

u(s)Dtu(s)ds
)2

dt
]
<∞. (3.30)

Then

F = EQ[F ] +

∫ T

0

EQ

[
(DtF − F

∫ T

t

Dtu(s)dW̃ (s))|Ft
]
dW̃ (t). (3.31)

Note here that we let EQ denote the expectation with respect to the new
probability measure Q, while EP = E denotes the expectation with respect to
P .

3.6 Application to Sensitivity Analysis and Com-
putation of the “Greeks”

The Greeks are defined as the collection of statistical values that measure the
risk involved in an options contract in relation to certain underlying variables.
In other words it is the derivative of the option price with respect to any of its
parameters of the model (see [7]).

Considering the price of an option V0 of strike K and maturity T depends on
five parameters, such as (x, r, σ, T,K), where x is the premium, r is the interest
rates, and σ the volatility. The Greeks are then the partial derivatives of V0

with respect to these parameters. Hence, the most popular Greeks are:

• “Delta” measures the sensitivity to changes in the initial price x of the
underlying asset:
∆ = δV

δx .

• “Gamma” measures the rate of change in the "Delta":
Γ = δ2V

δx2 .
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• “Rho” measures the sensitivity to the applicable interest rate r:
ρ = δV

δr .

• “Theta” measures the sensitivity to the amount of time to expiration date:
Θ = δV

δT .

• “Vega” measures the sensitivity to volatility σ:
ν = δV

δσ .

The name Greeks was given because these quantities often are denoted by
Greek letters.

Given that V is computed as an expectation, the Greeks are basically deriva-
tives of expectations. In [6] it is shown that the Greeks computation based on
Malliavin calculus is in many situations better than, that based on the so called
density method.

3.6.1 Delta
Let us have a closer look at the "Delta". In our case we would like to study the
Greek Delta which is connected with the so-called ∆-hedging, and considering
one-dimensional processes. Let us look at a market model consisting of the
following assets:

risk free asset

{
dS0(t) = ρ(t)S0(t)dt

S0(0) = 1
risky asset

{
dS1(t) = S1(t)[µ(t)dt+ σ(t)dW (t)]

S1(0) = x > 0

where we assume that ρ(t) = ρ is constant and the coefficients µ and σ are
Markovian, such that µ(t) = µ(S1(t)) and σ(t) = σ(S1(t)) 6= 0, 0 ≤ t ≤ T . By
replicating an {FT }-measurable Markovian payoff, such as

F = ϕ(S1(T )),

where ϕ : R→ R is bounded, then we can try to find a self-financing portfolio
θ(t) = (θ0(t), θ1(t))0≤t≤T and a function (f(t, x))0≤t≤T , x > 0. Such that the
value process V θ(t) given by

V θ(t) = θ0(t)S0(t) + θ1(t)S1(t), 0 ≤ t ≤ T

is of the form
V θ(t) = f(t, S1(t)), t ∈ [0, T ].

Note here that θ(t) is called self-financing if

dV θ(t) = θ0(t)dS0(t) + θ1(t)dS1(t).

By using Itô formula in Theorem 2.2.14, we get

dV (t) =
∂f

∂t
(t, S1(t))dt+

∂f

∂x
(t, S1(t))dS1(t) +

1

2

∂2f

∂x2
(t, S1(t))σ2(S1(t))S2

1(t)dt,

(3.32)
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and since θ is self-financing we can write

dV θ(t) = θ0(t)S0(t)ρdt+ θ1(t)dS1(t). (3.33)

Now by comparing the two equations above (3.32) and (3.33) we get

θ0(t)S0(t)ρ+ θ1(t)S1(t)µ(S1(t)) =
∂f

∂t
(t, S1(t)) +

∂f

∂x
(t, S1(t))S1(t)µ(S1(t))

+
1

2

∂2f

∂x2
(t, S1(t))σ2(S1(t))S2

1(t), (3.34)

and

θ1(t)σ(S1(t))S1(t) =
∂f

∂x
(t, S1(t))σ(S1(t))S1(t). (3.35)

Here we have that (3.35) holds if and only if

θ1(t) =
∂f

∂x
(t, S1(t)) (the "∆-hedge"), (3.36)

by substituting this to (3.34) we get

[f(t, S1(t))− S1
∂f

∂x
(t, S1(t))]ρ =

∂f

∂t
(t, S1(t)) +

1

2

∂2f

∂x2
(t, S1(t))σ2(S1(t))S2

1(t),

(3.37)

where f(t, S1(t)) must satisfy the Black–Scholes equation, that is

{
∂f
∂x (t, x) = −ρf(t, x) + ρx∂f∂x (t, x) + 1

2σ
2(x)x2 ∂

2f
∂x2 (t, x) = 0, t < T

f(T, x) = ϕ(x).
(3.38)

By using the Feynman–Kac formula (see [10]), we get that the solution of
this equation is

f(t, S1(t)) = Ex[e−ρ(T−t)ϕ(X(T − t))]|x=S1(t)

= e−ρ(T−t)Ex[ϕ(X(T − t))|x=S1(t).

Here X(t) = (Xx(t))0≤t≤T , is the solution of the stochastic differential
equation:

dX(t) = X(t)[ρdt+ σ(X(t))dW (t)]; X(0) = x > 0.

Therefore, to compute the “∆-hedge” θ1(t), t ∈ [0, T ], we need to compute

∂f

∂x
(t, x) = e−ρ(T−t)

∂

∂x
Ex[ϕ(X(T − t))]

= e−ρ(T−t)
∂

∂x
E[ϕ(Xx(T − t))]. (3.39)
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For numerical computations, ϕ may be discontinuous as e.g. in the case of
binary options or may not be smooth. However by using Malliavin calculus
to transform the expression (3.39), gives us a form that is more suitable for
numerical computations. Let us present this approach.

First we consider a general Itô diffusion Xx(t), t ≥ 0 given by

dXx(t) = b(Xx(t))dt+ σ(Xx(t))dW (t), Xx(0) = x ∈ R,

where b : R→ R and σ : R→ R are given functions in C1(R) and σ(x) 6= 0
for all x ∈ R. Then we have the first variation process:

Y (t) :=
∂

∂x
Xx(t), t ≥ 0,

which satisfies

dY (t) = b′(Xx(t))Y (t)dt+ σ′(Xx(t))Y (t)dW (t), Y (0) = 1,

that is,

Y (t) = exp{
∫ t

0

[b′(Xx(u))− 1

2
σ′(Xx(u))2]du+

∫ t

0

σ′(Xx(u))dW (u)}. (3.40)

For a fixed T > 0 we define:

g(x) = Ex[ϕ(X(T ))] = E[ϕ(Xx(T ))].

Then we obtain the following theorem.

Theorem 3.6.2. (Malliavin weight). Let a(t), t ∈ [0, T ], be a continuous
deterministic function such that∫ T

0

a(t)dt = 1.

Then

g′(x) = Ex[ϕ(X(T ))

∫ T

0

π∆]. (3.41)

The random variable in (3.41) is defined as

π∆ =

∫ T

0

a(t)σ−1(X(t))Y (t)dW (t),

and is a so-called Malliavin weight.

This Malliavin weight is central in chapter 5, where we discuss a formula
considering the presence of memory.
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Chapter 4

Stochastic differential delay
equations and applications
to finance

This chapter is aimed to have a closer look at stochastic delay equation in
connection with finance. The latter will be useful in view of the next chapter.

Time delay and random effects in economics and finance is not unknown.
Several authors have tried to explain this, and everyone has their own explanation
such as:

• random cyclical factors

• unstable economic system

• time delayed influence

Time delayed influence causes periodic fluctuations, and such delays should
obviously affect the price dynamics (see [11]).

Let us consider the simplest stochastic differential delay equation (SDDE)
under the Banach space C([−r, 0],R), [13]:

dx(t) = x(t− r)dW (t) 0 < t ≤ r
x0 = η ∈ C([−r, 0],R).

}
(4.1)

W(t) is still a one-dimensional Brownian motion on a probability space
(Ω,F , P ).

Example 4.0.1. Considering the SDDE (4.1) for the ordinary case where r = 0,
and applying the Itô calculus we get the following solution:

x(t) = eW (t)− 1
2 t, t ∈ R.

For {ηxt : t > 0} and through the initial path η ∈ C, the trajectory field
of (4.1) is generated by the unique solution ηxt ∈ L2(Ω, C). It is solved by
’integrating’ over steps of lengths r:
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ηx(t) =

{
η(0) +

∫ t
0
η(u− r)dW (u) 0 ≤ t ≤ r

η(t) t ∈ [−r, 0].

4.1 A delayed Black and Scholes formula
In what follows we aim at discussing the applications of stochastic delay equation
to mathematical finance.

From [1] we have an explicit formula for pricing European call options, where
the underlying stock price satisfies a nonlinear SDDEs. An European call option
can only be exercised at the maturity date. Further, the market here is complete
and the model maintains the no-arbitrage property1.

Having the fair price of a call option, it is interesting to consider the effect
of the past. Here we assume that the stock price satisfies a stochastic func-
tional differential equation (SFDE), which are substantially stochastic differential
equations with coefficients depending on the past history of the dynamic itself.
Several articles on this subject are mentioned in [2], and will be partially handled
in chapter 5.

Now let us look at a stock, where the price at time t is modeled by a
stochastic process S(t) satisfying the following SDDE. This process is defined on
a probability space (Ω,F , P ) with a filtration {Ft}0≤t≤T , such that

dS(t) = µS(t− a)S(t)dt+ g(S(t− b))S(t)dW (t), t ∈ [0, T ]

S(t) = ϕ(t), t ∈ [−L, 0],

}
(4.2)

where the processW is a one-dimensional standard Brownian motion adapted
to the filtration {Ft}0≤t≤T and a, b, µ and T are positive constants with L :=
max{a, b}. The function g : R → R is a continuous function. The space
C([−L, 0],R) of all continuous functions η : [−L, 0]→ R is a Banach space.

The initial process ϕ : Ω→ C([−L, 0],R) is F0-measurable with respect to
the Borel σ-algebra of C([−L, 0],R).

From Theorem 1 in [1] we have that the equation above (4.2) admits a path-
wise unique solution S, where S(t) > 0 almost surely for all t ≥ 0, if ϕ(0) > 0
almost surely.

Having a self-financing strategy {(πB(t), πS(t)) : t ∈ [0, T ]} consisting of
holding πS(t) units of the stock and πB(t) units of the bond at time t, we end
up with the fair price V (t) of an option on the stock evolving as described by
the SDDE (4.2) to be:

V (t) = e−r(T−t)EQ[X|FSt ], t ∈ [0, T ]

1No-arbitrage: There is no opportunity to get risk-free profit.
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at each t ∈ [0, T ] a.s, such that the market satisfies the no-arbitrage property,
and the contingent claim X is attainable, such that the market {B(t), S(t) : t ∈
[0, T ]} is complete. Note here that Q is the (local) martingale measure from
Girsanov’s transformation 2.2.18, depending on both the delayed drift and the
volatility coefficient of the stock price.

4.2 Stochastic labor income
Another study of delayed dynamics is discussed in [3]. Here the authors consider
a standard complete market model of securities with prices evolving as geometric
Brownian motions (GBM), but the dynamics of the contingent claims is described
by an (SFDE).

A practical example here is the stochastic labor income, and the valuation of
human capital. The market value of human capital can be derived by risk-neutral
valuation, and the labor income is spanned by tradable assets. In chapter 6
we will suggest to introduce delay terms in income dynamics. This is based
on empirical evidence on wage rigidity, (e.g.,[3]). Then the income dynamics
will adjust slowly to financial market shocks by introducing delayed drift and
volatility coefficients in a GBM model.

Let us assume that the labor income follows the SFDE with delay of a GBM
model given below:

dX0(t) = [X0µ0 +

∫ 0

−r
X0(t+ s)φ(ds)]dt

+

X0(t)(σ0)T +


∫ 0

−rX
0(t+ s)ϕ1(ds)

...∫ 0

−rX
0(t+ s)ϕn(ds)


T dZ(t)

X0(0) = x0

X0(s) = x1(s) for s ∈ [−r, 0),


(4.3)

where Z is an n-dimensional Brownian motion, µ0 ∈ R>0 and σ0 ∈ Rn. Here
we denote Rn>0 for the set (xi) ∈ Rn : xi > 0, i = 1, . . . , n. Moreover, φ, ϕi are
signed measures of bounded variation on [−r, 0], with i = 1, . . . , n, and x0 ∈ R>0

and x1 ∈ L([−r, 0];R>0). This type of equation which is different from equation
(4.2) also admits an unique (strong) solution.
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Chapter 5

SFDE and sensitivity to
their initial path

5.1 Introduction
Market inefficiency and the fact that traders use past prices as a guide to decision
making, induces memory effects that may be held responsible for market bubbles
and crashes. Several stochastic models deal with delay and memory in different
areas, ranging from biology to finance. For instance, we looked at the delayed
response in the price of financial assets in the previous chapter.

Let us now look at a general stochastic dynamic model involving delay or
memory effects. More precisely we will consider stochastic functional differential
equations (SFDE). When choosing such a model we also have to consider the
model risk, in view of prediction and forecast. One way to manage this is by
studying the sensitivity to the initial condition, also know as the Delta in the
terminology of mathematical finance. In such a situation we may redefine the
Delta to be defined as a functional directional derivative. In view of numerical
computations we need to look at a representation formula without requiring
that the evaluation or payoff function is differentiable. This is achieved by
an appropriate relationship between the Malliavin derivative and functional
directional derivatives.

In our case we need to redefine the Delta from a single initial point as in
the standard stochastic differential equations in section 3.6, to be the initial
condition as initial path. By this we are dealing with sensitivity to the initial
path, which is very new and for the first time handled in [2].

Let us here consider the SFDE:

dx(t) = f(t, x(t), xt)dt+ g(t, x(t), xt)dW (t), t ∈ [0, T ]

(x(0), x0) = η,

}
(5.1)

where x(t) is the evaluation at time t of the solution process, xt = (u 7→ x(t+u)
is the segment of past and η is the initial path. Next section will handle this
equation in detail. Further, let us look at the evaluation p(η) at t = 0 of some
value Φ(ηx(T ),η xT ) at t = T of a functional Φ of the model:
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p(η) = E[Φ(ηx(T ),η xT )]. (5.2)

Here we assume the dependence on the initial path η by an anticipated
superindex. This type of evaluation are typical in the pricing of financial
derivatives. Then, financial contracts with payoff Ψ written on an underlying
asset with price dynamics S is given by a SFDE such as (5.1). A fair price is
then given from the classical non arbitrage pricing rule:

Prisk−neutral(η) = EηQ

[Ψ(ηS(T ),η ST )

N(T )

]
= E

[η
Z(T )

Ψ(ηS(T ),η ST )

N(T )

]
,

where ηZ(T ) = dηQ
P is the Radon-Nikodym derivative (Theorem A.2.10) of the

risk-neutral probability measure ηQ depending on η and N(T ) is used as a
discount factor.

Moreover the benchmark approach to pricing, a non-arbitrage fair price
depending on the initial path η is given in this form:

Pbenchmark(η) = E
[Ψ(ηS(T ),η ST )

ηG(T )

]
.

ηG(T ) is the value of an appropriate benchmark process. This denominator
is used in discounting and guaranteeing that P is an appropriate pricing measure.

Both pricing approaches given above can be represented as (5.2). Then the
sensitivity to the initial condition can be measured by:

∂

∂η
p(η) =

∂

∂η
E[Φ(ηx(T ),η xT )],

with the payoff functional Φ and the "Delta" redefined as a functional directional
derivative.

Further in this chapter Malliavin calculus is used to derive a formula con-
sidering the presence of memory, and the derivative is itself represented as an
expectation of the product of the functional Φ and a Malliavin weight (Theorem
3.6.2).

In order to obtain such a formula, we have to study the relationship between
functional Fréchet derivatives and Malliavin derivatives. The technique here is
based on the randomization of the initial path condition, which is again based on
the use of an independent Brownian noise.

5.2 Stochastic functional differential equation
Let us first discuss the background of SFDE’s, by looking at the general case.
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The model: Letting the probability space (Ω, F , {Ft}t∈[0,T ], P ) be com-
plete, where the filtration satisfies the usual assumptions (Definition 2.2.1) and
is such that F = {FT }. We also consider W = W (t, ω); ω ∈ Ω, t ∈ [0, T ] to be
an m-dimensional standard {Ft}t∈[0,T ]-Brownian motion (Definition 2.2.6), with
T ∈ [0,∞).

We are mainly interested in stochastic processes x : [−r, T ]× Ω→ Rd, r ≥ 0,
with finite second order moments and almost surely continuous sample paths.
Then, we can consider x as a random variable x : Ω→ C ([−r, T ],Rd) in L2(Ω,C ([−r, T ],Rd)).
In fact, we can look at x as

x : Ω→ C ([−r, T ],Rd) ↪→ L2([−r, T ],Rd) ↪→ Rd × L2([−r, T ],Rd),

where ↪→ is a notation for continuous embeddings.

Further we will denote u ∈ [0, T ] as M2([−r, u],Rd) := Rd × L2([−r, T ],Rd)
such that the Delfour-Mitter space is endowed with the norm given below:

‖(v, θ)‖M2
= (|v|2 + ‖θ‖22)

1
2 , (v, θ) ∈M2([−r, u],Rd). (5.3)

Here ‖ · ‖2 is the L2-norm and | · | the Euclidean norm in Rd. For simplicity,
let M2 := M2([−r, 0],Rd). This space endowed with the L2-norm (5.3) has a
Hilbert space structure which allows for a Fourier representation of its elements.
On the other hand, the point 0 plays an important role, as we will see later on.
Therefore it is needed to distinguish between two processes in L2([−r, 0],Rd),
that have different images at the point 0.

Generally the spaces M2([−r, u],Rd) are also natural to use since they agree
with the corresponding spaces of continuous functions C ([−r, u],Rd) completed
with respect to the L2-norm given above by (5.3). In fact we can take the natural
injection i(ϕ(·)) = (ϕ(u), ϕ(·)1[−r,u)) for a ϕ ∈ C ([−r, u],Rd) and closing it.

The above mentioned results, lead to the random process x : Ω× [−r, u]→ Rd
as a random variable.

x : Ω→M2([−r, u],Rd)
in L2(Ω,M2([−r, u],Rd)),

such as

‖X‖L2(Ω,M2([−r,u],Rd)) =
(∫

Ω

‖X(ω)‖2M2([−r,u],Rd)P (dω)
) 1

2

<∞.

As mentioned earlier, to deal with memory and delay we may use the segment
of x. Then we have a process x, some delay gap r > 0, and a specified time
t ∈ [0, T ]. Further the segment of x in the past time interval [t− r, t] is denoted
by xt(ω, ·) : [−r, 0]→ Rd and can be defined as

xt(ω, s) = x(ω, t+ s), s ∈ [−r, 0].
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Here the segment x0 for time t = 0 is the initial path, and contains all
the information about the process from before t = 0. In general xt(ω, ·) is the
segment of the ω-trajectory of the process x, and covers all the information of
the past down to time t− r.

xt(ω) can be seen as an element of L2([−r, 0],Rd) for t ∈ [0, T ], by as-
suming ω ∈ Ω and x(·, ω) ∈ L2([−r, T ],Rd). Note the couple (x(t), xt) is a
{Ft}-measurable random variable with values in M2, given w ∈ Ω.

Considering an F0-measurable random variable η ∈ L2(Ω,M2). Again for
simplicity we denote M2 := L2(Ω,M2). As above (5.1), a stochastic functional
differential equation (SFDE), can be written as

dx(t) = f(t, x(t), xt)dt+ g(t, x(t), xt)dW (t), t ∈ [0, T ]

(x(0), x0) = η ∈M2,

}
(5.4)

where the functionals f : [0, T ]×M2 → Rd and g : [0, T ]×M2 → L(Rm,Rd).

Here with appropriate hypotheses on the functionals f and g, we may get
existence and uniqueness of the strong solution (in the sense of L2) of the SFDE
(5.4) given above. The solution is a process x ∈ L2(Ω,M2([−r, T ],Rd)) admitting
an {Ft}t∈[0,T ]-adapted modification, such that x ∈ L2

A(Ω,M2([−r, T ],Rd)) for
L2
A(Ω,M2([−r, T ],Rd)) being the subspace of L2(Ω,M2([−r, T ],Rd)).

Two processes x1, x2 ∈ L2(Ω,M2([−r, T ],Rd)) are unique in the L2-sense, if

‖x1 − x2‖L2(Ω,M2([−r,T ],Rd)) = 0.

Let us give the suitable hypotheses of existence and uniqueness in our case.

Hypotheses: Existence and Uniqueness (EU):

(EU1) (Local Lipschitzianity). The drift and the diffusion functionals f and g are
Lipschitz on bounded sets in the second variable uniformly with respect
to the first, i.e., for each integer n ≥ 0, there is a Lipschitz constant Ln
independent of t ∈ [0, T ] such that,

|f(t, ϕ1)− f(t, ϕ2)|Rd + ‖g(t, ϕ1)− g(t, ϕ2)‖L(Rm,Rd) ≤ Ln‖ϕ1 − ϕ2‖M2

for all t ∈ [0, T ] and functions ϕ1, ϕ2 ∈M2 such that

‖ϕ1‖M2
, ‖ϕ2‖M2

≤ n.

(EU2) (Linear growths). There exists a constant C > 0 such that,

|f(t,Ψ)|Rd + ‖g(t,Ψ)‖L(Rm,Rd) ≤ C(1 + ‖Ψ‖M2
)

for all t ∈ [0, T ] and Ψ ∈M2.
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Existence and uniqueness of solutions of SFDE’s have also been studied by
Mohammed in [13].

Theorem 5.2.1. (Existence and Uniqueness).
Given Hypotheses (EU) on the coefficients f and g and the initial condition
η ∈ M2, the SFDE (5.4) has a solution ηx ∈ L2

A(Ω,M2([−r, T ],Rd)) which is
unique in the sense of L2. The solution is a process ηx : Ω× [−r, T ]→ Rd such
that

i) ηx(t) = η(t), t ∈ [−r, 0].

ii) ηx(ω) ∈M2([−r, T ],Rd) ω-a.s.

iii) For every t ∈ [0, T ], ηx(t) : Ω→ Rd is {Ft}-measurable.

From this it makes sense to write the solution as

ηx(t) =

{
η(0) +

∫ t
0
f(u,η x(u),η xu, )du+

∫ t
0
g(u,η x(u),η xu, )dW (u), t ∈ [0, T ]

η(t), t ∈ [−r, 0].

The integrals here are well defined and the process below, belongs to M2 and
is adapted.

(ω, t) 7→ (ηx(t, ω),η x(ω)).

Here ηx represents the solution starting at time 0 with initial condition
η ∈M2. Since x is continuous with respect to time and adapted, its composition
with the deterministic coefficients f and g is adapted as well.

If we for a change consider the same dynamics but starting at a later time,
s ∈ (0, T ] with initial condition η ∈M2:

dx(t) = f(t, x(t), xt)dt+ g(t, x(t), xt)dW (t), t ∈ [s, T ]

(x(t)) = η(t− s), t ∈ [s− r, s],

}
(5.5)

and again considering under the hypotheses (EU) the SFDE (5.5) has the
following solution

ηxs(t) =

{
η(0) +

∫ t
s
f(u, ηxs(u), ηxsu)du+

∫ t
s
g(u, ηxs(u), ηxsu)dW (u), t ∈ [s, T ]

η(t− s), t ∈ [s− r, s].

The right-hand side superindex in ηxs denotes the starting time. In relation
to the solution to (5.5) starting at any time s, let us introduce the following
notation for later use

Xs
t (η, ω) := X(s, t, η, ω) := (ηxs(t, ω),η xst (ω)), ω ∈ Ω, s ≤ t. (5.6)

The evaluation operator is defined as:

ρ0 : M2 → Rd, ρ0ϕ := v for any ϕ = (v, θ) ∈M2.
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From this, we observe that the random variable ηxs(t) is an evaluation at 0 of
the process Xs

t (η), t ∈ [s, T ].

Our main aim in this chapter is to study the influence of the initial path η
on the functionals of the solution associated with equation (5.4). For this we
need to guarantee that there exists a differentiable stochastic flow for (5.4).

Suppose we have two Banach spaces E and F , letting U ⊆ E be an open set
and k ∈ N. Then we write Lk(E,F ) for the space of continuous k-multilinear
operators A : Ek → F endowed with the uniform norm

‖A‖Lk(E,F ) := sub{‖A(ν1, . . . , νk)‖F , ‖νi‖E ≤ 1, i = 1, . . . , k}.

From this, an operator f : U → F is said to be of class C k,δ if it is Ck
and Dkf : U → Lk(E,F ) is δ - Hölder continuous on bounded sets in U , see
Definition A.1.4. Moreover, f : U → F is said to be of class C k,δ

b if it is
Ck, Dkf : U → Lk(E,F ) is δ -Hölder continuous on U , and all its derivatives
Djf, 1 ≤ j ≤ k are globally bounded on U . The derivative D is taken in the
Fréchet sense.

First, we consider the special case of SFDEs when g is actually a function

g(t, (ϕ(0), ϕ(·))) = g(t, ϕ(0)), ϕ = (ϕ(0), ϕ(·)) ∈M2

such that g is [0, T ]× Rd → Rd×m.

Let us give the following definition of a stochastic flow for the sake of
completeness.

Definition 5.2.2. (Stochastic flow).
Denote S([0, T ]) := {s, t ∈ [0, T ] : 0 ≤ s < t < T}, and let E be a Banach space.
A stochastic C k,δ -semiflow on E is a measurable mapping

X : S([0, T ])× E × Ω→ E

satisfying the following properties:

(i) For each ω ∈ Ω, the map X(·, ·, ·, ω) : S([0, T ])× E → E is continuous.

(ii) For fixed (s, t, ω) ∈ S([0, T ])× Ω the map X(s, t, ·, ω) : E → E is C k,δ.

(iii) For 0 ≤ s ≤ u ≤ t, ω ∈ Ω and x ∈ E, the property

X(s, t, η, ω) = X(u, t,X(s, u, η, ω), ω)

holds.

(iv) For all (t, η, ω) ∈ [0, T ]× E × Ω, one has X(t, t, η, ω) = η.

Further in the sequel, we consider the space E = M2.

Hypotheses (FlowS):
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(FlowS1) The function f : [0, T ] ×M2 → Rd is jointly continuous; the map M2 3
ϕ 7→ f(t, ϕ) is Lipschitz on bounded sets in M2 and C 1,δ uniformly in t
(i.e. the δ -Hölder constant is uniformly bounded in t ∈ [0, T ]) for some
δ ∈ (0, 1].

(FlowS2) The function g : [0, T ] × Rd → Rd×m is jointly continuous; the map
Rd 3 v 7→ g(t, v) is C 2,δ

b uniformly in t.

(FlowS3) One of the following conditions is satisfied:

(a) There exist C > 0 and γ ∈ [0, 1) such that

|f(t, ϕ)| ≤ C(1 + ‖ϕ‖γM2
)

∀ t ∈ [0, T ] and all ϕ ∈M2.
(b) For all t ∈ [0, T ] and ϕ ∈ M2, one has f(t, ϕ, ω) = f(t, ϕ(0), ω).

Moreover, it exists r0 ∈ (0, r) such that

f(t, ϕ, ω) = f(t, ϕ̃, ω)

∀ t ∈ [0, T ] and all ϕ̃ such that ϕ(·)1[−r,−r0](·) = ϕ̃(·)1[−r,−r0](·).
(c) For all ω ∈ Ω

sup
t∈[0,T ]

‖(DΨ(t, ν, ω))−1‖M2
<∞,

where Ψ(t, ν) is defined by the stochastic differential equation{
dΨ(t, ν) = g(t,Ψ(t, ν))dW (t)

Ψ(0, ν) = ν.

And, there exists a constant C such that

|f(t, ϕ)| ≤ C(1 + ‖ϕ‖M2
)

∀ t ∈ [0, T ] and ϕ ∈M2.

Then we have the theorem below.

Theorem 5.2.3. Under Hypotheses (EU) and (FlowS), Xs
t (η, ω) defined as

in (5.6) is a C 1,ε-semiflow for every ε ∈ (0, δ).

Hypotheses (Flow):

(Flow1) f satisfies (FlowS1) and there exists a constant C such that

|f(t, ϕ)| ≤ C(1 + ‖ϕ‖M2
)

∀ t ∈ [0, T ] and ϕ ∈M2.

(Flow2) g(t, ϕ) is of the following form

g(t, ϕ) = ḡ(t, ν, g̃(θ)), t ∈ [0, T ], ϕ = (ν, θ) ∈M2

where ḡ satisfies the following conditions:
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(a) The function ḡ[0, T ]× Rd+k → Rd×m is jointly continuous; the map
Rd+k 3 y 7→ ḡ(t, y) is C 2,δ

b uniformly in t.
(b) For each ν ∈ Rd+k, let {Ψ(t, ν)}t∈[0,T ] solve the stochastic differential

equation

Ψ(t, ν) = ν +

( ∫ t
0
ḡ(s,Ψ(s, ν))dW (s)

0

)
,

with null-vector in Rk. Then Ψ(t, ν) is Fréchet differentiable with
respect to ν and the Jacobi-matrix DΨ(t, ν) is invertible and fulfills,
for all ω ∈ Ω,

sup
t∈[0,T ]

ν∈Rd+k

‖DΨ−1(t, ν, ω)‖ <∞,

where ‖ · ‖ denotes any matrix norm, and g̃ : L2([−r, 0],Rd) → Rk
satisfies the following conditions:

(c) It exists a jointly continuous function h : [0, T ]×M2 → Rk such that
for each ϕ̃ ∈ L2([−r, T ],Rd)

g̃(ϕ̃t) = g̃(ϕ̃0) +

∫ t

0

h(s, (ϕ̃(s), ϕ̃s))ds,

where ϕ̃t ∈ L2([−r, 0],Rd) is the segment at t of a representative of
ϕ̃.

(d) M2 3 ϕ 7→ h(t, ϕ) is Lipschitz on bounded sets in M2, uniformly with
respect to t ∈ [0, T ] and C 1,δ uniformly in t.

Corollary 5.2.4. Under Hypotheses (Flow), the solutionXs
t (η) = X(s, t, η, ω), ω ∈

Ω, t ≥ s to (5.5) is a C 1,ε -semiflow for every ε ∈ (0, δ). In particular,
ϕ 7→ X(s, t, ϕ, ω) is C1 in the Fréchet sense.

5.3 Sensitivity analysis to the initial path condi-
tion

In this section we consider a stochastic process x satisfying the dynamics (5.4),
and the coefficients f and g satisfy the conditions (EU) and (Flow). Then
we are able to achieve our goal, namely the computation of the sensitivity of
evaluations of the form:

p(η) = E[Φ(X0
T (η))] = E[Φ(ηx(T ),η xT )], η ∈M2 (5.7)

with the initial path ηx in the model. Here, Φ : M2 → R is such that
Φ(X0

T (η)) ∈ L2(Ω,R). Moreover, the sensitivity will be interpreted as the
directional derivative, that is

∂hp(η) :=
d

dε
p(η + εh)|ε=0 = lim

ε→0

p(η + εh)− p(η)

ε
, h ∈M2. (5.8)
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As we introduced, our final goal is to give a representation of ∂hp(η) in which
the function Φ is not directly differentiated. This can be achieved by representing
the sensitivity parameter Delta by means of weights. See, e.g. the Malliavin
weight introduced in [8] where the classical case without memory is discussed.
In our case there is a need to impose some stronger regularity conditions on f
and g, through the following hypotheses (H):

Hypotheses (H:)

(H1) (Global Lipschitzianity) ϕ 7→ f(t, ϕ), ϕ 7→ g(t, ϕ) globally Lipschitz uni-
formly in t with Lipschitz constants Lf and Lg, i.e.

|f(t, ϕ1)− f(t, ϕ2)|Rd ≤ Lf‖ϕ1 − ϕ2‖M2 (5.9)
|g(t, ϕ1)− g(t, ϕ2)|L(Rm,Rd) ≤ Lg‖ϕ1 − ϕ2‖M2 (5.10)

∀ t ∈ [0, T ] and ϕ1, ϕ2 ∈M2.

(H2) (Lipschitzianity of the Fréchet derivatives) ϕ 7→ Df(t, ϕ), ϕ 7→ Dg(t, ϕ)
are globally Lipschitz uniformly in t with Lipschitz constants LDf and
LDg, i.e.

‖Df(t, ϕ1)−Df(t, ϕ2)‖ ≤ LDf‖ϕ1 − ϕ2‖M2 (5.11)
‖Dg(t, ϕ1)−Dg(t, ϕ2)‖ ≤ LDg‖ϕ1 − ϕ2‖M2 (5.12)

∀ t ∈ [0, T ], ϕ1, ϕ2 ∈M2 and the stochastic C 1,1-semiflow is again denoted
by X.

Since we want to study the directional derivative ∂hp(η) in (5.8). One possible
approach here is to randomizing the initial condition η, and find a relationship
between the Fréchet derivative DX0

T (η) and the Malliavin derivative of the X0
T .

Where DX0
T (η) is applied to a direction h ∈M2 and X0

T with the randomized
starting condition.

5.3.1 Randomization of the initial condition and the Malli-
avin derivative

We have the m-dimensional Wiener process W that drives the SFDE in (5.4),
defined on the probability space (ΩW ,FW , PW ). Then, let us define an isonor-
mal Gaussian process B on L2([−r, 0],R) and probability space (ΩB,FB, PB).
Moreover, W and B are independent such that (Ω,F , P ) = (ΩW × ΩB,FW ⊗
FB, PW ⊗ PB), and we define Ω = ΩW × ΩB.

From now on we shall work with, the Malliavin and Skorohod calculus with re-
spect to the isonormal Gaussian process B. In fact, for B we define the Malliavin
derivative operator D and the Skorohod integral operator δ. For immediate use,
let us give the following Lemma. This gives us the link between the Malliavin
derivative of a segment and vice versa.
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Lemma 5.3.2. If X0
t (η) = (ηx(t),η xt) ∈ M2 is Malliavin differentiable for all

t ≥ 0, then, for all s ≥ 0,

Ds
ηxt = {Ds

ηx(t+ u), u ∈ [−r, 0]}

and
DsX

0
t (η) = (Ds

ηx(t),Ds
ηx(t+ ·)) ∈M2.

To study the relationship between the Malliavin derivatives and Fréchet
derivatives, we need to consider the chain rule for the Malliavin derivative in
M2.

If DX0
T is bounded, i.e for all ω = (ωW , ωB) ∈ Ω and

sup
η∈M2

‖DX0
T (η(ω), ωW )‖ <∞

, then the chain rule given above (3.20) gives us that

DsX
0
T (η(ωW , ωB), ωW ) = DX0

T (η(ωW , ωB), ωW )[Dsη(ωW , ωB)],

here the Malliavin derivative only acts on ωB.

What about when DX0
T is unbounded? This can be handled by applying

Ds directly to the dynamics given by the equation (5.4), and then we get the
following theorem.

Theorem 5.3.3. Have that Hypotheses (EU), (Flow) and (H) are fulfilled.
Let X0

· (η) ∈ L2(Ω;M2([−r, T ],Rd)) be the solution of (5.4), then

DsX
0
T (η) = DX0

T (η)[Dsη] (w, s)- almost everywhere. (5.13)

To consider the randomization of the initial condition, we need to define ξ.
In this case ξ is an R-valued functional of B, non-zero P -a.s. More precisely, ξ is
a random variable independent of W , and we choose it to be Malliavin differen-
tiable with respect to B with Dsξ 6= 0 for almost all (ω, s). With this we let η to
be the true (i.e. not randomized) initial condition, and h the direction. Then
η, h ∈M2 are random variables on ΩW , such that η(w) = η(ωW ), h(ω) = h(ωW ).
Further we denote η, h ∈ M2(ωW ), where M2(ωW ) is the space of the random
variables in M2 only depending on ωW ∈ ΩW ). For simplicity we have η̃ := η−h,
and later h will be differentiated.

Corollary 5.3.4. Let Hypotheses (EU), (Flow) and (H) be fulfilled. Let
X0
· (η̃ + λξµ) ∈ L2(Ω;M2([−r, T ],Rd)) be the solution of (5.4) with initial condi-

tion η̃ + λξµ ∈M2, where λ ∈ R. Then we have

DsX
0
T (η̃(ωW ) + λξ(ωB)h(ωW )) = DX0

T (η̃(ωW ) + λξ(ωB)h(ωW ))[λDsξ(ω
B)h(ωW )],
(5.14)
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(ω,s)-almost everywhere, and we have the following short hand notation:

DsX
0
T (η̃ + λξµ) = DX0

T (η̃ + λξµ)[λDsξh]. (5.15)

Let us now give a derivative free representation of the expectation of the
Fréchet derivative of Φ ◦X0

T at η in direction h in terms of a Skorohod integral,
δ. Later, we will use this to get a representation for the derivative of p(η) in
direction h.

Theorem 5.3.5. Let Hypotheses (EU), (Flow) and (H) be satisfied and let
Φ be Fréchet differentiable. Furthermore, let a ∈ L2([−r, 0],R) be such that∫ 0

−r a(s)ds = 1. If a(·) ξ
D·ξ

is Skorohod integrable and if the Skorohod integral
below with the evaluation at λ = 1

ξ ∈ R are well defined, then following relation
holds

E[D(Φ ◦X0
T )(η)[h]] = −E

[{
δ
(

Φ(X0
T (η̃ + λξµ))a(·) ξ

D·ξ

)}
|λ= 1

ξ

]
. (5.16)

Proof. Given in A.3.

Further, let us look at the representation formula for Delta under a suitable
choice of the randomization. Since Dsξ = ξ for all s ∈ [−r, 0], an interesting
choice of randomization will be ξ = exp{B(1[−r,0])} where

‖δ(u(·, λ1))− δ(u(·, λ2))‖2L2(Ω)

≤ ‖a‖2L2([−r,0])(‖Φ(X0
T (η̃ + λ1ξµ))− Φ(X0

T (η̃ + λ2ξµ))‖2L2(Ω)

(5.17)

+ ‖D{Φ(X0
T (η̃ + λ1ξµ))− Φ(X0

T (η̃ + λ2ξµ))}‖2L2(Ω×[−r,0])).

then let the following hypotheses be fulfilled for equation (5.17)

Hypotheses (A): Assuming the Fréchet differentiable Φ and its derivative
DΦ to be globally Lipschitz with Lipschitz constant LΦ, C1 and LDΦ respectively.

Lemma 5.3.6. Under Hypotheses (EU), (Flow), (H) and (A), we have the
sensitivity to the initial path, Delta in direction h ∈M2 to be

∂hp(η) = E[D(Φ ◦X0
T )(η)[h]]. (5.18)

Then with this result, we are finally able to give a derivative free representation
formula for the directional derivatives of p(η).

Theorem 5.3.7 (Representation formula). Let Hypotheses (EU), (Flow), (H)
and (A) be fulfilled. Let a ∈ L2([−r, 0],R) be such that

∫ 0

−r a(s)ds = 1 and let
ξ = exp{B(1[−r,0])}. Then the directional derivatives of p have representation:

∂hp(η) = −E
[{

δ
(

Φ(X0
T (η̃ + λξµ))a(·)

)} ∣∣∣
λ= 1

ξ

]
. (5.19)

Proof. Given in [2], Appendix.

45



Chapter 6

Application

By combining our central theories and findings in the previous chapters, we aim
at developing in this chapter a new numerical method for the approximation of
the Delta in Theorem 5.3.7.

6.1 Simulation of the representation formula for
the Delta

In chapter 4, we discussed the SDDE in the connection with financial application.
More precisely we considered the labor income following SFDE’s with delay.
Here in this section we want to simulate the representation formula in connection
with the model for labor income, capturing slow adjustment of labor income to
market shooks.

Then we have the following linear stochastic delay equation:

X0(t) = η(0) +

∫ t

0

(∫ 0

−r
X0(u+ s)φ(u)du+X0(s)

)
ds+W (t). (6.1)

Here (W (t))0≤t≤T is a one-dimensional Brownian motion and φ ∈ L2([−r, 0])
In order to solve this stochastic delay equation (6.1), we may resort to techniques
from spectral theory, see e.g [5].

In the view of simulation, we assume that φ in (6.1) is equal to zero, then we
have the following labor income model

X0(t) = η(0) +

∫ t

0

x0(s)ds+W (t). (6.2)

By using Itô’s formula in Theorem 2.2.14, we get the following solution of
(6.2)

x0(t) =

{
etη(0) +

∫ t
0
e−(s−t)dW (s), 0 ≤ t ≤ T

η(t), −r ≤ t ≤ 0.
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Further we denote L1,2 to be the Hilbert space of processes u ∈ L2([−r, 0]×Ω),
such that u(t) is Malliavin differentiable for almost all t, and there exists a
measurable version of the two-parameter process Dsut, such that

E
[ ∫ 0

−r

∫ 0

−r
(Dsut)

2dsdt
]
<∞. (6.3)

Moreover, in order to approximate the representation for the Delta in Theorem
5.3.7 we need the following auxiliary result from [14]:

Theorem 6.1.1. Let u ∈ L1,2 and π = {−r = t0 < t1 < · · · < tn = 0}
denoted by an arbitrary partition of the interval [−r, 0], with mesh |π| :=
sup0≤i≤n−1 |ti+1 − ti|, and we set

Zπ =

n−1∑
i=0

1

ti+1 − ti

(∫ ti+1

ti

E[us|F[ti,ti+1]C ]ds
)

(Bti+1 −Bti), (6.4)

where F[ti,ti+1]C is the σ-algebra generated by Bt −Bs, here the interval (s, t] is
disjoint with [ti, ti+1]. Then

Zπ −→
|π|→0

δ(u) in L2(Ω).

We can now apply Theorem 6.1.1 to Theorem 5.3.7 as follows if:

ut := Φ(X0
T (η̃ + λξh))a(t) ∈ L1,2,

then

δ(u) ≈ Zπ for small |π|

where we choose η̃ = η − h.

In our situation, we may e.g. choose the payoff functions:

Φ : M2 → R as

Φ(g) =

∫ 0

−r
g(u)du or, (6.5)

Φ(g) = exp
(
−
(∫ 0

−r
g(u)du

)2)
. (6.6)

Further let us consider a simple case by assuming that,
η̃ ≡ 1, h ≡ 1 and a(t) ≡ 1

r on [−r, 0].
So if T > r and Φ is given as (6.5) then

ut = Φ(X0
T (η̃ + λξh))a(t)

=

∫ 0

−r

(
λξeT+u +

∫ T+u

0

e−(s−(T+u))dW (s)
)
du

1

r
, (6.7)
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where ξ = e−B−r .

Hence,

E[us|F[ti,ti+1]C ] =

∫ 0

−r

(
λeT+uE[ξ|F[ti,ti+1]C ] + E

[ ∫ T+u

0

e−(s−(T+u))dW (s)|F[ti,ti+1]C

])
du

1

r
.

Since the conditional expectation above is only defined on the probability
space with respect to B, we can treat the stochastic integral with respect to W
as a constant and we get that

E[us|F[ti,ti+1]C ] =

∫ 0

−r

{(
λeT+uE[ξ|F[ti,ti+1]C ]

)1

r
+

∫ T+u

0

e−(s−(T+u))dW (s)
1

r

}
du.

On the other hand, we have that

ξ = eBti+1
−Bti eBti−B−re−Bti+1 .

So

E[ξ|F[ti,ti+1]C ] = E[eBti+1
−Bti |F[ti,ti+1]C ]eBti−B−re−Bti+1 .

Hence because of independence, we get that

E[ξ|F[ti,ti+1]C ] = e−
1
2 (ti+1−ti)2eBti−B−re−Bti+1 .

Thus

E[us|F[ti,ti+1]C ] = λe−
1
2 (ti+1−ti)2eBti−B−re−Bti+1 eT (1− e−r)1

r
+

∫ 0

−r

(∫ T+u

0

e−(s−(T+u))dW (s)
1

r

)
du.

Then Theorem 6.1.1 yields that

δ(u) ≈
n−1∑
i=0

1

ti+1 − ti

(∫ ti+1

ti

λe−
1
2 (ti+1−ti)2eBti−B−re−Bti+1 eT (1− e−r)1

r

+

∫ 0

−r

(∫ T+u

0

e−(s−(T+u))dW (s)
1

r

)
du ds

)
(Bti+1

−Bti) (6.8)

=: Zπ.

Altogether, we obtain from the representation formula, Theorem 5.3.7 that

∂hP (η) ≈ −E[Zπ(λ)|λ=eB−r ], (6.9)

provided that |π| is small enough.
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Our final step is to use the Monte Carlo method, to approximate the sensitivity
to the initial path (6.9)

∂hP (η) ≈ − 1

N

N∑
i=1

Yi,

where Yi, i = 1, . . . , N are i.i.d. copies of the random variable

Y := Zπ(λ)|λ=eB−r .
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6.1.2 Simulation procedure
Before simulating the sensitivity, we need to simulate paths of Brownian motion
B. In the following we explain this procedure in more detail.

Step 1. We simulate e.g. 20 paths of the Brownian motion as in algorithm 2.1.

Step 2. Approximate δ(u) as in (6.8) for e.g. r = 30 (years) and λ = eB−30 , with
the simulated paths in Step 1.

Step 3. We approximate ∂hP (η), by Monte Carlo techniques.

By following this procedure for the given parameters, Step 1. is presented in
Figure 2.1, but now with 20 paths and then the sensitivity to the initial path is:

∂hP (η) ≈ 4.54 · 1013.

In this type of simulation it may be interesting to vary the parameters. Here
we try to vary r along with the number of paths. The table 6.1, below gives
us that the sensitivity increases as r is increased, and by increasing the paths
the sensitivity decreases and stabilize to a certain degree, for the representative r.

Delay/Paths 2 paths 20 paths 100 paths 100 000 paths
r = 1 0.013 0.017 0.002 0.001
r = 2 0.097 0.098 0.004 0.003
r = 5 3.359 4.271 0.177 0.249
r = 10 1727.722 1682.09 93.346 83.878
r = 20 285334116 294843028 10342662 10968885
r = 30 4.70 ·1013 4.54·1013 2.10 ·1012 2.36·1012

r = 50 1.46 ·1024 1.27·1024 6.61·1022 6.01·1022

r = 80 7.54·1039 5.11·1039 2.62·1038 2.38·1038

Table 6.1: Approximation of ∂hP (η), for r = 1, 2, 5, 10, 20, 30, 50, 80 and number
of paths = 2, 20, 100, 100 000.

We mention here that one may also use other choices of the function a(t) in
connection with our simulations.

Principally with some more expenditure in connection with Theorem 6.1.1,
we can also do the same approximation of the representation formula for the
Delta in the case of the payoff Φ in (6.6). Indeed, in the case of (6.6) we get
more precisely the following:

Using Fubini’s theorem for stochastic integrals, we observe that

∫ 0

−r

∫ T+u

0

e−(s−(T+u))dW (s)
1

r
du

=

∫ T

0

∫ 0

−r
1

(s)
[0,T+u]e

−(s−(T+u))dudW (s)

= HT .
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On the other hand, we have that

−
(∫ 0

−r
λξeT+udu+HT

)2

= −λ2ξ2
(∫ 0

−r
eT+udu

)2

− 2λξ

∫ 0

−r
eT+udu ·HT − (HT )2.

Hence

Ut = exp
(
− λ2ξ2

(∫ 0

−r
eT+udu

)2

− 2λξ

∫ 0

−r
eT+udu ·HT −H2

T

)1

r
.

Then, using the independence of increments of B and the fact that we can
treat HT as a constant, we find that

E[us|F[ti,ti+1]C ] =

{
Fi(x, y)

∣∣∣
x=Bti−B−r, y=−Bti+1

}
e−H

2
T

1

r
,

with

Fi(x, y) := E
[
exp

{
−e2(x+y)e2(Bti+1

−Bti )λ2
(∫ 0

−r
eT+udu

)2

− 2ex+yeBti+1
−Btiλ

∫ 0

−r
eT+udu ·HT

}]
.

So it follows from Theorem 6.1.1 that

δ(u) ≈
n−1∑
i=0

1

ti+1 − ti

∫ ti+1

ti

{
Fi(x, y)

∣∣∣
x=Bti−B−r, y=−Bti+1

}
e−H

2
T

1

r
ds (Bti+1

−Bti)

= Zπ(λ).

As before we obtain from Theorem 5.3.7 that

∂hP (η) ≈ −E[Zπ(λ)|λ=eB−r ]

for |π| small enough.
Finally by applying the Monte Carlo method to the latter expectation (on

the product probability space with respect to B and W ) we can approximate
∂hP (η).

Remark 6.1.3. Clearly a disadvantage of our new method here for the approx-
imation of the Delta representation in Theorem 5.3.7 is the lack of general error
estimates with respect to the Skorohod integral δ in the literature.
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Chapter 7

Conclusion and Discussion

7.1 Conclusion
One of the aims of the thesis was to develop a new method for the computation of
the Delta of option prices with respect to a specific market model with memory
by using a new "derivative-free" representation of price sensitivities (Bismut-
Elworthy-Li formula), based on the Malliavin calculus [2]. In order to do so,
we first discussed a new Bismut-Elworthy-Li formula. Further in Chapter 6
we introduced a novel numerical implementation approach with respect to the
representation formula for Delta, and simulated the sensitivity in the case of
specific claims based on a stochastic labor income model with memory. Here
the income dynamics adjusts slowly to financial market shocks [3]. As we see
from our specific simulation in table 6.1 the sensitivity seems to a certain degree
stabilize, when we increase the number of paths.

7.2 Challenges
One of the challenges of my thesis I have been faced with, was the difficulty
of simulations of solutions of stochastic functional differential equations. The
literature treated in connection with such type of equations is rather scarce.
Further, the numerical expenditure with respect to those equations is very high,
in general. Therefore we confined ourselves in this thesis to simple models to
explain the main principles of our simulation technique. Another challenge we
were coping with in this thesis was the lack of error estimates with respect to
our simulation approach, which are very difficult to obtain in general.
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7.3 Further work
Clearly, there are several possibilities to extend this thesis. First of all we may
consider different parameters, another function a(t) or other payoff functions Φ.

The second extension could be in the direction of deriving general error
estimates for our implementation method based on the Skorohod integral δ in
Theorem 5.3.7.

The third extension would be to look at the case of models with discontin-
uous noise. This means that there are jumps in the behavior of what we are
attempting to model. To deal with such a behavior, one could e.g. resort to
driving noises given by a certain class of Lèvy processes.
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Appendix A

Preliminaries - Probability
Theory

A.1 Measure theory
A measure measures the size of sets. Not all sets can be measured in this
sense, but on the other hand the class of sets which are measurable should be
sufficiently rich. In particular we want to keep measurability of sets if we perform
simple operations like taking the complement or taking (countable) unions and
intersections. This leads to the following definition.

Definition A.1.1. (σ-algebra). Let Ω be a non-empty set and let F be a
collection of subsets of Ω. Then F is called a σ-algebra over Ω, if the following
holds:

a) Ω ∈ F .

b) If A ∈ F then Ac ∈ F . 1

c) For every sequence A1, A2, . . . of elements of F the union ∪∞n=1An is also
a member (i.e. an element) of F .

The pair (Ω,F), where Ω is a non-empty set and F is a σ-algebra on Ω, is
called a measurable space.

Definition A.1.2. (Measure). Let Ω be a set and let F be a σ-algebra on Ω. A
map µ : F → [0,∞] is called a measure if the following properties are satisfied:

(i) µ(∅) = 0

(ii) µ is σ-additive, i.e. for every sequence of pairwise disjoint sets Fn ∈ F one
has

µ
( ∞⋃
n=0

Fn
)

=

∞∑
n=0

µ(Fn).

1Ac denotes the complement of A in Ω.
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Null-sets are very useful because for most purposes one can ignore everything
that happens on them.

Definition A.1.3. (Null set). Let (Ω,F , µ ) be a measure space. We call a
set A ⊂ Ω null-set or, more precisely a µ-null-set if there is some N ∈ F with
µ(N) = 0 and A ⊂ N .

Definition A.1.4. (Hölder continuity). Let f : (S1, ρ1)→ (S2, ρ2) be a function
between two complete metric spaces S1, S2 with respective matrices ρ1, ρ2, is
called Hölder continuous with exponent α iff.

sup
s6=t

{
(f(s), f(t))

ρ2(s, t)α
: s, t ∈ S1, ρ1(s, t) <∞

}
<∞.

It is called locally Hölder continuity if and only if it is Hölder continuity on
every bounded set.

A.2 Probability theory
Throughout this thesis we considered a probability space (Ω,F , P ) which is
complete. Here:

• Ω is the sample space; the set of all outcomes of some random experiment.

• F is a σ-algebra on Ω, containing all events that might occur.

• P is a probability measure on (Ω,F), if P is a measure such that,

(i) P : F → [0, 1] and
(ii) P [Ω] = 1.

(Ω,F , P ) is a complete probability space if any subset of a P -null set is an event
in F .

Remark A.2.1. (B-Borel set). Let B denote the Borel σ-algebra on Ω generated
by U , the collection of all open subsets of Ω. Then B ∈ B are called Borel sets.

Definition A.2.2. (Random variable). Let (Ω,F , P ) denote a given complete
probability space. A random variableX is an F -measurable functionX : Ω→ Rn.
Every random variable induces a probability measure µX on Rn, defined by

µX(B) = P (X−1(B)),

here µX is called the distribution of X.

Definition A.2.3. (Conditional expectation with respect to A).
Let X be a random variable such that E[|X|] < ∞ and A supF a σ-algebra
which in a financial context may represent the entirety of market information up
to time t < T maturity. Then the expected value of X given A is the unique
random variable Y such that

E[1A ·X] = E[1A · Y ] ∀A ∈ A.
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Proposition A.2.4. (Properties of E[X|A]).

(i) E[αX + βY |A] = αE[X|A] + βE[Y |A] linearity.

(ii) E[E[X|A]] = E[X].

(iii) E[X|A] = X, if X is a random variable on (Ω,A, P ).

(iv) E[X|A] = E[X], if X is independent of A, i.e.
P ({X ≤ t} ∩A) = P (X ≤ t) · P (A)∀t ∈ R, A ∈ A.

(v) E[X|A] = E[E[X|B]|A], if A ⊆ B is σ-algebra.

Definition A.2.5. (Stochastic process). A stochastic process is a parameterized
collection of random variables

{Xt}t∈T ,

defined on a probability space (Ω,F , P ) and assuming values in Rn.

The parameter space T in the definition above can be a closed or half-open
interval on the real line, i.e. [a, b] or [0,∞), or even subsets of Rn for n ≥ 1. For
every fixed t ∈ T we have a random variable

ω 7→ Xt(ω), ω ∈ Ω.

Fixing ω ∈ Ω, however, gives the path of Xt

t 7→ Xt(ω), t ∈ T.

Hence, the parameter t is usually interpreted as time, and Xt(ω) as the position
of a particle ω at a given time t. The author in [12] defines Xt on the product
space T × Ω and uses the notation X(t, ω). With this notation the process can
be viewed as a function of two variables

X(t, ω) : T × Ω→ Rn.

This is often a convenient interpretation, since it is crucial in stochastic analysis
X(t, ω) being jointly measurable in (t, ω) (Øksendal, p. 8,[16])

Definition A.2.6. (P -almost surely). Considering the family N as a collection
of all "possible" events. For all events outside the family N of all P -null sets,
then property holds P -almost surely (P-a.s.).

Definition A.2.7. (P-almost everywhere). We say a property Π holds P-almost
everywhere (P-a.e.) if there exist a null set N ∈ F such that Π holds for all
ω ∈ N c = Ω−N.

The following Theorems are borrowed from [18].

Definition A.2.8. (Gaussian Process). Let a stochastic process {Xt}t∈T is
called Gaussian, iff for any choice of
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(i) t1, . . . , tn ∈ T, and

(ii) c1, . . . , cn ∈ R.

Then for any n ≥ 0, the random variable
∑n
k=1 ckXtk is Gaussian.

Definition A.2.9. (Isonormal Gaussian Process). Let H be a real separable
Hilbert space, then a Hilbert space isometry η : H → H ⊂ L2(Ω,F , P ), with

E[η(h)η(g)] =< h, g >,∀g, h ∈ H,

is called an isonormal Gaussian Process, where < h, g > denotes the inner
product of it.

Let us now look at some useful tools used in application of probability theory.
When we examine a problem it may be useful to change the probability measure.
The following theorem is borrowed from Jacod, Protter [9] (Theorem 28.3).

Theorem A.2.10. (Radon-Nikodym Theorem). Let Q be a finite measure on
(Ω,F), such that that Q� P , i.e. Q is absolutely continuous with respect to P .
Then there exists a unique integrable positive stochastic variable Λ such that

Q[A] = E[1AΛ], A ∈ F .

We will often write
Λ =

dQ
dP

,

and refer to this as the Radon-Nikodym derivative.

As next theorem we state the Bayes’s theorem for conditional expectation.

Theorem A.2.11. (The Bayes rule). Let (Ω,F , P ) be the probability space,
and X is an integrable stochastic variable on it. Assuming H to be a sub-σ-
algebra of F , and Q be a probability measure on (Ω,F) such that Q >> P
and

Λ =
dP

dQ
.

Then

E[X|H] · EQ[Λ|H] = EQ[XΛ|H], a.s. (A.1)

57



A.3 Proofs

Proofs in Chapter 2
Proof of Theorem 2.2.7. First of all we need to consider the case where f is an
step stochastic process, for any a ≤ s ≤ t ≤ b, such that

E[Xt|Fs] = Xs, almost surely.

Since Xt = Xs +
∫ t
s
f(u)dB(u), we need to show that

E
[ ∫ t

s

f(u)dB(u)|Fs)
]

= 0, almost surely. (A.2)

Then we consider f given as

f(u, ω) =
n∑
i=1

ξi−1(ω)1(ti−1,ti](u), s = t0 < t1 < · · · < tn = t

where ξi−1 is Fti−1
-measurable and belongs to L2(Ω). This gives us that

∫ t

s

f(u)dB(u) =

n∑
i=1

ξi−1(B(ti)−B(ti−1)), for any i = 1, 2, . . . , n

such that

E[ξi−1(B(ti)−B(ti−1))|Fs]
= E[E[ξi−1(B(ti)−B(ti−1))|Fti−1 ]|Fs]
= E[ξi−1E[(B(ti)−B(ti−1))|Fti−1 ]|Fs]
= 0

since E[(B(ti)−B(ti−1))|Fti−1
] = 0, it follows that equation (A.2) holds. Now

by letting f ∈ L2
ad([a, b]×Ω) and take a sequence {fn} of step stochastic process,

such that

lim
n→∞

∫ b

a

E[|f(u)− fn(u)|2]du = 0.

Then for each n we define a stochastic process

X
(n)
t =

∫ t

a

fn(u)dB(u).

Here the first case, X(n)
t is a martingale, and for s < t we write

Xt −Xs = (Xt −X(n)
t ) + (X

(n)
t −X(n)

s ) + (X(n)
s −Xs),

and then by taking the conditional, we get
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E[Xt −Xs|Fs] = E[Xt −X(n)
t |Fs] + E[X(n)

s −Xs|Fs]. (A.3)

By applying Theorem 4.3.5 in [12], we get

E[ |E[Xt −X(n)
t |Fs] |2] ≤

∫ t

a

E[|f(u)− fn(u)|2]du

≤
∫ b

a

E[|f(u)− fn(u)|2]du

→ 0, as n→∞,

since

E[ |E[Xt −X(n)
t |Fs] |2] ≤ E[|Xt −X(n)

t |2].

Thus by taking a subsequence we see that E[Xt|Fs] = Xs, almost surely
since

E[Xt −X(n)
t |Fs], converges a.s to 0

E[Xs −X(n)
s |Fs]→ 0 a.s.

and by (A.3) E[Xt −Xs|Fs] = 0 a.s.

Thus Xt is a martingale.

Sketch of the proof of Theorem 2.2.14. We have the Itô process:

dXt = Zdt+ Y dBt.

Let g(t, x) ∈ C2([0,∞),R). Then

Ut = g(t,Xt)

is again an Itô process, and

dUt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dx+

1

2

∂2g

∂x2
(t,Xt)(dXt)

2 (A.4)

by substituting the first Itô process into equation (A.4), where (dXt)
2 =

(dXt) · (dXt) is computed according to the following rules

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt, (A.5)

we get:

Ut = g(t,Xt) = g(0, X0) +

∫ t

0

(∂g
∂s

(s,Xs) + Zs
∂g

∂x
(s,Xs) +

1

2
Y 2
s

∂2g

∂x2
(t,Xs)(dXs)

)
ds

+

∫ t

0

Ys ·
∂g

∂x
(s,Xs)dBs. (A.6)
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This is still an Itô process. Further we assume that g, ∂g∂t ,
∂g
∂x and ∂2g

∂x2 are
bounded and we obtain the general case by approximating by C2 functions gn
such that gn, ∂gn∂t ,

∂gn
∂x and ∂2gn

∂x2 are bounded for each n and converge uniformly
on compact subsets of [0,∞)× R to g, ∂g∂t ,

∂g
∂x and ∂2g

∂x2 , respectively.

Moreover Zs = Z(s, ω) and Ys = Y (s, ω) are elementary functions. By using
Taylor’s theorem we get:

g(t,Xt) = g(0, X0) +
∑
j

∆g(tj , Xj)

= g(0, X0) +
∑
j

∂g

∂t
∆tj +

∑
j

∂g

∂x
∆Xj +

1

2

∑
j

∂2g

∂t2
(∆tj)

2

+
∑
j

∂2g

∂t∂x
(∆tj)(∆Xj) +

1

2

∑
j

∂2g

∂x2
(∆Xj)

2 +
∑
j

Rj (A.7)

∆tj = tj+1− tj ,∆Xj = Xtj+1
−Xtj ,∆g(tj , Xtj ) = g(tj+1, Xtj+1

)− g(tj , Xj)
and Rj = o(|∆tj |2 + |∆Xj |2) for all j.

If ∆tj → 0 then

∑
j

∂g

∂t
∆tj =

∑
j

∂g

∂t
(tj , Xj)∆tj →

∫ t

0

∂g

∂t
(s,Xs)ds (A.8)

∑
j

∂g

∂x
∆Xj =

∑
j

∂g

∂x
(tj , Xj)∆Xj →

∫ t

0

∂g

∂x
(s,Xs)dXs (A.9)

since u and v are elementary, we get:

∑
j

∂2g

∂X2
(∆Xj)

2 =
∑
j

∂2g

∂x2
Z2
j (∆tj)

2 + 2
∑
j

∂2g

∂x2
ZjYj(∆tj)(∆Bj)

2

+ 2
∑
j

∂2g

∂x2
Y 2
j (∆Bj)

2. (A.10)

We see here that the two first terms tends to 0, when ∆tj → 0 and the last term
tends to:

∫ t

0

∂2g

∂x2
Y 2ds in L2(P ), as ∆tj → 0.

Last but not least, the proves above also supports that
∑
Rj → 0 as ∆tj → 0.

This completes the proof of the Itô formula.
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Proofs in Chapter 3
Proof of The Duality Theorem 3.4.3. Let F =

∑∞
n=0 In(fn) and, for all t, u(t) =∑∞

k=0 Ik(gk(·, t)) be the chaos expansions of F and u(t), respectively. Then

E
[
F

∫ T

0

u(t)δW (t)
]

= E
[ ∞∑
n=0

In(fn)

∫ T

0

∞∑
k=0

Ik(gk(·, t))δW (t)
]

= E
[ ∞∑
n=0

In(fn)

∞∑
k=0

Ik+1(g̃k)
]

= E
[ ∞∑
k=0

Ik+1(fk+1)Ik+1(g̃k)
]

=

∞∑
k=0

(k + 1)!

∫
[0,T ]k+1

fk+1(x)g̃k(x)dx

=

∞∑
k=0

(k + 1)!(fk+1, g̃k)L2([0,T ]k+1) (A.11)

g̃k is the symmetrization of gk as a function of n+ 1 variables. On the other
hand we have:

E
[ ∫ T

0

u(t)DtFdt
]

= E
[ ∫ T

0

( ∞∑
k=0

Ik(gk(·, t))
)( ∞∑

n=0

In−1(fn(·, t))
)
dt
]

=

∫ T

0

∞∑
k=0

E[(k + 1)Ik(gk(·, t))Ik(fk+1(·, t))]dt

=

∫ T

0

∞∑
k=0

(k + 1)k!(fk+1(·, t), gk(·, t))L2([0,T ]k)dt

=

∞∑
k=0

(k + 1)!(fk+1, gk)L2([0,T ]k+1). (A.12)

And

(fk+1, g̃k) =

∫ T

0

(fk+1(·, t), g̃k(·, t))L2([0,T ]k)dt

=
1

k + 1

k+1∑
j=0

∫ T

0

(fk+1(·, tj), gk(·, tj))L2([0,T ]k)dtj

=

∫ T

0

(fk+1(·, t), gk(·, t))L2([0,T ]k)dt

= (fk+1, gk)L2([0,T ]k+1). (A.13)

Then by combining (A.13) with (A.11) and (A.12), completes the proof of
the Duality formula.
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Proof of Integration by parts, Theorem 3.4.4. Here we need Theorem 3.3.3 and
3.4.3 in hand. first we assume that F ∈ D0

1,2 from Theorem 3.3.3, then we choose
G ∈ D0

1,2 and get

E
[
G

∫ T

0

Fu(t)δW (t)
]

= E
[ ∫ T

0

Fu(t)DtGdt
]

= E
[
GF

∫ T

0

u(t)δW (t)
]
− E

[
G

∫ T

0

u(t)DtFdt
]
.

Since the set of all G ∈ D0
1,2 is dense in L2(P ), it follows that

F

∫ T

0

u(t)δW (t) =

∫ T

0

Fu(t)δW (t) +

∫ T

0

u(t)DtFdt P-a.s.

Then we have that the result follows for general F ∈ D1,2 by approximating
F by F (n) ∈ D0

1,2 such that

F (n) → F in L2(P ) and DtF
(n) → DtF in L2(P × λ), for n→∞.

Proof of Fundamental Theorem 3.4.6. Letting

u(s) = In(fn(·, s)),

and for symmetric fn(t1, . . . , tn, s) with respect to t1, . . . , tn, we get.∫ T

0

u(s)δW (s) = In+1[f̃n]

where f̃n is the symmetrization of fn as a function of all its n + 1 (3.7), such
that

f̃n(x1, . . . , xn+1) =
1

n+ 1

[
fn(·, x1) + · · ·+ fn(·, xn+1)

]
.

Then

Dt

(∫ T

0

u(s)δW (s)
)

= (n+ 1)In[f̃n(·, t)] (A.14)

and

f̃n(·, t) =
1

n+ 1

[
fn(t, ·, x1) + · · ·+ fn(t, ·, xn) + fn(t, ·)

]
. (A.15)

By combining (A.14) with (A.15) gives us

Dt

(∫ T

0

u(s)δW (s)
)

= In

[
fn(t, ·, x1) + · · ·+ fn(t, ·, xn) + fn(t, ·)

]
= In

[
fn(t, ·, x1) + · · ·+ fn(t, ·, xn)

]
+ u(t). (A.16)
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Note here that fn is symmetric with respect to its first n variables, so we may
choose t to be the first of them, in the first n terms on the right-hand side.
Further, to compare (A.16) with the right-hand side of (3.24) we consider

δ(Dtu) =

∫ T

0

Dtu(s)δW (s)

=

∫ T

0

nIn−1[fn(·, t, s)]δW (s)

= nIn[f̂n(·, t, ·)]. (A.17)

Here
f̂n(x1, . . . , xn−1, t, xn) =

1

n

[
fn(t, ·, x1) + · · ·+ fn(t, ·, xn)

]
is the symmetrization of fn(x1, . . . , xn−1, t, xn) with respect to x1, . . . , xn.

From (A.17) we get

∫ T

0

Dtu(s)δW (s) = In

[
fn(t, ·, x1) + · · ·+ fn(t, ·, xn)

]
. (A.18)

Then by comparing (A.16) and (A.18) we get (3.24).

As next step we consider the general case

u(s) =

∞∑
n=0

In[fn(·, s)].

We define

um(s) =

m∑
n=0

In[fn(·, s)], m ∈ N.

By (3.22) we get

‖u− um‖2L2(P×λ) →m→∞ 0

then we have

Dt(δ(um)) = δ(Dtum) + um(t), ∀m. (A.19)

Having (A.17) we can say that (3.23) is equivalent to

E
[ ∫ T

0

(δ(Dtu))2dt
]

=

∞∑
n=0

n2n!

∫ T

0

‖f̂n(·, t, ·)‖2L2([0,T ]n)dt

=

∞∑
n=0

n2n!‖f̂n‖2L2([0,T ]n+1) <∞ (A.20)

since Dtu ∈ Dom(δ). For m→∞
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‖δ(Dtu)− δ(Dtum)‖2L2(P×λ) =

∞∑
n=m+1

n2n!‖f̂n‖2L2([0,T ]n+1) → 0. (A.21)

Therefore, by (A.19)

δ(Dtum)→ δ(Dtu) + u(t), m→∞ in L2(P × λ).

Note here that

(n+ 1)f̃n(·, t) = nf̂n(·, t, ·) + fn(·, t)

and hence

(n+ 1)!‖f̃n‖2L2([0,T ]n+1) ≤
2n2n!

n+ 1
‖f̂n‖2L2([0,T ]n+1) +

2n!

n+ 1
‖fn‖2L2([0,T ]n+1).

Therefore,

‖δ(u)‖2D1,2
=

∞∑
n=0

(n+ 1)(n+ 1)!‖f̃n‖2L2([0,T ]n+1)

≤
∞∑
n=0

[
2n2n!‖f̂n‖2L2([0,T ]n+1) + 2n!‖fn‖2L2([0,T ]n+1)

]
≤ 2‖δ(Dtu)‖2L2(P×λ) + 2‖u‖2L2(P×λ) <∞,

by (A.20) and (3.22). with this we can conclude with that δ(u) is well-defined
and belongs to D1,2. By adapting similar computations, we obtain

‖Dt

(∫ T

0

u(s)δW (s)
)
−Dt

(∫ T

0

um(s)δW (s)
)
‖2L2(P×λ)

= ‖
∞∑

n=m+1

(n+ 1)In(f̃n(·, t))‖2L2(P×λ)

=

∫ T

0

∞∑
n=m+1

(n+ 1)2n!‖f̃n(·, t))‖2L2([0,T ]n)dt

≤ 2

∞∑
n=m+1

[
n2n!‖f̂n‖2L2([0,T ]n+1) + n!‖fn‖2L2([0,T ]n+1)

]
, (A.22)

which tends to zero when m→∞. Having (A.21) and (A.22), we get (3.24)

Dt(δ(u)) = δ(Dtu) + u(t), when in (A.19) .
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Proofs in Chapter 5
Proof of Theorem 5.3.5. First we observe the relation by Theorem 5.3.3:

DsX
0
T (η̃ + λξµ) = DX0

T (η̃ + λξµ)[λDsξµ] (ω, s)− a.e.

Then by multiplying with ξ
Dsξ

yields

ξ

Dsξ
DsX

0
T (η̃ + λξµ) = DX0

T (η̃ + λξµ)[h]λξ (ω, s)− a.e. (A.23)

Recall that Dsξ 6= 0 a.e., and the right-hand side in (A.23) is defined ω-wise.
The evaluation at λ = 1

ξ yields DX0
T (η̃ + h)[h], thus

{
ξ

Dsξ
DsX

0
T (η̃ + λξµ)

} ∣∣∣∣∣
λ= 1

ξ

= DX0
T (η̃ + λξµ)[h]λξ

∣∣∣∣∣
λ= 1

ξ

= DX0
T (η̃ + h)[h]

= DX0
T (η)[h].

By considering that DΦ(X0
T (η)) is defined path-wise, and multiplying with

1 =
∫ 0

−r a(s)ds and applying the chain rule we obtain

E[D(Φ ◦X0
T )(η)[h]] = E[DΦ(X0

T (η))DX0
T (η)[h]]

= E

[∫ 0

−r
DΦ(X0

T (η))DX0
T (η)[h]a(s)ds

]

= E

[{∫ 0

−r
DΦ(X0

T (η̃ + λξµ))DsX
0
T (η̃ + λξµ)a(s)

ξ

Dsξ
ds

} ∣∣∣
λ= 1

ξ

]

= E

[{∫ 0

−r
Ds{Φ(X0

T (η̃ + λξµ))}a(s)
ξ

Dsξ
ds

} ∣∣∣
λ= 1

ξ

]
.

Moreover, the partial formula for the Skorohod integral yields

E[D(Φ ◦X0
T )(η)[h]] = E

[{
Φ(X0

T (η̃ + λξµ))δ
(
a(·) ξ

Dsξ

)
− δ
(

Φ(X0
T (η̃ + λξµ))a(·) ξ

Dsξ

)} ∣∣∣
λ= 1

ξ

]

= E

[
Φ(X0

T (η))δ
(
a(·) ξ

Dsξ

)
−
{
δ
(

Φ(X0
T (η̃ + λξµ))a(·) ξ

Dsξ

)} ∣∣∣
λ= 1

ξ

]
.

δ
(
a(·) ξ

Dsξ

)
is FB-measurable, Φ(X0

T (η)) is FW and by independence the
proof of Theorem 5.3.5 completes.
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Appendix B

The R code

The R code used to solve, will be presented here:

B.1 Programs for Chapter 2

B.1.1 Programs for plots in Figure 2.1
R program to create the plot.

####################################################################
#
# FIGURE: 2.1 IN CHAPTER 2
#
####################################################################

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Path and p l o t o f Brownian motion :
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Brownian motion with , T = time hor i zon and n = pa r t i t i o n

n <− 1000 #Number o f time po in t s
d <− 1000 #Number o f random va r i a b l e s to genera te
de l t a_t <− 30/n #Sub in t e r v a l width

#−−−−−−−−−−−−−−−−−−
#Simulate the path :
#−−−−−−−−−−−−−−−−−−
B <− cumsum(rnorm(d , 0 , 1 )∗sqrt ( d e l t a_t ) )
B [ 1 ]<−0

#−−−−−
#Plot :
#−−−−−
t = seq (0 ,30 , length =d)
plot ( t ,B, type = ’ l ’ , main=’Path␣ o f ␣Brownian␣motion ’ , x lab =’ t ’

, y lab =’ ’ , xl im =c (0 , 30 ) )
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B.2 Programs for Chapter 6
R program to create the simulation.

####################################################################
#
# SIMULATION IN CHAPTER 6
#
####################################################################

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Simulate the d e r i v a t i v e f r e e r ep r e s en t a t i on :
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Def in ing the parameters

n <− 1000 #Number o f time po in t s
d <− 1000 #Number o f random va r i a b l e s to generate

p<− 20 #Number o f paths 20
r<−c (1 , 2 , 5 , 10 , 20 , 30 , 50 , 80 )

f o r ( j in 1 : l ength ( r ) ){
T<− r [ j ] + r [ j ]∗0 . 2 0 #T>r
delta_t <− r [ j ] / n #Sub inte rva l width
p r in t ( r [ j ] )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Simulat ing the paths and p l o t s o f Brownian motion :
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Brownian Motion with 20 paths , t in [−r , 0 ] :

B_mid<− matrix (0 , nrow = p , nco l = d)
BM<− matrix (0 , nrow = p , nco l = d)

f o r ( rown in 1 : p){
B_mid [ rown , ] <− cumsum( rnorm (d , 0 , 1 )∗ s q r t ( delta_t ) )
B_mid [ rown , 1 ] <− 0
f o r ( i in 1 : d−1){

BM[ rown , i ] = B_mid [ rown , d−i ]
}

}
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#−−−−−−−−−−−−−−−−−−−−−−−−−−
#Approximation o f d e l t a (u ) :
#−−−−−−−−−−−−−−−−−−−−−−−−−−

delta_mid<− matrix (0 , nrow = nrow (BM) , nco l = ( nco l (BM)−1))
de l ta<−c ( )
#lambda <− exp (B[− r ] )

f o r ( k in 1 : nrow (BM)){
f o r ( i in 1 : ( nco l (BM)−1)){
delta_mid [ k , i ] <− ( exp (BM[ k , 1 ] ) ∗ exp (−1/2∗( t [ i +1]−t [ i ] )^2 )

∗exp (BM[ k , i ]−BM[ k , 1 ] ) ∗ exp(−BM[ k , i +1])∗ exp (T)
∗(1−exp(−r [ j ] ) ) ∗ ( 1 / r [ j ] ) ) ∗ (BM[ k , i +1]−BM[ k , i ] )

}

}

de l ta<−c ( )
f o r ( c o l in 1 : nrow ( delta_mid ) ){
de l t a [ c o l ] <− sum( delta_mid [ co l , ] )

}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Approximation o f the d e r i v a t i v e f r e e r ep r e s en t a t i on
# by Monte Carlo s imu la t i on :
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

partial_hP <− −1/N ∗ sum( de l t a )
p r i n t ( partial_hP )

}
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