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Mathematical Competency Demands of Assessment Items: A Search for Empirical 

Evidence 

Abstract 

The implementation of mathematical competencies in school curricula requires 

assessment instruments to be aligned with this new view on mathematical mastery. However, 

there are concerns over whether existing assessments capture the wide variety of cognitive 

skills and abilities that constitute mathematical competence. The current study applied an 

explanatory item response modelling approach to investigate how teacher-rated mathematical 

competency demands could account for the variation in item difficulty for mathematics items 

from the Programme for International Student Assessment (PISA) 2012 survey and a 

Norwegian national grade 10 exam. The results show that the rated competency demands can 

explain slightly more than and less than half of the variance in item difficulty for the PISA 

and exam items, respectively. This provides some empirical evidence for the relevance of the 

mathematical competencies for solving the assessment items. The results also show that for 

the Norwegian exam, only two of the competencies, Reasoning and argument and Symbols 

and formalism, appear to influence the difficulty of the items, which questions to what extent 

the exam items capture the variety of cognitive skills and abilities that constitute 

mathematical competence. We argue that this type of empirical data from psychometric 

modelling should be used to improve assessments and assessment items, as well as to inform 

and possibly further develop theoretical concepts of mathematical competence. 

Keywords:  assessment items, explanatory item response modelling, mathematical 

competency demand, sources of item difficulty 
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 Introduction 

Mathematical Competency Frameworks 

In recent years, the concept of competence has gained an increased foothold in 

mathematics education (Boesen, Lithner, & Palm, 2016; Niss, Bruder, Planas, Turner, & 

Villa-Ochoa, 2016). While mathematics education has traditionally focused on acquiring 

facts and rehearsing procedures, the concept of mathematical competence covers a richer 

view of what it means to master mathematics (Kilpatrick, 2014; Niss et al., 2016). For 

instance, Niss and Højgaard (2011, p. 49) described mathematical competence as ‘having the 

knowledge of, understanding, doing, using and having an opinion about mathematics and 

mathematical activity in a variety of contexts where mathematics plays or can play a role’. 

With this increased focus on competence in mathematics education, several competency 

frameworks have emerged that describe different cognitive skills and abilities that constitute 

mathematical competencei (Kilpatrick, 2014). One such example is the KOM (in Danish, 

‘Competencies and the learning of mathematics’) framework which identifies eight 

mathematical competencies that encompass and encapsulate the essence of what it means to 

master mathematics that overarch mathematical topics and content areas (Niss & Højgaard, 

2011). Kilpatrick (2014) presented concepts of mathematical competence and types of 

competency frameworks which have influenced curricula reforms worldwide (Boesen et al., 

2016; Niss et al., 2016). For instance, the KOM framework has influenced curricula reforms 

in several European countries, such as Denmark, Germany, Catalonia, Sweden, and Norway 

(Boesen et al., 2014; Niss et al., 2016; Valenta, Nosrati, & Wæge, 2015).   

Demands of Mathematics Assessment Items 

Implementing competence-based mathematics curricula requires a shift in assessment 

practices, so that assessment instruments can capture the wide variety of mathematical 

competencies described in curriculum documents (Boesen et al., 2016; Lane, 2004; Niss, 
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2007). However, the assessment of competencies is regarded as challenging (Blömeke, 

Gustafsson, & Shavelson, 2015; Koeppen, Hartig, Klieme, & Leutner, 2008; Niss et al., 

2016) and there are concerns over whether existing assessment items suitably assess 

aggregated and higher order competencies (Niss, 2007), high-level thinking skills (Lane, 

2004)  and complex abilities (Koeppen et al., 2008) which are important parts of 

mathematical competence. Recent decades have seen calls for more empirical evidence to 

ensure that theoretical cognitive-related constructs are actually represented in assessment 

items (Embretson & Gorin, 2001; Lane, 2004; Messick, 1995). Messick (1995) noted that 

such empirical evidence can be derived from various sources. One such source is 

psychometric models that link theoretical cognitive models with empirical measurements 

(Embretson & Gorin, 2001; Koeppen et al., 2008; Messick, 1995). The modelling of item 

difficulty has been used as validity evidence for many tests (see e.g. Enright, Morley, & 

Sheehan, 2002; Gorin & Embretson, 2006), and identifying features of test items that 

influence item difficulty is important to understand what is measured in tests (De Boeck, 

Cho, & Wilson, 2016; Graf, Peterson, Steffen, & Lawless, 2005). For instance, Embretson 

and Daniel (2008) scored mathematic test items for cognitive complexity on 12 variables 

(e.g. number of equations that had to be recalled and number of subgoals involved in the 

solution process) and linked these variables to item performance by using an explanatory 

item response model. They found that most cognitive complexity variables (such as subgoal 

count) were significant predictors of item difficulty (but equation recall count was not) and 

that these cognitive complexity variables could account for about half of the variance in item 

difficulty. Embretson and Daniel (2008) argued that these results supported the validity of the 

postulated model of cognitive complexity for mathematical problem solving. 
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Linking mathematical competency demands and item difficulty 

The present study uses psychometrical models to look for validity evidence by linking 

a theoretical competency framework to empirical measurements of mathematical 

competence. The study builds on the work by the PISA mathematics expert group (MEG) 

who developed and studied an item analysis scheme to identify the competency demands of 

mathematical problems. The development of the item analysis scheme was based on the 

concept of mathematical competence that has underpinned the PISA mathematics 

frameworks (Turner, Blum, & Niss, 2015) and that evolved in parallel and intertwined with 

the KOM framework (for details of the relationship between the concept of competencies in 

the different frameworks, see Niss (2015)).  

Table 1 

Definitions of the six mathematical competencies in the item analysis scheme (Turner et al., 2015). 

Communication. Reading and interpreting statements, questions, instructions, tasks, 

images and objects; imagining and understanding the situation presented and making sense 

of the information provided including the mathematical terms referred to; presenting and 

explaining one’s mathematical work or reasoning. 

Devising strategies. Selecting or devising a mathematical strategy to solve a problem as 

well as monitoring and controlling implementation of the strategy. 

Mathematising. Translating an extra-mathematical situation into a mathematical model, 

interpreting outcomes from using a model in relation to the problem situation, or validating 

the adequacy of the model in relation to the problem situation. 

Representation. Decoding, translating between, and making use of given mathematical 

representations in pursuit of a solution; selecting or devising representations to capture the 

situation or to present one’s work. 

Symbols and formalism. Understanding and implementing mathematical procedures and 

language (including symbolic expressions, arithmetic and algebraic operations), using the 

mathematical conventions and rules that govern them; activating and using knowledge of 

definitions, results, rules and formal systems. 

Reasoning and argument. Drawing inferences by using logically rooted thought 

processes that explore and connect problem elements to form, scrutinise or justify 

arguments and conclusions. 

The MEG item analysis scheme consists of operational definitions of six 

mathematical competencies (see Table 1) which are a modified version of the competencies 
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in the KOM framework where the Mathematical thinking competency and the Reasoning 

competency have been merged into Reasoning and argument, and the Aids and tools 

competency has been omitted (Turner et al., 2015). The scheme also includes descriptions of 

four different levels of demand for each competency ranging from 0 (lowest demand) to 3 

(highest demand) (for the full item analysis scheme, see Turner et al. (2015)). The results 

from regression analysis of PISA 2003 and PISA 2006 data showed that the rated levels of 

competency demands could account for a considerable amount of the variance in item 

difficulty (Turner, Dossey, Blum, & Niss, 2013). We expand on this initial study in three 

ways: 

The mathematics assessment items. Whereas the original MEG study focused solely 

on 48 common items in the PISA 2003 and 2006 mathematics surveys, two different 

assessments were used in this study: the PISA 2012 mathematics survey (84 items 

administered in Norway) and the Norwegian 2014 national mathematics exam (56 items). 

Both assessments have been developed to measure students’ mathematical competence at the 

end of compulsory education (i.e., at the age of 15–16 years) and they have been influenced 

by the concept of competence presented in the KOM framework (Niss, 2015; Valenta et al., 

2015). However, the operationalisation of mathematical competence appears somewhat 

different in the two assessments. According to the PISA mathematics framework, all PISA 

mathematics items require students to use a range of mathematical processes and capabilities 

to solve problems situated in real-life contexts (OECD, 2013). A similar item format is 

described in the national exam’s guidelines, where the items are situated in everyday contexts 

to test the width and depth of students’ mathematical competence (Norwegian Directorate for 

Education and Training [Utdanningsdirektoratet], 2014). In addition, the guidelines state that 

many items will have a traditional format with an emphasis on procedural skills. Thus, the 
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present study expands on Turner et al.’s (2013) study both with regards to the number and 

types of items included. 

Teacher-perceived competency demands. In the original MEG study the PISA 

MEG which had developed the item analysis scheme rated the mathematical competency 

demands of the items. The MEG’s familiarity with the PISA items and their empirical diff-

iculty could potentially bias their ratings of competency demands and, in turn, the study 

results. To verify whether the results are valid even with a new set of raters who are 

unfamiliar with the items, we used a group of five mathematics and prospective mathematics 

teachers (subsequently called teachers) to establish the competency demands of the items (for 

further information about this group and the rating procedure, see Authors (2017)). 

Psychometric modelling through explanatory item response modeling. In the 

original MEG study, estimates of the item difficulty were first computed, and then, these 

estimates were treated as true difficulties and used as outcome variables in a linear regression 

analysis. This two-step approach ignores the estimation uncertainty and makes limited use of 

the actual item response data with an effective sample size of 48, the number of items. 

Therefore, this approach risks making some inferences unreliable. An explanatory item 

response model is a psychometric model that allows the cognitive demands of items to be 

treated as item attributes (i.e. explanatory factors) that are directly related to the success rates 

on the items (De Boeck et al., 2016). The psychometric model is in spirit similar to the two-

step approach from the MEG study; however, it integrates all steps into one and effectively 

uses all available item response data (all responses of each student on each item). By building 

on and extending the Turner et al.’s (2013) study, the present study further explored how the 

rated mathematical competency demands in assessment items are related to the empirical 

difficulty of items. Specifically, the following core research question was addressed: To what 
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extent do differences in teacher-rated demands of the six MEG competencies in mathematics 

assessment items align with the differences in the empirical item difficulty?  

Method  

Figure 1 shows the research design of the present study. Authors (2017) presented the 

teachers’ ratings of the mathematical competency demands of the items (Figure 1, left). The 

current study included student responses to the items, and it applied an explanatory item 

response modelling approach to investigate the relationship between the differences in the 

teacher-rated competency demands of the items (∆X) and the differences in empirical item 

difficulty (∆β). Details of each assessment are given below. Then we outline a procedure to 

establish the teacher-rated competency demands of the items as well as a statistical analysis 

approach to study the relation between competency demands and empirical item difficulties. 

 

Figure 1. Overview of study design: analysing the extent to which differences in teacher-

rated competency demands (∆X) align with differences in empirical item difficulty (∆β). 

PISA 2012 

The PISA 2012 assessment aimed to measure 15-year-old students’ (i.e. students born 

in 1996) mathematical literacy as defined in the PISA 2012 mathematics assessment 

Conducted by Authors 
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framework (OECD, 2013). According to this framework, the six mathematical competencies 

in the MEG item analysis scheme underpin mathematical literacy in practice (OECD, 2013). 

The PISA 2012 paper-based mathematics assessment was administered to a representative 

sample of approximately 4700 Norwegian students (OECD, 2014), and it consisted of a total 

of 84 items. Note that PISA is a system-level assessment and it strategically distributes items 

across students by using a rotating booklet design to limit the testing time and effort (OECD, 

2014). In Norway, every PISA mathematics item was assigned to between 1398 and 1452 

students. In the original coding, student responses were dichotomously coded as full credit 

(1) and no credit (0) for 76 of the items, and eight items used full (2), partial (1) and no (0) 

credit codes. For ease of comparison across items, we recoded partial credits to no credit such 

that all student responses were dichotomously scored.  

Norwegian National Exam 

The Norwegian national exam in mathematics assesses students’ mathematical 

competence based on the competence aims stated in the national curriculum. In 2014, this 

mathematics exam was administered to around one-third of Norwegian grade 10 students; 

each municipality (kommune) was responsible for sampling its students. The present study 

includes a sample of 1312 students, coming from all 19 counties in Norway and from schools 

in both urban and rural areas. Their responses were graded by a group of specially trained 

markers (oppmenn) from different regions. The exam consisted of 56 items across two 

booklets (parts 1 and 2, respectively) where all students responded to both booklets. Part 1 

(33 items) only allowed the use of paper, pen, ruler, compass and protractor and, according to 

the exam guidelines, contained both traditional non-contextualised items and contextualised 

mathematical problems that mainly focused on procedural skills (Norwegian Directorate for 

Education and Training [Utdanningsdirektoratet], 2014). Part 2 (23 items) allowed to use all 

types of non-communicating support material and, according to the guidelines, the items in 
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part 2 were situated in everyday contexts and were aimed at measuring the width and depth of 

students’ mathematical competence (Norwegian Directorate for Education and Training 

[Utdanningsdirektoratet], 2014). The items were originally scored by external examiners by 

using partial credits, and subsequently rescored dichotomously such that partial and full 

credits were scored as 0 and 1, respectively, for ease of comparison across items. 

Mathematical Competency Demands of Assessment Items 

The mathematical competency demands of the assessment items, to be used as 

explanatory factors in the explanatory item response models, were rated by five teachers 

using the item analysis scheme described above. All five teachers had some experience of 

teaching mathematics in secondary school (ranging from 2 years of full-time teaching to a 

few months of part-time teaching), and they received about one day of training that focused 

on enhancing their understanding of the competencies and the application of the item analysis 

scheme (Authors (2017) have discussed this training and rating process in more detail). 

Overall, Authors (2017) found that there was high consistency in the teachers’ ratings of the 

demands for each of the six competencies but that higher levels were underrepresented in the 

ratings. In the current study, for each of the 140 assessment items, we used the average 

demands on each of the six competencies as rated by the teachers. The use of the teacher-

averaged item ratings was supported by the high interrater consistency. 

Statistical Analysis 

A similar analysis procedure was followed for both assessments. First, descriptive 

statistics on the teacher-rated competency demands across items were given. Second, an 

explanatory item response modelling approach was used to study the relationship between the 

rated competency demands of the items and their empirical difficulty. A range of item 

response models with different item predictors was fitted using the lme4 package (Bates, 
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Mächler, Bolker, & Walker, 2015) in the open-source statistical software R (R Core Team, 

2016) to investigate how the rated competency demands could explain item difficulties. 

Item response models. In an item response model such as the 1-parameter logistic 

item response model, the probability of a person p correctly responding to an item i (Ypi = 1) 

is modelled as a function of the ability of the person (𝜃𝑝) and the difficulty of the item (𝛽𝑖): 

𝑃𝑟(𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛽𝑖) =
exp(𝜃𝑝 − 𝛽𝑖)

1 + exp(𝜃𝑝 − 𝛽𝑖)
, 

The person ability is estimated based on her or his performance on the test, while the item 

difficulty is estimated based on the performances of all persons on that item. The person 

abilities and item difficulties are placed on the same scale and, as can be seen from the 

function above, a higher person ability (𝜃𝑝)  relative to the item difficulty (𝛽𝑖)) (either due to 

a more able person, an easier item or both) leads to a higher chance of a correct response. For 

persons with ability equal to the item difficulty (𝜃𝑝=𝛽𝑖) the chance of a correct response on 

that item is 50%. The explanatory extension used in this study can be seen as adding an 

additional regression layer to the model,  𝛽𝑖 = ∑ 𝑋𝑖𝑘
𝐾
𝑘=1 𝑏𝑘 + 𝜀𝑖 (Janssen, Schepers, & Peres, 

2004). This extension allows the item difficulty to be predicted based on K item predictors 

such as the rated demands of the six mathematical competencies X1 to X6:  

𝑃𝑟(𝑌𝑝𝑖 = 1|𝜃𝑝, 𝛽𝑖) =
exp(𝜃𝑝 − ∑ 𝑋𝑖𝑘

𝐾
𝑘=1 𝑏𝑘 + 𝜀𝑖)

1 + exp(𝜃𝑝 − ∑ 𝑋𝑖𝑘
𝐾
𝑘=1 𝑏𝑘 + 𝜀𝑖)

. 

For this explanatory model, the probability of a person p correctly responding to an item i (Ypi 

= 1) is dependent on the ability of the person (𝜃𝑝) and the rated competency demands of the 

item (X1 to X6). For each of the six competencies, a regression coefficient 𝑏𝑘 is estimated that 

links the demand for this competency to student performance. As increased ratings are to 

reflect more demanding items, we expected that higher ratings would be related to more 

difficult items and thus that the estimated regression coefficients should be positive (i.e. 
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𝑏𝑘>0) for all competencies. The extent to which the item difficulties can be replaced by the 

teacher-rated competency demands and their estimated regressions coefficients was used to 

investigate to what extent the demand for the six MEG competencies could explain the 

variation in item difficulties. Formally this model is equivalent to a multilevel cross-classified 

logistic regression model with responses nested in students and nested in items, with both 

student ability and item difficulty modelled as a random effect. In the field of mathematics 

education, Embretson and Daniel (2008) have already used a reduced form of such a model to 

understand and quantify the cognitive complexity in mathematical problem solving items. 

Missing data. For both assessments missing responses were coded as 0 if students 

had attempted to solve at least one of the subsequent items. Consecutive missing responses 

clustered at the end of the tests were regarded as not reached and subsequently omitted, 

except for the first value in the missing series, which was coded as 0. This treatment of 

missing data is common in large-scale assessments (e.g. in PISA, OECD, 2014), and it is 

performed to avoid inflating the item difficulty due to confounding by the time constraints of 

the test and working speed of students. For the Norwegian exam, the missing data in the two 

parts were treated separately, as they each had an individual time frame. 

Results 

PISA 2012 

Teacher-rated competency demands in mathematics assessment items 

Table 3 shows the descriptive statistics on the five teachers’ ratings of the 

mathematical competency demands of the PISA items. The intraclass correlation coefficients 

(ICC) indicated that the teachers had a rather high agreement in their ratings of each of the 

six competency demands. The means of the rated competency demands were between 0.56 

and 1.22 for the PISA items. The distribution of the averaged teacher ratings are displayed in 
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Figure 4 and shows that Communication and Reasoning and argumentation were the highest-

rated competencies in the PISA items and that most ratings for all competencies were located 

at lower levels (levels 0 and 1). The ratings of competency demands tended to be moderately 

positively intercorrelated (median r = .39), indicating some overlap in the teacher-rated 

competency demands across the different competencies (see Table 3). Although the 

correlation between Communication and Devising strategies was somewhat lower (r = .19), 

the real exception to the rule was Representation, the ratings for which were much less 

correlated with the ratings for the five other competencies (median r = -.08). 

Relationships between rated competency demands and empirical item difficulty 

Null model. The average 15-year old Norwegian student has 42% chance of correctly 

responding to an average PISA2012 mathematics item. It was found that 21% and 35% of the 

variation in response was attributable to individual student differences and individual item 

differences, respectively. Therefore, although there is quite some variation in student ability 

(𝜎𝜃
2 = 1.61), there is even more variation in the item difficulty (𝜎𝛽

2 = 2.68) for PISA 2012; 

these latter differences in item difficulty we hypothesized to be linked to differences in rated 

mathematical competency demands. 

Single predictor models. First, we assessed the total impact of each competency 

demand separately by fitting six explanatory item response models with one item predictor 

each—a single competency demand—to explain the variation in item difficulty (see Table 4). 

Likelihood ratio tests showed that each of the six explanatory models had significantly better 

fit than the null model, except for the Representation model. This was corroborated by the 

relative fit model comparisons; the Representation model was the only one with AICii larger 

than that of the null model. For most other competencies, the differences in teacher-rated 

competency demands accounted for around 30% of the variation in item difficulty. This 

corresponds to rather large effects of the differences in rated competency demands. For 
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instance, a 1-point rating increase in the demand for Symbolism and formalism goes together 

with a 5.61 (i.e., exp(b1(k)) ) multiplicative decrease in the odds of correctly responding to the 

item. In terms of probability this would mean that an average student would have a 70% 

chance of responding correctly to an item with a rated demand of 0 for Symbolism and 

formalism, whereas this chance would decrease to 29% for an item rated at level 1.  

Full model. In the second stage, we assessed the impact of the mathematical 

competency demands in their full context by fitting an explanatory item response model with 

the rated demands for all six competencies as item predictors to explain the variation in item 

difficulty (see Table 4). This full model outperformed the null model and each single-

predictor model, indicating that taking into account the full item competency demands profile 

improves the prediction of item difficulty. Around 55% of the variance in item difficulty 

could be explained by variation in competency demands; this represents a 25% increase 

compared to the explanatory power of a single competency demand. In line with 

expectations, the effect of each competency demand was positive, meaning that competency 

demands increase with increased item difficulty. The strongest predictors for item difficulty 

in the full model were Reasoning and argument, Symbols and formalism, and Devising stra-

tegies. Surprisingly, upon keeping the other competency demand ratings constant, a one level 

increase in rated demand for Representation related to an increase of half a point in item 

difficulty on the logit scale. Therefore, while the demand for Representation on its own is not 

informative (cf. single-predictor model), it becomes relevant once it is seen in the context 

provided by the other competency demands. Conversely, the contributions of Communication 

and Mathematising were no longer significantly different from zero in the context of the full 

competency demands profile due to multicollinearity with these other competencies. 

Figure 2 and Figure 3 show two of the PISA mathematics items included in the 

current study. Table 2 shows the averaged teacher-rated mathematical competency demands, 
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the predicted difficulty (based on the rated competency demands and regression coefficients 

[1.8 ∗ .5 + 0.8 ∗ .73 + 0.8 ∗ .01 + 1.0 ∗ .49 + 2.2 ∗ .88 + 1.2 ∗ .99 − 2.81 = 2.30]) and the 

empirical difficulty of the two items. For ‘Drip rate’ the predicted and empirical item 

difficulties are rather equal (see Table 2). This indicates that for this item, the model 

adequately captures the difficulty of the item based on its rated competency demands. For 

‘Sauce’, we observe that the empirical difficulty is lower than the predicted difficulty (Table 

2). This means that the item was less difficult for the students than what was expected based 

on the rated competency demands of the item.  

Holistic models. In the third stage, we assessed the explanatory power of the simple 

holistic summary scores of the six competency demand ratings. With 21% of explained 

variance in item difficulty, using the number of competency demands rated above 1 did not 

prove fruitful for providing a practical summary that reflects the item difficulty (see Table 4). 

However, this percentage increases to 41% when using the number of competency demands 

rated above 0 as predictor. With 53% of explained variance in item difficulty, summing up 

the rated demands across the six competencies provides a sum score that matches the 

predictive performance of the full model (55%). As supported by the AIC model 

comparisons, the sum-across-competencies model is an equally well fitting, but more 

parsimonious model than the full model. Therefore, from a practical viewpoint, the sum of 

the mathematical competency demands might be a good and intuitive indicator for teachers to 

estimate the difficulty of items similar to those in the PISA assessment. For every point 

increase in demands, the odds of correctly responding to the item decreases by a factor of 2 

(i.e., exp(.61) = 1.84). In terms of probability this means that an average student is predicted 

to have a probability of correctly responding to around 93%, 81%, 57%, and 29% for an item 

with total competency demand ratings of 0, 2, 4, and 6, respectively. 
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Figure 2. PISA 2012 mathematics item ‘Drip Rate’ 

 

Figure 3. PISA 2012 mathematics item ‘Sauce’ 

Table 2 

Averaged teacher-rated competency demands, predicted item difficulty and empirical item 

difficulty of the two example items ‘Drip rate’ (Figure 2) and ‘Sauce’ (Figure 3) 

Item 

Teacher-rated competency demands Predicted  

item difficulty 

Empirical  

item difficulty C DS M R SF RA 

Drip rate 1.8 0.8 0.8 1.0 2.2 1.2 2.30 2.31 

Sauce 0.6 1.0 0.2 0.4 0.6 1.2 0.13 -0.80 

Note. C=Communication, DS=Devising strategies, M=Mathematising, R=Representation, 

SF=Symbols and formalism, RA=Reasoning and argument 
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Table 3 

Descriptive statistics of the five teachers’ competency demand ratings: Agreement measures (ICC), means, standard deviations (SD), 

and correlations between competencies 

 PISA items  Exam items 

    Correlations   Correlations 

 ICC Mean SD 1. 2. 3. 4. 5.  ICC Mean SD 1. 2. 3. 4. 5. 

1. Communication .77 1.22 .48       .89 .76 .71      

2. Devising strategies .86 .77 .59 .19      .92 .63 .69 .70     

3. Mathematising .77 .56 .49 .41 .62     .84 .40 .49 .51 .73    

4. Representation .84 .58 .51 .11 -.24 -.08    .79 .27 .36 .19 .06 -.11   

5. Symbols and formalism .83 .67 .55 .39 .62 .60 -.22   .82 1.10 .52 .45 .51 . 36 -.15  

6. Reasoning and argument .74 1.11 .48 .40 .42 .58 .01 .32  .89 .65 .62 .60 .67 .85 .02 .26 

Note. ICC-values are reproduced from Authors (2017). Means, standard deviations and correlations are based on the average ratings of 

the five teachers and prospective teachers. 

 

Figure 4. Boxplots of the distribution of the averaged teacher ratings of mathematical competency demands. 
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Table 4 

Parameter estimates and model fit for the explanatory item response models of the two assessments based on the teachers’ averaged 

ratings of competency demands and student responses 

 PISA data  Exam data 

 Full Model 

 Single- 

predictor 

Models 

 

 

Full Model 

 Single-

predictor 

Models 

 

Predictors bk SE  b1(k) 𝑅(𝑏)2 AIC  bk SE  b1(k) 𝑅(𝑏)2 AIC 

(Intercept) -2.81** .42    116163a  -2.78** .49    62959a 

Communication .50 .31  1.54 20% 116146  -.25 .39  .91 13% 62953 

Devising strategies .73* .30  1.56 32% 116133  -.37 .47  .93 13% 62953 

Mathematising .01 .39  1.87 31% 116133  -1.30 .83  1.47 16% 62951 

Representation .49* .25  .14 0% 116165  .04 .54  -.21 0% 62961 

Symbols and formalism .88** .33  1.72 33% 116131  1.78** .42  1.69 24% 62946 

Reasoning and argument .99** .32  1.89 31% 116134  2.46** .61  1.52 28% 62943 

Full model 𝑅2     55% 116108      48% 62935 

  Holistic Models     Holistic Models 

Sum demand across competencies  .61 53% 116101    .36 26% 62944 

Number of competencies rated > 0  .69 41% 116121    .52 21% 62948 

Number of competencies rated > 1  1.30 21% 116145    1.17 15% 62952 

Note. b = Regression coefficients, SE = Standard errors, 𝑅(𝑏)2 = % explained variance in item difficulty, AIC = Akaike’s information 

criterion, a Fit values for Null model, **p < .01, *p < .05.
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Norwegian National Exam 

Teacher-rated competency demands in mathematics assessment items 

Table 3 shows descriptive statistics on the teachers’ ratings of the mathematical 

competency demands of the exam items. High agreement was observed in the teachers’ ratings 

of all six competencies, as indicated by the ICCs. As seen from the distribution of the teachers’ 

ratings in Figure 4, Symbols and formalism received somewhat higher ratings than the other 

competencies, and Representation received the lowest ratings. As reflected by the median 

correlation of  r = .51, the rated competency demands of the exam items tended to be moderately 

positively intercorrelated (see Table 3), indicating a substantial overlap in rated demands across 

the different competencies. Devising strategies correlated highest with the other competencies 

(median r = .67), Symbols and formalism intercorrelated to a lower degree (median r = .36) and 

Representation appeared to be uncorrelated to the other five competencies (median r = .02). 

Relationships between rated competency demands and empirical item difficulty 

Null model. The average Norwegian grade 10 student has around 54% chance of corr-

ectly solving an item of average difficulty on the 2014 national mathematics exam. It was found 

that 31% and 33% of the variation in responses was attributable to individual student differences 

and individual item differences, respectively. Therefore, the levels of variation in student ability 

(𝜎𝜃
2 = 2.85) and item difficulty (𝜎𝛽

2 = 3.08) are rather similar; these latter differences in item 

difficulty we hypothesized to be linked to differences in mathematical competency demands. 

Single predictor models. Six explanatory item response models, each using one compe-

tency demand as an item predictor, were fitted to examine the extent to which a single competen-

cy demand on its own could explain the variation in item difficulty (see Table 4). According to 

both the AIC values (see Table 4) and Chi-square likelihood ratio tests, all explanatory item 
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response models showed significantly better fit than the null model, except for the 

Representation demand model. For the five other single-predictor models, the differences in the 

teacher-rated demands for each competency accounted for 13%–28% of the variation in item dif-

ficulty. For instance, a 1-point rating increase in the demand for Symbolism and formalism goes 

together with a 5.40 (i.e., exp(b1(k)) ) multiplicative decrease in the odds of correctly responding 

to the item. In terms of probability this would mean that an average student would have an 88% 

chance of responding correctly to an item rated at level 0 for Symbolism and formalism, whereas 

this chance would decrease to 58% and 21% for an item rated at levels 1 and 2, respectively.  

Full model. An explanatory item response model with the demand of all six compe-

tencies as item predictors was fitted to explain the variation in item difficulty (see Table 4). 

According to the Chi-square likelihood ratio test and AIC, this full model outperformed both the 

null model and the single predictor models. In total, the rated demands of all six competencies 

accounted for 48% of the variance in item difficulty. This is an increase of 20% from the best-

performing single competency model. Reasoning and argument and Symbols and formalism 

were the two prominent competency demands in the full model that seemed to account for most 

of the explained variation in item difficulty. The partial effects of  Reasoning and argument and 

Symbols and formalism (i.e., keeping the value of the other predictors constant) correspond to a 

multiplicative decrease in the odds of correctly responding to the item of around 12 and 6, res-

pectively (i.e., exp(2.46) and exp(1.78)). The partial effects of the other competencies were not 

statistically significant from zero, and hence their unique impact disappeared in the presence of 

these two strong item predictors. 

Holistic models. The explanatory power of three models that represented a more holistic 

view of the demand of the items was assessed. The AIC values in Table 4 show that all three 
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models have a worse fit than the full model. Furthermore, the explanatory powers of the holistic 

models were rather low compared to that of the full model, and also lower than that of the best-

fitting single-predictor model. Of the three holistic models, the sum of the demand across all six 

competencies had the most explanatory power, accounting for 26% of the variance in item 

difficulty. The low predictive power of these models compared to that of the full model is in line 

with the observed coefficient imbalance in the full model, where Reasoning and argument and 

Symbols and formalism dominate the predictive equation. Combining the latter two competency 

demand ratings constitutes a good summary predictor of item demands in the Norwegian exam; 

adding up the remaining competency demand ratings would only add noise to the signal. 

Discussion 

The implementation of competence-based mathematics curricula requires assessment 

instruments that ensure valid measures of mathematical competence (Boesen et al., 2016; Lane, 

2004; Niss & Højgaard, 2011).  The present study aimed to investigate the relationship between 

rated mathematical competency demands of assessment items and item difficulty in a search for 

empirical evidence that indicates whether the items draw on the six MEG competencies. 

Teacher-rated competency demands in mathematics assessment items 

According to the teachers’ ratings of mathematical competency demands, both the PISA 

and Norwegian exam items require the activation of all six competencies to some extent although 

the vast majority of the demands were rated at lower levels of 0 and 1. For the PISA items, 

Communication and Reasoning and argument were perceived as the two prominent 

competencies, and Symbols and formalism was the far most dominant competency in the 

teachers’ ratings of the Norwegian exam items. For both assessments, the demands for 

Representation, and to some extent Mathematising, appeared almost absent in the teachers’ 
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ratings. The dominant presence of Symbols and formalism indicates a focus on procedural 

knowledge, mathematical rules and definitions (e.g. calculations, algebraic operations and 

formulas) and resembles the traditional viewpoint of mathematics curriculum and assessments.  

Overall a moderate intercorrelation was observed in the rated demands for the different 

competencies. Because of the overlapping nature of the mathematical competencies, it was expe-

cted that some correlations would occur between them. Therefore, it was uncertain whether the 

moderate correlations could be due to the defined overlaps of the competencies or the teachers’ 

inability to distinguish between the demands for the different competencies due to unclear defini-

tions and operationalisations in the item analysis scheme. The substantial correlation observed 

between Devising strategies and Mathematising could indicate that the two competencies tended 

to be demanded in pair due to the design of the items, or that too vague distinctions caused the 

teachers to lump together the demands for these competencies. At the same time, the low 

correlation between Representation and other competencies could indicate the clearer distinction 

of the demand for Representation. A clear distinction of this competency combined with its low 

presence in the teachers’ ratings raises the question of whether the demand for this competency 

is actually more or less absent in the items or whether the operationalisation of Representation in 

the item analysis scheme does not capture the demand for this competency adequately. 

Based on the rather high agreement in the teachers’ ratings, we assume that the overall 

moderate intercorrelations in the rated competency demands are mainly driven by the defined 

overlaps of the competencies, and that the teachers’ average ratings provide reliable ratings of 

the competency demands of the assessment items.  
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Relationship between competency demands and empirical item difficulty 

The different explanatory item response models provided complimentary information 

about the relationship between the rated mathematical competency demands and item difficulty. 

This information could be used to further verify the teacher-rated competency demands and to 

investigate the extent to which the items actually seem to tap into the six mathematical 

competencies in the MEG framework. The single-predictor explanatory item response models 

show that, on their own, most teacher-rated competency demands could explain a substantial part 

of the variation in item difficulty in both assessments. The relationship between competency 

demands and item difficulty were most prominent for Reasoning and argument and Symbols and 

formalism, whereas the rated demand for Representation turned out to be largely irrelevant on its 

own. The latter is a surprising finding as being able to interpret, translate between and devise 

different types of mathematical representations is considered important for solving mathematical 

problems (Duval, 2006; Elia, Panaoura, Eracleous, & Gagatsis, 2007; NCTM, 2000; Stylianou, 

2011). However, this result does need further scrutiny, as according to the teachers’ ratings, the 

two assessments have low to almost absent demands for the Representation competency.  

The inclusion of the rated demands for all six mathematical competencies yielded better 

models of the item difficulties than the single-predictor models. The full explanatory item 

response models could explain about half of the variance in item difficulty (55% for PISA and 

48% for the Norwegian exam), indicating that the competency demands profile of an item would 

be a decent indicator of that item’s difficulty. When examining the effects of the different 

competencies in the full models, the rated demands for Symbols and formalism and Reasoning 

and argument appeared to be most strongly related to the item difficulty in both assessments. For 

the exam items, the demands for these two competencies were the only ones related to item 
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difficulty; the difficulty of the PISA items was also related to the rated demands for Devising 

strategies and Representation. Therefore, although, on its own, the Representation demand did 

not make a difference, it became relevant when taking into account the context provided by the 

demands of the other competencies in the PISA items. The results based on the PISA 2012 data 

in the present study are consistent with Turner et al.’s (2013) findings based on PISA 2003 and 

PISA 2006 data, except for the relevance of the Representation demand. In our study, the Repre-

sentation effect does appear relatively stable even when removing PISA items with the highest 

Representation ratings. Therefore, we conjecture that Representation demands are not strong 

enough on their own (i.e., single predictor) but can only play a role in the context provided by 

the demand for other competencies (i.e., multiple predictors). For instance, as symbolic represen-

tations play an important role in mathematics, an item that requires decoding symbolic represen-

tations (Representation competency) would often also require the use of these symbolic represen-

tations in formal operations such as solving equations (Symbols and formalism competency).  

The usefulness of a more overall competence perspective was explored in the holistic 

models. The holistic perspective was unsuitable for the exam items, as aggregating ratings would 

lead to mostly adding noise to the signal of the two dominant predictors, Symbols and formalism 

and Reasoning and argument. For the PISA items, the holistic perspective proved more success-

ful due to the more equal distribution of explanatory power across the competency demands. 

Both the PISA assessment and the Norwegian exam aimed to measure general 

mathematical competence, and the PISA mathematics framework and Norwegian curriculum are 

both influenced by the concept of mathematical competence described in the KOM framework 

(Niss, 2015; Valenta et al., 2015). Therefore, even though none of the assessments were designed 

to explicitly measure the six mathematical competencies in the MEG framework, we would 
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expect that these competencies should be relevant to the constructs of mathematical competence 

represented in both PISA and the exam. The descriptions of the assessment items in the PISA 

2012 mathematics framework and the 2014 Norwegian exam guidelines indicate somewhat 

different operationalisations of mathematical competence in the two assessments. While all PISA 

items are situated in real-life contexts developed to measure a wide range of processes and 

capabilities (OECD, 2013), the Norwegian exam consists of both contextualised items aimed at 

measuring the depth and width of students’ mathematical competence and non-contextualised 

items focused on procedural skills (Norwegian Directorate for Education and Training 

[Utdanningsdirektoratet], 2014). The results from the explanatory item response models indicate 

that the MEG competency framework seems to be better reflected in the PISA items than in the 

exam items, with more of the variance in item difficulty being explained and a higher number of 

competencies related to item difficulty. The fact that the rated demands for only two of the six 

competencies could be related to the difficulty of the exam items raises questions about the 

extent to which these items require various cognitive skills and abilities that are represented in 

mathematical competence. These results could indicate that the narrow focus on procedural skills 

for a rather large proportion of the exam items might be at the expense of a valid measure of 

more general mathematical competence as represented through the six MEG competencies. 

Implications for MEG competency framework and assessment of competency demands 

The present study provides some promising results for applying an explanatory item 

response modelling approach to link mathematical competency demands to item difficulty. The 

models show that a substantial amount of the variance in item difficulty can be explained by the 

teacher-rated competency demands, indicating the relevance of the mathematical competencies 

for solving the assessment items. Nonetheless, about half of the variance in item difficulty is not 
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explained by the rated competency demands. A part of this unexplained variance could be related 

to inaccurate ratings of the mathematical competency demands and difficulties with 

distinguishing the demand for different competencies. More rater training and rater experience, 

and clearly defined and concrete categories have been recognised as factors that can increase the 

discrimination between distinct concepts and dimensions (Feeley, 2002). Thus, further revisions 

of the scheme (e.g. clarifying definitions and descriptions) and guiding material (e.g. more items 

to exemplify differences between the competencies and levels of demand) could yield more 

accurate ratings that better reflect the empirical difficulty of the items. In addition, a more 

exhaustive training (for instance by expanding from one to two full days of training) where more 

time was spent on applying the scheme, comparing ratings and discussing differences could 

improve the raters’ ability to distinguish between several levels of demand. Nonetheless, it is 

likely that most of the unexplained variance is related to item features that are not related to the 

six mathematical competencies addressed in our study. Identifying features that influence the 

item difficulty is important for understanding what is being measured in assessments and for 

ensuring that construct-irrelevant item attributes do not threaten the validity of the interpretations 

of the test scores (De Boeck et al., 2016; Graf et al., 2005). Although the variance in item 

difficulty cannot be fully accounted for by any set of item features, it is probable that item 

features exist that are relevant to mathematical competence but not captured in the MEG scheme. 

Turner et al. (2013, p. 24) noted that the mathematical competencies included in the item 

analysis scheme ‘describe the essential activities when solving mathematical problems’ and were 

based on a reconfiguration of the KOM competencies. One obvious difference between the KOM 

framework and the MEG framework is that the Aids and tools competency, which was not 

relevant for the early paper-based PISA items, is not a part of the MEG competencies. In part 2 
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of the Norwegian exam, the students are required to use digital tools (e.g. spreadsheets) for 

solving some of the items (Norwegian Directorate for Education and Training [Utdannings-

direktoratet], 2014). As this activity is not captured by the teachers’ ratings, the demands for aids 

and tools might explain some of the variance in student performance in the exam data. However, 

by inspecting residuals between the empirical and the estimated item difficulties based on the 

modelled competency demands, exam items that require the use of digital tools do not appear to 

be more divergent than the other items. This indicates that the inclusion of an aids and tools 

demand in the item response models would likely not influence the results to a large extent. 

When investigating the empirical separability of cognitive and content domains in 

mathematical competencies, Harks, Klieme, Hartig, and Leiss (2014) found that the 

competencies included in their study were content-specific; the level of demand for the 

competencies depended on the mathematical content in which they appear. One characteristic of 

the KOM and MEG competency frameworks that distinguishes them from many other 

mathematical frameworks is the absence of content domains (e.g. algebra, geometry and 

measurement). Previous studies that have investigated features that influence the difficulty of 

mathematics items are mostly situated within a certain topic area. For instance, both Enright et 

al. (2002) and Koedinger and Nathan (2004) investigated the factors that influenced the difficulty 

of word problems related to quantity. Although the competencies in the MEG framework are 

defined to overarch mathematical topics and content, their activation could be more or less 

demanding within certain domains or areas. It is therefore possible that including information 

about content or context as item attributes could account for some of the unexplained variance. 

Wilson, De Boeck, and Carstensen (2008) distinguished between planned and unplanned 

variation in item properties, where the former refers to items that are developed to systematically 
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vary with regard to the properties of interest and the latter is based on post-hoc analysis of items 

in an extant test. Studies using planned variation have shown that a large proportion of the 

variance in item difficulty can be explained by the varied item features (Daniel & Embretson, 

2010; Enright et al., 2002). In the case of PISA and the Norwegian exam the variation in 

mathematical competency demands is planned on the conceptual level, whereas the 

implementation has been much more ad hoc with a more indirect impact on the development of 

the assessment items. Therefore, a next step to follow-up on this research is to replicate the study 

with a more systematically designed assessment that follows through the competency framework 

from concept to implemented items. The latter might prove to be the real challenge. One might 

wonder whether it is practically feasible to design item sets that tap into each combination of 

both competencies and levels of demand, or that isolate the demand of different competencies. 

Concluding remarks 

Zlatkin-Troitschanskaia, Shavelson, and Kuhn (2015) stress that the conceptual model of 

competency should dictate the nature of the psychometric models, and not the other way around. 

Although only a subsample of the six mathematical competencies is identified empirically and 

seems to add to the explanatory power in the item response models, reducing the theoretical 

competency framework to include only a subsample of competencies would be an improper 

interpretation and use of empirical data. For instance, the importance of communication and 

representations is recognised in mathematics frameworks, curricula and assessments around the 

world (Niss et al., 2016), and removing these would lead to a limited view of mathematical 

competence. Rather, empirical data from psychometric modelling should be used to inform and 

further develop theoretical models of mathematical competence, as well as to improve assess-

ments and operationalisation of competencies in assessment items. From this perspective, we call 
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not only for the continued conceptual development of the competency framework but also for a 

more systematic development of assessment items that are intended to tap into these compe-

tencies. The latter area has been neglected for too long and is vital to ensure valid measures of 

mathematical competencies that are aligned with the present goals of mathematics education. 
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i In this paper the term mathematical competence refers to a general definition of what it means to master 

mathematics (e.g. the description provided by Niss and Højgaard), while the term mathematical competency (or 

competencies in plural) refers to one or a set of the constituent parts of mathematical competence. 
ii AIC Akaike’s information criterion (Akaike, 1973): balances absolute fit to the data with model 

complexity in terms of the number of parameters. Best model is a model that is parsimonious but still fits well. 


