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A droplet that impacts onto a solid substrate deforms in a complex dynamics. To extract
the principal mechanisms that dominate this dynamics, we deploy numerical simulations
based on the phase field method. Direct comparison with experiments suggests that a
dissipation local to the contact line limits the droplet spreading dynamics and its scaled
maximum spreading radius βmax. By assuming linear response through a drag force at the
contact line, our simulations rationalize experimental observations for droplet impact on
both smooth and rough substrates, measured through a single contact line friction parameter
μf . Moreover, our analysis shows that dissipation at the contact line can limit the dynamics
and we describe βmax by the scaling law βmax ∼ (Reμl/μf )1/2 that is a function of the
droplet viscosity (μl) and its Reynolds number (Re).
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I. INTRODUCTION

Impact of liquid droplets onto a solid substrate is essential to applications such as spray coating
[1], ink-jet printing [2], additive manufacturing [3] and pesticide deposition [4]. Upon impact with
the substrate, the droplet deforms in a complex dynamics, where a gas film can become trapped
underneath the droplet [5–12] and as it spreads creates a splash by droplet ejection at the tip of its
spreading front [13–17]. The droplet deformation and spreading are typically driven by its inertia
and hindered by viscous and surface tension forces. Two nondimensional numbers are particularly
relevant to characterize the dynamics, which is the Reynolds number Re = ρlVi2R/μl giving the
ratio between inertia and viscous forces and the Weber number We = ρlV

2
i 2R/σ which gives the

ratio between inertia and surface tension forces. σ is the surface tension coefficient of the gas-liquid,
ρl is the liquid density, μl is the liquid viscosity, and Vi is the droplet impact speed. Besides inertia,
viscosity, and surface tension, we hypothesize and show that a dissipation local to the contact line
can limit the droplet dynamics on both smooth and rough substrates.

One parameter that describes the droplet impact dynamics and is typically quantified as the
spreading factor β(t) = r(t)/R, where r(t) is the droplet spreading radius, R is the initial droplet
radius, and βmax = max[β(t)]; see Fig. 1. Two primary regimes have been identified to describe
βmax: an inertia-viscous regime where βmax ∼ Re

1
5 [18,19] and an inertia-capillary regime where

βmax ∼ We
1
2 [20,21]. A single law has been derived to connect these two regimes, βmaxRe− 1

5 ∼
f (WeRe− 2

5 ) [22], which has rationalized experiments for a wide range of Re and We numbers
[23]. Other scaling laws for βmax with different exponents for Re and We have been proposed
[24–30], which include additional effects such as the substrate wettability. A detailed description of
these different scaling laws can be found in the recent review by Josserand and Thoroddsen [31].
However, none of these scaling laws describe βmax at low impact speeds as they predict βmax → 0
for Vi → 0, which is not true for any case with an equilibrium contact angle θe < 180◦. To mitigate
this artifact, the maximum spreading radius β0 for Vi = 0 has been included into the analysis
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FIG. 1. Sketch of the axisymmetric computational domain and the droplet’s initial condition with R the
initial droplet radius and Vi the impact speed. The spreading radius r(t) and the apparent dynamic contact angle
θd(t) are illustrated as the droplet has spread onto the solid substrate.

√
β2

max − β2
0 = Re

1
5 We

1
2 /(A + We

1
2 ) that agrees favorably with experimental data for both low and

high impact speeds [32], where A is an ad hoc fitting parameter.
Substrate roughness is another parameter that can influence the droplet impact dynamics [33–37].

Droplet impact on regular microtextured substrates [33,34,38] shows that βmax is influenced by the
substrate topography. Even a substrate with small aspect ratio roughness hinders droplet spreading
[35], although the effect becomes less pronounced.

In this work we focus on describing β(t) and βmax in the regime of nonsplashing droplets [31,39],
i.e., small and intermediate impact speed. We show that as in a spontaneous droplet spreading
process [40,41], a detailed description of the physical processes at the contact line must be included
to accurately describe the interface dynamics. Numerical experiments based on the phase field
method and the Navier-Stokes equations show that friction local to the contact line limits the
dynamics and generates a significant dissipation. We treat the contact line friction parameter μf as a
material property for each combination of air, liquid, and solid, which should be independent of the
impact speed. We determine the magnitude of μf by directly comparing the numerical simulations
with several independent experiments [23,25,32,34,35]. Our assumption of linear response through a
Stokes-like drag at the contact line shows that the simulations can accurately reproduce experimental
observations. We further extend our analysis to rough substrates and rationalize the differences in the
dynamics compared with smooth substrates. Finally, we show that the regime where the principal
dissipation is local to the contact line is described by a scaling law based on the contact line friction
parameter μf .

A. Models and methods

We describe the multiphase system by using the phase field method [42], which considers the
two binary phases (gas and liquid) as a mixture. The mathematical model is composed of the
Cahn-Hilliard equation [43] Eqs. (1) and (2), which are coupled with the Naiver-Stokes equations
(3) and (4) for an incompressible fluid flow [42]:

∂C

∂t
+ u · ∇C = γ∇2φ, (1)

φ = − 3

2
√

2
σ

[
ε∇2C − δψ(C)

δC

]
, (2)

ρ(C)

[
∂u
∂t

+ (u · ∇)u
]

= −∇P + ∇ · [
μ(C)[∇u + (∇u)]T

] + φ∇C, (3)

∇ · u = 0. (4)

033602-2



LOCAL DISSIPATION LIMITS THE DYNAMICS OF . . .

TABLE I. Simulated material properties and droplet impact conditions on substrates with differ-
ent equilibrium contact angles (θe([steel, stainless steel, aluminium, grooved stainless steel]air−water) =
[61◦, 90◦, 94◦, 130◦] and θe ([steel]air−glycerol/water) = [52◦]).

ρl (kg m−3) μl (Pa s) σ (N m−1) R (mm) Vi (m/s) θe (◦) Re We

Water 1000 0.001 0.073 1 0.28–4.85 61, 90, 94, 130 320–104 0.6–664
Glycerol-water 1158 0.01 0.068 0.92 0.19–9.28 52 40–1956 1–2653

C = C(r,z,t) is an order parameter that varies smoothly from C = −1 (gas) to C = 1 (liquid)
between the two immiscible phases and |C| < 1 indicates that the interfacial region that has a
finite thickness ε. φ = φ(r,z,t) = δF (r,z,t)/δC is the chemical potential, given by the variation
of the systems postulated free energy F (r,z,t) that has an interfacial ( σε

2 |∇C|2) and bulk free
energy term [ σ

ε
ψ(C) = σ

4ε
(C + 1)2(C − 1)2]. The free energy is required to reduce with time,

i.e., γ > 0 and γ is the mobility factor that controls the interfacial diffusion. u = u(r,z,t) is the
velocity, P = P (r,z,t) is the pressure, whereas the density ρ(C) = (1 + C)ρl/2 + (1 − C)ρg/2
and the viscosity μ(C) = (1 + C)μl/2 + (1 − C)μg/2 are interpreted as function of C. The air
surrounding the droplet is assumed at atmospheric pressure with a density ρg = 1.23 kg/m3 and
a viscosity μg = 1.81 × 10−5 Pa s. The material properties of the droplet, along with the impact
speeds, equilibrium contact angles, and range of simulated Re numbers and We numbers are listed
in Table I.

All simulations are performed with a no-slip boundary condition for the velocities at the solid
substrate (u = 0) and all other boundaries are assumed to be in contact with ambient air at constant
pressure (P = 0) and with no flux of the chemical potential (∇φ · n = 0 with n as the boundary
normal). To model the contact line dynamics we use the nonequilibrium boundary condition [44],

2
√

2

3
σε∇C · n + σcos(θe)g′(C) = −μf ε

∂C

∂t
, (5)

where μf is interpreted as a friction factor at the contact line and g(C) = −2/4 − 3/4C + 1/4C3

gives the transition from dry (gas-solid) to wet (liquid-solid) substrate surface tension that is derived
directly from the double-well function in the bulk free energy ψ(C). Interfacial diffusion ameliorates
the stress singularity at the contact line and in the sharp interface limit [45,46] the phase field model
becomes independent of the interface thickness [40], which in practice is chosen to be larger than
what can be argued physically for simulations of macroscopic flows.

We use the following scaling: μ∗(C) = μ(C)/μl,ρ
∗(C) = ρ(C)/ρl,u∗ = u/Vi,t

∗ =
tVi/R,P ∗ = PR/(μlVi),φ∗ = φ2

√
2ε/(3σ ) to make Eqs. (1)–(5) nondimensional, where

the superscript ∗ denotes nondimensional variables. In addition to the Reynolds number (Re) four
nondimensional numbers appear in the equations: the capillary number Ca = We/Re = Viμl/σ

gives the ratio of the viscous force to the surface tension force, the ratio between the
dynamic viscosity, and the contact line friction parameter η = μ/μf , the Cahn number
Cn = ε/R = 0.005 gives the ratio of the interface thickness to the droplet radius, and the Péclet
number Pe = 2

√
2ViεR/(3σγ ) = 100 gives the ratio of advection to diffusion. Both Cn and Pe are

fixed in all of our simulations such that the results satisfy the sharp interface criterion [45,46]. The
contour line C = 0 is interpreted as the droplet interface and used to extract β(t), βmax, and θd(t).

The numerical simulations are performed with FemLego [47], a symbolic finite-element toolbox
that solves partial differential equations. All simulations are performed in an axisymmetric coordinate
system where the domain extends 10R in the r direction and 5R in the z direction. An adaptive mesh
refinement method is used to enable a high resolution of the interface with a minimum mesh size of

r ≈ 
z ≈ 0.001R, which resolves the interface with Cn/
r ≈ 5 cells. The short and long time
scales require us to closely monitor the time stepping, which is adapted during the simulations to
ensure that the Courant-Friedrichs-Lewy condition <0.1. The droplet’s center of mass is initialized
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at a height z = 1.5R from the solid substrate and the dynamic contact angle θd(t) is measured at a
height of z = 100 μm using linear interpolation along C = 0 similar to the method used to in the
experimental analysis that we are directly comparing against [32].

The phase field method has previously been used with success to simulate droplet impact dynamics
[48,49] to quantify the early spreading and bubble entrapment, in accordance with experimental
observations [50]. However, none of these account for a dynamic contact angle treatment in Eq. (5)
with μf > 0 or quantify the maximum spreading radius of the droplet, which we will show are two
intertwined processes needed to rationalize the impact dynamics of droplets on smooth and rough
solid substrates.

II. RESULTS AND DISCUSSION

A. Droplet impact on smooth substrate

Phase field simulations of droplets that spread onto a solid substrate has previously been shown
to compare favorably with experiments and classical theory for viscous spreading [51], as well as
spreading dynamics where the apparent contact angle is so far from equilibrium that it requires
μf > 0 in Eq. (5) [41]. The mathematical form of Eq. (5) comes from the assumption of linear
response with a reduction of the free energy in time and can be interpreted as a Stokes-like drag
at the contact line. We interpret this wall-interface friction parameter μf as a physical property
that depends on the combination of the gas, liquid, and solid. We hypothesize that parts of the
parameter space that compose the droplet impact dynamics can only be described with an accurate
local treatment of the dynamic contact angle through μf .

Since μf is not known a priori we determine its magnitude by directly comparing simulations
with experiments [25,32], where μf is identified as the best match with β(t) (see Fig. 2). Our
simulations of droplets of water and glycerol-water mixture show that μf clearly affects the spreading
dynamics as well as the shape of the droplet. For water droplets on steel μf ∼ 0.52 Pa s, while
increasing its viscosity by introducing glycerol (μl = 0.01 Pa s) also increases μf ∼ 0.72 Pa s. These
magnitudes for μf are in accordance with previous measurements on spontaneous spreading droplets
(Vi = 0) [41]. Our simulations clearly show that μf controls the time scale for θd(t) to approach
the equilibrium angle, where θd(t) is the droplet’s apparent contact angle; see Figs. 2(b) and 2(d). It
is noteworthy that the assumption of local equilibrium, i.e., equilibrium contact angle, overpredicts
the spreading factor r(t) and its maximum rmax = max[r(t)] or in nondimensional units βmax =
max[β(t)], for both liquids. Thus, to obtain agreement between the simulations and experiments,
we need to account for dissipation at the contact line and the local equilibrium assumption fails to
capture the spatiotemporal droplet dynamics; see Figs. 2(b) and 2(d). An alternative and simpler
way to extract μf would be to compare droplet-spreading experiments with the analytical relation
for the contact line speed [52] derived from Eq. (5), but these data are, to the best of our knowledge,
not available for the given liquid-gas-substrate combination.

After determining μf (Table II) from an experiment for one impact speed Vi , we now assume
μf to be a constant material parameter that must be independent of Vi . We challenge our hypothesis
that μf is unique for a specific air-liquid-solid combination by directly comparing our simulations
with experiments [32,35] for different Vi . It is clear that as we increase Vi the droplets aspect ratio,
i.e., maximum height divided by βmax, decreases at β(t) = βmax. The simulated droplet shapes are
in very good agreement with the experiments at βmax, where the difference in profiles [Figs. 3(a),
3(c), and 3(d)] is caused by the experimental side-view photos. Since the simulations show a slice
through the droplet, they represent its actual shape. The dash-dotted lines in panels to the right in
Fig. 3 illustrate how the shape of the droplet would look if we instead would have made a side-view
image. Our simulations also capture the entrapment of an air bubble at the symmetry axis at the
wall, as seen in Figs. 3(a)–3(c).

It is clear that μf needs to be determined individually for each air-liquid-substrate combination.
A too small value for μf causes an overprediction of βmax, while a too large value for μf causes an
underprediction of βmax; see Fig. 4. We want to highlight that the value for μf determined from
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FIG. 2. Comparison of experimental data (markers) and numerical simulations (lines) for a droplet
impacting onto smooth substrates with a speed Vi = 1 m/s. (a), (b) β(t) and (c), (d) θd(t) as a function of
the viscosity (μl) and the contact line friction parameter (μf ), using the same definition of β(t) as reported in
experiments [32,35].

a single experiment is also the best fit for a range of impact speeds Vi and shows that μf is not a
function of Vi .

B. Droplet impact on textured substrates

Another parameter that can influence droplet spreading upon impact is the substrate topography
[34,38]. For spontaneous spreading of droplets (Vi = 0) the friction factor μf has already been shown

TABLE II. Measurement of μf as air-liquid-solid combinations.

Liquid-substrate θe(◦) μf (Pa s) Experiments

Glycerol/water-steel 52 0.72 Ref. [32]
Water-stainless steel 90 0.08 Ref. [25]
Water-steel 61 0.52 Ref. [32]
Water-aluminium 94 0.08 Ref. [35]
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FIG. 3. Comparison of the experimental [32] (the left half, their Fig. 2) and numerical (the right half) droplet
shape as it impacts onto a steel substrate. (a) A water droplet (1 mPa s) with μf = 0.52 Pa s and Vi = 0.57m/s.
(b)–(d) A glycerol-water droplet (10 mPa s) with μf = 0.72 Pa s and (b) Vi = 0.28 m/s, (c) Vi = 0.6 m/s, and
(d) Vi = 1.86 m/s.

to rationalize spreading dynamics on rough substrates [53] where the magnitude of μf depends on
the substrate topography which is classified by the roughness factor S i.e. the ratio of the projected
substrate area to the real substrate area where a smooth substrate has S = 1. To test if our description
of the contact line dynamics can provide a universal framework that can effectively bridge impact
dynamics on smooth and rough substrates, we test the relation for the effective contact line friction
parameter μeff ∼ Sμf [53], having already estimated the value for μf for the smooth substrate. In
the experiments we compare against, the substrate has a quasi-two-dimensional structure [34] (see
Fig. 5) and its geometry gives the following roughness factor S = b+w−2dcos(α)+2d/sin(α)

b+w
, which is

the ratio of the real area to projected area of the substrate. b,w, d, and α are geometric parameters
describing the grooved substrate of this particular substrate that we compare our simulations with;
see the inset in Fig. 5. If the contact line friction parameter μf is known for the corresponding flat
substrate, the effective friction μeff can easily be determined once the geometry of the microtextured
substrate is known.

We compare our simulations with experiments on substrates that have grooves along one direction
with different aspect ratios. In Fig. 5 the effective contact line friction parameter μeff is determined by
matching the experimental data for the TS11 substrate [34] with a roughness factor S11 = 1.27, where
we test the relation μeff ∼ Sμf [53] for the substrates TS140 (S140 = 1.79) and TS220 (S220 = 2.45)
[34]. Although our assumption of axial symmetry is slightly violated in the experiments, the linear
relationship between S and μeff rationalizes βmax for the spreading perpendicular to the grooves.
This is also believed to be the primary cause for the difference in μf found for a water droplet
impacting on the smooth (μf = 0.08 Pa s) and textured (μf = 0.28 Pa s) stainless steel substrate.

C. Energy budget

Our results show that the local interface-wall contact line friction can affect the droplet impact
dynamics, and we want next to determine its dissipative contribution and compare it against the
other primary contributions in the energy budget. To do this, we extract the different rates of
energy and dissipations, where the principal contributions are the rate of change of kinetic energy
Rρ = 1

2

∫
�

∂[ρ(C)u2]/∂td�, the rate of viscous dissipation Rμ = ∫
�

μ(C)(∇u + ∇uT) : ∇ud�,
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(a)

(b)

FIG. 4. The maximum spreading factor βmax = max[β(t)] as a function of impact speed Vi and μf .
(a) Droplets with a glycerol-water mixture impacting onto a steel substrate, where the dashed line is interpolated
experimental data [32] (their Fig. 4). (b) Water droplets impacting onto an aluminum substrate, where the dashed
line is interpolated experimental data [35] [their Fig. 4(b)].

and the rate of contact line dissipation Rμf
= ∫

�
εμf (∂C/∂t)2d�. � is here the entire volume and

� is the substrate area. In the droplet impact dynamics, we observe that at early times t∗ < 0.25 the
magnitude of R∗

ρ decreases rapidly, while R∗
μf

on the other hand increases; see Fig. 6. A minimum
in R∗

ρ and a maximum in R∗
μf

take place at t∗ ≈ 0.25, whereas both slowly approach zero as the
velocities decrease. Surprisingly, viscous dissipation appears to not play an important role in this
regime as both R∗

μf
and R∗

ρ are much larger for β(t) < βmax.

D. Scaling law for βmax(μ f )

Since our simulations fall into both the inertia-viscous and the inertia-capillary regimes, we can
further test if our numerical simulations are also consistent with existing scaling laws. We compare
our numerical data for μf = 0 [Fig. 7(a)] and the measured μf [Fig. 7(b)] with another set of
independent experimental data [23] for impacting droplets of different fluids. We use the scaling law
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FIG. 5. βmax for water droplets impacting onto microtextured stainless steel substrates with grooves along
one direction (see inset). The filled markers are numerical simulations with μeff ∼ Sμf . The hollow markers
are experimental results (Fig. 3(b) in Ref. [34]). The inset shows the geometric parameters (w,b,d , and α) for
the grooved substrate (Fig. 1 in Ref. [34]).

for βmax = Re
1
5 f (WeRe− 2

5 ) that couples the inertia-viscous and inertia-capillary regimes [22,23]
and is illustrated by the line in Fig. 7. We see in Fig. 7(a) that μf = 0 creates results that deviate
from the scaling law and the experiments. One exception is the simulations of water droplets; this
is not surprising as the Reynolds number for water is ten times larger than for the glycerol-water
mixture and inertial effects are therefore much more dominant. Including the effect of contact line

FIG. 6. The nondimensional rate of change of kinetic energy (R∗
ρ = ∫

�
1
2 Ca 1

2 Re ∂[ρ∗(C)u∗2]
∂t∗ d�), rate of

viscous dissipation (R∗
μ = ∫

�
Caμ∗(C)(∇u∗ + ∇u∗T) : ∇u∗d�) and rate of contact line dissipation (R∗

μf
=∫

�
Dw( ∂C

∂t∗ )
2
d�, Dw = CaCn

μf

μl
) for a glycerol-water droplet (10 mPa s) impacting with; Vi = 1 m/s,R =

0.92 mm and μf = 0.72 Pa s, i.e., Re = 212, Ca = 0.15, We = 31.4. t∗
max = 2.41 is here the time in which the

droplet is most deformed along the r direction, βmax = 1.83.
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FIG. 7. The maximum spreading factor βmax for different liquids, from experiments [23,32,35] (symbols:
+, × ,∗) and simulations (hollow markers). The dashed line is illustrating [31] the scaling relation βmax =
Re

1
5 f (WeRe− 2

5 ). (a) Comparing experiments [23,32,35] with numerical simulations for μf = 0. (b) Comparing
experiments [23,32,35] with numerical simulations for μf as reported in Table II.

dissipation by using the values for μf determined in Figs. 2 and 4 makes the simulated data for

WeRe− 2
5 > 1 fit well with the scaling law βmax = Re

1
5 f (WeRe− 2

5 ) and the experiments. However, it
is clear that for the regime where the effect from μf is expected to be important, i.e., WeRe− 2

5 < 1,
both the experiments and the simulations deviate from the existing scaling law.

To improve the scaling prediction for βmax we include the influence from the contact line
dissipation into the approximation for the energy balance,

∫
�

1

2

∂(ρlu2)

∂t
d� ≈

∫
�

μl(∇u + ∇uT) : ∇ud� +
∫

R

μf V 2
c dR +

∫
s

σ
∂s

∂t
ds (6)
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(a) (b)

(c)

FIG. 8. Scaling droplet impact data on different substrates where
μf

μl
> 5(β3

max + 1
Ca ). (a) βmax as a function

of μl
μf

Re. Note that the slope of the individual data sets is the same, but has a slightly different prefactor.
(b) βmax as a function of Re. (c) βmax as a function of We. Note that for the grooved substrates S11,S140, and
S220, we use the measured valued for μeff .

with the contact line speed defined as Vc = ∂r(t)/∂t . Note that the contact line dissipation
is independent of the interface thickness and can be rewritten [40] as

∫
�

εμf (∂C/∂t)2d� =∫
rc

μf V 2
c drc with rc as the radial position of the contact line. s is the droplet surface area and

the last term on the right-hand side of Eq. (6) is the rate of change of droplet surface energy. Based
on the approximated energy balance we assume the following scaling relations [31] for a droplet
that has spread to rmax and has a height h: u2 ∼ V 2

i , ∇u ∼ Vi/h, t ∼ rmax/Vi , Vc ∼ Vi , � ∼ R3,
� ∼ rmax, and s ∼ r2

max. In addition, mass conservation of the incompressible droplet demands that
its volume remains constant and that R3 ∼ hr2

max. By introducing these scaling relations into Eq. (6)
we get the following expressions: ∫

�

∂(ρlu2)

∂t
d� ∼ ρlV

3
i R3

rmax∫
�

μl
(∇u + ∇uT)

: ∇ud� ∼ μlV
2
i r4

max

R3∫
�

μf V 2
c d� ∼ μf V 2

i rmax

∫
s

σ
∂s

∂t
ds ∼ σVirmax. (7)

Now substituting these scaling relations into Eq. (6) and rearranging the terms give βmax as a function
of the contact line friction parameter μf ,

Re = β2
max

(
μf

μl
+ 1

Ca
+ β3

max

)
. (8)

Three separate regimes appear, where we immediately see that the two limits μf

μl
+ 1

Ca 
 β3
max

(βmax ∼ Re
1
5 ) and μf

μl
+ β3

max 
 1
Ca (βmax ∼ We

1
2 ) recovers the classical scaling laws. However, we

identify a new regime where contact line dissipation is a considerable contribution to the energy
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budget, i.e., 1
Ca + β3

max 
 μf

μl
with βmax ∼ (μlRe/μf )

1
2 . To test this new scaling law we plot the ex-

perimental data and the numerical simulations for μf /μl > 5(β3
max + 1/Ca), which follows βmax ∼

(Reμl/μf )
1
2 , see Fig. 8(a), instead of βmax ∼ We

1
2 in Fig. 8(b) or βmax ∼ Re

1
5 in Fig. 8(c). It would

be interesting to experimentally investigate this regime [μf /μl > 5(β3
max + 1/Ca)] over a larger

parameter space, as the viscosity, surface tension, and impact speed can be controlled and for a known
μf the effective friction factor can be increased by altering the substrate structure (μeff ∼ Sμf ).
Values for μf are, in addition to those reported here, already estimated for several different liquid-
gas-substrate combinations for different viscosities, wettabilities, and substrate roughness [41,53].

III. CONCLUSIONS

We have investigated the dynamics of droplets impacting onto solid substrates as a function of their
viscosity, substrate wettability, and substrate topography by deploying numerical simulations. By
assuming linear response through a Stokes-like drag at the contact line, our simulations rationalize
experimental observations for droplet impact on both smooth and rough substrates. Our results
highlight that dissipation at the contact line can give a significant contribution to the energy budget
and needs to be included to predict the droplet spreading dynamics. We propose a scaling relation
for this regime that is dominated by contact line dissipation βmax ∼ ( μl

μf
Re)

1
2 , complementing the

classical scaling laws for βmax, i.e., βmax ∼ We
1
2 and βmax ∼ Re

1
5 that are also identified in the

numerical simulations. Moreover, our simulations highlight the link between substrate roughness
and the effective contact line friction factor μeff that can provide a unifying framework to describe
droplet impact dynamics.
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