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Abstract

This thesis is a study in approximation of the fractional Brownian motion.
We first define weak convergence of continuous stochastic processes, and we
define and prove the tools needed to show weak convergence. Then we use the
representation of fractional Brownian motion due to Mandelbrot and Van Ness
as an inspiration for a discrete stochastic process. We use linear interpolation
to extend this process to a continuous process. As the time-intervals in the
approximation becomes smaller, our processes converge weakly to the fractional
Brownian motion.

We will also look at Difference Calculus. When we combine this with the
earlier results we will get many interesting approximations, some will follow
very elegantly without difficult proofs.

Lastly we will look at applications to finance. Here we will approximate
known processes, and also approximate stochastic differential equations encoun-
tered in finance. We will see that the solutions also converge weakly to known
results.
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Preface

This thesis is the result of a year’s work. My advisor Tom Lindstrøm and I
discussed various topics I could write about. After a discussion with Fred Espen
Benth, also a professor at UiO, we found out that fractional Brownian motion
had been a hot topic in finance, so it seemed like a good topic to look deeper
into.

I am also very interested in various types of convergence in probability
theory. Lastly I find the elegance of discrete stochastic processes very intriguing.
I was allowed to control the path of the thesis so it was natural to incorporate
my interests. So the three aspects, fractional Brownian motion, convergence and
lastly, discrete stochastic processes are the topics of the thesis. My advisor and
I therefore formulated the problem statement to be to investigate how "simpler"
processes could be used to approximate the fractional Brownian motion. I
quickly decided that I wanted to use continuous processes that were made up
of discrete processes and linear interpolation. This means that the process is
uniquely determined by the value at each time-point that is a multiple of a
positive number δ = ∆t. So strictly speaking these are continuous processes,
but it is better to view them as discrete processes extended to C[0,∞) by
linear interpolation. This also gives us the advantage that every process used
to approximate the fractional Brownian motion is continuous, and this may be
desirable since the fractional Brownian motion has continuous trajectories.

One of my pet peeves is that in a lot of mathematical texts many aspects
of the proofs are omitted. For example, in stochastic analysis it is not always
proved that processes are well-defined, that functions are measurable when they
should be etc. So I have taken the approach that if we work with a function
that should be measurable, or if we have a set that should be measurable, we
show or prove that they indeed are. This is not as trivial as it might seem.
For example, when working with a proof of this kind, see proposition B.2.15,
I found that I needed separability of C[0,∞)(equipped with a metric to be
defined later) for the proof of measurability to go through. So measurability
results are not as trivial as one might think. The mature mathematical reader
should be able to quickly recognize these proofs and skip them if desired.
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Chapter 1

Introduction

This chapter is meant to be a guide to the rest of the thesis. While reading
the thesis it is recommended to keep the problem statement in mind; we want
approximate the fractional Brownian motion with simpler processes. As we will
see later, the approximation processes will not be entirely discrete, as we will
use linear interpolation to make them continuous.

1.1 Conventions

Let us quickly look at some conventions in this thesis. We let N denote the
natural numbers {1, 2, 3, . . .}. Notice that 0 is not included here.

If ai is a sequence and b, c are natural numbers with c < b we define
c∑
i=b

ai
.= 0.

And from definition 3.2.1 we see that the same follows for the Σδ sums.
If a is a real number we let bac be the floor function used on a. It is defined

as

bac .= max {z ∈ Z : z ≤ a} .

Where Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
We have two different ways of writing stochastic processes. Let us take

X(δn) from chapter 3 as an example. Usually stochastic processes are written
(X(δn)

t )t∈[0,∞), but we will often just write X(δn). This is when we want to
emphasize that we are working with random functions taking values in C[0,∞).

We will sometimes use the abbreviation fBm for the Fractional Brownian
motion.

1.2 Outline of the thesis

This thesis is fairly long since we have many proofs. It is important not getting
lost in the details, but also focus on the main ideas of the thesis. In this section
I will try to explain the main goals of each chapter.
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1. Introduction

Chapter 2
In this chapter we create the tools needed for weak convergence of continuous
stochastic processes where the time parameter is in [0,∞). The chapter is based
on the work in [Bil99] and [Bil68]. Billingsley works with process on C[0, 1] or
cádlág processes. We modify Billingsley’s proofs to work for C[0,∞).

Chapter 3
Here we introduce the fractional Brownian motion. And we use the represen-
tation given by Mandelbrot and Van Ness of a fractional Brownian motion
as an inspiration to define a process X(δ)(definition 3.2.6), which we call the
Mandelbrot and Van Ness sum. For {δn} a positive sequence converging to
zero, we show weak convergence of X(δn) to the fractional Brownian motion.

Chapter 4
In chapter 4 we introduce difference calculus with arbitrary step size. The work
is based on chapter one, and parts of chapter two in [GP15]. The crucial tool
which allows us to generalize to an arbitrary step-size is the modified Gamma
function, which we come up with in definition 4.2.1. We then use the modified
Gamma function to define falling powers.

In section 4.3 - section 4.9 we generalize more of the concepts in [GP15],
but they are not used later.

Chapter 5
In this chapter we modify the process X(δ) from chapter 3 to a process Y (δ).
We change some of the powers in X(δ) to falling powers. The falling powers
are those from section 4.2. We again show weak convergence to the Fractional
Brownian Motion as δ goes to zero.

Chapter 6
In chapter 6 we still want to approximate the fractional Brownian motion.
We end up with two processes Z(δ)(definition 6.1.1) and U (δ)(definition 6.2.6).
However, Z(δ) and U (δ) are in this case defined by their difference ∆Z(δ)

t
.=

Z
(δ)
t+δ − Z

(δ)
t , and likewise for ∆U (δ)

t . This is because now it is the difference
that has a nice representation. Z(δ) is based on Y (δ), and U (δ) is based on X(δ).
We show weak convergence to the fractional Brownian motion as δ becomes
smaller and smaller. The proof for the Z(δ) is very elegant because differences
of falling powers behave well.

Chapter 7
The four processes we worked with earlier(X(δ), Y (δ), Z(δ), U (δ)) all contained
infinite sums in their definitions. We want a process with only finite sum, so we
use U (δ) as an inspiration for V (δ) which is described with only finite sums. We
show that we still have weak convergence to the fractional Brownian motion.

2



1.3. How to read the thesis

Chapter 8
Here we first show in theorem 8.1.2 that we can approximate the process
(S0e

f(t)+σBt,H )t∈[0,∞), where f is a continuous function. We also look at some
examples where the geometric fractional Brownian motion is used in finance,
and explain how we can approximate these functions. We model a risky asset
by a stochastic difference equation. The difference equation is chosen so that it
resembles the stochastic differential equation from stochastic analysis, used to
model the risky asset. We see that we have to modify the difference equation
for H < 1/2. We show that the solution converges weakly to the geometric
fractional Brownian motion.

Chapter 9
We conclude the thesis. Lastly we give some ideas for further research.

The Appendices
The appendices are meant to be a place where we prove some of the statements
needed in the text. These results are placed in the appendix so we can focus
better on the results in the main text. The appendices are not meant as an
introduction to the subjects discussed there. However, they are written in a
way where they can be read as stand-alone chapters.

1.3 How to read the thesis

Many authors of mathematical texts recommend skipping the proofs the first
read-through. This can also be done while reading this thesis in order to not
get lost in the details.

Every chapter is based on the previous chapters, so one should understand
chapter 2 before starting on chapter 3 etc. However, chapter 4 is an exception.
Chapter 4 can be read as a stand-alone chapter, and it is also only section 4.1
and section 4.2 that are used later.

Chapter 3, chapter 5, chapter 6 and chapter 7 may seem long. But one
should keep in mind that they are very simple in the sense that their only goal
is to show weak convergence of a certain sequence of processes.

The appendices contain results needed in the main text. They are not meant
to be introduction to the various topics, they only contain results needed in the
main chapters.

3





Chapter 2

Weak convergence in C[0,∞)

In this chapter we create the machinery needed for weak convergence of con-
tinuous stochastic processes on [0,∞). We will generalize the work of Patric
Billingsley for C[0, 1] to C[0,∞). The results we generalize are from two editions
of the same book, Convergence of Probability Measures, one edition from 1968,
[Bil68] and the other from 1999, [Bil99]. We will also refer to some results given
in a compendium written by Serik Sagitov, [Sag15], this compendium is also
based on Billingsley’s books.

2.1 Quick introduction to weak convergence

Later we will see that C[0,∞) equipped with the appropriate metric is a metric
space. The notion of weak convergence can be formulated without stochastic
processes, only in terms of probability spaces and metric spaces. So in this
section we will give the definition of weak convergence in terms of general metric
spaces. This can also be found in [Bil99, p. 7].

We let S denote a general metric space, and S be the Borel σ-algebra on S.
So (S,S) will be a measurable space. We equip the real numbers R with the
Borel σ-algebra B(R). A continuous function

f : S → R,

will be S/B(R)-measurable. So if Pn is a probability-measure on S we have
that f will be a random variable on the probability space (S,S, Pn). If P is
another probability measure on S we let En[f ] denote the expectation of f
using the probability space (S,S, Pn), and we let E[f ] denote the expectation
using (S,S, P ). We can now give the definition of weak convergence.

Definition 2.1.1 (Weak Convergence). Let S denote a metric space, and
let S denote the Borel σ-algebra on S. Let {Pn} be a sequence of probability
measures on S, and let P be another probability measure on S. We say that
{Pn} converges weakly to P if for every bounded continuous function:

f : S → R,

we have

En[f ]→ E[f ].

5



2. Weak convergence in C[0,∞)

By [Bil99, Theorem 1.2, p. 8] a sequence of probability measures can only
converge weakly to one probability measure, that is, the limit is unique.

2.2 Non-probabilistic results for the space C[0,∞)

In this section we will develop some of the properties of C[0,∞) without
concerning ourselves with probability theory, only the real analysis aspect of
the theory. The first result shows that with the appropriate metric we have
that C[0,∞) is a metric space.

Theorem 2.2.1. The function ρ : C[0,∞)× C[0,∞)→ R, given by

ρ(f, g) =
∞∑
i=1

min(2−i, sup{|f(t)− g(t)| : t ∈ [0, i]}),

is a bounded metric on C[0,∞).

Proof. Obviously the value is bounded by 1, because of the geometric series∑∞
i=1 2−i = 1.
ρ(f, f) is obviously 0.
Assume that ρ(f, g) = 0. We must show that f(t) = g(t),∀t. Assume that

t is given, choose N > t. We have sup{|f(t) − g(t)| : t ∈ [0, N ]} = 0. So
f(t) = g(t).

We also obviously have ρ(f, g) = ρ(g, f).
Lastly we must prove the triangle inequality. Assume that f, g, h ∈ C[0,∞).

We get

ρ(f, g) =
∞∑
i=1

min(2−i, sup{|f(t)− g(t)| : t ∈ [0, i]})

=
∞∑
i=1

min(2−i, sup{|f(t)− h(t) + h(t)− g(t)| : t ∈ [0, i]})

≤
∞∑
i=1

min(2−i, sup{|f(t)− h(t)|+ |h(t)− g(t)| : t ∈ [0, i]})

≤
∞∑
i=1

min(2−i, sup{|f(t)− h(t)| : t ∈ [0, i]}+ sup{|h(t)− g(t)| : t ∈ [0, i]})

≤
∞∑
i=1

min(2−i, sup{|f(t)− h(t)| : t ∈ [0, i]})

+
∞∑
i=1

min(2−i, sup{|h(t)− g(t)| : t ∈ [0, i]})

= ρ(f, h) + ρ(h, g),

in the second step we used the triangle inequality and lemma D.1.5, in the
third we used the sub-additivity of the supremum and lemma D.1.5, and in the
fourth step we used lemma D.1.4.

We will also need completeness and separability which we prove next.
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2.2. Non-probabilistic results for the space C[0,∞)

Theorem 2.2.2. The metric space (C[0,∞), ρ) is separable and complete.

Proof. We first show show that C[0, k] is separable with the metric ρk(f, g) =
sup{|f(t)− g(t)| : t ∈ [0, k]}. [Bil99, Example 1.3, p.11] tells us that the result
holds for C[0, 1]. We then extend it to C[0, k] by change of variable. Let {gn}
be the dense subset of C[0, 1]. We claim that {fn}, fn(t) .= gn(t/k), is a dense
subset of C[0, k]. Let ε > 0, f ∈ C[0, k] be given. Define g(t) .= f(tk) ∈ C[0, 1].
Let sup{|g(t) − gn(t)| : t ∈ [0, 1]} < ε, for some n. Then sup{|f(s)| − fn(s)| :
s ∈ [0, k]} = sup{|g(s/k)| − gn(s/k)| : s ∈ [0, k]} = sup{|g(t)| − gn(t)| : s ∈
[0, 1]} < ε. Hence C[0, k] is separable.

Let us now show that C[0,∞) is separable. For every k, we have that C[0, k]
is separable. There is a countable collection of functions that is dense on C[0, k],
extend each function in this collection to a function on C[0,∞) by requiring
that it is constant on [k,∞), denote this collection Fk. We will show that
F =

⋃
k∈N Fk is a countable dense subset of C[0,∞). It is countable since a

countable union of countable sets is countable. To show that it is dense, assume
that f ∈ C[0,∞) and ε > 0 is given. Let N be such that

∑∞
k=N+1 2−k < ε/2.

Choose g ∈ F such that sup{|f(t)− g(t)| : t ∈ [0, N ]} < ε
2N , this is possible by

the construction of F . We now have

ρ(f, g) =
∞∑
k=1

min(2−k, sup{|f(t)− g(t)| : t ∈ [0, k]})

≤
N∑
k=1

sup{|f(t)− g(t)| : t ∈ [0, N ]}+
∞∑

k=N+1
2−k

< N
ε

2N + ε

2 = ε.

So C[0,∞) is separable.
Lastly let us now show that C[0,∞) with ρ is complete. Assume that

{fn} ∈ C[0,∞) is a Cauchy sequence, let t ∈ [0,∞). We want to show that
fn(t) converges pointwise. Let K > t be a natural number. We have

|fn(t)− fm(t)| ≤ sup {|fn(s)− fm(s)| : s ∈ [0,K]} .

The last expression can be made arbitrarily small if n and m is increased since
{fn} is a Cauchy-sequence with the ρ-norm. So {fn(t)} is a Cauchy sequence.
Since R is complete fn(t) converges pointwise, call the limit f(t), and notice
that the limit is independent of our choice of K. The function f is continuous
at each t. To see this first pick K > t to be a natural number. Let ε > 0, and
let M be such that if n,m ≥M we have

sup{|fn(t)− fm(t)| : t ∈ [0,K]} < ε/2.

Now let s ∈ [0,K] be arbitrary, and assume n ≥M , we get

|f(s)− fn(s)| ≤ |f(s)− fm(s)|+ |fm(s)− fn(s)|,

if we let m ≥M we have that the second expression |fm(s)− fn(s)| is smaller
than ε/2, and we can get the first expression as small as we want by increasing
m since we have pointwise convergence. This means that we have shown
uniform convergence on [0,K], and since uniform convergence of continuous

7



2. Weak convergence in C[0,∞)

functions on compact intervals give us a continuous function, we have that f
is continuous. We will now use that fn converges uniformly to f if we restrict
us to [0, k] for every k. Let us now show convergence in the ρ-norm. Assume
ε > 0 is given. Let N be such that Σ∞j=N+12−i < ε/2. Choose n∗ such that
sup{|f(t) − fn(t)| t ∈ [0, N ]} < ε

2N , if n ≥ n∗, this we can accomplish by the
established uniform convergence on [0, N ]. We then get if n ≥ n∗

ρ(fn, f) =
∞∑
k=1

min(2−k, sup{|fn(t)− f(t)| : t ∈ [0, k]})

≤
N∑
k=1

sup{|fn(t)− f(t)| : t ∈ [0, k]}+
N∑

k=N+1
2−k

≤
N∑
k=1

sup{|fn(t)− f(t)| : t ∈ [0, N ]}+ ε

2

≤ N ε

2N + ε

2 = ε.

Hence C[0,∞) is complete.

Usually the modulus of continuity is only defined on compact intervals. In
order to generalize Billingsley’s work we define a modified modulus of continuity,
wx. Note the similarity with the metric defined in theorem 2.2.1.

Definition 2.2.3. For x ∈ C[0,∞) define the modulus of continuity by

wx(ξ) .=
∞∑
k=1

min
(
2−k, sup{|x(s)− x(t)| : s, t ∈ [0, k], |s− t| ≤ ξ}

)
,

for ξ ∈ (0, 1].

Next we prove a result which ensures continuity of the modulus of continuity.

Theorem 2.2.4. If ξ ∈ (0, 1] we have |wx(ξ)− wy(ξ)| ≤ 2ρ(x, y).

Proof. Assume without loss og generality that wx(ξ) ≥ wy(ξ). Because the
series converges absolutely we have

wx(ξ)− wy(ξ)

=
∞∑
k=1

[
min

(
2−k, sup

s,t∈[0,k],|s−t|≤ξ
{|x(s)− x(t)|}

)

−min
(

2−k, sup
s,t∈[0,k],|s−t|≤ξ

{|y(s)− y(t)|}
)]

.

(2.1)

For a, b, c are non-negative numbers we have by lemma D.1.6

min(a, b)−min(a, c) ≤ min(a, |b− c|).

8



2.2. Non-probabilistic results for the space C[0,∞)

Using this in eq. (2.1) we get

wx(ξ)− wy(ξ)

≤
∞∑
k=1

[
min

(
2−k,

∣∣∣∣ sup
s,t∈[0,k],|s−t|≤ξ

{|x(s)− x(t)|}

− sup
s,t∈[0,k],|s−t|≤ξ

{|y(s)− y(t)|}
∣∣∣∣)
]

We will show that∣∣∣∣ sup
s,t∈[0,k],|s−t|≤ξ

{|x(s)− x(t)|} − sup
s,t∈[0,k],|s−t|≤ξ

{|y(s)− y(t)|}
∣∣∣∣

≤ 2 sup
t∈[0,k]

{|x(t)− y(t)|}.
(2.2)

Assume without loss of generality that

sup
s,t∈[0,k],|s−t|≤ξ

{|y(s)− y(t)|} ≥ sup
s,t∈[0,k],|s−t|≤ξ

{|x(s)− x(t)|}.

Assume that ε > 0 is given. Choose s′, t′ ∈ [0, k], |s′ − t′| ≤ δ such that

y(s′)− y(t′) + ε > sup
s,t∈[0,k],|s−t|≤ξ

{|y(s)− y(t)|}

We then have

sup
s,t∈[0,k],|s−t|≤ξ

{|y(s)− y(t)|} − sup
s,t∈[0,k],|s−t|≤ξ

{|x(s)− x(t)|}

≤ y(s′)− y(t′) + ε− x(s′) + x(t′)
= y(s′)− x(s′) + x(t′)− y(t′) + ε

≤ 2 sup
t∈[0,k]

{|x(t)− y(t)|}+ ε.

Since ε > 0 is arbitrary, eq. (2.2) must hold. Hence we have proved that

wx(ξ)− wy(ξ) ≤
∞∑
k=1

[
min

(
2−k, 2 sup

t∈[0,k]
{|x(t)− y(t)|}

)]
.

Since we by lemma D.1.7 have

min
(

2−k, 2 sup
t∈[0,k]

{|x(t)− y(t)|}
)
≤ 2 min

(
2−k, sup

t∈[0,k]
{|x(t)− y(t)|}

)
,

the result follows.

The next two results will be helpful when we later encounter finite-dimensional
distributions.

Theorem 2.2.5. On the space Rk, k ∈ N, d2(x, y) = max1≤i≤k |xi − yi| is
a metric. Let d1(x, y) = |x − y| denote the standard-metric on Rk. Then
the identity maps I1 : (Rk, d1) → (Rk, d2) and I2 : (Rk, d2) → (Rk, d1) are
continuous.

9



2. Weak convergence in C[0,∞)

Proof. This result is well known. We give the proof as an aid to the reader.
We have d2(x, x) = 0. If d2(x, y) = 0, then x = y. Obviously we have

d2(x, y) = d2(y, x). Let x, y, z ∈ Rk. We have d2(x, y) = max
1≤i≤k

|xi − yi| ≤

max
1≤i≤k

(|xi − zi|+ |zi − yi|) ≤ max
1≤i≤k

|xi − zi|+ max
1≤i≤k

|zi − yi|. So d2 is a metric.
We have

d2(x, y)2 =
(

max
1≤i≤k

|xi − yi|
)2

= max
1≤i≤k

|xi − yi|2

≤
k∑
i1

|xi − yi|2

= d1(x, y)2.

So d2(x, y) ≤ d1(x, y). So I1 is continuous.
We also have

d1(x, y) =

√√√√ k∑
i=1
|xi − yi|2

≤
√
k max

1≤i≤k
|xi − yi|2

≤
√
kd2(x, y).

Hence I2 is also continuous.

We prove a simple, but useful result next. The fact that the numbers are
strictly increasing is not needed, but we include it because this is what we will
impose later for simplicity.

Theorem 2.2.6. Assume that you have k non-negative real numbers t1,t2,. . .,tk,
such that t1 < t2 < · · · < tk. Let x = (t1, t2, . . . , tk) The map πx: (C[0,∞), ρ)→
(Rk, d1), given by πx(f) = (f(t1), f(t2), . . . , f(tk)) is continuous.

Proof. Because of theorem 2.2.5 we can consider the metric d2 instead of d1.
Let f ∈ C[0,∞), assume ε > 0 be given. Choose a natural number N such
that N > max

1≤i≤k
ti. Assume that ∆ = min(2−(N+1), ε). If g ∈ C[0,∞) and we

10



2.2. Non-probabilistic results for the space C[0,∞)

require that ρ(f, g) < ∆, we have

d2(πx(f), πx(g)) = d2

((
f(t1), f(t2), . . . , f(tk)

)
,
(
g(t1), g(t2), . . . , g(tk)

))
= max

1≤i≤k
|f(ti)− g(ti)|

≤ sup
t∈[0,N ]

{|f(t)− g(t)|}

= min
(

2−N , sup
t∈[0,N ]

{|f(t)− g(t)|}
)

≤
∞∑
i=1

min
(

2−i, sup
t∈[0,i]

{|f(t)− g(t)|}
)

= ρ(f, g) < ∆ ≤ ε.

Hence we have the required continuity. We used that sup{|f(t) − g(t)| : t ∈
[0, N ]} must be smaller than 2−N , or else we would have a contradiction since
∆ ≤ 2−(N+1).

In a metric space we define compactness of a set to be that every sequence
in that set has a convergent subsequence with limit in the set. A set is defined
to be relatively compact if if has a compact closure. It is easy to show that
a set then is relatively compact if and only if every sequence in the set has a
convergent subsequence(not necessarily converging to a point in the set). The
classical Arzelá-Ascoli theorem deals with relative compactness on C[a, b], we
will in the next theorem generalize this to C[0,∞).

Theorem 2.2.7 (Generalisation of the Arzelà-Ascoli Theorem, adap-
tation of [Bil99, Theorem 7.2, p 81]). The set A ⊂ C[0,∞) (equipped with
ρ) is relatively compact if and only if

sup
x∈A
|x(0)| <∞, (2.3)

and

lim
ξ→0

sup
x∈A

wx(ξ) = 0. (2.4)

Proof. We first prove that lim
ξ→0

sup
x∈A

wx(ξ) = 0 if and only if A is equicontinuous

on each interval [0, k], k ∈ N. Assume first that lim
ξ→0

sup
x∈A

wx(ξ) = 0 and that k

is fixed. Assume that ε > 0 is given. Let ∆ be such that if ξ ≤ ∆

sup
x∈A

wx(ξ) < min(ε, 2−(k+1)).

If t1, t2 ∈ [0, k], |t1, t2| < ∆, x ∈ A, we get

|x(t1)− x(t2)|
≤ sup

s1,s2∈[0,k],|s1−s2|≤∆
{|x(s1)− x(s2)|}

= min(2−k, sup{|x(s1)− x(s2)| : s1, s2 ∈ [0, k], |s1 − s2| ≤ ∆})
≤ wx(∆)
< ε.

11



2. Weak convergence in C[0,∞)

So A is equicontinuous on [0, k]. Assume conversely that A is equicontinuous on
every compact interval. Let ε > 0 be given. Choose N such that

∑∞
j=N+1 2−j <

ε/2. Choose ∆ such that for every x ∈ A, and every s1, s2 ∈ [0, N ] with
|s1 − s2| ≤ ∆ we have

|x(s1)− x(s2)| < ε

2N .

For every ξ ≤ ∆ we then have

sup
x∈A

wx(ξ)

= sup
x∈A

{ ∞∑
k=1

min
(
2−k, sup{|x(s)− x(t)| : s, t ∈ [0, k], |s− t| ≤ ξ}

)}

= sup
x∈A

{
N∑
k=1

min
(
2−k, sup{|x(s)− x(t)| : s, t ∈ [0, k], |s− t| ≤ ξ}

)
+

∞∑
k=N+1

min
(
2−k, sup{|x(s)− x(t)| : s, t ∈ [0, k], |s− t| ≤ ξ}

)}
≤ sup

x∈A
{N ε

2N + ε

2}

= ε.

Hence lim
ξ→0

sup
x∈A

wx(ξ) = 0.

Next we prove that if A ∈ C[0,∞) is equicontinuous then for a given k, the
functions in A are uniformly bounded on [0, k] if and only if supx∈A |x(0)| <
∞. The "only if" statement is trivial and follows directly. So assume that
supx∈A |x(0)| < ∞. Let ε = 1. Choose a ∆ such that if x ∈ A, s1, s2 ∈
[0, k], |s1 − s2| < ∆, we have |x(s1)− x(s2)| < 1. It follows by repeated use of
the triangle inequality that x is bounded on [0, k] by

|x(0)|+ k

∆ + 1.

So A is uniformly bounded on [0, k] by

sup
x∈A
|x(0)|+ k

∆ + 1.

To prove the theorem it now suffices to prove that A ⊂ C[0,∞) is relatively
compact if and only if the functions in A are equicontinuous and uniformly
bounded on every compact interval. Assume first that A is relatively compact.
For a given k let Ak be the functions of A restricted to [0, k], obviously this
is a collection of continuous functions. We will show that Ak is uniformly
bounded and equicontinuous. If we can show that Ak is relatively compact
under the sup-norm, the result will follow from the Arzela-Ascoli theorem, see
[PP13, p. 39]. We let {fn} be a sequence in Ak. Let {f ′n} be the corresponding
sequence in A. A subtle point is that {f ′n} may not be unique since for a given
fn there may be two or more functions in A that corresponds to this, however it
doesn’t matter, we only need one sequence {f ′n}. Since A is relatively compact

12



2.2. Non-probabilistic results for the space C[0,∞)

we have that there is a subsequence {f ′nm} that converges in the ρ-norm to
f ′ ∈ C[0,∞), if we let f be its restriction to [0, k], we must show that fnm
converges to this element in the sup-norm. But this follows directly since we
must have

min
(
2−k, sup {|fnk(t)− f(t)| : t ∈ [0, k]}

)
→ 0,

as m→∞.
Lastly we assume that the functions in A are equicontinuous and uniformly

bounded on each compact interval. By the Arzela-Ascoli theorem, Ak is
relatively compact. We must show that A is relatively compact. Let {fn}
be a sequence in A. For each k let f (k)

n be the restriction of fn to [0, k]. On
[0, 1] there is a subsequence of {fn}, {fn,1} such that f (1)

n,1 converges in the
sup-norm on [0, 1] to f (1) ∈ C[0, 1]. There is also a subsequence of {fn,1}
call it {fn,2} that converges uniformly on [0, 2] to f (2) ∈ C[0, 2]. Continue
like this recursively such that each {fn,k+1} is a subsequence of {fn,k}. We
claim that fn,n converges in the ρ-norm to a function f ∈ C[0,∞). Since for
big enough n fn,n will be a subsequence of fn,k we have that fn,n converges
pointwise to a continuous function g ∈ C[0,∞). Since f (k)

n,n converges uniformly
to f (k), we must have that g(k) = f (k). Let ε > 0 be given, choose N such that∑∞
i=N+1 2−i < ε/2. Also choose n′ such that if n ≥ n′ we have

sup{|f (N)
n,n − f (N)| : t ∈ [0, n]} < ε

2N .

We then get if n ≥ n′

ρ(g, fn,n) =
∞∑
k=1

min(2−k, sup{|g(t)− fn,n(t)|, t ∈ [0, k]})

≤
N∑
k=1

sup{|g(t)− fn,n(t)| : t ∈ [0, k]}+ ε/2

≤ N ε

2N + ε

2
= ε.

This completes the proof.

Next we define the Borel σ-algebra on C[0,∞).

Definition 2.2.8. Let C denote the Borel σ-algebra on (C[0,∞), ρ). Since
(C[0,∞), ρ) is separable this coincides with the σ-algebra generated by the open
balls.

The proof that the σ-algebra generated by the open balls is the same as the
σ-algebra generated by the open sets is the same for all separable metric spaces,
and is proved in proposition B.2.10. The next lemma is not used in any proofs,
but it ensures that the sets in eq. (2.5) are measurable.

Lemma 2.2.9. Let f ∈ C[0,∞), k ∈ N be given. The function

F : (C[0,∞), C)→ (R,B(R)) given by
F (g) = sup

k∈[0,k]
{|g(t)− f(t)|},
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2. Weak convergence in C[0,∞)

is continuous.

Proof. Let

∆ = min(2−(k+1), ε).

Let g, h ∈ C[0,∞) with ρ(g, h) < ∆. Assume without loss of generality that

sup
k∈[0,k]

{|g(t)− f(t)|} ≥ sup
k∈[0,k]

{|h(t)− f(t)|}.

We also have because of continuity and the fact that [0, k] is compact

sup
k∈[0,k]

{|g(t)− f(t)|} = |g(t′)− f(t′)|}, t′ ∈ [0, k].,

for a given t′. t Using the reverse triangle inequality we then get

sup
k∈[0,k]

{|g(t)− f(t)|} − sup
k∈[0,k]

{|h(t)− f(t)|}

≤ |g(t′)− f(t′)| − |h(t′)− f(t′)|
≤ |g(t′)− h(t′)|
≤ sup

t∈[0,k]
{|g(t)− h(t)|}

= min
(

2−k, sup
t∈[0,k]

{|g(t)− h(t)|}
)

≤ ρ(g, h)
≤ ε.

The next result is rather technical, but it is needed later. It gives an explicit
characterisation of the closed balls in (C[0,∞), ρ).

Theorem 2.2.10 (Characterisation of closed balls.). Denote the closed
ball around f ∈ C[0,∞)

B(f, ε) = {g ∈ C[0,∞) : ρ(f, g) ≤ ε}.

If ε < 1 we have

B(f, ε) =
⋃
k∈N

{
g ∈ C[0,∞) :

k∑
k2=1

sup
t∈[0,k2]

{|f(t)− g(t)|} ≤ ε− 2−k
}
, (2.5)

note that for some combinations of ε and k the first sets in the union might be
empty.

Proof. Let

A(f, ε, k) =
{
g ∈ C[0,∞) :

k∑
k2=1

sup
t∈[0,k2]

{|f(t)− g(t)|} ≤ ε− 2−k
}
.
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2.2. Non-probabilistic results for the space C[0,∞)

We must prove

B(f, ε) =
⋃
k∈N

A(f, ε, k).

Assume first that g ∈ A(f, ε, k′), we then have

ρ(f, g) =
∞∑
k=1

min
{

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
}

=
k′∑
k=1

min
{

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
}

+
∞∑

k=k′+1
min

{
2−k, sup

t∈[0,k]
{|f(t)− g(t)|}

}

≤
k′∑
k=1

sup
t∈[0,k]

{|f(t)− g(t)|}+ 2−k
′

≤ ε− 2−k
′
+ 2−k

′

= ε.

Hence ⋃
k∈N

A(f, ε, k) ⊂ B(f, ε).

Assume conversely that g ∈ B(f, ε), g 6= f(if g = f , choose k′ big enough,
then f ∈ A(f, ε, k′)). Since ε < 1 there must exist a k′ such that for k > k′ we
have

min
{

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
}

= 2−k,

and for k ≤ k′

min
{

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
}

= sup
t∈[0,k]

{|f(t)− g(t)|}.

To see this note first that if for a k

min
{

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
}

= 2−k,

we must also have

min
{

2−(k+1), sup
t∈[0,k+1]

{|f(t)− g(t)|}
}

= 2−(k+1).

We also can’t have for all k that

min
{

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
}

= 2−k,
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2. Weak convergence in C[0,∞)

because then ρ(f, g) = 1 > ε. And if for k ≥ 2 we have

min
{

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
}

= sup
t∈[0,k]

{|f(t)− g(t)|},

we must also have

min
{

2−(k−1), sup
t∈[0,k−1]

{|f(t)− g(t)|}
}

= sup
t∈[0,k−1]

{|f(t)− g(t)|}.

Hence if g ∈ B(f, ε), there must be a k′ such that

ρ(f, g) =
∞∑
k=1

min
(

2−k, sup
t∈[0,k]

{|f(t)− g(t)|}
)

=
k′∑
k=1

sup
t∈[0,k]

{|f(t)− g(t)|}+
∞∑

k=k′+1
2−k.

Since ρ(f, g) ≤ ε we get

k′∑
k=1

sup
t∈[0,k]

{|f(t)− g(t)|} ≤ ε− 2−k
′
.

Hence g ∈ A(f, ε, k′). And we have proven⋃
k∈N

A(f, ε, k) ⊃ B(f, ε).

2.3 Probabilistic results for C[0,∞)

In this section we will add probability measures to the measurable space
(C[0,∞), C). Note that if x ∈ Rk, and the coordinates of x are non-negative
and distinct, and (C[0,∞), C, P ) is a probability-space, then we also have that
(Rk,B(Rk), Pπ−1

x ) is a probability-space. The collection of all Pπ−1
x is called

the finite dimensional distributions for P . The next result tells us that the
finite-dimensional distributions uniquely determines the probability measure on
(C[0,∞), C). The reason we prove the theorem for coordinates strictly increasing
is that it makes things a little easier in the next chapter.

Theorem 2.3.1 (Adaptation of [Bil99, Example 1.3, p11]). Assume that
P and Q are two probability-measures on (C[0,∞), C). For every positive integer
k, let Fk = {x : x ∈ Rk, x1, x2, . . . , xk are non-negative and t1 < t2 < · · · <
tk}. If for every x ∈

⋃
k∈N
Fk, Pπ−1

x and Qπ−1
x are equal probability-measures on

(Rk,B(Rk)), where k is such that x ∈ Rk, then P and Q coincide on (C[0,∞), C).
In other words, if the finite dimensional distributions of P and Q coincide, then
P and Q coincide.
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Proof. The inspiration for this proof is from [Bil99]. Let

K = {π−1
x (H) : x ∈

⋃
k∈N
Fk, H ∈ B(Rk)},

where k is such that x ∈ Rk. We have that K ⊂ C, because by theorem 2.2.6 πx
is continuous. From the hypothesis we have that P and Q coincide on K. If we
can show that K is a π-system (closed under intersections), and that σ(K) = C,
and that the sets A ∈ C where P and Q coincide must be a Dynkin-system,
then the result will follow from Dynkin’s π − δ-theorem [Kle13, Theorem 1.19,
p. 6].

First we prove that K is a π-system. Let y, z ∈
⋃
k∈N
Fk, y ∈ Rky , z ∈

Rkz , Hy ∈ B(Rky), Hz ∈ B(RkZ ). Let x be the vector of strictly increasing
coordinates that contains all the coordinates of y and z. Note that the length
of x, kx, may be less than ky + kz if y and z have some common elements. Each
coordinate in y is mapped to a coordinate in x, and likewise each coordinate
in z is mapped to a coordinate in x. Let n(y, i) ∈ {1, . . . kx} be the coordinate
that the i− th coordinate of y is mapped to, likewise for z. Let

H ′y = {a ∈ Rkx : (an(y,1), an(y,2), . . . , an(y,ky)) ∈ Hy}
H ′z = {a ∈ Rkx : (an(z,1), an(z,2), . . . , an(z,kz)) ∈ Hz}.

The sets H ′y, H ′z are Borel sets because the function

fy : Rkx → Rky ,
fy(a) = (an(y,1), an(y,2), . . . , an(y,ky)),

is continuous, likewise for z. The reason that it is continuous is that

max
1≤1≤ky

|an(y,i) − bn(y,i)| ≤ max
1≤i≤kx

|ai − bi|,

and using theorem 2.2.5 the result is immediate. In order to show that K is a
π-system it suffices to show that

π−1
y (Hy) ∩ π−1

z (Hz) = π−1
x (H ′y ∩H ′z).

By elementary set-theory we have

π−1
x (H ′y ∩H ′z) = π−1

x (H ′y) ∩ π−1
x (H ′z).

Hence it suffices to show that

π−1
y (Hy) = π−1

x (H ′y),

and likewise for z. Assume that f ∈ π−1
y (Hy). Then (f(y1), f(y2), . . . , f(yky )) ∈

Hy. We also have that πx(f) ∈ H ′y because

(πx(f)n(y,1), πx(f)n(y,2), . . . , πx(f)n(y,ky))
= (f(xn(y,1)), f(xn(y,2)), . . . , f(xn(y,ky))
= (f(y1), f(y2), . . . , f(yky )).
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2. Weak convergence in C[0,∞)

Conversely, assume that f ∈ π−1
x (H ′y).We want to show that πy(f) ∈ Hy. Since

f ∈ π−1
x (H ′y) we have

(πx(f)n(y,1), πx(f)n(y,2), . . . , πx(f)n(y,ky)) ∈ Hy,

however,

(πx(f)n(y,1), πx(f)n(y,2), . . . , πx(f)n(y,ky))
= (f(xn(y,1)), f(xn(y,2)), . . . , f(xn(y,ky)))
= (f(y1), f(y2), . . . , f(yky )
= πy(f).

We have proved that K is a π-system.
Denote the collection R by

R = {A ∈ C : P (A) = Q(A)}.

We will show that R is a Dynkin-system. Obviously C[0,∞) ∈ R since both
P and Q are probability-measures. Assume so that A,B ∈ R, B ⊂ A, we then
have A\B ∈ C and

P (A\B) = P (A)−B(B) = Q(A)−Q(B) = Q(A\B).

Assume that {Ai}i∈N is a disjoint sequence of pairwise disjoint sets in R. Then⋃
i∈N

Ai ∈ C and

P

(⋃
i∈N

Ai

)
=
∞∑
i=1

P (Ai) =
∞∑
i=1

Q(Ai) = Q

(⋃
i∈N

Ai

)
.

Hence K is a Dynkin-system.
Lastly we will prove that σ(K) = C. We will do this by proving that

each closed ball B(f, ε), f ∈ C[0,∞) is an element of σ(K). If ε ≥ 1, then
B(f, ε) = C[0,∞), so we may assume that ε < 1. Let f ∈ C[0,∞), k ∈ N be
given, we will prove that the function

Ff,k(g) = sup
t∈[0,k]

{|f(t)− g(t)|},

is σ(K)-measurable. We have that for each r ∈ R, r ≥ 0

F−1
f,k ([0, r]) =

⋂
q∈[0,k]∩Q

{g ∈ C[0,∞) : |g(q)− f(q)| ≤ r}

=
⋂

q∈[0,k]∩Q

π−1
q ([f(q)− r, f(q) + r]) ∈ σ(K),

hence Ff,k is σ(K)-measurable. This means that for given f ∈ C[0,∞), k′, we
have that

Gf,k(g) =
k′∑
k=1

Ff,k(g)

=
k′∑
k=1

sup
t∈[0,k]

{|f(t)− g(t)|},
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is also σ(K)-measurable. By theorem 2.2.10 we have

B(f, ε) =
⋃
k∈N

{
g ∈ C[0,∞) :

k∑
k2=1

sup
t∈[0,k2]

{|f(t)− g(t)|} ≤ ε− 2−k
}
.

However we also have{
g ∈ C[0,∞) :

k∑
k2=1

sup
t∈[0,k2]

{|f(t)− g(t)|} ≤ ε− 2−k
}

= G−1
f,k([0, ε− 2−k])

∈ σ(K),

by the measurability just proved. Hence B(f, ε) ∈ σ(K), since (C[0,∞), ρ)
is separable (theorem 2.2.2) we have that C is generated by the open balls
(proposition B.2.10), and hence also by the closed balls, so it follows that
C = σ(K).

From the proof of theorem 2.3.1 we get a very useful result.

Corollary 2.3.2. The sets of the form

{f ∈ C[0,∞) : f(t′) ∈ B} , t′ ∈ [0,∞), B ∈ B(R)

generate the sigma-algebra C.

Proof. In the proof of theorem 2.3.1 we showed that the sets of the form

{f ∈ C[0,∞) : (f(t1), . . . , f(tk)) ∈ B} , k ∈ N, 0 ≤ t1 < t2 < · · · < tk, B ∈ B(Rk)

generate C. So it is sufficient to show that we can generate these sets. Let the
sigma-algebra generated by the sets

{f ∈ C[0,∞) : f(t′) ∈ B} , t′ ∈ [0,∞), B ∈ B(R),

be called G. We must show that G = C. By the statement above we trivially
have G ⊂ C. By taking intersections we also have that the sets of the form

{f ∈ C[0,∞) : f(t′) ∈ B} , t′ ∈ [0,∞), B ∈ B(R)

generate

{f ∈ C[0,∞) : (f(t1), . . . , f(tk)) ∈ B1 ×B2 × · · · ×Bk} , ti ∈ [0,∞), Bi ∈ B(R).

However we also have by elementary set-theory that the collection

R =
{
A ⊂ Rk : {f ∈ C[0,∞) : (f(t1), f(t2), . . . , f(tk)) ∈ A} ∈ G

}
,

where the t’s and k are kept fixed, is a sigma-algebra. So by using that the sets
of the form B1×B2× · · ·×Bk generate B(Rk), we get that the sets of the form

{f ∈ C[0,∞) : (f(t1), f(t2), . . . , f(tk)) ∈ B}, 0 ≤ t1 < t2 < . . . < tk, B ∈ B(Rk),

are contained in G. So we have managed to generate the sets we mentioned in
the start of the proof. Hence C ⊂ G.
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2. Weak convergence in C[0,∞)

2.4 Tightness and weak convergence of probability
measures in C[0,∞)

In this section we will use the results earlier to create the machinery needed for
weak convergence on C[0,∞). An important concept is tightness of a collection
of probability measures. We first define tightness in terms of an arbitrary metric
space.

Definition 2.4.1 (Tightness, also defined on page 59 in [Bil99]). Let
(S,S) be a metric space S with its Borel sigma-algebra. We say that a collection
of probability measures, Π, is tight if for every ε > 0 there exists a compact set
K ⊂ S such that

P (K) > 1− ε,

for all P ∈ Π.

In the proof of the next theorem we also need the notion of relative com-
pactness of probability measures. If (S,S) is as in definition 2.4.1 we say that a
collection of probability measures, Π, is relatively compact if every sequence
in Π has a convergent subsequence converging to a measure Q also defined on
(S,S), but Q does not have to be in Π, this definition can also be found in [Bil99,
p. 57]. The type of convergence is weak convergence. The famous Prophorov’s
theorem connects tightness and relative compactness of probability measures.
It says that if a collection of probability measures is tight, it is also relatively
compact. And conversely if the metric space is separable and complete we have
that relative compactness implies tightness. We will only need the first part.

Theorem 2.4.2 (Adaptation of [Sag15, Theorem 4.14, p. 21]). Let
Pn be probability measures on (C[0,∞), C), such that {Pn} is tight. Assume
that their finite dimensional distributions Pnπ−1

(t1,t2,...,tk) converges weakly to
probability measures µ(t1,t2,...,tk) on the relevant finite dimensional spaces. As
before we can assume that t1 < t2 < · · · < tk. Then there exists a probability
measure P on (C[0,∞), C) such that Pπ−1

(t1,t2,...,tk) = µ(t1,t2,...,tk), and also, Pn
converges weakly to P .

Proof. By Prohorov’s theorem ([Bil99, Theorem 5.1, p. 59]) we have that
since the collection of probability measures is tight, it is also also relatively
compact. By [Bil99, Theorem 2.6, p. 20] it is enough to show that there
exists a probability measure P such that for every subsequence {Pnk}, there
is a further subsequence {P(nk)m} that converges weakly to P . So let {Pnk}
be an arbitrary subsequence. By relative compactness, this sequence contains
a subsequence {P(nk)m} that converges weakly to a probability measure P ′.
Since π(t1,t2,...,tk) is continuous, the mapping theorem, [Bil99, p. 21] tells us that
{P(nk)mπ

−1
(t1,t2,...,tk)} converges weakly to P ′π−1

(t1,t2,...,tk). Since weak convergence
is unique, see [Bil99, p. 14], we have that P ′π−1

(t1,t2,...,tk) = µ(t1,t2,...,tk). So we
have showed that for every subsequence {Pnk} there exists another subsequence
{P(nk)m} that converges weakly to measure P ′(depending on the subsequences),
such that the finite dimensional distribution of P ′ is given by µ. However, by
theorem 2.3.1 probability measures on (C[0,∞), C) are uniquely determined
by their finite dimensional distributions. Hence P ′ is the same for all the
subsequences, and the theorem is proved.
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2.4. Tightness and weak convergence of probability measures in C[0,∞)

We end this section with a characterisation of tightness of probability
measures on (C[0,∞), C).

Theorem 2.4.3 (Adaptation of [Bil99, Theorem 7.3, p.82]). Let {Pn}
be a sequence of probability measures on (C[0,∞), C). {Pn} is tight if and only
if the following two conditions hold

(i) For each positive η, there exists an a and an n0 such that

Pn (x : |x(0)| ≥ a) ≤ η, n ≥ n0. (2.6)

(ii) For each positive ε and η, there exists a ξ, 0 < ξ < 1, and an n0 such that

Pn (x : wx(ξ) ≥ ε) ≤ η, n ≥ n0. (2.7)

Proof. Assume first that {Pn} is tight. Given η choose a compact set K so that
Pn(K) > 1− η for all n. By theorem 2.2.7 we have that K ⊂ {x : |x(0)| < a}
for a big enough a. Again by theorem 2.2.7 must also be a ξ ∈ (0, 1) such that
supx∈K wx(ξ) < ε, so K ⊂ {x : wx(ξ) < ε}. So we get for each n

Pn ({x : |x(0)| ≥ a}) = 1− Pn ({x : |x(0)| < a})
≤ 1− Pn (K)
< 1− (1− η) = η.

We also have

Pn ({x : wx(ξ) ≥ ε}) = 1− Pn ({x : wx(ξ) < ε})
≤ 1− Pn (K)
< 1− (1− η) = η.

Hence the conditions must be satisfied with n0 = 1. The fact that {x : wx(ξ) ≥
ε} is measurable is because it is closed in (C[0,∞), C). This can be shown with
the aid of theorem 2.2.4.

Conversely assume that both conditions in the theorem hold. First we will
prove that if the conditions hold for a given n0, they also hold for n0 = 1. Since
C[0,∞) is separable and complete, it follows from [Bil99, Theorem 1.3, p.8]
that a single probability-measure on C[0,∞) is tight. By what we proved in the
previous paragraph condition (i) and (ii) must hold for all n < n0, but they may
hold with different an and ξn. But by choosing a′ = max{a1, a2, . . . , an0−1, a},
and ξ′ = min{ξ1, ξ2, . . . , ξn0−1, ξ} the conditions (i), (ii) must hold for n0 = 1.
Note that if ξ1 ≤ ξ2 we have {x : wx(ξ1) ≥ ε} ⊂ {x : wx(ξ2) ≥ ε}, since wx(ξ)
increases with ξ. Hence we can assume that conditions (i) and (ii) hold with
n0 = 1. Given η choose a such that if

B = {x : |x(0)| ≤ a},

then Pn(B) ≥ 1− η for all n. For each k ∈ N choose ξk such that if

Bk = {x : wx(ξk) < 1/k},
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2. Weak convergence in C[0,∞)

then Pn(Bk) ≥ 1− η/2k for all n. Let K be the closure of

A = B ∩
⋂
k∈N

Bk.

We have for all n

Pn(A) = 1− Pn(Ac)

= 1− Pn

(
Bc ∪

⋃
k∈N

Bck

)

≥ 1−
[
Pn(Bc) +

∞∑
k=1

Pn(Bck)
]

≥ 1− η −
∞∑
k=1

η/2k

= 1− 2η.

We have that A satisfies the conditions in theorem 2.2.7 by noting that if ξ1 ≤ ξ2

{x : wx(ξ2) < 1/k} ⊂ {x : wx(ξ1) < 1/k}.

So A is relatively compact, which means that K is compact. Hence {Pn} is
tight.

2.5 More on tightness

In theorem 2.4.3 we have conditons for tightness on C[0,∞). However, to use
these conditions in practice would be very hard. Later we will need to prove
tightness of a sequence of probability measures. In this section we will end up
with a more useful criterion for tightness of probability measures on (C[0,∞), C).
First we define the usual known modulus of continuity wx,k on the compact set
[0, k].

Definition 2.5.1. For x ∈ C[0,∞), k ∈ N, 0 < ξ ≤ 1 we define

wx,k(ξ) .= sup{|x(t)− x(s)| : s, t,∈ [0, k], |s− t| ≤ ξ}.

We now prove a technical theorem involcing wx,k.

Theorem 2.5.2 (Adaptation of [Bil99, Theorem 7.4, p.83]). Let k ∈ N,
and suppose that 0 = t0 < t1 < · · · < tv = k and

min
1<i<v

(ti − ti−1) ≥ ξ.

Then, for arbitrary x ∈ C[0,∞),

wx,k(ξ) ≤ 3 max
1≤i≤v

sup{|x(s)− x(ti−1)| : s ∈ [ti−1, ti]}.

And for a probability measure P on (C[0,∞), C) and ε > 0 we have

P
(
x : wx,k(ξ) ≥ 3ε

)
≤

v∑
i=1

P
(
x : sup

ti−1≤s≤ti
{|x(s)− x(ti−1)| ≥ ε}

)
.
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2.5. More on tightness

Proof. Assume that s, t ∈ [ti−1, ti] we then have

|x(s)− x(t)| ≤ |x(s)− x(ti−1)|+ |x(t)− x(ti−1)|,

by the triangle inequality. This expression is bounded by

2 max
1≤i≤v

sup{|x(s)− x(ti−1)| : s ∈ [ti−1, ti]}.

Assume now that s ∈ [ti−1, ti] and t ∈ [ti, ti+1] we then get

|x(s)− x(t)| ≤ |x(s)− x(ti−1)|+ |x(ti−1)− x(ti)|+ |xti − x(t)|
≤ 3 max

1≤i≤v
sup{|x(s)− x(ti−1)| : s ∈ [ti−1, ti]}.

If s, t ∈ [0, k], |s − t| ≤ ξ we must have that either s, t is in the same interval
[ti−1, ti], 1 ≤ i < v, or it must be two different intervals [ti−1, ti], [ti, ti+1], 1 ≤
i < v. Hence we have that

3 max
1≤i≤v

sup{|x(s)− x(ti−1)| : s ∈ [ti−1, ti]}, (2.8)

is an upper bound for

{|x(s)− x(t)| : s, t ∈ [0, k], |s− t| ≤ ξ}.

So (2.8) must be bigger than the least upper bound

sup{|x(s)− x(t)| : s, t ∈ [0, k], |s− t| ≤ ξ} = wx,k(ξ).

For the last part we now get

P
(
{x : wx,k(ξ) ≥ 3ε}

)
≤ P

(
{x : 3 max

1≤i≤v
sup{|x(s)− x(ti−1)| : s ∈ [ti−1, ti]} ≥ 3ε}

)
= P

(
{x : max

1≤i≤v
sup{|x(s)− x(ti−1)| : s ∈ [ti−1, ti]} ≥ ε}

)
= P

 ⋃
1≤i≤v

{
x : sup

s∈[ti−1,ti]
{|x(s)− x(ti−1)|} ≥ ε

}
≤

v∑
i=1

P

({
x : sup

s∈[ti−1,ti]
{|x(s)− x(ti−1)|} ≥ ε

})
.

This completes the proof.

We have a corollary to theorem 2.5.2 that will be used in theorem 2.5.5.
The inspiration for the corollary is also from [Bil68]. There a similar criterion
as the one in corollary 2.5.3 is needed. However since we work with functions
on C[0,∞) and not just C[0, 1] we have to find a way to connect the modulus
of continuity on finite sets, with our modulus of continuity for the entire
non-negative real line.

Corollary 2.5.3. Let {Pn} be a sequence of probability measures on (C[0,∞),
C), such that Pn({x : x(0) = 0}) = 1. Assume that for each k ∈ N, ε > 0, η > 0
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2. Weak convergence in C[0,∞)

there exists a ξ such that 0 < ξ < 1 and kξ−1 is an integer, and that the
inequality

kξ−1−1∑
j=0

Pn

({
x : sup

jξ≤s≤(j+1)ξ
{|x(s)− x(jξ)|} ≥ ε

})
≤ η,

is satisfied for all n. Then {Pn} is tight.

Proof. We will verify both conditions of theorem 2.4.3. Condition (i) is trivially
satisfied by choosing a = 1 and n0 = 1.

Now let ε, η be given. If we can prove that there exists a ξ such that
0 < ξ < 1 and

Pn({x : wx(ξ) ≥ ε}) ≤ η, ∀n ∈ N,

then condition (ii) will be satisfied with n0 = 1. Choose k ∈ N such that
∞∑

j=k+1
2−j < ε/2.

By the hypothesis there exists a ξ, 0 < ξ < 1 such that kξ−1 is an integer and
also

kξ−1−1∑
j=0

Pn

({
x : sup

jξ≤s≤(j+1)ξ
{|x(s)− x(jξ)|} ≥ ε

6k

})
≤ η. (2.9)

We get for all n

Pn({x : wx(ξ) ≥ ε}) = Pn

x :
∞∑
j=1

min(2−j , wx,j(ξ)) ≥ ε




≤ Pn

x :
k∑
j=1

wx,j(ξ) +
∞∑

j=k+1
2−j ≥ ε




≤ Pn

x :
k∑
j=1

wx,j(ξ) ≥
ε

2


 .

(2.10)

If j ≤ k we have if s, t ∈ [0, j], |s− t| ≤ ξ

|x(t)− x(s)| ≤ wx,k(ξ),

so

wx,j(ξ) ≤ wx,k(ξ).

This means that

Pn

x :
k∑
j=1

wx,j(ξ) ≥
ε

2


 ≤ Pn ({x : k · wx,k(ξ) ≥ ε

2

})
= Pn

({
x : wx,k(ξ) ≥ ε

2k

})
.

(2.11)
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2.5. More on tightness

If we combine eq. (2.10) and eq. (2.11) we get for all n

Pn(x : wx(ξ) ≥ ε) ≤ Pn
(
wx,k(ξ) ≥ ε

2k

)
. (2.12)

By theorem 2.5.2 we have for all n

Pn

(
x : wx,k(ξ) ≥ ε

2k

)
≤

kξ−1∑
j=1

Pn

(
x : sup

(j−1)ξ≤s≤jξ
{|x(s)− x((j − 1)ξ)|} ≥ ε

6k

)

=
kξ−1−1∑
j=0

Pn

(
x : sup

(j)ξ≤s≤(j+1)ξ
{|x(s)− x((j)ξ)|} ≥ ε

6k

)
.

(2.13)
If we combine eq. (2.9), eq. (2.12) and eq. (2.13) we get

Pn(x : wx(ξ) ≥ ε) ≤ η,

and the corollary is proved.

We will now give a theorem from [Bil68] that we do not need to generalize,
so the proof is omitted.

Theorem 2.5.4 ([Bil68, Theorem 12.2, p 94]). Let φ1, φ2, . . . , φm be ran-
dom variables on the same underlying probability space (Ω,A, P ), they need not
be independent. Define S0

.= 0, Sk
.= φ1 + · · ·+ φk. Also define

Mm
.= max

0≤k≤m
|Sk|.

Let γ ≥ 0, α > 1 be given. Assume there exists nonnegative real numbers
u1, u2, . . . , um such that for all positive λ we have

P (|Sj − Si| ≥ λ) ≤ 1
λγ

(
j∑

l=i+1
ul

)α
.

We then have

P (Mm ≥ λ) ≤
K ′γ,α
λγ

(
m∑
l=1

ul

)α
,

where K ′γ,α only depends on γ and α.

The next theorem is the main result of this section.

Theorem 2.5.5 (Adaptation of [Bil68, Theorem 12.3, p. 95]). Let {Pn}
be a sequence of probability measures on (C[0,∞), C). Assume that the next two
conditions are satisfied.

(i) Pn(x : x(0) = 0) = 1,∀n.

(ii) There exists constants γ ≥ 0 and α > 1 and a nondecreasing, continuous
function F : [0,∞)→ R such that

Pn ({x : |x(t1)− x(t2)| ≥ λ}) ≤ 1
λγ
|F (t2)− F (t1)|α,

holds for all t2, t1, n and all positive λ.
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2. Weak convergence in C[0,∞)

Then {Pn} is tight.

Proof. By corollary 2.5.3 we must show that for each k ∈ N, ε > 0, η > 0 there
exists a ξ such that 0 < ξ < 1 and kξ−1 is an integer, and that for all n the
inequality

kξ−1−1∑
j=0

Pn

({
x : sup

jξ≤s≤(j+1)ξ
{|x(s)− x(t)|} ≥ ε

})
≤ η

holds. So assume k, ε, η is given.
We temporarily fix j as zero or a natural number, and ξ a real number. For

x ∈ C[0,∞) and for m a positive integer we define

φi(x) = x

(
jξ + i

m
ξ

)
− x

(
jξ + i− 1

m
ξ

)
, i = 1, 2, . . . ,m.

Since the projection mapping is continuous we have that for each n, these
are random variables on (C[0,∞), C, Pn). Let ui = F (jξ + iξm−1) − F (jξ +
(i− 1)ξm−1). We have α and γ from the hypothesis and assume that Si is as
explained in theorem 2.5.4. Let λ be a positive real number, we then have from
the hypothesis if i1 ≤ i2

Pn({x : |Si2(x)− Si1(x)| ≥ λ}) = Pn

({
x :
∣∣∣∣x(jξ + i2

m
ξ

)
− x

(
jξ + i1 − 1

m
ξ

)∣∣∣∣ ≥ λ})
≤ 1
λγ

∣∣∣∣F (jξ + i2
m
ξ

)
− F

(
jξ + i1 − 1

m
ξ

)∣∣∣∣α
= 1
λγ

(
i2∑
l=i1

ui

)α
.

This means that the hypothesis in theorem 2.5.4 is satisfied and hence we have
with λ = ε

Pn

({
x : max

0≤i≤m

∣∣∣∣x(jξ + i

m
ξ

)
− x(jξ)

∣∣∣∣ ≥ ε}) ≤ K ′γ,α
εγ

(
m∑
l=1

ui

)α

=
K ′γ,α
εγ
|F ((j + 1)ξ)− F (jξ)|α.

Define

Am
.=
{
x ∈ C[0,∞) : max

0≤i≤m

∣∣∣∣x(jξ + i

m
ξ

)
− x(jξ)

∣∣∣∣ ≥ ε} .
If b ∈ N we have A2b ⊂ A2b+1 . We also have because of continuity{

x ∈ C[0,∞) : sup
jξ≤s≤(j+1)ξ

|x(s)− x(jξ)| ≥ ε
}
⊂
⋃
b∈N

A2b .
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2.5. More on tightness

So we get by the continuity of measures.

Pn

({
x ∈ C[0,∞) : sup

jξ≤s≤(j+1)ξ
|x(s)− x(jξ)| ≥ ε

})

≤ Pn

(⋃
b∈N

A2b

)
= lim

b→∞
Pn(A2b)

≤
K ′γ,α
εγ
|F ((j + 1)ξ)− F (jξ)|α.

We then have if kξ−1 is an integer

kξ−1−1∑
j=0

Pn

({
x : sup

jξ≤s≤(j+1)ξ
{|x(s)− x(t)|} ≥ ε

})

≤
K ′γ,α
εγ

kξ−1−1∑
j=0

∣∣∣F ((j + 1)ξ)− F (jξ)
∣∣∣α

=
K ′γ,α
εγ

kξ−1−1∑
j=0

(
F ((j + 1)ξ)− F (jξ)

)(
F ((j + 1)ξ)− F (jξ)

)α−1

≤
K ′γ,α
εγ

[
max

0≤j<kξ−1
|F ((j + 1)ξ)− F (jξ)|

]α−1 kξ
−1−1∑
j=0

(
F ((j + 1)ξ)− F (jξ)

)
=
K ′γ,α
εγ

[
max

0≤j<kξ−1
|F ((j + 1)ξ)− F (jξ)|

]α−1
(F (k)− F (0)) .

Since α > 1 and by uniform continuity on [0, k] we can get this expression as
small as we want by choosing ξ = k/N where N is big enough. Hence the proof
is complete.

We give a corollary to theorem 2.5.5 where we use moment conditions in (ii)
instead of probability conditions. These conditions are also explained in [Bil68,
p. 95].

Corollary 2.5.6. Let {Pn} be a sequence of probability measures on (C[0,∞),
C). Assume that the next two conditions are satisfied.

(i) Pn(x : x(0) = 0) = 1,∀n.

(ii) There exists constants γ ≥ 0 and α > 1 and a nondecreasing, continuous
function F [0,∞) such that

En[|x(t2)− x(t1)|γ ] ≤ |F (t2)− F (t1)|α,

holds for all t2, t1, n.

Then {Pn} is tight.
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2. Weak convergence in C[0,∞)

Proof. This follows directly because if λ ≥ 0 we get

Pn({x : |x(t2)− x(t1) ≥ λ|}) = En[1{x:|x(t2)−x(t1)|≥λ}(x)]
= En[1{x:|x(t2)−x(t1)|γ≥λγ}(x)]

= En[1{x:|x(t2)−x(t1)|γ≥λγ}(x)λγ ] 1
λγ

≤ 1
λγ
En[|x(t2)− x(t1)|γ ]

≤ 1
λγ
|F (t2)− F (t1)|α.
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Chapter 3

Weak convergence of the
Mandelbrot and Van Ness sum

In this chapter we will show that a discrete stochastic process, where we have
linear interpolation between the time points, converges weakly in C[0,∞) to
the fractional brownian motion. I have decided to name this discrete stochastic
process the Mandelbrot and Van Ness sum, why this name is fitting will become
clear after we explain the work of Mandelbrot and Van Ness.

3.1 Introduction to the Fractional Brownian motion

The existence of the fractional Brownian motion has already been shown in
other books, so we will not do it here. We will give a modified proposition
from another book, for the description and existence of the fractional Brownian
motion. First the definition of a Gaussian process.

Definition 3.1.1 (modified from [Nou12, p. 7]). A stochastic process
X = (Xt)t∈[0,∞) is said to be Gaussian if, for all d ≥ 1 and all t1, . . . , td ∈
[0,∞), (Xt1 , . . . , Xtd) is a Gaussian random vector. If the expectation of
(Xt1 , . . . , Xtd) is ~0 we say that X is centered.

A Gaussian random vector can be defined as follows.

Definition 3.1.2. A real vector (Y1, Y2, . . . , Yk) is Gaussian if there exists a
real vector ~m ∈ Rk, and symmetric positive semi-definite matrix A ∈ Rk × Rk
such that,

E

exp

 k∑
j=1

iujYj

 = exp

i k∑
j=1

ujmj −
1
2

k∑
j1=1

k∑
j2=1

Aj1,j2uj1uj2

 .

The distribution is called a multivariate normal distribution.

Remark. Sometimes it is required that the vector in definition 3.1.2 is positive
definite, not positive semi-definite. We have to use the positive semi-definite
definition, because at t = 0 the fBm is a.s. zero, so its distribution is degenerate,
but we still want to call it Gaussian. It can be shown that E[Yj ] = mj, and
cov(Yj1 , Yj2) = Aj1,j2 . Note also that conversely if you have a real vector ~m and
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3. Weak convergence of the Mandelbrot and Van Ness sum

a symmetric positive semi-definite matrix A then there exists a Gaussian vector
with mean-vector ~m and coviariance matrix and A, see [Nou12, section 1.1].

Now we give the description and existence of the Fractional Brownian
motion.

Proposition 3.1.3 (modified version of Proposition 1.6, p. 8 in
[Nou12]). Let H > 0 be a real parameter. Then, there exists a continuous
centered Gaussian process BH = (Bt,H)t≥0 with covariance given by

cov(Bs,H , Bt,H) = 1
2(s2H + t2H − |t− s|2H), s, t ≥ 0, (3.1)

if and only if H ≤ 1. We call this process the Fractional Brownian motion.

Remark. Proposition 3.1.3 tells us that the finite-dimensional distributions are
Gaussian. So we do not have to check that the covariance matrix is positive semi-
definite. That is, if a covariance-matrix is given by eq. (3.1) it must be positive
semi-definite. Note also that by using projection mappings the proposition
tells us that if we have 0 ≤ t1 < t2 < . . . < tk there exists a Gaussian
random vector (Y1, Y2, . . . , Yk) with expectation zero for each component, and
cov(Yj , Yl) = 1

2 (t2Hj + t2Hl − |tj − tl|2H).

As mentioned in [DOT02, p. 9] the case H = 1 corresponds to a straight
line. So we will restrict ourselves to the case H ∈ (0, 1). We give a simple proof
as to why the case H = 1 is of no interest.

Proposition 3.1.4. Assume that for H = 1 the stochastic process B1 =
(Bt,1)t∈[0,∞) is defined on the underlying probability space (Ω,A, P ). Then there
is a set A ∈ A with P (A) = 1, such that for every ω ∈ A we have

Bt,1(ω) = tB1,1(ω).

Proof. For every rational number q ∈ Q ∩ [0,∞) we have by eq. (3.1)

E[(Bq,1 − qB1,1)2] = E[B2
q,1 − 2qBq,1B1,1 + q2B2

1,1]
= q2 − 2q2 + q2

= 0.

So for each q ∈ Q there must exist a set Aq with P (Aq) = 1 such that for
ω ∈ Aq

Bq,1(ω) = qB1,1(ω).

Now we let

A
.=
⋂
q∈Q

Aq
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We get

P (A) = 1− P (Ac)

= 1− P

⋃
q∈Q

Acq


≥ 1−

∑
q∈Q

P (Acq)

= 1.

We also have that if ω ∈ A for every rational number q ∈ Q ∩ [0,∞)

Bq,1(ω) = qB1,1(ω).

However, because of continuity this must hold for every t ∈ [0,∞). To see this
choose a sequence of rational numbers (qn)→ t, with each qn ∈ [0,∞). If we
hold ω ∈ A fixed we have because of continuity of the process that

Bqn,1(ω)→ Bt,1(ω).

And because of the convergence of rational numbers we have that

qnB1,1(ω)→ tB1,1(ω).

Since limits in R are unique under the Euclidean metric, the result follows.

Because of proposition 3.1.4 we will only consider H ∈ (0, 1).

3.2 Historical perspective, and definition of the
Mandelbrot and Van Ness sum

In this section we will present some representations of the fractional Brownian
motion as stochastic integrals with respect to the Brownian motion. These
stochastic integrals are not precisely the same stochastic integrals that are
taught at most graduate courses today, where books like [Øks03] or [KS12] are
used. The main difference is that the stochastic integrals we will look at are
taken over an infinite interval. We will not go into the theory of these stochastic
integrals as they will only serve as an inspiration to the discrete approximation
that we will choose. We will instead prove that our discrete approximation with
linear interpolation converges weakly in C[0,∞) without using the theory of
stochastic integrals.

In the 1968 paper [MV68] Benoit B. Mandelbrot and John W. Van Ness
defined their version of the Fractional Brownian motion as a stochastic integral
with respect to a Brownian motion. First they present the process

BH(0, ω) = b0

BH(t, ω)−BH(0, ω) = 1
Γ(H + 1/2)

(∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dB(s, ω)

+
∫ t

0
(t− s)H−1/2dB(s, ω)

)
.

(3.2)
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3. Weak convergence of the Mandelbrot and Van Ness sum

As we mentioned earlier we will not go into the construction of this stochastic
integral. However, it is worth noticing that we do not get the same Fractional
Brownian Motion as in section 3.1 because the scaling factor Γ(H + 1/2) does
not give us the correct variance. Mandelbrot and Van Ness later in the article
calculates the variance, and gives us the scaling factor we need if we want the
fractional Brownian motion to have variance as in section 3.1, that is t2H . The
name Fractional Brownian motion can be motivated because the representation
above can be viewed as a fractional integral where the integrator is a Brownian
motion.

In [ST94] there is another representation of Fractional Brownian motion in
terms of stochastic integrals. Some notation is needed here, we will introduce
the notation u+. Let r be a real number, we define

ur+
.=
{
ur if u > 0
0 if u ≤ 0.

(3.3)

The representation in [ST94] for the fBm is given as

1
CH

∫ ∞
−∞

(
(t− x)H−1/2

+ − (−x)H−1/2
+

)
M(dx), t ∈ R

CH =
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
.

In this representation t can be on the entire real line. We will again not go into
the construction of this integral and the meaning of M(dx) etc., the interested
reader can read chapter 3 and 7 in [ST94]. However, it is worth noticing the
similarities between the two stochastic integral representations of the fractional
Brownian motion.

To approximate the Fractional Brownian motion we look at the two rep-
resentations we have above. We work heuristically and make a guess of
what is a good approximation of the fBm, and we will later prove that
indeed this guess converges weakly in C[0,∞) to the fBm. We let W =
{. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} be a collection of independent random
variables defined on a probability space (Ω,A, P ), each taking the values ±1
with probability 1/2. The existence of these random variables and the proba-
bility space can be justified by the discussion in [Wil91, p. 42]. Let δ > 0 be
a real number. From the representations above we hypothesise that a good
representation for the fBm is as following, if t ≥ 0 is a multiple of δ we have

1
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ, (3.4)

and we interpolate linearly between those values of t that are not a multiple of
δ. The summation is meant to be such that τ takes a step-length size δ for each
step, up to and including t− δ. We make a formal definition of this summation.

Definition 3.2.1. Assume δ > 0, and that a ≤ b where both a and b are
multiples of δ. Let aτ be a sequence indexed by τ where the τs are multiples of
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δ.

b∑
τ=a

δ
aτ

.=
b/δ∑

r=a/δ

arδ.

If b < a we define

b∑
τ=a

δ
aτ

.= 0.

And we define

a∑
τ=−∞

δ

.=
a/δ∑

r=−∞
arδ.

Equation (3.4) is a heuristic approximation of the stochastic integrals from
[MV68] and [ST94] given above, where

√
δwτ/δ approximates dB. The first

thing we have to check is that our sum is well-defined. We first check that CH
is well-defined.

Proposition 3.2.2. We have that

CH
.=
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
,

where CH > 0 is well-defined.

Proof. Recall that H ∈ (0, 1). We need to show that the integral,∫ ∞
0

(
(1 + x)H−1/2 − xH−1/2

)2
dx,

is well-defined. That means that we need to show that it is finite, and hence
that the integrand is integrable. We split the integral in the two parts∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx =

∫ 1

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx

+
∫ ∞

1

(
(1 + x)H−1/2 − xH−1/2

)2
dx.

We look at the first integral, recall that (a− b)2 ≤ 2a2 + 2b2.∫ 1

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx ≤ 2

∫ 1

0

(
(1 + x)2H−1 + x2H−1) dx.

We have that (1 + x)2H−1 is continuous on [0, 1], and hence bounded. We also
have that ∫ 1

0
x2H−1dx <∞,
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3. Weak convergence of the Mandelbrot and Van Ness sum

because 1− 2H < 1. For the second integral∫ ∞
1

(
(1 + x)H−1/2 − xH−1/2

)2
dx,

we will compare it with the integral of the function 1/x3−2H which converges
because 3− 2H > 1. We calculate the limit of the square-roots

lim
x→∞

(1 + x)H−1/2 − xH−1/2

1/x3/2−H = lim
x→∞

( 1+x
x

)H−1/2 − 1
x−1 .

Using l’Hôpital’s rule we get

lim
x→∞

( 1+x
x

)H−1/2 − 1
x−1 = lim

x→∞

(H − 1/2)
( 1+x

x

)H−3/2 x−(1+x)
x2

−x−2

= H − 1
2 .

This means that

lim
x→∞

((1 + x)H−1/2 − xH−1/2)2

1/x3−2H =
(
H − 1

2

)2
.

This means that there exists an M such that when x ≥M we have that

((1 + x)H−1/2 − xH−1/2)2 ≤ 2 · (H − 0.5)2

x3−2H .

Hence the result follows.

So now we have established that CH is a well-defined real number. We now
give the definition of the Mandelbrot and Van Ness sum, and then we prove
that the sum converges with probability 1. Later we will redefine it on the set
that has probability one.

Definition 3.2.3 (first definition). LetW = {. . . , w−3, w−2, w−1, w0, w1, w2,
w3, . . .} be a collection of independent random variables, each taking the values
±1 with equal probability. Assume that they are defined on a probability space
(Ω,A, P ). Define the stochastic process X(δ) = (X(δ)

t )t∈[0,∞), which also depends
on H ∈ (0, 1) by

(i) If t ≥ 0 and there exists an N ∈ N ∪ {0} such that t = Nδ we define

X
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω),

where

CH
.=
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
.

(ii) We extend Xδ to all of [0,∞) by linear interpolation. Specifically if t is
not a multiple of δ, there must exist a number N ∈ N ∪ {0} such that
Nδ < t < (N + 1)δ and we define

X
(δ)
t (ω) = ((N + 1)δ − t)/δ ·X(δ)

Nδ(ω) + (t−Nδ)/δ ·X(δ)
(N+1)δ(ω).
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We call Xδ the Mandelbrot and Van Ness sum.

What remains is proving that the sum in the definition 3.2.3 converges so
that we know that the stochastic process is well-defined. We begin with a
lemma.

Lemma 3.2.4. Assume that H ∈ (0, 1), δ > 0 and that t = Lδ, L ∈ N ∪ {0}.
We then have

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]2
<∞.

Proof. If t = 0, the result is obvious, so we assume t > 0. We rewrite the
expression

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]2
=

−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]2
+

t−δ∑
τ=0

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]2
≤

−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]2
+M

=
∞∑
k=1

[
(t+ kδ)H− 1

2 − (kδ)H− 1
2

]2
+M.

We have that t = Lδ, L ∈ N. So the last expression becomes

δ2H−1
∞∑
k=1

[
(L+ k)H− 1

2 − (k)H− 1
2

]2
+M.

So the result follows if we can show that for L ∈ N we have
∞∑
k=1

[
(L+ k)H− 1

2 − (k)H− 1
2

]2
<∞.

We will use the comparison test with the series
∞∑
k=1

1
k3−2H ,

which we know converges since 3− 2H > 1. We must show

lim
k→∞

[
(L+ k)H− 1

2 − (k)H− 1
2

]2
1

k3−2H

= lim
k→∞

[
(L+ k)H− 1

2 − (k)H− 1
2

]2
k3−2H <∞.
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3. Weak convergence of the Mandelbrot and Van Ness sum

Or equivalently

lim
k→∞

∣∣∣(L+ k)H− 1
2 − (k)H− 1

2

∣∣∣ k3/2−H <∞.

We have ∣∣∣(L+ k)H− 1
2 − (k)H− 1

2

∣∣∣ k3/2−H

=

∣∣∣∣∣
(
L+ k

k

)H− 1
2

− 1

∣∣∣∣∣ k.
So the result will follow if

lim
k→∞

((
L+ k

k

)H− 1
2

− 1
)
k,

exists and do not take the values ±∞.
But this follows by rewriting the expression to

lim
k→∞

(
L+k
k

)H− 1
2 − 1

1
k

,

and using l’Hôpital’s rule.

Now we prove that there is a set with probability one, where the series
converges.

Proposition 3.2.5. Let W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} be a col-
lection of independent random variables, each taking the values ±1 with equal
probability. Assume that they are defined on a probability space (Ω,A, P ). As-
sume also that H ∈ (0, 1) and that δ > 0. Then there exists a set Aδ ∈ A(also
depending on H) with

P (Aδ) = 1,

such that if t ≥ 0 is a real number, and t is a multiple of δ we have that for
ω ∈ Aδ

1
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω)

converges in R.

Proof. Assume first that t is a multiple of δ. From lemma 3.2.4 we have
t−δ∑

τ=−∞
δ

1
C2
H

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]2
δ <∞.

It then follows [MW13, Proposition 7.11, p. 260], that there is a set Aδ,t ∈ A
with P (Aδ,t) = 1. Such that for ω ∈ Aδ,t we have that

1
CH

t−δ∑
δ

τ=−∞

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω),
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converges in R. The fact that Aδ,t ∈ A is not seen in the statement of [MW13,
Proposition 7.11, p. 260] but its proof. There the set where we have convergence
is in their notation Ec, it is seen from the proof that this is a measurable set. The
same is the fact that the convergence is in R and not for example in the extended
real numbers, this follows from the fact that the proof uses Cauchy-sequences
in R.

There are only a countable number of t ≥ 0 that is a multiple of δn, let

Aδ =
⋂

r∈N∪{0}

Aδ,rδ.

Because of countability and elementary properties of measures we have that
P (Aδ) = 1. By construction Aδ has the required properties, and the proof is
done.

We now see that definition 3.2.3 is well-defined. We may redefine the process
on a set of probability zero to ensure that we have convergence everywhere, we
define it so that on the set Acδ in proposition 3.2.5 the process is identically
equal to zero. That means that if Aδ is the set in proposition 3.2.5, and t ≥ 0
is a multiple of δ we have

Xδ
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω) · IAδ(ω), (3.5)

and we interpolate linearly as before for other values of t. Notice that for a
given t Xδ

t will be a random variable on (Ω,A, P ). We require measurability for
this to be the case. However it is measurable because the set Aδ is measurable
and X(δ)

t is a limit of measurable functions. We redefine the Mandelbrot and
Van Ness sum to ensure that it is well-defined.

Definition 3.2.6 (modified). Let H ∈ (0, 1), δ > 0 be given. Let W =
{. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} be a collection of independent random
variables, each taking the values ±1 with equal probability. Assume that they
are defined on a probability space (Ω,A, P ). Let Aδ be as in proposition 3.2.5.
Define the stochastic process X(δ) = (X(δ)

t )t∈[0,∞), which also depends on H
like this

(i) If t ≥ 0 and there exists an N ∈ N ∪ {0} such that t = Nδ we define

X
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω) · IAδ(ω),

where

CH
.=
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
.

(ii) We extend X(δ) to all of [0,∞) by linear interpolation. Specifically if t is
not a multiple of δ, there must exist a unique number N ∈ N ∪ {0} such
that Nδ < t < (N + 1)δ and we define

X
(δ)
t (ω) = ((N + 1)δ − t)/δ ·X(δ)

Nδ(ω) + (t−Nδ)/δ ·X(δ)
(N+1)δ(ω).
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3. Weak convergence of the Mandelbrot and Van Ness sum

We call X(δ) the Mandelbrot and Van Ness sum.

We need an explicit formula for X(δ)
t so we end this section by deriving this.

It is advantageous to work with an ordinary sum and not the delta-sum
T∑

τ=−∞
δ
,

so we will try to get an expression ridding ourselves of this sum. We let bxc
be the floor function. This means that the if t is not a multiple of δ the N in
definition 3.2.3 is bt/δc. So we can write assuming that ω ∈ Aδ and we suppress
the ω in our notation

X
(δ)
t = 1

CH
[(bt/δc+ 1)δ − t]/δ ·X(δ)

bt/δcδ
1
CH

(t− bt/δcδ)/δX(δ)
bt/δcδ+δ

= 1
CH

(1 + bt/δc − t/δ) ·X(δ)
bt/δcδ + 1

CH
(t/δ − bt/δc)X(δ)

bt/δcδ+δ

= 1
CH

(1 + bt/δc − t/δ)
bt/δcδ−δ∑
τ=−∞

δ

[
(bt/δcδ − τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ

+ 1
CH

(t/δ − bt/δc)
bt/δcδ∑
τ=−∞

δ

[
(bt/δcδ + δ − τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ

= 1
CH

(1 + bt/δc − t/δ)
bt/δc−1∑
r=−∞

[
(bt/δcδ − rδ)H− 1

2 − (−rδ)H−
1
2

+

]√
δwr

+ 1
CH

(t/δ − bt/δc)
bt/δc∑
r=−∞

[
(bt/δcδ + δ − rδ)H− 1

2 − (−rδ)H−
1
2

+

]√
δwr

= δH

CH
(1 + bt/δc − t/δ)

bt/δc−1∑
r=−∞

[
(bt/δc − r)H− 1

2 − (−r)H−
1
2

+

]
wr

+ δH

CH
(t/δ − bt/δc)

bt/δc∑
r=−∞

[
(bt/δc+ 1− r)H− 1

2 − (−r)H−
1
2

+

]
wr,

where we have suppressed the dependence on ω, however for the sum to make
sense we must have ω ∈ Aδ. We define

Definition 3.2.7.

a(t, r, δ) = (1 + bt/δc − t/δ) · (bt/δc − r)H−1/2

+ (t/δ − bt/δc) · (bt/δc+ 1− r)H−1/2

− (−r)H−1/2
+ .

This means that by using definition 3.2.6 we get

X
(δ)
t = δH

CH

bt/δc−1∑
r=−∞

a(t, r, δ)wrIAδ + δH

CH
(t/δ − bt/δc)wbt/δcIAδ . (3.6)

a(t, r, δ) will be difficult to work with, so we define a(t, r, δ) and a(t, r, δ) which
are easier to work with.
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Definition 3.2.8.

a(t, r, δ) .= (bt/δc − r)H− 1
2 − (−r)H−

1
2

+

a(t, r, δ) .= (bt/δc+ 1− r)H− 1
2 − (−r)H−

1
2

+ .

Hence we have

a(t, r, δ) = (1− t/δ + bt/δc)a(t, r, δ) + (t/δ − bt/δc)a(t, r, δ).

We give a corollary to lemma 3.2.4 in the notation of a(t, r, δ).

Corollary 3.2.9. Let H ∈ (0, 1), δ > 0, t ∈ [0,∞). We then have

bt/δc−1∑
r=−∞

δ2Ha(t, r, δ)2 <∞.

Proof. We have, using (a+ b)2 ≤ 2a2 + 2b2, that

bt/δc−1∑
r=−∞

δ2Ha(t, r, δ)2

=
bt/δc−1∑
r=−∞

δ2H ((1− t/δ + bt/δc)a(t, r, δ) + (t/δ − bt/δc)a(t, r, δ))2

≤ 2δ2H
bt/δc−1∑
r=−∞

(
a(t, r, δ)2 + a(t, r, δ)2) .

We look at a and a separately. We have

δ2H
bt/δc−1∑
r=−∞

a(t, r, δ)2 = δ2H
bt/δc−1∑
r=−∞

(
(bt/δc − r)H− 1

2 − (−r)H−
1
2

+

)2

= δ

bt/δc−1∑
r=−∞

(
(bt/δcδ − rδ)H− 1

2 − (−rδ)H−
1
2

+

)2

= δ

bt/δcδ−δ∑
τ=−∞

δ

(
(bt/δcδ − τ)H− 1

2 − (−τ)H−
1
2

+

)2
.
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The last term is finite by lemma 3.2.4. For a we get similarly

δ2H
bt/δc−1∑
r=−∞

a(t, r, δ)2 = δ2H
bt/δc−1∑
r=−∞

(
(bt/δc+ 1− r)H− 1

2 − (−r)H−
1
2

+

)2

= δ

bt/δc−1∑
r=−∞

(
(bt/δcδ + δ − rδ)H− 1

2 − (−rδ)H−
1
2

+

)2

= δ

bt/δcδ−δ∑
τ=−∞

δ

(
(bt/δcδ + δ − τ)H− 1

2 − (−τ)H−
1
2

+

)2

= δ

bt/δcδ−δ∑
τ=−∞

δ

(
((bt/δc+ 1)δ − τ)H− 1

2 − (−τ)H−
1
2

+

)2

≤ δ
(bt/δc+1)δ−δ∑

τ=−∞
δ

(
((bt/δc+ 1)δ − τ)H− 1

2 − (−τ)H−
1
2

+

)2
.

The last term is again finite by lemma 3.2.4.

3.3 Induced measures

In this section we will clarify what we mean when we say that sequence of
stochastic processes converges weakly to the fBm. Let δn be given. We will then
show that X(δn) induces a probability measure on (C[0,∞), C), this measure
will be called Pn. So if {δn} is a sequence of positive real numbers converging
to zero, we will by the end of this chapter show that {Pn} converges weakly
to a measure P on (C[0,∞), C) and this measure will have the distribution
properties of the fBm. It is important to be aware of this terminology, when
we say that a sequence of stochastic processes converges weakly to another
stochastic process, we mean that the induced measures converges weakly to the
induced measure of the process.

Definition 3.3.1. Let H ∈ (0, 1), δn > 0. Let X(δn) be as in definition 3.2.6.
We define the measure Pn on (C[0,∞), C) as

Pn(B) = P (X(δn)) ∈ B), B ∈ C,

here X(δn) denotes the entire process on [0,∞).

This definition is well-defined because for each B ∈ C we have

(X(δn))−1(B) ∈ A,

where (Ω,A, P ) is the underlying probability space. To see this, first keep t
fixed as t′, since X(δn)

t′ is pointwise limit of random variables we have that
Xδn
t′ also is measurable, remember that Aδn is measurable, see the discussion

surrounding eq. (3.5) or definition 3.2.6. So for given t′, B′ ∈ B(R) we have that(
X

(δn)
t′

)−1
(B′) ∈ A.

The fact that (C[0,∞), C, Pn) is a probability space now follows by lemma 3.3.2
and theorem C.1.1.
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3.3. Induced measures

Lemma 3.3.2. Let Z = (Zt)t∈[0,∞) be a continuous stochastic process on the
underlying probability space (Ω,A, P ). This means that for every ω ∈ Ω

Z.(ω) : [0,∞)→ R,

is a continuous function in t, and for every t′ ∈ [0,∞), B ∈ B(R) we have

Z−1
t′ (B) ∈ A.

Let C be the Borel sigma-algebra on C[0,∞) defined in definition 2.2.8. We
then have for every C ∈ C

Z−1(C) ∈ A, (3.7)

where we in eq. (3.7) view Z as the function

Z : Ω→ C[0,∞),

where Z(ω) is the continuous trajectory in t.

Proof. We first show that the collection

H =
{
C ∈ C : Z−1(C) ∈ A

}
,

is a sigma-algebra. Since Z−1(∅) = ∅, we have that ∅ ∈ H. If C ∈ H, we have
that C ∈ C, so Cc ∈ C and

Z−1(Cc) = (Z−1(C))c =∈ A,

by elementary set-theory. Hence Cc ∈ H. Assume now that {Cn} is a countable
collection where each Cn ∈ C. Then ∪nCn ∈ C and by elementary set-theory
and the definition of a sigma-algebra we have

Z−1 (∪nCn) = ∪nZ−1(Cn) ∈ A.

So ∪nCN ∈ H. We have therefore shown that H is a sigma-algebra. Let E be
the collection

E = {{f ∈ C[0,∞) : f(t′) ∈ B} : t′ ∈ [0,∞), B ∈ B(R)} .

We will show that E ⊂ H. Let A ∈ E , then there is t′ ∈ [0,∞), B ∈ R such that

A = {f ∈ C[0,∞) : f(t′) ∈ B} .

By corollary 2.3.2 σ(E) = C, so obviously A ∈ C. We also have that

Z−1(A) = {ω ∈ Ω : Z(ω) ∈ A}
= {ω ∈ Ω : Zt′(ω) ∈ B}
= Z−1

t′ (B)
∈ A.

Where the last line follows by the hypothesis of this lemma. To summarize we
have that H ⊂ C, E ⊂ H and H is a sigma-algebra. By corollary 2.3.2 σ(E) = C
so by proposition A.2.1 σ(E) ⊂ H ⊂ C = σ(E), hence H = C. This completes
the proof.
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3. Weak convergence of the Mandelbrot and Van Ness sum

We will also need the definition of convergence in distribution.

Definition 3.3.3. Let (Z(n)
1 , Z

(n)
2 , . . . , Z

(n)
k ) be a sequence of random vectors

on (Rk,B(Rk)), each defined on an underlying probablity space (Ωn,An, Pn).
Let (Z1, Z2, . . . , Zk) be a random vector on (Rk,B(Rk)) defined on an underlying
probability space (Ω′,A′, P ′). We say that (Z(n)

1 , Z
(n)
2 , . . . , Z

(n)
k ) converges to

(Z1, Z2, . . . , Zk) in distribution if for every bounded continuous function

f : Rk → R,

we have

En[f((Z(n)
1 , Z

(n)
2 , . . . , Z

(n)
k ))]→ E′[f((Z1, Z2, . . . , Zk))].

From theorem 2.4.2 we see that the two main requirements we have to check
is weak convergence of the finite-dimensional distributions and tightness. Let
0 ≤ t1 < t2 < . . . < tk. Later we will show that (X(δn)

t1 , X
(δn)
t2 , . . . , X

(δn)
tk

) as
a random variable on (Rk,B(Rk)) converges in distribution to (Y1, Y2, . . . , Yk).
(Y1, Y2, . . . , Yk) is a Gaussian vector on (Rk,B(Rk)) with expectation zero for
all components and covariance such that

cov(Ytj , Ytl) = 1
2
(
t2Hj + t2Hl − |tj − tl|2H

)
.

The existence of ~Y is justified by the remark after proposition 3.1.3. Now
we will show that this implies that the finite-dimensional induced measures
converges weakly.

Proposition 3.3.4. Assume that {δn} is a collection of positive real numbers.
Let X(δn) be as in definition 3.2.6 and Pn as in definition 3.3.1. Let 0 ≤ t1 <
t1 < t2 < . . . < tk. Assume that (X(δn)

t1 , X
(δn)
t2 , . . . , X

(δn)
tk

) converges in distri-
bution to a random vector (Y1, Y2, . . . , Yk) = ~Y , defined on a probability space
(Ω′,A′, P ′). Then Pnπ−1

t1,t2,...,tk
converges weakly to µ = P ′~Y −1, where we have

defined µ(A) .= P ′(~Y −1(A) and Pnπ−1
t1,t2,...,tk

(A) = Pn(π−1
t1,t2,...,tk

A). Notice that
(Rk,B(Rk), Pnπ−1

t1,t2,...,tk
) is a probability space for all n, and (Rk,B(Rk), µ) is

a probability space.

Proof. The fact that (Rk,B(Rk), µ) is a probability space follows from the fact
Y is a random vector, and (Ω′,A′, P ′) is a probability space. From elementary
properties of inverse images one sees directly that it is a probability space, by
confirming that µ takes values on B(Rk), µ(Rk) = 1, µ(A) = 1 − µ(Ac) and
countable additivity. The details are

µ(Rk) = P ′~Y −1(Rk) = P ′(Ω′) = 1.

µ(Ac) = P ′(~Y −1(Ac)) = P ′(~Y −1(A)c) = 1− P ′(~Y −1(A)) = 1− µ(A),

µ(∪iAi) = P ′(~Y −1(∪iAi)) = P ′(∪i~Y −1Ai) =
∑
i

P ′(~Y −1Ai) =
∑
i

µ(Ai),

where we have assumed that {Ai} is a countable mutually disjoint collection.
We also have that (Rk,B(Rk), Pnπ−1

t1,t2,...,tk
) is a probability space because
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3.3. Induced measures

πt1,t2,...,tk : C[0,∞) → Rk is continuous and, from the discussion after defini-
tion 3.3.1 we know that (C[0,∞), C, Pn) is a probability space. We see that
Pnπ

−1
t1,t2,...,tk

takes values on B(Rk), and one can confirm the the three axioms
of a probability measure directly as we did above:

Pnπ
−1
t1,t2,...,tk

(Rk) = Pn(π−1
t1,t2,...,tk

(Rk)) = Pn(C[0,∞)) = 1.
Pnπ

−1
t1,t2,...,tk

(Ac) = Pn(π−1
t1,t2,...,tk

(Ac)) = Pn(π−1
t1,t2,...,tk

(A)c)
= 1− Pn(π−1

t1,t2,...,tk
(A)) = 1− Pnπ−1

t1,t2,...,tk
(A)

Pnπ
−1
t1,t2,...,tk

(∪iAi) = Pn(π−1
t1,t2,...,tk

(∪iAi)) = Pn(∪iπ−1
t1,t2,...,tk

(Ai))

=
∑
i

Pn(π−1
t1,t2,...,tk

(Ai)) =
∑
i

Pnπ
−1
t1,t2,...,tk

(Ai),

where {Ai} is a countable mutually disjoint collection.
By the hypothesis we have that for every bounded continuous function

f : Rk → R,

E[f((X(δn)
t1 , X

(δn)
t2 , . . . , X

(δn)
tk

))]→ E′[f((Y1, Y2, . . . , Yk))].

Let En,~t denote the expectation of random variables on

(Rk,B(Rk), Pnπ−1
t1,t2,...,tk

).

That f is a random variable follows since it is measurable by continuity. It will
suffice to prove that

E[f((X(δn)
t1 , X

(δn)
t2 , . . . , X

(δn)
tk

))] = En,~t[f(x1, x2, . . . , xk)], (3.8)

and that

E′[f((Y1, Y2, . . . , Yk))] = Eµ[f(x1, x2, . . . , xk)]. (3.9)

Both these statements are proved using what is called the bootstrap method in
measure theory. This is a method where we first prove something for simple
functions, and then use linearity and limit argument to prove the general case.
We show the details. Assume that A ∈ B(Rk). We then have

E[IA((X(δn)
t1 , X

(δn)
t2 , . . . , X

(δn)
tk

))] = P ((X(δn)
t1 , X

(δn)
t2 , . . . , X

(δn)
tk

) ∈ A)
= P (Xδn ∈ π−1

t1,t2,...,tk
A)

= Pn(π−1
t1,t2,...,tk

A)
= Pnπ

−1
t1,t2,...,tk

(A)
= En,~t[IA((x1, x2, . . . , xk))].

Similarly we have

E′[IA((Y1, Y2, . . . , Yk))] = P ′((Y1, Y2, . . . , Yk) ∈ A)

= P ′(~Y −1(A))
= µ(A)
= Eµ(IA(x1, x2, . . . , xk)).
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3. Weak convergence of the Mandelbrot and Van Ness sum

By linearity of the expectation(it is an integral) we get the same equalities for
functions of the form

K∑
i=1

ciIAi(x1, x2, . . . , xk), ci ∈ R. (3.10)

Since f is continuous it is measurable. From measure theory we know that
we can approximate f by simpler functions as those above, where the simple
functions converge pointwise to f . Since |f | is bounded by L ∈ R, the absolute
value of these functions are also bounded by L(by the way they are constructed).
For instance we split f in its positive and negative part, and remember that
f−1([0,∞)) is a Borel-set and use [MW13, Propositiopn 5.7 a]. The result will
now follow from the dominated convergence theorem. We let {si} be a sequence
of simple functions converging pointwise to f , with |f | ≤ L, |si| ≤ L,∀i. We get

E[f((X(δn)
t1 , X

(δn)
t2 , . . . , X

(δn)
tk

))] = E
[

lim
i→∞

si((X(δn)
t1 , X

(δn)
t2 , . . . , X

(δn)
tk

))
]

= lim
i→∞

E
[
si((X(δn)

t1 , X
(δn)
t2 , . . . , X

(δn)
tk

))
]

= lim
i→∞

En,~t[si((x1, x2, . . . , xk))]

= En,~t[ lim
i→∞

si((x1, x2, . . . , xk))]

= E[f(x1, x2, . . . , xk)],

where we in the second and fourth equality have used the dominated convergence
theorem. By the same calculations we also have

E′[f(Y1, Y2, . . . , Yk)] = Eµ[f(x1, x2, . . . , xk)].

We have now laid some of the groundwork for later use of theorem 2.4.2 by
looking at finite-dimensional convergence. Now we will look at tightness. We
will prove a proposition that later will make it easier to use corollary 2.5.6. We
need this because we will work with X(δn) but our result in corollary 2.5.6 holds
for Pn. In the proof we will also use the bootstrap method as in proposition 3.3.4
but now we will use the monotone convergence theorem, not the dominated
convergence theorem.

Proposition 3.3.5. Assume that {δn} is a collection of positive real numbers.
Let X(δn) be as in definition 3.2.6 and Pn as in definition 3.3.1. We then have

Pn({x ∈ C[0,∞) : x(0) = 0}) = 1,∀n.

And also for t1, t2, γ ∈ [0,∞)

En[|x(t2)− x(t1)|γ ] = E[|X(δn)
t1 −X(δn)

t2 |γ ],∀n.

The first expectation is taken over the space (C[0,∞), C, Pn), the second is taken
over (Ω,A, P ) where X(δn) is defined.
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3.3. Induced measures

Proof. First notice that

{x ∈ C[0,∞) : x(0) = 0} ∈ C,

because π0 : C[0,∞)→ R is continuous by theorem 2.2.6. We get

Pn({x : x(0) = 0}) = P (X(δn) ∈ {x ∈ C[0,∞) : x(0) = 0})

= P (X(δn)
0 = 0)

= 1.

We actually have a stronger result than P (X(δn)
0 = 0) = 1, as we can see that

X
(δn)
0 (ω) = 0 for all ω ∈ Ω, this is seen directly from definition 3.2.6 point i).
Notice also that

|x(t2)− x(t1)|γ : C[0,∞)→ R,

is continuous by theorem 2.2.6(redefine t1, t2 to be increasing if necessary, if
they are equal the value is identically zero and hence continuous) and from the
fact that

|z1 − z2|γ : R2 → R,

is continuous. This means that |x(t2) − x(t1)|γ is a random variable on
(C[0,∞),A, Pn). We go through similar bootstrap argument as in proposi-
tion 3.3.4. What we will prove is that for a positive measurable function

f : C[0,∞)→ R

not necessarily integrable, we have

En[f(x)] = E[f(X(δn))]. (3.11)

Since

|x(t2)− x(t1)|γ : C[0,∞)→ R,

is continuous and hence measurable, the result will follow if we can prove
eq. (3.11). X(δn) is an element of C[0,∞) for each ω so f(X(δn)) makes sense.
Notice that if B ∈ B(R) we have (f(X(δn)))−1(B) = (X(δn))−1(f−1(B)), by ele-
mentary set-theory. By the assumed measurability of f we have that f−1(B) ∈ C,
and by the discussion after definition 3.3.1 we have that (X(δn))−1(f−1(B)) ∈ A,
so f(X(δn)) is a random variable on (Ω,A, P ). This holds for all measurable
functions C[0,∞)→ R, for instance IA, A ∈ C. We can now start the bootstrap
argument. Let A ∈ C, we get

En[IA(x)] = Pn({x ∈ C[0,∞) : x ∈ A})
= P ({ω : X(δn)(ω) ∈ A})
= E[IA(X(δn)(ω))].

For a simple function s given by
K∑
i=1

ciIAi(x), ci ∈ R, Ai ∈ C,
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3. Weak convergence of the Mandelbrot and Van Ness sum

we get

En

[
K∑
i=1

ciIAi(x)
]

=
K∑
i=1

ciEn [IAi(x)]

=
K∑
i=1

ciE[IAi(X(δn)(ω))]

= E

[
K∑
i=1

ciIAi(X(δn)(ω))
]
.

By [MW13, Proposition 5.7 a)] there is a sequence of simple positive functions
{si} increasing monotonically to f , and then we get

En[f(x)] = En

[
lim
i→∞

si(x)
]

= lim
i→∞

En [si(x)]

= lim
i→∞

E
[
si(X(δn)(ω))

]
= E

[
lim
i→∞

si(X(δn)(ω))
]

= E[f(X(δn)(ω))],

where we have used the monotone convergence theorem in the second and
fourth equality. As we said above, now the result follows by using f(x) =
|x(t2)− x(t1)|γ .

3.4 Some results in preparation for finite-dimensional
weak convergence

In this section we prove some results that will be used in the next section where
we prove weak convergence of the finite-dimensional distributions. The results
in this section are rather technical. One may view these results as proving that
some integrals and sums related to the representation of the fBm by Mandelbrot
and Van Ness shown in section 3.2 behave well as δn goes to zero. However
these results are not important by themselves, but they will help us in the
next section. We first start with a simple lemma, notice the similarity with
lemma 3.2.4

Lemma 3.4.1. Let H ∈ (0, 1). For t ≥ 0 we have that∫ t

−∞

(
(t− x)H− 1

2 − (−x)H−
1
2

+

)2
<∞.
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3.4. Some results in preparation for finite-dimensional weak convergence

Proof.∫ t

−∞

(
(t− x)H− 1

2 − (−x)H−
1
2

+

)2
dx

=
∫ −1

−∞

(
(t− x)H− 1

2 − (−x)H− 1
2

)2
dx+

∫ 0

−1

(
(t− x)H− 1

2 − (−x)H− 1
2

)2
dx

+
∫ t

0
(t− x)2H−1dx.

The first is integral obviously finite if H = 1/2, because then the integrand is
zero. From [ST94, p. 321], we have for H 6= 1/2

lim
x→−∞

(
(t− x)H− 1

2 − (−x)H− 1
2

)2

(H−1/2)2

(−x)3−2H

= 1.

So for x small enough(large negative value) we have that(
(t− x)H− 1

2 − (−x)H− 1
2

)2
≤ 2(H − 1/2)2

(−x)3−2H .

Hence the first integral is finite by the comparison with the integral∫ −1

−∞

(H − 1/2)2

(−x3−2H) dx,

which converges because 3− 2H > 1. For the second integral we get by using
that (a− b)2 ≤ 2a2 + 2b2∫ 0

−1

(
(t− x)H− 1

2 − (−x)H− 1
2

)2
dx ≤ 2

∫ 0

−1
(t− x)2H−1dx

+ 2
∫ 0

−1
(−x)2H−1dx,

both these integrals are finite because 1− 2H < 1. The third integral∫ t

0
(t− x)2H−1dx,

is also finite because because 1− 2H < 1.

The next lemma will be useful later when we will use the Lindeberg central
limit theorem. In the theorem we will take the integral of a non-negative
function, but we need to prove that the integral is strictly positive. It is an
interesting result where we will need some linear algebra. The trick of using
Vandermonde matrices is attributed to professor Tom Lindstrøm of UiO.

Lemma 3.4.2. Assume ~u ∈ Rk, ~u 6= ~0. Let 0 < t1 < t2 < · · · < tk. Also let
H ∈ (0, 1), H 6= 1/2. We then have
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3. Weak convergence of the Mandelbrot and Van Ness sum

(i)

∫ 0

−∞

 k∑
j=1

uj

[
(tj − x)H− 1

2 − (−x)H− 1
2

]2

dx > 0,

(ii)

∫ t1

0

 k∑
j=1

uj(tj − x)H− 1
2

2

dx > 0,

(iii) If k ≥ 2 we have for l ∈ {2, . . . , k} then u2
l + u2

l+1 + · · ·+ u2
k 6= 0 implies

∫ tl

tl−1

 k∑
j=l

uj(tj − x)H− 1
2

2

dx > 0,

Proof. For point (i) notice that by continuity it suffices to prove that if

k∑
j=1

uj

[
(tj − x)H− 1

2 − (−x)H− 1
2

]
= 0

for all x ∈ (−∞, 0), we have that ~u = ~0. The statement

k∑
j=1

uj

[
(tj − x)H− 1

2 − (−x)H− 1
2

]
= 0,∀x ∈ (−∞, 0),

is equivalent to

k∑
j=1

uj

(
tj − x
−x

)H− 1
2

=
k∑
j=1

uj , ∀x ∈ (−∞, 0).

By differentiating both sides with respect to x we get

k∑
j=1

uj

(
H − 1

2

)(
tj − x
−x

)H− 3
2 −x(−1)− (tj − x)(−1)

x2

=
k∑
j=1

uj

(
H − 1

2

)(
tj − x
−x

)H− 3
2 −tj
x2

= 0, ∀x ∈ (−∞, 0).

Multiplying away common factors of x we get

k∑
j=1

ujtj

(
H − 1

2

)
(tj − x)H−

3
2 = 0, ∀x ∈ (−∞, 0).
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3.4. Some results in preparation for finite-dimensional weak convergence

Let vj = ujtj(H − 1/2), since tj(H − 1/2) 6= 0 we see that the problem is
reduced to showing that ~v = ~0. By noting that for odd number N we have
H −N/2 6= 0, repeated differentiation tells us that

k∑
j=1

vj(tj − x)H−N2 = 0, ∀x ∈ (−∞, 0), N ∈ {3, 5, 7, . . .}.

If we set x = −1, this gives us the matrix equation


(t1 + 1)H− 3

2 (t2 + 1)H− 3
2 . . . (tk + 1)H− 3

2

(t1 + 1)H− 5
2 (t2 + 1)H− 5

2 . . . (tk + 1)H− 5
2

...
...

. . .
(t1 + 1)H− 2k+1

2 (t2 + 1)H− 2k+1
2 . . . (tk + 1)H− 2k+1

2



v1
v2
...
vk

 =


0
0
...
0

 .
To show that ~v = ~0 it suffices to show that the determinant of the matrix is
non-zero. By linear algebra we have that multiplying a column of a matrix with
a non-zero number will only change the determinant by a non-zero factor, so if
we multiply each column of the determinant with 1/(tj + 1)H− 2k+1

2 , the new
determinant will be non-zero if and only if the old is. The new matrix is

(t1 + 1)k−1 (t2 + 1)k−1 . . . (tk + 1)k−1

(t1 + 1)k−2 (t2 + 1)k−2 . . . (tk + 1)k−2

...
...

. . .
(t1 + 1)2 (t2 + 1)2 . . . (tk + 1)2

(t1 + 1)1 (t2 + 1)1 . . . (tk + 1)1

1 1 . . . 1


By rearranging the rows, and taking the transpose we get a new matrix, and
the old matrix will be non-singular if and only if new matrix is non-singular.
The new matrix is

1 (t1 + 1)1 (t1 + 1)2 . . . (t1 + 1)k−1

1 (t2 + 1)1 (t2 + 1)2 . . . (t2 + 1)k−1

...
...

. . .
1 (tk−1 + 1)1 (tk−1 + 1)2 . . . (tk−1 + 1)k−1

1 (tk + 1)1 (tk + 1)2 . . . (tk + 1)k−1

 .

The determinant of this matrix is non-zero since it is a Vandermonde matrix,
and all the t′js are different, see for instance Proposition 109, p. 209 in [Zip93]
and the comment following immediately after.

We will prove point (ii) and (iii) simultaneously. We will prove a slightly
stronger result from which (ii) and (iii) will follow immediately, namely we will
prove that if l ∈ {1, 2, . . . , k}, u2

l + u2
l+1 + · · ·+ u2

k 6= 0 and (a, b) is an interval
such that 0 ≤ a < b ≤ tl, we have

∫ b

a

 k∑
j=l

uj(tj − x)H− 1
2

2

dx > 0.
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3. Weak convergence of the Mandelbrot and Van Ness sum

If l = k the result is obvious, hence we can assume that l < k. Because of
continuity it suffices to prove that if

k∑
j=l

uj(tj − x)H− 1
2 = 0,∀x ∈ (a, b),

it follows that ul = ul+1 = · · · = uk = 0. By noticing that H − N/2 6= 0 for
N ∈ {1, 3, 5, 7, . . .} repeated differentiation gives us that

k∑
j=l

uj(tj − x)H−N2 = 0,∀x ∈ (a, b), N ∈ {1, 3, 5, . . .}.

Choosing x to be r = (a+ b)/2 we note that tl − r > 0. We now get the matrix
equation

(tl − r)H−
1
2 (tl+1 − r)H−

1
2 · · · (tk − r)H−

1
2

(tl − r)H−
3
2 (tl+1 − r)H−

3
2 · · · (tk − r)H−

3
2

...
...

. . .
...

(tl − r)H−
2(k−l)+1

2 (tl+1 − r)H−
2(k−l)+1

2 · · · (tk − r)H−
2(k−l)+1

2



ul
ul+1
...
uk

 =


0
0
...
0


We must prove that the matrix is non-singular. By multiplying each column
with a non-zero constant, we get a new matrix which is non-singular if and
only if the old one is, because the determinant of the matrix will only change
by a non-zero constant. We multiply each column by the reciprocal of the last
element in each column. The new matrix is

(tl − r)k−l (tl+1 − r)k−l · · · (tk − r)k−l
(tl − r)k−l−1 (tl+1 − r)k−l−1 · · · (tk − r)k−l−1

...
...

. . .
...

1 1 · · · 1

 .
By re-arranging the rows and taking the transpose this matrix is non-singular
if and only if

1 (tl − r) (tl − r)2 · · · (tl − r)k−l−1 (tl − r)k−l
1 (tl+1 − r) (tl+1 − r)2 · · · (tl+1 − r)k−l−1 (tl+1 − r)k−l
...

...
...

. . . · · · · · ·
1 (tk−1 − r) (tk−1 − r)2 · · · (tk−1 − r)k−l−1 (tk−1 − r)k−l
1 (tk − r) (tk − r)2 · · · (tk − r)k−l−1 (tk − r)k−l.

 ,
is non-singular. But the last matrix is non-singular because it is a Vandermonde-
matrix with different coefficients, see [Zip93, p. 209].

Next we have a lemma which gives us the explicit value of an integral.

Lemma 3.4.3. Assume that t1, t2 ∈ (0,∞) with t1 ≤ t2. We then have

1
C2
H

∫ t1

−∞

(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)(
(t2 − x)H− 1

2 − (−x)H−
1
2

+

)
dx

=1
2
(
t2H1 + t2H2 − (t2 − t1)2H) .
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Proof. The proof is based on calculations from [ST94, pp. 321-322], and some
of the calculations are from there. Integrability follows from Hölder’s inequality
and lemma 3.4.1.

We first show that it holds when t1 = t2, using the substitution zt1 we get

1
C2
H

∫ t1

−∞

(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)2
dx

= 1
C2
H

∫ 1

−∞

(
(t1 − zt1)H− 1

2 − (−zt1)H−
1
2

+

)2
t1dz

= t2H1
C2
H

[∫ 0

−∞

(
(1− z)H− 1

2 − (−z)H− 1
2

)2
dz +

∫ 1

0
(1− z)2H−1dz

]
.

We use the substitution u = −z on the first integral and u = 1−z on the second

= t2H1
C2
H

[∫ 0

∞

(
(1 + u)H− 1

2 − uH− 1
2

)2
du(−1) +

∫ 0

1
u2H−1du(−1)

]
= t2H1
C2
H

[∫ ∞
0

(
(1 + u)H− 1

2 − uH− 1
2

)2
du+ 1

2H

]
= t2H1 .

For technical reasons that will become apparent soon we calculate the next
integral

1
C2
H

∫ t2

−∞

[(
(t2 − x)H− 1

2 − (−x)H−
1
2

+

)
− I(−∞,t1)(x)

(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)]2
dx

= 1
C2
H

∫ t2

−∞

[
(t2 − x)H− 1

2 − I(−∞,t1)(x)(t1 − x)H− 1
2

]2
dx.

Using the substitution u = x− t1 this becomes

1
C2
H

∫ t2−t1

−∞

[
(t2 − t1 − u)H− 1

2 − (−u)H−
1
2

+

]
du.

By our previous calculations with t′1 = t2 − t1 this is equal to

(t2 − t1)2H .

However by expanding the square inside the integral we also get

1
C2
H

∫ t2

−∞

[(
(t2 − x)H− 1

2 − (−x)H−
1
2

+

)
− I(−∞,t1)(x)

(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)]2
dx

= 1
C2
H

∫ t2

−∞

(
(t2 − x)H− 1

2 − (−x)H−
1
2

+

)2
dx

− 2
C2
H

∫ t1

−∞

(
(t2 − x)H− 1

2 − (−x)H−
1
2

+

)(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)
dx

+ 1
C2
H

∫ t1

−∞

(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)2
dx

= t2H2 + t2H1 − 2
C2
H

∫ t1

−∞

(
(t2 − x)H− 1

2 − (−x)H−
1
2

+

)(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)
dx.
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So we have proved

(t2 − t1)2H

= t2H2 + t2H1 − 2
C2
H

∫ t1

−∞

(
(t2 − x)H− 1

2 − (−x)H−
1
2

+

)(
(t1 − x)H− 1

2 − (−x)H−
1
2

+

)
dx.

Hence the lemma follows.

The next lemma shows that in some sense the tail of the Mandelbrot and
Van Ness sum disappears in the limit. A concrete use of the lemma will be
explained later.

Lemma 3.4.4. Let H ∈ (0, 1), and a(t, r, δ) as in definition 3.2.7. We have
that for every t ∈ [0,∞)

−b1/δ2c∑
r=−∞

δ2Ha(t, r, δ)2 → 0,

as δ → 0 with δ > 0.

Proof. If t = 0 then a(t, r, δ) = 0, so we can assume that t > 0. We first look at
the part of a(t, r, δ) corresponding to a(see definition 3.2.8)

−b1/δ2c∑
r=−∞

δ2H
[
(bt/δc − r)H− 1

2 − (−r)H− 1
2

]2

=
−b1/δ2c∑
r=−∞

[
(bt/δcδ − rδ)H− 1

2 − (−rδ)H− 1
2

]2
δ

=
−b1/δ2cδ∑
τ=−∞

δ

[
(bt/δcδ − τ)H− 1

2 − (−τ)H− 1
2

]2
δ.

If we first assume that H ≥ 1/2, we have that this is less than or equal to

−b1/δ2cδ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H− 1
2

]2
δ

Assume for convenience that δ < 0.1. If we differentiate the expression inside the
sum with respect to τ we get that it is non-negative, hence it is non-decreasing
when τ increases. This means that this sum is bounded by

−b1/δ2cδ+δ∫
−∞

[
(t− τ)H− 1

2 − (−τ)H− 1
2

]2
dτ

≤
−1/δ+2δ∫
−∞

[
(t− τ)H− 1

2 − (−τ)H− 1
2

]2
dτ.
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The last expression goes to zero because

0∫
τ=−∞

[
(t− τ)H− 1

2 − (−τ)H− 1
2

]2
dτ <∞,

by lemma 3.4.1, so the convergence to zero follows by the Dominated convergence
theorem. If H < 1/2 we have

−b1/δ2cδ∑
τ=−∞

δ

[
(bt/δcδ − τ)H− 1

2 − (−τ)H− 1
2

]2
δ

≤
−b1/δ2cδ∑
τ=−∞

δ

[
(−τ)H− 1

2 − (t− τ)H− 1
2

]2
δ.

If we differentiate inside the sum with respect to τ we again get that it is
non-negative, so the argument above means that this also converges to 0 as δ
goes to zero.

The part corresponding to a is

−b1/δ2c∑
r=−∞

δ2H
[
(bt/δc+ 1− r)H− 1

2 − (−r)H− 1
2

]2
.

This must also converge to 0 as δ goes to 0, this can be seen for instance by
noting that

−b1/δ2c∑
r=−∞

δ2H
[
(bt/δc+ 1− r)H− 1

2 − (−r)H− 1
2

]2

≤
−b1/δ2c∑
r=−∞

δ2H
[
(bt′/δc − r)H− 1

2 − (−r)H− 1
2

]2
,

where t′ = 2t, and δ is small enough. It is easy to see that this holds if H ≥ 1/2,
it also holds if H < 1/2 by changing the order of the terms inside the square-
bracket(which we can do since we square it). Hence the result follows from the
earlier argument, but with t′ instead of t.
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3. Weak convergence of the Mandelbrot and Van Ness sum

We end up with

−b1/δ2c∑
r=−∞

δ2Ha(t, r, δ)2

=
−b1/δ2c∑
r=−∞

δ2H
(

[1 + bt/δc − t/δ] · (bt/δc − r)H− 1
2

+[t/δ − bt/δc](bt/δc+ 1− r)H− 1
2 − (−r)H−

1
2

+

)2

=
−b1/δ2c∑
r=−∞

δ2H
([

1 + bt/δc − t/δ
][

(bt/δc − r)H− 1
2 − (−r)H− 1

2

]
+
[
t/δ − bt/δc

][
(bt/δc+ 1− r)H− 1

2 − (−r)H− 1
2

])2

≤
−b1/δ2c∑
r=−∞

2δ2H
[
1 + bt/δc − t/δ

]2[
(bt/δc − r)H− 1

2 − (−r)H− 1
2

]2
+
−b1/δ2c∑
r=−∞

2δ2H
[
t/δ − bt/δc

]2[
(bt/δc+ 1− r)H− 1

2 − (−r)H− 1
2

]2

≤
−b1/δ2c∑
r=−∞

2δ2H
[
(bt/δc − r)H− 1

2 − (−r)H− 1
2

]2
+
−b1/δ2c∑
r=−∞

2δ2H
[
(bt/δc+ 1− r)H− 1

2 − (−r)H− 1
2

]2
.

This converges to 0 by what we proved above.

The next lemma shows that as δn becomes small, we have that δHn a(t, r, δn)
become small it a uniform way.

Lemma 3.4.5. Let H ∈ (0, 1). Let {δn} be a positive sequence that converges
to zero. Let t be given. Define At,δn

.= {r ∈ Z : r ≤ bt/δnc − 1}. We then have

lim
n→∞

sup
r∈At,δn

{δHn |a(t, r, δn)|} = 0.

Proof. For H = 1/2 we have

δHn |a(t, r, δn)|

= δHn

∣∣∣∣(1 + bt/δc − t/δ) · (bt/δc − r)0

+ (t/δ − bt/δc) · (bt/δc+ 1− r)0

− (−r)0
+

∣∣∣∣
= δ

1
2
n

∣∣1− (−r)0
+
∣∣

≤ 2δHn .

The last expression goes to zero as n goes to infinity. So for the rest of the
proof we can assume H 6= 1/2.
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First note that we have

sup
r∈At,δn

{δHn |a(t, r, δn)|}

= sup
r∈At,δn

{δHn |(1− t/δn + bt/δnc)a(t, r, δn) + (t/δn − bt/δnc)a(t, r, δn)|}

≤ sup
r∈At,δn

{δHn |a(t, r, δn) + a(t, r, δn)|}

≤ sup
r∈At,δn

{δHn |a(t, r, δn)|}+ sup
r∈At,δn

{δHn |a(t, r, δn)|}.

Hence, it suffices to show the lemma for a and a. We start with a. Assume also
first that H < 1/2. For negative r we have that

a(t, r, δn) = (bt/δnc − r)H−
1
2 − (−r)H− 1

2 ,

is negative. The derivative with respect to r is negative. This means that the
biggest absolute value of this expression occurs when r = −1 and then we have

|a(t,−1, δn)| = |(bt/δnc+ 1)H− 1
2 − 1| ≤ 2.

For non-negative r we have that

|a(t, r, δn)| = (bt/δnc − r)H−
1
2 .

The largest value occurs when r = bt/δnc − 1, and then we have

|a(t, bt/δnc − 1, δn)| = |(1)H− 1
2 | = 1.

So we have in this case proved that

sup
r∈At,δn

{δHn |a(t, r, δn)|} ≤ 2δHn ,

hence the result follows. Now assume that H > 1/2. For negative r we have
that

a(t, r, δn) = (bt/δnc − r)H−
1
2 − (−r)H− 1

2 ,

is positive. The derivative with respect to r is also positive. So for negative r
the biggest absolute-value of a(t, r, δn) occurs when r = −1. We then have

|a(t,−1, δn)| = |(bt/δnc+ 1)H− 1
2 − 1|

≤ (bt/δnc+ 1)H− 1
2 + 1

≤ (t/δn + 1)H− 1
2 + 1.

For non-negative r we have that

a(t, r, δn) = (bt/δnc − r)H−
1
2

is positive and decreasing. So the largest value occurs when r = 0. We get

a(t, 0, δn) = (bt/δnc)H−
1
2 ≤ (t/δn)H− 1

2 .
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3. Weak convergence of the Mandelbrot and Van Ness sum

So we have for all r ∈ At,δn

|a(t, r, δn)| ≤ (t/δn + 1)H− 1
2 + 1 + (t/δn)H− 1

2 .

So we have

sup
r∈At,δn

{δHn |a(t, r, δn)|} ≤ δHn
[
(t/δn + 1)H− 1

2 + 1 + (t/δn)H− 1
2

]
= δ

1
2
n

[
(t+ δn)H− 1

2 + δ
H− 1

2
n + tH−

1
2

]
,

where K is a constant. The last expression converges to zero as n tends to
infinity so the result is proved for a.

We now prove the result for a. Assume first that H > 1/2. Note first that
for δn ≤ 1 we have ⌊

t+ 2
δn

⌋
≥ t+ 2

δn
− 1 ≥ t

δn
+ 1.

So for negative r and big enough n we have

|a(t, r, δn)| = (bt/δnc+ 1− r)H− 1
2 − (−r)H− 1

2

≤ (t/δn + 1− r)H− 1
2 − (−r)H− 1

2

≤
(⌊

t+ 2
δn

⌋
− r
)H− 1

2

− (−r)H− 1
2

= a(t+ 2, r, δn).

For non-negative r ∈ At,δn we have that

|a(t, r, δn)| = (bt/δnc+ 1− r)H− 1
2 ,

this decreases with r so it has its maximum-value when r = 0. For this value
we have

|a(t, 0, δn)| = (bt/δnc+ 1)H− 1
2

≤ (b(t+ 2)/δnc)H−1/2

= a(t+ 2, 0, δn).

So we have proved that for r ∈ At,δn

|a(t, r, δn)| ≤ a(t+ 2, r, δn).

Since At,δn ⊂ At+2,δn we get by what we already have proved for a

lim sup
n→∞

sup
r∈At,δn

{δHn |a(t, r, δn)|} ≤ lim sup
n→∞

sup
r∈At,δn

{δHn |a(t+ 2, r, δn)|}

≤ lim sup
n→∞

sup
r∈At+2,δn

{δHn |a(t+ 2, r, δn)|}

= lim
n→∞

sup
r∈At+2,δn

{δHn |a(t+ 2, r, δn)|}

=0.
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Hence

lim
n→∞

sup
r∈At,δn

{δHn |a(t, r, δn)|} = 0.

Now assume that H < 1/2 and δn ≤ 1. For negative r we have

|a(t, r, δn)| = (−r)H− 1
2 − (bt/δnc+ 1− r)H− 1

2

≤ (−r)H− 1
2 − (b(t+ 2)/δnc − r)H−1/2

= |a(t+ 2, r, δn)|.

For non-negative r we have

|a(t, r, δn)| = (bt/δnc+ 1− r)H− 1
2 .

This value increases when r increases so its maximum value occurs when
r = bt/δnc − 1, and we get

|a(t, bt/δnc − 1, δn)| = (bt/δnc+ 1− (bt/δnc − 1))H− 1
2

= 2H− 1
2 .

Hence we have proved for r ∈ At,δn

|a(t, r, δn)| ≤ |a(t+ 2, r, δn)|+ 2H− 1
2 .

So by using that we have proven the result for a, and the fact that At,δn ⊂
At+2,δn , we get

lim sup
n→∞

sup
r∈At,δn

{δHn |a(t, r, δn)|}

≤ lim sup
n→∞

sup
r∈At,δn

{δHn |a(t+ 2, r, δn)|+ δHn 2H− 1
2 }

≤ lim sup
n→∞

[
sup

r∈At,δn
{δHn |a(t+ 2, r, δn)|}+ δHn 2H− 1

2

]
≤ lim sup

n→∞
sup

r∈At,δn
{δHn |a(t+ 2, r, δn)|}+ lim sup

n→∞
δHn 2H− 1

2

≤ lim sup
n→∞

sup
r∈At+2,δn

{δHn |a(t+ 2, r, δn)|}+ lim sup
n→∞

δHn 2H− 1
2

= lim
n→∞

sup
r∈At+2,δn

{δHn |a(t+ 2, r, δn)|}+ lim
n→∞

δHn 2H− 1
2

= 0.

Hence

lim
n→∞

sup
r∈At,δn

{δHn |a(t, r, δn)|} = 0,

and the lemma is proved.

In the next lemma we prove that a sum converges to an integral.
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Lemma 3.4.6. Let t1, t2 ∈ (0,∞), and let {δn} be a positive sequence that
converges to zero. We then have

lim
n→∞

δ2H
n

C2
H

−1∑
r=−b1/δ2

nc+1

a(t1, r, δn) · a(t2, r, δn)

= 1
C2
H

∫ 0

−∞

[
(t1 − x)H− 1

2 − (−x)H− 1
2

]
·
[
(t2 − x)H− 1

2 − (−x)H− 1
2

]
dx.

Proof. The result is obvious if H = 1/2, because then both sides are zero.
Also note that the integral is positive and exists from Hölder’s inequality and
lemma 3.4.1.

If H > 1/2 we have that a(ti, r, δn), a(ti, r, δn), a(ti, r, δn) ≥ 0, for i = 1, 2,
all δn and all the r we sum over. We also have a(ti, rδn) ≤ a(ti, rδn) ≤ a(ti, rδn).
Therefore

0 ≤ a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn).

If H < 1/2 then a(ti, r, δn), a(ti, r, δn), a(ti, r, δn) ≤ 0, for t = 1, 2, all δn and all
the r we sum over. As we have −a(ti, r, δn) ≤ −a(ti, r, δn) ≤ −a(ti, r, δn), we
again get

0 ≤a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn).

By the Squeeze theorem we only need to prove the lemma for the two cases
where we substitute a and a for a. We have

δ2H
n

C2
H

−1∑
r=−b1/δ2

nc+1

a(t1, r, δn) · a(t2, r, δn)

= δ2H
n

C2
H

−1∑
r=−b1/δ2

nc+1

[
(bt1/δnc − r)H−

1
2 − (−r)H−

1
2

] [
(bt2/δnc − r)H−

1
2 − (−r)H−

1
2

]

= δn
C2
H

−1∑
r=−b1/δ2

nc+1

[
(bt1/δncδn − rδn)H−

1
2 − (−rδn)H−

1
2

] [
(bt2/δncδn − rδn)H−

1
2 − (−rδn)H−

1
2

]

= 1
C2
H

−δn∑
τ=−b1/δ2

ncδn+δn
δn

[
(bt1/δncδn − τ)H−

1
2 − (−τ)H−

1
2

] [
(bt2/δncδn − τ)H−

1
2 − (−τ)H−

1
2

]
δn

= 1
C2
H

∫ 0

−∞

−δn∑
τ=−b1/δ2

ncδn+δn
δn

(
I[τ,τ+δn)(s)

[
(bt1/δncδn − τ)H−

1
2 − (−τ)H−

1
2

]
·
[
(bt2/δncδn − τ)H−

1
2 − (−τ)H−

1
2

])
ds.
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We also have[
(bt1/δncδn − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(bt2/δncδn − τ)H− 1

2 − (−τ)H− 1
2

]
≤ [(t1 − τ)H− 1

2 − (−τ)H− 1
2 ][(t2 − τ)H− 1

2 − (−τ)H− 1
2 ],

for H ∈ (0, 1), H 6= 1/2 and negative τ . We also have that the derivative of

[(t1 − τ)H− 1
2 − (−τ)H− 1

2 ][(t2 − τ)H− 1
2 − (−τ)H− 1

2 ],

with respect to τ is non-negative on (−∞, 0). Together this means that

−δn∑
δn

τ=−b1/δ2
ncδn+δn

(
I[τ,τ+δn)(s)

[
(bt1/δncδn − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(bt2/δncδn − τ)H− 1

2 − (−τ)H− 1
2

])

≤
−δn∑

δn
τ=−b1/δ2

ncδn+δn

(
I[τ,τ+δn)(s)

[
(t1 − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(t2 − τ)H− 1

2 − (−τ)H− 1
2

])
≤ [(t1 − s)H−

1
2 − (−s)H− 1

2 ][(t2 − s)H−
1
2 − (−s)H− 1

2 ], s ∈ (−∞, 0).

By noting that first function in the inequality converges to the last function
pointwise by lemma D.3.1, the result follows by the Dominated Convergence
Theorem.

Almost the exact same calculations that we did for a works for a, but to
bound the functions we now use

[(t1 + 1− s)H− 1
2 − (−s)H− 1

2 ][(t2 + 1− s)H− 1
2 − (−s)H− 1

2 ]

However, we will still get pointwise convergence to

[(t1 − s)H−
1
2 − (−s)H− 1

2 ][(t2 − s)H−
1
2 − (−s)H− 1

2 ].
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We show the details

δ2H
n

C2
H

−1∑
r=−b1/δ2

nc+1

a(t1, r, δn) · a(t2, r, δn)

= δ2H
n

C2
H

−1∑
r=−b1/δ2

nc+1

([
(bt1/δnc+ 1− r)H− 1

2 − (−r)H− 1
2

]
·
[
(bt2/δnc+ 1− r)H− 1

2 − (−r)H− 1
2

])

= δn
C2
H

−1∑
r=−b1/δ2

nc+1

([
(bt1/δncδn + δn − rδn)H− 1

2 − (−rδn)H− 1
2

]
·
[
(bt2/δncδn + δn − rδn)H− 1

2 − (−rδn)H− 1
2

])

= 1
C2
H

−δn∑
τ=−b1/δ2

ncδn+δn
δ

([
(bt1/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(bt2/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

]
δn

)

= 1
C2
H

∫ 0

−∞

−δn∑
δn

τ=−b1/δ2
ncδn+δn

(
I[τ,τ+δn)(s)

[
(bt1/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(bt2/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

])
ds.

Assume now that n is so big that |δn| < 1. We have[
(bt1/δncδn + δn − τ)H−

1
2 − (−τ)H−

1
2

]
·
[
(bt2/δncδn + δn − τ)H−

1
2 − (−τ)H−

1
2

]
≤
[
(t1 + 1− τ)H−

1
2 − (−τ)H−

1
2

]
·
[
(t2 + 1− τ)H−

1
2 − (−τ)H−

1
2

]
.

Also note that the derivative of [(t1 +1−τ)H− 1
2 − (−τ)H− 1

2 ] · [(t2 +1−τ)H− 1
2 −

(−τ)H− 1
2 ] with respect to τ is non-negative for τ ∈ (−∞, 0). This means that
−δn∑

δn
τ=−b1/δ2

ncδn+δn

(
I[τ,τ+δn)(s)

[
(bt1/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(bt2/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

])

≤
−δn∑

δn
τ=−b1/δ2

ncδn+δn

(
I[τ,τ+δn)(s)

[
(t1 + 1− τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(t2 + 1− τ)H− 1

2 − (−τ)H− 1
2

])
≤ [(t1 + 1− s)H− 1

2 − (−s)H− 1
2 ][(t2 + 1− s)H− 1

2 − (−s)H− 1
2 ].

The last function is integrable over (−∞, 0) by Hölder’s inequality and by
lemma 3.4.1. The result now follows by lemma D.3.2, and the Dominated
convergence Theorem.
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The next lemma is very similar to lemma 3.4.6.

Lemma 3.4.7. Let z1, z2 be real numbers such that 0 ≤ z1 < z2. Let t1, t2 ∈
[z2,∞), let {δn} be a positive sequence which converges to zero. We then have

lim
n→∞

δ2H
n

C2
H

bz2/δnc−1∑
r=bz1/δnc

a(t1, r, δn)a(t2, r, δn)

= 1
C2
H

∫ z2

z1

(t1 − x)H− 1
2 (t2 − x)H− 1

2 dx.

Proof. Note first that by lemma D.1.2 there are ni, i = 1, 2 such that if n ≥ ni⌊
z1

δn

⌋
<

⌊
z2

δn

⌋
− 1 <

⌊
ti
δn

⌋
. (3.12)

So for the rest of the proof assume that n is chosen so big that eq. (3.12) holds.
For H = 1/2 we get

lim
n→∞

δ2H
n

C2
H

bz2/δnc−1∑
r=bz1/δnc

a(t1, r, δn)a(t2, r, δn)

= lim
n→∞

δn
C2
H

bz2/δnc−1∑
r=bz1/δnc

1 · 1

= lim
n→∞

δn
C2
H

(bz2/δnc − bz1/δnc)

= lim
n→∞

1
C2
H

(bz2/δncδn − bz1/δncδn)

= z2 − z1

C2
H

= 1
C2
H

∫ z2

z1

(t1 − x)H− 1
2 (t2 − x)H− 1

2 dx.

So we have proven the case H = 1/2.
For H > 1/2 we have for i = 1, 2, r ∈ {bz1/δnc, bz1/δnc+1, . . . , bz2/δnc−1}

0 ≤ (bti/δnc − r)H−
1
2 = a(ti, r, δn)

≤ (bti/δnc+ 1− r)H− 1
2 = a(ti, r, δn).

So

0 ≤ a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn),

(3.13)

because a is a linear interpolation where the linear function takes a and a
at the endpoints. For H < 1/2 we have for i = 1, 2, r ∈ {bz1/δnc, bz1/δnc +
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3. Weak convergence of the Mandelbrot and Van Ness sum

1, . . . , bz2/δnc − 1}

0 ≤ (bti/δnc+ 1− r)H− 1
2 = a(ti, r, δn)

≤ (bti/δnc − r)H−
1
2 = a(ti, r, δn).

So

0 ≤ a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn)
≤ a(t1, r, δn)a(t2, r, δn),

(3.14)

again because by definition a is linearly interpolated between a and a. Equa-
tion (3.13) and eq. (3.14) together with the Squeeze theorem for sequences tells
us it suffices to prove the lemma for a and a instead of a.

We start with a. We get

lim
n→∞

δ2H
n

C2
H

bz2/δnc−1∑
r=bz1/δnc

a(t1, r, δn)a(t2, r, δn)

= lim
n→∞

δ2H
n

C2
H

bz2/δnc−1∑
r=bz1/δnc

(bt1/δnc − r)H−
1
2 (bt2/δnc − r)H−

1
2

= lim
n→∞

δn
C2
H

bz2/δnc−1∑
r=bz1/δnc

(bt1/δncδn − rδn)H− 1
2 (bt2/δncδn − rδn)H− 1

2

= 1
C2
H

lim
n→∞

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 δn

= 1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ds.

The limits in the last integral are chosen because bz2/δncδn ≤ z2, and for big
enough n we have that bz1/δncδn ≥ z1/2. This is because bz1/δncδn converges
to z1 as n goes to infinity. If H > 1/2 there exists a constant K such that for
all s ∈ (z1/2, z2) and all n

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 < K.

This follows from the fact that

(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ≤ (t1 − τ)H− 1
2 (t2 − τ)H− 1

2 .

The last expression is continuous in τ on [z1/2, z2](remember H > 1/2) and
hence bounded on this interval. So we are able to bound

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ,
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by an integrable function(the constant function K). Since we have pointwise
convergence Lebesgue almost-everywhere on (z1/2, z2) by lemma D.3.3, the
lemma follows from the Dominated Convergence Theorem.

If H < 1/2 we must rewrite the expression like this

1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ds

= 1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−2δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ds

+ 1
C2
H

lim
n→∞

(bt1/δncδn − bz2/δnc+ δn)H− 1
2 (bt2/δncδn − bz2/δnc+ δn)H− 1

2 δn,

provided both limits on the right hand side exist. We will prove existence of
these limits and show what they are. We have that

(bt1/δncδn − bz2/δnc+ δn)H− 1
2 (bt2/δncδn − bz2/δnc+ δn)H− 1

2 δn

≤ δH−
1
2

n δ
H− 1

2
n δn

= δ2H
n .

So we get

1
C2
H

lim
n→∞

(bt1/δncδn − bz2/δnc+ δn)H− 1
2 (bt2/δncδn − bz2/δnc+ δn)H− 1

2 δn = 0.

We now look at the term

1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−2δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ds.

Notice first that

1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−2δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ds

= 1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−2δn∑
δn

τ=bz1/δncδn

I[τ+δ,τ+2δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ds,

because as we noted, for big enough n we have bz1/δncδn ≥ z1/2, and we also
have

τ + 2δn ≤ bz2/δncδn − 2δn + 2δn
≤ z2.

For τ ∈ {bz1/δncδn, bz1/δncδn + δn, . . . , bz2/δncδn − 2δn} we have

(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2

≤(t1 − δn − τ)H− 1
2 (t2 − δn − τ)H− 1

2 .

63



3. Weak convergence of the Mandelbrot and Van Ness sum

This is because for i = 1, 2 we have ti−δn ≤ bti/δncδn, since bti/δnc > ti/δn−1.
So we have
bz2/δncδn−2δn∑

δn
τ=bz1/δncδn

I[τ+δn,τ+2δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2

≤
bz2/δncδn−2δn∑

δn
τ=bz1/δncδn

I[τ+δn,τ+2δn)(s)(t1 − δn − τ)H− 1
2 (t2 − δn − τ)H− 1

2

=
bz2/δncδn−2δn∑

δn
τ=bz1/δncδn

I[τ+δ,τ+2δn)(s)(t1 − (τ + δn))H− 1
2 (t2 − (τ + δn))H− 1

2

=
bz2/δncδn−δn∑

δn
τ=bz1/δncδn+δn

I[τ,τ+δn)(s)(t1 − τ)H− 1
2 (t2 − τ)H− 1

2 .

(3.15)

We also have
bz2/δncδn−δn∑

δn
τ=bz1/δncδn+δn

I[τ,τ+δn)(s)(t1 − τ)H− 1
2 (t2 − τ)H− 1

2

≤ (t1 − s)H−
1
2 (t2 − s)H−

1
2 ,

(3.16)

for s ∈ (z1/2, z2). This is because the right-hand side is non-zero, and if the
left-hand side is non-zero, there must be a τ∗ such that s ∈ [τ∗, τ∗ + δn) and
then (t1 − τ∗)H−

1
2 (t2 − τ∗)H−

1
2 ≤ (t1 − s)H−

1
2 (t2 − s)H−

1
2 , because H < 1/2.

Combining eq. (3.15) and eq. (3.16) we get

bz2/δncδn−2δn∑
δn

τ=bz1/δncδn

I[τ+δn,τ+2δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2

≤ (t1 − s)H−
1
2 (t2 − s)H−

1
2 ,

for s ∈ (z1/2, z2). (t1 − s)H− 1
2 (t2 − s)H− 1

2 is integrable over (z1/2, z2) by
Hölder’s inequality and lemma 3.4.1. Since

bz2/δncδn−2δn∑
δn

τ=bz1/δncδn

I[τ+δn,τ+2δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2

converges pointwise to

I[z1,z2)(s)(t1 − s)H−
1
2 (t2 − s)H−

1
2 ,

Lebesgue almost everywhere on (z1/2, z2) by lemma D.3.3, the dominated
convergence theorem tells us that

1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−2δn∑
δn

τ=bz1/δncδn

I[τ+δ,τ+2δn)(s)(bt1/δncδn − τ)H− 1
2 (bt2/δncδn − τ)H− 1

2 ds

= 1
C2
H

∫ z2

z1

(t1 − s)H−
1
2 (t2 − s)H−

1
2 ds.
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So we are done with proving the result for a.
We now prove the result for a. The calculations will be very similar. Like

earlier we get

lim
n→∞

δ2H
n

C2
H

bz2/δnc−1∑
r=bz1/δnc

a(t1, r, δn)a(t2, r, δn)

= lim
n→∞

δ2H
n

C2
H

bz2/δnc−1∑
r=bz1/δnc

(bt1/δnc+ 1− r)H− 1
2 (bt2/δnc+ 1− r)H− 1

2

= lim
n→∞

δn
C2
H

bz2/δnc−1∑
r=bz1/δnc

(bt1/δncδn + δn − rδn)H− 1
2 (bt2/δncδn + δn − rδn)H− 1

2

= 1
C2
H

lim
n→∞

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

(bt1/δncδn + δn − τ)H− 1
2 (bt2/δncδn + δn − τ)H− 1

2 δn

= 1
C2
H

lim
n→∞

∫ z2

z1/2

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn + δn − τ)H− 1
2 (bt2/δncδn + δn − τ)H− 1

2 ds.

If H < 1/2 we have

(bt1/δncδn + δn − τ)H− 1
2 (bt2/δncδn + δn − τ)H− 1

2

≤ (t1 − τ)H− 1
2 (t2 − τ)H− 1

2 ,

since bti/δncδn + δn > ti for i = 1, 2. So we have

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn + δn − τ)H− 1
2 (bt2/δncδn + δn − τ)H− 1

2

≤
bz2/δncδn−δn∑

δn
τ=bz1/δncδn

I[τ,τ+δn)(s)(t1 − τ)H− 1
2 (t2 − τ)H− 1

2 .

We also have for s ∈ (z1/2, z2)

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(t1 − τ)H− 1
2 (t2 − τ)H− 1

2

≤ (t1 − s)H−
1
2 (t2 − s)H−

1
2 ,

because the right-hand side is always non-negative, and if the left hand side is
non-zero, we have that s ∈ [τ∗, τ∗ + δn) and then the result follows because

(t1 − τ∗)H−
1
2 (t2 − τ∗)H−

1
2

≤ (t1 − s)H−
1
2 (t2 − s)H−

1
2 .
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3. Weak convergence of the Mandelbrot and Van Ness sum

Since (t1 − s)H−
1
2 (t2 − s)H−

1
2 is integrable (Hölder and the fact that ti ≥ z2

and 1− 2H < 1) we have that

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn + δn − τ)H− 1
2 (bt2/δncδn + δn − τ)H− 1

2 ds,

is bounded by an integrable function on (z1/2, z2). Since it also converges
pointwise Lebesgue almost everywhere on (z1/2, z2) by lemma D.3.3, the result
follows from the dominated convergence theorem.

Now let H > 1/2 , assume n is so big that δn < 1, we then have

(bt1/δncδn + δn − τ)H− 1
2 (bt2/δncδn + δn − τ)H− 1

2

≤ (t1 + 1)H− 1
2 (t2 + 1)H− 1

2 = K.

So again we have that

bz2/δncδn−δn∑
δn

τ=bz1/δncδn

I[τ,τ+δn)(s)(bt1/δncδn + δn − τ)H− 1
2 (bt2/δncδn + δn − τ)H− 1

2 ,

is bounded by an integrable function on (z1/2, z2). Since we also have pointwise
convergence Lebesgue almost everywhere by lemma D.3.3 the result follows by
the dominated convergence theorem.

3.5 Weak convergence of the finite-dimensional
distributions of the Mandelbrot and Van Ness sum

In this section we will prove convergence in distribution of the finite-dimensional
distributions of the Mandelbrot and Van Ness sum. This will be a big step
in order to use the finite-dimensional requirement of theorem 2.4.2. We first
give a lemma which takes care of the case that the first component might be
identically zero.

Lemma 3.5.1. Assume that (Y (n)
1 , Y

(n)
2 , . . . , Y

(n)
k ) converges in distribution to

a multivariate normal random variable with expectation ~m ∈ Rk, and covariance
matrix A ∈ Rk × Rk which is positive semi-definite. Let ~p′ ∈ Rk+1 be such that

p1 = 0
pi = mi−1, 2 ≤ i ≤ k + 1.

Let B ∈ Rk+1 × Rk+1 be such that

Bi,j =
{

0, for i = 1 or j = 1
Ai−1,j−1, for i 6= 1 and j 6= 1.

Then B is positive semi-definite, and (0, Y (n)
1 , Y

(n)
2 , . . . , Y

(n)
k ) converges in

distribution to a multivariate normal random variable with expectation ~p and
covariance matrix B.
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Mandelbrot and Van Ness sum

Proof. We first show that B is positive semi-definite. let ~r ∈ Rk+1 we then have

~rTB~r =
k+1∑
i=1

k+1∑
j=1

rirjBi,j

=
k+1∑
i=2

k+1∑
j=2

rirjBi,j

=
k+1∑
i=2

k+1∑
j=2

rirjAi−1,j−1

≥0,

where we in the last inequality used that A is positive semi-definite.
Let ~u ∈ Rk+1. We get

lim
n→∞

E

exp

iu1 · 0 + i

k+1∑
j=2

ujY
(n)
j+1


= lim
n→∞

E

exp

i k+1∑
j=2

ujY
(n)
j+1


= exp

i k+1∑
j=2

mj−1uj −
1
2

k+1∑
j=2

k+1∑
l=2

ujulAj−1,l−1


= exp

i k+1∑
j=1

pjuj −
1
2

k+1∑
j=1

k+1∑
l=1

ujulBj,l

 .

We used the convergence in distribution of (Y (n)
1 , Y

(n)
2 , . . . , Y

(n)
k ). A small

technical detail here is that exp(i~uT~x) is a bounded complex continuous function,
not a bounded real continuous function as defined in definition 3.3.3. But the
result will follow easily from Euler’s formula and linearity of the expectation,
and the fact that sin and cos are bounded continuous functions. We have shown
that we have convergence of characteristic functions. By Glivenko’s theorem
([App09, Theorem 1.1.14, p. 18]) we have convergence in distribution.

Now we turn to the main result of this section.

Theorem 3.5.2. Let 0 ≤ t1 < t2 <, · · · , < tk, H ∈ (0, 1). Assume that {δn}
is a sequence of positive numbers which converges to zero. Let X(δn) be as in
definition 3.2.6. We then have that

(X(δn)
t1 , X

(δn)
t2 , . . . , X

(δn)
tk

)

converges in distribution to a multivariate normal random variable

(Y1, Y2, . . . , Yk),

where each component has expectation zero, and with covariance matrix such
that

cov(Yi, Yj) = 1
2
(
|ti|2H + |tj |2H − |ti − tj |2H

)
. (3.17)
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Proof. First note that by the remark after proposition 3.1.3 we know that Y
exist.

Note that if t1 = 0 and tl > 0 we have

1
2
(
|0|2H + |tl|2H − |tl − 0|2H

)
= 0,

so by lemma 3.5.1 we can assume that t1 > 0.
The result will follow from lemma C.3.1 if we can show that every linear

combination

u1X
(δn)
t1 + u2X

(δn)
t2 + · · ·+ ukX

(δn)
tk

,

converges in distribution to a normal random variable, with expectation zero,
and variance ~uTA~u, where A is a k× k-matrix where Ai,j is given by eq. (3.17).
By the alternative representation of X(δn) in eq. (3.6) we have

u1X
(δn)
t1 + u2X

(δn)
t2 + · · ·+ ukX

(δn)
tk

= δHn
CH

−b1/δ2
nc∑

r=−∞

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wrIAδn

+ δHn
CH

−1∑
r=−b1/δ2

nc+1

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wrIAδn

+ δHn
CH

bt1/δnc−1∑
r=0

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wrIAδn

+ δHn
CH

bt2/δnc−1∑
r=bt1/δnc

(
u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wrIAδn

+ · · ·

+ δHn
CH

btl+1/δnc−1∑
r=btl/δnc

(
ul+1a(tl+1, r, δn) + · · ·+ uka(tk, r, δn)

)
wrIAδn

+ · · ·

+ δHn
CH

btk/δnc−1∑
r=btk−1/δnc

uka(tk, r, δn)wrIAδn

+ δHn
CH

(
u1(t1/δn − bt1/δnc)wbt1/δnc + · · ·+ uk(tk/δn − btk/δnc)wbtk/δnc

)
IAδn .
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We name the different terms of the sum

Rn−1
.= δHn
CH

−b1/δ2
nc∑

r=−∞

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wrIAδn

Rn0
.= δHn
CH

IAδn

−1∑
r=−b1/δ2

nc+1

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

Rn1
.= δHn
CH

IAδn

bt1/δnc−1∑
r=0

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

Rn2
.= δHn
CH

IAδn

bt2/δnc−1∑
r=bt1/δnc

(
u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

Rnl
.= δHn
CH

IAδn

btl/δnc−1∑
r=btl−1/δnc

(
ula(tl, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

Rnk
.= δHn
CH

IAδn

btk/δnc−1∑
r=btk−1/δnc

uka(tk, r, δn)wr

Rnk+1
.= δHn
CH

IAδn

(
u1(t1/δn − bt1/δnc)wbt1/δnc + · · ·+ uk(tk/δn − btk/δnc)wbtk/δnc

)
.

We obviously have that Rnk+1 converges to zero a.s., this means that it also
converges to zero in probability. By [Bil99, Theorem 3.1, p. 27] it suffices to
look at what Rn−1 +R2

0 +Rn1 + · · ·+Rnk converges to in distribution, because
Rn−1 +R2

0 +Rn1 + · · ·+Rnk +Rk+1 will converge to the same random variable if
we have convergence in distribution.

We will prove that Rn−1 also converge to zero in probability. First we will
show that Rn−1 is a square-integrable random variable, with zero expectation.
We get with the help of Fatou’s lemma

E
[
(Rn−1)2]

= E


 δHn
CH

−b1/δ2
nc∑

r=−∞

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wrIAδn

2
=
(
δHn
CH

)2

E

 lim
M→∞

IAδn −b1/δ
2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

2
≤
(
δHn
CH

)2

lim inf
M→∞

E

[IAδn −b1/δ
2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

2 ]
.
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We have by using that P (Aδcn) = 0,

E

[IAδn −b1/δ
2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

2 ]

= E

[(IAδn + IAc
δn

)−b1/δ2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

2 ]

=
−b1/δ2

nc∑
r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)2

≤ k2
−b1/δ2

nc∑
r=−M

(
u2

1a(t1, r, δn)2 + u2
2a(t2, r, δn)2 + · · ·+ u2

ka(tk, r, δn)2)

≤ k2
−b1/δ2

nc∑
r=−∞

(
u2

1a(t1, r, δn)2 + u2
2a(t2, r, δn)2 + · · ·+ u2

ka(tk, r, δn)2) .
We used that the integral of an integrable random variable over a set of
probability zero, in our case the set is Acδn , is zero. Hence we have that
E[(Rn−1)2], and all the corresponding quantities where we sum down to −M is
square-integrable. With the second moment being bounded by(

δHn
CH

)2

k2
−b1/δ2

nc∑
r=−∞

(
u2

1a(t1, r, δn)2 + u2
2a(t2, r, δn)2 + · · ·+ u2

ka(tk, r, δn)2) .
By lemma 3.4.4 this value is finite for large enough n. We will now show that

E[Rn−1] = 0.

Notice that

E

 δHn
CH

IAδn

−b1/δ2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr


= E

 δHn
CH

(
IAδn + IAc

δn

)−b1/δ2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr


= 0,

using that the expectation over Acδn of an integrable function is zero. And since
for every M

δHn
CH

IAδn

−b1/δ2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr,

is bounded in L2(Ω) by a common constant, we have that the collection δHn
CH

IAδn

−b1/δ2
nc∑

r=−M

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr


M∈N

,
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is uniformly integrable by [Wil91, Proposition 13.3(a)]. So when M goes to
infinity we do not only have a.s. convergence but also L1-convergence, see
[Wil91, Theorem 13.7, p. 131], hence E[Rn−1] = 0. We are now ready to prove
that Rn−1 converges to zero in probability. By Chebychev’s inequality we have
have for every ε > 0

P (|Rn−1| ≥ ε) ≤
σ2
Rn−1

ε2

≤ 1
ε2

(
δHn
CH

)2

k2
−b1/δ2

nc∑
r=−∞

(
u2

1a(t1, r, δn)2 + u2
2a(t2, r, δn)2 + · · ·+ u2

ka(tk, r, δn)2) ,
which converges to zero by lemma 3.4.4. Hence we do not need to look at
Rn−1 for exactly the same reason we were able to disregard Rnk+1. We need to
investigate the convergence in distribution of

Rn0 +Rn1 +Rn2 + · · ·+Rnk .

Next we prove that Rn0 converges in distribution to a normal random variable
with expectation zero and variance

1
C2
H

∫ 0

−∞

 k∑
j=1

uj

[
(tj − x)H− 1

2 − (−x)H− 1
2

]2

dx.

We remember that

Rn0
.= δHn
CH

IAδn

−1∑
r=−b1/δ2

nc+1

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr.

Denote

Zr,δn
.= δHn
CH

IAδn

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr.

We get

E[Zr,δn ]

= E

[
δHn
CH

IAδn

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

]
= E

[
δHn
CH

(
IAδn + IAc

δn

)(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

]
= 0,
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Also we have

V [Zr,δn ]
= E[Z2

r,δn ]

= E

[(
δHn
CH

IAδn

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

)2]

= E

[(
δHn
CH

(
IAδn + IAc

δn

)(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

)2]

= δ2H
n

C2
H

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)2
.

We also have that for fixed δn, {Zr,δn} are independent, see proposition C.2.4.

s2
n
.=

−1∑
r=−b1/δ2

nc+1

V [Zr,δn ]

From lemma 3.4.6 we have that

lim
n→∞

s2
n = lim

n→∞

−1∑
r=−b1/δ2

nc+1

V [Zr,δn ]

= lim
n→∞

−1∑
r=−b1/δ2

nc+1

δ2H
n

C2
H

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)2

= lim
n→∞

−1∑
r=−b1/δ2

nc+1

k∑
i=1

k∑
j=1

uiuj
δ2H
n

C2
H

a(ti, r, δn)a(tj , r, δn)

= 1
C2
H

k∑
i=1

k∑
j=1

0∫
−∞

uiuj

(
(ti − x)H−

1
2 − (−x)H−

1
2

)(
(tj − x)H−

1
2 − (−x)H−

1
2

)
dx

= 1
C2
H

∫ 0

−∞

(
k∑
j=1

uj

[
(tj − x)H−

1
2 − (−x)H−

1
2

])2

dx

.= s2.

If ~u = ~0 the result follows directly, so we can assume that ~u 6= ~0. By
lemma 3.4.2 s2 > 0. We want to use the Lindeberg Central Limit Theorem,
see [Bil95, Theorem 27.2, p. 359]. We need to check the Lindeberg condition,
which in our notation is that for every ε > 0

lim
n→∞

−1∑
r=−b1/δ2

nc+1

1
s2
n

E
[
I|Zr,δn |≥εsn(ω)Zr,δn(ω)2] = 0.

We will in fact get that

−1∑
r=−b1/δ2

nc+1

1
s2
n

E
[
I|Zr,δn |≥εsn(ω)Zr,δn(ω)2] = 0,
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when n is big enough. Notice that s2
n is positive for large n since it converges

to s, so we do not divide by zero. Since

sn → s > 0,

we have for big enough n that

2εs > εsn > εs/2 > 0. (3.18)

Let At,δn be as in lemma 3.4.5. We have

max
r∈{−b1/δ2

nc+1,...,−1}
|Zr,δn |

= max
r∈{−b1/δ2

nc+1,...,−1}

∣∣∣∣ δHnCH IAδn
(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

∣∣∣∣
≤ 1
CH

max
r∈{−b1/δ2

nc+1,...,−1}

[
|u1δ

H
n a(t1, r, δn)|+ |u2δ

H
n a(t2, r, δn)|

+ · · ·+ |ukδHn a(tk, r, δn)|
]

≤ 1
CH

[
|u1| sup

t∈At1,δn
{δHn |a(t1, r, δn)|}+ |u2| sup

t∈At2,δn
{δHn |a(t2, r, δn)|}

+ · · ·+ |uk| sup
t∈Atk,δn

{δHn |a(tk, r, δn)|}
]
.

The last expression converges to zero by lemma 3.4.5. This means that for large
enough n

I|Zr,δn|≥εs/2(ω) = 0,∀ω ∈ Ω,

for all the r’s we sum over. This means that by eq. (3.18) we must also have

I|Zr,δn|≥εsn(ω) = 0,∀ω ∈ Ω,

for all the relevant r when n is large enough. Hence the Lindeberg condition
will be satisfied. This means that by the Lindeberg Central Limit theorem we
have that Rn0

sn
converges in distribution to a standard normal variable Z. Notice

that Rn0 /sn will be well-defined for big n, because sn → s > 0, so it will be
strictly positive for big n. Since sn → s, and s is a constant, it follows from
Slutsky’s theorem, see [Mit96, p. 248] that Rn0 converges in distribution to sZ.
In order to use Slutsky’s theorem we use that sn converges in probability to s
but this follows easily by the convergence in R. sZ is by elementary statistics a
normal random variable with expectation zero and variance s2.

We now use the same techniques to show that Rn1 converge in distribution
to a normal random variable with expectation zero and variance

s2 .= 1
C2
H

∫ t1

0

 k∑
j=1

uj

[
(tj − x)H− 1

2 − (−x)H−
1
2

+

]2

dx.

If ~u = ~0 the result is immediate, so we may assume that ~u 6= ~0. Lemma 3.4.2
then tells us

s2 > 0.

73



3. Weak convergence of the Mandelbrot and Van Ness sum

We remember that

Rn1 = δHn
CH

IAδn

bt1/δnc−1∑
r=0

(
u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)

)
wr.

As before let

Zr,δn = δHn
CH

IAδn (u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn))wr,

so for a given δn, {Zr,δn} is an independent collection by proposition C.2.4.
Again we define

s2
n
.=
bt1/δnc−1∑

r=0
V (Zr,δn)

=δ2H
n

C2
H

bt1/δnc−1∑
r=0

(u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn))2
.

By lemma 3.4.7

lim
n→∞

s2
n

= lim
n→∞

δ2H
n

C2
H

bt1/δnc−1∑
r=0

(u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn))2

= 1
C2
H

∫ t1

0

 k∑
j=1

uj

[
(tj − x)H− 1

2 − (−x)H−
1
2

+

]2

dx

s2 > 0.

We have for all r ∈ {0, 1, . . . , bt1/δnc − 1}, with At,δn as in lemma 3.4.5

max
r∈{0,1,...,bt1/δnc−1}

|Zr,δn |

≤ max
r∈{0,1,...,bt1/δnc−1}

δHn
CH
|u1a(t1, r, δn) + u2a(t2, r, δn) + · · ·+ uka(tk, r, δn)|

≤ 1
CH

[
|u1| sup

r∈At1,δn
{δHn |a(t1, r, δn)|}+ |u2| sup

r∈At2,δn
{δHn |a(t2, r, δn)|}

+ · · ·+ |uk| sup
r∈Atk,δn

{δHn |a(tk, r, δn)|}
]
.

This goes to zero by lemma 3.4.5. We remember the Lindeberg condition is, for
every ε > 0

lim
n→∞

bt1/δnc−1∑
r=0

1
s2
n

E
[
I|Zr,δn |≥εsn(ω)Zr,δn(ω)2] = 0.

Since for large enough n we have

2εs > εsn > εs/2 > 0,
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we don’t have any trouble with dividing by zero. Since we also have that
maxr∈{0,1,...,bt1/δnc−1} |Zr,δn | will be smaller εs/2 for large n, we have that for
large n

bt1/δnc−1∑
r=0

1
s2
n

E
[
I|Zr,δn |≥εsn(ω)Zr,δn(ω)2] = 0.

Hence the Lindeberg condition is satisfied. So by [Bil95, Theorem 27.2] we have
that Rn1 /sn converges in distribution to a standard normal random variable Z.
Rn1 /sn is again well-defined for big n since sn → s, so sn > 0 for big n. Since
sn → s we again have by Slutsky’s theorem([Mit96, p. 248]) that Rn1 converges
in distribution to sZ, where we have used that convergence of real numbers
implies convergence in probability if we view the numbers as deterministic
random variables. By elementary statistics sZ is a normal random variable
with expectation zero and variance s2.

We will treat Rn2 , Rn3 , . . . , Rnk simultaneously because of their similar struc-
ture. We recall for l ∈ {2, 3, . . . , k}

Rnl
.= δHn
CH

IAδn

btl/δnc−1∑
r=btl−1/δnc

(
ula(tl, r, δn) + · · ·+ uka(tk, r, δn)

)
wr

We will prove that Rnl converges to a normal random variable with expectation
zero and variance

s2 .= 1
C2
H

∫ tl

tl−1

 k∑
j=l

uj

[
(tj − x)H− 1

2 − (−x)H−
1
2

+

]2

dx.

If ul = ul+1, . . . , uk = 0, the result is obvious, so we may assume u2
l + u2

l+1 +
· · ·+ u2

k 6= 0. It then follows by lemma 3.4.2 that

s2 > 0.

As before we define

Zr,δn = δHn
CH

IAδn (ul(tl, r, δn) + · · ·+ uka(tk, r, δn))wr.

So for each n, {Zr,δn} is a collection of independent random variables (proposi-
tion C.2.4) with expectation zero. We also define

s2
n
.=
btl/δnc−1∑
r=btl−1/δnc

V (Zr,δn)

= δ2
n

C2
H

btl/δnc−1∑
r=btl−1/δnc

(ul(tl, r, δn) + · · ·+ uka(tk, r, δn))2
.
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By lemma 3.4.7 we have

s2
n → s2.

Again we examine the Lindeberg condition in appropriate notation. We must
show that for every ε > 0

lim
n→∞

btl/δnc−1∑
r=btl−1/δnc

1
s2
n

E
[
I|Zr,δn |≥εsn(ω)Zr,δn(ω)2] = 0.

As earlier we have, where At,δn is defined in lemma 3.4.5,

max
r∈{btl−1/δnc,...,btl/δnc−1}

|Zr,δn |

≤ max
r∈{btl−1/δnc,...,btl/δnc−1}

δHn
CH
|ula(tl, r, δn) + · · ·+ uka(tk, r, δn)|

≤ 1
CH

[
|ul| sup

r∈Atl,δn
{δHn |a(tl, r, δn)|}+ · · ·+ |uk| sup

r∈Atk,δn
{δHn |a(tk, r, δn)|}

]
.

This goes to zero by lemma 3.4.5, so for large enough n this will be smaller
than εs/2. Since sn converges to s, for large n we will have εsn > εs/2. Then
we have

btl/δnc−1∑
r=btl−1/δnc

1
s2
n

E
[
I|Zr,δn |≥εsn(ω)Zr,δn(ω)2] = 0.

So by the Lindeberg central limit theorem [Bil95, Theorem 27.2] we have that
Rnl /sn converges in distribution to a standard normal variable Z. As mentioned
before this is a well-defined random variable for big n because sn > 0 for large
n. Since s is a constant, we have that by Slutsky’s theorem([Mit96, p. 248]),
using the trick that sn also converges in probability to s, that Rnl converges in
distribution to sZ. sZ is a normal random variable with expectation zero and
variance s2.

Since for each n, Rn0 , Rn1 , . . . , Rnk consist of different w’s, they are independent
by proposition C.2.5. Denote the random variable sequence (Rnl ) converges to
in distribution by Rl with variance σ2

l . We then get for each b ∈ R

lim
n→∞

E
[
exp(ib(Rn0 +R2

1 + · · ·+Rnk ))
]

= lim
n→∞

E [exp(ib(Rn0 )] E [exp(ib(Rn1 )] · · ·E [exp(ib(Rnk )]

= exp(−1/2σ2
0b

2) exp(−1/2σ2
1b

2) exp(−1/2σ2
2b

2) · · · exp(−1/2σ2
kb

2)
= exp(−1/2b2(σ2

0 + σ2
1 + σ2

2 + · · ·+ σ2
k)).

Hence Rn0 +R2
1 + · · ·+Rnk converges in distribution to a normal random variable

with variance σ2
0 + σ2

1 + σ2
2 + · · ·σ2

k, and expected value zero. However we also

76



3.5. Weak convergence of the finite-dimensional distributions of the
Mandelbrot and Van Ness sum

have

σ2
0 + σ2

1 + σ2
2 + · · ·+ σ2

k = 1
C2
H

∫ 0

−∞

(
k∑
j=1

uj

[
(tj − x)H−

1
2 − (−x)H−

1
2

])2

dx

+ 1
C2
H

∫ t1

0

(
k∑
j=1

[
uj

[
(tj − x)H−

1
2 − (−x)H−

1
2

+

]])2

dx

+
k∑
l=2

1
C2
H

∫ tl

tl−1

(
k∑
j=l

uj

[
(tj − x)H−

1
2 − (−x)H−

1
2

+

])2

dx.

= 1
C2
H

k∑
j1=1

k∑
j1=1

∫ min(tj1 ,tj2 )

−∞
uj1uj2

[
(tj1 − x)H−

1
2 − (−x)H−

1
2

+

] [
(tj2 − x)H−

1
2 − (−x)H−

1
2

+

]
dx.

By lemma 3.4.3 this equals

k∑
j1=1

k∑
j2=1

uj1uj2 ·
1
2(t2Hj1

+ t2Hj2
− |tj1 − tj2 |2H) = ~uTA~u.

Where

Ai,j = 1
2(t2Hj1

+ t2Hj2
− |tj1 − tj2 |2H).

This completes the proof.

We will give a corollary to theorem 3.5.2 showing weak convergence of the
induced measures.

Corollary 3.5.3. Let H ∈ (0, 1) and {δn} be a positive sequence of real numbers
converging to zero. Let Pn be as in definition 3.3.1. Let 0 ≤ t1 < t2 < · · · < tk.
Then Pnπ−1

t1,t2,...,tk
converges weakly to a measure µ on (Rk,B(Rk)), where µ is

uniquely determined by the fact that if ~r ∈ Rk we have∫
Rk
ei~r

T ~xdµ(x) = exp
(
−1

2~r
TA~r

)
,

where

Aj1,j2 = 1
2
(
t2Hj1

+ t2Hj2
− |tj1 − tj2 |2H

)
.

Proof. Let Y be the Gaussian random vector from theorem 3.5.2, assume it is
a random vector on the probability space (Ω′,A′, P ′). By proposition 3.3.4 and
theorem 3.5.2 we have that Pnπ−1

t1,t2,...,tk
converges weakly to a measure µ such

that (Rk,B(Rk), µ) is a measure space, and

µ(B) = P ′(~Y −1(B)), B ∈ B(Rk).

We have that for ~r ∈ Rk

E′
[
exp(i~rT ~Y )

]
= exp

(
−1

2~r
TA~r

)
,
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3. Weak convergence of the Mandelbrot and Van Ness sum

where A is given in the hypothesis of this corollary. In the proof of proposi-
tion 3.3.4 we proved that for bounded continuous real functions we have (see
eq. (3.9))

E′[f((Y1, Y2, . . . , Yk))] = Eµ[f(x1, x2, . . . , xk)].

We then have ∫
Rk
ei~r

T xdµ(x) = Eµ

[
ei~r

T ~x
]

= Eµ
[
cos(~rT~x) + i sin(~rT~x)

]
= Eµ

[
cos(~rT~x)

]
+ iEµ

[
sin(~rT~x)

]
= E′

[
cos(~rT ~Y )

]
+ iE′

[
sin(~rT ~Y )

]
= E′

[
cos(~rT ~Y ) + i sin(~rT ~Y )

]
= E′

[
exp(i~rT ~Y )

]
= exp

(
−1

2~r
TA~r

)
.

The fact that the measure µ is uniquely determined by the function

~r →
∫
Rk
ei~r

T ~xdµ(x),

is explained in [App09, p. 16]. It is the same concept as that random variables
are uniquely determined by their characteristic function.

Remark. In corollary 3.5.3 we describe the measure µ in terms of its character-
istic function. However we also have the connection to the multivariate normal
distribution, so one would think we would be able to give a better description
like

µ(B) =
∫
B

(2π)− 1
2k det(A)−0.5 exp

(
−1

2~x
TA−1~x

)
dλk(~x), B ∈ B(Rk),

where λk denotes the Lebesgue-measure on (Rk,B(Rk)). The reason we do not
give this description is that the matrix A may not be invertible, (it is not when
t1 = 0). In this case a probability density function does not exist. Hence we
give the description in terms of the characteristic function.

3.6 Tightness of {Pn}

In the last section we tackled the finite-dimensional part of theorem 2.4.2, and
in this section we will tackle the tightness part of the same theorem. We start
with a simple result

Lemma 3.6.1. Let {yr}, r ∈ N be a sequence of independent random variable
defined on a probability space (Ω,A, P ). Assume that each yr takes the values
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3.6. Tightness of {Pn}

±1 with equal probability. Assume that {ar}, {br} are real sequences such that
∞∑
r=1

a2
r <∞

∞∑
r=1

b2r <∞.

Also assume that there is a set A ∈ A, with P (A) = 1, such that the random
variables Z1, Z2 given by

Z1 =
∞∑
r=1

aryr(ω)IA(ω)

Z2 =
∞∑
r=1

bryr(ω)IA(ω),

are well-defined (i.e. that when ω ∈ A the sums converge). We then have

E[Z2
1 ] =

∞∑
r=1

a2
r

E[Z2
1 ] =

∞∑
r=1

b2r

E[(Z1 − Z2)2] =
∞∑
r=1

(ar − br)2 <∞.

Proof. We first show that E[Z2
1 ] =

∞∑
r=1

a2
r. By Fatou’s lemma we have

E[Z2
1 ] =E

 lim
M→∞

(
M∑
t=1

aryrIA

)2
≤ lim inf

M→∞
E

( M∑
t=1

aryrIA

)2
= lim inf

M→∞
E

( M∑
t=1

aryr

)2

IA


= lim inf

M→∞
E

( M∑
t=1

aryr

)2

(IA + IAc)


= lim inf

M→∞
E

( M∑
t=1

aryr

)2
= lim inf

M→∞

M∑
r=1

a2
r

=
∞∑
r=1

a2
r,
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3. Weak convergence of the Mandelbrot and Van Ness sum

where we here used that the integral of an integrable function over Ac must
be zero. This tells us that Z1 is a square-integrable random variable, and
E[Z2

1 ] ≤
∑∞
r=1 a

2
r. Since we have that the every element in the collection

{
∑M
r=1 aryrIa}M is bounded in L2(Ω) by

∑∞
r=1 a

2
r, we have that the collection

is uniformly integrable by [Wil91, 13.3 (a), p 127]. Since sure convergence
implies a.s. convergence which in turn implies convergence in probability, we
have by [Wil91, 13.7, p. 131]

M∑
r=1

aryrIA −−−−→
L1(Ω)

∞∑
r=1

aryrIA. (3.19)

Hence we get

|E[Z1]| =

∣∣∣∣∣E
[ ∞∑
r=1

aryrIA

]∣∣∣∣∣
=

∣∣∣∣∣E
[ ∞∑
r=1

aryrIA −
M∑
r=1

aryrIA +
M∑
r=1

aryrIA

]∣∣∣∣∣
=

∣∣∣∣∣E
[ ∞∑
r=1

aryrIA −
M∑
r=1

aryrIA

]
+ E

[
M∑
r=1

aryrIA

]∣∣∣∣∣
≤

∣∣∣∣∣E
[ ∞∑
r=1

aryrIA −
M∑
r=1

aryrIA

]∣∣∣∣∣+

∣∣∣∣∣E
[
M∑
r=1

aryrIA

]∣∣∣∣∣
≤

∣∣∣∣∣E
[ ∞∑
r=1

aryrIA −
M∑
r=1

aryrIA

]∣∣∣∣∣+

∣∣∣∣∣E
[
M∑
r=1

aryr(IA + IAc)
]∣∣∣∣∣

=

∣∣∣∣∣E
[ ∞∑
r=1

aryrIA −
M∑
r=1

aryrIA

]∣∣∣∣∣
≤E

[∣∣∣∣∣
∞∑
r=1

aryrIA −
M∑
r=1

aryrIA

∣∣∣∣∣
]
,

where we in the last inequality used Jensen’s inequality. The last expression
can be made as small as possible by the L1(Ω) convergence in eq. (3.19). Hence

E[Z1] = 0.

We also have that
∑M
r=1 aryrIA and

∑∞
r=M+1 aryrIA are independent by propo-
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sition C.2.6, so we get

E[Z2
1 ] = E[Z2

1 ]− E[Z1]2

= V (Z1)

= V

( ∞∑
r=1

aryrIA

)

= V

(
M∑
r=1

aryrIA +
∞∑

r=M+1
aryrIA

)

= V

(
M∑
r=1

aryrIA

)
+ V

( ∞∑
r=M+1

aryrIA

)

≥V

(
M∑
r=1

aryrIA

)

= E

( M∑
r=1

aryrIA

)2− E [ M∑
r=1

aryrIA

]2

= E

( M∑
r=1

aryr

)2− E [ M∑
r=1

aryr

]2

=
M∑
r=1

a2
r,

where we used that the integral of an integrable function over Ac must be zero
since P (Ac) = 0. Hence we have shown that E[Z2

1 ] ≥
∑M
r=1 a

2
r for every M so

we must have that E[Z2
1 ] ≥

∑∞
r=1 a

2
r. Earlier we showed that E[Z2

1 ] ≤
∑∞
r=1 a

2
r,

hence we have that E[Z2
1 ] =

∑∞
r=1 a

2
r.

The exact same argument with br instead of ar tells us that E[Z2
2 ] =

∑∞
r=1 b

2
r.

We have that

Z1 − Z2 =
∞∑
r=1

(ar − br)yrIA,

by convergence for each ω. Since (ar − br)2 ≤ 2a2
r + 2b2r, we have that

∞∑
r=1

(ar − br)2 ≤ 2
∞∑
r=1

a2
r + 2

∞∑
r=1

b2r <∞.

By what we proved above we then have that E[(Z1−Z2)2] =
∑∞
r=1(ar−br)2.

Now we turn to the most important result in this section. In the proof
we will use the representation of the Mandelbrot and Van Ness sum used in
eq. (3.6)

X
(δ)
t = δH

CH

bt/δc−1∑
r=−∞

a(t, r, δ)wrIA + δH

CH
(t/δ − bt/δc)wbt/δcIAδ , (3.20)

81



3. Weak convergence of the Mandelbrot and Van Ness sum

where

a(t, r, δ) = (1− t/δ + bt/δc)a(t, r, δ) + (t/δ − bt/δc)a(t, r, δ)

= (1− t/δ + bt/δc)
(

(bt/δc − r)H− 1
2 − (−r)H−

1
2

+

)
+ (t/δ − bt/δc)

(
(bt/δc+ 1− r)H− 1

2 − (−r)H−
1
2

+

)
.

Theorem 3.6.2. Let H ∈ (0, 1), δn > 0. Let X(δn) be as in definition 3.2.6.
There exists a constant KH such that for all n and all t, s ∈ [0,∞) we have

E[(X(δn)
t −X(δn)

s )2] ≤ KH |t− s|2H ,

where KH only depends on H.

Proof. Throughout this proof we will use an equality proved on page 322 in
[ST94]. Namely that for b ≥ a we have

1
C2
H

∫ b

−∞

(
(b− x)H−0.5 − (a− x)H−0.51(−∞,a)(x)

)2
dx = |b− a|2H . (3.21)

A direct consequence of this is

1
C2
H

∫ a

−∞

(
(b− x)H−0.5 − (a− x)H−0.5)2 dx ≤ |b− a|2H , (3.22)

and also

1
C2
H

∫ b

a

(b− x)2H−1 ≤ |b− a|2H . (3.23)

Assume for notational convenience and without loss of generality that t ≥ s.
Throughout the proof δn is constant. We will have to check three different cases
depending on how close s and t are, and we begin with the closest case

1,bs/δnc = bt/δnc. By lemma 3.6.1 and corollary 3.2.9 we have, by using
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3.6. Tightness of {Pn}

the representation of X(δn) in eq. (3.20)

E[(X(δn)
t −X(δn)

s )2]

=δ2H
n

C2
H

bt/δnc−1∑
r=−∞

(
(1− t/δn + bt/δnc)

(
(bt/δnc − 1)H− 1

2 − (−r)H−
1
2

+

)
+ (t/δn − bt/δnc)

(
(bt/δnc+ 1− r)H− 1

2 − (−r)H−
1
2

+

)
− (1− s/δn + bt/δnc)

(
(bt/δnc − 1)H− 1

2 − (−r)H−
1
2

+

)
− (s/δn − bt/δnc)

(
(bt/δnc+ 1− r)H− 1

2 − (−r)H−
1
2

+

))2

+ δ2H
n

C2
H

(t/δn − s/δn)2

=δ2H
n

C2
H

bt/δnc−1∑
r=−∞

(s/δn − t/δn)2 ((bt/δnc − r)H−0.5 − (bt/δnc+ 1− r)H−0.5)2
+ δ2H

n

C2
H

(s/δn − t/δn)2.

= 1
C2
H

bt/δnc−1∑
r=−∞

(s/δn − t/δn)2 ((bt/δncδn − rδn)H−0.5 − (bt/δncδn + δn − rδn)H−0.5)2 δn
+ δ2H

n

C2
H

(s/δn − t/δn)2.

= 1
C2
H

bt/δncδn−δn∑
δn

τ=−∞

(s/δn − t/δn)2 ((bt/δncδn − τ)H−0.5 − (bt/δncδn + δn − τ)H−0.5)2 δn
+ δ2H

n

C2
H

(s/δn − t/δn)2.

By differentiation we get that the expression inside the sum increases with τ so
this expression is bounded by

1
C2
H

(s/δn − t/δn)2
∫ bt/δncδn
−∞

(
(bt/δncδn − x)H−0.5 − (bt/δncδn + δn − x)H−0.5)2 dx

+ 1
C2
H

|t− s|2−2H

δ2−2H
n

|t− s|2H .

With the help of eq. (3.22) this expression is bounded by

(s/δn − t/δn)2δ2H
n + 1

C2
H

|t− s|2H

=|t− s|2H(t/δn − s/δn)2−2H + 1
C2
H

|t− s|2H

≤K1|t− s|2H ,
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3. Weak convergence of the Mandelbrot and Van Ness sum

where K1 = 1 + 1/C2
H because

t/δn − s/δn ≤ bt/δnc+ 1− bs/δnc = 1.

2, bt/δnc − bs/δnc = 1. By lemma 3.6.1 and corollary 3.2.9 we have, by
using the representation of X(δn) in eq. (3.20) that

E[(X(δn)
t −X(δn)

s )2]

= δ2H
n

C2
H

bt/δnc−2∑
r=−∞

(
[1 + bt/δnc − t/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5

− [bt/δnc − s/δn](bt/δnc − 1− r)H−0.5

− [s/δn + 1− bt/δnc](bt/δnc − r)H−0.5

)2

+δ2H
n

C2
H

(
s/δn − bt/δnc+ 1− [1 + bt/δnc − t/δn]− [t/δn − bt/δnc]2H−0.5

)2

+δ2H
n

C2
H

(
t/δn − bt/δnc

)2

We will look at the three parts separately. We get for the third part

δ2H
n

C2
H

(
t/δn − bt/δnc

)2
= δ2H

n

C2
H

(
t/δn − bt/δnc

)2H(
t/δn − bt/δnc

)2−2H

≤ δ2H
n

C2
H

(
t/δn − bt/δnc

)2H
· 1

≤ δ2H
n

C2
H

(t/δn − s/δn)2H

= 1
C2
H

(t− s)2H

= K2(t− s)2H ,K2 = 1
C2
H

.

Where we have used

s/δn ≤ bs/δnc+ 1 = bt/δnc.

Let k denote 2H−0.5. For the second part we then get

δ2H
n

C2
H

(
s/δn − bt/δnc+ 1− [1 + bt/δnc − t/δn]− [t/δn − bt/δnc]2H−0.5

)2

= δ2H
n

C2
H

(
s/δn − bt/δnc − bt/δnc+ t/δn − [t/δn − bt/δnc]k

)2
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By using that (a+ b+ c)2 ≤ 9(a2 + b2 + c2), we get that this is dominated by

9δ2H
n

C2
H

(
(bt/δnc − s/δn)2 + (t/δn − bt/δnc)2 + k2(t/δn − bt/δnc)2

)
= 9δ2H

n

C2
H

(
(bt/δnc − s/δn)2H(bt/δnc − s/δn)2−2H

+ (t/δn − bt/δnc)2H(t/δn − bt/δnc)2−2H

+ k2(t/δn − bt/δnc)2H(t/δn − bt/δnc)2−2H
)
.

We have that bt/δnc − s/δn ≤ 1, and t/δn − bt/δnc ≤ 1. We also have

bt/δnc − s/δn ≥ bt/δnc − bs/δnc − 1
= 0.

Hence we have

9δ2H
n

C2
H

(
(bt/δnc − s/δn)2H(bt/δnc − s/δn)2−2H

+ (t/δn − bt/δnc)2H(t/δn − bt/δnc)2−2H

+ k2(t/δn − bt/δnc)2H(t/δn − bt/δnc)2−2H
)

≤ 9δ2H
n

C2
H

(
(bt/δnc − s/δn)2H

+ (t/δn − bt/δnc)2H

+ k2(t/δn − bt/δnc)2H
)

Since t/δn − s/δn ≥ bt/δnc − s/δn, and

t/δn − bt/δnc = t/δn − bs/δnc − 1
≤ t/δn − s/δn,

(3.24)

we get

9δ2H
n

C2
H

(
(bt/δnc − s/δn)2H

+ (t/δn − bt/δnc)2H

+ k2(t/δn − bt/δnc)2H
)

≤ 9
C2
H

(1 + 1 + k2)(t− s)2H

= K3(t− s)2H ,K3
.= 9
C2
H

(2 + k2).
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3. Weak convergence of the Mandelbrot and Van Ness sum

We now look at the first part

δ2H
n

C2
H

bt/δnc−2∑
r=−∞

(
[1 + bt/δnc − t/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5

− [bt/δnc − s/δn](bt/δnc − 1− r)H−0.5

− [s/δn + 1− bt/δnc](bt/δnc − r)H−0.5

)2

= δ2H
n

C2
H

bt/δnc−2∑
r=−∞

(
[2bt/δnc − t/δn − s/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5

− [bt/δnc − s/δn](bt/δnc − 1− r)H−0.5

± [bt/δnc − s/δn](bt/δnc+ 1− r)H−0.5

)2

= δ2H
n

C2
H

bt/δnc−2∑
r=−∞

(
[2bt/δnc − t/δn − s/δn](bt/δnc − r)H−0.5

− [2bt/δnc − t/δn − s/δn](bt/δnc+ 1− r)H−0.5

− [bt/δnc − s/δn](bt/δnc − 1− r)H−0.5

+ [bt/δnc − s/δn](bt/δnc+ 1− r)H−0.5

)2
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By using that (a+ b)2 ≤ 2a2 + 2b2 we get that this is dominated by

2δ2H
n

C2
H

bt/δnc−2∑
r=−∞

[
[2bt/δnc − t/δn − s/δn]2

(
(bt/δnc − r)H−0.5

− (bt/δnc+ 1− r)H−0.5

)2

+ [bt/δnc − s/δn]2
(

(bt/δnc+ 1− r)H−0.5

− (bt/δnc − 1− r)H−0.5

)2]

= 2
C2
H

bt/δnc−2∑
r=−∞

[
[2bt/δnc − t/δn − s/δn]2

(
(bt/δncδn − rδn)H−0.5

− (bt/δncδn + δn − rδn)H−0.5

)2

δn

+ [bt/δnc − s/δn]2
(

(bt/δncδn + δn − rδn)H−0.5

− (bt/δncδn − δn − rδn)H−0.5

)2

δn

]

By switching notation this is equal to

2
C2
H

bt/δncδn−2δn∑
δn

τ=−∞

[
[2bt/δnc − t/δn − s/δn]2

(
(bt/δncδn − τ)H−0.5

− (bt/δncδn + δn − τ)H−0.5

)2

δn

+ [bt/δnc − s/δn]2
(

(bt/δncδn + δn − τ)H−0.5

− (bt/δncδn − δn − τ)H−0.5

)2

δn

]

By differentiation we get that the expression inside the sum increases with
τ so we get that this is dominated by

2
C2
H

[2bt/δnc − t/δn − s/δn]2
∫ bt/δncδn−δn
−∞

(
bt/δncδn + δn − x)H−0.5

− (bt/δncδn − x)H−0.5
)2
dx

+ 2
C2
H

[bt/δnc − s/δn]2
∫ bt/δncδn−δn
−∞

(
(bt/δncδn + δn − x)H−0.5

− (bt/δncδn − δn − x)H−0.5
)2
dx.
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From eq. (3.22) we get that this is bounded by (again by using ((a + b)2 ≤
2a2 + 2b2))

2[2bt/δnc − t/δn − s/δn]2δ2H
n + 2[bt/δnc − s/δn]2(2δn)2H

≤ 4(t/δn − bt/δnc)2δ2H
n + 4(bt/δnc − s/δn)2δ2H

n + 8(t/δn − s/δn)2δ2H
n ,

where we have used that bt/δnc − s/δn ≥ 0. We remember from eq. (3.24) that
t/δn − bt/δnc ≤ t/δn − s/δn so we have,

4(t/δn − bt/δnc)2δ2H
n + 4(bt/δnc − s/δn)2δ2H

n + 8(t/δn − s/δn)2δ2H
n

≤ 16(t/δn − s/δn)2δ2H
n ,

where we also used that

0 = 1− 1
= bt/δnc − bs/δnc − 1
≤ bt/δnc − s/δn
≤ t/δn − s/δn.

Since we have

t− s = δn(t/δn − s/δn)
≤ δn(bt/δnc+ 1− bs/δnc)
≤ 2δn,

we get that

16(t/δn − s/δn)2δ2H
n = 16(t− s)2H(t− s)2−2Hδ2H−2

n

≤ 16(t− s)2H(2δn)2−2Hδ2H−2
n

= K4(t− s)2H ,K4 = 16 · 22−2H .

3, bt/δnc − bs/δnc = N ≥ 2. In this part it is important that our constants
are independent of N . Again with the aid of lemma 3.6.1 and corollary 3.2.9,
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and the representation of X(δn) in eq. (3.20), we have:

E[(Xδn
t −Xδn

s )2]

= δ2H
n

C2
H

bt/δnc−N−1∑
r=−∞

(
[1 + bt/δnc − t/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5

− [1 + bt/δnc −N − s/δn](bt/δnc −N − r)H−0.5

− [s/δn − bt/δnc+N ](bt/δnc −N + 1− r)H−0.5

)2

+ δ2H
n

C2
H

(
[1 + bt/δnc − t/δn]NH−0.5 + [t/δn − bt/δnc](N + 1)H−0.5

− (s/δn − bt/δnc+N)
)2

+ δ2H
n

C2
H

bt/δnc−1∑
r=bt/δnc−N+1

(
[1 + bt/δnc − t/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5
)2

+ δ2H
n

C2
H

(t/δn − bt/δnc)2.

We look at the different parts separately. For the fourth part we have

δ2H
n

C2
H

(t/δn − bt/δnc)2 ≤ δ2H
n

C2
H

(1)2

≤ K5(t− s)2H ,K5 = 1
C2
H

,

where we have used

t− s = δn(t/δn − s/δn)
≥ δn(bt/δnc − bs/δnc − 1)
≥ δn.

For the third part we get, using (a+ b)2 ≤ 2a2 + 2b2

δ2H
n

C2
H

bt/δnc−1∑
r=bt/δnc−N+1

(
[1 + bt/δnc − t/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5
)2

≤ 2δ2H
n

C2
H

bt/δnc−1∑
r=bt/δnc−N+1

[(
(bt/δnc − r)H−0.5

)2
+
(

(bt/δnc+ 1− r)H−0.5
)2
]
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If H ≥ 1/2 we have

2δ2H
n

C2
H

bt/δnc−1∑
r=bt/δnc−N+1

[(
(bt/δnc − r)H−0.5

)2
+
(

(bt/δnc+ 1− r)H−0.5
)2
]

≤ 2δ2H
n

C2
H

(N − 1)
(

(N − 1)2H−1 + (N)2H−1
)

≤ 4δ2H
n

C2
H

N2H

= 4δ2H
n

C2
H

(bt/δnc − bs/δnc)2H1

= 4
C2
H

(bt/δncδn − bs/δncδn)2H

≤ 4
C2
H

(t− s+ δn)2H

≤ 4 · 22H

C2
H

(t− s)2H

= K6(t− s)2H ,K6 = 4 · 22H

C2
H

.

If H < 1/2 we get by differentiating the expression below inside the sum by
τ , a non-negative derivative, therefore we can bound it by the integral

2δ2H
n

C2
H

bt/δnc−1∑
r=bt/δnc−N+1

[(
(bt/δnc − r)H−0.5

)2
+
(

(bt/δnc+ 1− r)H−0.5
)2
]

= 2
C2
H

bt/δnc−1∑
r=bt/δnc−N+1

[(
(bt/δncδn − rδn)H−0.5

)2
+
(

(bt/δncδn + δn − rδn)H−0.5
)2
]
δn

= 2
C2
H

bt/δncδn−δn∑
τ=bt/δncδn−Nδn+δn

δn

[(
(bt/δncδn − τ)H−0.5

)2
+
(

(bt/δncδn + δn − τ)H−0.5
)2
]
δn

≤ 2
C2
H

∫ bt/δncδn
bt/δncδn−Nδn+δn

(bt/δncδn − x)2H−1 + (bt/δncδn + δn − x)2H−1dx.

By eq. (3.23) we get that this is dominated by

≤ 2(Nδn − δn)2H + 2(Nδn)2H

≤ 4(Nδn)2H

= 4(bt/δncδn − bs/δncδn)2H

≤ 4(t− s+ δn)2H

≤ 4 · 22H(t− s)2H

= K7(t− s)2H ,K7 = 4 · 22H .
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Where we in the second to last inequality used

t− s+ δn = δn(t/δn − (s/δn − 1))
≥ δn(bt/δnc − bs/δnc).

(3.25)

We also used

t− s = δn(t/δn − s/δn)
≥ δn(bt/δnc − bs/δnc − 1)
= δn(N − 1)
≥ δn.

(3.26)

We now look at the second part. If we first assume that H ≥ 1/2 we get

δ2H
n

C2
H

(
[1 + bt/δnc − t/δn]NH−0.5 + [t/δn − bt/δnc](N + 1)H−0.5

− (s/δn − bt/δnc+N)
)2

≤ 9δ2H
n

C2
H

(
N2H−1 + (N + 1)2H−1 + (s/δn − bt/δnc+N)2

)
≤ 9δ2H

n

C2
H

(
2(N + 1)2H−1 + (s/δn − bs/δnc)2

)
≤ 18
C2
H

(bt/δncδn − bs/δncδn + δn)2H · (N + 1)−1 + 9δ2H
n

C2
H

≤ 18
C2
H

(t− s+ 2δn)2H + 9
C2
H

(t− s)2H

≤ 18 · 32H

C2
H

(t− s)2H + 9
C2
H

(t− s)2H

= K8(t− s)2H ,K8 = 1
C2
H

(
18 · 32H + 9

)
,

where we again used eq. (3.25) and eq. (3.26).
If H < 1/2 we instead get for the second part

δ2H
n

C2
H

(
[1 + bt/δnc − t/δn]NH−0.5 + [t/δn − bt/δnc](N + 1)H−0.5

− (s/δn − bt/δnc+N)
)2

≤ 9δ2H
n

C2
H

(
N2H−1 + (N + 1)2H−1 + (s/δn − bt/δnc+N)2

)
≤ 18δ2H

n

C2
H

N2H−1 + 9δ2H
n

C2
H

≤ 18
C2
H

(bt/δncδn − bs/δncδn)2HN−1 + 9
C2
H

(t− s)2H

≤ 18 · 22H

C2
H

(t− s)2H + 9
C2
H

(t− s)2H

= K9(t− s)2H ,K9 = 1
C2
H

(
18 · 22H + 9

)
.
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We now go to the first part

δ2H
n

C2
H

bt/δnc−N−1∑
r=−∞

(
[1 + bt/δnc − t/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5

− [1 + bt/δnc −N − s/δn](bt/δnc −N − r)H−0.5

− [s/δn − bt/δnc+N ](bt/δnc −N + 1− r)H−0.5

)2

.

We first assume that H ≥ 1/2. By lemma D.1.3 we get that the last expression
is bounded by

δ2H
n

C2
H

bt/δnc−N−1∑
r=−∞

(
(bt/δnc+ 1− r)H−0.5 − (bt/δnc −N − r)H−0.5

)2

= 1
C2
H

bt/δnc−N−1∑
r=−∞

(
(bt/δncδn + δn − rδn)H−0.5 − (bt/δncδn −Nδn − rδn)H−0.5

)2
δn

= 1
C2
H

bt/δncδn−Nδn−δn∑
τ=−∞

δn

(
(bt/δncδn + δn − τ)H−0.5 − (bt/δncδn −Nδn − τ)H−0.5

)2
δn

≤ 1
C2
H

∫ bt/δncδn−Nδn
−∞

(
(bt/δncδn + δn − x)H−0.5 − (bt/δncδn −Nδn − x)H−0.5

)2
dx.

We can bound the expression by the integral because if we differentiate the
expression inside the sum with respect to τ , the derivative is positive. We can
therefore view the sum as a lower sum for the integral. From eq. (3.22) we get
that this is bounded by

≤ (Nδn + δn)2H = (bt/δncδn − bs/δncδn + δn)2H

≤ (t− s+ 2δn)2H

≤ 32H(t− s)2H

= K10(t− s)2H ,K10
.= 32H .
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If H < 1/2 we get by lemma D.1.3

δ2H
n

C2
H

bt/δnc−N−1∑
r=−∞

(
[1 + bt/δnc − t/δn](bt/δnc − r)H−0.5

+ [t/δn − bt/δnc](bt/δnc+ 1− r)H−0.5

− [1 + bt/δnc −N − s/δn](bt/δnc −N − r)H−0.5

− [s/δn − bt/δnc+N ](bt/δnc −N + 1− r)H−0.5

)2

≤δ
2H
n

C2
H

bt/δnc−N−1∑
r=−∞

(
(bt/δnc −N − r)H−0.5 − (bt/δnc+ 1− r)H−0.5

)2

= 1
C2
H

bt/δnc−N−1∑
r=−∞

(
(bt/δncδn −Nδn − rδn)H−0.5 − (bt/δncδn + δn − rδn)H−0.5

)2
δn

= 1
C2
H

bt/δncδn−Nδn−δn∑
τ=−∞

δn

(
(bt/δncδn −Nδn − τ)H−0.5 − (bt/δncδn + δn − τ)H−0.5

)2
δn

≤ 1
C2
H

∫ bt/δncδn−Nδn
−∞

(
(bt/δncδn −Nδn − x)H−0.5 − (bt/δncδn + δn − x)H−0.5

)2
dx,

The reason we have the last inequality is because we can view the sum as a
lower sum for the integral. To see this, note first that the expression inside the
last sum is increasing, this is seen by the derivative with respect to τ . So we
have that we can bound it by the integral. From eq. (3.22) we again get that
this is dominated by

≤ (Nδn + δn)2H = (bt/δncδn − bs/δncδn + δn)2H

≤ (t− s+ 2δn)2H

≤ 32H(t− s)2H

= K11(t− s)2H ,K11 = 32H .

If we let

KH =
11∑
l=1

Kl,

the result follows.

From theorem 3.6.2 we now have to prove tightness. Notice the role α has in
corollary 2.5.6. In that corollary we have a nondecreasing continuous function
F and we see the term

En[|x(t2)− x(t1)|γ ] ≤ |F (t2)− F (t1)|α,

where α must be greater than 1. We have not connected theorem 3.6.2 to this
result yet, but we see that there we have a term

KH |t− s|2H .
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3. Weak convergence of the Mandelbrot and Van Ness sum

And in fact, if we only worked with H > 1/2 we could have chosen α = 2H. This
idea is found in [Sot01a], where Sottinen approximates the fractional brownian
motion for H > 1/2. The approximation technique differs from ours, and he
works on the space of Càdlàg function on [0,∞) not continuous functions as
we do. In the paper [Par13], Peter Parczewski extends the result by Sottinen
to the case H ∈ (0, 1). In [Par13, eq 2.5, p. 331] there is a useful moment
condition, which comes from a partition argument. We would like to also have
a moment condition that allows us to go to the case H ≤ 1/2, but we will use
an inequality that is called Khintchine’s inequality.

Theorem 3.6.3 (Khintchince’s inequality, see [Ton84, p. 167]). Let {εn}
be independent and identically distributed Bernoulli random variables such that
P (εn = 1) = P (εn = −1) = 1/2. Then for every p > 0, there exists positive
constants Lp and Up such that

Lp ·

(
n∑

i=m
c2i

)p/2
≤ E

[∣∣∣∣∣
n∑

i=m
ciεi

∣∣∣∣∣
p]
≤ Up ·

(
n∑

i=m
c2i

)p/2
,

for all n ≥ m and all constants ci.

Now we expand theorem 3.6.2 to powers higher than 2H.

Theorem 3.6.4. Let H ∈ (0, 1), δn > 0. Let X(δn) be as in definition 3.2.6.
There exists α > 1, γ ≥ 0 and RH such that for all n and all t, s ∈ [0,∞) we
have

E[(X(δn)
t −X(δn)

s )γ ] ≤ RH |t− s|α,

where α, γ,RH only depends on H.

Proof. Choose p such that it is the smallest natural number that satisfies

2Hp > 1,

hence p only depends on H. Let α = 2Hp > 1, and γ = 2p. We then have
that α and γ only depend on H. Assume without loss of generality that t ≥ s.
We will check different cases depending on how close s and t are. However the
strategy is not different for the different cases, we just get extra terms in some
cases.

Assume first that bt/δnc = bs/δnc. By eq. (3.6) we have

X
(δn)
t −X(δn)

s = δHn
CH

bs/δnc−1∑
r=−∞

(a(t, r, δn)− a(s, r, δn))wrIAδn

+ δHn
CH

(t/δn − s/δn)wbs/δncIAδn .
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By Fatou’s lemma we have (remember that γ is an even integer)

E
[(
X

(δn)
t −X(δn)

s

)γ]
= E

[
lim
M→∞

(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wrIAδn

+ δHn
CH

(t/δn − s/δn)wbs/δncIAδn

)γ]

≤ lim inf
M→∞

E

[(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wrIAδn

+ δHn
CH

(t/δn − s/δn)wbs/δncIAδn

)γ]

= lim inf
M→∞

E

[(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wr

+ δHn
CH

(t/δn − s/δn)wbs/δnc
)γ]

,

the last equality follows because the expectation over Acδn is zero for a well-
defined positive function since P (Acδn) = 0. If we let Uγ be as in Khintchine’s
inequality (theorem 3.6.3), we get from Khintchine’s inequality

E

[(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wr

+ δHn
CH

(t/δn − s/δn)wbs/δnc
)γ]

≤ Uγ

bs/δnc−1∑
r=−M

[
δ2H
n

C2
H

(a(t, r, δn)− a(s, r, δn))2
]

+ δ2H
n

C2
H

(t/δn − s/δn)2

γ/2

.

Hence we have

E
[(
X

(δn)
t −X(δn)

s

)γ]
≤ lim inf

M→∞
Uγ

bs/δnc−1∑
r=−M

[
δ2H
n

C2
H

(a(t, r, δn)− a(s, r, δn))2
]

+ δ2H
n

C2
H

(t/δn − s/δn)2

γ/2

= Uγ

bs/δnc−1∑
r=−∞

[
δ2H
n

C2
H

(a(t, r, δn)− a(s, r, δn))2
]

+ δ2H
n

C2
H

(t/δn − s/δn)2

γ/2

.

By corollary 3.2.9 and lemma 3.6.1 this is equal to

UγE

[(
X

(δn)
t −X(δn)

s

)2
]γ/2

.
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By theorem 3.6.2 we then have

E
[(
X

(δn)
t −X(δn)

s

)γ]
≤ UγE

[(
X

(δn)
t −X(δn)

s

)2
]γ/2

≤ Uγ
(
KH |t− s|2H

)γ/2
= UγK

γ/2
H |t− s|2p/2·2H

= UγK
γ/2
H |t− s|2Hp.

Hence the result follows with RH = UγK
γ/2
H .

We now look at the case bt/δnc = bs/δnc+ 1, the calculations are exactly
the same, but the terms are a little different. We compactify the argument as
it is identical as the one above

E
[(
X

(δn)
t −X(δn)

s

)γ]
= E

[
lim
M→∞

(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wrIAδn

+ δHn
CH

(a(t, bs/δnc, δn)− s/δn + bs/δnc)wbs/δncIAδn

+ δHn
CH

(t/δn − bt/δnc)wbt/δncIAδn

)γ]
, by eq. (3.6)

≤ lim inf
M→∞

E

[(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wrIAδn

+ δHn
CH

(a(t, bs/δnc, δn)− s/δn + bs/δnc)wbs/δncIAδn

+ δHn
CH

(t/δn − bt/δnc)wbt/δncIAδn

)γ]
, by Fatou’s lemma

= lim inf
M→∞

E

[(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wr

+ δHn
CH

(a(t, bs/δnc, δn)− s/δn + bs/δnc)wbs/δnc

+ δHn
CH

(t/δn − bt/δnc)wbt/δnc
)γ]

, since P (Acδn) = 0

≤ lim inf
M→∞

Uγ

( bs/δnc−1∑
r=−M

δ2H
n

C2
H

(a(t, r, δn)− a(s, r, δn))2

+ δ2H
n

C2
H

(a(t, bs/δnc, δn)− s/δn + bs/δnc)2

+ δ2H
n

C2
H

(t/δn − bt/δnc)2

)γ/2
, by Khintchine’s inequality
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= Uγ

( bs/δnc−1∑
r=−∞

δ2H
n

C2
H

(a(t, r, δn)− a(s, r, δn))2

+ δ2H
n

C2
H

(a(t, bs/δnc, δn)− s/δn + bs/δnc)2

+ δ2H
n

C2
H

(t/δn − bt/δnc)2

)γ/2

= UγE

[(
Xδn
t −Xδn

s

)2
]γ/2

, by corollary 3.2.9 and lemma 3.6.1

≤ Uγ
(
KH |t− s|2H

)γ/2 , by theorem 3.6.2

= UγK
γ/2
H |t− s|2pH .

Lastly we look at the case when bt/δnc ≥ bs/δnc+ 2. Again the argument
is the same, but with different terms, so we show a compact version.

E
[(
X

(δn)
t −X(δn)

s

)γ]
= E

[
lim
M→∞

(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wrIAδn

+ δHn
CH

(a(t, bs/δnc, δn)− s/δn + bs/δnc)wbs/δncIAδn

+ δHn
CH

bt/δnc−1∑
r=bs/δnc+1

a(t, r, δn)wrIAδn

+ δHn
CH

(t/δn − bt/δnc)wbt/δncIAδn

)γ]
, by eq. (3.6)

≤ lim inf
M→∞

E

[(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wrIAδn

+ δHn
CH

(a(t, bs/δnc, δn)− s/δn + bs/δnc)wbs/δncIAδn

+ δHn
CH

bt/δnc−1∑
r=bs/δnc+1

a(t, r, δn)wrIAδn

+ δHn
CH

(t/δn − bt/δnc)wbt/δncIAδn

)γ]
, by Fatou’s lemma
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= lim inf
M→∞

E

[(
δHn
CH

bs/δnc−1∑
r=−M

(a(t, r, δn)− a(s, r, δn))wr

+ δHn
CH

(a(t, bs/δnc, δn)− s/δn + bs/δnc)wbs/δnc

+ δHn
CH

bt/δnc−1∑
r=bs/δnc+1

a(t, r, δn)wr

+ δHn
CH

(t/δn − bt/δnc)wbt/δnc
)γ]

, since P (Acδn) = 0

≤ lim inf
M→∞

Uγ

( bs/δnc−1∑
r=−M

δ2H
n

C2
H

(a(t, r, δn)− a(s, r, δn))2

+ δ2H
n

C2
H

(a(t, bs/δnc, δn)− s/δn + bs/δnc)2

+ δ2H
n

C2
H

bt/δnc−1∑
r=bs/δnc+1

a(t, r, δn)2

+ δ2H
n

C2
H

(t/δn − bt/δnc)2

)γ/2
, by Khintchine’s inequality

= Uγ

( bs/δnc−1∑
r=−∞

δ2H
n

C2
H

(a(t, r, δn)− a(s, r, δn))2

+ δ2H
n

C2
H

(a(t, bs/δnc, δn)− s/δn + bs/δnc)2

+ δ2H
n

C2
H

bt/δnc−1∑
r=bs/δnc+1

a(t, r, δn)2

+ δ2H
n

C2
H

(t/δn − bt/δnc)2

)γ/2

= UγE

[(
Xδn
t −Xδn

s

)2
]γ/2

, by corollary 3.2.9 and lemma 3.6.1

≤ Uγ
(
KH |t− s|2H

)γ/2 , by theorem 3.6.2

= UγK
γ/2
H |t− s|2pH .

This completes the proof.

We are now ready to prove tightness.

Theorem 3.6.5. Let H ∈ (0, 1). Let {δn} be a sequence of positive real numbers.
Let Pn be as in definition 3.3.1. Then {Pn} is a tight collection of probability
measures on (C[0,∞), C).
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Proof. X(δn) is as in definition 3.3.1. By corollary 2.5.6 there are two conditions
that must be satisfied. The first condition is that

Pn(x : x(0) = 0) = 1,∀n.

This condition is satisfied by proposition 3.3.5.
The second condition of corollary 2.5.6 is that we must show that there

exists γ ≥ 0, α > 1 and a nondecreasing, continuous function F : [0,∞) → R
such that

En[|x(t2)− x(t1)|γ ] ≤ |F (t2)− F (t1)|α,

holds for all t2, t1, n. We will now show this. Let α, γ,RH be as in theorem 3.6.4,
then α > 1, γ ≥ 0. We then have for all n

En[|x(t2)− x(t1)|γ ]

= E[|X(δn)
t1 −X(δn)

t2 |γ ], by proposition 3.3.5
≤ RH |t2 − t1|α, by theorem 3.6.4

= |R1/α
H t2 −R1/α

H t1|α.

The result follows if we let F : [0,∞)→ R be given by

F (z) = R
1/α
H z,

this is a nondecreasing, continuous function.

3.7 Weak convergence of the Mandelbrot and Van Ness
sum

All our work has been leading up to this section. We will now show the weak
convergence of the Mandelbrot and Van Ness sum, or more precisely the weak
convergence of the probability measures induced by the Mandelbrot and Van
Ness sum. These measures converge weakly to the induced by the Fractional
Brownian motion. We start with inspecting this measure. We recall that the
existence and the description of the Fractional Brownian motion can be found
in proposition 3.1.3.

Definition 3.7.1. Let H ∈ (0, 1). Let BH be the Fractional Brownian motion
defined in proposition 3.1.3, assume that it is defined on an underlying probability
space (Ω∗,A∗, P ∗). The measure P defined on (C[0,∞), C) by

P (C) = P ∗(B−1
H (C)), C ∈ C,

is the measure induces by the Fractional Brownian motion.

We now show that this definition makes sense, and also a characterisation
of this measure.

Theorem 3.7.2. Assume that H ∈ (0, 1). Let P be the measure induced by
the Fractional Brownian motion(see definition 3.7.1). Then P is well-defined
probability measure.
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3. Weak convergence of the Mandelbrot and Van Ness sum

If ~t = (t1, t2, . . . , tk) with 0 ≤ t1 < t2 < · · · < tk let µ~t be the probability
measure on (Rk,B(Rk)) given by

µ~t(B) = P (π−1
~t

(B)), B ∈ B(Rk).

Then P is uniquely determined by the fact that if ~t, ~r ∈ Rk with 0 ≤ t1 < t2 <
· · · < tk we have ∫

Rk
ei~r

T ~xdµ~t(~x) = exp
(
−1

2~r
TA~r

)
,

where A ∈ Rk × Rk with

Aj,l = 1
2
(
t2Hj + t2Hl − |tj − tl|2H

)
.

Proof. Denote the underlying probability space of BH by (Ω∗,A∗, P ∗). The
fact that P is a well-defined probability measure on (C[0,∞), C) follows directly
from lemma 3.3.2 which tells us that B−1

H (C) ∈ A∗, C ∈ C, and theorem C.1.1.
So we can define P (C) = P ∗(B−1

H (C)).
The fact that (Rk,B(Rk), µ~t) is a probability space follows by the same

argument as in proposition 3.3.4 where we showed that (Rk,B(Rk), Pnπ−1
t1,t2,...,tk

)
was a probability space. Now let ~t, ~r ∈ Rk with 0 ≤ t1 < t2 < · · · < tk. By
definition 3.1.1, definition 3.1.2 and proposition 3.1.3 we have

E∗
[
exp(i~rT (Bt1,H , Bt2,H , . . . , Btk,H))

]
= exp

(
−1

2~r
TA~r

)
.

where A is as described in this theorem. The exact same argument(the bootstrap
method) as in proposition 3.3.4 where we ended up with eq. (3.8) tells us that

E∗
[
exp(i~rT (Bt1,H , Bt2,H , . . . , Btk,H))

]
=
∫
Rk
ei~r

T ~xdµ~t(~x),

where we have used Euler’s formula and linearity of the integral to go from the
real to the complex case.

Now assume that Q is another probability measure on (C[0,∞), C) with
the same finite-dimensional properties described in this theorem. That is if
0 ≤ t1 < t2 < . . . < tk, let ν~t be such that

ν~t(B) = Q(π−1
~t

(B)), B ∈ B(Rk),

and assume that ∫
Rk
ei~r

T ~xdµ~t(~x) =
∫
Rk
ei~r

T ~xdν~t(~x).

By [App09, p. 16] characteristic functions determine the measure uniquely on Rk.
So the finite dimensional distributions of P and Q are equal. By theorem 2.3.1
P and Q are equal.

We now turn to the main theorem of this chapter. All our work has been
leading up to this. Most of the work is done, so the proof will only consist of
connecting different results already proven.
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Theorem 3.7.3 (Weak convergence of the Mandelbrot and Van Ness
sum). Let H ∈ (0, 1), assume that {δn} is a sequence of positive real numbers
converging to zero. For each δn let Pn be the measure induced by the Mandelbrot
and Van Ness sum, Xδn(see definition 3.3.1). Then {Pn} converges weakly to the
measure P induced by the Fractional Brownian motion defined in definition 3.7.1.

Proof. By corollary 3.5.3 and theorem 3.7.2 the finite dimensional distributions
of {Pn} converge weakly to the finite-dimensional distributions of P , the measure
induced by the Fractional Brownian motion in definition 3.7.1

By theorem 3.6.5 {Pn} is tight.
By theorem 2.4.2 {Pn} converges weakly to a measure Q where the finite-

dimensional distributions are the same as P . By the uniqueness statement of
theorem 3.7.2 (or theorem 2.3.1) the result follows.
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Chapter 4

Difference calculus with
arbitrary step size.

The Mandelbrot and Van Ness sum we worked with in chapter 3 was a discrete
stochastic process where we used linear interpolation to get a continuous
stochastic process. We also explained in section 3.2 that the word fractional
in the name Fractional Brownian motion came from the similarity between
the stochastic integral representation of the fBm(see eq. (3.2)) and ordinary
fractional integrals. In order to approximate the fBm it may be of interest for
us to further investigate these two concepts, discreteness in some sense, and
fractional calculus. This leads us to the book Discrete Fractional Calculus, by
Christopher Goodrich and Allan C. Petersen, see [GP15].

In chapter 1 of [GP15] we are introduced to difference calculus with the
forward ∆-operator. However the work is done on sets of the form

Na
.= {a, a+ 1, a+ 2, . . . , }, a ∈ R

Nba
.= {a, a+ 1, a+ 2, . . . , b}, a, b ∈ R, b− a ∈ N.

These sets are not suitable for our purposes because the smallest difference
between two elements is one, but as we saw in theorem 3.7.3 we work with a
sequence {δn} of positive real numbers converging to zero. So it seems that it
might be useful to have a theory with an arbitrary(small) step size. So in this
chapter we will try to generalize some concepts of the first chapter in [GP15]
to an arbitrary step size. This is not as easy as it may seem, because it is not
entirely obvious how δ should enter the results. We will also generalize the
Laplace transform of chapter two of [GP15], and briefly look at fractional sums
and differences which is found in section 2.3 of [GP15], which gives us a small
introduction to discrete fractional calculus.

Note that there are some inconsistencies in chapter one of [GP15] regarding
real versus complex numbers. For instance we have on [GP15, p. 6] that what is
called the regressive functions are real, but on point (iii) and (iv) on Theorem
1.27 on page 16, it is implicitly assumed that complex numbers are allowed. We
see the same in [GP15, Theorem 1.31, p.18] where complex roots are allowed.
We will try to avoid these inconsistencies and only concern ourselves with the
real case. These inconsistencies also lead us to be a little careful when defining
the Laplace transform.
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4. Difference calculus with arbitrary step size.

4.1 Introduction

As mentioned above [GP15] difference calculus is done on the set Na = {a, a+
1, a+ 2, . . .}, where a is a real number. We will try to do the same on the set
Da

.= {a, a + δ, a + 2δ, . . .}, where a is a real number, and δ is a positive real
number. We suppress the dependence on δ in the notation.

Definition 4.1.1 (adaptation of [GP15, page 1]). If f : Da → R, we define
∆f(t) = f(t+ δ)− f(t).

Definition 4.1.2 (adaptation of [GP15, page 2]). ∆0 denotes the identity
operator. If n ∈ N we define ∆n = ∆[∆n−1].

Definition 4.1.3 (adaptation of [GP15, page 1]). We define the forward
operator σ, by σ(t) = t+ δ.

Here are some useful properties of these two operators.

Theorem 4.1.4 (adaptation of [GP15, page 2]). Assume that f, g : Da →
R, and α, β are real numbers. Then for t ∈ Da :

(i) ∆α = 0

(ii) ∆(αf(t)) = α∆f(t)

(iii) ∆[f + g](t) = ∆f(t) + ∆g(t)

(iv) ∆αt+β = (αδ − 1)αt+β

(v) ∆[fg](t) = f(σ(t))∆g(t) + ∆f(t)g(t)

(vi) ∆
(
f
g

)
(t) = g(t)∆f(t)−f(t)∆g(t)

g(t)g(σ(t)) , if g(t), g(σ(t)) 6= 0

Proof.

(i) ∆α(t) = α− α = 0

(ii) ∆(αf(t)) = αf(t+ δ)− αf(t) = α(f(t+ δ)− f(t)) = α∆f(t)

(iii) ∆[f + g](t)
= [f + g](t+ δ)− [f + g](t)
= f(t+ δ) + g(t+ δ)− (f(t) + g(t))
= f(t+ δ)− f(t) + g(t+ δ)− g(t)
= ∆f(t) + ∆g(t)

(iv) ∆αt+β
= αt+δ+β − αt+β
= (αδ − 1)αt+β

(v) f(σ(t))∆g(t) + ∆f(t)g(t)
= f(t+ δ)(g(t+ δ)− g(t)) + (f(t+ δ)− f(t))g(t)
= f(t+ δ)g(t+ δ)− f(t)g(t)
= ∆[fg](t)
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4.2. The Gamma and falling functions

(vi) ∆
(
f
g

)
(t)

= f(t+δ)
g(t+δ) −

f(t)
g(t)

= f(t+δ)g(t)−g(t+δ)f(t)
g(t+δ)g(t)

= f(t+δ)g(t)−f(t)g(t)+f(t)g(t)−g(t+δ)f(t)
g(t+δ)g(t)

= ∆f(t)g(t)−∆g(t)f(t)
g(t)g(σ(t))

4.2 The Gamma and falling functions

The construction of the discrete fractional calculus depends heavily on the
Gamma function, Γ(z). If z is a real positive number we define

Γ(z) .=
∫ ∞

0
e−ttz−1dt.

By [SS03, Proposition 1.1, p. 160] it can be extended to a holomorphic function
on the half-plane {z ∈ C : Re(z) > 0}, where we here still have the integral
representation. By [SS03, Theorem 1.3, p. 161] we can extend this function
again to a holomorphic function on z ∈ C\{0,−1,−2, . . .}, the function will
have poles on {. . . ,−3,−2,−1, 0}. A very important property for the Gamma
function function is that for z ∈ C\{0,−1,−2, . . .}

Γ(z + 1) = zΓ(z), (4.1)

for a proof see [SS03, Lemma 1.2, p.161] and the remark on the bottom of 162
in [SS03] What makes the discrete calculus work in chapter 1 of [GP15], is the
role that the number 1 plays in eq. (4.1). In order to work with arbitrary δ > 0,
we need another function. We define the modified Gamma function, Γδ, by

Definition 4.2.1.

Γδ(z)
.= δ

z
δ Γ
(z
δ

)
, z ∈ C\{0,−δ,−2δ, . . .}.

The function is holomorpic on its domain. We call the set {0,−δ,−2δ, . . .}
the poles of the modified Gamma function. For the modified Gamma function
we have a very similar property to eq. (4.1).

Theorem 4.2.2. For z ∈ C\{0,−δ,−2δ, . . .}, we have

Γδ(z + δ) = zΓδ(z).

Proof.

Γδ(z + δ) = δ
z+δ
δ Γ
(z + δ

δ

)
= δ

z
δ δΓ(z

δ
+ 1)

= δ
z
δ δ
z

δ
Γ(z
δ

)

= zδ
z
δ Γ(z

δ
)

= zΓδ(z).
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Before we start using the modified Gamma function, we look at a definition
that motivates the Gamma functions usage.

Definition 4.2.3 (Falling function, adaptation of [GP15, page 2]). Let
n be a positive integer, we define

tn = t(t− δ)(t− 2δ) · · · (t− (n− 1)δ).

For n = 0, we define t0 = 1.

We now investigate tn for the possibilities when t + δ or t − (n − 1)δ are
poles. First note that it is impossible for t+ δ to be a pole, and t− (n− 1)δ
not to be a pole. If both t+ δ and t− (n− 1)δ are not poles, we get

tn = t(t− δ)(t− 2δ) · · · (t− (n− 1)δ)

= t(t− δ)(t− 2δ) · · · (t− (n− 1)δ)Γδ(t− (n− 1)δ)
Γδ(t− (n− 1)δ)

= Γδ(t+ δ)
Γδ(t− (n− 1)δ) .

If t+ δ is not a pole, and t− (n− 1)δ is a pole, then tn is 0 because one of the
factors in

t(t− δ)(t− 2δ) · · · (t− (n− 1)δ)

will be zero. As we want to use the expression

Γδ(t+ δ)
Γδ(t− (n− 1)δ) (4.2)

in this case as well, we make the convention that this fraction is 0 when t+ δ is
not a pole, and t− (n− 1)δ is a pole. This is a natural definition because when
you get closer to a pole, the absolute value of the modified Gamma function
increases.

Lastly we investigate the case when both t+ δ and t− (n− 1)δ are poles.
In this case we have that there must exist two non-negative integers k,K such
that t+ δ = −kδ and t− (n− 1)δ = −Kδ and K ≥ k. We then get

tn =[−(k + 1)δ][−(k + 1)δ − δ] · · · [−Kδ]
=(−δ)n(k + 1)(k + 2) · · ·K

=(−δ)K−kK!
k! .

Using what we have shown above, we now define tr, where r is a real number.

Definition 4.2.4 (adaptation of [GP15, page 4]). For t ∈ Da, r ∈ R, we
define

tr
.= Γδ(t+ δ)

Γδ(t− (r − 1)δ) ,

for values of t, r where the right-hand side makes sense.
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4.2. The Gamma and falling functions

What "makes sense" in this definition we can explain with the help of the
discussion above. If both t+ δ, and t− (r − 1)δ are not poles then we evaluate
the expression without problems. If the numerator and denominator are both
poles then there exist non-negative integers k1, k2 such that t + δ = −k1δ,
t− (r − 1)δ = −k2δ. Then there is the definition

Γδ(−k1δ)
Γδ(−k2δ)

.= (−δ)k2−k1k2!
k1! . (4.3)

Thirdly if t− (r− 1)δ is a pole, but t+ δ is not a pole, we define the fraction as
zero. The fourth and last case is if t+ δ is a pole, but t− (r − 1)δ is not, then
the fraction is undefined.

Theorem 4.2.5 (adaptation of [GP15, Therem 1.8, page 5]). Assume
that α ∈ R, t+ α ∈ Da. Then we have

∆(t+ α)r = δr(t+ α)r−1,

whenever both sides of the expression are well-defined.

Proof. This proof is long because we will check all the cases involving poles,
this is not done in [GP15]. First note that

∆(t+ α)r = (t+ δ + α)r − (t+ α)r

= Γδ(t+ 2δ + α)
Γδ(t+ 2δ + α− rδ) −

Γδ(t+ δ + α)
Γδ(t+ δ + α− rδ) .

(4.4)

δr(t+ α)r−1 = δr
Γδ(t+ δ + α)

Γδ(t+ 2δ + α− rδ) . (4.5)

There are many cases to consider, where different numerators and denominators
have poles.

Assume first that t+ δ+α and t+ δ+α− rδ are not poles. Then t+ 2δ+α
and t+ 2δ + α− rδ can not be poles either. We then get

Γδ(t+ 2δ + α)
Γδ(t+ 2δ + α− rδ) −

Γδ(t+ δ + α)
Γδ(t+ δ + α− rδ)

= [t+ δ + α− (t+ δ + α− rδ)]Γδ(t+ δ + α)
Γδ(t+ 2δ + α− rδ)

= rδ
Γδ(t+ δ + α)

Γδ(t+ 2δ + α− rδ) ,

where we here have used theorem 4.2.2. We see that eq. (4.4) and eq. (4.5) are
equal in this case.

If t+ δ + α is a pole, but t+ δ + α− rδ is not a pole, then both eq. (4.4) is
undefined.

Assume now that t+ δ+α− rδ is a pole, but t+ δ+α is not a pole. In this
case t+ 2δ + α can not be a pole either. But we do not know if t+ 2δ + α− rδ
is a pole or not. So we are left with two possibilities to consider, which we will
now do. First assume that t+ 2δ + α− rδ is a pole. We then get directly that
both eq. (4.4) and eq. (4.5) are 0. If t+ 2δ + α− rδ is not a pole we must have
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that t+ δ+α− rδ = 0, so rδ = t+ δ+α. We then get that t+ 2δ+α = δ+ rδ.
And since Γδ(δ + rδ) = rδΓδ(rδ) = rδΓδ(t+ δ + α), by theorem 4.2.2, we have
that eq. (4.5) and eq. (4.4) are equal in this case also.

We also have to consider the case where both t+ δ + α and t+ δ + α− rδ
are poles. In this case we must also assume that t+ 2δ + α− rδ is a pole, or
else eq. (4.5) will not be well-defined. But we do not know if t + 2δ + α is a
pole or not, so in this case there are two possibilities that have to be considered.
Assume first that t+ 2δ + α is not a pole. Since t+ δ + α is a pole, we must
have that t+ δ + α = 0. We then get

Γδ(t+ 2δ + α)
Γδ(t+ 2δ + α− rδ) −

Γδ(t+ δ + α)
Γδ(t+ δ + α− rδ)

= 0− Γδ(t+ δ + α)
Γδ(t+ δ + α− rδ) = − Γδ(0)

Γδ(−rδ)

.

Since −rδ must be a pole, we must have that r is a non-negative integer. Then
we get

− Γδ(0)
Γδ(−rδ)

= −(−δ)rr!,

by eq. (4.3). We also get

δr
Γδ(t+ δ + α)

Γδ(t+ 2δ + α− rδ) = δr
Γδ(0)

Γδ(δ − rδ)
= δr(−δ)r−1(r − 1)! = −(−δ)rr!.

So we see that in this case we also get that eq. (4.4) and eq. (4.5) are equal.
Secondly we now assume that t + 2δ + α is a pole. We are now in the case
where all four cases in the last part of eq. (4.4) are poles. Denote t+ δ + α =
−k1δ, t + δ + α − rδ = −k2δ. Together this gives that rδ = (k2 − k1)δ, so r
must be an integer. We then get

Γδ(t+ 2δ + α)
Γδ(t+ 2δ + α− rδ) −

Γδ(t+ δ + α)
Γδ(t+ δ + α− rδ)

= Γδ(−k1δ + δ)
Γδ(−k1δ + δ − rδ) −

Γδ(−k1δ)
Γδ(−k1δ − rδ)

= Γδ(−(k1 − 1)δ)
Γδ(−(k1 − 1 + r)δ) −

Γδ(−k1δ)
Γδ(−(k1 + r)δ)

= (−δ)r(k1 − 1 + r)!
(k1 − 1)! − (−δ)r(k1 + r)!

k1!

= (−δ)r 1
k1!

[
k1(k1 − 1 + r)!− (k1 + r)!

]
= (−δ)r (k1 − 1 + r)!

k1! [k1 − k1 − r]

= δr
(−δ)r−1(k1 − 1 + r)!

k1! .

Notice that for these calculations to make sense we must have that k1 ≥ 1, but
this is the case since t+ δ + α = −k1δ and t+ 2δ + α = −k3δ . We also get

δr
Γδ(t+ δ + α)

Γδ(t+ 2δ + α− rδ) = δr
Γδ(−k1δ)

Γδ(−k1δ + δ − rδ) = δr
(−δ)r−1(k1 − 1 + r)!

k1! .
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Hence, in this case we also get that eq. (4.4) and eq. (4.5) are equal.

Theorem 4.2.6 (adaptation of [GP15, Therem 1.8, page 5]). Assume
that α ∈ R, such that α− t− δ ∈ Da. Then

∆(α− t)r = −rδ(α− σ(t))r−1,

if both sides of the equation are well-defined.

Proof. The proof will follow the same structure as the proof of theorem 4.2.5,
it is also long because we will check all the cases involving poles. Note that

∆(α− t)r = (α− t− δ)r − (α− t)r

= Γδ(α− t)
Γδ(α− t− rδ)

− Γδ(α− t+ δ)
Γδ(α− t− rδ + δ) .

(4.6)

−rδ(α− σ(t))r−1 = −rδ Γδ(α− t)
Γδ(α− t− rδ + δ) . (4.7)

Assume first that α− t and α− t− rδ are not poles. Then α− t+ δ and
α− t− rδ + δ can not be poles either. We get

Γδ(α− t)
Γδ(α− t− rδ)

− Γδ(α− t+ δ)
Γδ(α− t− rδ + δ)

=
[
α− t− rδ − (α− t)

]
Γδ(α− t)

Γδ(α− t− rδ + δ)

= − rδ Γδ(α− t)
Γδ(α− t− rδ + δ) .

So we see that in this case eq. (4.6) and eq. (4.7) are equal.
We can not have the case that α− t is a pole, but α− t− rδ is not a pole,

because then eq. (4.6) is undefined.
Assume now that α− t is not a pole, but α− t− rδ is a pole. Then α− t+ δ

can not be a pole either. But we do not know if α − t − rδ + δ is a pole or
not. So there are two cases to check here. If α− t− rδ + δ is a pole, then both
eq. (4.6) and eq. (4.7) are 0. If α− t− rδ + δ is not a pole, we must have that
α− t− rδ = 0. We then get

Γδ(α− t)
Γδ(α− t− rδ)

− Γδ(α− t+ δ)
Γδ(α− t− rδ + δ)

= 0− (α− t) Γδ(α− t)
Γδ(α− t− rδ + δ)

= − rδ Γδ(α− t)
Γδ(α− t− rδ + δ) .

Hence we see that eq. (4.6) and eq. (4.7) are equal in this case also.
We now consider the case where both α−t and α−t−rδ are poles. We must

have that α− t− rδ + δ is also a pole, or else eq. (4.7) will not be well-defined.
The two cases to check are if α − t + δ is a pole or not. Assume first that
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4. Difference calculus with arbitrary step size.

α − t + δ is not a pole. We must then have that α − t = 0. This gives that
α− t− rδ = −rδ is a pole. So r must be a non-negative integer. We get

Γδ(α− t)
Γδ(α− t− rδ)

− Γδ(α− t+ δ)
Γδ(α− t− rδ + δ)

= Γδ(0)
Γδ(−rδ)

− 0

= (−δ)rr!.

We also get

−rδ Γδ(α− t)
Γδ(α− t− rδ + δ) = −rδ Γδ(0)

Γδ(−(r − 1)δ) = −rδ(−δ)r−1(r − 1)! = (−δ)rr!.

So eq. (4.6) and eq. (4.7) are equal. Secondly we assume that α− t+ δ is also
a pole. Now all four terms in the last part of eq. (4.6) are poles. We denote
α− t = −k1δ, α− t− rδ = −k2δ. So rδ = (k2 − k1)δ, so r must be an integer.
We get

Γδ(α− t)
Γδ(α− t− rδ)

− Γδ(α− t+ δ)
Γδ(α− t− rδ + δ)

= Γδ(−k1δ)
Γδ(−(k1 + r)δ) −

Γδ(−(k1 − 1)δ)
Γδ(−(k1 + r − 1)δ)

= (−δ)r (k1 + r)!
k1! − (−δ)r (k1 + r − 1)!

(k1 − 1)!

= (−δ)r 1
k1!
[
(k1 + r)!− (k1 + r − 1)!k1

]
= (−δ)r (k1 + r − 1)!

k1! [k1 + r − k1]

= − rδ(−δ)r−1 (k1 + r − 1)!
k1! .

For these calculations to make sense we need to know that k1 ≥ 1, but this is
the case since a− t = −k1δ and a− t+ δ = −k3δ. We also get

−rδ Γδ(α− t)
Γδ(α− t− rδ + δ) = −rδ Γδ(−k1δ)

Γδ(−(k1 + r − 1)δ) = −rδ(−δ)r−1 (k1 + r − 1)!
k1! .

Hence we see that eq. (4.6) and eq. (4.7) are equal in this case also, and the
proof is complete.

4.3 The Delta Exponential Function

In order to define the delta exponential function we first need to define what is
called the regressive functions. These functions are originally defined on [GP15,
p. 6]. We make a modified definition here.

Definition 4.3.1.

R = {p : Da → R, 1 + δp(t) 6= 0 for t ∈ Da} (4.8)
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4.3. The Delta Exponential Function

What is the motivation for putting the δ where we did? One way to look at
it is that it insures that in the proof of the next theorem we do not divide by
zero. The next theorem takes a big step towards defining the delta exponential
function.

Theorem 4.3.2. Assume that p ∈ R. Then a solution to the initial value
problem

∆x(t)
∆t = ∆x(t)

δ
= p(t)x(t) (4.9)

x(s) = 1, (4.10)

is unique.

Proof. Assume that both x and y solves the initial value problem, and that
they differ. Assume first that they differ for a t > s, let s′ > s, be the
smallest value bigger than s where they differ. This means, that they do not
differ on s′ − δ. But we must have x(s′) = x(s′ − δ) + δp(s′ − δ)x(s′ − δ) =
y(s′ − δ) + δp(s′ − 1)y(s′ − δ) = y(s′). Hence we have a contradiction.

Assume now that they differ on a t < s. Let s′ < s be the largest point
smaller than s where they differ. This means that they do not differ on s′ + δ.
We have, since p ∈ R

x(s′ + δ)− x(s′) = δp(s′)x(s′) =⇒ x(s′) = x(s′ + δ)
1 + δp(s′) . (4.11)

We then get

x(s′) = x(s′ + δ)
1 + δp(s′) = y(s′ + δ)

1 + δp(s′) = y(s′).

So we have a contradiction in this case as well.

For the next result we need to explain what we mean with the product.
t−δ∏

δ
τ=s

f(τ).

It is very similar to the corresponding sum that we encountered on page 32.

Definition 4.3.3. Assume that δ > 0 and that f is a real function that is
defined on s, s+ δ, . . . , t− δ, where we assume tat t− s is a multiple of δ and
t > s. Then we define

t−δ∏
δ

τ=s
f(τ) .= f(s)f(s+ δ) · · · f(t− δ).

Theorem 4.3.4 ([GP15, Theorem 1.11, p. 7]). Assume that p ∈ R , s , t ∈
Da. A solution to the initial value problem 4.9 and 4.10 is

ep(t, s) =



1, t = s
t−δ∏

δ
τ=s

[1 + δp(τ)], t > s

s−δ∏
δ

τ=t
[1 + δp(τ)]−1, t < s.

(4.12)
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4. Difference calculus with arbitrary step size.

Proof. ep(s, s) = 1 by definition. We also get

∆ep(s, s)
δ

= 1 + δp(s)− 1
δ

= p(s)ep(s, s).

If t > s we have

∆ep(t, s)
δ

=

t∏
δ

τ=s
[1 + δp(τ)]−

t−δ∏
δ

τ=s
[1 + δp(τ)]

δ

= ep(t, s) (1 + δp(t)− 1)
δ

= ep(t, s)p(t).

If t = s− δ we have

∆ep(t, s)
δ

=1− (1 + δp(t))−1

δ

=
1+δp(t)−1

1+δp(t)

δ

= (1 + δp(t))−1δp(t)
δ

= ep(t, s)p(t).

Assume lastly that t < s− δ. We get

∆ep(t, s)
δ

=

s−δ∏
δ

τ=t+δ

[1 + δp(τ)]−1 −
s−δ∏

δ
τ=t

[1 + δp(τ)]−1

δ

=

s−δ∏
δ

τ=t+δ

[1 + δp(τ)]−1 (1− [1 + δp(t)]−1)
δ

=

s−δ∏
δ

τ=t+δ

[1 + δp(τ)]−1
(

1+δp(t)−1
1+δp(t)

)
δ

= ep(t, s)p(t).

Definition 4.3.5. If p ∈ R the delta exponential ep(t, s) is defined as the unique
solution to the initial value problem 4.9, 4.10. Theorem 4.3.4 and theorem 4.3.2
guarantees the existence and the uniqueness of ep(·, s).

Theorem 4.3.6 ([GP15, p. 8]). If p ∈ R then a general solution of

∆y(t)
δ

= p(t)y(t), t ∈ Da (4.13)
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4.3. The Delta Exponential Function

is given by

y(t) = cep(t, a), t ∈ Da,

where c is a constant.

Proof. If y(a) = 0, then it is identically zero. So c = 0 in this case.
If y(a) 6= 0, define x(t) .= y(t)/y(a). Then x(a) = 1, and ∆x(t)

δ = y(t +
δ)/y(a) − y(t)/y(a) = p(t)y(t)/y(a) = p(t)x(t). So x(t) = ep(t, s), by the
existence and uniqueness in theorem 4.3.2 and theorem 4.3.4, hence y(t) =
y(a)ep(t, s).

We now generalize the definition made in [GP15, Theorem 1.16, p. 10]. The
motivation for putting the δ where we did in this case is seen in the coming
theorem 4.3.10 point (ix). In order for this property to hold, we have to define
⊕ like this.

Definition 4.3.7. If p, g ∈ R, we define p⊕ q = p+ q + δpq.

Theorem 4.3.8 ([GP15, Theorem 1.16, p.10]). (R,⊕) is an abelian group.

Proof. We have closure because

1 + δ(p+ q + δpq) = (1 + δp)(1 + δq) 6= 0.

We have associativity because

p⊕ (q ⊕ r) = p⊕ (q + r + δqr) = p+ q + r + δqr + δpq + δpr + δ2pqr

=(p+ q + δpq)⊕ r = (p⊕ q)⊕ r.

We have an identity element because the function identically equal to zero
is in R. And

0⊕ p = 0 + p+ δ0 · p = p

p⊕ 0 = p+ 0 + δp · 0 = p.

We have well-defined inverse element

	p = −p
1 + δp

,

because

δ
−p

1 + δp
+ 1 = 1

1 + δp
6= 0.

and

p+ −p
1 + δp

+ δp · −p1 + δp
= p+ δp2 − p− δp2

1 + δp
= 0,

−p
1 + δp

+ p+ δ
−p

1 + δp
· p = −p+ p+ δp2 − δp2

1 + δp
= 0.

The operation is also commutative because

p⊕ q = p+ q + δpq = q ⊕ p.
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4. Difference calculus with arbitrary step size.

Definition 4.3.9 ([GP15, p.10]). We define circle minus subtraction on R
by

p	 q .= p⊕ [	]q.

We now show some properties of the delta exponential function.

Theorem 4.3.10 ([GP15, Theorem 1.18, p.11]). Assume that p, q ∈ R
and t, s, r ∈ Da. Then

(i) e0(t, s) = 1, t ∈ Da

(ii) ep(t, t) = 1

(iii) ep(t, s) 6= 0, t ∈ Da

(iv) if 1 + δp > 0, then ep(t, s) > 0

(v) ∆ep(t, s) = δp(t)ep(t, s)

(vi) ep(σ(t), s) = [1 + δp(t)]ep(t, s)

(vii) ep(t, s) = 1
ep(s,t)

(viii) ep(t, s)ep(s, r) = ep(t, r)

(ix) ep(t, s)eq(t, s) = ep⊕q(t, s)

(x) e	p(t, s) = 1
ep(t,s)

(xi) ep(t,s)
eq(t,s) = ep	q(t, s).

Proof. Point (i), (iii) and (iv) follows from theorem 4.3.4. (ii) is true since the
delta exponential function by definition satisfies eq. (4.10). (v) is true since the
delta exponential satisfies eq. (4.9).

By point (v) we have that

∆ep(t, s) = δp(t)ep(t, s).

This tells us that

ep(t+ δ, s)− ep(t, s) = δp(t)ep(t, s).

Hence (vi) follows.
For point (vii), if t = s the result follows since both sides equals 1. If t > s

we get

ep(t, s) =
t−δ∏

δ
τ=s

[1 + δp(τ)] = 1∏
δ

t−δ

τ=s
[1 + δp(τ)]−1

= 1
ep(s, t)

.

If s > t, then by what we just proved ep(s, t) = 1
ep(t,s) , this implies that

ep(t, s) = 1
ep(s,t) in this case also, hence point (vii) is proved.
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4.3. The Delta Exponential Function

In proving point (viii) we first look at the cases where at least two of t, s, r
are equal. If t = s or s = r, the result follows from point (ii). If t = r, then by
(ii) the the problem is reduced to showing that

ep(t, s)ep(s, t) = 1,

but this is true by (vii). Now we can assume that s, r and t are different. If
t > s > r, we get

ep(t, s)ep(s, r) =
t−δ∏

δ
τ=s

[1 + δp(τ)] ·
s−δ∏

δ
τ=r

[1 + δp(τ)] =
t−δ∏

δ
τ=r

[1 + δp(τ)] = ep(t, r).

This result will be used for all the cases for the rest of this section. If t > r > s,
by what we just proved we get ep(t, r)ep(r, s) = ep(t, s). Since ep(r, s) = 1

ep(s,r) ,
by (vii), the result follows. If r > t > s we have ep(r, t)ep(t, s) = ep(r, s). By
using that ep(r, t) = 1

ep(t,r) and ep(r, s) = 1
ep(s,r) , the result follows. If r > s > t

we get ep(r, s)ep(s, t) = ep(r, t), and using (vii) on all terms, the result follows.
If s > t > r we get ep(s, t)ep(t, r) = ep(s, r), and by using (vii) on ep(s, t) the
result follows Lastly, if s > r > t, we have ep(s, r)ep(r, t) = ep(s, t). We use
(vii) on ep(t, s) and ep(r, t) to get the result.

First note that ep⊕q(t, s) is well-defined by theorem 4.3.8. If t = s both
sides are equal to 1. If t > s we get

ep(t, s)eq(t, s) =
t−δ∏

δ
τ=s

[1 + δp(τ)]
t−δ∏

δ
τ=s

[1 + δq(τ)]

=
t−δ∏

δ
τ=s

[1 + δp(τ)][1 + δq(τ)]

=
t−δ∏

δ
τ=s

[1 + δp(τ) + δq(τ) + δ2p(τ)q(τ)]

=
t−δ∏

δ
τ=s

[1 + δ[p⊕ q](τ)] = ep⊕q(t, s).

Similarly if s > t we get

ep(t, s)eq(t, s) =
s−δ∏

δ
τ=t

[1 + δp(τ)]−1
s−δ∏

δ
τ=t

[1 + δq(τ)]−1

=
s−δ∏

δ
τ=t

[1 + δ(p(τ) + q(τ) + p(τ)q(τ))]−1

=
s−δ∏

δ
τ=t

[1 + δ[p⊕ q](τ)]−1 = ep⊕q(t, s).

We have from the proof of theorem 4.3.8 that p	 p = 0. And as from (i) we
have that e0(t, s) = 1, this gives us that

1 = e0(t, s) = ep	p(t, s) = ep(t, s)e	p(t, s),

where we in the last step used (ix). This shows that (x) holds.
Point (xi) follows from (ix) and (x).
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4. Difference calculus with arbitrary step size.

4.4 Delta Trigonometric Functions

Definition 4.4.1 ([GP15, p. 14]). Assume ±p ∈ R. Then the delta hyper-
bolic cosine and the delta hyperbolic sine are defined as follows

coshp(t, a) .= ep(t, a) + e−p(t, a)
2 ,

sinhp(t, a) .= ep(t, a)− e−p(t, a)
2 .

Theorem 4.4.2 (adaptation of [GP15, Theorem 1.25, p.15]). Assume
±p ∈ R. Then

(i) coshp(a, a) = 1, sinhp(a, a) = 0

(ii) cosh2
p(t, a)− sinh2

p(t, a) = e−δp2(t, a)

(iii) ∆ coshp(t, a) = δp(t) sinhp(t, a)

(iv) ∆ sinhp(t, a) = δp(t) coshp(t, a)

(v) cosh−p(t, a) = coshp(t, a)

(vi) sinh−p(t, a) = − sinhp(t, a)

(vii) ep(t, a) = coshp(t, a) + sinhp(t, a).

Proof. (i) follows from theorem 4.3.10 point (ii).
For (ii) we get

cosh2
p(t, a)− sinh2

p(t, a)

=ep(t, a)2 + 2ep(t, a)e−p(t, a) + e−p(t, a)2 − ep(t, a)2 + 2ep(t, a)e−p(t, a)− e−p(t, a)2

4
=ep(t, a)e−p(t, a) = ep⊕(−p)(t, a) = ep+(−p)+δp(−p)(t, a) = e−δp2 (t, a).

For (iii) we get

∆ cosh p(t, a) = ∆ep(t, a) + ∆e−p(t, a)
2 = δp(t)ep(t, a)− δp(t)e−p(t, a)

2
= δp(t) sinhp(t, a).

Similarly for (iv) we get

∆ sinh p(t, a) = ∆ep(t, a)−∆e−p(t, a)
2 = δp(t)ep(t, a) + δp(t)e−p(t, a)

2
= δp(t) coshp(t, a).

(v) and (vi) follow by simple calculation:

cosh−p(t, a) =
e−p(t, a) + e−(−p)(t, a)

2 = cosh−p(t, a),

sinh−p(t, a) =
e−p(t, a)− e−(−p)(t, a)

2 = −ep(t, a)− e−p(t, a)
2

= − sinhp(t, a).
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For (vii) we also get by simple calculation

coshp(t, a) + sinhp(t, a) = ep(t, a) + e−p(t, a)
2 + ep(t, a)− e−p(t, a)

2
= ep(t, a).

Definition 4.4.3 ([GP15, p. 15]). For ±ip ∈ R, we define the delta cosine
function and delta sine function:

cosp(t, a) = eip(t, a) + e−ip(t, a)
2 , sinp(t, a) = eip(t, a)− e−ip(t, a)

2i .

Theorem 4.4.4 ([GP15, p.16]). Assume that ±p ∈ R. Then

(i) sinip(t, a) = i sinhp(t, a)

(ii) cosip(t, a) = coshp(t, a).

Proof. Notice first that if ±p ∈ R, then we have that

±i(ip) = ±(−p) = ±p ∈ R.

We get directly

sinip(t, a) =
ei2p(t, a)− e−i2p(t, a)

2i

= − ie−p(t, a)− ep(t, a)
2

= i sinhp(t, a).

We also get

cosip(t, a) =
ei2p(t, a) + e−i2p(t, a)

2

= e−p(t, a) + ep(t, a)
2

= coshp(t, a).

Theorem 4.4.5 ([GP15, p.16]). Assume that ±ip ∈ R. Then

(i) sinhip(t, a) = i sinp(t, a)

(ii) coship(t, a) = cosp(t, a)

(iii) cosp(a, a) = 1

(iv) sinp(a, a) = 0

(v) cos2
p(t, a) + sin2

p(t, a) = eδp2(t, a)

(vi) ∆ cosp(t, a) = −δp(t) sinp(t, a)
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(vii) ∆ sinp(t, a) = δp(t) cosp(t, a)

(viii) cos−p(t, a) = cosp(t, a)

(ix) sin−p(t, a) = − sinp(t, a)

(x) eip(t, a) = cosp(t, a) + i sinp(t, a).

Proof. (i)

sinhip(t, a) = eip(t, a)− e−ip(t, a)
2

i

i
= i sinp(t, a).

(ii)

coship(t, a) = eip(t, a) + e−ip(t, a)
2 = cosp(t, a).

(iii)

cosp(a, a) = eip(a, a) + e−ip(a, a)
2 = 1.

(iv)

sinp(a, a) = eip(a, a)− e−ip(a, a)
2i = 0.

(v)

cos2
p(t, a) + sin2

p(t, a)

=eip(t, a)2 + 2eip(t, a)e−ip(t, a)e−ip(t, a)2

4

− eip(t, a)2 − 2eip(t, a)e−ip(t, a) + e−ip(t, a)2

4
=eip(t, a)e−ip(t, a) = eip+(−ip)+δip(−ip)(t, a) = eδp2(t, a).

(vi)

∆ cosp(t, a)

= ∆eip(t, a) + ∆e−ip(t, a)
2

= δip(t)eip(t, a) + δ(−ip(t))e−ip(t, a)
2

= δ
−p(t)eip(t, a) + (p(t))e−ip(t, a)

2i

= − δp(t)eip(t, a)− e−ip(t, a)
2i

= − δp(t) sinp(t, a).
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(vii)

∆ sinp(t, a)

= ∆eip(t, a)−∆e−ip(t, a)
2i

= δip(t)eip(t, a)− δ(−ip(t))e−ip(t, a)
2i

= δp(t)eip(t, a) + e−ip(t, a)
2

= δp(t) cosp(t, a).

(viii)

cos−p(t, a) =
ei(−p)(t, a) + e−i(−p)(t, a)

2

= eip(t, a) + e−ip(t, a)
2

= cosp(t, a).

(ix)

sin−p(t, a) =
ei(−p)(t, a)− e−i(−p)(t, a)

2i

= − eip(t, a)− e−ip(t, a)
2i

= − sinp(t, a).

(x)

cosp(t, a) + i sinp(t, a) = eip(t, a) + e−ip(t, a)
2 + i

eip(t, a)− e−ip(t, a)
2i

= eip(t, a).

4.5 The Delta Derivative

In this section we define a concept not found in chapter 1 of [GP15]. When the
step size is 1 it does not matter if we divide the difference with the step size
or not. However, when we have an arbitrary step size δ we get something that
resembles the classical derivative from calculus when we divide the difference
with the step size. We will explore this concept in this section.

Definition 4.5.1. f : Da → R, we define Df(t) .= ∆f(t)
∆t = f(t+δ)−f(t)

δ .

Definition 4.5.2. We define D0 as the identity operator. And for n ∈ N we
define Dn = D[Dn−1]. We call Df(t) the delta derivative of f .

Theorem 4.5.3 (adaptation of [GP15, page 2]). Assume that f, g : Da →
R, and α is a real number. Then for t ∈ Da :
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4. Difference calculus with arbitrary step size.

(i) Dα = 0

(ii) D(αf(t)) = αDf(t)

(iii) D[f + g](t) = Df(t) + Dg(t)

(iv) D[fg](t) = f(σ(t))Dg(t) + (Df(t))g(t)

(v) D
(
f
g

)
(t) = g(t)Df(t)−f(t)Dg(t)

g(t)g(σ(t)) , if g(t), g(σ(t)) 6= 0

Proof. The result follows from from theorem 4.1.4 and the definition of D. We
have

(i) Dα = ∆α
δ = 0 by theorem 4.1.4 (i).

(ii) D(αf(t))
= ∆(αf(t))

δ

= α∆f(t)
δ by theorem 4.1.4 (ii)

= αDf(t).

(iii) D[f + g](t)
= ∆(f+g)(t)

δ

= ∆f(t)+∆g(t)
δ by theorem 4.1.4 (iii)

= Df(t) + Dg(t).

(iv) D[fg](t)
= ∆[fg](t)

δ

= f(σ(t))∆g(t)+∆f(t)g(t)
δ by theorem 4.1.4 (v)

= f(σ(t))Dg(t) + (Df(t))g(t).

(v) D
(
f
g

)
(t)

= ∆(f/g)(t)
δ

= [g(t)∆f(t)−f(t)∆g(t)]/[g(t)g(σ(t))]
δ by theorem 4.1.4 (vi)

= g(t)Df(t)−f(t)Dg(t)
g(t)g(σ(t)) .

Now we prove that f is a constant if and only if the delta derivative is zero.
We recognize the similarity between the similar result from ordinary calculus,
but our proof is very simple. In ordinary calculus one needs the mean value
theorem to prove the "only if" part.

Proposition 4.5.4. Assume that f : Da → R. Df(t) = 0 for all t if and only
if f is a constant.

Proof. If f(t) is constant the result follows from theorem 4.5.3 (i).
Conversely, assume that Df(t) = 0. Assume for contradiction that f is not

a constant. Then there must exist a t′ such that f(t′) 6= f(t′ + δ). But then we
have

Df(t′) = f(t′ + δ)− f(t)
δ

6= 0.

Hence we have a contradiction.
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Next we prove two results that are very similar to results in ordinary calculus
where we differentiate polynomials. One may view these results as a motivation
for introducing the falling functions.

Proposition 4.5.5. Assume α ∈ R, and t+ α ∈ Da. Then

D[(t+ α)r] = r(t+ α)r−1,

whenever both sides are well-defined.

Proof. We have

D[(t+ α)r] .= ∆(t+ α)r

δ
= δr(t+ α)r−1

δ
= r(t+ α)r−1.

Where we have used theorem 4.2.5.

Proposition 4.5.6. Assume that α ∈ R, and α− t− δ ∈ Da. We then have

D[(α− t)r] = −r(α− σ(t))r−1,

if both sides of the equation are well-defined.

Proof.

D[(α− t)r] .= ∆(α− t)r

δ
= −rδ(α− σ(t))r−1

δ
= −r(α− σ(t))r−1,

where we have used theorem 4.2.6.

We end this section by showing that discrete differentiation of the delta
exponential function also behaves well and as one would expect if one has
ordinary calculus in mind.

Proposition 4.5.7. If p ∈ R. Then

Dep(t, s) = p(t)ep(t, s).

Proof. We get

Dep(t, s) = ∆ep(t, s)
δ

= δp(t)ep(t, s)
δ

= p(t)ep(t, s),

using theorem 4.3.10 (v) for the second equality.
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4. Difference calculus with arbitrary step size.

4.6 The Delta Integral

One of the advantages with discrete calculus is that the sums behave like
integrals, we will explore this concept in this section.

Definition 4.6.1 (modification of [GP15, def 1.49]). Assume f : Da → R,
and c ≤ d are in Da, then ∫ d

c

f(t)∆t .=
d−δ∑
t=c

δ
f(t)δ.

We call this the delta integral. Next we prove some basic properties for this
integral.

Theorem 4.6.2 (adaptation of [GP15, Theorem 1.50, p.29]). Assume
that f, g : Da → R, b, c, d ∈ Da, b ≤ c ≤ d and α ∈ R. Then

(i)
∫ c
b
αf(t)∆t = α

∫ c
b
f(t)∆t

(ii)
∫ c
b

(f(t) + g(t))∆t =
∫ c
b
f(t)∆t+

∫ c
b
g(t)∆t

(iii)
∫ b
b
f(t)∆t = 0

(iv)
∫ d
b
f(t)∆t =

∫ c
b
f(t)∆t+

∫ d
c
f(t)∆t

(v)
∣∣∫ c
b
f(t)∆t

∣∣ ≤ ∫ c
b
|f(t)|∆t

(vi) if F (t) .=
∫ t
b
f(s)∆s, for t ∈ Db, then DF (t) = f(t)

(vii) if f(t) ≥ g(t) for t ∈ Db\Dc, and c ∈ Db, then
∫ c
b
f(t)∆t ≥

∫ c
b
g(t)∆t.

Proof. (i) ∫ c

b

αf(t)∆t .=
c−δ∑
t=b

δ
αf(t)δ = α

c−δ∑
t=b

δ
f(t)δ = α

∫ c

b

f(t)∆t

(ii) ∫ c

b

(f(t) + g(t))∆t =
c−δ∑
t=b

δ
(f(t) + g(t))δ

=
c−δ∑
t=b

δ
f(t)δ +

c−δ∑
t=b

δ
g(t)δ

=
∫ c

b

f(t)∆t+
∫ c

b

g(t)∆t

(iii) ∫ b

b

f(t)∆t =
b−δ∑
t=b

δ
f(t)δ = 0
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4.6. The Delta Integral

(iv) ∫ d

b

f(t)∆t =
d−δ∑
t=b

δ
f(t)δ

=
c−δ∑
t=b

δ
f(t)δ +

d−δ∑
t=c

δ
f(t)δ

=
∫ c

b

f(t)∆t+
∫ d

c

f(t)∆t

(v) ∣∣∣∣∫ c

b

f(t)∆t
∣∣∣∣ =

∣∣∣∣∣
c−δ∑
t=b

δ
f(t)δ

∣∣∣∣∣ ≤
c−δ∑
t=b

δ
|f(t)| δ =

∫ c

b

|f(t)|∆t

(vi)

DF (t) = F (t+ δ)− F (t)
δ

=
∫ t+δ

b

f(s)
δ

∆s−
∫ t

b

f(s)
δ

∆s.

By (iv) this is ∫ t+δ

t

f(s)
δ

∆s =
t∑
s=t

δ

f(s)
δ
δ = f(t).

(vii) ∫ c

b

f(t)∆t =
c−δ∑
t=b

δ
f(t)δ ≥

c−δ∑
t=b

δ
g(t)δ =

∫ c

b

g(t)∆t.

Definition 4.6.3 (adaptation of [GP15, 1.51, p. 29]). If f : Da → R, we
say that f is a discrete antiderivative of f if

DF (t) = f(t).

As we would expect discrete antiderivatives of the same function only differ
by constants.

Theorem 4.6.4 ([GP15, p. 29]). Let f : Da → R. Assume that G(t) is
discrete antiderivative of f . Then F is a discrete antiderivative of f if and only
if F is of the form G(t) + C, where C is a constant.

Proof. First note that D(G(t)+C) = D(t) = f(t), by theorem 4.5.3. So G(t)+C
is discrete antiderivative.

Now assume that DF (t) = f(t). We then get

D(F (t)−G(t)) = DF (t)−DG(t) = f(t)− f(t) = 0,

for all t. By proposition 4.5.4, we have that F (t)−G(t) = C.
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4. Difference calculus with arbitrary step size.

The next definition is also very natural.

Definition 4.6.5 ([GP15, Def. 1.54]). If f : Da → R, we define the discrete
indefinite integral of by ∫

f(t)∆t .= F (t) + C,

where F is any discrete antiderivative of f , and C is an arbitrary constant.
Hence

∫
f(t)∆t is only unique up to a constant.

The indefinite integrals of the basic functions is shown in the next theorem.

Theorem 4.6.6 (adaptation of [GP15, Theorem 1.55]). Assume p, r, α
are constants. Then the following hold.

(i)
∫

(t−α)r∆t = 1
r+1 (t−α)r+1+C, if r 6= −1, and both sides are well-defined;

(ii)
∫

(α − σ(t))r∆t = −1
r+1 (α − t)r+1 + C, if r 6= −1, and both sides are

well-defined.

(iii)
∫
ep(t, a)∆t = 1

pep(t, a) + C, p 6= 0,−δ−1.

Proof. The result follows directly from definition 4.6.5, proposition 4.5.5, propo-
sition 4.5.6 and proposition 4.5.7.

We also have the fundamental theorem in the discrete case. This theorem is
very powerful.

Theorem 4.6.7 (Fundamental theorem of Difference Calculus. [GP15,
p. 31]). Assume f : Da → R, and F is any discrete antiderivative of f . If
c, d ∈ Da, we have∫ d

c

f(t)∆t =
∫ d

c

∆F (t)∆t = F (d)− F (c).

Proof. Assume that F (t) is a discrete antiderivative of f(t). Let

G(t) .=
∫ t

a

f(s)∆s, s ∈ Da.

By theorem 4.6.2(vi), G(t) is a discrete antiderivative of f(t). By theorem 4.6.4
F (t) = G(t) + C. We then have

F (d)− F (c) = [(G(d) + C)− (G(c) + C)]
= G(d)−G(c)

=
∫ d

c

f(t)∆t.

Where we in the last step used theorem 4.6.2(iv), so that
∫ d
a
f(t)∆t−

∫ c
a
f(t)∆t =∫ c

a
f(t)∆t+

∫ d
c
f(t)∆t−

∫ c
a
f(t)∆t =

∫ d
c
f(t)∆t.
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Integration by parts can also be done, but notice that in the discrete case
the σ-operator enters.

Theorem 4.6.8 (Integration by parts. [GP15, p. 32]). Given two func-
tions f, g : Da → R and b, c ∈ Da, b < c, we have the integration by parts
formulas∫ d

c

f(t)Dg(t)∆t = f(d)g(d)− f(c)g(c)−
∫ d

c

g(σ(t))Df(t)∆t. (4.14)

∫ d

c

f(σ(t))Dg(t)∆t = f(d)g(d)− f(c)g(c)−
∫ d

c

g(t)Df(t)∆t. (4.15)

Proof. (i) We get from theorem 4.5.3(iv)

D[gf ](t) = g(σ(t))Df(t) + Dg(t)f(t),

the result then follows from theorem 4.6.7.

(ii) We also get from theorem 4.5.3

D[fg](t) = f(σ(t))Dg(t) + Df(t)g(t).

Again the result follows from theorem 4.6.7.

4.7 Discrete Taylor’s Theorem

In this section we will obtain the discrete version of Taylor’s theorem.

Definition 4.7.1 ([GP15, Def. 1.60]). We define the discrete Taylor mono-
mials (based at s ∈ Da), hn(t, s), n ∈ {0} ∪ N by

hn(t, s) = (t− s)n

n! .

Remark. The Taylor monomials are well-defined, because we have

(t− s)n = Γδ(t− s+ δ)
Γδ(t− s− (n− 1)δ) ,

and it is impossible that the numerator is a pole while the denominator is not a
pole.

Theorem 4.7.2 ([GP15, page 33]). The Taylor monomials satisfy the fol-
lowing properties:

(i) h0(t, a) = 1

(ii) hn(t, t) = 0, n ∈ N

(iii) Dhn+1(t, a) = hn(t, a)

(iv)
∫
hn(t, a)∆t = hn+1(t, a) + C
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4. Difference calculus with arbitrary step size.

(v) Dshn+1(t, s) = −hn(t, σ(s))

(vi)
∫
hn(t, σ(s))∆s = −hn+1(t, s) + C.

Proof. (i) This follows since

h0(t, a) = (t− a)0 = Γδ(t− a+ δ)
Γδ(t− a+ δ) = 1.

Notice that the expression is 1, both if t− a+ δ is a pole or not.

(ii)

hn(t, t) = 0n

n! = Γδ(δ)
n!Γδ(δ − nδ)

= 0.

Since n ≥ 1, so the denominator is a pole.

(iii)

Dhn+1(t, a) = D(t− a)n+1

(n+ 1)! = (t− a)n

n! = hn(t, a),

where we used proposition 4.5.5.

(iv) This follows from definition 4.6.5 and the previous point.

(v)

Dshn+1(t, s) = Ds(t− s)n+1

(n+ 1)! = − (t− σ(s))n

n! = −hn(t, σ(s)).

Where we have used proposition 4.5.6.

(vi) This follows from definition 4.6.5 and the previous point.

We are now ready for the main result of this section.

Theorem 4.7.3 (Taylor’s Formula [GP15, page 33] ). Assume f : Da → R
and n ∈ N0. Then

f(t) = pn(t) +Rn(t), t ∈ Da,

where the n-th degree Taylor-polynomial, pn(t) is given by

pn(t) .=
n∑
k=0

[Dkf ](a) · (t− a)k

k! =
n∑
k=0

Dkf(a)hk(t, a).

The Taylor-remainder, Rn(t), is given by

Rn(t) =
∫ t

a

(t− σ(s))n

n! Dn+1f(s)∆s =
∫ t

a

hn(t, σ(s))Dn+1f(s)∆s.
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4.8. The Delta Laplace Transform

Proof. The proof will follow from induction. Assume first that n = 0, we then
get

p0(t) +R0(t) = f(a) +
∫ t

a

Df(s)∆s = f(a) + f(t)− f(a) = f(t).

Now assume that the representation holds for n we must show that it holds
for n+1. We will use the integration by parts formula eq. (4.14) with a different
notation:∫ t

a

h(s)Dg(s)∆s = h(t)g(t)− h(a)g(a)−
∫ t

a

g(σ(s))Dh(s)∆s.

Define

h(s) .= Dn+1f(s)
g(s) .= −hn+1(t, s).

From theorem 4.7.2(v), we get that Dg(s) = hn(t, σ(s)). The integration by
parts formula now gives us∫ t

a

hn(t, σ(s))Dn+1f(s)∆s

= − hn+1(t, t)Dn+1f(t) + hn+1(t, a)Dn+1f(a) +
∫ t

a

hn+1(t, σ(s))Dn+2f(s)∆s

= hn+1(t, a)Dn+1f(a) +
∫ t

a

hn+1(t, σ(s))Dn+2f(s)∆s.

(4.16)

By the induction hypothesis we have

f(t) =
n∑
k=0

Dkf(a)hk(t, a) +
∫ t

a

hn(t, σ(s))Dn+1f(s)∆s.

If we put eq. (4.16) into this expression we get

f(t) =
n∑
k=0

Dkf(a)hk(t, a) + hn+1(t, a)Dn+1f(a) +
∫ t

a

hn+1(t, σ(s))Dn+2f(s)∆s

=
n+1∑
k=0

Dkf(a)hk(t, a) +
∫ t

a

hn+1(t, σ(s))Dn+2f(s)∆s.

So we see that the expression also holds for n+ 1, and the proof is done.

4.8 The Delta Laplace Transform

In this section we will introduce and prove properties for the discrete Laplace
Transform within our framework.
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4. Difference calculus with arbitrary step size.

Definition 4.8.1 ([GP15, p. 88] ). Assume that f : Da → R. Then we define
the (delta) Laplace transform of f based at a by

La{f}(s)
.=
∞∑
t=a

δ

f(t)δ
(1 + δs) t−aδ +1

,

for all complex numbers s 6= −δ−1 such that this sum converges.

Remark. Note that in definition 4.8.1, we do not require absolute convergence
of the sum. But we will see that absolute convergence is something which we
sometimes will obtain, see theorem 4.8.4 or theorem 4.8.7. The definition of the
Laplace transform may seem arbitrary, but Goodrich defined it as the integral of
e	s(σ(t), a)f(t), this is somewhat inconsistent since the delta exponential was
only defined for real functions, and hence we can not use complex s. This can
be solved by allowing complex functions from the start, or do as we do, just
define it as what it would have been if complex functions were allowed.

Theorem 4.8.2 (adaptation of [GP15, Theorem 2.2 p. 88]). Assume
f : Da → R. Then

La{f}(s) = Fa(s) .=
∞∑
t=0

δ

f(a+ t)δ
(1 + δs)(

t
δ+1)

=
∞∑
k=0

f(a+ kδ)δ
(1 + δs)k+1 ,

whenever the infinite series converges and s 6= −δ−1.

Proof. This follows directly by first making the substitution t′ = t − a, and
then the substitution k = t′/δ. We get

La{f}(s) =
∞∑
t=a

δ

f(t)δ
(1 + δs)(

t−a
δ +1)

=
∞∑
t′=0

δ

f(a+ t′)δ
(1 + δs)(

t′
δ +1)

=
∞∑
k=0

f(a+ kδ)δ
(1 + δs)k+1 .

.

Definition 4.8.3 ([GP15, Def. 2.3]). We say that f : Da → R is of expo-
nential order r > 0 if there exists a constant A > 0 such that

|f(t)| ≤ Art,

for t sufficiently large.

Theorem 4.8.4 (adaptation of [GP15, Theorem 2.4 p. 89]). Suppose
f : Da → R is of exponential order r > 0. Then La{f}(s) converges absolutely
for |1 + δs| > rδ.
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4.8. The Delta Laplace Transform

Proof. Since f is of exponential order, there exists a K so that if k ≥ K, we
have

|f(a+ kδ)| ≤ Ara+kδ.

If we in the proof of theorem 4.8.2 use absolute values instead, we get

∞∑
t=a

δ

∣∣∣∣∣ f(t)δ
(1 + δs) t−aδ +1

∣∣∣∣∣ =
∞∑
k=0

|f(a+ kδ)|δ
|1 + δs|k+1 .

We must show that the last sum converges for all |1 + δs| > rδ. We get

∞∑
k=0

|f(a+ kδ)|δ
|1 + δs|k+1

=
K−1∑
k=0

|f(a+ kδ)|δ
|1 + δs|k+1 +

∞∑
k=K

|f(a+ kδ)|δ
|1 + δs|k+1

≤ C +
∞∑
k=K

Ara+kδδ

|1 + δs|k+1 = C + Araδ

|1 + δs|

∞∑
k=K

(
rδ

|1 + δs|

)k
<∞.

The last part is less than infinity since we end up with a geometric series and
rδ

|1+δs| < 1.

Theorem 4.8.5 (adaptation of [GP15, Example 2.6 p. 90]). Assume
p 6= δ−1 is a real constant. Then ep(t, a) is of exponential order |1 + δp| 1δ , and
La{ep(t, a)}(s) = 1

s−p for |1 + δs| > |1 + δp|.

Proof. By theorem 4.3.4

ep(t, a) = (1 + δp)
t−a
δ .

So

|ep(t, a)| = |(1 + δp)|
t−a
δ = |1 + δp|

−a
δ

(
|1 + δp| 1δ

)t
.

Hence it is of exponential order |1 + δp| 1δ .
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We also get with the aid of theorem 4.8.2

La{ep(t, a)} =
∞∑
k=0

ep(a+ kδ)δ
(1 + δs)k+1

=
∞∑
k=0

(1 + δp)kδ
(1 + δs)k+1

= δ

1 + δs

∞∑
k=0

(
1 + δp

1 + δs

)k
= δ

1 + δs

(
1

1− 1+δp
1+δs

)

= δ

1 + δs− 1− δp

= 1
s− p

.

Notice that we do not divide by zero because s 6= p since |1 + δs| > |1 + δp|.

Theorem 4.8.6 (Linearity, [GP15, Theorem 2.6]). Suppose f, g : Da → R
and for a given s ∈ C the Laplace Transforms La{f}(s) and La{g}(s) exist.
Let c1, c2 ∈ R. Then La{c1f + c2f2}(s) exist for this particular s, and

La{c1f + c2f2}(s) = c1La{f}(s) + c2La{g}(s).

Proof. From elementary theory of series we have that since
∞∑
k=0

f(a+ kδ)δ
(1 + δs)k+1 and

∞∑
k=0

g(a+ kδ)δ
(1 + δs)k+1 ,

converges (conditionally), we get that
∞∑
k=0

c1f(a+ kδ) + c2c1g(a+ kδ)
(1 + δs)k+1 δ

converges (conditionally). And
∞∑
k=0

c1f(a+ kδ) + c2c1g(a+ kδ)
(1 + δs)k+1 δ = c1

∞∑
k=0

f(a+ kδ)δ
(1 + δs)k+1 + c2

∞∑
k=0

g(a+ kδ)δ
(1 + δs)k+1 .

The result follows by the representation in theorem 4.8.2.

When working with infinite sums it is desirable that they converge absolutely,
so we will now prove a theorem that guarantees absolute convergence in some
cases. It will be proved with the help of the theory of (complex) power-series.

Theorem 4.8.7. Assume that f : Da → R, and that there exists a real number
r > 0 so that for all complex numbers s satisfying |1 + δs| > rδ, the Laplace
Transform La{f}(s) exist. Then the Laplace Transform converges absolutely
for these values of s as well.
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Proof. We must show that
∞∑
k=0

|f(a+ kδ)δ|
|1 + δs|k+1 <∞, |1 + δs| > rδ.

Which is equivalent to showing that
∞∑
k=0

|f(a+ kδ)|
|1 + δs|k

<∞, |1 + δs| > rδ,

since multiplication by the factor δ
|1+δs| does not change the convergence

properties. Define the power-series

h(z) .=
∞∑
k=0

akz
k, ak = f(a+ kδ), z ∈ C.

We will first show that the series converges conditionally if |z| < r−δ. If z = 0
it obviously converges. If z 6= 0, we can solve the equation

z = 1
1 + δs

,

which gives

s = 1
δz
− 1
δ
.

Since |z| < r−δ, we have that |1 + δs| > rδ. From the hypothesis we have that

∞∑
k=0

f(a+ kδ)δ
(1 + δs)k+1 ,

converges conditionally. But that also means that
∞∑
k=0

f(a+ kδ)
(1 + δs)k =

∞∑
k=0

akz
k.

converges conditionally.
From the general theory of complex power-series, see Theorem 2.5 p. 15 in

[SS03], we get that h must have a radius of convergence R such that R ≥ r−δ.
So for all z < r−δ, we have that

∑∞
k=0 akz

k converges absolutely. So if we are
given s, with |1 + δs| > rδ, we set z = 1

1+δs . Then |z| < r−δ, and hence

∞∑
k=0

|f(a+ kδ)|
|1 + δs|k

=
∞∑
k=0
|ak||z|k <∞.

We now show a uniqueness result.
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4. Difference calculus with arbitrary step size.

Theorem 4.8.8 (Uniqueness, adaptation of [GP15, Theorem 2.7 p.
91]). Let f, g : Da → R and let r > 0 be a real number. Assume that for all
s ∈ C, such that |1 + δs| > rδ both La{f}(s) and La{g}(s) exist and

La{f}(s) = La{g}(s).

We then have

f(t) = g(t), ∀t ∈ Da.

Proof. By hypothesis we have that for all |1 + δs| > rδ

∞∑
k=0

f(a+ δk)δ
(1 + δs)k+1 =

∞∑
k=0

g(a+ δk)δ
(1 + δs)k+1 . (4.17)

From theorem 4.8.7 we have that these sums converge absolutely as well. We
first show that f(a) = g(a). By dividing eq. (4.17) with δ

1+δs we get

∞∑
k=0

f(a+ δk)
(1 + δs)k =

∞∑
k=0

g(a+ δk)
(1 + δs)k , (4.18)

and we still have absolute convergence for |1+δs| > rδ. Let N ∈ N, 1+δN > rδ.
If we can show that both

∞∑
k=1

|f(a+ δk)|
(1 + δN)k and

∞∑
k=1

|g(a+ δk)|
(1 + δN)k ,

goes to 0 as N goes to infinity, we will be done. For each N both sums are
well-defined because of the absolute convergence, they both decrease when N
increases, and they are bounded below by 0. By the completeness of the real
numbers we must therefore show that they can become arbitrary close to 0.
To show this for the first sum, let ε > 0 be arbitrary, let N ′ be such that
1 + δN ′ > rδ. Since

∞∑
k=1

|f(a+ δk)|
(1 + δN ′)k

converges absolutely, there is an M ∈ N,M > 1 so that
∞∑

k=M

|f(a+ δk)|
(1 + δN ′)k < ε/2.

We now get that

∞∑
k=1

|f(a+ δk)|
(1 + δN)k =

M−1∑
k=1

|f(a+ δk)|
(1 + δN)k +

∞∑
k=M

|f(a+ δk)|
(1 + δN)k .

We can get the first term less than ε/2 by increasing N sufficiently since it is a
finite sum, the second sum will be less than ε/2 if we choose N > N ′. Hence
∞∑
k=1

|f(a+δk)|
(1+δN)k goes to 0 as N goes to infinity. The same with

∞∑
k=1

|g(a+δk)|
(1+δN)k . Hence

f(a) = g(a).
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Now let K ∈ N0, and assume that for k = 0, 1, . . . ,K f(a+ kδ) = g(a+ kδ).
To prove the theorem by induction we must prove that f(a + (K + 1)δ) =
g(a+ (K + 1)δ). By eq. (4.18)

∞∑
k=K+1

f(a+ δk)
(1 + δs)k =

∞∑
k=K+1

g(a+ δk)
(1 + δs)k . (4.19)

If we multiply by (1 + δs)K+1, we get(while preserving the absolute conver-
gence):

∞∑
k=K+1

f(a+ δk)
(1 + δs)k−K−1 =

∞∑
k=K+1

g(a+ δk)
(1 + δs)k−K−1 . (4.20)

By changing the summation limits this is equal to
∞∑
k=0

f(a+ (K + 1)δ + δk)
(1 + δs)k =

∞∑
k=0

g(a+ (K + 1)δ + δk)
(1 + δs)k . (4.21)

But if we let a′ = a+ (K + 1)δ, the exact same argument as earlier in the proof
shows that f(a′) = g(a′), hence f(a+ (K + 1)δ) = g(a+ (K + 1)δ).

4.9 Fractional Sums and Differences

We now generalize some concepts from section 2.3 in [GP15].

Theorem 4.9.1 (Adaptation of [GP15, Theorem 2.23 p. 99]). Let
f : Da → R be given, then∫ t

a

∫ τ1

a

· · ·
∫ τn−1

a

f(τn)∆τn · · ·∆τ2∆τ1 =
∫ t

a

hn−1(t, σ(s))f(s)∆s. (4.22)

Proof. The proof will follow by induction. If n = 1 the result follows since by
theorem 4.7.2 point (i), hn−1(t, σ(s)) = 1.

Assume now that the representation holds for n, we must show that it also
holds for n+ 1. We want to show that:∫ t

a

∫ τ1

a

· · ·
∫ τn

a

f(τn+1)∆τn+1 · · ·∆τ2∆τ1 =
∫ t

a

hn(t, σ(s))f(s)∆s.

First let

g(τn) =
∫ τn

a

f(τn+1)∆τn+1.

We then get ∫ t

a

∫ τ1

a

· · ·
∫ τn

a

f(τn+1)∆τn+1 · · ·∆τ2∆τ1

=
∫ t

a

∫ τ1

a

· · ·
∫ τn−1

a

g(τn)∆τn · · ·∆τ2∆τ1.
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By using the induction hypothesis we get∫ t

a

∫ τ1

a

· · ·
∫ τn−1

a

g(τn)∆τn · · ·∆τ2∆τ1 =
∫ t

a

hn−1(t, σ(s))g(s)∆s.

We define r(s) .= g(s), and p(s) .= −hn(t, s). By theorem 4.6.2 point
(vi) we get that Dr(s) = f(s), and by theorem 4.7.2 point (v) we have that
Dp(s) = hn−1(t, σ(s)). The integration by parts formula eq. (4.14) states (in
different notation) that∫ t

a

r(s)Dp(s)∆s = r(t)p(t)− r(a)p(a)−
∫ t

a

p(σ(s))Dr(s)∆s.

Hence ∫ t

a

hn−1(t, σ(s))g(s)∆s

= g(t) · (−hn(t, t))− g(a) · (−hn(t, a))−
∫ t

a

−hn(t, σ(s))f(s)∆s

=
∫ t

a

hn(t, σ(s))f(s)∆s.

Definition 4.9.2 ([GP15, Def. 2.24]). Let ν 6= −1,−2,−3 . . .. Then the
ν-th fractional Taylor monomial based at s is defined by

hν(t, s) = (t− s)ν

Γ(ν + 1) ,

whenever the right-hand side is well-defined.

Remark. Since ν is not a negative integer, the right-hand side of defini-
tion 4.9.2 being well-defined only depends on (t− s)ν being well-defined.

Theorem 4.9.3 (Adaptation of [GP15, Theorem 2.27 p. 101]). Let
t, s ∈ Da, ν ∈ C\({0} ∪ −N). Then

(i) Dhν(t, a) = hν−1(t, a)

(ii) Dshν(t, s) = −hν−1(t, σ(s))

(iii)
∫
hν(t, s)∆t = hν+1(t, a) + C

(iv)
∫
hν(t, σ(s))∆s = −hν+1(t, s) + C

whenever both sides of the equations are well-defined.

Proof. (i)

Dhν(t, a) = D(t− a)ν

Γ(ν + 1) = (t− a)ν−1

Γ(ν) = hν−1(t, a),

where we used proposition 4.5.5.
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(ii)

Dshν(t, s) = Ds(t− s)ν

Γ(ν + 1) = − (t− σ(s)ν−1

Γ(ν) = −hν−1(t, σ(s)),

where we have used proposition 4.5.6.

(iii) This follows from definition 4.6.5 and point (i).

(iv) This follows from definition 4.6.5 and point (ii).

Definition 4.9.4 (modification of [GP15, Def 2.25, p. 101]). Assume
f : Da → R and ν > 0. Then the ν-th fractional sum of f (based at a) is defined
by

D−νa f(t) .=
∫ t−νδ+δ

a

hν−1(t, σ(τ))f(τ)∆τ =
t−νδ∑
τ=a

δ
hν−1(t, σ(τ))f(τ)δ,

for t ∈ Da+νδ. We define D0
af(t) = f(t).

Remark. Note that definition 4.9.4 is well-defined. This is because since
t ∈ Da+νδ, we have t = a+ νδ +Nδ,N ∈ {0} ∪ N. So the integral limits are a
and a+ (N + 1)δ. We have that the values of τ are a, a+ δ, . . . a+Nδ, and we
have that hν−1(t, σ(τ)) is well-defined for these values because

hν−1(t, σ(τ)) = 1
Γ(ν)

Γδ(t− τ)
Γδ(t− τ − νδ + δ) ,

and t− τ is never a pole for these values of τ .

We define differentiation of a non-integer order.

Definition 4.9.5 (modification of [GP15, Def 2.29, p. 103]). Assume
f : Da → R, ν > 0, choose a positive integer N such that N − 1 < ν ≤ N . Then
e define the ν-th fractional derivative by

Dν
af(t) .= DND−(N−ν)

a f(t), t ∈ Da+(N−ν)δ.

Lemma 4.9.6 (Leibniz Formulas, adaptation of [GP15, Lemma 2.32
p. 103]). Assume µ ∈ R, f : Da+µδ × Da → R. Then

D
[∫ t−µδ+δ

a

f(t, τ)∆τ
]

=
∫ t−µδ+δ

a

Dtf(t, τ)∆τ + f(t+ δ, t− µδ + δ). (4.23)

and

D
[∫ t−µδ+δ

a

f(t, τ)∆τ
]

=
∫ t−µδ+2δ

a

Dtf(t, τ)∆τ + f(t, t− µδ + δ). (4.24)

For t ∈ Da+δµ.
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Proof.

D
[∫ t−µδ+δ

a

f(t, τ)∆τ
]

=
∫ t+δ−µδ+δ
a

f(t+ δ, τ)∆τ −
∫ t−µδ+δ
a

f(t, τ)∆τ
δ

=
∫ t−µδ+δ

a

Dtf(t, τ)∆τ +

t−µδ+2δ∫
t−µδ+δ

f(t+ δ, τ)∆τ

δ

=
∫ t−µδ+δ

a

Dtf(t, τ)∆τ + f(t+ δ, t− µδ + δ).

We also get

D
[∫ t−µδ+δ

a

f(t, τ)∆τ
]

=
∫ t+δ−µδ+δ
a

f(t+ δ, τ)∆τ −
∫ t−µδ+δ
a

f(t, τ)∆τ
δ

=
∫ t−µδ+2δ

a

Dtf(t, τ)∆τ +

t−µδ+2δ∫
t−µδ+δ

f(t, τ)∆τ

δ

=
∫ t−µδ+2δ

a

Dtf(t, τ)∆τ + f(t, t− µδ + δ).

Theorem 4.9.7 (Adaptation of [GP15, Theorem 2.33 p. 104]). Let
f : Da → R, ν > 0, and let N ∈ N be such that N − 1 < ν ≤ N . Then

Dν
af(t) =

{∫ t+νδ+δ
a

h−ν−1(t, σ(τ))f(τ)∆τ, N − 1 < ν < N

DNf(t), ν = N,
(4.25)

for t ∈ Da+(N−ν)δ.

Proof. If ν = N we have

Dν
af(t) = DND0

af(t) = DNf(t).

If ν is not an integer, we will prove the statement by induction on N . Assume
first that 0 < ν < 1. We then get

Dν
af(t) = DD−(1−ν)

a f(t) = D

[∫ t−(1−ν)δ+δ

a

h−ν(t, σ(τ))f(τ)∆τ
]
.

With the help of Leibniz formula eq. (4.24) we get

D

[∫ t−(1−ν)δ+δ

a

h−ν(t, σ(τ))f(τ)∆τ
]

=
∫ t−(1−ν)δ+2δ

a

h−1−ν(t, σ(τ))f(τ)∆τ + h−ν(t, t− (1− ν)δ + 2δ)f(t− (1− ν)δ + δ)

=
∫ t+νδ+δ

a

h−1−ν(t, σ(τ))f(τ)∆τ + h−ν(t, t+ νδ + δ)f(t+ νδ).
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We have that

h−ν(t, t+ νδ + δ) = (−νδ − δ)−ν

Γ(1− ν) = 1
Γ(1− ν)

Γδ(−νδ)
Γδ(0) = 0.

We get that the last expression is zero, because we have a pole in the denominator,
but not in the numerator(remember that 0 < ν < 1). Hence the result is true if
N = 1.

Assume now that the statement is true if N − 1 < ν ≤ N . We must show
that it is also true if N < ν ≤ N + 1. The case ν = N + 1 has already been
proved at the very start of the proof, so we assume that N < ν < N + 1. Let
ν′ = ν − 1, then N − 1 < ν′ < N . We also get

Dν
af(t) = DN+1D−(N+1−ν)f(t) = DDND−(N−ν′)

a f(t) = DDν′

a f(t).

From the induction hypothesis we have

Dν′

a f(t) =
∫ t+ν′δ+δ

a

h−1−ν′(t, σ(τ))f(τ)∆τ.

So we get

Dν
af(t) = D

[∫ t−(1−ν)δ+δ

a

h−ν(t, σ(τ))f(τ)∆τ
]
.

We use Leibniz Formula eq. (4.24) again

D

[∫ t−(1−ν)δ+δ

a

h−ν(t, σ(τ))f(τ)∆τ
]

=
∫ t+νδ+δ

a

h−1−ν(t, σ(τ)))∆τ + h−ν(t, t− (1− ν)δ + 2δ)f(t− (1− ν)δ + δ).

However, we have

h−ν(t, t− (1− ν)δ + 2δ) =h−ν(t, t+ νδ + δ)

=(−νδ − δ)−ν

Γ(1− ν)

= 1
Γ(1− ν)

Γδ(−νδ)
Γδ(0) = 0,

since the denominator is a pole, while the numerator is not a pole.
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Chapter 5

The Falling Mandelbrot and Van
Ness sum

In this chapter we will combine results from chapter 3 and chapter 4. However,
we will only use the two first sections, section 4.1 and section 4.2 from chapter 4.
A brief explanation of what we will do is that we will replace H − 1/2 in the
Mandelbrot and Van Ness sum, see for instance eq. (3.5), with H − 1/2. That
is, we will work with the falling counterpart.

We also recall from chapter 4 that the set Da denotes

{a, a+ δ, a+ 2δ, . . .},

where the set also depends on an underlying δ > 0 which is known. In this
chapter we will require that a = 0. This requirement is parallel with the work
in chapter 3 where even though the Mandelbrot and Van Ness sum was defined
on [0,∞), we used linear interpolation between the points in the set

{0, δ, 2δ, . . .}.

5.1 Definition of the falling Mandelbrot and Van Ness
sum

We have to do some work resembling what we did in section 3.2. It is not as
easy as to just replace H − 1/2 with H − 1/2 in the Mandelbrot and Van Ness
sum, we have to check that everything will be well-defined.

We start with a lemma which tells us that the falling power functions and
regular power functions are close when the argument is large. Remember that
the falling function is defined in definition 4.2.4.

Lemma 5.1.1. Let r ∈ R, δ > 0. We then have

lim
t→∞

tr

tr
= 1,

where t ∈ D0.

Proof. First note that since

tr
.= Γδ(t+ δ)

Γδ(t− (r − 1)δ) ,
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5. The Falling Mandelbrot and Van Ness sum

there is no problems with poles. This is because when t is large enough t−(r−1)δ
will not be a pole, and t+ δ is never a pole. So we have

tr

tr
= Γδ(t+ δ)

Γδ(t+ δ − rδ) · tr

=
δ
t
δ+1Γ( tδ + 1)

δ
t
δ+1−rΓ( tδ + 1− r) · tr

= δr

tr
·

Γ( tδ + 1)
Γ( tδ + 1− r)

.

(5.1)

Notice that the last in expression eq. (5.1) is well-defined for all large values
of t. So when calculating the limit we do not need to assume that t ∈ D0, but
we can use standard techniques. If we find that the limit of the last expression
exist when t→∞, the limit will also exist when t→∞ and we restrict t to Da.

We will also use Stirling’s approximation for Gamma functions, see [Tem15,
p. 65]. Stirling’s formula tells us that

lim
t→∞

Γ(t)√
2πtt− 1

2 e−t
= 1.

We get with the aid of eq. (5.1)

lim
t→∞

tr

tr

= lim
t→∞

δr

tr
·

Γ( tδ + 1)
Γ( tδ + 1− r)

= lim
t→∞

δr

tr
·

Γ( tδ+1)
√

2π( tδ+1)
t
δ

+ 1
2 e
−( t

δ
+1) ·

√
2π( tδ + 1) tδ+ 1

2 e−( tδ+1)

Γ( tδ+1−r)
√

2π( tδ+1−r)
t
δ

+ 1
2−re

−( t
δ

+1−r) ·
√

2π( tδ + 1− r) tδ+ 1
2−re−( tδ+1−r)

.

By Stirling’s formula this limit exist if and only if the limit

lim
t→∞

δr

tr
·

√
2π( tδ + 1) tδ+ 1

2 e−( tδ+1)
√

2π( tδ + 1− r) tδ+ 1
2−re−( tδ+1−r),

exist, and upon existence they must be equal. We get

lim
t→∞

δr

tr
·

√
2π( tδ + 1) tδ+ 1

2 e−( tδ+1)
√

2π( tδ + 1− r) tδ+ 1
2−re−( tδ+1−r),

=
(
δ

e

)r
lim
t→∞

[( t
δ + 1

t
δ + 1− r

) t
δ+ 1

2

·
( t
δ + 1− r

t

)r]
.

(5.2)

Since we can calculate the limit of a product as the product of the limit, we
can split the expression inside the square bracket. We get

lim
t→∞

( t
δ + 1

t
δ + 1− r

) t
δ+ 1

2

= lim
t→∞

(
1 + r

t
δ + 1− r

) t
δ+ 1

2

= lim
x→∞

(
1 + r

x

)x− 1
2 +r

.
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5.1. Definition of the falling Mandelbrot and Van Ness sum

The last equality is valid because the substitution x = t/δ + 1− r is continuous.
We then get

lim
x→∞

(
1 + r

x

)x− 1
2 +r

= lim
x→∞

(
1 + r

x

)x
·
(

1 + r

x

)r− 1
2
.

We have

lim
x→∞

(
1 + r

x

)r− 1
2 = 1,

and

lim
x→∞

(
1 + r

x

)x
= er

where the last limit is a well known limit from calculus. We now turn to the
second limit in the square bracket in eq. (5.2).

lim
t→∞

( t
δ + 1− r

t

)r
= lim

t→∞

( t
δ + 1− r

t
δ · δ

)r
= δ−r lim

t→∞

( t
δ + 1− r

t
δ

)r
= δ−r.

Hence we end up with

lim
t→∞

tr

tr
=
(
δ

e

)r
lim
t→∞

[( t
δ + 1

t
δ + 1− r

) t
δ+ 1

2

·
( t
δ + 1− r

t

)r]

=
(
δ

e

)r
· er · δ−r

= 1.

We now make the analogous definition of the one in eq. (3.3).

Definition 5.1.2. Let δ > 0, r ∈ (−0.5, 0.5). Assume that

u ∈ {. . . ,−3δ,−2δ,−δ, 0, δ, 2δ, 3δ, . . .}.

Then we define

u
r
+
.=
{
ur if u > 0
0 if u ≤ 0.

(5.3)

Remark. Notice that this definition is well-defined, because if u > 0 we have

u
r
+ = Γδ(u+ δ)

Γδ(u− (r − 1)δ) .
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5. The Falling Mandelbrot and Van Ness sum

Notice that u+ δ ≥ 2δ, and

u− (r − 1)δ ≥ δ − (r − 1)δ
= (2− r)δ
> 1.5δ.

So we do not have any problems with poles.

Now we make the parallel definition of lemma 3.2.4.

Lemma 5.1.3. Assume that H ∈ (0, 1), δ > 0 and that t = Lδ, L ∈ N ∪ {0}.
We then have

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]2
<∞.

Proof. Notice from definition 5.1.2, its remark and the fact that (t− τ)H−
1
2 =

(t− τ)
H− 1

2
+ for our values of τ , the sum is well-defined. We need to prove that

it is not infinity. If t = 0, the result is obvious. If t > 0, then t = Lδ, L ∈ N.
We then get

t−δ∑
r=−∞

δ

[
(t− r)H−

1
2 − (−r)

H− 1
2

+

]2

=
Lδ−δ∑
r=−∞

δ

[
(Lδ − r)H−

1
2 − (−r)

H− 1
2

+

]2

=
−δ∑

r=−∞
δ

[
(Lδ − r)H−

1
2 − (−r)

H− 1
2

+

]2
+
Lδ−δ∑
r=0

δ

[
(Lδ − r)H−

1
2 − (−r)

H− 1
2

+

]2

≤
∞∑
k=1

[
(Lδ + kδ)H−

1
2 − (kδ)H−

1
2
]2

+M.

Hence it is enough to consider convergence properties of the last series. We
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5.1. Definition of the falling Mandelbrot and Van Ness sum

have
∞∑
k=1

[
(Lδ + kδ)H−

1
2 − (kδ)H−

1
2
]2

=
∞∑
k=1

[
(Lδ + kδ)H−

1
2 − ((L− 1)δ + kδ)H−

1
2

+ ((L− 1)δ + kδ)H−
1
2 − ((L− 2)δ + kδ)H−

1
2

+ ((L− 2)δ + kδ)H−
1
2 − ((L− 3)δ + kδ)H−

1
2

...

+ ((L− (L− 1))δ + kδ)H−
1
2 − (kδ)H−

1
2
]2

=
∞∑
k=1

 L∑
j=1

((j + k)δ)H−
1
2 − ((j + k − 1)δ)H−

1
2

2

=
∞∑
k=1

 L∑
j=1

(
H − 1

2

)
δ · ((j + k − 1)δ)H−

3
2

2

≤ δ2L2
(
H − 1

2

)2 ∞∑
k=1

L∑
j=1

(
((j + k − 1)δ)H−

3
2
)2
.

Where we get the third equality by using theorem 4.2.5, and we get to the last
step by using the rough inequality (

∑n
i=1 ai)2 ≤ n2∑n

i=1 a
2
i . Since the terms

are positive, we can change the order of summation and we must show that

L∑
j=1

∞∑
k=1

(
((j + k − 1)δ)H−

3
2
)2

<∞.

Since the outer sum is finite it suffices to show
∞∑
k=1

(
((j + k − 1)δ)H−

3
2
)2

<∞, j ∈ N.

We will obtain this result by using the limit comparison test with the correspond-
ing series form ordinary calculus

∑∞
k=1((j+k−1)δ)2H−3 =

∑∞
i=j 1/i3−2H <∞,

we have the convergence since 3 − 2H > 1. By the limit comparison test it
suffices to show that

lim
k→∞

(
((j + k − 1)δ)H−

3
2
)2

((j + k − 1)δ)2H−3 ,

exists and is not equal to ∞. Obviously all terms are positive as the the limit
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5. The Falling Mandelbrot and Van Ness sum

comparison test requires. We have

lim
k→∞

(
((j + k − 1)δ)H−

3
2
)2

((j + k − 1)δ)2H−3 =
(

lim
k→∞

((j + k − 1)δ)H−
3
2

((j + k − 1)δ)H− 3
2

)2

= 12

= 1.

Where we in the first equality use the fact that the function x → x2 from
[0,∞)→ [0,∞) is continuous, and that

((j + k − 1)δ)H−
3
2

((j + k − 1)δ)H− 3
2
,

will be positive for large k by lemma 5.1.1. The second equality also follows
from lemma 5.1.1.

We follow the procedure as in section 3.2 and prove the parallel statement
of proposition 3.2.5. Remember that CH is defined in proposition 3.2.2 and is a
well-defined real number.

Proposition 5.1.4. Let W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} be a col-
lection of independent random variables, each taking the values ±1 with equal
probability. Assume that they are defined on a probability space (Ω,A, P ). As-
sume also that H ∈ (0, 1) and that δ > 0. Then there exists a set Bδ ∈ A(also
depending on H) with

P (Bδ) = 1,

such that if t ≥ 0 is a real number, and t is a multiple of δ, we have that for
ω ∈ Bδ

1
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω)

converges in R.

Proof. The proof will be almost the same as the proof of proposition 3.2.5.
Assume first that t is a multiple of δ. From lemma 5.1.3 we have that

t−δ∑
τ=−∞

δ

1
C2
H

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]2
δ <∞.

It then follows [MW13, Proposition 7.11, p. 260] and its proof, that there is a
set Bδ,t ∈ A with P (Bδ,t) = 1, such that for ω ∈ Bδ,t we have that

1
CH

t−δ∑
δ

τ=−∞

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω),

converges in R.
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5.1. Definition of the falling Mandelbrot and Van Ness sum

There are only a countable number of t ≥ 0 that is a multiple of δn, let

Bδ =
⋂

r∈N∪{0}

Bδ,rδ.

Because of countability and elementary properties of measures we have that
P (Bδ) = 1. By construction Bδ has the required properties, and the proof is
done.

Now we are ready to define the falling Mandelbrot and Van Ness sum. It
will be very similar to definition 3.2.6.

Definition 5.1.5. Let H ∈ (0, 1), δ > 0 be given. Let

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}

be a collection of independent random variables, each taking the values ±1
with equal probability. Assume that they are defined on a probability space
(Ω,A, P ). Let Bδ be as in proposition 5.1.4. Define the stochastic process
Y (δ) = (Y (δ)

t )t∈[0,∞), which also depends on H as follows:

(i) If t ≥ 0 and there exists an N ∈ N ∪ {0} such that t = Nδ we define

Y
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω) · IBδ(ω),

where

CH
.=
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
.

(ii) We extend Y (δ) to all of [0,∞) by linear interpolation. Specifically if t
is not a multiple of δ, there must exist a number N ∈ N ∪ {0} such that
Nδ < t < (N + 1)δ and we define

Y
(δ)
t (ω) = ((N + 1)δ − t)/δ · Y (δ)

Nδ (ω) + (t−Nδ)/δ · Y (δ)
(N+1)δ(ω).

We call Y (δ) the falling Mandelbrot and Van Ness sum. Notice that the falling
powers depends on the modified Gamma function which again depends on an
underlying δ, this δ should of course be chosen as the same δ at as in the start
of the definition.

Remark. We have that Y (δ) is a well-defined stochastic process on (Ω,A, P ).
By construction, for each t ∈ [0,∞), ω ∈ Ω we have that Y (δ)

t (ω) is a well-
defined real number. And if we keep t fixed we have that Y (δ)

t is a random
variable on (Ω,A, P ) because it is a linear combination of well-defined limits
of elements in W, which are random variables on (Ω,A, P ). Also notice that
Bδ ∈ A by proposition 5.1.4.
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5. The Falling Mandelbrot and Van Ness sum

5.2 Some helpful results

We now state some results that will be of use in later sections. First we give
a technical result which shows that for big arguments the ratio of gamma
functions will be close to power functions. We will need this result later because
as we remember, falling functions are made up from ratio of Gamma functions.

Lemma 5.2.1. Let H ∈ (0, 1), then
∞∑
r=1

(
rH−

1
2 − Γ(r + 1)

Γ
(
r + 3

2 −H
))2

<∞.

Proof. We will prove by comparing our series with the series
∞∑
r=1

1
r3−2H ,

which converges since 3 − 2H > 1. We will need a result found in [Tem96,
pp. 66-67], where he first defines the function

Γ∗(z) = Γ(z)√
2πzz− 1

2 e−z
, Re(z) > 0.

It is stated that Γ∗ is of the form 1 +O(1/z) as z →∞. It is also said that

Γ(z + a)
Γ(z + b) = za−b

Γ∗(z + a)
Γ∗(z + b)Q(z, a, b),

Q(z, a, b) =
(

1 + a

z

)a− 1
2
(

1 + b

z

)−b+ 1
2

e[ln(1+ a
z )− az−ln(1+ b

x+ b
z )],

lastly it is stated that Q(z, a, b) is also of the form 1+O(1/z) as z →∞. Because
of the definition of Γ∗ we assume that both Re(z + a) > 0 and Re(z + b) > 0.
Note that when we say that a function f is O(g(z)), we mean that there exists
positive, real numbers M,N such that if |z| ≥M we have

|f(z)| ≤ N |g(z)|.

We will work with z = r, a = 1, b = 3/2 −H. All of these quantities are
positive, so there is no problem with the definitions above. We have that

Γ∗(r + a) = 1 + f1(r), f1(r) = O
(

1
r + a

)
, as r →∞,

Γ∗(r + b) = 1 + f2(r), f2(r) = O
(

1
r + b

)
, as r →∞,

Q(r, a, b) = 1 + f3(r), f3(r) = O
(

1
r

)
, as r →∞.

Where we also have constants M1, N1,M2, N2,M3, N3 from the definition of O
above. We then get

Γ(r + a)
Γ(r + b) = ra−b

Γ∗(r + a)
Γ∗(r + b)Q(r, a, b),

= ra−b
(

1 + f1(r)
1 + f2(r) · (1 + f3(r))

)
.
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5.2. Some helpful results

Define h(r) such that

Γ(r + a)
Γ(r + b) = za−b (1 + h(r)) .

We will show that h = O(1/r) as r →∞. We have

|h(r)| =
∣∣∣∣1 + f1(r)
1 + f2(r) · (1 + f3(r))− 1

∣∣∣∣
=
∣∣∣∣1 + f1(r) + f3(r) + f1(r)f3(r)− 1− f2(r)

1 + f2(r)

∣∣∣∣
=
∣∣∣∣f1(r) + f3(r)− f2(r) + f1(r)f3(r)

1 + f2(r)

∣∣∣∣
Since f2(r)→ 0, we have that there exist a constantK1 such that |1+f2(r)| > 1

2 ,
when r ≥ K1. There must also be a K2 such that |f3(r)| < 1, when r ≥ K2.
Now if r ≥ max{K1,K2,M1,M2,M3} we have∣∣∣∣f1(r) + f3(r)− f2(r) + f1(r)f3(r)

1 + f2(r)

∣∣∣∣
≤ 2 |f1(r) + f3(r)− f2(r) + f1(r)f3(r)|
≤ 2|f1(r)|+ 2|f2(r)|+ 2|f3(r)|+ 2|f1(r)||f3(r)|
≤ 4|f1(r)|+ 2|f2(r)|+ 2|f3(r)|

≤ 4N1 ·
1

|r + a|
+ 2N2

1
|r + b|

+ 2N3
1
r
.

Since r/|r + a| and r/|r + b| converges to 1 as r goes to infinity, there is
a K3 such that both these quantities are less than 2 if r ≥ K3. Then if
r ≥ max{K1,K2,K3,M1,M2,M3} we have

4N1 ·
1

|r + a|
+ 2N2

1
|r + b|

+ 2N3
1
r

= 4N1 ·
1

|r + a|
r

r
+ 2N2

1
|r + b|

r

r
+ 2N3

1
r

≤ (8N1 + 4N2 + 2N3) 1
r
.

Hence we have shown that

Γ(r + a)
Γ(r + b) = ra−b

(
1 +O

(
1
r

))
(5.4)

as r →∞. We now turn back to what we really want to show. We will use that

Γ(r + 1)
Γ
(
r + 3

2 −H
) = r1−3/2+H(1 + ε(r))

= rH−
1
2 (1 + ε(r)),

(5.5)
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5. The Falling Mandelbrot and Van Ness sum

where ε(r) = O(1/r). We get

lim sup
r→∞

(
rH−

1
2 − Γ(r+1)

Γ(r+ 3
2−H)

)2

1
r3−2H

= lim sup
r→∞

(
rH−

1
2 − rH− 1

2 (1 + ε(r))
)2

r2H−3

= lim sup
r→∞

(
rH−

1
2 ε(r)

)2

r2H−3

= lim sup
r→∞

r2ε(r)2.

Since e(r) = O(1/r), there exists a constant K such that

lim sup
r→∞

r2ε(r)2 ≤ lim sup
r→∞

r2K
2

r2 = K2 <∞.

By a version of the limit comparison test, which uses the lim sup condition, see
[Jun15, 6.2.7 (a), p. 171], the result follows.

The next result is an important step in showing that Xδ and Y δ are close.
Notice the similarity with theorem 3.6.2. An important part of the proposition
is that MH is independent of t.

Proposition 5.2.2. Let H ∈ (0, 1), δ > 0. Assume also that

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}

is a collection of independent random variables, each taking the values ±1
with equal probability, and defined on a probability space (Ω,A, P ). Let X(δ)

be as in definition 3.2.6, and Y (δ) be as in definition 5.1.5, where W =
{. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} is the same in both cases. We then
have for every t ∈ [0,∞) that

E

[(
X

(δ)
t − Y

(δ)
t

)2
]
≤MHδ

2H ,

where MH is a positive real number, only depending on H.

Proof. Assume first that t is of the form Nδ,N ∈ {0} ∪ N. We then have that
X

(δ)
t , Y

(δ)
t is of the form

X
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω) · IAδ(ω),

Y
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω) · IBδ(ω).

We have that P (Aδ) = 1, P (Bδ) = 1, so

P (Aδ ∩Bδ) = 1− P (Acδ ∪Bcδ) ≥ 1− P (Acδ)− P (Bcδ) = 1− 0− 0 = 1.
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5.2. Some helpful results

Since integrals over sets with probability zero equal zero, we have that

E

[(
X

(δ)
t − Y

(δ)
t

)2
]

= E

[((
X

(δ)
t − Y

(δ)
t

)
IAδ∩Bδ

)2
]
.

By defining

X̃
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω) · IAδ∩Bδ(ω),

Ỹ
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω) · IAδ∩Bδ(ω),

we have that

E

[(
X

(δ)
t − Y

(δ)
t

)2
]

= E

[(
X̃

(δ)
t − Ỹ

(δ)
t

)2
]
.

Notice that X̃(δ)
t and Ỹ (δ)

t are well-defined random variables. To see this, note
that for ω ∈ Aδ ∩Bδ we have that X(δ)

t (ω) = X̃
(δ)
t (ω), on (Aδ ∩Bδ)c we have

that X̃(δ)
t (ω) = 0, and Aδ ∩ Bδ ∈ A, similarly for Ỹ (δ)

t . So for the rest of the
proof we will work with

E

[(
X̃

(δ)
t − Ỹ

(δ)
t

)2
]
.

By lemma 3.2.4

t−δ∑
τ=−∞

δ

δ

C2
H

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]2
<∞,

and by lemma 5.1.3

t−δ∑
τ=−∞

δ

δ

C2
H

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]2
<∞,

so by lemma 3.6.1

E

[(
X

(δ)
t − Y

(δ)
t

)2
]

= E

[(
X̃

(δ)
t − Ỹ

(δ)
t

)2
]

= δ

C2
H

t−δ∑
τ=−∞

δ

(
(t− τ)H− 1

2 − (−τ)H−
1
2

+ − (t− τ)H−
1
2 + (−τ)

H− 1
2

+

)2

<∞.

(5.6)
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5. The Falling Mandelbrot and Van Ness sum

Now we will get rid of the dependence of t. We have by using (a−b)2 ≤ 2(a2+b2)

δ

C2
H

t−δ∑
τ=−∞

δ

(
(t− τ)H− 1

2 − (−τ)H−
1
2

+ − (t− τ)H−
1
2 + (−τ)

H− 1
2

+

)2

≤ 2δ
C2
H

[
t−δ∑

τ=−∞
δ

(
(t− τ)H− 1

2 − (t− τ)H−
1
2
)2

+
t−δ∑

τ=−∞
δ

(
−(−τ)H−

1
2

+ + (−τ)
H− 1

2
+

)2
]

= 2δ
C2
H

[ ∞∑
τ=δ

δ

(
τH−

1
2 − τH−

1
2
)2

+
∞∑
τ=δ

δ

(
τH−

1
2 − τH−

1
2
)2
]

= 4δ
C2
H

∞∑
τ=δ

δ

(
τH−

1
2 − τH−

1
2
)2
.

We see that the last expression is independent of t, we will try to simplify it.
Recall that we have

τ
H− 1

2

= Γδ(τ + δ)
Γδ
(
τ + 3

2δ −Hδ
) , by definition 4.2.4

=
δτ/δ+1Γ

(
τ
δ + 1

)
δτ/δ+3/2−HΓ( τδ + 3

2 −H)
, by definition 4.2.1

= δH−1/2 Γ
(
τ
δ + 1

)
Γ
(
τ
δ + 3

2 −H
) .

Notice also that the second equality follows because we do not have any poles in
the numerator and denominator as the only relevant values of τ in this expression
are bigger than or equal to δ. Hence we get, by using the substitution r = τ/δ

4δ
C2
H

∞∑
τ=δ

δ

(
τH−

1
2 − τH−

1
2
)2

= 4δ
C2
H

∞∑
τ=δ

δ

(
τH−

1
2 − δH− 1

2
Γ
(
τ
δ + 1

)
Γ
(
τ
δ + 3

2 −H
))2

= 4δ
C2
H

∞∑
r=1

(
(rδ)H− 1

2 − δH− 1
2

Γ (r + 1)
Γ
(
r + 3

2 −H
))2

= 4δ2H

C2
H

∞∑
r=1

(
rH−

1
2 − Γ (r + 1)

Γ
(
r + 3

2 −H
))2

.

By lemma 5.2.1, the sum in the last expression is finite, call it SH . So we have
proved that if t is a multiple of δ we have

E

[(
X

(δ)
t − Y

(δ)
t

)2
]

= E

[(
X̃

(δ)
t − Ỹ

(δ)
t

)2
]
≤ 4SH

C2
H

· δ2H .

If t is not a multiple of δ we have that

t = q1t1 + q2t2,

with 0 < q1 < 1, 0 < q2 < 1, t2 − t1 = δ and both t1 and t2 are multiples of δ.
By the definition of X(δ)

t and Y (δ)
t , see definition 3.2.6 and definition 5.1.5 we
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get

E

[(
X

(δ)
t − Y

(δ)
t

)2
]

= E

[(
q1X

(δ)
t1 + q2X

(δ)
t2 − q1Y

(δ)
t1 − q2Y

(δ)
t2

)2
]

= E

[(
q1X

(δ)
t1 − q1Y

(δ)
t1 + q2X

(δ)
t2 − q2Y

(δ)
t2

)2
]

≤E
[
2
(
q1X

(δ)
t1 − q1Y

(δ)
t1

)2
+ 2

(
q2X

(δ)
t2 − q2Y

(δ)
t2

)2
]

= 2q2
1E

[(
X

(δ)
t1 − Y

(δ)
t1

)2
]

+ 2q2
2E

[(
q2X

(δ)
t2 − q2Y

(δ)
t2

)2
]

≤ 2q2
1

4SH
C2
H

· δ2H + 2q2
2

4SH
C2
H

· δ2H

= 8SH
C2
H

(
q2
1 + q2

2
)
· δ2H

≤ 16SH
C2
H

· δ2H .

The result follows with MH = 16SH/C2
H .

Proposition 5.2.2 gives us a result with δ2H . We recall from section 3.6 that
similar results with δ2H were only useful if H > 1/2, because we needed an
exponent bigger than one. We will see that a similar situation arises here, so we
will again use Khintchine’s inequality to obtain a result with exponent bigger
than one, even if H < 1/2. The trade-off is that we may have to take a bigger
power than two on the left-hand side. Notice the similarity between the next
result and theorem 3.6.4.

Proposition 5.2.3. Let H ∈ (0, 1), δ > 0. Assume also that

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}

is a collection of independent random variables, each taking the values ±1 with
equal probability, defined on a probability space (Ω,A, P ). Let X(δ) be as in defini-
tion 3.2.6, and Y (δ) be as in definition 5.1.5, whereW = {. . . , w−3, w−2, w−1, w0
, w1, w2, w3, . . .} is the same in both cases. Then there exists an even integer k
and a real number α > 1, such that for every t ∈ [0,∞)

E

[(
X

(δ)
t − Y

(δ)
t

)k]
≤ RHδα,

where RH is a positive real number. RH , k and α only depend on H.

Proof. The proof will follow the same structure as the proof of theorem 3.6.4.
Let p be the smallest natural number such that

2Hp > 1,

151



5. The Falling Mandelbrot and Van Ness sum

hence p only depends on H. Let k = 2p. We first assume that t is a multiple of
δ. We then have

E

[(
X

(δ)
t − Y

(δ)
t

)k]
= E

[(
1
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ · IAδ

− 1
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ · IBδ

)k]

= E

[
lim
N→∞

(
1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ · IAδ

− 1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ · IBδ

)k]
.

By Fatou’s lemma this is less than or equal to

lim inf
N→∞

E

[(
1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ · IAδ

− 1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ · IBδ

)k]
.

When the sum is finite we can remove the indicator functions and the random
variables will still be well-defined. This fact, and the fact that P (Aδ) = P (Bδ) =
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1 implies that

lim inf
N→∞

E

[(
1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ · IAδ

− 1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ · IBδ

)k]

= lim inf
N→∞

E

[(
1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ · IAδ

− 1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ · IBδ

)k
IAδ∩Bδ

]

= lim inf
N→∞

E

[(
1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ

− 1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ

)k
IAδ∩Bδ

]

= lim inf
N→∞

E

[(
1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ

− 1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ

)k]

= lim inf
N→∞

E

[(
1
CH

t−δ∑
τ=−Nδ

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

− (t− τ)H−
1
2 + (−τ)

H− 1
2

+

]√
δwτ/δ

)k]
.

By Khintchine’s inequality, see theorem 3.6.3, the last expression is less than or
equal to

lim inf
N→∞

Uk

(
δ

C2
H

t−δ∑
τ=−Nδ

δ

[(
t− τ)H−

1
2 − (−τ)H−

1
2

+ − (t− τ)H−
1
2 + (−τ)

H− 1
2

+

]2
)k/2

= Uk

(
δ

C2
H

t−δ∑
τ=−∞

δ

[(
t− τ)H−

1
2 − (−τ)H−

1
2

+ − (t− τ)H−
1
2 + (−τ)

H− 1
2

+

]2
)k/2

.

From the proof of proposition 5.2.2, specifically eq. (5.6), this is equal to

Uk

(
E

[(
X

(δ)
t − Y

(δ)
t

)2
])k/2

.
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The statement of proposition 5.2.2 tells us that

Uk

(
E

[(
X

(δ)
t − Y

(δ)
t

)2
])k/2

≤ Uk

(
MHδ

2H

)k/2
= UkM

p
Hδ

kH

= UkM
p
Hδ

2Hp.

Hence, we have proved that if t is a multiple of δ we have

E

[(
X

(δ)
t − Y

(δ)
t

)k]
≤ UkMp

Hδ
2Hp.

Assume now that t is not a multiple of δ. Then t = q1t1+q2t2, t2−t1 = δ, 0 <
q1 < 1, 0 < q2 < 1 and both t1 and t2 are multiples of δ. From the definitions
of X(δ)

t , Y
(δ)
t we obtain by using the crude inequality (a+ b)k ≤ 2k(ak + bk)(k

is even)

E

[(
X

(δ)
t − Y

(δ)
t

)k]
= E

[(
q1X

(δ)
t1 + q2X

(δ)
t2 − q1Y

(δ)
t1 − q2Y

(δ)
t2

)k]
≤ 2kE

[(
q1X

(δ)
t1 − q1Y

(δ)
t1

)k]
+ 2kE

[(
q2X

(δ)
t2 − q2Y

(δ)
t2

)k]
= 2kqk1E

[(
X

(δ)
t1 − Y

(δ)
t1

)k]
+ 2kqk2E

[(
X

(δ)
t2 − Y

(δ)
t2

)k]
≤ 2kE

[(
X

(δ)
t1 − Y

(δ)
t1

)k]
+ 2kE

[(
X

(δ)
t2 − Y

(δ)
t2

)k]
.

By what we proved for values of t that are multiples of δ, this is less than or
equal to

2kUkMp
Hδ

2Hp + 2kUkMp
Hδ

2Hp = 2k+1UkM
p
Hδ

2Hp.

The result now follows with RH = 2k+1UkM
p
H , which only depends on H since

k and p only depends on H. Let α .= 2Hp, which we remember from the start
of this proof is bigger than one by construction.

5.3 Closeness of X(δ) and Y (δ)

Now we will show that X(δ) and Y (δ) are close in a probabilistic sense if δ is
small. We first need a little lemma showing that some sets are measurable.

Lemma 5.3.1. Let H ∈ (0, 1), δ > 0, ε > 0. Let X(δ) be as in definition 3.2.6
and Y (δ) be as in definition 5.1.5, we assume that the underlying probability
space (Ω,A, P ) in both definitions are the same. Let ρ be the metric on C[0,∞)
defined in theorem 2.2.1. We then have{

ω ∈ Ω : ρ
(
X(δ)(ω), Y (δ)(ω)

)
≥ ε
}
∈ A,
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{
ω ∈ Ω : ρ

(
X(δ)(ω), Y (δ)(ω)

)
≤ ε
}
∈ A

and {
ω ∈ Ω : ρ

(
X(δ)(ω), Y (δ)(ω)

)
< ε
}
∈ A

Proof. After definition 3.3.1 we showed that X(δ) as a function

X(δ) : Ω→ C[0,∞),

is A/C-measurable, where C is the Borel sigma-algebra on C[0,∞). From the
remark after the definition of Y (δ) we know that Y (δ)

t is A/B(R)-measurable
for each t. From lemma 3.3.2 we then have that Y (δ) as a function

Y (δ) : Ω→ C[0,∞),

is A/C-measurable. By theorem 2.2.2, (C[0,∞), ρ) is separable. Our result now
follows by proposition B.2.15 in appendix B.1, since [ε,∞) ∈ B(R), (−∞, ε] ∈
B(R) and (−∞, ε) ∈ B(R).

Now we move to the important theorem of this section.

Theorem 5.3.2. Let H ∈ (0, 1), ε > 0 and {δn} be a sequence of positive
numbers converging to zero. Let X(δn) and Y (δn) be the Mandelbrot and Van
Ness sums from definition 3.2.6 and definition 5.1.5, where the underlying
probability space (Ω,A, P ) and W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}
are the same in both cases. Then

P
({
ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
≥ ε
})
→ 0,

as n→∞, where ρ is the usual metric on C[0,∞).

Proof. Notice first that by lemma 5.3.1 it makes sense to talk about the quanti-
ties

P
({
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
≥ ε
})

and

P
({
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
< ε
})

.

Also note that since

P
({
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
≥ ε
})

= 1− P
({
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
< ε
})

it suffices to prove that

P
({
ω : ρ

(
X(δn), Y (δn)

)
< ε
})
→ 1,

as n→∞. Choose K ∈ N such that Σ∞k=K+12−k < ε/2.
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5. The Falling Mandelbrot and Van Ness sum

Keep δn fixed for the moment. Define the set F δnj for j ∈ N by

F δnj
.=
{
ω ∈ Ω :

∣∣∣X(δn)
jδn

(ω)− Y (δn)
jδn

(ω)
∣∣∣ < ε

2K

}
.

Notice that F δnj ∈ A since we have already established that X(δn) and Y (δn)

are stochastic processes on (Ω,A, P ). Let

F δn
.=

⋂
j∈N

jδn≤K+δn

F δnj .

We will now show that

F δn ⊂
{
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
< ε
}
.

Assume that ω∗ ∈ F δn , and t ∈ [0,K]. If t = j∗δ, j∗ ∈ {0} ∪ N we have by
construction ∣∣∣X(δn)

t (ω∗)− Y (δn)
t (ω∗)

∣∣∣ < ε

2K ,

where we also recall that
∣∣∣X(δn)

0 (ω∗)− Y (δn)
0 (ω∗)

∣∣∣ = 0 by definition of X(δn) and
Y (δn). If t is not of the form t = j∗δ, j∗ ∈ N, then there exists unique j∗ ∈ N,
such that (j∗ − 1)δn < t < j∗δn. There are unique real numbers 0 < r1, r2 < 1
with r1 + r2 = 1 such that t = r1(j∗ − 1)δn + r2j

∗δn. Notice that

j∗δn = j∗δn − t+ t

<δn + t

≤δn +K.

This means that we have∣∣∣X(δn)
t (ω∗)− Y (δn)

t (ω∗)
∣∣∣

=
∣∣∣r1X

(δn)
(j∗−1)δn(ω∗) + r2X

(δn)
j∗δn

(ω∗)− r1Y
(δn)
(j∗−1)δn(ω∗)− r2Y

(δn)
j∗δn

(ω∗)
∣∣∣

≤
∣∣∣r1X

(δn)
(j∗−1)δn(ω∗)− r1Y

(δn)
(j∗−1)δn(ω∗)

∣∣∣+
∣∣∣r2X

(δn)
j∗δn

(ω∗)− r2Y
(δn)
j∗δn

(ω∗)
∣∣∣

< r1
ε

2K + r2
ε

2K
= ε

2K .

So we have

ρ
(
X(δn)(ω∗), Y (δn)(ω∗)

)
=
∞∑
k=1

min
(

2−k, sup{|X(δn)
t (ω∗)− Y (δn)

t (ω∗)| : t ∈ [0, k]}
)

≤
K∑
k=1

sup{|X(δn)
t (ω∗)− Y (δn)

t (ω∗)| : t ∈ [0, k]}+
∞∑

k=K+1
2−k

< K · ε

2K + ε

2
= ε.
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Hence we have shown that

F δn ⊂
{
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
< ε
}
. (5.7)

Let RH , α and k∗ be as in proposition 5.2.3, where we use the notation
k∗ instead of k which is used in proposition 5.2.3. We recall that these three
quantities only depend on H. For j ∈ N we get with the aid of the Chebyshev-
Markov inequality, see [App09, p. 8]

P
(
F δnj

)
= P

({
ω ∈ Ω :

∣∣∣X(δn)
jδn

(ω)− Y (δn)
jδn

(ω)
∣∣∣ < ε

2K

})
= 1− P

({
ω ∈ Ω :

∣∣∣X(δn)
jδn

(ω)− Y (δn)
jδn

(ω)
∣∣∣ ≥ ε

2K

})

≥ 1−
E

(∣∣∣X(δn)
jδn
− Y (δn)

jδn

∣∣∣k∗)(
ε

2K
)k∗ .

By proposition 5.2.3 this is bigger than or equal to

1− RHδ
α
n(

ε
2K
)k∗ = 1− RH (2K)k

∗
δαn

εk∗
.

This means that for every j ∈ N

P
((
F δnj

)c)
= 1− P

(
F δnj

)
≤ 1− 1 + RH (2K)k

∗
δαn

εk∗

= RH (2K)k
∗
δαn

εk∗
.

We now get

P
(
F δn

)
= P

 ⋂
j∈N

jδn≤K+δn

F δnj



= 1− P


 ⋂

j∈N
jδn≤K+δn

F δnj


c

= 1− P

 ⋃
j∈N

jδn≤K+δn

(
F δnj

)c
≥ 1−

∑
j∈N

jδn≤K+δn

P
((
F δnj

)c)

≥ 1−
∑
j∈N

jδn≤K+δn

RH (2K)k
∗
δαn

εk∗
.
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5. The Falling Mandelbrot and Van Ness sum

The number of natural numbers j such that jδn ≤ K + δn is⌊
K + δn
δn

⌋
≤ K + δn

δn
.

Hence

P
(
F δn

)
≥ 1−

∑
j∈N

jδn≤K+δn

RH (2K)k
∗
δαn

εk∗

= 1−
⌊
K + δn
δn

⌋
· RH (2K)k

∗
δαn

εk∗

≥ 1− K + δn
δn

· RH (2K)k
∗
δαn

εk∗

= 1− (Kδα−1
n + δαn)RH (2K)k

∗

εk∗
.

(5.8)

We will now let n go to infinity. We get with the aid of eq. (5.7) and eq. (5.8)

P
({
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
< ε
})

≥ P
(
F δn

)
≥ 1− (Kδα−1

n + δαn)RH (2K)k
∗

εk∗
.

Since all probability measures are bounded by 1 we have∣∣∣P ({ω ∈ Ω : ρ
(
X(δn)(ω), Y (δn)(ω)

)
< ε
})
− 1
∣∣∣

= 1− P
({
ω ∈ Ω : ρ

(
X(δn)(ω), Y (δn)(ω)

)
< ε
})

≤ 1− 1 + (Kδα−1
n + δαn)RH (2K)k

∗

εk∗

= (Kδα−1
n + δαn)RH (2K)k

∗

εk∗
.

We remember from proposition 5.2.3 that α > 1 so the last expression goes to
zero as n goes to infinity, because then δn goes to zero. This completes the
proof.

5.4 Weak convergence of the falling Mandelbrot and
Van Ness sum

In this section we will end up with the analogous of theorem 3.7.3, but for
falling functions. We have not defined the measures induced by the falling
Mandelbrot and Van Ness sum, so we do that first. It is the parallel definition
to definition 3.3.1
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5.4. Weak convergence of the falling Mandelbrot and Van Ness sum

Definition 5.4.1. Let H ∈ (0, 1), δn > 0. Let Y (δn) be as in definition 5.1.5.
We define the measure P fn on (C[0,∞), C) as

P fn (B) = P (Y (δn) ∈ B), B ∈ C,

here Y δn denotes the entire process on [0,∞). The f in P fn is to highlight that
this is a measure for the falling Mandelbrot and Van Ness sum.

Remark. The measures P fn are well-defined. This follows from lemma 3.3.2
and theorem C.1.1.

The next result will tell us that theorem 5.3.2 is sufficient for weak conver-
gence of Y δn . We will state a more general result than is needed in this chapter,
so that we can refer to it in later chapters. We will prove this result in detail.
The idea of this work is from [Bil99, Theorem 3.1, p. 27]. We will use a slightly
different notation, and fill in some details not done there, but the idea and
structure of the proof are Billingsley’s.

Theorem 5.4.2. Let (V (1,n)
t )t∈[0,∞), (V

(2,n)
t )t∈[0,∞), n ∈ N, be two sequences of

continuous stochastic processes on the same probability space (Ω,A, P ). Let P (1)
n

be the induced probability measure of (V (1,n)
t )t∈[0,∞) on (C[0,∞), C), likewise

let P (2)
n be the induced probability measure of (V (2,n)

t )t∈[0,∞). They are as usual
defined by

P (i)
n (C) .= P

((
V (i,n)

)−1
(C)
)
, i ∈ {1, 2}, C ∈ C.

Let ρ be the metric on C[0,∞) defined in theorem 2.2.1. Assume that for
every ε > 0 we have

P
({
ω ∈ Ω : ρ

(
V (1,n)(ω), V (2,n)(ω)

)
≥ ε
})
→ 0,

as n → ∞. Assume also that there is a measure Q on (C[0,∞), C) such that
P

(1)
n converges weakly to Q. Then P (2)

n also converges weakly to Q.

Remark. Notice that P (1)
n and P (2)

n exist by lemma 3.3.2 and theorem C.1.1.
We also have that{

ω ∈ Ω : ρ
(
V (1,n)(ω), V (2,n)(ω)

)
≥ ε
}
∈ A,

by proposition B.2.15 and theorem 2.2.2(separability).

Proof. By the Portmanteau Theorem, see [Bil99, Theorem 2.1, p. 16], an
equivalent condition for weak convergence is that for every F ∈ C with F closed
we have

lim sup
n→∞

P (2)
n (F ) ≤ Q(F ).

We will prove that this condition holds. If F = ∅ the result follows, because
then both sides are zero. We can therefore assume that F 6= ∅. Let (εk)k∈N
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5. The Falling Mandelbrot and Van Ness sum

be a decreasing sequence of positive real numbers converging to zero. By
lemma B.2.20 we have for every k ∈ N{

ω ∈ Ω : V (2,n)(ω) ∈ F
}

⊂
{
ω ∈ Ω : ρ

(
V (1,n)(ω), V (2,n)(ω)

)
≥ εk

}
∪
{
ω ∈ Ω : V (1,n)(ω) ∈ Fεk

}
,

(5.9)

where Fεk is defined in proposition B.2.18. These three sets are elements of A,
the second by the remark for this theorem, the first and third by lemma 3.3.2.
By eq. (5.9) we have

P (2)
n (F )

= P
({
ω : V (2,n)(ω) ∈ F

})
≤ P

({
ω : ρ

(
V (1,n)(ω), V (2,n)(ω)

)
≥ εk

}
∪
{
ω : V (1,n)(ω) ∈ Fεk

})
≤ P

({
ω : ρ

(
V (1,n)(ω), V (2,n)(ω)

)
≥ εk

})
+ P

({
ω : V (1,n)(ω) ∈ Fεk

})
= P

({
ω : ρ

(
V (1,n)(ω), V (2,n)(ω)

)
≥ εk

})
+ P (1)

n (Fεk)

Hence

lim sup
n→∞

P (2)
n (F )

= lim
n→∞

sup
n′≥n
{P (2)

n′ (F )}

≤ lim
n→∞

sup
n′≥n

{
P
({
ω : ρ

(
V (1,n′)(ω), V (2,n′)(ω)

)
≥ εk

})
+ P

(1)
n′ (Fεk)

}
.

By the subadditivity of lim sup this is less than or equal to

lim sup
n→∞

P
({
ω : ρ

(
V (1,n)(ω), V (2,n)(ω)

)
≥ εk

})
+ lim sup

n→∞
P (1)
n (Fεk).

By assumption we have

lim sup
n→∞

P
({
ω : ρ

(
V (1,n)(ω), V (2,n)(ω)

)
≥ εk

})
= 0.

By assumption we also have that P (1)
n converges weakly to Q. Proposition B.2.18

tells us that Fεk is closed, so by the Portmanteau theorem we have

lim sup
n→∞

P (1)
n (Fεk) ≤ Q(Fεk).

Hence we have

lim sup
n→∞

P (2)
n (F ) ≤ lim sup

n→∞
P (1)
n (Fεk)

≤Q(Fεk),

this holds for all k ∈ N. From proposition B.2.19 we have that Fεk+1 ⊂ Fεk and⋂
k∈N

Fεk = F.
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So by continuity of measures, see [MW13, Theorem 5.1 c), p. 147] we have

lim
k→∞

Q(Fεk) = Q(F ). (5.10)

From this it will follow that

lim sup
n→∞

P (2)
n (F ) ≤ Q(F ).

To see this, assume for contradiction that

lim sup
n→∞

P (2)
n (F ) > Q(F ).

Set ∆ = lim supn→∞ P
(2)
n (F )−Q(F ) > 0. Because of eq. (5.10) we can choose

a k′ such that ∣∣Q(Fεk′ )−Q(F )
∣∣ < ∆/2.

Then we have

lim sup
n→∞

P (2)
n (F ) ≤ Q(Fεk′ )

= Q(Fεk′ )−Q(F ) +Q(F )
≤ ∆/2 +Q(F )
=∆/2−∆ + lim sup

n→∞
P (2)
n (F ).

We can cancel lim supn→∞ P
(2)
n (F ) on both sides since probability measures

are finite, so we do not have any problems with infinity on both sides. It then
follows that 0 ≤ −∆/2, but this is absurd, hence

lim sup
n→∞

P (2)
n (F ) ≤ P (F ).

This completes the proof.

We now state and prove the parallel result to theorem 3.7.3. Most of the
work is already done, but we need to connect theorem 5.3.2 to weak convergence.

Theorem 5.4.3 (Weak convergence of the falling Mandelbrot and Van
Ness sum). Let H ∈ (0, 1), assume that {δn} is a sequence of positive real
numbers converging to zero. For each δn let P fn be the measure induced by the
falling Mandelbrot and Van Ness sum, Y δn(see definition 5.4.1 for the definition
of P fn ). Then {P fn } converges weakly to the measure P induced by the Fractional
Brownian motion, see definition 3.7.1 for details about P .

Proof. This follows directly form theorem 5.3.2, theorem 5.4.2 and theorem 3.7.3.

Let us briefly reflect about the work that has led us to theorem 5.4.3. Even
though the proofs are long, we did profit from the work we did in chapter 3.
It is worth noticing that even if we wanted to repeat all the work in chapter 3
it is not entirely clear how that would be done. In proving weak convergence
in chapter 3 we relied on some values of integrals that were calculated in
[ST94], especially in lemma 3.4.3 which was used for convergence of the finite-
dimensional distributions, and in eq. (3.21) which was used to prove tightness
of the measures. We do not have this integral identity when we substitute the
powers with falling functions.
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Chapter 6

Approximation processes
described in terms of their
difference

The inspiration for this chapter is the paper [Lin07], we will combine an idea
from that paper with our previous work. In [Lin07] weak converge of a certain
sequence of processes to the Fractional Brownian motion is described. In that
paper it is not the stochastic processes that have nice properties, but the
difference between time-points t + δ and t have an elegant description. The
weak convergence is proved on the space of cádlág functions, D[0,∞), not the
space of continuous functions. The approximation processes used in [Lin07] are
piecewise constant cádlág functions. In this chapter we will derive continuous
approximation processes, where the difference will have a simple description.
We will use the same tools as we did in chapter 3 and chapter 5, that is, we
will use linear interpolation to get continuous functions, and we will use weak
convergence on C[0,∞), as was introduced in chapter 2.

We started in chapter 3 with the ordinary Mandelbrot and Van Ness sum,
and in chapter 5 we introduced the falling counterpart. Since differences of
falling powers behave very well, we will in this chapter solve our challenge the
opposite way, we will start with the processes which have falling powers. What
we will find is that for the falling case the tools from chapter 4 will make the
proofs very simple.

6.1 A process derived from the differences of Y (δ)

We recall the falling Mandelbrot and Van Ness sum from definition 5.1.5 where
for H ∈ (0, 1), δ > 0, and t ≥ 0 is a multiple of δ we have

Y
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω) · IBδ(ω).

We also remember that we have shown that if ω ∈ Bδ the sum converges, so
it is well-defined. Let t continue to be a multiple of δ. Also define ∆Y (δ)

t
.=
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Y
(δ)
t+δ − Y

(δ)
t , we will investigate this quantity.

Y
(δ)
t+δ(ω)− Y (δ)

t (ω)

= 1
CH

t∑
τ=−∞

δ

[
(t+ δ − τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω) · IBδ(ω)

− 1
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δwτ/δ(ω) · IBδ(ω)

= 1
CH

t−δ∑
τ=−∞

δ

[
(t+ δ − τ)H−

1
2 − (t− τ)H−

1
2
]√

δwτ/δ(ω) · IBδ(ω)

+ 1
CH

δ
H− 1

2
√
δwt/δ(ω)IBδ(ω)

Notice that this sum converges for every ω ∈ Bδ, this follows from elementary
techniques from calculus which tells us that if two series converges (condition-
ally), then their difference converges (conditionally), see lemma D.3.4. For our
values of τ we have that

(t+ δ − τ)H−
1
2 − (t− τ)H−

1
2 ,

is well defined, because we have

t− τ + δ ≥ t− t+ δ + δ

= 2δ.

So we see by definition 4.2.4 we don’t have any problems where we divide a
pole with a non-pole. Also notice that for our τ ∈ {t− δ, t− 2δ, t− 3δ, . . .} the
expression

δ(H − 1/2) (t− τ)H−
3
2

is well-defined because again

t− τ + δ ≥ t− t+ δ + δ

= 2δ

So again we don’t have any problems with poles. By theorem 4.2.5 we have for
our values of τ

(t+ δ − τ)H−
1
2 − (t− τ)H−

1
2 = δ(H − 1/2) (t− τ)H−

3
2 .
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This means that we have

Y
(δ)
t+δ(ω)− Y (δ)

t (ω)

= 1
CH

t−δ∑
τ=−∞

δ

[
(t+ δ − τ)H−

1
2 − (t− τ)H−

1
2
]√

δwτ/δ(ω) · IBδ(ω)

+ 1
CH

δ
H− 1

2
√
δwt/δ(ω)IBδ(ω)

= 1
CH

t−δ∑
τ=−∞

δ

[
δ(H − 1/2) (t− τ)H−

3
2
]√

δwτ/δ(ω) · IBδ(ω)

+ 1
CH

δ
H− 1

2
√
δwt/δ(ω)IBδ(ω)

= δ3/2(H − 1/2)
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

3
2 wτ/δ(ω)IBδ(ω)

]
+ δ

H− 1
2
√
δIBδ(ω)

CH
wt/δ(ω).

We now define a new process by the difference properties we derived. It may
seem unproductive to define the sum in terms of the difference, because as we
will show, we will just end up getting the familiar falling Mandelbrot and Van
Ness sum, Y (δ), but we do it nevertheless because when we go to the non-falling
case, the corresponding stochastic processes will not coincide.

Definition 6.1.1. Let H ∈ (0, 1), δ > 0 be given. Let

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}

be a collection of independent random variables, each taking the values ±1 with
equal probability. Assume that they are defined on a probability space (Ω,A, P ).
Let Bδ be as in proposition 5.1.4, then P (Bδ) = 1 Define the stochastic process
Z(δ) = (Z(δ)

t )t∈[0,∞), which also depends on H like this

(i)

Z
(δ)
0 (ω) .= 0, ∀ω ∈ Ω

(ii) If t ≥ 0 and there exists an N ∈ N ∪ {0} such that t = Nδ, we define

∆Z(δ)
t (ω) .= Z

(δ)
t+δ(ω)− Z(δ)

t (ω)

.= δ3/2(H − 1/2)
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

3
2 wτ/δ(ω)IBδ(ω)

]
+ δ

H− 1
2
√
δIBδ(ω)

CH
wt/δ(ω).

where

CH
.=
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
.

The falling powers depend on an underlying δ, this δ is chosen to be the
same as the one in the start of this definition.
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6. Approximation processes described in terms of their difference

(iii) We extend Z(δ) to all of [0,∞) by linear interpolation. Specifically if t
is not a multiple of δ, there must exist a number N ∈ N ∪ {0} such that
Nδ < t < (N + 1)δ and we define for all ω ∈ Ω

Z
(δ)
t (ω) = ((N + 1)δ − t)/δ · Z(δ)

Nδ(ω) + (t−Nδ)/δ · Z(δ)
(N+1)δ(ω).

Remark. Note that this definition is well-defined. First we have that the
sums in point (ii) converge by our discussion above. Secondly we have that(
Z

(δ)
t

)
t∈[0,∞)

is a stochastic process on (Ω,A, P ). To see this note that if t is a

multiple of δ then ∆Z(δ)
t is a random variable on (Ω,A, P ) because it is a limit

of other random variables, and if t ≥ 0, Z(δ)
t will be a finite linear combination

of random variables described in point (ii). We recall that Bδ ∈ A.

As before we define the measure induced by the process, it is identical to
definition 5.4.1.

Definition 6.1.2. Let H ∈ (0, 1), δn > 0. Let Z(δn) be as in definition 6.1.1.
We define the measure P f,dn on (C[0,∞), C) as

P f,dn (B) = P (Z(δn) ∈ B), B ∈ C,

here Zδn denotes the entire process on [0,∞). The f and d in P f,dn is to highlight
that this is a measure where we use differences, and it was derived from the
falling Mandelbrot and Van Ness Sum.

Remark. Definition 6.1.2 is well-defined this follows because we established
that

(
Zδt
)
t∈[0,∞) is a stochastic process, so we can refer to lemma 3.3.2 and

theorem C.1.1.

We now get the next theorem without that much work. It tells us that Z(δ)

is a good process to approximate the fractional Brownian motion. The reason
we are able to get this result so easy is because the difference of falling powers
behave very nicely.

Theorem 6.1.3. Let H ∈ (0, 1), assume that {δn} is a sequence of positive
real numbers converging to zero. For each δn let P f,dn be the measure induced
by Z(δn)

t (see definition 6.1.2). Then {P f,dn } converges weakly to the measure
P induced by the Fractional Brownian motion, see definition 3.7.1 for details
about P .

Proof. The result will follow from theorem 5.4.3 if we can show that for each n
and each C ∈ C

P fn (C) = P f,dn (C). (6.1)

So keep n fixed for the rest of the proof. Equation (6.1) will follow if we can
show that for each ω ∈ Ω and each t ≥ 0 we have

Y
(δn)
t (ω) = Z

(δn)
t (ω),

because if the processes are equal, their induced measures are of course equal.
For both Z(δn) and Y (δn) we interpolate linearly between points in time that
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6.1. A process derived from the differences of Y (δ)

are multiples of δn. It therefore suffices to show that they are equal on these
points in time. We will show this by induction. Let ω ∈ Ω be arbitrary, keep
this ω fixed. By definition we have

Z
(δn)
0 (ω) = 0.

We also have

Y
(δn)
0 (ω) = 1

CH

−δn∑
τ=−∞

δn

[
(−τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δnwτ/δn(ω) · IBδn (ω)

= 0.

Now assume that for N ∈ {0}∪N we have Z(δn)
Nδn

(ω) = Y
(δn)
Nδn

(ω). We must show
that this implies that Z(δn)

(N+1)δn(ω) = Y
(δn)
(N+1)δn(ω). By assumption we have

Z
(δn)
Nδn

(ω) = Y
(δn)
Nδn

(ω)

= 1
CH

Nδn−δn∑
τ=−∞

δn

[
(Nδn − τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δnwτ/δn(ω) · IBδn (ω).

We then get by using lemma D.3.4

Z
(δn)
(N+1)δn(ω)

= Z
(δn)
Nδn

(ω) + Z
(δn)
(N+1)δn(ω)− Z(δn)

Nδn
(ω)

= Z
(δn)
Nδn

(ω) + ∆Z(δn)
Nδn

(ω)

= 1
CH

Nδn−δn∑
τ=−∞

δn

[
(Nδn − τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δnwτ/δn(ω) · IBδn (ω)

+ δ
3/2
n (H − 1/2)

CH

Nδn−δn∑
τ=−∞

δn

[
(Nδn − τ)H−

3
2 wτ/δn(ω)IBδn (ω)

]

+
δ
H− 1

2
n

√
δnIBδn (ω)
CH

wN (ω).

= 1
CH

Nδn−δn∑
τ=−∞

δn

[
(Nδn − τ)H−

1
2 + δn

(
H − 1

2

)
(Nδn − τ)H−

3
2

− (−τ)
H− 1

2
+

]√
δnwτ/δn(ω) · IBδn (ω)

+
δ
H− 1

2
n

√
δnIBδn (ω)
CH

wN (ω).

For our values of τ we have that (Nδn − τ)H−
1
2 , (Nδn − τ)H−

3
2 and ((N +

1)δn − τ)H−
1
2 are well-defined, because

Nδn − τ + δn ≥ 2δn,
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6. Approximation processes described in terms of their difference

so there are no problems with poles in the numerator and non-poles in the
denominator. Then theorem 4.2.5 says that

((N + 1)δn − τ)H−
1
2 = (Nδn − τ)H−

1
2 + δn

(
H − 1

2

)
(Nδn − τ)H−

3
2 .

Hence we have

Z
(δn)
(N+1)δn(ω)

= 1
CH

Nδn−δn∑
τ=−∞

δn

[
(Nδn − τ)H−

1
2 + δn

(
H − 1

2

)
(Nδn − τ)H−

3
2

− (−τ)
H− 1

2
+

]√
δnwτ/δn(ω) · IBδn (ω)

+
δ
H− 1

2
n

√
δnIBδn (ω)
CH

wN (ω).

= 1
CH

Nδn−δn∑
τ=−∞

δn

[
((N + 1)δn − τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δnwτ/δn(ω) · IBδn (ω)

+
δ
H− 1

2
n

√
δnIBδn (ω)
CH

wN (ω).

= 1
CH

Nδn−δn∑
τ=−∞

δn

[
((N + 1)δn − τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δnwτ/δn(ω) · IBδn (ω)

+ 1
CH

[
((N + 1)δn −Nδn)H−

1
2 − (−Nδn)

H− 1
2

+

]√
δnwNδn/δn(ω)IBδn (ω)

= 1
CH

(N+1)δn−δn∑
τ=−∞

δn

[
((N + 1)δn − τ)H−

1
2 − (−τ)

H− 1
2

+

]√
δnwτ/δn(ω) · IBδn (ω).

By definition 5.1.5 this is equal to Y (δn)
(N+1)δn(ω). This completes the proof.

6.2 A process derived from the differences of X(δ)

In the section 6.1 we used Y (δ) to derive the process Z(δ), and as we saw in the
proof of theorem 6.1.3 they turned out to have equal trajectories for each ω ∈ Ω.
We will do something similar in this section, but with X(δ). Since we have
regular powers in this case, the proofs will not be so simple, and we trajectories
won’t necessarily be equal.

Let us recall from definition 3.2.6 that if H ∈ (0, 1), δ > 0, ω ∈ Ω and t ≥ 0
is a multiple of δ we have

X
(δ)
t (ω) .= 1

CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω) · IAδ(ω).
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6.2. A process derived from the differences of X(δ)

Now let us investigate the difference

∆X(δ)
t (ω) .= X

(δ)
t+δ(ω)−X(δ)

t (ω)

= 1
CH

t∑
τ=−∞

δ

[
(t+ δ − τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω) · IAδ(ω)

− 1
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 1

2 − (−τ)H−
1
2

+

]√
δwτ/δ(ω) · IAδ(ω)

= 1
CH

t−δ∑
τ=−∞

δ

[
(t+ δ − τ)H− 1

2 − (t− τ)H− 1
2

]√
δwτ/δ(ω) · IAδ(ω)

+
δHwt/δIAδ(ω)

CH
.

From elementary calculus the approximation

(t+ δ − τ)H− 1
2 − (t− τ)H− 1

2 ≈ δ
(
H − 1

2

)
(t− τ)H− 3

2 ,

is known. We will show that if we make this substitution in the sum in

1
CH

t−δ∑
τ=−∞

δ

[
(t+ δ − τ)H− 1

2 − (t− τ)H− 1
2

]√
δwτ/δ(ω) · IAδ(ω)

+
δHwt/δIAδ(ω)

CH
,

and modify the last term then define this to be ∆U (δ)
t of a new process U (δ), we

still get weak convergence to the fractional Brownian motion. Before we make
a formal definition of U (δ) we need a result to show that it is well-defined. The
first lemma is closely related to lemma 3.2.4 and lemma 5.1.3. These lemmas
were used in the aid of showing that X(δ) and Y (δ) were well-defined. We didn’t
need one for Z(δ), because Z(δ) was so close to Y (δ) that it being well-defined
followed from Y (δ) being well-defined. We will end up not using Aδ from X(δ),
but we will find a new set with probability one, which we will use.

Lemma 6.2.1. Let H ∈ (0, 1), δ > 0 and let t ≥ 0 be a multiple of δ. Then
t−δ∑

τ=−∞
δ

[
(t− τ)H−

3
2
]2
<∞.

Proof. This proof is very simple. We must have t = Nδ,N ∈ {0} ∪ N. We first
substitute rδ = τ , and then N − r = r′

t−δ∑
τ=−∞

δ

[
(t− τ)H−

3
2
]2

=
N−1∑
r=−∞

[
(Nδ − rδ)H−

3
2
]2

= δ2H−3
N−1∑
r=−∞

1
(N − r)3−2H

= δ2H−3
∞∑
r′=1

1
r′3−2H .
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6. Approximation processes described in terms of their difference

Recalling that 3− 2H > 1 the last series converges from a well-known result
from calculus.

We now define a function in terms of Gamma functions. This is needed
because we will prove that our process U (δ) is close to Z(δ).

Definition 6.2.2. Let H ∈ (0, 1). Define the function

εH : N→ R,

by

εH(r) = r3/2−HΓ(r + 1)
Γ(r −H + 5/2) − 1.

Remark. The definition is well-defined because we never divide by zero.

Now we prove a result for εH which we will need.

Proposition 6.2.3. Let H ∈ (0, 1), let εH be as in definition 6.2.2. Then there
is a constant KεH such that for all r ∈ N

|εH(r) · r| ≤ KεH .

Proof. In lemma 5.2.1 we showed in eq. (5.4) that

Γ(r + a)
Γ(r + b) = ra−b

(
1 +O

(
1
r

))
,

as r →∞. Now let a = 1 and b = 5/2−H. We then have

rH−3/2 (1 + εH(r)) = rH−3/2
(

1 + r3/2−HΓ(r + 1)
Γ(r −H + 5/2) − 1

)
= Γ(r + 1)

Γ(r −H + 5/2) .

This means that εH(r) is of the form O
( 1
r

)
as r → ∞. Hence there exists

r∗,M∗ such that if r ≥ r∗ we have

|εH(r)| ≤M∗ · 1
r
.

So if r ≥ r∗ we have

|εH(r)r| ≤M∗.

If r∗ = 1 choose, KεH = M∗, if not, choose

KεH = max {|εH(1)1|, |εH(2)2|, . . . , |εH(r∗ − 1)(r∗ − 1)|,M∗} .

Then KεH is well-defined because it is the maximum of a finite number of values,
and by construction it satisfies the required properties.

Now we define a constant to be used later.
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6.2. A process derived from the differences of X(δ)

Definition 6.2.4. Let H ∈ (0, 1), define

K
(U)
H

.= Γ(2)
Γ
( 5

2 −H
) +

(
H − 1

2

) ∞∑
r=1

rH−
3
2 εH(r),

where εH(t) is defined in definition 6.2.2.

Remark. K(U)
H is a well-defined real number because the sum converges abso-

lutely. To see this, we utilize proposition 6.2.3 to get
∞∑
r=1

∣∣∣rH− 3
2 εH(r)

∣∣∣ =
∞∑
r=1

∣∣∣rH− 5
2 εH(r)r

∣∣∣
≤ KεH

∞∑
r=1

∣∣∣rH− 5
2

∣∣∣
<∞,

since H − 5/2 < −1.

We now prove that there is a set with probability one where we have
convergence. The proof is very similar to proposition 3.2.5 and proposition 5.1.4.

Proposition 6.2.5. Let W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} be a col-
lection of independent random variables, each taking the values ±1 with equal
probability. Assume that they are defined on a probability space (Ω,A, P ). As-
sume also that H ∈ (0, 1) and that δ > 0. Then there exists a set Dδ ∈ A(also
depending on H) with

P (Dδ) = 1,

such that if t ≥ 0 is a real number, and t is a multiple of δ, we have that for
ω ∈ Dδ

δ3/2 (H − 1/2)
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 3

2wτ/δ(ω)
]

converges in R.

Remark. In proposition 3.2.5 we used Aδ and in proposition 5.1.4 we used Bδ,
in section 6.1 we could still use Bδ. The reason we do not name the set in this
proposition Cδ is to not confuse it with the constant CH , or with a set in C.

Proof. We follow the same outline as the proofs of proposition 3.2.5 and propo-
sition 5.1.4. Assume first that t is a multiple of δ. From lemma 6.2.1 we have
that

t−δ∑
τ=−∞

δ

[
δ

3
2 (H − 1/2)

CH
(t− τ)H− 3

2

]2

<∞.

It then follows [MW13, Proposition 7.11, p. 260] and its proof, that there is a
set Dδ,t ∈ A with P (Dδ,t) = 1. Such that for ω ∈ Dδ,t we have that

δ3/2 (H − 1/2)
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H− 3

2wτ/δ(ω)
]
,
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6. Approximation processes described in terms of their difference

converges in R.
There are only a countable number of t ≥ 0 that is a multiple of δn, let

Dδ =
⋂

r∈N∪{0}

Dδ,rδ.

Because of countability and elementary properties of measures we have that
P (Dδ) = 1. By construction Dδ has the required properties, and the proof is
done.

We are now ready to define the main process for this section. It is similar
to the process in definition 6.1.1 but we do not have falling powers.

Definition 6.2.6. Let H ∈ (0, 1), δ > 0 be given. Let

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}

be a collection of independent random variables, each taking the values ±1 with
equal probability. Assume that they are defined on a probability space (Ω,A, P ).
Let Dδ be as in proposition 6.2.5, then P (Dδ) = 1. Define the stochastic process
U (δ) = (U (δ)

t )t∈[0,∞), which also depends on H, as follows

(i)

U
(δ)
0 (ω) .= 0, ∀ω ∈ Ω

(ii) If t ≥ 0 and there exists an N ∈ N ∪ {0} such that t = Nδ we define

∆U (δ)
t (ω) .= U

(δ)
t+δ(ω)− U (δ)

t (ω)

.= δ3/2(H − 1/2)
CH

t−δ∑
τ=−∞

δ

[
(t− τ)H−

3
2 wτ/δ(ω)IDδ(ω)

]
+ K

(U)
H δH

CH
wt/δ(ω)IDδ(ω).

where

CH
.=
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
.

(iii) We extend U (δ) to all of [0,∞) by linear interpolation. Specifically if t
is not a multiple of δ, there must exist a number N ∈ N ∪ {0} such that
Nδ < t < (N + 1)δ and we define for all ω ∈ Ω

U
(δ)
t (ω) = ((N + 1)δ − t)/δ · U (δ)

Nδ(ω) + (t−Nδ)/δ · U (δ)
(N+1)δ(ω).

Remark. Note that this definition is well-defined. We have convergence of the
sums in point (ii) by proposition 6.2.5. Secondly we have that

(
U

(δ)
t

)
t∈[0,∞)

is a continuous stochastic process on (Ω,A, P ). To see this note that if t is a
multiple of δ, then ∆U (δ)

t is a random variable on (Ω,A, P ) because it is a limit
of other random variables, and if t ≥ 0, U (δ)

t will be a finite linear combination
of random variables described in point (ii).
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As we did with X(δ), Y (δ) and Z(δ) we define the measures induced by the
process U (δ).

Definition 6.2.7. Let H ∈ (0, 1), δn > 0. Let U (δn) be as in definition 6.2.6.
We define the measure P dn on (C[0,∞), C) as

P dn(B) = P (U (δn) ∈ B), B ∈ C,

The d in P dn is to denote that this is a measure induced by the process which is
described by its difference.

Remark. As with Pn, P
f
n , P

f,d
n , definition 6.2.7 is well-defined because we

established that
(
Uδt
)
t∈[0,∞) is a continuous stochastic process, so we can refer

to lemma 3.3.2 and theorem C.1.1.

6.3 Three helpful lemmas

This section contains three lemmas to be used in the next section. It can be
read as it stands, or one can skip to the next section and look back to this
section when the results are needed.

Lemma 6.3.1. Let H ∈ (0, 1), 0 < δ < 1. Let K ∈ N. Then there exists a
constant M (1)

K,H such that for all t such that 0 < t ≤ K + 1 where t is also a
multiple of δ, we have

√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

] ∣∣∣∣∣ ≤M (1)
K,Hδ

α,

where M (1)
K,H only depends on H and K, and α = min{H, 1/2}.

Proof. If H = 1/2 the values inside the outer sums are all zero, so the result
then follows with M (1)

K,H = 1. So we can assume that H 6= 1/2.
Keep t fixed for the rest of the proof, we have by assumetion that t = Jδ, J ∈

N. By definition of the falling powers we have

(s− τ)H−
3
2 = Γδ(s− τ + δ)

Γδ(s− τ − (H − 3/2− 1)δ)

=
δ(s−τ)/δ+1Γ

(
s−τ
δ + 1

)
δ(s−τ)/δ−H+5/2Γ

(
s−τ
δ −H + 5

2
)

= δH−3/2 Γ
(
s−τ
δ + 1

)
Γ
(
s−τ
δ −H + 5

2
) .
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Using this we get
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H−

3
2

] ∣∣∣∣∣
=
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
δH−3/2 Γ

(
s−τ
δ

+ 1
)

Γ
(
s−τ
δ
−H + 5

2

) − (s− τ)H−
3
2

] ∣∣∣∣∣
=
√
δ

CH

−1∑
r1=−∞

∣∣∣∣∣δ(H − 1/2)
J−1∑
r2=0

[
δH−3/2 Γ (r2 − r1 + 1)

Γ
(
r2 − r1 −H + 5

2

) − (r2δ − r1δ)H−
3
2

] ∣∣∣∣∣
= δH |H − 1/2|

CH

−1∑
r1=−∞

∣∣∣∣∣
J−1∑
r2=0

Γ (r2 − r1 + 1)
Γ
(
r2 − r1 −H + 5

2

) − (r2 − r1)H−
3
2

∣∣∣∣∣
≤ δH |H − 1/2|

CH

−1∑
r1=−∞

J−1∑
r2=0

∣∣∣∣∣ Γ (r2 − r1 + 1)
Γ
(
r2 − r1 −H + 5

2

) − (r2 − r1)H−
3
2

∣∣∣∣∣
= δH |H − 1/2|

CH

−1∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H−
3
2

∣∣∣∣∣ (r2 − r1)3/2−HΓ (r2 − r1 + 1)
Γ
(
r2 − r1 −H + 5

2

) − 1

∣∣∣∣∣
= δH |H − 1/2|

CH

−1∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H−
3
2

∣∣∣∣∣εH(r2 − r1)

∣∣∣∣∣,
where εH(r2 − r1) is defined in definition 6.2.2. From proposition 6.2.3 we have

δH |H − 1/2|
CH

−1∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H− 3
2

∣∣∣∣∣εH(r2 − r1)

∣∣∣∣∣
= δH |H − 1/2|

CH

−1∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H− 5
2

∣∣∣∣∣εH(r2 − r1)(r2 − r1)

∣∣∣∣∣
≤ δH |H − 1/2|

CH

−1∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H− 5
2KεH

= δH |H − 1/2|KεH

CH

(
J−1∑
r2=0

(r2 + 1)H− 5
2 +

−2∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H− 5
2

)

≤ δH |H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2 +

−2∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H− 5
2

)
.

To summarize, we have now proved
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

] ∣∣∣∣∣
≤ δH |H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2 +

−2∑
r1=−∞

J−1∑
r2=0

(r2 − r1)H− 5
2

)
.

(6.2)
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Notice that for r1 ≤ −2 we have

J−1∑
r2=0

(r2 − r1)H− 5
2 ≤

∫ J

0
(x− 1− r1)H− 5

2 dx

=
∫ J−1−r1

−1−r1

uH−
5
2 du

= 1
H − 3

2
uH−

3
2

∣∣∣∣∣
J−1−r1

−1−r1

= 1
H − 3

2

(
(J − 1− r1)H− 3

2 − (−1− r1)H− 3
2

)
= |H − 3/2|−1

(
(−1− r1)H− 3

2 − (J − 1− r1)H− 3
2

)
.

(6.3)

In the first inequality we have used that for r2 ∈ {0, . . . , J − 1} and for
x ∈ [r2, r2 + 1], we have

(x− 1− r1)H−5/2 ≥ (r2 − r1)H−5/2.

Combining eq. (6.2) and eq. (6.3) we get
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H−

3
2

] ∣∣∣∣∣
≤ δH |H − 1/2|KεH

CH

(
∞∑
r2=0

(r2 + 1)H−
5
2

+
−2∑

r1=−∞

|H − 3/2|−1
(

(−1− r1)H−
3
2 − (J − 1− r1)H−

3
2

))

= δH |H − 1/2|KεH

CH

(
∞∑
r2=0

(r2 + 1)H−
5
2

+
∞∑
r′1=2

|H − 3/2|−1
(

(−1 + r′1)H−
3
2 − (J − 1 + r′1)H−

3
2

))

= δH |H − 1/2|KεH

CH

(
∞∑
r2=0

(r2 + 1)H−
5
2

+
∞∑
r′3=1

|H − 3/2|−1
(
r
H− 3

2
3 − (J + r3)H−

3
2

))
.

(6.4)
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Assume first that H < 1/2, using eq. (6.4) we get
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

] ∣∣∣∣∣
≤ δH |H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+
∞∑
r′3=1

|H − 3/2|−1
(
r
H− 3

2
3 − (J + r3)H− 3

2

))

≤ |H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2 +

∞∑
r′3=1

|H − 3/2|−1
r
H− 3

2
3

)
· δH .

So the result follows with

M
(1)
K,H = |H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2 +

∞∑
r′3=1

|H − 3/2|−1
r
H− 3

2
3

)
.

Assume now that H > 1/2. From eq. (6.4) we have
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

] ∣∣∣∣∣
≤ δH |H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+
∞∑
r′3=1

|H − 3/2|−1
(
r
H− 3

2
3 − (J + r3)H− 3

2

))
.

=
√
δ|H − 1/2|KεH

CH

(
δH−1/2

∞∑
r2=0

(r2 + 1)H− 5
2

+
∞∑
r′3=1

|H − 3/2|−1
(

(r3δ)H−
3
2 − (Jδ + r3δ)H−

3
2

)
δ

)

≤
√
δ|H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+
∞∑
r′3=1

|H − 3/2|−1
(

(r3δ)H−
3
2 − (Jδ + r3δ)H−

3
2

)
δ

)
,

where we in the last step remember that δ < 1. The last expression is equal to
√
δ|H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+ |H − 3/2|−1
∞∑
τ=δ

δ

(
τH−

3
2 − (t+ τ)H− 3

2

)
δ

)
.
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The last sum increases with t so we have
√
δ|H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+ |H − 3/2|−1
∞∑
τ=δ

δ

(
τH−

3
2 − (t+ τ)H− 3

2

)
δ

)

≤
√
δ|H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+ |H − 3/2|−1
∞∑
τ=δ

δ

(
τH−

3
2 − (K + 1 + τ)H− 3

2

)
δ

)
.

So we have that
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H−

3
2

] ∣∣∣∣∣
≤
√
δ|H − 1/2|KεH

CH

(
∞∑
r2=0

(r2 + 1)H−
5
2

+ |H − 3/2|−1
∞∑
τ=δ

δ

(
τH−

3
2 − (K + 1 + τ)H−

3
2

)
δ

)
.

(6.5)

If we differentiate xH− 3
2 − (K + 1 + x)H− 3

2 with respect to x, we get

(H − 3/2)
(
xH−5/2 − (K + 1 + x)H−5/2

)
.

This expression is negative for positive values of x. This means that on x ∈
(τ − δ, τ ] we have

xH−
3
2 − (K + 1 + x)H− 3

2 ≥ τH− 3
2 − (K + 1 + τ)H− 3

2 .

So by using that xH− 3
2 − (K + 1 + x)H− 3

2 is positive for positive values of x,
we have
∞∑
τ=δ

δ

(
τH−

3
2 − (K + 1 + τ)H− 3

2

)
δ ≤

∫ ∞
0

(
xH−

3
2 − (K + 1 + x)H− 3

2

)
dx.

If we can show that the last integral is finite, then we will be done because by
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eq. (6.5) we will have that
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

] ∣∣∣∣∣
≤
√
δ|H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+ |H − 3/2|−1
∞∑
τ=δ

δ

(
τH−

3
2 − (K + 1 + τ)H− 3

2

)
δ

)
.

≤
√
δ|H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+ |H − 3/2|−1
∫ ∞

0

(
xH−

3
2 − (K + 1 + x)H− 3

2

)
dx

)
= M

(1)
H,K

√
δ,

where

M
(1)
H,K = |H − 1/2|KεH

CH

( ∞∑
r2=0

(r2 + 1)H− 5
2

+ |H − 3/2|−1
∫ ∞

0

(
xH−

3
2 − (K + 1 + x)H− 3

2

)
dx

)
.

So let us end this proof by showing that∫ ∞
0

(
xH−

3
2 − (K + 1 + x)H− 3

2

)
dx <∞.

One can split the integral up and integrate first on (0, 1] then on [1,∞). On
(0, 1] there is no problem because H − 3/2 > −1. We know that∫ ∞

1
x2H−3 <∞,

since 2H − 3 < −1. So on (1,∞) we use the limit-comparison test with x2H−3.
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By rewriting and using l’Hôpitals rule we get

lim
x→∞

xH−
3
2 − (K + 1 + x)H−

3
2

x2H−3

= lim
x→∞

1−
(
K+1+x

x

)H− 3
2

xH−
3
2

= lim
x→∞

−(H − 3/2)
(
K+1+x

x

)H− 5
2
(
x−(K+1+x)

x2

)
(H − 3/2)xH−5/2

= lim
x→∞

−
(
K+1+x

x

)H− 5
2
(
−(K+1)

x2

)
xH−5/2

= lim
x→∞

(K + 1)
(
K + 1 + x

x

)H− 5
2

x1/2−H

= 0.

We get 0 in the last equality because 1/2−H < 0. This completes the proof.

Lemma 6.3.2. Let H ∈ (0, 1), δ > 0, and K ∈ N. Then there exists a constant
M

(2)
K,H such that for all t such that 2δ ≤ t ≤ K + 1 where t is also a multiple of

δ we have
√
δ

CH

t−2δ∑
τ=0

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑

s=τ+δ
δ

[
(s− τ)H−

3
2 − (s− τ)H−

3
2

]
+ δ

H− 1
2 −K(U)

H δH−
1
2

∣∣∣∣∣
≤M (2)

K,Hδ
α,

(6.6)

where M (2)
K,H only depends on H and K, and α = min{H, 1/2}. K(U)

H is defined
in definition 6.2.4.

Proof. We will first show that the lemma holds for H = 1/2. Notice that

δ
1
2−

1
2 = Γδ(δ + δ)

Γδ(δ − (−1)δ) = 1.

K
(U)
1/2 = Γ(2)

Γ
( 5

2 −
1
2
) +

(
H − 1

2

) ∞∑
r=1

rH−
3
2 εH(r) = 1.

This means that the left hand-side in (6.6) is zero, so the result follows with
M

(2)
K,H = 1. So for the rest of the proof we can assume that H 6= 1/2.
For our combinations of s and τ in (6.6) our values of s − τ are greater

than δ. So by the definition of falling powers, see definition 4.2.4, and by the
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definition of εH(r), see definition 6.2.2, we get

(s− τ)H−
3
2 − (s− τ)H− 3

2 = Γδ(s− τ + δ)
Γδ(s− τ − (H − 3/2− 1)δ) − (s− τ)H− 3

2

= δH−
3
2

Γ
(
s−τ
δ + 1

)
Γ
(
s−τ
δ + 5/2−H

) − (s− τ)H− 3
2

= (s− τ)H− 3
2

((
s−τ
δ

)3/2−H Γ
(
s−τ
δ + 1

)
Γ
(
s−τ
δ + 5/2−H

) − 1
)

= (s− τ)H− 3
2 εH

(
s− τ
δ

)
.

Hence we have by using that t = Jδ

√
δ

CH

t−2δ∑
τ=0

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑

s=τ+δ
δ

[
(s− τ)H−

3
2 − (s− τ)H−

3
2

]
+ δ

H− 1
2 −K(U)

H δH−
1
2

∣∣∣∣∣
=
√
δ

CH

t−2δ∑
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δ

∣∣∣∣∣δ(H − 1/2)
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s=τ+δ
δ

[
(s− τ)H−

3
2 εH

(
s− τ
δ

)]
+ δ

H− 1
2 −K(U)

H δH−
1
2

∣∣∣∣∣
=
√
δ

CH

J−2∑
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∣∣∣∣∣δ(H − 1/2)
J−1∑

r2=r1+1

[
(r2δ − r1δ)H−

3
2 εH (r2 − r1)

]
+ δ

H− 1
2 −K(U)

H δH−
1
2

∣∣∣∣∣.
(6.7)

We need to rewrite δH−1/2. We have

δ
H− 1

2 = Γδ(δ + δ)
Γδ(δ − (H − 1/2− 1)δ)

= δ2Γ(2)
δ5/2−HΓ

( 5
2 −H

)
= δH−

1
2

Γ(2)
Γ
( 5

2 −H
) .

Combining this with eq. (6.7) we get
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δ

CH

t−2δ∑
τ=0

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑

s=τ+δ
δ
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(s− τ)H−
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2 − (s− τ)H−

3
2

]
+ δ

H− 1
2 −K(U)

H δH−
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2

∣∣∣∣∣
=
√
δ

CH
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∣∣∣∣∣δ(H − 1/2)
J−1∑
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[
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3
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]
+ δ
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2 −K(U)

H δH−
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2

∣∣∣∣∣
= δH

CH
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∣∣∣∣∣(H − 1/2)
J−1∑
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[
(r2 − r1)H−

3
2 εH (r2 − r1)

]
+ Γ(2)

Γ
(

5
2 −H

) −K(U)
H

∣∣∣∣∣.
(6.8)

We will now use a trick similar to what Tom Lindstrøm did in his article [Lin07]
for H < 1/2 on page 6 where he wrote a sum as the difference of the infinite
sums. Because of the presence of εH(r) this trick will work for all H ∈ (0, 1)
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for us. We have
J−1∑

r2=r1+1

[
(r2 − r1)H− 3

2 εH (r2 − r1)
]

=
∞∑

r2=r1+1

[
(r2 − r1)H− 3

2 εH (r2 − r1)
]
−
∞∑

r2=J

[
(r2 − r1)H− 3

2 εH (r2 − r1)
]
.

(6.9)

This rewriting of the series is justified because we have absolute convergence of
the infinite sum. Let us see why:

∞∑
r2=r1+1

∣∣∣(r2 − r1)H− 3
2 εH (r2 − r1)

∣∣∣
=
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≤ KεH
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(r2 − r1)H− 5
2

<∞.

In the second inequality we used proposition 6.2.3, and the last inequality
follows because H − 5/2 < −1. Combining eq. (6.8) and eq. (6.9) we get
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Γ
(

5
2 −H

) −K(U)
H
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(6.10)

where we in fourth equality used the definition of K(U)
H , and in the last inequality

we used proposition 6.2.3. We recall that since our values of t is greater than or
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equal to 2δ, we have J ≥ 2. Notice that for our values of r1 and r2 we have that
r2−r1 ≥ 2. For r1 ∈ {0, . . . , J−2} we have that (x−1−r1)H−5/2 is decreasing
on [J,∞). So for a given r2 ∈ {J, J + 1, . . .} we have that for x ∈ [r2, r2 + 1]

(x− 1− r1)H− 5
2 ≥ (r2 − r1)H− 5

2 .

This means that we have
∞∑

r2=J
(r2 − r1)H− 5

2 ≤
∫ ∞
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=
∫ ∞
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2
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2 .

Combining this with eq. (6.10) we get
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(6.11)

where we lastly used the substitution r3 = J − 1− r1.
For H < 1/2 our result now follows directly from eq. (6.11) with

M
(2)
H,K = |H − 1/2| |H − 3/2|−1KεH

CH

∞∑
r3=1

r
H− 3

2
3 .

Assume now that H > 1/2. From eq. (6.11) we get
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√
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t−δ∑
τ=δ

δ
τH−

3
2 δ.

(6.12)
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6.3. Three helpful lemmas

We have that the function xH−3/2 is decreasing on (0,∞). Assume that τ ≥ δ
we then have for x ∈ (τ − δ, τ ]

xH−
3
2 ≥ τH− 3

2 .

This means that
t−δ∑
τ=δ

δ
τH−

3
2 δ ≤

∫ t−δ

0
xH−

3
2 du

= 1
H − 1

2
xH−

1
2

∣∣∣∣∣
t−δ

0

= (H − 1/2)−1(t− δ)H− 1
2

≤ (H − 1/2)−1tH−
1
2

≤ (H − 1/2)−1(K + 1)H− 1
2 .

(6.13)

Notice that we were able to evaluate the integral because H > 1/2. This is
crucial for this argument. From eq. (6.12) and eq. (6.13) the result now follows
for H > 1/2 with

M
(2)
H,K = |H − 3/2|−1KεH (K + 1)H− 1

2

CH
.

Lemma 6.3.3. Let H ∈ (0, 1), 0 < δ < 1.Then there exists a non-negative
constant M (1)

H such that∣∣∣∣∣δ
H− 1

2
√
δ

CH
−
K

(U)
H δH

CH

∣∣∣∣∣ ≤M (1)
H δα

where M (1)
H only depends on H and K, and α = min{H, 1/2}. K(U)

H is defined
in definition 6.2.4.

Proof. A direct calculation gives us∣∣∣∣∣δ
H− 1

2
√
δ

CH
−
K

(U)
H δH

CH

∣∣∣∣∣ =

∣∣∣∣∣ Γδ(δ + δ)
√
δ

Γδ(δ − (H − 1/2− 1)δ)CH
−
K

(U)
H δH

CH

∣∣∣∣∣
=

∣∣∣∣∣ δ2Γ(2)
√
δ

δ5/2−HΓ(5/2−H)CH
−
K

(U)
H δH

CH

∣∣∣∣∣
=

∣∣∣∣∣ Γ(2)
Γ(5/2−H)CH

−
K

(U)
H

CH

∣∣∣∣∣ δH .
Hence for H ≤ 1/2 the results holds with

M
(1)
H =

∣∣∣∣∣ Γ(2)
Γ(5/2−H)CH

−
K

(U)
H

CH

∣∣∣∣∣ .
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6. Approximation processes described in terms of their difference

For H > 1/2 we get by noting that H − 1/2 > 0, and 0 < δ < 1

δH =
√
δδH−1/2 ≤

√
δ,

so the result holds with the same M (1)
H for H > 1/2.

6.4 Closeness of Z(δ) and U (δ)

Now we will prove that Z(δ) and U (δ) are "close" if δ is small. We will end up
with similar results from when we proved that X(δ) and Y (δ) were close.

Proposition 6.4.1. Let H ∈ (0, 1), 0 < δ < 1. Assume also that

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}

is a collection of independent random variables, each taking the values ±1 with
equal probability, assume that they are defined on a probability space (Ω,A, P ).
Let Z(δ) be as in definition 6.1.1, and U (δ) be as in definition 6.2.6, where
W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} is the same in both cases.

Then there exists a set E(δ,H) ∈ A only depending on δ and H, with
P (E(δ,H)) = 1, such that for every every K ∈ N, there exists a constant
MK,H only depending on K and H such that for t ∈ [0,K], ω ∈ E(δ,H) we have∣∣∣Z(δ)

t (ω)− U (δ)
t (ω)

∣∣∣ ≤MK,Hδ
α,

where α is a real number such that α = min{H, 1/2}.

Proof. First we assume that t ∈ [0,K + 1] and that t is a multiple of δ. By
definition ∣∣∣Z(δ)

t (ω)− U (δ)
t (ω)

∣∣∣ = 0,

if t = 0 so we assume that t > 0. We then recall that

Z
(δ)
t (ω) =

t−δ∑
s=0

δ

{
δ3/2(H − 1/2)

CH

s−δ∑
τ=−∞

δ

[
(s− τ)H−

3
2 wτ/δ(ω)IBδ(ω)

]
+ δH−1/2√δ

CH
ws/δ(ω)IBδ(ω)

}
.

,

and

U
(δ)
t (ω) =

t−δ∑
s=0

δ

{
δ3/2(H − 1/2)

CH

s−δ∑
τ=−∞

δ

[
(s− τ)H−

3
2 wτ/δ(ω)IDδ(ω)

]
+ K

(U)
H δH

CH
ws/δ(ω)IDδ(ω)

}
.

Define E(δ,H)
.= Bδ ∩ Dδ, since Aδ and Dδ only depend on δ and H so does

E(δ,H). We also have that P (E(δ,H)) = 1. From now on assume that ω ∈ E(δ,H).
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6.4. Closeness of Z(δ) and U (δ)

Then the sums in both expression above for Z(δ)
t (ω) and U (δ)

t (ω) converge by
the discussion before definition 6.1.1 and by proposition 6.2.5. Since the outer
sums are finite it follows by a simple argument that we can interchange the
sums, see lemma D.3.4. We get

U
(δ)
t (ω)

=
t−δ∑
s=0

δ

{
δ3/2(H − 1/2)

CH

s−δ∑
τ=−∞

δ

[
(s− τ)H−

3
2 wτ/δ(ω)

]
+ K

(U)
H δH

CH
ws/δ(ω)

}
.

=
−δ∑

τ=−∞
δ

(
δ3/2(H − 1/2)

CH

{
t−δ∑
s=0

δ

[
(s− τ)H−

3
2
]}

wτ/δ(ω)
)

+
t−2δ∑
τ=0

δ

(
δ3/2(H − 1/2)

CH

{
t−δ∑

s=τ+δ
δ

[
(s− τ)H−

3
2
]}

wτ/δ(ω)
)

+
t−δ∑
s=0

δ

K
(U)
H δH

CH
ws/δ(ω)

=
√
δ

CH

−δ∑
τ=−∞

δ

({
t−δ∑
s=0

δ

[
δ(H − 1/2) (s− τ)H−

3
2
]}

wτ/δ(ω)
)

+
√
δ

CH

t−2δ∑
τ=0

δ

({
t−δ∑

s=τ+δ
δ

[
δ(H − 1/2) (s− τ)H−

3
2
]}

wτ/δ(ω)
)

+
t−δ∑
s=0

δ

K
(U)
H δH

CH
ws/δ(ω)

=
√
δ

CH

−δ∑
τ=−∞

δ

({
t−δ∑
s=0

δ

[
δ(H − 1/2) (s− τ)H−

3
2
]}

wτ/δ(ω)
)

+
√
δ

CH

t−2δ∑
τ=0

δ

({
t−δ∑

s=τ+δ
δ

[
δ(H − 1/2) (s− τ)H−

3
2
]

+K
(U)
H δH−

1
2

}
wτ/δ(ω)

)

+K
(U)
H δH

CH
w(t−δ)/δ(ω),

notice that if t = δ the sum from τ = 0 to τ = t− 2δ does not appear. We now
manipulate the expression for Z(δ)

t (ω) to resemble the manipulated expression
for U (δ)

t (ω), remembering that we assume ω ∈ E(δ,H) and t > 0 and t is a
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6. Approximation processes described in terms of their difference

multiple of δ, we get

Z
(δ)
t (ω) =

t−δ∑
s=0

δ

(
δ3/2(H − 1/2)

CH

s−δ∑
τ=−∞

δ

[
(s− τ)H−

3
2 wτ/δ(ω)

]
+ δ

H− 1
2
√
δ

CH
ws/δ(ω)

)

=
−δ∑

τ=−∞
δ

(
δ3/2(H − 1/2)

CH

{
t−δ∑
s=0

δ
(s− τ)H−

3
2

}
wτ/δ(ω)

)

+
t−2δ∑
τ=0

δ

(
δ3/2(H − 1/2)

CH

{
t−δ∑

s=τ+δ
δ

(s− τ)H−
3
2

}
wτ/δ(ω)

)

+
t−δ∑
s=0

δ

δ
H− 1

2
√
δ

CH
ws/δ(ω)

=
√
δ

CH

−δ∑
τ=−∞

δ

({
t−δ∑
s=0

δ
δ(H − 1/2) (s− τ)H−

3
2

}
wτ/δ(ω)

)

+
√
δ

CH

t−2δ∑
τ=0

δ

({
t−δ∑

s=τ+δ
δ

[
δ(H − 1/2) (s− τ)H−

3
2
]

+ δ
H− 1

2

}
wτ/δ(ω)

)

+δ
H− 1

2
√
δ

CH
w(t−δ)/δ(ω).

Again if t = δ the sum from τ = 0 to τ = t− 2δ does not appear. This means
that
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6.4. Closeness of Z(δ) and U (δ)

∣∣∣Z(δ)
t (ω)− U (δ)

t (ω)
∣∣∣

=

∣∣∣∣∣
√
δ

CH

−δ∑
τ=−∞

δ

({
t−δ∑
s=0

δ
δ(H − 1/2) (s− τ)H−

3
2

}
wτ/δ(ω)

)

+
√
δ

CH

t−2δ∑
τ=0

δ

({
t−δ∑

s=τ+δ
δ

[
δ(H − 1/2) (s− τ)H−

3
2
]

+ δ
H− 1

2

}
wτ/δ(ω)

)

+δ
H− 1

2
√
δ

CH
w(t−δ)/δ(ω)

−
√
δ

CH

−δ∑
τ=−∞

δ

({
t−δ∑
s=0

δ

[
δ(H − 1/2) (s− τ)H−

3
2
]}

wτ/δ(ω)
)

−
√
δ

CH

t−2δ∑
τ=0

δ

({
t−δ∑

s=τ+δ
δ

[
δ(H − 1/2) (s− τ)H−

3
2
]

+K
(U)
H δH−

1
2

}
wτ/δ(ω)

)

−
K

(U)
H δH

CH
w(t−δ)/δ(ω)

∣∣∣∣∣
=

∣∣∣∣∣
√
δ

CH

−δ∑
τ=−∞

δ

({
δ(H − 1/2)

t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

]}
wτ/δ(ω)

)

+
√
δ

CH

t−2δ∑
τ=0

δ

({
δ(H − 1/2)

t−δ∑
s=τ+δ

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

]
+ δ

H− 1
2 −K(U)

H δH−
1
2

}
wτ/δ(ω)

)

+
(
δ
H− 1

2
√
δ

CH
−
K

(U)
H δH

CH

)
w(t−δ)/δ(ω)

∣∣∣∣∣
≤
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

] ∣∣∣∣∣
+
√
δ

CH

t−2δ∑
τ=0

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑

s=τ+δ
δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

]
+ δ

H− 1
2 −K(U)

H δH−
1
2

∣∣∣∣∣
+

∣∣∣∣∣δ
H− 1

2
√
δ

CH
−
K

(U)
H δH

CH

∣∣∣∣∣ ,
(6.14)

where we have used that for a real series Σ∞i=1ai which converges (conditionally)
|Σ∞i=1ai| ≤ Σ∞i=1|ai|. This is just a simple convergence argument utilizing the
triangle inequality and the proof is omitted. If t = δ the sum from τ = 0 to
τ = t− 2δ does not appear. Notice also that the dependence of ω is now gone.
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6. Approximation processes described in terms of their difference

Assume first that t = δ, then from eq. (6.14), lemma 6.3.1 and lemma 6.3.3∣∣∣Z(δ)
t (ω)− U (δ)

t (ω)
∣∣∣

≤
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H− 3

2

] ∣∣∣∣∣
+

∣∣∣∣∣δ
H− 1

2
√
δ

CH
−
K

(U)
H δH

CH

∣∣∣∣∣
≤M (1)

K,Hδ
α +M

(1)
H δα.

(6.15)

If t ≥ 2δ we have by eq. (6.14), lemma 6.3.1, lemma 6.3.2 and lemma 6.3.3∣∣∣Z(δ)
t (ω)− U (δ)

t (ω)
∣∣∣

≤
√
δ

CH

−δ∑
τ=−∞

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 − (s− τ)H−

3
2

] ∣∣∣∣∣
+
√
δ

CH

t−2δ∑
τ=0

δ

∣∣∣∣∣δ(H − 1/2)
t−δ∑

s=τ+δ
δ

[
(s− τ)H−

3
2 − (s− τ)H−

3
2

]
+ δ

H− 1
2 −K(U)

H δH−
1
2

∣∣∣∣∣
+

∣∣∣∣∣δH−
1
2
√
δ

CH
−
K

(U)
H δH

CH

∣∣∣∣∣
≤M (1)

K,Hδ
α +M

(2)
K,Hδ

α +M
(1)
H δα.

(6.16)

To summarize, we have now proved that if t ∈ [0,K + 1], t is a multiple of δ
and ω ∈ E(δ,H) we have ∣∣∣Z(δ)

t (ω)− U (δ)
t (ω)

∣∣∣
≤M (1)

K,Hδ
α +M

(2)
K,Hδ

α +M
(1)
H δα.

(6.17)

Assume now that t ∈ [0,K] but t is not a multiple of δ. We then have that
there exists N ∈ N, r1, r2 ∈ (0, 1) such that

(N − 1)δ < t < Nδ

r1(N − 1)δ + r2Nδ = t

r1 + r2 = 1.

Notice also that

Nδ = Nδ − t+ t ≤ δ + t ≤ K + δ ≤ K + 1.
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6.4. Closeness of Z(δ) and U (δ)

So by the definition of Z(δ), U (δ) and eq. (6.17) we get for ω ∈ E(δ,H)∣∣∣Z(δ)
t (ω)− U (δ)

t (ω)
∣∣∣

=
∣∣∣r1Z

(δ)
(N−1)δ(ω) + r2Z

(δ)
Nδ(ω)− r1U

(δ)
(N−1)δ(ω)− r2U

(δ)
Nδ(ω)

∣∣∣
≤ r1

∣∣∣Z(δ)
(N−1)δ(ω)− U (δ)

(N−1)δ(ω)
∣∣∣+ r2

∣∣∣Z(δ)
Nδ(ω)− U (δ)

Nδ(ω)
∣∣∣

≤ r1

(
M

(1)
K,H +M

(2)
K,H +M

(1)
H

)
δα + r2

(
M

(1)
K,H +M

(2)
K,H +M

(1)
H

)
δα

=
(
M

(1)
K,H +M

(2)
K,H +M

(1)
H

)
δα.

(6.18)

So the result follows with

MK,H = M
(1)
K,H +M

(2)
K,H +M

(1)
H .

We will now prove the corresponding result to lemma 5.3.1.

Lemma 6.4.2. Let H ∈ (0, 1), δ > 0, ε > 0. Let Z(δ) be as in definition 6.1.1
and U (δ) be as in definition 6.2.6, we assume that the underlying probability
space (Ω,A, P ) in both definitions are the same. Let ρ be the metric on C[0,∞)
defined in theorem 2.2.1. We then have{

ω ∈ Ω : ρ
(
Z(δ)(ω), U (δ)(ω)

)
≥ ε
}
∈ A,

{
ω ∈ Ω : ρ

(
Z(δ)(ω), U (δ)(ω)

)
≤ ε
}
∈ A

and {
ω ∈ Ω : ρ

(
Z(δ)(ω), U (δ)(ω)

)
< ε
}
∈ A

Proof. After the definitions of P f,dn and P dn , see definition 6.1.2 and defini-
tion 6.2.7, we explained that these measures were well-defined. Which among
other things means that for each C ∈ C we have

(
Z(δ))−1 (C) ∈ A and(

U (δ))−1 (C) ∈ A. We also recall from theorem 2.2.2 that C[0,∞) is sepa-
rable. The result then follows from proposition B.2.15.

We now give a result very similar to theorem 5.3.2, but our proof will be
much simpler this time.

Theorem 6.4.3. Let H ∈ (0, 1), ε > 0 and {δn} be a sequence of positive
numbers converging to zero. Let Z(δ) be as in definition 6.1.1 and U (δ) be
as in definition 6.2.6, where the underlying probability space (Ω,A, P ) and
W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} are the same in both cases. Then

P
({
ω : ρ

(
Z(δn)(ω), U (δn)(ω)

)
≥ ε
})
→ 0,

as n→∞, where ρ is the usual metric on C[0,∞).
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6. Approximation processes described in terms of their difference

Proof. Note that by lemma 6.4.2 we have{
ω ∈ Ω : ρ

(
Z(δ)(ω), U (δ)(ω)

)
≥ ε
}
∈ A,

{
ω ∈ Ω : ρ

(
Z(δ)(ω), U (δ)(ω)

)
≤ ε
}
∈ A

and {
ω ∈ Ω : ρ

(
Z(δ)(ω), U (δ)(ω)

)
< ε
}
∈ A,

so we can take the probability of these sets. Let K be such that
∞∑

k=K+1
2−k < ε

2 .

Let MK,H and α be as in proposition 6.4.1. Since {δn} is a sequence of positive
numbers converging to zero, we can choose an n∗ such that for n ≥ n∗ we have

δ∗n < 1,

and

MH,Kδ
α
n ≤

ε

2K .

Assume now that n ≥ n∗, ω ∈ Eδn,H , where Eδn,H is defined in proposition 6.4.1.
We then have by proposition 6.4.1

ρ
(
Z(δn)(ω), U (δn)(ω)

)
=
∞∑
k=1

min(2−k, sup{|Z(δn)
t (ω)− Z(δn)

t (ω)| : t ∈ [0, k]})

≤
K∑
k=1

sup{|Z(δn)
t (ω)− Z(δn)

t (ω)| : t ∈ [0, k]}+
∞∑
k=1

2−k

< K ·MH,Kδ
α
n + ε

2
≤ K · ε

2K + ε

2
= ε.

So

Eδn,H ⊂
{
ω ∈ Ω : ρ

(
Z(δn)(ω), U (δN )(ω)

)
< ε
}
.

Since P (Eδn,H) = 1 by proposition 6.4.1 we have that

P
({
ω ∈ Ω : ρ

(
Z(δn)(ω), U (δn)(ω)

)
< ε
})

= 1.

So

P
({
ω ∈ Ω : ρ

(
Z(δn)(ω), U (δn)(ω)

)
≥ ε
})

= P
({
ω ∈ Ω : ρ

(
Z(δn)(ω), U (δn)(ω)

)
< ε
}c)

= 0.

This completes the proof.
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6.5 Weak convergence of U (δ)

As expected we have that U (δ) will be a good approximation to the Fractional
Brownian motion when δ is small. We will formalize this in the next theorem.

Theorem 6.5.1. Let H ∈ (0, 1), assume that {δn} is a sequence of positive
real numbers converging to zero. For each δn let P dn be the measure induced
by U (δn)

t (see definition 6.2.7). Then {P dn} converges weakly to the measure P
induced by the Fractional Brownian motion, see definition 3.7.1 for details about
P .

Proof. This follows directly from theorem 6.4.3, theorem 5.4.2 and theorem 6.1.3.
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Chapter 7

An approximation process with
finite summation

Up to now we have constructed four processes which can be used to approximate
the fractional Brownian motion. These processes are X(δ)(definition 3.2.6),
Y (δ)(definition 5.1.5), Z(δ)(definition 6.1.1) and U (δ) defined in definition 6.2.6.
In all of these processes we have to deal with infinite sums. It may be desirable
to have a process with a finite sum, because finite sums are easier to deal
with. So the goal of this chapter will be to create a similar process to the four
processes already created, but where the tail is a finite sum.

7.1 Definition of the process

Based on U (δ) we define a new process V (δ) where the tail is finite, i.e. the sum
is finite. That we choose to base our new process on U (δ) and not X(δ), Y (δ) or
Z(δ) is mostly an arbitrary choice, and we could have chosen to show it with
one of the other three processes.

When cutting off the tail, we have to make sure we do it in a satisfactory way.
Since our processes are based on the Mandelbrot and Van Ness representation,
see eq. (3.2) it is clear that we have to take account of more and more of the tail
as δ gets smaller. Here we have to be careful, because it is not just enough to
increase the number of elements as δ decreases as we may risk getting "stuck".
Getting "stuck" here would mean that we do not a have representation that
goes to infinity, but for instance only to −T , where T is a positive real number.
In the Mandelbrot and Van Ness representation this would mean that we end
up integrating to −T , not to −∞.

We will in fact define our process so that how much of the tail we take into
account will depend on H. This is a technical detail to ensure weak convergence
later. We are now ready to define our process.

Definition 7.1.1. Let H ∈ (0, 1), δ > 0 be given. Let

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .}

be a collection of independent random variables, each taking the values ±1 with
equal probability. Assume that they are defined on a probability space (Ω,A, P ).
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7. An approximation process with finite summation

Let k be the smallest natural number such that

2k(1−H) > 1. (7.1)

Let K(U)
H be as in definition 6.2.4. Define the stochastic process V (δ) =

(V (δ)
t )t∈[0,∞), which also depends on H as follows

(i)

V
(δ)
0 (ω) .= 0, ∀ω ∈ Ω

(ii) If t ≥ 0 and there exists an N ∈ N ∪ {0} such that t = Nδ, we define

∆V (δ)
t (ω) .= V

(δ)
t+δ(ω)− V (δ)

t (ω)

.= δ3/2(H − 1/2)
CH

t−δ∑
τ=−bδ−(k+1)cδ

δ

[
(t− τ)H−

3
2 wτ/δ(ω)

]

+ K
(U)
H δH

CH
wt/δ(ω).

where

CH
.=
(∫ ∞

0

(
(1 + x)H−1/2 − xH−1/2

)2
dx+ 1

2H

)1/2
.

(iii) We extend V (δ) to all of [0,∞) by linear interpolation. Specifically if t
is not a multiple of δ, there must exist a number N ∈ N ∪ {0} such that
Nδ < t < (N + 1)δ and we define for all ω ∈ Ω

V
(δ)
t (ω) = ((N + 1)δ − t)/δ · V (δ)

Nδ (ω) + (t−Nδ)/δ · V (δ)
(N+1)δ(ω).

Remark. We have that V (δ) is a well-defined continuous stochastic process on
(Ω,A, P ). For each t, V (δ)

t is measurable since it is a linear combination of
measurable random variables. And it is continuous by construction.

Let us now compare this definition with the definition of U (δ) in defini-
tion 6.2.6. There are two main differences. One that has already been pointed
out is that we now have a finite tail. Another is that we now have omitted the
set Dδ which had probability one. This set was to ensure that the infinite sums
in definition 6.2.6 converge, but since we now only have finite sums, this is no
longer a concern for us, so we get an even simpler representation.

7.2 Closeness of V (δ) and U (δ)

It is of no surprise that U (δ) and V (δ) are "close" in a probabilistic sense. The
next lemma is a technical result which will be used later.

Lemma 7.2.1. Let H ∈ (0, 1), H 6= 1/2, δ ∈ (0, 0.5]. Let k and K be natural
numbers. We then have

δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)2
≤ RH,K · δ2k(1−H),

where RH,K only depends on H and K.
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7.2. Closeness of V (δ) and U (δ)

Proof. Notice first that our values of −τ are bigger than 1 because

−bδ−(k+1)cδ − δ < −
(
δ−(k+1) − 1

)
δ − δ

= − δ−k

≤ − 2.

So −τ − 1 is always positive. If H > 1/2 we get∣∣∣(K + 1− τ − δ)H− 1
2 − (−τ − δ)H− 1

2

∣∣∣
= (K + 1− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

≤ (K + 1− τ)H− 1
2 − (−τ − 1)H− 1

2

=
∣∣∣(K + 1− τ)H− 1

2 − (−τ − 1)H− 1
2

∣∣∣ .
Similarly for H < 1/2 we get∣∣∣(K + 1− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

∣∣∣
= (−τ − δ)H− 1

2 − (K + 1− τ − δ)H− 1
2

≤ (−τ − 1)H− 1
2 − (K + 1− τ)H− 1

2

=
∣∣∣(K + 1− τ)H− 1

2 − (−τ − 1)H− 1
2

∣∣∣ .
This means that

δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)2

≤ δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ)H− 1

2 − (−τ − 1)H− 1
2

)2
.

(7.2)

The derivative of ((K + 1− x)H− 1
2 − (−x− 1)H− 1

2 )2 is positive when x < −1.
We then get

δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ)H− 1

2 − (−τ − 1)H− 1
2

)2

≤ 1
C2
H

−bδ−(k+1)cδ∫
−∞

(
(K + 1− x)H− 1

2 − (−x− 1)H− 1
2

)2
dx,

(7.3)

because by the limits in the integral

x ≤ − bδ−(k+1)cδ
< − δ−k + δ

≤ − 2 + 1
2

= − 1.5.
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Notice that

lim
x→−∞

(K + 1− x)H− 1
2 − (−x− 1)H− 1

2

(−x)H− 3
2

= lim
x→−∞

(
K+1−x
−x

)H− 1
2 −

(
−x−1
−x

)H− 1
2

(−x)−1

= lim
x→−∞

(
H − 1

2

) 1
−(−x)−2(−1)

[(
K + 1− x
−x

)H− 3
2 −1(−x)− (−1)(K + 1− x)

x2

−
(−x− 1
−x

)H− 3
2 −(−x)− (−1)(−x− 1)

x2

]

= lim
x→−∞

(
H − 1

2

) (K+1−x
−x

)H− 3
2 K+1

x2 −
(
−x−1
−x

)H− 3
2 −1
x2

x−2

=
(
H − 1

2

)
(K + 2) ,

where we have used l’Hôpital’s rule in the second step. This means that there
exists a K ′ such that if x ≤ K ′ we have(

(K + 1− x)H− 1
2 − (−x− 1)H− 1

2

)2
≤ 2(K + 2)2

(
H − 1

2

)2
(−x)2H−3.

K ′ only depends on H and K. We recall again that

−bδ−(k+1)cδ < −1.5. (7.4)

If K ′ > −1.5 we have that(
(K + 1− x)H− 1

2 − (−x− 1)H− 1
2

)2
≤ 2(K + 2)2

(
H − 1

2

)2
(−x)2H−3,

(7.5)

on (−∞,−1.5]. Let us investigate what happens if K ′ ≤ −1.5. On the compact
interval [K ′,−1.5] the continuous function (−x)2H−3 is positive. Because of
continuity and compactness it has a well-defined positive minimum, call this
minimum a. There is at least one place in the interval where this value is taken,
and all the other values are greater or equal to this value. The positive function
((K + 1− x)H− 1

2 − (−x− 1)H− 1
2 )2 is also continuous on the interval, and has a

well-defined maximum, call this maximum b. For x ∈ [K ′,−1.5] we therefore
have (

(K + 1− x)H− 1
2 − (−x− 1)H− 1

2

)2
≤ 2b

a
(−x)2H−3.

On (−∞,K ′) eq. (7.5) still holds. So if we now define

K ′′
.= max

{
2(K + 2)2

(
H − 1

2

)2
,

2b
a

}
,
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7.2. Closeness of V (δ) and U (δ)

we have that(
(K + 1− x)H− 1

2 − (−x− 1)H− 1
2

)2
≤ K ′′(−x)2H−3,

on (−∞,−1.5] no matter if K ′ ≤ −1.5 or K ′ > −1.5. Using this with eq. (7.3)
and recalling eq. (7.4) we have

δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ)H− 1

2 − (−τ − 1)H− 1
2

)2

≤ 1
C2
H

−bδ−(k+1)cδ∫
−∞

(
(K + 1− x)H− 1

2 − (−x− 1)H− 1
2

)2
dx

≤ K ′′

C2
H

−bδ−(k+1)cδ∫
−∞

(−x)2H−3dx

= K ′′

C2
H

∫ ∞
bδ−(k+1)cδ

y2H−3dy

= K ′′

C2
H

· 1
2H − 2 · (−1) ·

(
bδ−(k+1)cδ

)2H−2

= K ′′

C2
H

· 1
2− 2H ·

(
bδ−(k+1)cδ

)2H−2
.

(7.6)

Since bδ−(k+1)c > δ−(k+1) − 1 we get

K ′′

C2
H

· 1
2− 2H ·

(
bδ−(k+1)cδ

)2H−2

<
K ′′

C2
H

· 1
2− 2H

(
(δ−(k+1) − 1)δ

)2H−2

= K ′′

C2
H

· 1
2− 2H

(
δ−k − δ

)2H−2
.

(7.7)

Notice that

δ−k − δ = 1
2δ
−k + 1

2δ
−k − δ

≥ 1
2δ
−k + δδ−k − δ

= 1
2δ
−k + δ(δ−k − 1)

≥ 1
2δ
−k,

since by assumption δ ∈ (0, 0.5]. Combining this with eq. (7.2), eq. (7.6) and
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7. An approximation process with finite summation

eq. (7.7) we have

δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)2

≤ δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ)H− 1

2 − (−τ − 1)H− 1
2

)2

≤ K ′′

C2
H

· 1
2− 2H ·

(
bδ−(k+1)cδ

)2H−2

<
K ′′

C2
H

· 1
2− 2H

(
δ−k − δ

)2H−2

≤ K ′′

C2
H

· 1
2− 2H

(
1
2δ
−k
)2H−2

= K ′′

C2
H

· 22−2H

2− 2H δ2k(1−H).

Defining RH,K to be

RH,K
.= K ′′

C2
H

22−2H

2− 2H ,

completes the proof. Notice that RH,K only depends on H and K, specifically
K ′′ did only depend on H, K and K ′. And K ′ did only depend on H and
K.

With the next result we move a step further towards our goal of weak
convergence.

Lemma 7.2.2. Let H ∈ (0, 1), δ ∈ (0, 0.5]. Let U (δ) be as in definition 6.2.6 and
V (δ) be as in definition 7.1.1. We assume that they are defined on the same prob-
ability space (Ω,A, P ) and that W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} is
the same for both processes. For every K ∈ N there exists a constant MH,K

such that for every t ∈ [0,K] we have

E

[(
U

(δ)
t − V (δ)

t

)2
]
≤MH,K · δα,

where α > 1. MH,K only depends on H and K.

Proof. Assume first that t is a multiple of δ and that t ∈ [0,K + 1]. If t = 0 we
have

E

[(
U

(δ)
t − V (δ)

t

)2
]

= 0,
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7.2. Closeness of V (δ) and U (δ)

so we assume that t > 0. We get

U
(δ)
t (ω) =

t−δ∑
s=0

δ
∆U (δ)

s (ω)

=
t−δ∑
s=0

δ

{
δ3/2(H − 1/2)

CH

s−δ∑
τ=−∞

δ

[
(s− τ)H−

3
2 wτ/δ(ω)IDδ(ω)

]
+ K

(U)
H δH

CH
ws/δ(ω)IDδ(ω)

}

=δ3/2(H − 1/2)
CH

−δ∑
τ=−∞

δ

t−δ∑
s=0

δ

[
(s− τ)H−

3
2 wτ/δ(ω)IDδ(ω)

]

+ δ3/2(H − 1/2)
CH

t−2δ∑
τ=0

δ

t−δ∑
s=τ+δ

δ

[
(s− τ)H−

3
2 wτ/δ(ω)IDδ(ω)

]

+ K
(U)
H δH

CH

t−δ∑
s=0

δ
ws/δ(ω)IDδ(ω).

(7.8)

We here used that if we have a finite outer sum, and an infinite inner sum, and
the infinite inner sum always converges, we can interchange the limits. This is
proven in lemma D.3.4. For V (δ) we similarly get

V
(δ)
t (ω) =

t−δ∑
s=0

δ
∆V (δ)

s (ω)

=
t−δ∑
s=0

δ

{
δ3/2(H − 1/2)

CH

s−δ∑
τ=−bδ−(k+1)cδ

δ

[
(s− τ)H−

3
2 wτ/δ(ω)

]

+ K
(U)
H δH

CH
ws/δ(ω)

}

=δ3/2(H − 1/2)
CH

−δ∑
τ=−bδ−(k+1)cδ

δ

t−δ∑
s=0

δ

[
(s− τ)H−

3
2 wτ/δ(ω)

]

+ δ3/2(H − 1/2)
CH

t−2δ∑
τ=0

δ

t−δ∑
s=τ+δ

δ

[
(s− τ)H−

3
2 wτ/δ(ω)

]

+ K
(U)
H δH

CH

t−δ∑
s=0

δ
ws/δ(ω).

(7.9)

Notice that since P (Dδ) = 1 we have

E

[(
U

(δ)
t (ω)− V (δ)

t (ω)
)2
]

= E

[(
U

(δ)
t (ω)− V (δ)

t (ω)
)2
IDδ(ω)

]
= E

[(
U

(δ)
t (ω)− V (δ)

t (ω)IDδ(ω)
)2
]
.

(7.10)
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Combining eq. (7.8), eq. (7.9) and eq. (7.10) we get

E

[(
U

(δ)
t (ω)− V (δ)

t (ω)
)2
]

= E

[(
U

(δ)
t (ω)− V (δ)

t (ω)IDδ(ω)
)2
]

= E


δ3/2(H − 1/2)

CH

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

t−δ∑
s=0

δ

[
(s− τ)H−

3
2 wτ/δ(ω)IDδ(ω)

]2 .
Notice that this expression is zero if H = 1/2, so from now on we can assume
that H 6= 1/2, because whichever RH,K and α we find for H 6= 1/2 will work
for H = 1/2. We continue, and the expression above equals

= δ3(H − 1/2)2

C2
H

E


−bδ−(k+1)cδ−δ∑

τ=−∞
δ

(
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 IDδ(ω)

])
wτ/δ(ω)

2
= δ3(H − 1/2)2

C2
H

E

 lim
N→∞

−bδ−(k+1)cδ−δ∑
τ=−Nδ

δ

(
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 IDδ(ω)

])
wτ/δ(ω)

2
≤ δ3(H − 1/2)2

C2
H

lim inf
N→∞

E


−bδ−(k+1)cδ−δ∑

τ=−Nδ
δ

(
t−δ∑
s=0

δ

[
(s− τ)H−

3
2 IDδ(ω)

])
wτ/δ(ω)

2 ,
where we have used Fatou’s lemma in the last step. The sums inside the
expectation are now finite, this combined with the fact that P (Dδ) = 1 tells us
that the expression stays the same if remove IDδ(ω). Hence we have

E

[(
U

(δ)
t (ω)− V (δ)

t (ω)
)2
]

≤ δ3(H − 1/2)2

C2
H

lim inf
N→∞

E


−bδ−(k+1)cδ−δ∑

τ=−Nδ
δ

(
t−δ∑
s=0

δ

[
(s− τ)H−

3
2
])

wτ/δ(ω)

2
= δ3(H − 1/2)2

C2
H

lim inf
N→∞

−bδ−(k+1)cδ−δ∑
τ=−Nδ

δ

(
t−δ∑
s=0

δ

[
(s− τ)H−

3
2
])2

= δ3(H − 1/2)2

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
t−δ∑
s=0

δ

[
(s− τ)H−

3
2
])2

= δ(H − 1/2)2

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
t−δ∑
s=0

δ
(s− τ)H−

3
2 δ

)2

.

(7.11)

Notice that since δ ∈ (0, 0.5] we have that δk+1 < 1, so bδ−(k+1)c ≥ 1. This
means that for our values of τ we have −τ ≥ 2δ. We also have that the function

(x− τ)H− 3
2 ,
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is positive and decreasing for non-negative x. This means that

t−δ∑
s=0

δ
(s− τ)H−

3
2 δ ≤

∫ t

0
(x− τ − δ)H− 3

2 dx, (7.12)

because for x ∈ (s, s+ δ) we have

(s− τ)H− 3
2 ≤ (x− τ − δ)H− 3

2 .

From standard calculus techniques we get∫ t

0
(x− τ − δ)H− 3

2 dx = 1
H − 1

2

(
(t− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)
, (7.13)

(remember that we have already taken care of the case H = 1/2). By eq. (7.11),
eq. (7.12) and eq. (7.13) we have

E

[(
U

(δ)
t (ω)− V (δ)

t (ω)
)2
]

≤ δ(H − 1/2)2

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
t−δ∑
s=0

δ
(s− τ)H−

3
2 δ

)2

≤ δ(H − 1/2)2

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(∫ t

0
(x− τ − δ)H− 3

2 dx

)2

= δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(t− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)2

≤ δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)2
.

(7.14)

The last step follows because(
(t− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)2

≤
(

(K + 1− τ − δ)H− 1
2 − (−τ − δ)H− 1

2

)2
,

since t ≤ K + 1. It is easiest to see this for H > 1/2, but it also holds for
H < 1/2. By lemma 7.2.1 and eq. (7.14) we get

E

[(
U

(δ)
t (ω)− V (δ)

t (ω)
)2
]

≤ δ

C2
H

−bδ−(k+1)cδ−δ∑
τ=−∞

δ

(
(K + 1− τ − δ)H− 1

2 − (−τ − δ)H− 1
2

)2

≤ RH,K · δ2k(1−H).
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From lemma 7.2.1 we know that RH,K only depends on H and K. By defini-
tion 7.1.1 we have that 2k(1−H) > 1, and we have now taken care of the case
when t is a multiple of δ.

Assume now that t ∈ [0,K] and t is not a multiple of δ. Then there is a
unique N ∈ {0} ∪ N such that

Nδ < t < (N + 1)δ.

We also have a, b with a, b ∈ (0, 1) and a+ b = 1 such that

aNδ + b(N + 1)δ = t.

Notice that

(N + 1)δ = (N + 1)δ − t+ t

≤ (N + 1)δ −Nδ + t

= δ + t

< 1 +K.

So by the definitions of U (δ), V (δ) and what we proved above for t being a
multiple of δ, we have

E

[(
U

(δ)
t (ω)− V (δ)

t (ω)
)2
]

= E

[(
aU

(δ)
Nδ(ω) + bU

(δ)
(N+1)δ(ω)− aV (δ)

Nδ (ω)− bV (δ)
(N+1)δ(ω)

)2
]

≤ E
[
2
(
aU

(δ)
Nδ(ω)− aV (δ)

Nδ (ω)
)2

+ 2
(
bU

(δ)
(N+1)δ(ω)− bV (δ)

(N+1)δ(ω)
)2
]

= 2a2E

[(
U

(δ)
Nδ(ω)− V (δ)

Nδ (ω)
)2
]

+ 2b2E
[(
U

(δ)
(N+1)δ(ω)− V (δ)

(N+1)δ(ω)
)2
]

≤ 2E
[(
U

(δ)
Nδ(ω)− V (δ)

Nδ (ω)
)2
]

+ 2E
[(
U

(δ)
(N+1)δ(ω)− V (δ)

(N+1)δ(ω)
)2
]

≤ 2RH,K · δ2k(1−H) + 2RH,K · δ2k(1−H)

= 4RH,K · δ2k(1−H).

Letting MH,k
.= 4RH,K completes the proof.

Now we have enough tools to prove the main result of this section.

Theorem 7.2.3. Let H ∈ (0, 1), ε > 0 and {δn} be a sequence of positive
real numbers converging to zero. Let U (δ) be as in definition 6.2.6 and V (δ)

be as in definition 7.1.1, where the underlying probability space (Ω,A, P ) and
W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .} are the same in both cases. Then

P
({
ω : ρ

(
U (δn)(ω), V (δn)(ω)

)
≥ ε
})
→ 0,

as n→∞, where ρ is the usual metric on C[0,∞).
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Proof. We first recall that by lemma 3.3.2, proposition B.2.15 and the seper-
ability of C[0,∞)(theorem 2.2.2){

ω : ρ
(
U (δn)(ω), V (δn)(ω)

)
≥ ε
}
∈ A,

so the theorem statement makes sense. We proceed by using the ideas from the
proof of theorem 5.3.2.

Let K ∈ N be such that
∞∑

r=K+1
2−r < ε

2 . (7.15)

Let δn be fixed for now. For j ∈ N define the set F δnj by

F δnj
.=
{
ω ∈ Ω :

∣∣∣U (δn)
jδn

(ω)− V (δn)
jδn

(ω)
∣∣∣ < ε

2K

}
.

Also define

F δn
.=

⋂
j∈N

jδn≤K+δn

F δnj .

By the properties of the real numbers this is a finite intersection, hence it
is measurable by elementary sigma-algebra properties. We will show that if
ω ∈ F δn and t ∈ [0,K] we have∣∣∣U (δn)

t (ω)− V (δn)
t (ω)

∣∣∣ < ε

2K . (7.16)

By definition of U (δn) and V (δn) we have that it holds for t = 0, and by
construction of F (δn) it also holds for all t that are multiples of δn. If t is not a
multiple of δn there is a unique N ∈ {0} ∪ N such that

Nδn < t < (N + 1)δn,

and a, b ∈ (0, 1) such that a+ b = 1 and

aNδn + b(N + 1)δn = t.

Also notice that

(N + 1)δn = (N + 1)δn − t+ t

≤ δn +K.

Hence, by the definition of U (δn) and V (δn) we get∣∣∣U (δn)
t (ω)− V (δn)

t (ω)
∣∣∣

=
∣∣∣aU (δn)

Nδn
(ω)− aV (δn)

Nδn
(ω) + bU

(δn)
(N+1)δn(ω)− bV (δn)

(N+1)δn(ω)
∣∣∣

≤ a
∣∣∣U (δn)
Nδn

(ω)− V (δn)
Nδn

(ω)
∣∣∣+ b

∣∣∣U (δn)
(N+1)δn(ω)− V (δn)

(N+1)δn(ω)
∣∣∣

≤ a · ε

2K + b · ε

2K
= ε

2K .
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Now we will show that

F δn ⊂
{
ω : ρ

(
U (δn)(ω), V (δn)(ω)

)
< ε
}
.

So assume that ω ∈ F (δn). We get

ρ
(
U (δn)(ω), V (δn)(ω)

)
=
∞∑
r=1

min(2−r, sup{|f(t)− g(t)| : t ∈ [0, r]})

≤
K∑
r=1

sup{|f(t)− g(t)| : t ∈ [0, r]}+
∞∑

r=K+1
2−r

<

K∑
r=1

ε

2K + ε

2

= ε.

Where we in the second to last step have used eq. (7.15) and eq. (7.16). Hence

F δn ⊂
{
ω : ρ

(
U (δn)(ω), V (δn)(ω)

)
< ε
}
. (7.17)

We are now ready for the probability calculations. We get using eq. (7.17)
and the monotonicity of measures

P
({
ω : ρ

(
U (δn)(ω), V (δn)(ω)

)
≥ ε
})

= 1− P
({
ω : ρ

(
U (δn)(ω), V (δn)(ω)

)
< ε
})

≤ 1− P
(
F δn

)
= 1− P

 ⋂
j∈N

jδn≤K+δn

F δnj



= P

 ⋃
j∈N

jδn≤K+δn

(
F δnj

)c
≤

∑
j∈N

jδn≤K+δn

P
((
F δnj

)c)

≤
∑
j∈N

jδn≤K+δn

P
({
ω ∈ Ω :

∣∣∣U (δn)
jδn

(ω)− V (δn)
jδn

(ω)
∣∣∣ ≥ ε

2K

})
.

(7.18)
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From eq. (7.18) and Markov’s inequality we get

P
({
ω : ρ

(
U (δn)(ω), V (δn)(ω)

)
≥ ε
})

≤
∑
j∈N

jδn≤K+δn

P
({
ω ∈ Ω :

∣∣∣U (δn)
jδn

(ω)− V (δn)
jδn

(ω)
∣∣∣ ≥ ε

2K

})

≤
∑
j∈N

jδn≤K+δn

E

[∣∣∣U (δn)
jδn

(ω)− V (δn)
jδn

(ω)
∣∣∣2](2K

ε

)2
.

(7.19)

Now it is time to see what happens when δn goes to zero. First there is an
n∗ such that if n ≥ n∗ we have that δn ≤ 1/2. Let us assume that our n is
always greater than n∗. From lemma 7.2.2 and eq. (7.19) we have

P
({
ω : ρ

(
U (δn)(ω), V (δn)(ω)

)
≥ ε
})

≤
∑
j∈N

jδn≤K+δn

E

[∣∣∣U (δn)
jδn

(ω)− V (δn)
jδn

(ω)
∣∣∣2](2K

ε

)2

≤
∑
j∈N

jδn≤K+δn

MH,Kδ
α
n ·
(

2K
ε

)2

≤ K + δn
δn

·MH,Kδ
α
n ·
(

2K
ε

)2

= (K + δn)MH,Kδ
α−1

(
2K
ε

)2
.

This expression converges to zero since α > 1 from lemma 7.2.2.

7.3 Weak convergence of V (δ)

We are now ready for the result we have been working towards in this chapter.
As before we define the induced measure.

Definition 7.3.1. Let H ∈ (0, 1), δn > 0. Let V (δn) be as in definition 7.1.1.
We define the measure PVn on (C[0,∞), C) as

PVn (B) = P (V (δn) ∈ B), B ∈ C,

Remark. As with the other induced measures encountered in the thesis, this
measure is well-defined by lemma 3.3.2 and theorem C.1.1.

Theorem 7.3.2. Let H ∈ (0, 1), assume that {δn} is a sequence of positive
real numbers converging to zero. For each δn let PVn be the measure induced
by V (δn)

t (see definition 7.3.1). Then {PVn } converges weakly to the measure P
induced by the Fractional Brownian motion, see definition 3.7.1 for details about
P .

Proof. Follows from theorem 7.2.3, theorem 5.4.2 and theorem 6.5.1.
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7.4 Useful results for later use

Here we will prove some results regarding V (δ) used in chapter 8.

Lemma 7.4.1. Let H ∈ (0, 1), δ > 0. Let V (δ) be as in definition 7.1.1. Then
there exists RH > 0 such that for every t that is a multiple of δ we have

E

[(
∆V (δ)

t

)2
]
≤ RHδ2H .

Proof. We get directly from definition 7.1.1

E

[(
∆V (δ)

t

)2
]

= δ3(H − 1/2)2

C2
H

t−δ∑
τ=−bδ−(k+1)cδ

δ
(t− τ)2H−3

+
(
K

(U)
H

CH

)2

· δ2H

≤ δ3(H − 1/2)2

C2
H

t−δ∑
τ=−∞

δ
(t− τ)2H−3

+
(
K

(U)
H

CH

)2

· δ2H

= δ3(H − 1/2)2

C2
H

∞∑
r=1

(rδ)2H−3

+
(
K

(U)
H

CH

)2

· δ2H .

The result follows with

RH
.= (H − 1/2)2

C2
H

∞∑
r=1

r2H−3

+
(
K

(U)
H

CH

)2

.

The series converges because 2H − 3 < −1.

Lemma 7.4.2. Let H ∈ (0, 1), δ > 0, k′ ∈ N. Let V (δ) be as in definition 7.1.1.
Then there exists R(k′)

H > 0 such that for every t that is a multiple of δ we have

E

[∣∣∣∆V (δ)
t

∣∣∣k′] ≤ R(k′)
H δHk

′
.

Proof. By Khintchine’s inequality, see theorem 3.6.3 and lemma 7.4.1 we have

E

[∣∣∣∆V (δ)
t

∣∣∣k′] ≤ Uk′ (E [(∆V (δ)
t

)2
])k′/2

≤ Uk′
(
RHδ

2H)k′/2
= Uk′R

k′/2
H δHk

′
.
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The result follows with R(k′)
H

.= Uk′R
k′/2
H .

Lemma 7.4.3. Let H ∈ (0, 1),K ∈ N, σ > 0, {δn} a sequence of positive real
numbers converging to zero. Assume ε, ε2 > 0. Let k∗ be the smallest natural
number such that H(k∗ + 1) > 1. For any k ≥ k∗ + 1 there exists an nk∗ such
that if n ≥ nk∗ we have

P


ω ∈ Ω :

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣σ∆V δnt (ω)
∣∣∣k ≥ ε


 ≤ ε2.

Proof. By Markov’s inequality and lemma 7.4.2 we get

P


ω ∈ Ω :

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣σ∆V δnt
∣∣∣k ≥ ε




≤ E

 ∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣σ∆V δnt (ω)
∣∣∣k
 · 1

ε

=
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn
E

[∣∣∣σ∆V δnt (ω)
∣∣∣k] · 1

ε

≤ σk
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn
R

(k)
H δHkn · 1

ε
.

The number of t with t ≤ K + 1 and t also is a multiple of δn is bounded by
(K + 1)/δn + 1, hence the expression above is bounded by

σk
(
K + 1
δn

+ 1
)
R

(k)
H δHkn · 1

ε

= σk (K + 1 + δn)R(k)
H δHk−1

n · 1
ε
.

By assumption Hk − 1 > 0, so by increasing n we can get this expression as
small as we want, and hence smaller than ε2.

Lemma 7.4.4. Let H ∈ (0, 1),K ∈ N, µ ∈ R, σ > 0, {δn} a sequence of positive
real numbers converging to zero. Assume ε, ε2 > 0, k ∈ N. Then there exists an
n∗ such that if n ≥ n∗ we have

P


ω ∈ Ω :

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣∣µδn (σ∆V δnt (ω)
)k∣∣∣∣ ≥ ε


 ≤ ε2.
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Proof. We will mimic the proof of lemma 7.4.3. We get from Markov’s inequality
and lemma 7.4.2

P


ω ∈ Ω :

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣∣µδn (σ∆V δnt (ω)
)k∣∣∣∣ ≥ ε




≤ E

 ∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣∣µδn (σ∆V δnt (ω)
)k∣∣∣∣
 · 1

ε

= |µ|σ
kδn
ε

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn
E

[∣∣∣∆V δnt (ω)
∣∣∣k]

≤ |µ|σ
kδn
ε

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn
R

(k)
H δHkn .

The number of t’s we sum over is bounded by (K+ 1)/δn + 1. So the expression
above is bounded by

|µ|σkδn
ε

(
K + 1
δn

+ 1
)
R

(k)
H δHkn

= |µ|σ
k

ε
(K + 1 + δn)R(k)

H δHkn

The last expression goes to zero as δn goes to zero, so we can bound it by ε2.

Corollary 7.4.5. Let H ∈ (0, 1),K ∈ N, µ ∈ R, σ > 0, {δn} a sequence of
positive real numbers converging to zero. Assume ε, ε2 > 0. Then there exists
an n∗ such that if n ≥ n∗ we have

P


ω ∈ Ω :

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣µδn − µδne−σ∆V (δn)
t (ω)

∣∣∣ < ε


 > 1− ε2.

Proof. If µ = 0 the result is obvious, so assume |µ| 6= 0. Define

A
(n)
1

.=
⋂

t=Nδn,N∈{0}∪N
t≤K+1

{
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ < 0.5
}
.
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Let k′ be such that Hk′ > 1. We get by Markov’s inequality and lemma 7.4.2

P
(
A

(n)
1

)

= P

 ⋂
t=Nδn,N∈{0}∪N

t≤K+1

{
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ < 0.5
}

= 1− P

 ⋃
t=Nδn,N∈{0}∪N

t≤K+1

{
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ ≥ 0.5
}

≥ 1−
∑

t=Nδn,N∈{0}∪N
t≤K+1

P
({
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ ≥ 0.5
})

= 1−
∑

t=Nδn,N∈{0}∪N
t≤K+1

P

({
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣k′ ≥ 0.5k
′
})

≥ 1−
∑

t=Nδn,N∈{0}∪N
t≤K+1

R
(k′)
H δHk

′

n

0.5k′

≥ 1−
(
K + 1
δn

+ 1
)
R

(k′)
H δHk

′

n

0.5k′

= 1− (K + 1 + δn) R
(k′)
H δHk

′−1
n

0.5k′ .

There is an n1 such that if n ≥ n1, this expression is strictly greater than
1− ε2/2. Define

A
(n)
2

.=

ω ∈ Ω :
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣∣µδn (σ∆V δnt (ω)
)∣∣∣ < ε

2

 .

From lemma 7.4.4 there is an n2 such that if n ≥ n2 P (A(n)
2 ) is strictly greater

than 1− ε2/2. We now have for n ≥ max(n1, n2)

P
(
A

(δn)
1 ∩A(δn)

2

)
> 1− ε2.

If we can show

A
(δn)
1 ∩A(δn)

2

⊂

ω ∈ Ω :
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣∣µδn − µδne−σ∆V (δn)
t (ω)

∣∣∣ < ε

 ,
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the proof will be complete. So assume ω ∈ A
(δn)
1 ∩ A(δn)

2 . Because of the
definition of A(n)

1 and lemma D.2.1 we have∑
t=Nδn,N∈{0}∪N

t≤K+1

δn
|µ|δn

∣∣∣1− e−σ∆V (δn)
t (ω)

∣∣∣
=

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn
|µ|δn

∣∣∣r1(−σ∆V (δn)
t (ω))σ∆V (δn)

t (ω)
∣∣∣

≤
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn
2|µ|δn

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ .
Because also ω ∈ A(n)

2 we have∑
t=Nδn,N∈{0}∪N

t≤K+1

δn
2|µ|δn

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ < ε.

Hence the proof is complete.
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Chapter 8

Applications to finance

It is time to apply our previous results to finance. First we will prove a result
from which we easily will be able to approximate later examples. We will then
refer to different cases where the Fractional Brownian motion is used in finance.
We will also prove results about discrete stochastic differential equations, or
stochastic difference equations if you will. In continuous-time financial markets
the price process of the risky asset is usually modelled as a solution to a
differential equation. Instead of just approximating the solution it is interesting
to see what happens if we instead approximate the differential equation. Will the
solution to the approximated differential equation then approximate the original
solution to the differential equation? The answer to this question will turn out
to be yes, but this is provided that we approximate our stochastic differential
equation in a certain way. We will see that for H < 1/2 the approximation
can be very interesting. Lastly we will analyse the solution to the stochastic
difference equation. There we will see that for H > 1/2 it is possible to obtain
negative values with positive probability. We will also compare the result for
H = 1/2 with known results from continuous-time stochastic analysis.

8.1 Weak convergence to the Geometric fBM

In the subsequent section we will encounter processes of the form

S0e
f(t)+σBt,H ,

where S0 > 0, σ ∈ R,

f : [0,∞)→ R

is continuous and (Bt,H)t∈[0,∞) is a fractional Brownian motion. In this section
we will see how we can approximate this process. First we need a result showing
that the process is well-defined.

Proposition 8.1.1. Let (Kt)t∈[0,∞) be a continuous stochastic process on the
probability space (Ω∗,A∗, P ∗). Assume that S0 > 0, σ ∈ R and that

f : [0,∞)→ R,

is continuous. Then (St)t∈[0,∞) given by

St(ω) = S0e
f(t)+σKt(ω),
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is a continuous stochastic process on (Ω∗,A∗, P ∗). And the measure defined by

P (C) = P ∗
(
S−1(C)

)
, C ∈ C,

is a well-defined probability measure on (C[0,∞), C). Here we view S as a
function

S : Ω∗ → C[0,∞).

Proof. We have continuity for each ω (trajectory) from elementary calculus,
because sums, products and compositions of continuous functions are continuous.
We need to show that for fixed t(

S0e
f(t)+σKt

)−1
(B) ∈ A∗, B ∈ B(R).

Notice first that for each t the function f2 : R→ R given by

f2(y) = S0e
f(t)+σy,

is continuous. So assume that O ⊂ R is open. Then f−1
2 (O) is open, and

K−1
t (f−1

2 (O)) ∈ A∗, since elementary measure theory tells us that open sets
are Borel-measurable. Since the collection{

B ∈ B(R) :
(
S0e

f(t)+σKt
)−1

(B) ∈ A∗
}
,

is a σ-algebra which contains the open sets, the result follows because B(R) is
generated by the open sets.

The fact that P is a well-defined probability measure on (C[0,∞), C) follows
from the previous paragraph, lemma 3.3.2 and theorem C.1.1.

The next result gives us a method for approximating the Geometric Frac-
tional Brownian Motion. In the previous chapters we have worked with five
processes, X(δ), Y (δ), Z(δ), U (δ) and V (δ). Any one of them could be used for
the following work, but we will work with V (δ) since this is the last process we
worked with, and it may be desirable only contains finite sums. The benefit
of working with V (δ) is also that we do not have to drag around the set of
probability one which ensures convergence.

Theorem 8.1.2. Let H ∈ (0, 1) and {δn} be a sequence of positive real numbers
converging to zero. Assume that S0 > 0, δ ∈ R and f : [0,∞) → R is a
continuous function. For each n let V (δn) be as in definition 7.1.1, we assume
that all the w’s are defined on the space (Ω∗,A∗, P ∗). Let Pn be the measure
induced on (C[0,∞), C) by

S0e
f(t)+σV (δn)

t ,

by proposition 8.1.1 this measure exists. Let (Bt,H)t∈[0,∞) be the Fractional
Brownian Motion from proposition 3.1.3, and denote the probability space it
is defined on by (Ω∗∗,A∗∗, P ∗∗). Define P to be the measure on (C[0,∞), C)
induced by

S0e
f(t)+σBt,H ,

again we refer to proposition 8.1.1 for its existence.
Then {Pn} converges weakly to P .
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Proof. Let O ⊂ C[0,∞) be an open set. Let R be the mapping

R : C[0,∞)→ C[0,∞),

given by

[R(x)](t) = S0e
f(t)+σx(t).

This mapping is continuous. To see this first use proposition B.3.2 on σx, then
proposition B.3.3 on f + σx, then proposition B.3.4 on exp(f + σx) and lastly
proposition B.3.2 again on S0 exp(f + σx). From elementary theory of metric
spaces we know that compositions of continuous functions are continuous, hence
R is continuous. This means that R−1(O) is open.

If we view S0 exp(f(t) +σV (δn)) and S0 exp(f(t) +σB.,H) as functions from
Ω∗ and Ω∗∗ to C[0,∞) we have[

S0e
f(t)+σV (δn)

]−1
(O) =

(
V (δn)

)−1 (
R−1(O)

)
,[

S0e
f(t)+σB.,H

]−1
(O) =

(
B

(δn)
.,H

)−1 (
R−1(O)

) (8.1)

from elementary set-theory.
Recalling that R−1(O) is open, we get from theorem 7.3.2, eq. (8.1) and the

Portmanteau Theorem[Bil99, Theorem 2.1, p. 16]

lim inf
n→∞

Pn(O) = lim inf
n→∞

P ∗
([
S0e

f(t)+σV (δn)
]−1

(O)
)

= lim inf
n→∞

P ∗
((

V (δn)
)−1 (

R−1(O)
))

≥ lim inf
n→∞

P ∗∗
((

B
(δn)
.,H

)−1 (
R−1(O)

))
= lim inf

n→∞
P ∗∗

([
S0e

f(t)+σB.,H
]−1

(O)
)

= lim inf
n→∞

P (O).

Hence, by using the Portmanteau Theorem again we have that {Pn} converges
weakly to P .

8.2 Some words about approximation of processes

We will soon look at various uses of the fBm in finance. And we will use
theorem 8.1.2 to approximate these processes. However, let us take a moment
to discuss the essence of what we are doing. Traditionally when modelling a
risky asset, one way to work is that you make a model, you use data to estimate
the parameters in the model, and statistical methods or simulate new virtual
data to judge if the model is good. A good example for how this work is done
in the basic Black-Scholes market can be found in chapter 2 of [Ben04]. This
work can be done with the models we have introduced, and also models we will
introduce later. However, let us also notice that as one of our goals has been to
model the fractional Brownian motion with Rademacher variables, we are in a
sense "modelling a model".
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This concept of approximating a stochastic process with another stochastic
process can be viewed as a purely theoretical exercise, without concerning one’s
self with its use in finance. On the other hand, it may be a practical exercise
through selection of realistic parameters, and then simulation to see if the
processes agree. What makes an approximation good does not have only one
correct answer. Even though statistical analysis and simulation are powerful
tools, we will not use them in this thesis. We will use weak convergence as a
way to argue that we can approximate the processes. That is, we will as we
have done previously approximate a continuous stochastic process with another
simpler stochastic process. The simpler process will depend on a positive real
number δn, and we will say that we can approximate the original process if
the simpler process converges weakly to the original when δn converges to zero.
The weak convergence is of course in (C[0,∞), C), described in chapter 2.

The benefit of using weak convergence is that it will give the same result
regardless of the numerical values of the parameters. It is a clearly defined
concept. And even though it may be disagreement about how well it captures
the approximation, the preciseness of weak convergence gives a common under-
standing to all mathematicians and statisticians interested in approximation. So
if one has other preferences when measuring approximations, weak convergence
can still be a useful tool. The disadvantage of using only weak convergence is
that it does not tell us how small δn must be. In practice the approximations
will be better for some values of the parameters than others, in our case the
H in the fBm. This can be solved through statistical methods, simulations,
testing etc. Even though these practical methods are outside the scope of this
thesis, it is important to be aware of them.

8.3 Financial applications

Let us now delve into various applications.

Traditional Black-Scholes model
The theory of the traditional Black-Scholes market is found in many books, we
will use [Ben04] as a reference. In section 2.1 of [Ben04] it is stated that the
stock in the Black-Scholes market is modelled by

St = S0e
µt+σBt , (8.2)

where µ is the drift and σ is called the volatility. After introducing stochas-
tic analysis Benth shows that a similar process is a solution of a stochastic
differential equation

dS(t) = αS(t) + σS(t)dB(t). (8.3)

The process now takes the form

St = S0e

(
α−σ2

2

)
t+σBt .

We will not go into the theory of stochastic differential equations here. Notice
that the two models for St are equivalent, they are just different parameteriza-
tions. Even though it is not explicitly stated in [Ben04] we assume µ ∈ R, σ > 0.
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Since kt, k ∈ R is a continuous function, we can use theorem 8.1.2 to approx-
imate this process. Notice also that there is a small technical point here. In
the Black-Scholes model one only defines the process up to a time T . We have
the tools for processes on entire non-negative real line [0,∞). When we in
chapter 2 expanded Billingsley’s work from C[0, 1] to C[0,∞), we could instead
have generalized it to C[0, T ]. We will not go any deeper into this points, they
can easily be solved by doing what we have done earlier, with the sup-metric on
C[0, T ]. We will just take the position that we want to approximate the model
presented in the Black-Scholes model, but we do not want to be constrained by
a final time T .

Since we in this case is working with a Brownian Motion we have to use
H = 1/2 in the model. In this case, the result will simply significantly, so it is
worth writing it out. We will do it for the case f(t) = µt. By definition 6.2.4,
we have

K
(U)
1/2 = Γ(2)

Γ
( 5

2 −
1
2
) = Γ(2)

Γ(2) = 1.

We also have by the definition of C 1
2
, see proposition 3.2.2

C 1
2

.=
(∫ ∞

0

(
(1 + x)0 − x0)2 dx+ 1

2 · 1
2

)1/2
= 1.

So if t is a multiple of δn we get from definition 7.1.1

∆V (δn)
t =

√
δwt/δn .

Hence we get if t is a multiple of δn

S0e
µt+σV (δn)

t = S0, t = 0,

and if t > 0 we have

S0e
µt+σV (δn)

t

= S0 exp
(
µt+

t−δ∑
δ

s=0

∆V (δn)
s

)

= S0 exp
(
µt+

t−δ∑
δ

s=0

√
δwt/δn

)
.

Intuitively this approximation should not come as a surprise. It is well known
that a Brownian motion can be constructed as the limit of a scaled random
walk, see [Ros10, p. 631].

Fractional Black-Scholes model
Before we define this new model, let us investigate a property of the ordinary
Black-Scholes Model. On page 16 in [Ben04] it is stated that the log-returns are
independent. Let us repeat this work here. If we have the times t0, t1, . . . , tn
and the stock prices st0 , st1 , . . . , stN we define the log-returns

xi
.= ln

(
sti
sti−1

)
, i ∈ {1, . . . , N}.
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If we assume the model in eq. (8.2) we get that the corresponding stochastic
variables become

Xi = ln
(
Sti
Sti−1

)
, i ∈ {1, . . . , N}.

Notice that in the model we have that St is always positive, so there is no
problem dividing and taking the logarithm. We now get

ln
(
Sti
Sti−1

)
= ln

(
S0e

µti+σBti

S0e
µti−1+σBti

)
= ln

(
eµ(ti−ti−1)+σ(Bti−Bti−1)

)
= µ (ti − ti−1) + σ

(
Bti −Bti−1

)
.

By the properties of the Brownian motion we know that the collection{
Bt1 −Bt0 , . . . , BtN −BtN−1

}
is a collection of independent random variables. Since for each i the function
fi(x) = µ(ti−ti−1)+σx is Borel-measurable, it follows from [MW13, Proposition
7.6, p. 242], that the collection{

µ (ti − ti−1) + σ
(
Bti −Bti−1

)
: i ∈ {1, . . . , N}

}
is independent. This means that if we use the model eq. (8.2) for the stock price,
we expected the observed log-returns {ln(si/si−1)} to exhibit independence.

It is noted in [DØ11, pp. 75-76] that there are empirical studies where the
log-returns are not independent. It is suggested that a more realistic way to
model the stock price is using the fractional Brownian motion, instead of just
the Brownian Motion. We can then model the independence through H. The
Fractional Black-Scholes model is defined in [DØ11, p. 77] by

St = S0e
µt+σBt,H , H 6= 1

2 ,

µ ∈ R, σ > 0. By theorem 8.1.2 we can again approximate this process with
simpler random variables.

A model via Wick calculus
We will not go into the details of Wick calculus in this thesis. But we will
present some results which are relevant to us. In chapter 3 of [Bia+08] a wick
integral for fBm with H > 1/2 is introduced. In [Bia+08, p. 65] the solution to
the stochastic differential equation is presented. If we change the symbols to
what we have used in this chapter the equation is

dSt
dt

= (µ+ σBt,H) � St, (8.4)

where � is the wick product. In [TNY11, p. 22] a multidimensional Fractional
Brownian Motion is used to model a finance market. It is also shown how to
find a price of a certain exchange option. However, the stochastic differential
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equation for the first coordinate is the same as the one above. With the tools
of [TNY11] it is now valid for H > 1/4. The price process is in both cases

St = S0e
µt−σ2

2 t2H+σBt,H .

Notice the similarity with the ordinary Black-Scholes model, the part −σ2/2·t2H
corresponds to −σ2/2 · t2 in the standard Black-Scholes model. This model
is also mentioned by Sottinen in [Sot01b], where pricing of options using this
model is also briefly mentioned. Sottinen assumes H > 1/2. Since the function
f(t) = µt− σ2/2t2H is continuous we can again refer to theorem 8.1.2 for an
approximation of this process.

Usage for weather derivatives
The fractional Brownian motion also has some use for pricing weather derivatives.
In [BB12, p. 148] a model for temperature variations is presented. This model
is

T (t) = Λ(t) +XH(t),

where Λ(t) is a seasonal trend, and XH satisfies

dXH(t) = −αXH(t)dt+ σdBH(t).

This stochastic differential equation makes sense in the Wick framework, and
Benth solves it for H > 1/2.

The value of H in financial modelling, long-range dependence
We have seen that most of the use of the fractional Brownian motion in finance
is for large H, usually H > 1/2. This is because for H > 1/2 the fBm has
long-range dependence, and this property has been seen in real data, see for
instance [BB12, p. 147]. In [Sot01b] Sottinen states that in financial modelling
it is assumed that 1/2 < H < 1. However in [GJR14] they show that the log-
volatility behaves as a fBm with H = 0.1, so a small H can also be interesting
in practice. What we mean by saying that the fBm is long range dependent for
H > 1/2, is that in this case we have

∞∑
r=1

E [B1,H(Br+1 −Br,H)] =∞,

see [BB12, p. 148] or [GJR14, p. 3].

Interpolation can cause arbitrage
In this thesis we give different ways of approximating the price process. We do
not go into the details of the financial markets; the trading strategies, filtration
etc. However there is one thing we have to be aware of when using theorem 8.1.2.
If we allow continuous-time trading then it is easy to see that we will have
arbitrage. This is because we know that V (δ)

t is linearly interpolated, so if t
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is a multiple of δ and we know S
(δ)
t (ω) and S(δ)

t+δ/2(ω), we can easily calculate
S

(δ)
t+δ(ω).
So if we decide to use this price process we should only allow trading at

time-points that are multiples of δ.

8.4 Stochastic difference equations

In the previous section we saw that the price of the risky asset could be taken
as a solution to a stochastic differential equation. Let us fix H and δ in our
discrete model. If we use eq. (8.3) and eq. (8.4) as inspiration we can create
a similar model for the discrete case. If S0 > 0, µ ∈ R, σ > 0, δ > 0 we may
model the risky asset as

S
(δ)
t (ω) = S0, if t = 0,

and

∆S(δ)
t (ω) .= S

(δ)
t+δ(ω)− S(δ)

t (ω)

= µS
(δ)
t (ω)∆t+ σS

(δ)
t (ω)∆V (δ)

t (ω)

= µS
(δ)
t (ω)δ + σS

(δ)
t (ω)∆V (δ)

t (ω),

(8.5)

if t ≥ 0 is a multiple of δ. Notice that the difference equation is defined pointwise
for each ω. Sottinen worked with a simplified version of this process in [Sot01a].
Here Sottinen assumes H > 1/2 and models a cádlág process, not a continuous
process. We will work with all H ∈ (0, 1) and work with functions on C[0,∞) as
we have done throughout the thesis, which means we will use linear interpolation
between time-points. As we also allow a drift component we have an extra
challenge in the proof.

The model in eq. (8.5) will work in our framework for H > 1/2. However, for
H < 1/2 we have to modify the the difference equation. A natural number k∗
will decide how the difference equation looks. Let k∗ ∈ N be the smallest natural
number such that H(k∗ + 1) > 1, notice that k∗ is indeed well-defined because
it can also be chosen as the smallest natural number such that k∗ > 1/H − 1.
We still assume that St = S0, for t = 0, but we now assume that the difference
equation is

∆S(δ)
t (ω)

= µS
(δ)
t (ω)∆t+ S

(δ)
t (ω)

σ∆V (δ)
t (ω) +

(
σ∆V (δ)

t (ω)
)2

2! + · · ·+

(
σ∆V (δ)

t (ω)
)k∗

k∗!


= µS

(δ)
t (ω)δ + S

(δ)
t (ω)

σ∆V (δ)
t (ω) +

(
σ∆V (δ)

t (ω)
)2

2! + · · ·+

(
σ∆V (δ)

t (ω)
)k∗

k∗!

 .

(8.6)
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By induction it is easy to see that if t > 0 is a multiple of δ we have

S
(δ)
t (ω)

= S0

t−δ∏
δ

s=0

1 + µδ +

σ∆V (δ)
s (ω) +

(
σ∆V (δ)

s (ω)
)2

2! + · · ·+

(
σ∆V (δ)

s (ω)
)k∗

k∗!


 .

The reason for having to modify the model with k∗ is technical, we will use
lemma 7.4.3 in order to prove weak convergence. The choice of k∗ comes from
trying to prove the result for H < 1/2 with k∗ = 1. As lemma 7.4.3 does not
hold in that case, the current proof of weak convergence did not work. That
is why we had to increase k∗ for small H. We make a formal definition of the
process.

Definition 8.4.1. Let H ∈ (0, 1), δ > 0. Using these two parameters let
V (δ) be as in definition 7.1.1, with (Ω,A, P ) also from definition 7.1.1. Let
µ ∈ R, σ > 0, S0 > 0. Let k∗ be the smallest natural number such that
H(k∗ + 1) > 1. We define the stochastic process S(δ) = (S(δ)

t )t∈[0,∞) like
this

(i)

S
(δ)
0

.= S0, ∀ω ∈ Ω.

(ii) If t > 0 and there exists an N ∈ N such that t = Nδ we define

S
(δ)
t

.= S0

t−δ∏
δ

s=0

1 + µδ +

σ∆V (δ)
s +

(
σ∆V (δ)

s

)2

2! + · · ·+

(
σ∆V (δ)

s

)k∗
k∗!


 .

(iii) We extend S(δ) to all of [0,∞) by linear interpolation. Specifically if t
is not a multiple of δ, there must exist a number N ∈ N ∪ {0} such that
Nδ < t < (N + 1)δ and we define for all ω ∈ Ω

S
(δ)
t (ω) = ((N + 1)δ − t)/δ · S(δ)

Nδ(ω) + (t−Nδ)/δ · S(δ)
(N+1)δ(ω).

Remark. It is clear that S(δ) is a continuous stochastic process on (Ω,A, P ).
From definition 7.1.1 we have that ∆V (δ)

t is measurable for each t, and for each
t we have that S(δ)

t is a Borel-measurable function of different ∆V (δ)
s .

Weak convergence

The goal of this subsection is to prove that the measure induced by S(δ)
t in

definition 8.4.1 converges weakly to the measure induced by the stochastic
process

St = S0e
µt+σBt,H .

We will use a trick that Sottinen used in [Sot01a] where he uses that if x is
positive, then x = eln(x), but for this to make sense the positivity is crucial, or
else the logarithm is not defined.
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Lemma 8.4.2. Let H ∈ (0, 1), σ > 0, ε > 0. Let k∗ be the smallest natural
number such that H(k∗ + 1) > 1. Then there exists δ∗ > 0, R > 0, α > 1 such
that if we define V (δ)

t by definition 7.1.1, where we use the parameters H, δ,
where δ is any number such that 0 < δ ≤ δ∗, we have for any t being a multiple
of δ

P


ω ∈ Ω :

∣∣∣σ∆V (δ)
t (ω)

∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ)

t (ω)
)2

2!

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
(
σ∆V (δ)

t (ω)
)k∗

k∗!

∣∣∣∣∣∣∣ ≥ ε



≤ Rδα.

Proof. Assume first that H = 1/2, then k∗ = 2. We have by definition 7.1.1

∆V (δ)
t (ω) = δH

CH
wt/δ(ω).

We then have

∣∣∣σ∆V (δ)
t (ω)

∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ)

t (ω)
)2

2

∣∣∣∣∣∣∣ = σδH

CH
+ σ2δ2H

2C2
H

. (8.7)

As δ get small we can get this as small as we like, hence there must be a δ∗
such that the expression is smaller than ε for δ ≤ δ∗. We then get

P


ω ∈ Ω :

∣∣∣σ∆V (δ)
t (ω)

∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ))

t (ω)
)2

2

∣∣∣∣∣∣∣ ≥ ε

 = 0,

for δ ≤ δ∗, so we can trivially choose R = 1, α = 2.
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Assume now that H < 1/2. We have∣∣∣∆V (δ)
t (ω)

∣∣∣ =

∣∣∣∣∣δ3/2(H − 1/2)
CH

t−δ∑
τ=−bδ−(k+1)cδ

δ

[
(t− τ)H−

3
2 wτ/δ(ω)

]

+ K
(U)
H δH

CH
wt/δ(ω)

∣∣∣∣∣
≤ δ3/2(1/2−H)

CH

t−δ∑
τ=−∞

δ
(t− τ)H−

3
2

+

∣∣∣K(U)
H

∣∣∣ δH
CH

= δ3/2(1/2−H)
CH

∞∑
τ=δ

δ
τH−

3
2

+

∣∣∣K(U)
H

∣∣∣ δH
CH

= δ3/2(1/2−H)
CH

∞∑
r=1

(rδ)H− 3
2

+

∣∣∣K(U)
H

∣∣∣ δH
CH

= δH(1/2−H)
CH

∞∑
r=1

rH−
3
2

+

∣∣∣K(U)
H

∣∣∣ δH
CH

= R1δ
H .

Where we have defined

R1
.= (1/2−H)

CH

∞∑
r=1

rH−
3
2 +

∣∣∣K(U)
H

∣∣∣
CH

.

Notice that we have convergence of the sum because H < 1/2. So we now get

∣∣∣σ∆V (δ)
t (ω)

∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ))

t (ω)
)2

2!

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
(
σ∆V (δ)

t (ω)
)k∗

k∗!

∣∣∣∣∣∣∣
≤ σR1δ

H + σ2

2! ·
(
R1δ

H
)2 + · · ·+ σk

∗

k∗! ·
(
R1δ

H
)k∗

.

(8.8)

This expression goes to zero as δ goes to zero. So there exists a δ such that if
δ ≤ δ this expression is less than ε. We then have for δ ≤ δ∗

P


ω ∈ Ω :

∣∣∣σ∆V (δ)
t (ω)

∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ))

t (ω)
)2

2!

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
(
σ∆V (δ)

t (ω)
)k∗

k∗!

∣∣∣∣∣∣∣ ≥ ε

 = 0.
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So again we can trivially choose R = 1, α = 2.
Lastly we assume H > 1/2. Then k∗ = 1. We get

E

[(
σ∆V (δ)

t (ω)
)2
]

= σ2E

[(
δ3/2(H − 1/2)

CH

t−δ∑
τ=−bδ−(k+1)cδ

δ

[
(t− τ)H−

3
2 wτ/δ(ω)

]

+ K
(U)
H δH

CH
wt/δ(ω)

)2]

= δ3(H − 1/2)2σ2

C2
H

t−δ∑
τ=−bδ−(k+1)cδ

δ
(t− τ)2H−3

+
(
K

(U)
H σ

CH

)2

· δ2H

≤ δ3(H − 1/2)2σ2

C2
H

t−δ∑
τ=−∞

δ
(t− τ)2H−3

+
(
K

(U)
H σ

CH

)2

· δ2H

= δ3(H − 1/2)2σ2

C2
H

∞∑
τ=δ

δ
τ2H−3

+
(
K

(U)
H σ

CH

)2

· δ2H

= δ3(H − 1/2)2σ2

C2
H

∞∑
r=1

(rδ)2H−3

+
(
K

(U)
H σ

CH

)2

· δ2H

= R2δ
2H .

Here we define R2 by

R2
.= (H − 1/2)2σ2

C2
H

∞∑
r=1

r2H−3 +
(
K

(U)
H σ

CH

)2

.
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The series converges because 2H − 3 < 1. By Markov’s inequality we get

P
({
ω ∈ Ω :

∣∣∣σ∆V (δ)
t (ω)

∣∣∣ ≥ ε})
= P

({
ω ∈ Ω :

(
σ∆V (δ)

t (ω)
)2
≥ ε2

})

≤
E

[(
σ∆V (δ)

t (ω)
)2
]

ε2

≤R2

ε2
· δ2H .

In this part we did not need to bound δ by a δ∗ so we can trivially choose
δ∗ = 1, the result follows with R = R2/ε

2, and α = 2H. Notice that α > 1
since H > 1/2.

We also need a result telling us that in a certain sequence of of stochastic
processes are bounded by a common constant R on a compact interval with
high probability.

Lemma 8.4.3. Let µ ∈ R, σ > 0, S0 > 0, H ∈ (0, 1). Let {δn} be a sequence of
positive numbers converging to zero. For each n let V (δn) be as in definition 7.1.1.
We look at the processes

S0e
µt+σV (δn)

t .

From proposition 8.1.1 we know that these are stochastic process on a probability
space (Ω,A, P ) where {V (δn)} are stochastic processes. For each ε > 0,K ∈ N
there exists R > 0, n∗ ∈ N such that if n ≥ n∗ we have

P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < R ∀t ∈ [0,K]

})
> 1− ε.

Proof. Notice first that{
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < R ∀t ∈ [0,K]

}
∈ A,

this follows from the fact that {f ∈ C[0,∞) : |f(t)| < R ∀t ∈ [0,K]} is
open by lemma B.2.21 so it is contained in C, and we can therefore refer to
proposition 8.1.1.

Let (Bt,H)t∈[0,∞) be the fractional Brownian motion, we assume that it is a
stochastic process on a space (Ω∗,A∗, P ∗). By proposition 8.1.1(

S0e
µt+σBt,H

)
t∈[0,∞)

is a stochastic process on (Ω∗,A∗, P ∗). Again by lemma B.2.21 and proposi-
tion 8.1.1 we have that for each j ∈ N{

ω∗ ∈ Ω∗ :
∣∣∣S0e

µt+σBt,H(ω∗)
∣∣∣ < j ∀t ∈ [0,K]

}
∈ A∗.

Since continuous functions are bounded on compact intervals, we have⋃
j∈N

{
ω∗ ∈ Ω∗ :

∣∣∣S0e
µt+σBt,H(ω∗)

∣∣∣ < j ∀t ∈ [0,K]
}

= Ω∗.
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If we denote Aj
.= {ω∗ ∈ Ω∗ : |S0e

µt+σBt,h(ω∗)| < j ∀t ∈ [0,K]} we have
Aj ⊂ Aj+1. So since P ∗(Ω∗) = 1 we get by the continuity of measures(see
[MW13, p. 148]) that there exists a J such that

P ∗
({
ω∗ ∈ Ω∗ :

∣∣∣S0e
µt+σBt,h(ω∗)

∣∣∣ < J ∀t ∈ [0,K]
})

> 1− ε

2 .

Let P (1)
n be the measure on (C[0,∞), C) induced by S0e

µt+σV (δn)
t and let P (1)

be the measure induced on (C[0,∞), C) by S0e
µt+σB(δn)

t,H . From theorem 8.1.2
{P (1)

n } converges weakly to P (1). So by the Portmanteau Theorem[Bil99,
Theorem 2.1, p. 16] and lemma B.2.21 we have

lim inf
n→∞

P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

})
= lim inf

n→∞
P (1)
n ({f ∈ C[0,∞) : |f(t)| < J ∀t ∈ [0,K]})

≥ P (1) ({f ∈ C[0,∞) : |f(t)| < J ∀t ∈ [0,K]})

= P ∗
({
ω∗ ∈ Ω∗ :

∣∣∣S0e
µt+σBt,h(ω∗)

∣∣∣ < J ∀t ∈ [0,K]
})

> 1− ε

2 .

(8.9)

Since probability measures always are in the interval [0, 1] the lim inf of a
sequence of probability measures also must lie in this interval, hence we do not
have any problems with ±∞. There must exists an n∗ such that if n ≥ n∗ we
have ∣∣∣∣ lim inf

n→∞
P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

})
− inf
k≥n∗

P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δk)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

}) ∣∣∣∣
≤ ε

2 .

(8.10)

The triangle inequality tells us that |b| = |b − a + a| ≤ |b − a| + |a|, so
|a| ≥ |b| − |b− a|. If a, b ≥ 0 we have a ≥ b− |b− a|. Using this fact, eq. (8.9)
and eq. (8.10) we have

inf
k≥n∗

P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δk)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

})
≥ lim inf

n→∞
P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

})
−
∣∣∣∣ lim inf
n→∞

P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

})
− inf
k≥n∗

P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δk)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

}) ∣∣∣∣
≥ lim inf

n→∞
P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < J ∀t ∈ [0,K]

})
− ε

2
> 1− ε

2 −
ε

2 .

This completes the proof.
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The next lemma is a technical result needed later. It is needed because
for S0 exp(µt+ σV

(δn)
t ) it is the logarithm and not the process itself which is

linearly interpolated. This interpolation creates a small technical challenge in
theorem 8.4.5.

Lemma 8.4.4. Let µ ∈ R, σ > 0, S0 > 0, H ∈ (0, 1). Let {δn} be a sequence of
positive numbers converging to zero. For each n let V (δn) be as in definition 7.1.1.
We look at the processes

S̃
(δn)
t = S0e

µt+σV (δn)
t .

From proposition 8.1.1 we know that these are stochastic process on a probability
space (Ω,A, P ) where {V (δn)} are stochastic processes. For t = Nδn, N ∈
{0} ∪ N we define

∆S̃(δn)
t

.= S̃
(δn)
t+δn − S̃

(δn)
t .

For every K ∈ N, ε > 0, ε2 > 0 there exists a n∗ such that if n ≥ n∗ we have

P

 ⋂
t=Nδn,N∈{0}∪N

t≤K+1

{
ω ∈ Ω :

∣∣∣∆S̃(δn)
t (ω)

∣∣∣ < ε
} > 1− ε2.

Proof. From lemma 8.4.3 we have that there exists R > 0, n1, such that

P
({
ω ∈ Ω :

∣∣∣S̃(δn)
t (ω)

∣∣∣ < R ∀t ∈ [0,K + 1]
})

> 1− ε2
2 ,

for n ≥ n1. Define ε∗ .= min(0.5, ε/R), and e∗∗ .= [min(| ln(1−ε∗)|, ln(1+ε∗))]/2.
Also define

A
(n)
1

.=
⋂

t=Nδn,N∈{0}∪N
t≤K+1

{
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ < ε∗∗
}
.

Let R∗, δ∗, α be from lemma 8.4.2, we get

P
(
A

(n)
1

)
= 1− P

((
A

(n)
1

)c)

= 1− P

 ⋃
t=Nδn,N∈{0}∪N

t≤K+1

{
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ ≥ ε∗∗}


≥ 1−
∑

t=Nδn,N∈{0}∪N
t≤K+1

P
({
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣ ≥ ε∗∗})

≥ 1−
∑

t=Nδn,N∈{0}∪N
t≤K+1

P


ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣+ · · ·+

∣∣∣∣∣∣∣
(
σ∆V (δn)

t (ω)
)k∗

k∗!

∣∣∣∣∣∣∣ ≥ ε∗∗



≥ 1−
∑

t=Nδn,N∈{0}∪N
t≤K+1

R∗δαn ,
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if n ≥ n2, where n2 comes from lemma 8.4.2 by making δn smaller than δ∗ if
n ≥ n2. The number of t’s in the sum is bounded by (K + 1)/δn + 1 so we have

1−
∑

t=Nδn,N∈{0}∪N
t≤K+1

R∗δαn

≥ 1−
(
K + 1
δn

+ 1
)
R∗δαn

= 1− (K + 1 + δn)R∗δα−1
n .

Since by lemma 8.4.2, α > 1 there is a n3 such that this expression is larger
than 1− ε2/2 if n ≥ n3. If n ≥ max(n1, n2, n3) we then have

P
(
A

(n)
1 ∩

{
ω ∈ Ω :

∣∣∣S̃(δn)
t (ω)

∣∣∣ < R ∀t ∈ [0,K + 1]
})

= 1− P
((
A

(n)
1

)c
∪
{
ω ∈ Ω :

∣∣∣S̃(δn)
t (ω)

∣∣∣ < R ∀t ∈ [0,K + 1]
}c)

≥ 1− P
((
A

(n)
1

)c)
− P

({
ω ∈ Ω :

∣∣∣S̃(δn)
t (ω)

∣∣∣ < R ∀t ∈ [0,K + 1]
}c)

= P
(
A

(n)
1

)
+ P

({
ω ∈ Ω :

∣∣∣S̃(δn)
t (ω)

∣∣∣ < R ∀t ∈ [0,K + 1]
})
− 1

> 1− ε2
2 + 1− ε2

2 − 1

= 1− ε2.

Choose n4 such that |µδn| < ε∗∗ for n ≥ n4. To complete the proof it now
suffices to show that if n ≥ max(n1, n2, n3, n4) we have

A
(n)
1 ∩

{
ω ∈ Ω :

∣∣∣S̃(δn)
t (ω)

∣∣∣ < R ∀t ∈ [0,K + 1]
}

⊂
⋂

t=Nδn,N∈{0}∪N
t≤K+1

{
ω ∈ Ω :

∣∣∣∆S̃(δn)
t (ω)

∣∣∣ < ε
}
.

So for the remainder of the proof assume t ∈ [0,K + 1], n ≥ max(n1, n2, n3, n4),
t is a multiple of δn and ω ∈ A(n)

1 ∩ {ω ∈ Ω :
∣∣∣S̃(δn)
t (ω)

∣∣∣ < R ∀t ∈ [0,K + 1]}.
We get ∣∣∣∆S̃(δn)

t (ω)
∣∣∣

=
∣∣∣S0e

µ(t+δn)+σ(V (δn)
t (ω)+∆V (δn)

t (ω)) − S0e
µt+σV (δn)

t (ω)
∣∣∣

= S0e
µt+σV (δn)

t (ω)
∣∣∣eµδn+σ∆V (δn)

t (ω) − 1
∣∣∣

< R
∣∣∣eµδn+σ∆V (δn)

t (ω) − 1
∣∣∣ .

(8.11)

We also have ∣∣∣µδn + σ∆V (δn)
t (ω)

∣∣∣
≤ |µδn|+

∣∣∣σ∆V (δn)
t (ω)

∣∣∣
≤ ε∗∗ + ε∗∗

= min(| ln(1− ε∗)|, ln(1 + ε∗)).

(8.12)

226



8.4. Stochastic difference equations

Combining eq. (8.12) and lemma D.1.1 we have

R
∣∣∣eµδn+σ∆V (δn)

t (ω) − 1
∣∣∣

≤ Re∗

≤ R ε

R
= ε.

This completes the proof.

The next result is what is needed to show weak convergence of the processes
in definition 8.4.1. It is a long proof because there are many quantities we need
to bound in order for the mathematical operations to be legal and in order to
get the desired result.

Theorem 8.4.5. Let H ∈ (0, 1), ε > 0, S0 > 0, σ > 0, µ ∈ R, and let {δn}
be a sequence of positive real numbers converging to zero. Let V (δ) be as in
definition 7.1.1, defined on the probability space (Ω,A, P ). Let S(δn)

t be as in
definition 8.4.1, and let

S̃
(δn)
t = S0e

µt+σV (δn)
t , t ∈ [0,∞).

Then

P
({
ω : ρ

(
S(δn)(ω), S̃(δn)(ω)

)
≥ ε
})
→ 0,

as n→∞, where ρ is the usual metric on C[0,∞).

Proof. As we have remarked in similar proofs, we have{
ω : ρ

(
S(δn)(ω), S̃(δn)(ω)

)
≥ ε
}
∈ A,

by proposition B.2.15, lemma 3.3.2 and theorem 2.2.2.
Let ε2 > 0, it suffices to prove that there exists n∗ such that for n ≥ n∗ we

have

P
({
ω : ρ

(
S(δn)(ω), S̃(δn)(ω)

)
< ε
})

> 1− ε2.

Let K ∈ N be such that Σ∞r=K+12−r < ε/2.
By lemma 8.4.3 there is an R > 0 and n1 such that for n ≥ n1

P
({
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < R ∀t ∈ [0,K + 1]

})
> 1− ε2

6 . (8.13)

Define

A
(n)
1

.=
{
ω ∈ Ω :

∣∣∣S0e
µt+σV (δn)

t (ω)
∣∣∣ < R ∀t ∈ [0,K + 1]

}
.

Also define ε∗ .= min(0.5, ε/(100RK)), let

ε∗∗
.= min (|ln(1− ε∗)| , ln(1 + ε∗)) .
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Chose n2 such that if n ≥ n2 we have

|µδn| <
1

100 . (8.14)

Set

A
(n)
2

.=
⋂

t=Nδn,N∈{0}∪N
t≤K+1

{
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣+ · · ·

+

∣∣∣∣∣
(
σ∆V (δn)

t (ω)
)k∗

k∗!

∣∣∣∣∣ < 1
100

}
,

where k∗ is from definition 8.4.1. With the aid of lemma 8.4.2 we have

P
(
A

(n)
2

)
= 1− P

((
A

(n)
2

)c)

= 1− P

 ⋃
t=Nδn,N∈{0}∪N

t≤K+1

{
ω ∈ Ω :

∣∣∣σ∆V (δn)
t (ω)

∣∣∣+ · · ·+

∣∣∣∣∣
(
σ∆V (δn)

t (ω)
)k∗

k∗!

∣∣∣∣∣ ≥ 1
100

}
≥ 1−

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn
P

{ω ∈ Ω :
∣∣∣σ∆V (δn)

t (ω)
∣∣∣+ · · ·+

∣∣∣∣∣
(
σ∆V (δn)

t (ω)
)k∗

k∗!

∣∣∣∣∣ ≥ 1
100

}
≥ 1−

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn
R∗δαn ,

if δn ≤ δ∗ (δ∗ and R∗ is from lemma 8.4.2). The number of t’s in the sum is
bounded by (K + 1)/δn + 1 so we get

P
(
A

(n)
2

)
≥ 1−

∑
t=Nδn,N∈{0}∪N

t≤K+1

R∗δαn

≥ 1−
(
K + 1
δn

+ 1
)
R∗δαn

= 1− (K + 1 + δn)R∗δα−1
n .

Since α > 1 there is an n3 such that if n ≥ n3, we have δn ≤ δ∗ and

P
(
A

(n)
2

)
> 1− ε2

6 . (8.15)

Define

A
(n)
3

.=

ω ∈ Ω :
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣∣σ∆V δnt (ω)
∣∣∣k∗+1

<
ε∗∗

24

 .
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From lemma 7.4.3 there is an n4 so that if n ≥ n4 we have

P (An3 ) = 1− P ((An3 )c)

≥ 1− ε2
12

> 1− ε2
6 .

Let

A
(n)
4

.=

ω ∈ Ω :
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣∣µδn − µδne−σ∆V (δn)
t (ω)

∣∣∣ < ε∗∗

4

 .

From corollary 7.4.5 there is an n5 such that if n ≥ n5

P
(
A

(n)
4

)
= 1− P

((
A

(n)
4

)c)
≥ 1− ε2

12
> 1− ε2

6 .

Let n6 be such that if n ≥ n6 we have

δn < 1. (8.16)

Define

A
(n)
5

.=

ω ∈ Ω :
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣∣σ∆V δnt (ω)
∣∣∣2k∗+2

<
ε∗∗

192

 .

From lemma 7.4.3 there is an n7 so that if n ≥ n7 we have

P (An5 ) = 1− P ((An5 )c)

≥ 1− ε2
12

> 1− ε2
6 .

By lemma D.3.5 there is an n8 such that if n ≥ n8∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣µ2δ2
n

∣∣ < ε∗∗

48 . (8.17)

Define

A
(n)
6

.=
⋂

t=Nδn,N∈{0}∪N
t≤K+1

{
ω ∈ Ω :

∣∣∣∆S̃(δn)
t (ω)

∣∣∣ < ε

100K

}
.

By lemma 8.4.4 there is an n9 so that if n ≥ n9

P
(
A

(n)
6

)
> 1− ε2

6 .
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Define n∗

n∗
.= max({ni : i ∈ {1, . . . , 9}})

Notice that for n ≥ n∗

P

 ⋂
i∈{1,...,6}

A
(n)
i


= 1− P

 ⋃
i∈{1,...,6}

(
A

(n)
i

)c
≥ 1−

6∑
i=1

P
((
A

(n)
i

)c)
=

6∑
i=1

P
(
A

(n)
i

)
− 5

> 6 ·
(

1− ε2
6

)
− 5

= 1− ε2.

To finish the proof it suffices to prove

A
(n)
1 ∩A(n)

2 ∩A(n)
3 ∩A(n)

4 ∩A(n)
5 ∩A(n)

6

⊂
{
ω : ρ

(
S(δn)(ω), S̃(δn)(ω)

)
< ε
}
,

for n ≥ n∗. Assume first that ω ∈ A(n)
1 ∩A(n)

2 ∩A(n)
3 ∩A(n)

4 ∩A(n)
5 ∩A(n)

6 and
t ∈ (0,K + 1] is a multiple of δn. We have∣∣∣S̃(δn)

t (ω)− S(δn)
t (ω)

∣∣∣
= S0

∣∣∣∣∣∣∣eµt+σV
(δn)
t

(ω) −
t−δn∏

δn
s=0

1 + µδn + σ∆V (δn)
s (ω) + · · ·+

(
σ∆V (δn)

s (ω)
)k∗

k∗!


∣∣∣∣∣∣∣

= S0

∣∣∣∣∣eµt+σV (δn)
t

(ω)

− exp

t−δn∑
δn

s=0

ln

1 + µδn + σ∆V (δn)
s (ω) + · · ·+

(
σ∆V (δn)

s (ω)
)k∗

k∗!


∣∣∣∣∣

= S0e
µt+σV (δn)

t
(ω)

∣∣∣∣∣1
− exp

(
t−δn∑

δn
s=0

ln

(
1 + µδn + σ∆V (δn)

s (ω) + · · ·+

(
σ∆V (δn)

s (ω)
)k∗

k∗!

)

− µδ − σ∆V (δn)
t (ω)

)∣∣∣∣∣.
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The rewriting of the product using the exponential-logarithm trick is legal
because every term in the product is positive by the bounds in definition of
A

(n)
2 and eq. (8.14). Because of the bound in A(n)

2 we can use lemma D.2.1 to
write

1 + σ∆V (δn)
s (ω) + · · ·+

(
σ∆V (δn)

s (ω)
)k∗

k∗!

= eσ∆V (δn)
s (ω) + r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

.

Hence, we get∣∣∣S̃(δn)
t (ω)− S(δn)

t (ω)
∣∣∣

= S0e
µt+σV (δn)

t (ω)

∣∣∣∣∣1
− exp

(
t−δn∑

δn
s=0

ln
(

1 + µδn + σ∆V (δn)
s (ω) + · · ·+

(
σ∆V (δn)

s (ω)
)k∗

k∗!

)

− µδn − σ∆V (δn)
t (ω)

)∣∣∣∣∣
= S0e

µt+σV (δn)
t (ω)

∣∣∣∣∣1
− exp

(
t−δn∑

δn
s=0

ln
(
eσ∆V (δn)

s (ω) + r1(σ∆V (δn)
s (ω))

(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

)

− µδn − σ∆V (δn)
t (ω)

)∣∣∣∣∣
= S0e

µt+σV (δn)
t (ω)

∣∣∣∣∣1
− exp

(
t−δn∑

δn
s=0

ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])

− µδn

)∣∣∣∣∣.
(8.18)

Notice that∣∣∣∣e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

]∣∣∣∣
≤ e1/100

(
2

100 + 1
100

)
< 3 · 3

100
< 0.5.
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So by lemma D.2.2

ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])

= e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

]

+ r∗2 ·

(
e−σ∆V (δn)

s (ω)
[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])2

,

where

r∗2
.= r2

(
e−σ∆V (δn)

s (ω)
[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])
,

r2 is from lemma D.2.2. Using this we get∣∣∣∣∣
t−δn∑
s=0

δn
ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])
− µδn

∣∣∣∣∣
≤

t−δn∑
s=0

δn

∣∣∣∣∣ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])
− µδn

∣∣∣∣∣
=

t−δn∑
s=0

δn

∣∣∣∣∣ e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

]

+r∗2 ·
(
e−σ∆V (δn)

s (ω)
[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])2

− µδn

∣∣∣∣∣
≤

t−δn∑
s=0

δn

∣∣∣∣∣e−σ∆V (δn)
s (ω)r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

∣∣∣∣∣
+
t−δn∑
s=0

δn

∣∣∣∣∣e−σ∆V (δn)
s (ω)µδn − µδn

∣∣∣∣∣
+
t−δn∑
s=0

δn
2

∣∣∣∣∣r∗2e−2σ∆V (δn)
s (ω)r1(σ∆V (δn)

s (ω))2
(
σ∆V (δn)

s (ω)
)2k∗+2

∣∣∣∣∣
+
t−δn∑
s=0

δn
2

∣∣∣∣∣r∗2e−2σ∆V (δn)
s (ω)µ2δ2

n

∣∣∣∣∣
(8.19)

Since |σ∆V (δn)
t (ω)| < 1/100, a rough upper bound for | exp(−σ∆V (δn)

t (ω))|
and | exp(−2σ∆V (δn)

t (ω))| is 3. We also recall that |r1(σ∆V (δn)
s (ω))| and |r∗2 |
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are bounded by 2. So by eq. (8.19) we have∣∣∣∣∣
t−δn∑
s=0

δn
ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])
− µδn

∣∣∣∣∣
≤

t−δn∑
s=0

δn
6

∣∣∣∣∣σ∆V (δn)
s (ω)

∣∣∣∣∣
k∗+1

+
t−δn∑
s=0

δn

∣∣∣∣∣e−σ∆V (δn)
s (ω)µδn − µδn

∣∣∣∣∣
+
t−δn∑
s=0

δn
48

∣∣∣∣∣σ∆V (δn)
s (ω)

∣∣∣∣∣
2k∗+2

+
t−δn∑
s=0

δn
12

∣∣∣∣∣µ2δ2
n

∣∣∣∣∣.
By the definitions of A(n)

3 , A
(n)
4 , A

(n)
5 and eq. (8.17)

t−δn∑
s=0

δn
6

∣∣∣∣∣σ∆V (δn)
s (ω)

∣∣∣∣∣
k∗+1

+
t−δn∑
s=0

δn

∣∣∣∣∣e−σ∆V (δn)
s (ω)µδn − µδn

∣∣∣∣∣
+
t−δn∑
s=0

δn
48

∣∣∣∣∣σ∆V (δn)
s (ω)

∣∣∣∣∣
2k∗+2

+
t−δn∑
s=0

δn
12

∣∣∣∣∣µ2δ2
n

∣∣∣∣∣
≤ 6

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣σ∆V δnt (ω)
∣∣∣k∗+1

+
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣∣µδn − µδne−σ∆V (δn)
t (ω)

∣∣∣
+ 48

∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣∣σ∆V δnt (ω)
∣∣∣2k∗+2

+ 12
∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣µ2δ2
n

∣∣
< 6 · ε

∗∗

24 + ε∗∗

4 + 48 · ε
∗∗

192 + 12 · ε
∗∗

48
= ε∗∗.

Hence we have shown∣∣∣∣∣
t−δn∑
s=0

δn
ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])
− µδn

∣∣∣∣∣
< ε∗∗

= min (|ln(1− ε∗)| , ln(1 + ε∗)) .
(8.20)
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From eq. (8.18) and the definition of A(n)
1 we have∣∣∣S̃(δn)

t (ω)− S(δn)
t (ω)

∣∣∣
= S0e

µt+σV (δn)
t (ω)

∣∣∣∣∣1
− exp

(
t−δn∑

δn
s=0

ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])

− µδn

)∣∣∣∣∣.
< R

∣∣∣∣∣1
− exp

(
t−δn∑

δn
s=0

ln
(

1 + e−σ∆V (δn)
s (ω)

[
r1(σ∆V (δn)

s (ω))
(
σ∆V (δn)

s (ω)
)k∗+1

+ µδn

])

− µδn

)∣∣∣∣∣.
(8.21)

Combining eq. (8.20) and eq. (8.21) with lemma D.1.1 we get∣∣∣S̃(δn)
t (ω)− S(δn)

t (ω)
∣∣∣

< Rε∗

≤ R · ε

100RK
= ε

100K .

We note if t = 0 then by definition |S̃(δn)
t (ω)− S(δn)

t (ω)| = 0.
To summarize, we have proven that if ω ∈ A(n)

1 ∩A(n)
2 ∩A(n)

3 ∩A(n)
4 ∩A(n)

5 ∩
A

(n)
6 , n ≥ n∗ and t ∈ [0,K + 1] where t is a multiple of δn we have∣∣∣S̃(δn)

t (ω)− S(δn)
t (ω)

∣∣∣ < ε

100K .

Consider now the same assumptions for ω and n, but instead we have t ∈ [0,K]
and t is not a multiple of δn. There must be an N ∈ {0} ∪ N such that
Nδn < (N + 1)δn. By eq. (8.16) we have

(N + 1)δn = (N + 1)δn − t+ t < δn +K < K + 1.

From what we have proven already we have∣∣∣S̃(δn)
Nδn

(ω)− S(δn)
Nδn

(ω)
∣∣∣ < ε

100K ,∣∣∣S̃(δn)
(N+1)δn(ω)− S(δn)

(N+1)δn(ω)
∣∣∣ < ε

100K .
(8.22)
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From the definition of A(n)
6 we have∣∣∣∆S̃(δn)

Nδn
(ω)
∣∣∣ =

∣∣∣S̃(δn)
(N+1)δn(ω)− S̃(δn)

Nδn
(ω)
∣∣∣

<
ε

100K .
(8.23)

This means that we also have∣∣∣S(δn)
(N+1)δn(ω)− S(δn)

Nδn
(ω)
∣∣∣ ≤ ∣∣∣S(δn)

(N+1)δn(ω)− S̃(δn)
(N+1)δn(ω)

∣∣∣
+
∣∣∣S̃(δn)

(N+1)δn(ω)− S̃(δn)
Nδn

(ω)
∣∣∣

+
∣∣∣S̃(δn)
Nδn

(ω)− S(δn)
Nδn

(ω)
∣∣∣

<
3ε

100K .

(8.24)

Because we use linear interpolation of the logarithm of S̃(δn)
t we must have

that |S̃(N+1)δn(ω)− S̃t(ω)| is bounded by |S̃(N+1)δn(ω)− S̃Nδn(ω)|, because the
exponential function is monotone. Since we have used linear interpolation in
the definition of S(δn

t we must in the same way have that |S(δn)
t (ω)− S(δn)

Nδn
(ω)|

is bounded by |S(δn)
(N+1)δn(ω)− S(δn)

Nδn
(ω)|. Using these two facts, together with

eq. (8.22), eq. (8.23) and eq. (8.24) we have∣∣∣S(δn)
t (ω)− S̃(δn)

t (ω)
∣∣∣ ≤ ∣∣∣S(δn)

t (ω)− S(δn)
Nδn

(ω)
∣∣∣

+
∣∣∣S(δn)
Nδn

(ω)− S(δn)
(N+1)δn(ω)

∣∣∣
+
∣∣∣S(δn)

(N+1)δn(ω)− S̃(δn)
(N+1)δn(ω)

∣∣∣
+
∣∣∣S̃(δn)

(N+1)δn(ω)− S̃(δn)
t (ω)

∣∣∣
<
∣∣∣S(δn)

(N+1)δn(ω)− S(δn)
Nδn

(ω)
∣∣∣

+ 3ε
100K + ε

100K
+
∣∣∣S̃(δn)

(N+1)δn(ω)− S̃(δn)
Nδn

(ω)
∣∣∣

≤ 3ε
100K + 4ε

100K + ε

100K
= 8ε

100K .

(8.25)
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So if ω ∈ A(n)
1 ∩A(n)

2 ∩A(n)
3 ∩A(n)

4 ∩A(n)
5 ∩A(n)

6 we have

ρ
(
S(δn)(ω), S̃(δn)(ω)

)
=
∞∑
i=1

min
(

2−i, sup
{∣∣∣S(δn)

t (ω)− S̃(δn)
t (ω)

∣∣∣ : t ∈ [0, i]
})

≤
K∑
i=1

sup
{∣∣∣S(δn)

t (ω)− S̃(δn)t(ω)
∣∣∣ : t ∈ [0, i]

}
+

∞∑
i=K+1

2−i

≤
K∑
i=1

8ε
100K + ε

2

< ε.

This completes the proof of theorem 8.4.5.

We are now ready for the proof showing that our solution to the difference
equation in eq. (8.6) approximates the geometric Fractional Brownian Motion.
The proof is trivial because the hard work was done in theorem 8.4.5 and the
lemmas leading up to theorem 8.4.5.

Theorem 8.4.6. Let H ∈ (0, 1), {δn} a sequence of positive numbers converging
to zero. Assume S0 > 0, σ > 0, µ ∈ R, using these quantities let S(δn) be as in
definition 8.4.1. Denote Pn to be the measure on (C[0,∞), C) induced by S(δn).
Define P the measure on (C[0,∞), C) induced by

S0e
µt+σBt,H .

Then {Pn} converges weakly to P .

Remark. The measure P exist by proposition 8.1.1, and the measures Pn exist
by lemma 3.3.2 and theorem C.1.1.

Proof. Theorem 8.4.6 follows directly from theorem 8.4.5, theorem 8.1.2 and
theorem 5.4.2.

8.5 Analysis of the solution to the difference equation

In this section we will further analyse some aspects of the price process S(δ)

from definition 8.4.1. A common theme in section 8.3 for the models of the
risky assets was that they were all positive. We will first see that this may not
be the case for H > 1/2 in definition 8.4.1.

A weakness in the model for H > 1/2
Let S(δ) be as in definition 8.4.1, we will see that no matter how small we choose
δ, for H > 1/2 it will still be possible to obtain non-positive values. This is
not desirable when modelling a risky asset. However we will first see that for
H ≤ 1/2 we do not have this problem.
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8.5. Analysis of the solution to the difference equation

Proposition 8.5.1. Let H ∈ (0, 0.5], S0 > 0, σ > 0, µ ∈ R. There exists a
δ∗ > 0 such that if 0 < δ ≤ δ∗ and S(δ) as in definition 8.4.1 with S0, σ, µ, δ,
we have for all ω ∈ Ω, t ∈ [0,∞)

S
(δ)
t (ω) > 0.

Proof. By definition 8.4.1 it suffices to show that there is a δ∗ such that if
δ ≤ δ∗ and t is a multiple of δ we have

|µδ|+
∣∣∣σ∆V (δ)

s (ω)
∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ)

s (ω)
)2

2!

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
(
σ∆V (δ)

s

)k∗
k∗!

∣∣∣∣∣∣∣ < 1, (8.26)

for ω ∈ Ω.
Assume first that H = 1/2. First choose a δ(1) such that for δ ≤ δ(1) we

have

|µδ| < 1
2 .

When H = 1/2 we have k∗ = 2, and from eq. (8.7)

∣∣∣σ∆V (δ)
t (ω)

∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ)

t (ω)
)2

2

∣∣∣∣∣∣∣ = σδH

CH
+ σ2δ2H

2C2
H

.

There is a δ(2) such that if δ ≤ δ(2) this expression is bounded by 1/2. Letting
δ∗

.= min(δ(1), δ(2)) completes the case for H = 1/2.
Assume now that H < 1/2. Again choose δ(1) such that if δ ≤ δ(1) we have

|µδ| < 1/2. From eq. (8.8) we know that there is an R1 > 0 such that

∣∣∣σ∆V (δ)
t (ω)

∣∣∣+

∣∣∣∣∣∣∣
(
σ∆V (δ))

t (ω)
)2

2!

∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣
(
σ∆V (δ)

t (ω)
)k∗

k∗!

∣∣∣∣∣∣∣
≤ σR1δ

H + σ2

2! ·
(
R1δ

H
)2 + · · ·+ σk

∗

k∗! ·
(
R1δ

H
)k∗

.

There is a δ(2) such that this expression is also less than 1/2 for δ ≤ δ(2).
Choosing δ∗ = min(δ(1), δ(2)) completes the the case H ∈ (0, 0.5).

Next we show that for H > 1/2 we have a positive probability of non-positive
values.

Proposition 8.5.2. Let H ∈ (0.5, 1), δ > 0, S0 > 0, σ > 0, µ ∈ R. Then

P
({
ω ∈ Ω : S(δ)

t (ω) ≤ 0 for some t ∈ [0,∞)
})

> 0.

Where we have defined S(δ) by the quantities H,S0, σ, µ, δ and definition 8.4.1.

Remark. Note that {ω ∈ Ω : S(δ)
t (ω) ≤ 0 for some t ∈ [0,∞)} ∈ A by

proposition C.1.3.
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Proof. Let k be as in definition 7.1.1, the smallest natural number such that
2k(1−H) > 1. For N ∈ N we have

σδ3/2(H − 1/2)
CH

Nδ−δ∑
τ=−bδ−(k+1)cδ

δ
(Nδ − τ)H−

3
2

= σδ3/2(H − 1/2)
CH

Nδ+bδ−(k+1)cδ∑
τ=δ

δ
τH−

3
2

= σδ3/2(H − 1/2)
CH

N+bδ−(k+1)c∑
r=1

(rδ)H− 3
2

= σδH(H − 1/2)
CH

N+bδ−(k+1)c∑
r=1

rH−
3
2 .

(8.27)

The series
∑∞
r=1 r

H−3/2 diverges because H > 1/2. So by eq. (8.27) there is an
N ′ ∈ N such that

σδ3/2(H − 1/2)
CH

N ′δ−δ∑
τ=−bδ−(k+1)cδ

δ
(N ′δ − τ)H−

3
2

> 1 + |µδ|+

∣∣∣∣∣σK(U)
H δH

CH

∣∣∣∣∣ ,
(8.28)

where K(U)
H is from definition 6.2.4.

We recall that S(δ)
t is defined on the same probability space as ∆V (δ)

t . We
denoted this space (Ω,A, P ), and we recall from definition 7.1.1 that on this
space that the collection

W = {. . . , w−3, w−2, w−1, w0, w1, w2, w3, . . .},

is a collection of independent random variables. Define the set

AN ′
.=

⋂
r∈Z

−bδ−(k+1)c≤r≤N ′−1

{ω ∈ Ω : wr(ω) = −1} .

By independence we have

P (AN ′) =
(

1
2

)N ′+bδ−(k+1)c

> 0. (8.29)

We will complete the proof if we can show

AN ′ ⊂
{
ω ∈ Ω : S(δ)

t (ω) ≤ 0 for some t ∈ [0,∞)
}
.
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Assume ω ∈ AN ′ . Since H ∈ (0.5, 1) we have that k∗ = 1 from definition 8.4.1.
We have

1 + µδ + σ∆V (δ)
N ′δ(ω)

= 1 + µδ + σδ3/2(H − 1/2)
CH

N ′δ−δ∑
τ=−bδ−(k+1)cδ

δ

[
(N ′δ − τ)H−

3
2 wτ/δ(ω)

]

+ σK
(U)
H δH

CH
wt/δ(ω)

≤ 1 + |µδ|+ σδ3/2(H − 1/2)
CH

N ′δ−δ∑
τ=−bδ−(k+1)cδ

δ

[
(N ′δ − τ)H−

3
2 wτ/δ(ω)

]

+

∣∣∣∣∣σK(U)
H δH

CH

∣∣∣∣∣
= 1 + |µδ| − σδ3/2(H − 1/2)

CH

N ′δ−δ∑
τ=−bδ−(k+1)cδ

δ
(N ′δ − τ)H−

3
2

+

∣∣∣∣∣σK(U)
H δH

CH

∣∣∣∣∣
< 0,

(8.30)

where we in the last step used eq. (8.28). If one of the values in{
S

(δ)
δ (ω), S(δ)

2δ (ω), . . . , S(δ)
N ′δ(ω)

}
is non-positive we have the result we need, and we are done. So assume that all
of them are positive. Then we have

S
(δ)
(N ′+1)δ(ω) = S

(δ)
N ′δ(ω)

(
1 + µδ + σ∆V (δ)

N ′δ(ω)
)

< 0,

in the last step we used eq. (8.30). This completes the proof.

H=1/2, what happened to −σ2t/2?

Given S0 > 0, µ ∈ R, σ > 0, δ > 0, (S(δ)
t )t∈[0,∞) in definition 8.4.1 was the

solution to the stochastic difference equation S(δ)
0 = S0 , and if t is a multiple

of δ

S
(δ)
t+δ(ω)− S(δ)

t (ω)

= µS
(δ)
t (ω)δ + S

(δ)
t (ω)

σ∆V (δ)
t (ω) +

(
σ∆V (δ)

t (ω)
)2

2! + · · ·+

(
σ∆V (δ)

t (ω)
)k∗

k∗!

 .

Here k∗ was the smallest natural number such that H(k∗ + 1) > 1. By
theorem 8.4.6 we have that as δ tends to zero the measure induced by this process
on (C[0,∞), C) converges weakly to the measure induced by S0 exp(µt+σBt,H).
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Let us investigate the model for H = 1/2. We are now only working with
the Brownian motion. As we remarked in section 8.3, in continuous time models
the risky asset can be modelled by the stochastic differential equation

dSt = µStdt+ σStdBt

The solution to this SDE is

S0e

(
µ−σ2

2

)
t+σBt,1/2 ,

for instance by Itô’s lemma. However our price process converges weakly to

S0e
µt+σBt,1/2 .

What happened to −σ2/2? To see why we get a different result than what
we might have expected, we have to investigate our difference equation. For
H = 1/2 k∗ = 2. This means that the difference equation is

S
(δ)
t+δ(ω)− S(δ)

t (ω)

= µS
(δ)
t (ω)δ + S

(δ)
t (ω)

σ∆V (δ)
t (ω) +

(
σ∆V (δ)

t (ω)
)2

2!

 .

Let us try to solve this stochastic difference equation by deleting the term
(σ2∆V (δ)

t )/2. Denote this process S̄(δ). As before we assume linear interpolation
between the the time points which are multiples of δ. By induction we have if t
is a multiple of δ

S̄
(δ)
t (ω) = S0

t−δ∏
δ

s=0

[
1 + µδ + σ∆V (δ)

s (ω)
]
. (8.31)

From definition 6.2.4 K(U)
1/2 = 1, and from definition 7.1.1 C1/2 = 1 so again by

definition 7.1.1

∆V (δ)
t (ω) =

√
δwt/δ(ω).

This means that

S̄
(δ)
t (ω) = S0

t−δ∏
δ

s=0

[
1 + µδ + σ∆V (δ)

s (ω)
]

= S0

t−δ∏
δ

s=0

[
1 + µδ + σ∆V (δ)

s (ω) + σ2δ

2 − σ2δ

2

]

= S0

t−δ∏
δ

s=0

1 +
(
µ− σ2

2

)
δ + σ∆V (δ)

s (ω) +

(
σ
√
δws/δ

)2

2


= S0

t−δ∏
δ

s=0

1 +
(
µ− σ2

2

)
δ + σ∆V (δ)

s (ω) +

(
σ∆V (δ)

s

)2

2

 .
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This process is the same as the one in definition 8.4.1 but with µ′ = µ− σ2/2.
So if {δn} is positive and converges to zero we have by theorem 8.4.6 that
the measures induces by (S̄(δn)

t )t∈[0,∞) on (C[0,∞)C) converges weakly to the
measure induced by

S0e

(
µ−σ2

2

)
t+σBt,1/2 .

An alternative difference equation
In the difference equation

∆S(δ)
t (ω)

= µS
(δ)
t (ω)δ + S

(δ)
t (ω)

σ∆V (δ)
t (ω) +

(
σ∆V (δ)

t (ω)
)2

2! + · · ·+

(
σ∆V (δ)

t (ω)
)k∗

k∗!

 ,

(8.32)

we recognize a part of the Taylor series for exp(σV (δ)
t (ω)). If we assume

µS
(δ)
t (ω)δ and σ∆V (δ)

t (ω) are small we may try to use the approximation
ex − 1 ≈ x to get

µS
(δ)
t (ω)δ + S

(δ)
t (ω)

σ∆V (δ)
t (ω) +

(
σ∆V (δ)

t (ω)
)2

2! + · · ·+

(
σ∆V (δ)

t (ω)
)k∗

k∗!


≈ S(δ)

t (ω)

exp

µδ + σ∆V (δ)
t (ω) +

(
σ∆V (δ)

t (ω)
)2

2! + · · ·+

(
σ∆V (δ)

t (ω)
)k∗

k∗!

− 1


≈ S(δ)

t (ω)
[
exp

(
µδ + σ∆V (δ)

t (ω)
)
− 1
]
.

(8.33)
We have in fact already seen a process with these dynamics. For S0 > 0, µ ∈
R, σ > 0, δ > 0 consider the stochastic process

S̃
(δ)
t (ω) = S0e

µt+σV (δ)
t (ω),

which we used in section 8.4 as a tool for proving weak convergence for the
process in definition 8.4.1. If t is a multiple of δ we get

∆S̃(δ)
t (ω) .= S̃

(δ)
t+δ(ω)− S̃(δ)

t (ω)

= S0e
µ(t+δ)+σ(V (δ)

t (ω)+∆V (δ)
t (ω)) − S0e

µt+σV (δ)
t (ω)

= S0e
µt+σV (δ)

t (ω)
(
eµδ+σ∆V (δ)

t (ω) − 1
)

= S̃
(δ)
t (ω)

(
eµδ+σ∆V (δ)

t (ω) − 1
)
.

So the two processes S(δ)
t and S̃(δ)

t does not only both converge weakly to the
same process as δ becomes small. If we accept the approximations in eq. (8.33)
their dynamics are also very similar. We will not go into a detailed analysis
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of how good the approximations are, but we note that ex − 1 ≈ x for small
x. There is a small technical aspect we have to be aware of; we do not use
linear interpolation in S̃(δ)

t . The logarithm will be linearly interpolated since
V

(δ)
t is linearly interpolated by definition. We could have redefined it to be

linear between the time points of t = NδN,∈ {0}∪N and used techniques from
section 8.4 to show weak convergence. However, as that would be purely a
mathematical exercise and we only gain a different interpolation, it is omitted.
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Chapter 9

Final Remarks

9.1 Conclusion

With the main theorems; theorem 3.7.3, 5.4.3, 6.1.3, 6.5.1 and theorem 7.3.2,
we have shown that the induced measures of five processes X(δ), Y (δ), Z(δ), U (δ),
V (δ) all converge weakly to the measure induced by the fBm as δ tends to zero.

In chapter 8 we used V (δ) for financial applications. We saw that we could
approximate processes derived elsewhere. We also saw that we could use the
stochastic differential equation from the Black-Scholes market as an inspiration
for a stochastic difference equation. The solution to the difference equation
converged weakly to the geometric fractional Brownian motion.

9.2 Further research

There are some natural generalisations to explore if one want to work further with
the ideas in this thesis. In all of the five processes X(δ), Y (δ), Z(δ), U (δ) and V (δ)

we used independent random variables with the Rademacher distribution, that
is, they took the values ±1 each with probability 1/2 . Instead of Rademacher
distributions we could have assumed as in Donsker’s theorem([Bil99, p. 90])
that they are still independent, but we only assume that the expectation is zero,
and the variance is one. This would create some new challenges, the Lindeberg
condition in theorem 3.5.2 would not follow so easily.

We chose to work with continuous functions, and use linear interpolation
because we wanted to use continuous functions when approximating the fBm
which is continuous. We could instead have used piecewise constant cádlág
functions. Some aspects would have been simpler then, because we would not
have to bother with interpolation. It is also more natural to use cádlág functions
in finance, because the price is constant on each time interval.

In regards to financial applications in chapter 8, we did not set up a financial
market. This could also be done, and then investigate arbitrage opportunities.
In setting up the market we have to be careful since we have used linear
interpolation. This was discussed at the end of section 8.3.
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Appendix A

σ-Algebras

A.1 Definition of σ-algebras

Definition A.1.1. Let Ω be a set. A collection A of subsets of Ω is called a
σ-algebra, if

(i) ∅ ∈ A

(ii) If A ∈ A, then Ac ∈ A.

(iii) If B = {An} is a countable collection where each An ∈ A, then⋃
An∈B

An ∈ A.

A.2 Properties of σ-algebras

Proposition A.2.1 ([MW13, Proposition 1.15, p.24]). Assume E is a
nonempty collection of subsets of Ω. Then there is a smallest σ-algebra of
subsets of Ω containing E. This σ-algebra is sometimes denoted σ(E).

Remark. That σ(E) is the smallest σ-algebra means that if H is another
sigma-algebra on Ω and E ⊂ H we have

σ(E) ⊂ H.

Definition A.2.2. Let A be a σ-algebra on Ω. Let

A⊗A,

denote the smallest σ-algebra on Ω× Ω containing all elements of the form

A1 ×A2,

where A1 and A2 are elements of A.

Proposition A.2.3. Let E be a collection of subsets of Ω. Assume there there
is an increasing sequence of sets En ⊂ En+1 in E such that⋃

n∈N
En = Ω.
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Let

D = {E1 × E2, E1, E2 ∈ E} .

Then

σ(E)⊗ σ(E) = σ(D).

Proof. The inclusion σ(E) ⊗ σ(E) ⊃ σ(D) is simple because if E1, E2 ∈ E we
have E1 ∈ σ(E) and E2 ∈ σ(E), so σ(E) ⊗ σ(E) is a σ-algebra containing all
sets of the form E1 ×E2 ∈ E , it must therefore contain the smallest σ-algebra
with this property which is σ(D).

What remains to prove is

σ(E)⊗ σ(E) ⊂ σ(D).

We will use a technique found in various books in measure-theory. Let B ∈ E
be given. Denote the collection

J (B) = {A ∈ σ(E) : A×B ∈ σ(D)} .

By construction J (B) ⊂ σ(E), we will show the opposite inclusion so J (B) =
σ(E). First note that J (B) contains E since σ(D) contains all sets of the form
E × B,E ∈ E . Next note that J (B) is a σ-algebra because ∅ ∈ J (B). If
A ∈ J (B) then A×B ∈ σ(D), we also have that

Ac ×B =(A×B)c ∩ (Ω×B)
=(A×B)c ∩ ((∪nEn)×B)
= ∪n [(A×B)c ∩ (En ×B)] ∈ σ(D),

Lastly if {An} is a countable collection where each An ∈ J (b) we have

(∪An)×B = ∪(An ×B) ∈ σ(D).

Hence J (B) is a σ-algebra containing E , so σ(E) = J (B). We have proven that
for any B ∈ E and any A ∈ σ(E) we have A×B ∈ σ(D).

Now let K ∈ σ(E), denote

F(K) = {A ∈ σ(E) : K ×A ∈ σ(D)} .

By construction F(K) ⊂ σ(E), we will show that F(K) = σ(E). Note that by
what we proved in the previous paragraph E ⊂ F(K). We now show that F is
a σ-algebra. We have directly that ∅ ∈ F(K). If A ∈ F(K) we have

K ×Ac =(K ×A)c ∩ (K × Ω)
=(K ×A)c ∩ (K × (∪nEn))
= ∪n [(K ×A)c ∩ (K × En)] ∈ σ(D).

since σ-algebras are closed under intersection, and K × En ∈ σ(D) by the
previous paragraph. Lastly assume that {An} is a countable collection where
each An ∈ J (K). Then we have

K × (∪nAn) = ∪n(K ×An) ∈ σ(D).
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Hence we have that F(K) is a σ-algebra containing E , so F(K) = σ(E). What
we have now proven is that if K1,K2 ∈ σ(E) we have that K1 ×K2 ∈ σ(D).
So this means that σ(D) is a σ-algebra containing all the sets that generates
σ(E)⊗ σ(E), hence

σ(E)⊗ σ(E) ⊂ σ(D).

This completes the proof.
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Appendix B

Metric Spaces

B.1 Definition of metric spaces

The pair (S, ρ) is called a metric space if S is a non-empty set, and ρ is a
function

ρ : S × S → [0,∞),

which satisfies

(i) ρ(x, y) = 0 if and only if x = y,

(ii) ρ(x, y) = ρ(y, x),

(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, x).

Remark. Some definitions allow S = ∅. We will exclude this case for simplicity.

B.2 Elementary concepts related to metric spaces

Definition B.2.1 (Open ball). Let (S, ρ) be a metric space. If x ∈ S we define
the open ball B(x, d), where d ∈ R by

B(x, d) .= {y ∈ S : ρ(x, y) < d} .

Definition B.2.2 (Open set). Let (S, ρ) be a metric space. A set A ⊂ S is
called open if for every x in A there exists a d > 0 such that

B(x, d) ⊂ A.

Definition B.2.3 (convergence). Let (S, ρ) be a metric space. A sequence
{xn} of elements in S converges to an element x ∈ S if for every ε > 0 there
exists an N ∈ N such that if n ≥ N we have

ρ(x, xn) < ε.

Proposition B.2.4. Let (S, ρ) be a metric space. Every open ball is an open
set.
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Proof. Let B(x, d) be our open ball. If d ≤ 0 then it is empty be definition, and
the empty-set is open by definition(vacuously). We can therefore assume that
d > 0. Assume that y ∈ B(x, d), we must show that there exists a d2 such that

B(y, d2) ⊂ B(x, d).

If y = x choose d2 = d and the result follows. If y 6= x then 0 < ρ(x, y) < d, let
d2 = d− ρ(x, y) > 0, we want to show that

B(y, d2) ⊂ B(x, d).

Assume that y∗ ∈ B(y, d2), then we have that ρ(y, y∗) < d2, we get

ρ(x, y∗) ≤ρ(x, y) + ρ(y, y∗)
<ρ(x, y) + d2

=ρ(x, y) + d− ρ(x, y)
=d.

Hence y∗ ∈ B(x, d), and we have proved that

B(y, d2) ⊂ B(x, d).

Definition B.2.5 (Dense subset). Let (S, ρ) be a metric space. A set D ⊂ S
is called dense if for every x ∈ S there exists a sequence in D converging to x.

Proposition B.2.6. Let (S, ρ) be a metric space. A set D ⊂ S is dense if and
only if for each x ∈ S and each rational number q ≥ 0 we have

B(x, q) ∩D 6= ∅.

Proof. Assume first that D is dense, x ∈ S and q > 0 a rational number. Let
{xn} be a sequence in D converging to x. Let ε = q/2, then there is an N such
that if n ≥ N we have

ρ(x, xn) < q/2.

But this means that xN ∈ B(x, q), the result follows since xN ∈ D.
Assume conversely that for every x ∈ S and every rational number q > 0

we have

B(x, q) ∩D 6= ∅.

We must show that there exists a sequence in D converging to X. For every
n ∈ N we have that

B(x, 1/n) ∩D 6= ∅.

For each n pick an arbitrary xn in B(x, 1/n) ∩D. Then the sequence {xn} is
in D and it converges to x because given ε > 0 choose N such that 1/N < ε,
then if n ≥ N we have

xn ∈ B(x, 1/n),

so

ρ(x, xn) < 1/n ≤ 1/N < ε.
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Definition B.2.7 (separable). A metric space (S, ρ) is called separable if it
has a countable dense subset.

Definition B.2.8. Let (S, ρ) be a metric space. We define the Borel sigma-
algebra, B(S) = S, as the sigma-algebra generated by the open sets.

Definition B.2.9. Let (S, ρ) be a metric space. We define the ball sigma-
algebra, Ball(S) = S, as the sigma-algebra generated by the open balls.

Proposition B.2.10. Let (S, ρ) be a metric space, assume also that the metric
space is separable. Then Ball(S) = B(S).

Proof. By proposition B.2.4 every open ball is open, so we have

Ball(S) ⊂ B(S).

Assume now that the that A ⊂ S is open. If we can show that A is a
countable union of open balls, we will be done. Let D ⊂ S be the dense subset.
Define the collection H like this

H = {B(x, q) : x ∈ D, q ∈ Q, q > 0, B(x, q) ⊂ A} .

Note that H is at most a countable set, because D is at most countable, and
there are countably many positive rational number, and a countable union of
countable sets is a most countable, see [MW13, Proposition 1.10, p. 20]. Our
proof will be complete if we can show⋃

H∈H
H = A.

By construction of H we have ⋃
H∈H

H ⊂ A.

So it remains to prove ⋃
H∈H

H ⊃ A.

Let a ∈ A. We must show that there exists a x ∈ D and a rational number
q > 0 such that

a ∈ B(x, d),

and

B(x, d) ⊂ A.

Since A is open there exists a real number d > 0 such that

B(a, d) ⊂ A.

If a should happen to be in D, choose a rational number q such that 0 < q < d,
this is possible since the rational numbers are dense in R, then

B(a, q) ⊂ A.
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Assume so that a ∈ Dc. Let q be a positive rational number such that q < d/2.
By proposition B.2.6 we have

B(a, q) ∩D 6= ∅,

So choose an x in this non-empty intersection, then ρ(x, a) < q. We have that

B(a, q) ⊂ B(a, d) ⊂ A,

so it will suffice to prove that

B(x, q) ⊂ B(a, d).

This is the case, because if y ∈ B(x, q) we have

ρ(y, a) ≤ ρ(y, x) + ρ(x, a)
< q + q

<
d

2 + d

2
= d.

This completes the proof.

Proposition B.2.11. Let (S, ρ) be a metric space. Define the function ρ′

(S × S)× (S × S)→ [0,∞),

by

ρ′((x1, x2), (y1, y2)) = max (ρ(x1, y1), ρ(x2, y2)) .

Then (S × S, ρ′) is a metric space.

Proof. We check the conditions of a metric space are met. First we have

ρ′((x1, x2), (x1, x2)) = max (ρ(x1, x1), ρ(x2, x2))
= max(0, 0) = 0.

Assume so that ρ′((x1, x2), (y1, y2)) = 0. We then have

max (ρ(x1, y1), ρ(x2, y2)) =ρ′((x1, x2), (y1, y2))
=0.

This means that both ρ(x1, y1) and ρ(x2, y2) are zero. So x1 = y1, and x2 = y2,
hence

(x1, x2) = (y1, y2).

We also have

ρ′((x1, x2), (y1, y2)) = max (ρ(x1, y1), ρ(x2, y2))
= max (ρ(y1, x1), ρ(y2, x2))
=ρ′((y1, y2), (x1, x2)).
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It remains to prove the last property. Since we have

ρ′((x1, x2), (y1, y2)) = max (ρ(x1, y1), ρ(x2, y2)) ,

it will suffice to prove that

ρ(x1, y1) ≤ ρ′((x1, x2), (z1, z2)) + ρ′((z1, z2), (y1, y2)),

and

ρ(x2, y2) ≤ ρ′((x1, x2), (z1, z2)) + ρ′((z1, z2), (y1, y2)).

First we get

ρ(x1, y1) ≤ρ(x1, z1) + ρ(z1, y1)
≤max (ρ(x1, z1), ρ(x2, z2)) + max (ρ(z1, y1), ρ(z2, y2))
=ρ′((x1, x2), (z1, z2)) + ρ′((z1, z2), (y1, y2)).

Lastly we have

ρ(x2, y2) ≤ρ(x2, z2) + ρ(z2, y2)
≤max (ρ(x1, z1), ρ(x2, z2)) + max (ρ(z1, y1), ρ(z2, y2))
=ρ′((x1, x2), (z1, z2)) + ρ′((z1, z2), (y1, y2)).

This completes the proof.

Proposition B.2.12. Let (S, ρ) be a separable metric space. Then the metric
space (S × S, ρ′), defined in proposition B.2.11, is a separable metric space.

Proof. Let D be the countable dense subset in S. We will show that

D ×D,

is a countable dense subset of S×S. Note first that D×D is countable because
by [MW13, Proposition 1.11, p. 20] the Cartesian product of two countable
sets is countable. Let (x, y) ∈ S × S, let {xn} be a sequence in D converging to
x, and {yn} a sequence in D converging to y. Then (xn, yn) is a sequence in
D ×D, we will show that it converges to (x, y). Let ε > 0, then there is Nx
such that if n ≥ Nx

ρ(x, xn) < ε.

There is also an Ny such that if n ≥ Ny

ρ(y, yn) < ε.

Now if n ≥ max (Nx, Ny), we then have

ρ′((x, y), (xn, yn)) = max (ρ(x, xn), ρ(y, yn))
<ε.

The proof is now done.
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Proposition B.2.13. Let (S, ρ) be a metric space, assume that it is separable.
Let (S × S, ρ′) be the metric space in proposition B.2.11. Then

B(S)⊗ B(S) = B(S × S).

Proof. First note that by proposition B.2.10 Ball(S) = B(S), also by proposi-
tion B.2.12, (S × S, ρ′) is separable, therefore we have by proposition B.2.10
again that Ball(S × S) = B(S × S). Hence it suffices to prove that

Ball(S)⊗ Ball(S) = Ball(S × S).

Let

H = {B(x, d) : x ∈ S, d ∈ R} .

By definition we have σ(H) = Ball(S). Let

D = {B(x1, d1)×B(x2, d2) : B(x1, d1), B(x1, d2) ∈ H} .

Pick an arbitrary element of y ∈ S, this is possible because we defined metric
spaces to be non-empty. Notice that⋃

n∈N
B(y, n) = S,

and

B(y, n) ⊂ B(y, n+ 1), n ∈ N.

By proposition A.2.3

Ball(S)⊗ Ball(S) = σ(D).

Our problem is therefore reduced to showing that

σ(D) = Ball(S × S).

To see that this is the case note first that for arbitrary d

B((x, y), d) = {(s1, s2) ∈ S × S : ρ′((x, y), (s1, s2)) < d)}
= {(s1, s2) ∈ S × S : max(ρ(x, s1), ρ(y, s2)) < d)}
= {(s1, s2) ∈ S × S : ρ(x, s1) < d, ρ(y, s2) < d}
= {s1 ∈ S : ρ(x, s1) < d} × {s2 ∈ S : ρ(y, s2) < d}
=B(x, d)×B(y, d) ∈ D.

Hence

σ(D) ⊃ Ball(S × S).

Lastly assume that

B(x1, d1)×B(x2, d2) ∈ D.
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We first show that B(x1, d1)×B(x2, d2) is an open set in (S × S, ρ′). Since the
empty-set is open we can assume that B(x1, d1)×B(x2, d2) is non-empty, this
means that d1, d2 > 0. Assume

(y1, y2) ∈ B(x1, d1)×B(x2, d2).

We must show that there exists a ∆ > 0 such that

B((y1, y2),∆) ⊂ B(x1, d1)×B(x2, d2).

Let ∆ = min(d1 − ρ(y1, x1), d2 − ρ(y2, x2)), and notice that ∆ > 0. We will
show that

B((y1, y2),∆) ⊂ B(x1, d1)×B(x2, d2).

Assume that (z1, z2) ∈ B((y1, y2),∆) we then have

ρ(x1, z1) ≤ ρ(x1, y1) + ρ(y1, z1)
≤ ρ(x1, y1) + max(ρ(y1, z1), ρ(y2, z2))
= ρ(x1, y1) + ρ′((y1, y2), (z1, z2))
< ρ(x1, y1) + ∆
≤ ρ(x1, y1) + d1 − ρ(y1, x1)
= d1.

We also have

ρ(x2, z2) ≤ ρ(x2, y2) + ρ(y2, z2)
≤ ρ(x2, y2) + max(ρ(y1, z1), ρ(y2, z2))
= ρ(x2, y2) + ρ′((y1, y2), (z1, z2))
< ρ(x2, y2) + ∆
≤ ρ(x2, y2) + d2 − ρ(y2, x2)
= d2.

So (z1, z2) ∈ B(x1, d1)×B(x2, d2), hence

B((y1, y2),∆) ⊂ B(x1, d1)×B(x2, d2).

We have now proven that B(x1, d1) × B(x2, d2) is open in (S × S, ρ′). This
means that

B(x1, d1)×B(x2, d2) ∈ B(S × S).

But as we noted in the start of the proof

Ball(S × S) = B(S × S).

So together we have proven that

D ⊂ Ball(S × S),

which means that

σ(D) ⊂ Ball(S × S).

This completes the proof.
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Lemma B.2.14. Let (S, ρ) be a metric space, let (S×S, ρ′) be the metric space
in proposition B.2.11. Then for every A ∈ B(R) we have

ρ−1(A) ∈ B(S × S).

Proof. We first show that for any a ∈ R, we have

ρ−1((−∞, a)) ∈ B(S × S).

We will do this by showing that ρ−1((−∞, a)) is an open set in the metric space
(S × S, ρ′). If a ≤ 0, then

ρ−1((−∞, a)) = ∅.

Since ∅ is open, we can assume that a > 0. Assume that (x, y) ∈ ρ−1((−∞, a)),
we must show that there exists a ∆ > 0 such that

B((x, y),∆) ⊂ ρ−1((−∞, a)).

Let ∆ = (a−ρ(x, y))/2, notice that ∆ > 0. Assume that (z1, z2) ∈ B((x, y),∆),
we then have

ρ(z1, z2) ≤ ρ(z1, x) + ρ(x, y) + ρ(y, z2)
≤ max(ρ(z1, x), ρ(y, z2)) + ρ(x, y) + max(ρ(z1, x), ρ(y, z2))
= 2 max(ρ(z1, x), ρ(y, z2)) + ρ(x, y)
= 2 max(ρ(z1, x), ρ(z2, y)) + ρ(x, y)
= 2ρ′((z1, z2), (x, y)) + ρ(x, y)
< 2(a− ρ(x, y))/2 + ρ(x, y)
= a.

Hence (z1, z2) ∈ ρ−1(−∞, a). So we have

B((x, y),∆) ⊂ ρ−1((−∞, a)),

and we have shown that ρ−1((−∞, a)) is an open set in (S × S, ρ′). Hence

ρ−1((−∞, a)) ∈ B(S × S).

Now look at the collection

H =
{
A ∈ B(R) : ρ−1(A) ∈ B(S × S)

}
.

We showed in the previous paragraph that (−∞, a) ∈ H for every a ∈ R. We
now show that H is a sigma-algebra. We obviously have ∅ ∈ H because ∅ ∈ B(R)
and

ρ−1(∅) = ∅ ∈ B(S × S).

So ∅ ∈ H. If A ∈ H, we have Ac ∈ B(R) and

ρ−1(Ac) = (ρ−1(A))c ∈ B(S × S),
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so Ac ∈ H. Assume lastly that {An} is a countable collection where each
An ∈ H, we then have that ∪nAn ∈ B(R) and

ρ−1(∪nAn) = ∪nρ−1(An) ∈ B(S × S).

So we have shown that H is a sigma-algebra containing all sets of the form
(−∞, a) where a ∈ R. By [Fol84, Proposition 1.2 (d), p. 21], we have that

σ ({(−∞, a) : a ∈ R}) = B(R).

Hence we must have

B(R) = H,

this completes the proof.

Proposition B.2.15. Let (S, ρ) be a metric space with Borel sigma-algebra
B(S) = S, assume that the metric space is separable. Let (Ω,A, P ) be a
probability space. Assume that you have two functions

X : Ω→ S

Y : Ω→ S,

where for each A ∈ S we have X−1(A) ∈ A and Y −1(A) ∈ A. Then the
function h given by

h(ω) = ρ(X(ω), Y (ω)),

is a well-defined random variable on (Ω,A, P ). Which means that

h : Ω→ R,

and for every B ∈ B(R) we have

h−1(B) ∈ A.

Proof. We first show that the mapping

V : Ω→ S × S,

given by

V (ω) = (X(ω), Y (ω)),

is A/(S ⊗ S)-measurable. First note that if A1, A2 ∈ S we have

V −1(S1 × S2) = (X,Y )−1(S1 × S2) = X−1(S1) ∩ Y −1(S2) ∈ A.

Since the sets of the form S1×S1, S1, S2 ∈ S generate S⊗S it follows by [Fol84,
Proposition 2.1, p.42] that

V −1(R) ∈ A, R ∈ S ⊗ S.

Notice that

h(ω) = ρ(V (ω)).

259



B. Metric Spaces

Now let B ∈ B(R). By lemma B.2.14 we have that

ρ−1(B) ∈ B(S × S).

By proposition B.2.13 we have that B(S × S) = S ⊗ S. So

ρ−1(B) ∈ S ⊗ S.

By what was proved above we then have that

V −1(ρ−1(B)) ∈ A.

However, from elementary set-theory we have

h−1(B) = V −1(ρ−1(B)).

This completes the proof.

Definition B.2.16 (Closed set). Let (S, ρ) be a metric space. A set A ⊂ S is
closed if Ac is open.

Definition B.2.17 (Distance from a set). Let (S, ρ) be a metric space. Assume
that x ∈ S and F ⊂ S, we define

ρ(x, F ) = inf {ρ(x, y) : y ∈ F} .

Remark. If F = ∅, then ρ(x, F ) = ∞. This is because inf ∅ = ∞ since
vacuously every real number is a lower bound for every element in ∅, because
there are no elements in ∅. So the biggest lower bound is infinity.

Proposition B.2.18 (Statement from [Bil99, p. 28].). Let (S, ρ) be a
metric space, ε > 0. Let F ⊂ S. Define

Fε = {x ∈ S : ρ(x, F ) ≤ ε} .

Then Fε is closed.

Proof. If F = ∅ then Fε = ∅, which is closed, so we can assume that F 6= ∅.
We must show that F cε is open. If F cε = ∅, it is open. if F cε 6= ∅ assume that

x∗ ∈ F cε . We must show that there is a δ > 0 such that

B(x∗, δ) ⊂ F cε .

Since x∗ is not in Fε, we have that ρ(x∗, F ) > ε. Define δ .= (ρ(x∗, F )−ε)/2 > 0.
Assume that y∗ ∈ B(x∗, δ), if y ∈ F we have

ρ(x∗, y) ≤ ρ(x∗, y∗) + ρ(y∗, y),

so

ρ(y∗, y) ≥ρ(x∗, y)− ρ(x∗, y∗).
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From this we get

ρ(y∗, y) ≥ ρ(x∗, y)− ρ(x∗, y∗)
≥ ρ(x∗, F )− ρ(x∗, y∗)
> ρ(x∗, F )− δ
= 2δ + ε− δ
= ε+ δ,

where we in the second last equality used that ρ(x∗, F ) = 2δ + ε. This means
that ρ(y∗, F ) ≥ ε+ δ > ε because ε+ δ is a lower bound for

{ρ(y∗, y) : y ∈ F} .

Hence we have shown that

B(x∗, δ) ⊂ F cε .

The proof is complete.

Proposition B.2.19. Assume that (S, ρ) is a metric space, let F ⊂ S be a
closed set. Let (εk), k ∈ N be a sequence of positive real numbers, converging to
zero, with

εk+1 ≤ εk.

Then we have

Fεk+1 ⊂ Fεk ,

and ⋂
k∈N

Fεk = F.

Proof. If F = ∅ then ρ(x, F ) =∞, x ∈ S, so Fε = ∅ for all ε > 0. So the result
follows in this case.

Assume now that F 6= ∅. If x ∈ Fεk+1 then

ρ(x, F ) ≤ εk+1 ≤ εk,

so x ∈ Fεk , hence we have proved

Fεk+1 ⊂ Fεk .

Assume now that x ∈ F , since ρ(x, x) = 0 we must have that

ρ(x, F ) = 0,

because the infimum of non-negative numbers is non-negative. So for any k ∈ N

F ⊂ Fεk .
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Hence

F ⊂
⋂
k∈N

Fεk .

Conversely, assume that

x ∈
⋂
k∈N

Fεk .

Assume for contradiction that x ∈ F c. Since F is closed there must exist a
δ > 0 such that

B(x, δ) ⊂ F c.

So if y ∈ F we have

ρ(x, y) ≥ δ.

Then δ is a lower bound for

{ρ(x, y) : y ∈ F} ,

so ρ(x, F ) ≥ δ. But since (εk) converges to zero, we have that there is an ek′
such that εk′ < δ. Then we have ρ(x, F ) ≤ εk′ , since x ∈ Fek′ . And we have
ρ(x, F ) ≥ δ. However this is a contradiction because then

ρ(x, F ) ≤ εk′ < δ ≤ ρ(x, F ).

Lemma B.2.20. Let (S, ρ) be a metric space. Let x, y ∈ S, ε > 0. Also let
F ⊂ S. If y ∈ F we either have that ρ(x, y) ≥ ε or x ∈ Fε.

Proof. Assume that ρ(x, y) < ε, we must show that x ∈ Fε. Note that by
definition

ρ(x, F ) = inf {ρ(x, y) : y ∈ F} ,

this means that ρ(x, F ) < ε. Hence x ∈ Fε.

The next lemma is used in section 8.4.

Lemma B.2.21. Let K ∈ N, R > 0. Define the set G ⊂ C[0,∞) such that

G
.= {f ∈ C[0,∞) : |f(t)| < R ∀t ∈ [0,K]} .

Then G is open in the metric space (C[0,∞), ρ).

Proof. Assume that f ∈ G. We must show that there exists an ε > 0 such
that B(f, ε) ⊂ G. Since f is continuous and [0,K] is compact, there is t1, t2
such that f(t1) is a maximum on [0,K] and f(t2) is a minimum on [0,K]. Let
∆ .= R − max(|f(t1)|, |f(t2)|). Define ε = min

(
2−(K+1),∆

)
. Our goal is to

show that

B(f, ε) ⊂ G.
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So assume that g ∈ B(f, ε). Notice first that

min
(
2−K , sup{|f(t)− g(t)| : t ∈ [0,K]}

)
= sup{|f(t)− g(t)| : t ∈ [0,K]}

(B.1)

To see this note that

2−(K+1) ≥ ε
> ρ(f, g)

=
∞∑
r=1

min
(
2−r, sup {|f(t)− g(t)| : t ∈ [0, r]}

)
≥ min

(
2−K , sup {|f(t)− g(t)| : t ∈ [0,K]}

)
.

So if eq. (B.1) doesn’t hold we have 2−(K+1) > 2−K which is absurd. Let
s ∈ [0,K] By the triangle inequality we get

|g(s)| = |g(s)− f(s) + f(s)|
≤ |g(s)− f(s)|+ |f(s)|
≤ sup {|f(t)− g(t)| : t ∈ [0,K]}+ |f(s)|
= min

(
2−K , sup {|f(t)− g(t)| : t ∈ [0,K]}

)
+ |f(s)|

≤ ρ(f, g) + |f(s)|
< ε+ |f(s)|
≤ ∆ + |f(s)|
= R−max(|f(t1)|, |f(t2)|) + |f(s)|
≤ R.

So g ∈ G and hence B(f, ε) ⊂ G. This completes the proof.

B.3 Mappings from C[0,∞) to C[0,∞)

We will in this section prove that various mappings from C[0,∞) to C[0,∞)
are continuous. These results are used in We will assume that the metric is the
one in theorem 2.2.1.

Definition B.3.1. Let (S, ρ) be a metric space. A mapping

H : S → S,

is continuous if H−1(O) is open in S for every open set O ∈ S.

Proposition B.3.2. Let σ ∈ R. Then the mapping

H : C[0,∞)→ C[0,∞),

given by

[H(g)](t) = σg(t),

is continuous.
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Proof. From elementary calculus we have that σg ∈ C[0,∞).
Assume first that σ = 0. Let O ⊂ C[0,∞) be an open set. There are two

possibilities for H−1(O). If the function which is constant zero is in O then
H−1(O) = C[0,∞). If the constant zero function is not in O then H−1(O) = ∅.
Both C[0,∞) and ∅ are open in (C[0,∞), ρ).

So let us assume that σ 6= 0. Let O ⊂ C[0,∞) be an open set. We know
that ∅ is an open set, so we can assume that H−1(O) 6= ∅. Let x ∈ H−1(O),
we must show that there exists an ε > 0 such that

B(x, ε) ⊂ H−1(O).

Since σx ∈ O and O is open, there is an ε2 > 0 such that

B(σx, ε2) ⊂ O. (B.2)

Let K be such that
∑∞
r=K+1 2−r < ε2/2. Define ε .= min(ε2/(2|σ|K), 2−(K+1)).

Let y ∈ B(x, ε), we must show that σy ∈ O. Notice first that

min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]}) = sup{|x(t)− y(t)| : t ∈ [0,K]},

because

2−(K+1) ≥ ε
> ρ(x, y)

=
∞∑
r=1

min(2−r, sup{|x(t)− y(t)| : t ∈ [0, r]})

≥ min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]}).

This means that for t ∈ [0,K] we have

|σx(t)− σy(t)| = |σ||x(t)− y(t)|
≤ |σ||x(t)− y(t)|
≤ |σ| sup{|x(t)− y(t)| : t ∈ [0,K]}
= |σ|min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]})
≤ |σ|ρ(x, y)
< |σ|ε

≤ |σ| ε2
2|σ|K

= ε2
2K ,

hence

sup{|σx(t)− σy(t)| : t ∈ [0,K]} ≤ ε2
2K .
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So this means that

ρ(σx, σy)

=
∞∑
r=1

min(2−r, sup{|σx(t)− σy(t)| : t ∈ [0, r]})

≤
K∑
r=1

sup{|σx(t)− σy(t)| : t ∈ [0, r]}

+
∞∑

r=K+1
2−r

< K · ε22K + ε2
2

= ε.

This means that σy ∈ O, by eq. (B.2), so

B(x, ε) ⊂ H−1(O).

This completes the proof.

Proposition B.3.3. Let g ∈ C[0,∞). Then the mapping

H : C[0,∞)→ C[0,∞),

given by

[H(f)](t) = g(t) + f(t),

is continuous.

Proof. Let O ⊂ C[0,∞) be an open set. If H−1(O) = ∅ then it is open, so
assume H−1(O) 6= ∅. Let x ∈ H−1(O), we must show that there exists an ε > 0
such that

B(x, ε) ⊂ H−1(O).

We have that H(x) = x+ g ∈ O. Since O is open, there exists an ε2 > 0 such
that

B(x+ g, ε2) ⊂ O.

Define ε .= ε2. Assume that y ∈ B(x, ε). We then get

ρ(H(y), x+ g)
= ρ(y + g, x+ g)

=
∞∑
r=1

min(2−r, sup{|y(t) + g(t)− (x(t) + g(t))| : t ∈ [0, r]})

=
∞∑
r=1

min(2−r, sup{|y(t)− x(t)| : t ∈ [0, r]})

= ρ(y, x)
< ε

= ε2.
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This means that H(y) ∈ B(x+g, ε2), and since B(x+g, ε2) ⊂ O we have shown
that

B(x, ε) ⊂ H−1(O).

This completes the proof.

Proposition B.3.4. The mapping

H : C[0,∞)→ C[0,∞),

given by

[H(f)](t) = ef(t),

is continuous.

Proof. Let O ⊂ C[0,∞) be an open set. If H−1(O) = ∅ then it is open, so
assume that H−1(O) 6= ∅. Assume that x ∈ H−1(O), we must show that there
exists an ε > 0 such that

B(x, ε) ⊂ H−1(O).

Since H(x) = exp(x) ∈ O we have that there is an ε2 > 0 such that

B(exp(x), ε2) ⊂ O.

Let K be such that
∑∞
r=K+1 2−r < ε2/2. Because of continuity the function

x(t) has a well-defined maximum M1 and minimum M2 on [0,K]. Define
M = max(|M1|, |M2|).

Assume first that M = 0. Then x(t) is zero for t ∈ [0,K]. The function
ez, z ∈ R is continuous at zero, this means that there exists a δ such that if
|z| < δ

|1− ez| < ε2
2K . (B.3)

Define ε .= min(2−(K+1), δ). Assume that y ∈ B(x, ε). We then have

2−(K+1) ≥ ε
> ρ(x, y)

=
∞∑
r=1

min(2−r, sup{|x(t)− y(t)| : t ∈ [0, r]})

≥ min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]}),

hence

min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]}) = sup{|x(t)− y(t)| : t ∈ [0,K]}.

So since ρ(x, y) < ε, we get

sup{|x(t)− y(t)| : t ∈ [0,K]}
= min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]})

≤
∞∑
r=1

min(2−r, sup{|x(t)− y(t)| : t ∈ [0, r]})

= ρ(x, y)
< δ.
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Hence by eq. (B.3) we have

sup{| exp(x(t))− exp(y(t))| : t ∈ [0,K]} ≤ ε2
2K .

So we get

ρ(ex, ey)

=
∞∑
r=1

min(2−r, sup{| exp(x(t))− exp(y(t))| : t ∈ [0, r]})

≤
K∑
r=1

sup{| exp(x(t))− exp(y(t))| : t ∈ [0, r]}

+
∞∑

r=K+1
2−r

< K
ε2

2K + ε2
2K

= ε2.

Hence exp(y) ∈ B(exp(x), ε2) ⊂ O, so

B(x, ε) ⊂ H−1(O).

Assume now that M 6= 0. The function ez is uniformly continuous on
[−2M, 2M ] because it is a compact interval. This means that there is a δ such
that if z1, z2,∈ [−2M, 2M ], |z1 − z2| < δ we have

|exp(z1)− exp(z2)| < ε2
2K . (B.4)

We define

ε
.= min

(
2−(K+1), δ,M

)
.

Assume that y ∈ B(x, ε). We have

2−(K+1) ≥ ε
> ρ(x, y)

=
∞∑
r=1

min(2−r, sup{|x(t)− y(t)| : t ∈ [0, r]})

≥ min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]},

so

min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]})
= sup{|x(t)− y(t)| : t ∈ [0,K]}.
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Hence we similarly get

min (δ,M) ≥ ε
> ρ(x, y)

=
∞∑
r=1

min(2−r, sup{|x(t)− y(t)| : t ∈ [0, r]})

≥ min(2−K , sup{|x(t)− y(t)| : t ∈ [0,K]})
= sup{|x(t)− y(t)| : t ∈ [0,K]}.

(B.5)

We recall that for t ∈ [0,K] we have |x(t)| ≤M . This combined with eq. (B.5)
means that for t ∈ [0,K]

|y(t)| = |y(t)− x(t) + x(t)|
≤ |y(t)− x(t)|+ |x(t)|
≤ sup{|x(t)− y(t)| : t ∈ [0,K]}+M

≤M +M

= 2M.

So for t ∈ [0,K] we have that x(t), y(t) ∈ [−2M, 2M ], and from eq. (B.5) we
have that |x(t)− y(t)| < δ. So by eq. (B.4)

|exp(x(t))− exp(y(t))| ≤ ε2
2K ,

for t ∈ [0,K]. Hence

ρ(exp(x), exp(y))

=
∞∑
r=1

min(2−r, sup{| exp(x(t))− exp(y(t))| : t ∈ [0, r]})

≤
K∑
r=1

sup{| exp(x(t))− exp(y(t))| : t ∈ [0, r]}

+
∞∑

r=K+1
2−r

≤ K · ε22K + ε2
2K

= ε2.

Hence exp(y) ∈ B(exp(x), ε2) ⊂ O, so

B(x, ε) ⊂ H−1(O).

We have now shown that H−1(O) is open, and the proof is complete.
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Appendix C

Results from probability theory

C.1 Elementary concepts

A probability space (Ω,A, P ) is a measure space where

P (Ω) = 1.

We assume that measure theory is known to the reader. Chapter three, four
and five in [MW13] contains the necessary information. Random variables
are real-valued measurable functions on the probability space, for details see
chapter seven of [MW13].

Theorem C.1.1. Let (Ω,A, P ) be a probability space, and let (Ω′,A) be a
measurable space. If

f : Ω→ Ω′,

is A/A′-measurable, then (Ω′,A′, P ′) where

P ′(A′) = P (f−1(A′)), A′ ∈ A,

is a probability space.

Proof.

P ′(∅) = P (f−1(∅)) = P (∅) = 0
P ′(Ω′) = P (f−1(Ω′)) = P (Ω) = 1.

Assume that {An} is a mutually disjoint collection of sets in A′. Then by
elementary set-theory {f−1(A′n)} is a mutually disjoint collection of sets in A,
we get

P ′(∪nA′n) =P (f−1(∪nAn))
=P (∪nf−1(An))

=
∑
n

P (f−1(An))

=
∑
n

P ′(An).

269



C. Results from probability theory

We end this section by defining a stochastic process and proving a useful
result regarding continuous processes.

Definition C.1.2. Let (Ω,A, P ) be a probability space. A stochastic process
on this space is a collection

{Xt : t ∈ [0,∞)},

such that for each t, Xt is a function satisfying

(i)

Xt : Ω→ R,

(ii)

X−1
t (B) ∈ A,

for all B ∈ B(R).

Proposition C.1.3. Let (Yt)t∈[0,∞) be a continuous stochastic process on
(Ω,A, P ). Then

{ω ∈ Ω : Yt(ω) ≤ 0 for some t ∈ [0,∞)} ∈ A.

Proof. Let n, k ∈ N, and define the set

An,k
.=
{
ω ∈ Ω : Yt(ω) ≥ 1

n
for all t ∈ [0, k]

}
.

We first show that these sets are measurable. Let k, n be fixed. Since (Yt)t∈[0,∞)
is a stochastic process, and σ-algebras are closed under countable intersections,
it suffices to show

An,k =
⋂

q∈Q∩[0,k]

Y −1
q ([1/n,∞))

Assume ω ∈ An,k. For all t ∈ [0, k] we have that Yt(ω) ≥ 1/n, since this
must also hold for rational time-points we have ω ∈ ∩q∈Q∩[0,k]Y

−1
q ([1/n,∞)).

Conversely, assume ω ∈ ∩q∈Q∩[0,k]Y
−1
q ([1/n,∞)). We then have that for every

rational q number in [0, k]

Yq(ω) ≥ 1
n
.

Assume for contradiction that ω 6= An,k. Then there is a t ∈ [0, k] such that
Yt(ω) < 1/n. If t is rational we already have a contradiction, so assume t is
irrational. Let ε = 1/n− Yt(ω). Because Y.(ω) is a continuous trajectory there
exist a δ such that if |t− t∗| < δ we have |Yt(ω)− Yt∗(ω)| < ε. Now choose a
rational number q∗ in Q ∩ [0, k] ∩ (t− δ, t+ δ). Then

Yq∗(ω) = Yq∗(ω)− Yt(ω) + Yt(ω)
≤ |Yq∗(ω)− Yt(ω)|+ Yt(ω)
< ε+ Yt(ω)

= 1
n
.

270



C.2. Independence

Hence we have a contradiction since ω ∈ Y −1
q∗ ([1/n,∞)). So we have proven

that for every n, k ∈ N we have that An,k ∈ A.
Define the set

B
.=
⋂
k∈N

⋃
n∈N
n≥k

An,k

 .

Since σ-algebras are closed under countable unions and intersections we also
have that B ∈ A.

Our next goal is to show

B = {ω ∈ Ω : Yt(ω) > 0 for all t ∈ [0,∞)} .

Assume ω ∈ B. Let t ∈ [0,∞) be arbitrary. Choose k∗ ∈ N such that t < k∗.
We have that

ω ∈
⋃
n∈N
n≥k∗

An,k∗ .

So there must exist an n∗ such that ω ∈ An∗,k∗ . But then Yt(ω) ≥ 1/n∗ > 0.
Hence

B ⊂ {ω ∈ Ω : Yt(ω) > 0 for all t ∈ [0,∞)} .

Assume conversely that ω ∈ {ω ∈ Ω : Yt(ω) > 0 for all t ∈ [0,∞)}. Let k∗ ∈ N
be arbitrary. On the compact interval [0, k∗] the continuous function Y.(ω) must
have a well-defined positive minimum a. Choose n∗ such that n∗ ≥ k∗ and
1/n∗ < a. Then ω ∈ An∗,k∗ . Hence

B ⊃ {ω ∈ Ω : Yt(ω) > 0 for all t ∈ [0,∞)} .

Since σ-algebras are closed under complements, we get

{ω ∈ Ω : Yt(ω) ≤ 0 for some t ∈ [0,∞)}
= ({ω ∈ Ω : Yt(ω) ≤ 0 for some t ∈ [0,∞)}c)c

= ({ω ∈ Ω : Yt(ω) > 0 for all t ∈ [0,∞)})c

= Bc ∈ A.

C.2 Independence

The concept of independent random variables is important in this thesis. Inde-
pendence of random variables is presented in different ways in different texts,
but they can all be shown to be equal. One way is in the form of generated
σ-algebras of the random variables. We will use a simpler definition, but it is of
course logically equivalent to the more complicated definitions using σ-algebras.
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Definition C.2.1 (slightly modified from [PP13, p. 36]). Let (Ω,A, P ) be a
probability space, assume that {Xj : 1 ≤ j ≤ n} is a finite collection of random
variables on this space. This collection is said to be independent if for any n
Borel sets A1, A2, . . . , An on the line

P

 ⋂
1≤j≤n

X−1
j (Aj)

 =
∏

1≤j≤n
P
(
X−1
j (Aj)

)
.

Definition C.2.2 ([PP13, p. 36]). An infinite collection of random variables
is said to be independent if every finite subcollection is independent

The next theorem is due to Kac. We will present a modified version of the
one in [App09], as Applebaum allows random variables to be vectors, but we
are only interested in the case then they are real numbers.

Theorem C.2.3 (Kac’s Theorem, modified from [App09, p. 18] ). Let
i be the imaginary unit. The random variables X1, X2, . . . , Xn are independent
if and only if

E

exp

i n∑
j=1

ujXj

 =
n∏
j=1

E [exp (iujXj)] ,

for all u1, u2, . . . , un ∈ R.

Proposition C.2.4. Let (Xr)r∈Z be a collection of independent random vari-
ables on the probability space (Ω,A, P ). Let (ar)r∈Z be a collection of real
numbers. Assume that A ∈ A is a set such that

P (A) = 1.

Define

Yr
.= arIA(ω)Xr(ω).

Then (Yr)r∈Z is a collection of independent random variables.

Remark. Note that for each r, Yr is measurable since A is a measurable set.

Proof. Let n be a natural number. Assume that you have n other natural
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numbers i1, i2, . . . , in and n real numbers u1, u2, . . . , un. We have

E

exp

i n∑
j=1

ujYij


= E

exp

i n∑
j=1

ujaijIAXij


= E

exp

i n∑
j=1

ujaijIAXij

 IA + IcA


= E

exp

i n∑
j=1

ujaijIAXij

 IA + exp

i n∑
j=1

ujaijI
c
AXij

 IcA


= E

exp

i n∑
j=1

ujaijXij

 ,
where we have used that the integral of an integrable function over a set of
measure zero, is zero. By the independence of {xn} and theorem C.2.3 we have

E

exp

i n∑
j=1

ujaijXij

 =
n∏
j=1

E
[
exp

(
iujaijXij

)]
.

On the other hand we have
n∏
j=1

E
[
exp

(
iujYij

)]
=

n∏
j=1

E
[
exp

(
iujaijIAXij

)]
=

n∏
j=1

E
[
exp

(
iujaijIAXij

)
+ IAc

]
=

n∏
j=1

E
[
exp

(
iujaijIAXij

)
+ exp

(
iujaijI

c
AXij

)
IAc
]

=
n∏
j=1

E
[
exp

(
iujaijXij

)]
,

where we again used that the integral of an integrable function over a set
of measure zero is zero. The result now follows by another application of
theorem C.2.3.

Proposition C.2.5. Let (Xr)r∈Z be a sequence of independent random vari-
ables on the probability space (Ω,A, P ). Let n be a natural number. Assume
that for each 1 ≤ j ≤ n you have a natural number Nj, Nj real numbers
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a
(j)
1 , a

(j)
2 , . . . , a

(j)
Nj

and Nj integers z(j)
1 , z

(j)
2 , . . . , z

(j)
Nj

. Also assume that if j1 6= j2
or k1 6= k2 we have

z
(j1)
k1
6= z

(j2)
j2

. (C.1)

Specifically this means that all the z(j)
k are different.

Let A ⊂ A be such that

P (A) = 1.

For each 1 ≤ j ≤ n define the random variable

Yj =
Nj∑
k=1

a
(j)
k IA(ω)X

z
(j)
k

(ω).

Then (Yj)1≤j≤n is a collection of independent random variables.

Proof. Let i denote the imaginary unit. Notice that if V is any random variable
on (Ω,A, P ) and a is a real number we have

E[exp (iaIAV )] = E[exp (iaV )],

because the integral of an integrable function does not change if the function is
modified on a set of measure zero.

Assume that u1, u2, . . . , un ∈ R, we get
n∏
j=1

E [exp (iujYj)]

=
n∏
j=1

E

exp

iuj Nj∑
k=1

a
(j)
k IA(ω)X

z
(j)
k

(ω)


=

n∏
j=1

E

exp

iuj Nj∑
k=1

a
(j)
k X

z
(j)
k

(ω)


=

n∏
j=1

E

exp

i Nj∑
k=1

uja
(j)
k X

z
(j)
k

(ω)


=

n∏
j=1

Nj∏
k=1

E
[
exp

(
iuja

(j)
k X

z
(j)
k

(ω)
)]
.

In the last step we used theorem C.2.3, the independence of (Xr)r∈Z and
eq. (C.1).
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We also get

E

exp

i n∑
j=1

ujYj


= E

exp

i n∑
j=1

uj

Nj∑
k=1

a
(j)
k IA(ω)X

z
(j)
k

(ω)


= E

exp

i n∑
j=1

uj

Nj∑
k=1

a
(j)
k X

z
(j)
k

(ω)


= E

exp

i n∑
j=1

Nj∑
k=1

uja
(j)
k X

z
(j)
k

(ω)


=

n∏
j=1

Nj∏
k=1

E
[
exp

(
iuja

(j)
k X

z
(j)
k

(ω)
)]
.

In the last step we again used theorem C.2.3, the independence of (Xr)r∈Z and
eq. (C.1). Since we have shown that

n∏
j=1

E [exp (iujYj)] = E

exp

i n∑
j=1

ujYj

 ,
the result follows from theorem C.2.3.

Proposition C.2.6. Let (yr)r∈N be a sequence of independent random variables
defined on a probability space (Ω,A, P ). Assume that (ar)r∈N is a sequence of
real numbers and M a natural number. Also assume A ∈ A is a set such that

P (A) = 1,

and that for each ω ∈ A the sum
∞∑

r=M+1
aryr(ω),

converges. Then the random variables z1, z2, defined by

z1(ω) .=
M∑
r=1

arIA(ω)yr(ω)

z2(ω) .=
∞∑

r=M+1
arIA(ω)yr(ω),

are independent.

Remark. z2 is a well-defined random variable because it is the pointwise limit
of random variables.
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Proof. Let u1, u2 ∈ R and i be the imaginary unit. We have

E [exp i (u1z1(ω) + u2z2(ω))]

= E
[

exp
(
i ·

[
u1 ·

M∑
r=1

arIA(ω)yr(ω) + u2 ·
∞∑

r=M+1
arIA(ω)yr(ω)

])]
.

Since the exponential function is continuous this is equal to

E
[

lim
N→∞

exp
(
i ·

[
u1 ·

M∑
r=1

arIA(ω)yr(ω) + u2 ·
N∑

r=M+1
arIA(ω)yr(ω)

])]
.

Since | exp(ib)| = 1,if b ∈ R, the dominated convergence theorem tells us that
this is equal to

lim
N→∞

E
[

exp
(
i ·

[
u1 ·

M∑
r=1

arIA(ω)yr(ω) + u2 ·
N∑

r=M+1
arIA(ω)yr(ω)

])]
.

Since P (A) = 1 and we are taking the expectation of an integrable function we
get that this is equal to

lim
N→∞

E
[

exp
(
i ·

[
M∑
r=1

u1aryr(ω) +
N∑

r=M+1
u2aryr(ω)

])]
.

By the assumed independence of {yr} and theorem C.2.3 this is equal to

lim
N→∞

(
M∏
r=1

E [exp (iu1aryr(ω))]
)(

N∏
r=M+1

E [exp (iu2aryr(ω))]
)
.

Again by the assumed independence of {yr} and theorem C.2.3 this is equal to

E
[

exp
(
iu1

M∑
r=1

aryr(ω)
)]

lim
N→∞

E
[

exp
(
iu2

N∑
r=M+1

aryr(ω)
)]

.

Since P (A) = 1 and we are dealing with bounded functions this is equal to

E
[

exp
(
iu1

M∑
r=1

arIA(ω)yr(ω)
)]

lim
N→∞

E
[

exp
(
iu2

N∑
r=M+1

arIA(ω)yr(ω)
)]

.

By another application of the dominated convergence theorem, this is equal to

E
[

exp
(
iu1

M∑
r=1

arIA(ω)yr(ω)
)]

E
[

exp
(
iu2

∞∑
r=M+1

arIA(ω)yr(ω)
)]

.

This is by definition

E [exp (iu1z1(ω))] E [exp (iu2z2(ω))] .

Since we have shown

E [exp i (u1z1(ω) + u2z2(ω))] = E [exp (iu1z1(ω))] E [exp (iu2z2(ω))] ,

the result follows from theorem C.2.3.
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C.3 Convergence in distribution

Lemma C.3.1. Assume that {(X(n)
1 , X

(n)
2 , . . . , X

(n)
k )}n∈N is a sequence of

random vectors, and there exists a positive semi-definite matrix A such that for
every ~u ∈ Rk we have that

u1X
(n)
1 + u2X

(n)
2 + · · ·+ ukX

(n)
k

converges in distribution to a normal random variable with expectation zero and
variance ~uTAu. Then

(X(n)
1 , X

(n)
2 , . . . , X

(n)
k )

converges in distribution to a multivariate normal vector with expectation zero,
and covariance matrix A.

Proof. We get for u ∈ Rk.

E
[
exp(i · uT ~Xn)

]
= E

[
exp(i · (u1X

(n)
1 + u2X

(n)
2 + ukX

(n)
k ))

]
= exp(−0.5 · ~uTAu · 12),

since convergence in distribution implies convergence of characteristic functions.
The result now follows from Glivenko’s theorem.
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Appendix D

Useful results from Calculus and
Real Analysis

In this appendix we will prove simple results from Calculus and Real analysis
which are used.

D.1 Inequalities

Lemma D.1.1. Let 0 < ε < 1. Assume that |x| ≤ min(| ln(1− ε)|, ln(1 + ε)).
Then

|1− ex| ≤ ε.

Proof. Since |x| ≤ | ln(1− ε)| we have that −x ≤ | ln(1− ε)|. This implies that

x ≥ − | ln(1− ε)|
= ln(1− ε).

Since the exponential function increases monotonically we get

ex ≥ 1− ε,

this implies

1− ex ≤ ε. (D.1)

Since |x| ≤ ln(1 + ε), we have that x ≤ ln(1 + ε). Again since the exponential
function increases monotonically we have

ex ≤ 1 + ε,

so

ex − 1 ≤ ε. (D.2)

The result now follows from eq. (D.1) and eq. (D.2).

Remark. It can actually be shown that for 0 < ε < 1 we have

min(| ln(1− ε)|, ln(1 + ε)) = ln(1 + ε),

but this is of no concern for our arguments.
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Lemma D.1.2. Let b·c denote the floor function. Assume 0 ≤ z1 < z2 ≤ t,
and let {δn} be a sequence of positive real numbers converging to zero. Then
there exists an n∗ such that if n ≥ n∗ we have⌊

z1

δn

⌋
<

⌊
z2

δn

⌋
− 1 <

⌊
t

δn

⌋
.

Proof. Since z2 ≤ t, we must have bz2/δnc ≤ bt/δnc. So for all n we have⌊
z2

δn

⌋
− 1 <

⌊
t

δn

⌋
.

Choose n∗ such that if n ≥ n∗ we have δn < (z2 − z1)/2, this means that if
n ≥ n∗ we have −(z2 − z1)/δn < −2. So if n ≥ n∗ we then have⌊

z1

δn

⌋
≤ z1

δn

= z1

δn
+ z2 − z1

δn
− z2 − z1

δn

= z2

δn
− z2 − z1

δn

<
z2

δn
− 2

<

⌊
z2

δn

⌋
− 1.

In the last inequality we used that for a positive real number a, we have
a− 1 < bac.

Lemma D.1.3. Assume a1, a2, b1, b2 ≥ 0. Also assume

min(a1, a2) ≥ max(b1, b2).

Let q1, q2, q3, q4 ∈ [0, 1] with q1 + q2 = 1 and q3 + q4 = 1. Then

(q1a1 + q2a2 − q3b1 − q4b2)2 ≤ (max(a1, a2)−min(b1, b2))2

Proof. Notice first that

q1a1 + q2a2 − q3b1 − q4b2

≥ q1 min(a1, a2) + q2 min(a1, a2)− q3 max(b1, b2)− q4 max(b1, b2)
= min(a1, a2)−max(b2, b2)
≥0.

So we get

|q1a1 + q2a2 − q3b1 − q4b2|
= q1a1 + q2a2 − q3b1 − q4b2

≤ q1 max(a1, a2) + q2 max(a1, a2)− q3 min(b1, b2)− q4 min(b1, b2)
= max(a1, a2)−min(b1, b2).
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Lemma D.1.4. Assume that a, b, c ∈ R, with a, b, c ≥ 0. We then have

min(a, b+ c) ≤ min(a, b) + min(a, c).

Proof. Assume first that a ≤ b. We then have

min(a, b+ c) = a

= min(a, b)
≤ min(a, b) + min(a, c).

Assume now that a ≤ c, again we get

min(a, b+ c) = a

= min(a, c)
≤ min(a, b) + min(a, c).

Lastly we assume a > b and a > c. We get

min(a, b+ c) ≤ b+ c

= min(a, b) + min(a, c).

Lemma D.1.5. Assume that a, b, c ∈ R, with a, b, c ≥ 0 and b ≤ c. We then
have

min(a, b) ≤ min(a, c).

Proof. Assume first that a ≤ b. We then get

min(a, b) = a

= min(a, c).

Where we in the last step used a ≤ b ≤ c. Assume now that a > b. We then
have

min(a, b) = b

≤ min(a, c).

Where we in the last step used that a > b and c ≥ b.

Lemma D.1.6. Assume that a, b, c ∈ R, with a, b, c ≥ 0. We then have

min(a, b)−min(a, c) ≤ min(a, |b− c|). (D.3)

Proof. We will check six different cases. We start with a ≤ b ≤ c. Then the
left-hand side of eq. (D.3) is zero. This is also the case for a ≤ c ≤ b.

If b ≤ a ≤ c the left-hand side of eq. (D.3) is b−a. This value is non-positive.
If b ≤ c ≤ a the left-hand side of eq. (D.3) is b − c. This value is also

non-positive.
Now if c ≤ a ≤ b, the left-hand side of eq. (D.3) is a− c. This value is both

less than or equal a and b− c. Notice that by assumption b− c = |b− c|.
Lastly assume that c ≤ b ≤ a. The left-hand side of eq. (D.3) is now b− c.

This value is less than a since b ≤ a. We also have that b − c is less than or
equal |b− c|.

281



D. Useful results from Calculus and Real Analysis

Lemma D.1.7. Assume k ∈ N, a ≥ 0. Then

min(2−k, 2a) ≤ 2 min(2−k, a).

Proof. Assume first that min(2−k, 2a) = 2a. We then have

2a ≤ 2−k ≤ 2 · 2−k.

Since we also have 2a ≤ 2a the result follows for this case.
Assume now that min(2−k, 2a) = 2−k. We have 2−k ≤ 2 · 2−k. And we also

have 2−k ≤ 2 · a. This completes the proof.

D.2 Taylor polynomials

Lemma D.2.1. Let x ∈ [−0.5, 0.5] and k ∈ {0} ∪ N. Then

ex = 1 + x+ x2

2! + · · ·+ xk

k! + r1(x)xk+1,

where

|r1(x)| ≤ 2.

Proof. Since the exponential function and its derivatives are continuous we
can look at the Taylor polynomial. We look at the Taylor polynomial around
zero with the Lagrange-remainder, see [Lin06, p. 591]. If x = 0 we can choose
r(x) = 0. Assume x 6= 0 we have

ex = 1 + x+ x2

2! + · · ·+ xk

k! + ecxk+1

(k + 1)! ,

for c ∈ (0, x) or c ∈ (x, 0). Since the maximum value for ec is e0.5 ≈ 1.65, and
(k + 1)! ≥ 1, the result follows.

Lemma D.2.2. Let x ∈ [−0.5, 0.5] and k ∈ N. Then

ln(1 + x) = x+ r2(x)x2,

where

|r2(x)| ≤ 2.

Proof. The derivative of ln(1 + x) = 1/(1 + x), the second derivative is −1/(1 +
x)2. Both of these are continuous in [−0.5, 0.5] so we can look at the Taylor
polynomial. We get using the Lagrange remainder, see [Lin06, p. 591]

ln(1 + x) = 0 + 1/(1 + 0)
1 x+ −1/(1 + c)2

2! x2.

We have ∣∣∣∣−1/(1 + c)2

2!

∣∣∣∣ = 1
2 ·
∣∣∣∣ 1
(1 + c)2

∣∣∣∣
≤ 1

2

∣∣∣∣ 1
(1− 0.5)2

∣∣∣∣
= 2.

This completes the proof.
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D.3 Convergence results

Lemma D.3.1. Let t1, t2 ∈ (0,∞), H ∈ (0, 1). Also let {δn} be a sequence of
positive real numbers converging to zero. Assume that s ∈ (−∞, 0) then

−δn∑
δn

τ=−b1/δ2
ncδn+δn

(
I[τ,τ+δn)(s)

[
(bt1/δncδn − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(bt2/δncδn − τ)H− 1

2 − (−τ)H− 1
2

])
→
(

(t1 − s)H−
1
2 − (−s)H−0.5

)(
(t2 − s)H−

1
2 − (−s)H−0.5

)
,

as n→∞.

Proof. First note that

−b1/δ2
ncδn + δn < −

(
1
δ2
n

− 1
)
δn + δn

= −1
δn

+ 2δn.

The last expression goes to −∞ as n goes to infinity. So for big enough n there
is one and only one τn such that s ∈ [τn, τn + δn). Assume that n is big enough
for this to be the case. What we need to show is(

(bt1/δncδn − τn)H− 1
2 − (−τn)H− 1

2

)
·
(

(bt2/δncδn − τn)H− 1
2 − (−τn)H− 1

2

)
→
(

(t1 − s)H−
1
2 − (−s)H−0.5

)(
(t2 − s)H−

1
2 − (−s)H−0.5

)
,

as n goes to infinity. Note first that τn converges to s since |τn − s| < δn. Also
note that for i = 1, 2, bti/δncδn converges to ti since

|bti/δncδn − ti| = δn |bti/δnc − ti/δn|
≤ δn.

Since sums of sequences converges to the sums of the limits we have for i = 1, 2

bt1/δncδn − τn
→ ti − s,

as n goes to infinity. The function xH−1/2 from (0,∞) to R is continuous. So
we have that

(bt1/δncδn − τn)H−
1
2

→ (ti − s)H−
1
2 ,

and

(−τn)H− 1
2

→ (−s)H− 1
2 ,
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as n goes to infinity. So again since limits behave well under sums we have for
i = 1, 2 (

(bti/δncδn − τn)H− 1
2 − (−τn)H− 1

2

)
→
(

(ti − s)H−
1
2 − (−s)H−0.5

)
.

The result now follows by the fact that products of sequences in R converges to
the product of the limits.

Lemma D.3.2. Let t1, t2 ∈ (0,∞), H ∈ (0, 1). Also let {δn} be a sequence of
positive real numbers converging to zero. Assume that s ∈ (−∞, 0) then

−δn∑
δn

τ=−b1/δ2
ncδn+δn

(
I[τ,τ+δn)(s)

[
(bt1/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

]
·
[
(bt2/δncδn + δn − τ)H− 1

2 − (−τ)H− 1
2

])
→
(

(t1 − s)H−
1
2 − (−s)H−0.5

)(
(t2 − s)H−

1
2 − (−s)H−0.5

)
,

as n→∞.

Proof. The proof is almost identical to the proof of lemma D.3.1 but we in
this case work with bti/δncδn + δn instead of bti/δncδn, we can do this since δn
converges to zero.

Lemma D.3.3. Let 0 ≤ z1 < z2, H ∈ (0, 1) and assume that t1, t2 ∈ [z1,∞).
Let {δn} be a sequence of positive real numbers converging to zero. And let
k1 ∈ {1, 2}, k2 ∈ {0, 1}, k3 ∈ {0, 1}. If s ∈ (z1, z2) then

bz2/δncδn−k1δn∑
δn

τ=bz1/δncδn

I[τ+k2δn,τ+δn+k2δn)(s)(bt1/δncδn + k3δn − τ)H− 1
2

· (bt2/δncδn + k3δn − τ)H− 1
2

→ (t1 − s)H−
1
2 (t2 − s)H−

1
2 ,

as n goes to infinity.
If s ∈ (z1/2, z2) then

bz2/δncδn−k1δn∑
δn

τ=bz1/δncδn

I[τ+k2δn,τ+δn+k2δn)(s)(bt1/δncδn + k3δn − τ)H− 1
2 ·

(bt2/δncδn + k3δn − τ)H− 1
2

→ 0,

Proof. We first assume that s ∈ (z1, z2) Note that for any a ∈ [0,∞) we have
that ba/δncδn converges to a since |ba/δncδn − a| = |ba/δnc − a/δn|δn and
|ba/δnc − a/δn|δn ≤ δn. The smallest value τ + k2δn has is bz1/δncδn + k2δn
this values converges to z1, the largest value τ + δn + k2δn has is bz2/δncδn −
k1δn + δn + k2δn, this value converges to z2. So for big enough n there is always
τn such that

s ∈ [τn + k2δn, τn + δn + k2δn).
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Since the length of the half-open interval is δ we have that τn converges to s.
We also have that

(bt1/δncδn + k3δn − τn)H− 1
2 (bt2/δncδn + k3δn − τn)H− 1

2

converges to (t1 − s)H−
1
2 (t2 − s)H−

1
2 since limits behave well under sums and

products and the function f : (0,∞)→ R given by f(x) = xH−1/2 is continuous.
Assume now that s ∈ (z1/2, z1). For this to make sense z1 > 0. We have

already established that bz1/δncδn converges to z1, so for large n we have that
s < bz1/δncδn. And then we have

bz2/δncδn−k1δn∑
δn

τ=bz1/δncδn

I[τ+k2δn,τ+δn+k2δn)(s)(bt1/δncδn + k3δn − τ)H− 1
2 ·

(bt2/δncδn + k3δn − τ)H− 1
2

= 0

Lemma D.3.4. Let N be a natural number. Assume that for j ∈ {1, . . . , N}
we have a sequence of real numbers (ai,j)i∈N such that

∞∑
i=1

ai,j

converges. Then
∞∑
i=1

 N∑
j=1

ai,j


converges, and

∞∑
i=1

 N∑
j=1

ai,j

 =
N∑
j=1

( ∞∑
i=1

ai,j

)

Proof. Given ε > 0 for each j ∈ {1, . . . , N} there is an Mj such that if K ≥Mj∣∣∣∣∣
K∑
i=1

ai,j −
∞∑
i=1

ai,j

∣∣∣∣∣ < ε

N
.

Define M .= max({M1, . . . ,MN}). Assume now that K ≥M , we get∣∣∣∣∣∣
K∑
i=1

 N∑
j=1

ai,j

− N∑
j=1

( ∞∑
i=1

ai,j

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

(
K∑
i=1

ai,j

)
−

N∑
j=1

( ∞∑
i=1

ai,j

)∣∣∣∣∣∣
≤

N∑
j=1

∣∣∣∣∣
K∑
i=1

ai,j −
∞∑
i=1

ai,j

∣∣∣∣∣
<

N∑
j=1

ε

N

= ε.
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Remark. Note that in lemma D.3.4 it is crucial that we have convergence
for each j in the start of the statement. If we knew only that Σ∞i=1ΣN

j=1ai,j
converged we could not exchange the sums. This is seen by the example N = 2,
ai,1 = 1, ai,2 = −1.

Lemma D.3.5. Let K ∈ N, µ ∈ R and {δn} a sequence of positive real numbers
converging to zero. Assume ε. Then there exists an n∗ such that if n ≥ n∗ we
have ∑

t=Nδn,N∈{0}∪N
t≤K+1

δn

∣∣µ2δ2
n

∣∣ < ε.

Proof. ∑
t=Nδn,N∈{0}∪N

t≤K+1

δn

∣∣µ2δ2
n

∣∣
≤
(
K + 1
δn

+ 1
) ∣∣µ2δ2

n

∣∣
= (K + 1 + δn)

∣∣µ2δn
∣∣ .

We can get this expression as small as we want by decreasing δn.
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List of symbols

(S,S) metric space S, with Borel σ-algebra S.

BH , (Bt,H)t∈[0,∞) Fractional Brownian motion with parameter H.

C[0,∞) The space of real-valued continuous functions on [0,∞).

C[a, b] The space of real-valued continuous functions on [a, b].

En[f ] the expectation of f using (S,S, Pn).

P probability measure.

Pn numbered probability measure.
.= defined as.

R the real numbers.

B(R) the Borel σ-algebra on the real numbers.

C The Borel sigma-algebra on C[0,∞).

πx Projection-mapping, x is a real vector.

wx modulus of continuity for x on [0,∞).

wx,k modulus of continuity on the set [0, k].

CH constant, defined in proposition 3.2.2.

IA Indicator function that takes the value 1 when the argument is an element
of A, and 0 if it is an element of Ac.

T∑
τ=−∞

δ
summation with step-length δ up to and including T , T must be a

multiple of δ.

∀ for all.

Da The set {a, a+ δ, a+ 2δ, . . .}.

N The natural numbers, {1, 2, . . .}.

fBm fractional Brownian motion.
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