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SUMMARY

Modern acquisition of seismic data on receiver networks worldwide produces an increasing
amount of continuous wavefield recordings. In addition to manual data inspection, seismogram
interpretation requires therefore new processing utilities for event detection, signal classifi-
cation and data visualization. The use of machine learning techniques automatises decision
processes and reveals the statistical properties of data. This approach is becoming more and
more important and valuable for large and complex seismic records. Unsupervised learning
allows the recognition of wavefield patterns, such as short-term transients and long-term vari-
ations, with a minimum of domain knowledge. This study applies an unsupervised pattern
recognition approach for the discovery, imaging and interpretation of temporal patterns in
seismic array recordings. For this purpose, the data is parameterized by feature vectors, which
combine different real-valued wavefield attributes for short time windows. Standard seismic
analysis tools are used as feature generation methods, such as frequency—wavenumber, polar-
ization and spectral analysis. We use Self-Organizing Maps (SOMs) for a data-driven feature
selection, visualization and clustering procedure. The application to continuous recordings of
seismic signals from an active volcano (Mount Merapi, Java, Indonesia) shows that volcano-
tectonic and rockfall events can be detected and distinguished by clustering the feature vectors.
Similar results are obtained in terms of correctly classifying events compared to a previously
implemented supervised classification system. Furthermore, patterns in the background wave-
field, that is the 24-hr cycle due to human activity, are intuitively visualized by means of the
SOM representation. Finally, we apply our technique to an ambient seismic vibration record,
which has been acquired for local site characterization. Disturbing wavefield patterns are
identified which affect the quality of Love wave dispersion curve estimates. Particularly at
night, when the overall energy of the wavefield is reduced due to the 24-hr cycle, the common
assumption of stationary planar surface waves can be violated.

GJI Seismology
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detailed, manual inspection of all waveform data may not be possi-

1 INTRODUCTION . . o
ble or be at least very laborious, one may easily miss instrumental

Almost all research in observational seismology is based on record-
ings of ground motion caused by propagating seismic waves. Early
observatory practice collected data sets that composed of only a
limited amount of detectable earthquakes. Furthermore, there was
only a small set of available seismic receivers. Therefore, manual
seismogram analysis was standard procedure. Today, due to techni-
cal advances and the plethora of networks installed worldwide, an
increasing amount of continuous data is produced. To find recorded
earthquakes or any other temporal patterns of interest, these large
seismic data sets can no longer be processed by hand. Manual anal-
ysis can be time-consuming, for instance when real-time processing
isrequired for early warning systems. Another problem arising from
analysing large data sets is the assessment of data quality. Because
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failure or other disturbing patterns. Therefore, new analysis tools
are required which utilize automatic pattern recognition techniques.

In the field of pattern recognition, two different data learning
approaches are available. For supervised learning, labelled train-
ing data with known class-memberships are required to introduce
the patterns to be recognized by the algorithm. In seismology, this
approach primarily involves automatic detection of seismic phases
(e.g. Christoffersson er al. 1988; Dai & MacBeth 1995; Wang &
Teng 1997; Withers et al. 1998; Bai & Kennett 2000; Riggelsen et al.
2007) or discrimination of different event types (e.g. Joswig 1990;
Dowla et al. 1990; Ohrnberger 2001). For this purpose, the training
data are manually labelled based on expert knowledge (e.g. seismic
phase picking). This training data set is then employed to predict

1619

Downl oaded from https://academ c.oup.com gji/article-abstract/182/3/1619/ 600346
by University of Oslo Library. Library of Medicine and Heal th Sciences user
on 25 January 2018



1620  A. Kéhler, M. Ohrnberger and E Scherbaum

class-memberships of unseen data. Hereby, the goal is to mini-
mize the misclassification rate and the amount of false alarms. On
the other hand, unsupervised learning uses unlabelled training data
for automatic pattern identification. In practice, finding the natural
grouping of the data set by clustering is the most common unsuper-
vised technique. As in other disciplines, the benefit of unsupervised
analysis in seismology lies in its potential to let the data speak for
itself as an initial processing step. This phase should not be biased
by preconceptions of the researcher (Bardainne et al. 2006). How-
ever, after this unsupervised learning phase it is still required that
a domain expert (seismologist) evaluates and interprets the results
as clustering algorithms do not reveal which cluster corresponds
to a particular class of pattern. Moreover, most algorithms suggest
more than one meaningful partition of the data set. Hence, human
interaction is the last step of any unsupervised pattern recognition
approach. The interpreter has to apply his domain knowledge by
utilizing a practical visualization of the results. Finding such a vi-
sualization is also very crucial and difficult because the data space
cannot always be displayed in two or three dimensions.

When we talk about patterns in seismic recordings, we usually
mean distinct arrivals of wave phases. They are characterized by sud-
denly increasing amplitudes and/or a changing frequency content
compared to the background wavefield. Besides intensified activity
on signal detection, the availability of long, continuous network
recordings allows another aspect of seismic data analysis to be ad-
dressed. Over the last two decades, there has been an increased focus
on the permanently measured background wavefield (seismic noise
or ambient seismic vibrations). Ambient noise can be considered
as a superposition of waveforms excited by natural and man-made
sources and has found to be energetically dominated by surface
wave propagation. Therefore, estimating the propagation properties
of surface waves from the noise record allows for passive investi-
gations on crustal (e.g. Shapiro et al. 2005; Sabra et al. 2005) and
local scales (e.g. Milana et al. 1996; Ohmachi & Umezono 1998;
Bard 1998). This is especially relevant in areas of low seismicity
and where the use of active geophysical experiments is limited.
In this context, temporal patterns in the wavefield develop a more
general meaning. In addition to short-term patterns (transients), the
changes in wavefield characteristics over longer timescales (long-
term patterns) can become important. For example, the spectral
content or the directionality may change over hours, days or months
and may have an impact on the quality of surface wave velocity
estimates (Stehly ez al. 2006; Pedersen & Kriiger 2007). Automatic
recognition techniques are required also for those patterns.

In this work, we apply an unsupervised approach for seis-
mic wavefield analysis based on Self-Organizing Maps (SOMs;
Kohonen 2001). Kéhler et al. (2008) introduced an adaptive, unsu-
pervised feature selection approach which automatically finds the
seismic wavefield attributes suitable for pattern recognition. Fur-
thermore, Kohler et al. (2009) applied SOM-based clustering and
fast interpretable data visualization techniques to synthetic data
and pre-selected sections of regional earthquake recordings. For the
evaluation and validation of the procedure, quantitative performance
tests have been carried out in both studies. In Section 2 of this paper,
all employed techniques are introduced. The goal of this study is to
apply the suggested approach in a further context. We focus on au-
tomatic recognition of patterns on different timescales using longer,
continuous records. In particular, we consider volcano-seismic sig-
nals (Section 3) and temporal patterns in ambient seismic vibrations
(Section 3 and 4). Detection and classification of volcano-seismic
signals is important and mandatory for eruption forecasting and
to assess the activity state of a volcano (Minakami 1960; McNutt

1996; Ohrnberger 2001). On the other hand, ambient vibration pat-
terns reveal further insights into the temporal distribution of natural
and anthropogenic sources (Bonnefoy-Claudet ez al. 2006).

2 METHODS

2.1 Self-organizing maps

The SOM algorithm is a convenient, unsupervised learning method,
which is widespread in various scientific fields (see references in
Kohonen 2001). SOMs allow for an intuitive visualization of the dis-
tribution of data in any dimension. During SOM training, so-called
prototype vectors are generated, whose distribution approximates
the probability density function of the data set. This approach is
well known as vector quantization. It is a very powerful approach
to compress large and high-dimensional data sets. Each prototype
vector represents a group of similar or close data points. For SOMs,
an ordered and topology-preserving mapping into two dimensions
is additionally performed. This map (the SOM) consists of a regu-
lar grid of usually hexagonal units. Each grid unit corresponds to a
prototype vector in the data space. Fig. 1 illustrates this setting by
means of a simple example. The data set consists of three clusters
in a 3-D space (grey symbols in Fig. 1a). In Fig. 1(a), black symbols
indicate the coordinates of all prototype vectors after training the
SOM. The Prototype vectors in Fig. 1(a), which correspond to adja-
cent SOM units (hexagons) in Fig. 1(b), are connected by red lines.
Fig. 1(a) shows that those prototype vectors are also neighbours
in the data space, where one can imagine the SOM as a warped
surface. This property helps to derive statements about similarity
(proximity), distribution, and data grouping directly from the SOM.

There are different ways to visualize an SOM and the properties
of the underlying data set. In Fig. 2(a), a histogram is shown on
top of the SOM. The size of symbols corresponds to the number of
data vectors which belong to a particular SOM unit. In other words,
these data points have in common that the corresponding prototype
vector is their nearest neighbour. New data, which were not used
for training, can be easily mapped on the SOM in the same way.
Fig. 2(b) shows the so-called unified-distance matrix (U-matrix).
The U-matrix illustrates the probability density distribution of the
prototype vectors. The space between adjacent SOM unit centres
is coloured according to the distance between the corresponding
vectors in the data space. The colour scale runs from blue (the
lowest distance or highest data density) to red (highest distance).
Because each SOM unit has six neighbours (except the outermosts),
the hexagonal cells are divided into seven subunits in Fig. 2(b). The
inner subunit shows the averaged distance to all neighbours.

The SOM prototype vectors can be clustered using common
methods. Here, we employ an average linkage hierarchical clus-
tering algorithm which makes use of the average distance between
the members of two clusters to find meaningful groupings (Vesanto
& Alhoniemi 2000). Starting with two clusters, the data set is
thereby successively split into an increasing number of groups of
similar prototype vectors. One can choose the most meaningful
clustering manually or by using a cluster validity measure like the
Davies—Bouldin index (DB; Davies & Bouldin 1979). The DB index
compares the scatter within clusters and the distance between cluster
means. High intercluster distances and low scatter within a cluster
produces a low DB index relative to other clusterings of the same
data set. Hence, the lowest index indicates the best grouping. After
clustering, the SOM is coloured to distinguish the cluster member-
ships of prototypes (Fig. 2¢). Comparison with the U-matrix allows
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b) SOM

a) Data and Prototypes

Figure 1. Example for a Self-Organizing Map (SOM) generated from a data set in three dimensions. Data space is shown in (a). Grey symbols indicate data.
Black symbols represent SOM prototype vectors which sample the probability density function of data. Red lines connect prototypes whose corresponding
SOM units are neighbours. The SOM is shown in (b). Each hexagon represents an SOM unit which corresponds to a prototype vector in (a).
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Figure 2. SOM visualizations corresponding to data set in Fig. 1. (a) Histogram of data on SOM. Sizes of black hexagons correspond to number of data
vectors represented by an SOM unit. (b) Unified distance matrix (U-matrix) representing distances between prototype vectors in data space on the SOM. Each
SOM unit is divided into seven subunit. Each subunit is coloured according to distance to neighbour unit. Areas with low distances (blue) indicate high data
density (i.e. clusters). Furthermore, clusters are bounded by red colours (lower density). (c) Clustering of prototype vectors. Cluster membership of each SOM
unit is indicated by colour. (d)—(f) Component planes: each SOM unit is coloured according to value of a particular prototype vector component.
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Table 1. Features and short names for each method used to parameterise seismic data.

Method Feature description Short name?
1 Frequency-wavenumber analysis (Kvaerna & Ringdahl 1986)
Semblance: vertical, radial and tangential comp. pr
2 Spatial averaged autocorrelation method (Aki 1957)
Real and imaginary (absolute value), autocorrelation coefficients averaged over station pairs spac, spacim
vertical, radial and tangential comp. (Aki 1957; Asten 2006; Kohler e al. 2007)
3 Eigenvalues of complex 3c-covariance matrix
Degree of polarization (Samson & Olson 1981) doplI
Ellipticity, strength of polarization, angle of incidence, planarity (Vidale 1986) ell, sop, inc, plan
Linearity, planarity (Jurkevics 1988) rect, planll
Linearity (2x), stability of direction cosine, enhanced linearity (Hearn & Hendrick 1999) linlI, linIII, sdc, elin
Enhanced linear polarization (Bai & Kennett 2000) elip
Degree of polarization (Reading et al. 2001) doplIl
4 Complex seismic trace analysis (Taner et al. 1979)
Instantaneous frequency and variance: vertical and horizontal comp. if, vif
Phase difference, ellipticity and tilt between vertical and horizontal components pdift, ell, tilt
(René et al. 1986)
Variance of azimuth, ellipticity (Morozov & Smithson 1996) vazi, 3cell
Component averaged instantaneous frequency (Bai & Kennett 2000) FQ1
Degree of polarization, linearity (Schimmel & Gallart 2004) dop, lin
5 Spectral attributes (Joswig 1990; Ohrnberger 2001)
Horizontal and vertical power spectrum amplitudes in different frequency bands sono
Normalized with overall energy (sonogram)
Dominant spectral frequency and bandwidth: vertical and horizontal comp. domf, bb
Logarithm of ratio between sum of lower and higher sonogram bands ratiolf
6 Spectrum of polarization ellipsoid (Pinnegar 2006)
Normalized semi-mayor minus semi-minor axis and semi-minor axis of polarization ab, b
Ellipsoid in different frequency bands
7 Amplitude ratios (after Jepsen & Kennett 1990)
Real over imaginary part of complex trace, horizontal over vertical and east component PQ, HV, HE

“Suffixes for short names when stated in the text or in figures: Component: z (vertical), e (east), n (north), h (horizontal), r (radial), t

(tangential). Frequency band index: 1, 2, ..., 3, (..., 10).

for the validation of clusterings directly on the SOM. For a perfect
grouping, cluster borders should appear as more reddish areas in
the U-matrix plot in comparison to the regions inside the clusters.
In other words, a cluster is a bounded, blue area on the SOM. To
investigate the meaning of clusters, SOM component plane plots
are useful for displaying the values of a particular prototype vector
component (equivalent to one of the so-called feature components)
which is associated with any of the SOM units (Figs 2d—f). Red
colours stand for high values of the corresponding feature. In our
example, the component plane in Fig. 2(d) shows that Cluster 1 can
be described by the distribution of feature X. The corresponding
area on the SOM (Fig. 2¢) is characterized by the presence of high
values of that feature. Moreover, the component plane representa-
tion of the SOM allows to identify and group correlated features
(i.e. features Y and Z).

SOMs have already been applied, in different contexts, for ac-
tive seismic data sets (Essenreiter et al. 2001; Klose 2006; De
Matos et al. 2007) and in seismology (Maurer ef al. 1992; Musil &
Plesinger 1996; Tarvainen 1999; Plesinger et al. 2000; Esposito
et al. 2008; Kohler et al. 2009). The latter studies employed SOMs
for event discrimination (e.g. explosions and earthquakes) using
pre-selected seismogram sections. Our intention in this study is a
more general pattern discovery using any continuous record.

2.2 Feature generation

The first step of any pattern recognition approach is the generation
of useful features from the observables. The seismologist antici-

pates that seismic signals of the same type (e.g. a seismic phase)
should be grouped into the same cluster. Besides direct use of seis-
mogram or spectral amplitudes, also other parameters estimated
from seismic data have been found to be useful to discriminate sig-
nal classes and improve interpretability. For instance, parameters
like signal polarization can be more powerful to characterize a class
of signals which are observed with variable maximum amplitudes.
This applies for almost all seismic signal classes. Furthermore, in-
formation from a seismometer network can be combined in a single
feature (e.g. the coherency of the wavefield). We implement several
popular parametrization methods, such as frequency—wavenumber,
polarization and spectral analysis. Each method generates short-
time representatives for various wavefield properties. Table 1 gives
an overview over all features. For each time window, features are
computed from continuous three-component (array) seismograms.
Features of single station methods are averaged over all receivers.
All features obtained at one particular time-instance are combined
as real-valued components of the so-called feature vector. Hence,
the dimensionality of this vector corresponds to the number of fea-
tures. The time window length for feature generation is specified
according to the duration of the temporal patterns of interest. When
this information is not available, the length should be at least the
longest period which should be resolved. In contrast to previous
unsupervised investigations on seismic data (Bardainne ef al. 2006;
Esposito et al. 2008), we do not compute a single feature vector
for a time window including a complete event. Instead, we suc-
cessively divide a continuous records into time segments without
a previous (supervised) pre-selection of events of interest. Thus, a
more general unsupervised learning approach can be performed.
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The complete seismic record is analysed instead of clustering only
a subset consisting of different types of events.

2.3 Feature selection

When knowledge about existing patterns is available a priori, it
is appropriate to directly use a manually defined set of features.
However, it is often not known which features are most suitable for
pattern recognition. Furthermore, one does not want to employ more
features than those that are necessary. Therefore, an unsupervised
feature selection algorithm is needed. Our method is based on a
relevancy and redundancy filter (Kohler et al. 2008, 2009).

The relevancy filter performs significance tests for individual fea-
tures. In particular, we reduce the number of features using the non-
parametric Wald—Wolfowitz runs test (Wald & Wolfowitz 1940).
As the well-known Kolmogorov—Smirnow (KS) test, the runs test
evaluates the hypothesis that data follow a particular distribution.
The Wald—Wolfowitz method can be used to check the temporal ran-
domness of a two-valued feature time-series (e.g. a binary sequence
of ones and zeros). In other words, it tests whether all samples of
a sequence are mutually independent. The runs test takes into ac-
count the order in which the samples are presented. A two-valued
sequence can be obtained from any time-series by subtracting the
mean or median of all values from each sample and keeping the sign.
For our feature selection method, we choose a significance level of
5 per cent to reject feature time-series which can be explained as
random sequences. Those features would deliver no usable infor-
mation about temporal patterns. We found that the Wald—Wolfowitz
runs test is working reliably on seismic features (Kohler ez al. 2008).
Alternatively, such a test may be performed also by the KS test.

The redundancy filter groups correlated features using the SOM
component planes introduced above (Vesanto & Ahola 1999). A
representative feature from each group is obtained from the rele-
vance ranking given by the runs test (i.e. the confidence level that the
feature sequence is non-random). Subsequently, the final SOM can
be trained, clustered and interpreted by employing only the selected,
uncorrelated features as input data vectors.

3 APPLICATION TO
A VOLCANO-SEISMIC WAVEFIELD

We apply the unsupervised clustering and visualization technique
to array recordings of seismic signals at Mount Merapi, which is an
active, high-risk volcano on Java (Indonesia). Our aim is to identify
events and investigate the behaviour of the background wavefield.
We use seismic array data from the beginning of July 1998 during
a phase of high volcanic activity. The network (KEN) consists of
three broadband three-component stations (aperture ~200 m). The
analysed recordings are spread over five days (July 2—6). We chose
27 1-hour-long records for which the occurrence of volcano-seismic
events is known. We use three types of hand-picked events for
evaluation after learning: 16 shallow volcano-tectonic events (VT
type B or VTB, 5-8 Hz), six multiphase events due to lava dome
growth (MP, 3-4 Hz) and 16 rockfall-induced signals (so-called
Guguran events, 1-20 Hz). All those events are a subset of the
training data set employed by Ohrnberger (2001) for a supervised,
hidden Markov model-based classification system. A time window
length of 1.7 s is used for feature generation in frequency bands
between 0.8 and 16 Hz.
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3.1 Feature selection

Fig. 3 shows histograms for all features automatically selected by
our procedure. Because the background wavefield dominates the
data set, no evidences for clusters of volcano-seismic signals can be
derived directly from a linear-scaled histogram (e.g. a mix of two or
more normal distributions). Therefore, we plot all histograms using
a log-scale to be able to identify more local maxima in the distri-
butions. Fig. 3 shows that features like sono_z5, ab_10 and pr_r3
have the potential to discriminate between different signals. For all
these features, the distribution shows a locally increasing frequency
of occurrence at high values (i.e. higher energy or coherency).

We compare the selected features with those manually chosen
by Ohrnberger (2001) (soro_z in eight frequency bands, pr_z, inc).
In both studies, features derived from the time-frequency spectrum
and from array methods (i.e. the semblance) are found to be the most
useful wavefield attributes. In addition, Ohrnberger (2001) used the
angles of incidence which is not selected by our automatic method.
However, in our feature set, information about signal polarization
is implicitly available from the ellipticity spectrum (ab) and the
horizontal to vertical spectral ratio (HV'). Therefore, the reliabil-
ity of our feature selection procedure is shown for this example.
There is a good correspondence with the features chosen based on
seismological expert knowledge.

3.2 Clustering

Fig. 4 presents the visualizations after SOM training and cluster-
ing. The U-matrix in Fig. 4(a) shows areas of high data density
(blue colours) bounded by low densities (red colours). Two possi-
ble clusterings are shown in Figs 4(b) and (c). A number of four
clusters (Fig. 4b) is obtained as the best grouping with respect to
the Davies—Bouldin cluster validity index (Table 2). However, it
was suggested to use the DB index as a guideline rather than to ac-
cept only one meaningful clustering (Vesanto & Alhoniemi 2000).
Therefore, a second solution is chosen providing a more meaningful
fit of all observed U-matrix patterns (10 clusters in Fig. 4c). Never-
theless, note that all these clusters are children of the first solution,
since a hierarchical approach is carried out. Hence, no distinct so-
lution, but rather a more detailed view into the data set properties
is presented.

In Figs 4(d)—(f), the manually labelled time windows of all
volcano-seismic events (VTB, Guguran, MP) are mapped on the
SOM as explained in Section 2. The SOM-histogram shows that the
well-separated Cluster 2 in Fig. 4(b) contains volcano-tectonic and
rockfall events. Moreover, its two children are able to discriminate
between both event types (Fig. 4c). Hence, it is possible to find at
least two volcano-seismic signal classes, even when the background
wavefield dominates the data set. On the other hand, multi-phase
events are distributed over the entire map, and no distinct cluster is
found.

To interpret the remaining clusters, we present the vertical com-
ponent seismograms and the cluster memberships of all time win-
dows from Fig. 4(c) within their original temporal context for one
array station (Fig. 5). Volcano-tectonic (orange) and rockfall events
(yellow) are clearly visible at any time of day. In the daytime, a
further class of transients occurs (Cluster 1), which is most likely
man-made. The dark green dominated background wavefield in the
daytime is more heterogeneous due to various human activity. Fur-
thermore, blue and violet colours highlight the background noise
during the night. Except for volcano-seismic events, no other tran-
sients occur. The observed transition from green to blue-coloured
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Figure 3. Features automatically selected for the data set recorded at volcano Merapi. Histograms show distributions of feature values. Scale for counts is in
logio. Name of feature and x-axis label is given within each panel (see also Table 1).

time windows reflects the successively increasing human activity in events are associated with the yellow and volcano-tectonic events
the early morning around 6 a.m., shortly before sunrise in tropical with the orange cluster. Subsequently, we map the volcano-tectonic
regions. and rockfall events on the SOM again and reclassify those time

windows according to their cluster memberships. We obtain a low
classification error of 6 per cent for volcano-tectonic events (pre-
sented as VT Bs but classified as others, false negative). For rockfall

3.3 Cluster-based classification events, a higher error of 26 per cent is yielded, due to ambiguities

For a quantitative evaluation, we assign the most frequent label between both event types (Guguran time windows in VTB cluster).
(VTB, Guguran, MP, or noise) to each of all 10 clusters using the By combining both event clusters into one class, we are able to
hand-picked data. As already suggested by Figs 4(d)—(f), rockfall reduce the recognition error significantly to 12 per cent. For a blind
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Figure 4. SOM visualizations for Merapi data set. U-matrix in (a) shows distances in data space. Range of data can be obtained from Fig. 3. Colouring in (b)
and (c) distinguishes cluster. In (b), number of clusters is four and for (c) 10 groups are chosen manually. In (c), interpretation of clustering is given. Lower
panels show SOM hits (SOM-histograms) of volcano-seismic signals observed at Mount Merapi: volcano-tectonic (VIB), multi-phase (MP) and rockfall

events (Guguran).

Table 2. Davies—Bouldin cluster validity index for different number of clusters (Merapi data set).

Number of clusters 2 3 4 5 6
DB index 1.18 1.17 110 136 131

8 9 10 11 12 13 14 15
144 148 140 143 139 141 136 138

Note: The lowest value indicates the best clustering solution.

test, we also determine the false alarm rate from the background
wavefield using the same 27 hr of data (wrongly classified as events,
false positive). We find that 28 per cent of all time windows clas-
sified as volcano-tectonic or rockfall events are not belonging to a
visually identifiable event.

Our results show that the volcano-tectonic and rockfall clusters
can be used for a simple nearest-neighbour classifier for new incom-
ing data. Higher recognition rates can be achieved when additional
expert knowledge is used. Because both events last longer than just
1.7 s, a time window classified as belonging to an event should
belong to a sequence of identical class labels. Hence, we may claim
that a sequence has to be composed of more than one time window.
For our data set, this reduces the false alarm rate from 28 to 20 per
cent.

The temporal context of feature vectors was also considered by
the approach of Ohrnberger (2001). For a continuous mode appli-
cation of the trained classifier on five days of data, an averaged
misclassification rate of 33 per cent was obtained. The lowest errors
have been found for volcano-tectonic (11 per cent), followed by
rockfall events (26 per cent). The worst recognition rate has been
observed for multi-phase events (36 per cent misclassification) due
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to weak amplitudes. Our findings are in line with those results,
even though we pursue a different strategy. However, in contrast to
Ohrnberger (2001), we are not able to identify automatically even a
single multiphase event.

4 APPLICATION TO AMBIENT SEISMIC
VIBRATIONS

Important target sites for ambient seismic vibration measurements
are areas of high seismic hazard for which strong amplification,
due to soft-sediments in the subsurface, are expected. Thus, knowl-
edge about the local structure is mandatory for the forecasting of
ground motion. As a low-cost alternative to, or in combination
with, active geophysical experiments or other geotechnical meth-
ods, this information can be inverted from surface wave dispersion
curves. These quantities are obtained by stacking the slowness esti-
mates from array recordings over an appropriate time interval (e.g.
Herrmann 2002; Scherbaum et al. 2003; Wathelet et al. 2004; Paro-
lai et al. 2005).

We process 17 hr of array data (12 receivers, aperture
~250 m). The record has been acquired at a site close to the village
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Figure 5. Vertical component seismograms of one array station for Merapi data for all analysed hours. Seismograms are bandpass-filtered between 0.3 and 19
Hz. Background colouring corresponds to cluster membership of each time window. SOM clustering and colours from Fig. 4(c) are used. Yellow time windows
correspond to rockfall events and orange windows to volcano-tectonic events. Transition from greenish to bluish time windows reflects change in background

wavefield due to human activity.

of Colfiorito in Central Italy. The first 3 hr (1-4 p.m.) have been
recorded 1 day before the rest of the data. Rayleigh and Love wave
dispersion curves are estimated for each hour using the modified
spatial autocorrelation method on three components (3c-MSPAC;
Kohler et al. 2007). Whereas Rayleigh wave dispersion curves re-
main stable, we observed significant variation in the Love dispersion
curves below a frequency of 1 Hz. Therefore, we decided to apply
our unsupervised pattern recognition approach to investigate this
phenomenon.

Because we know that we are looking for a pattern on the hori-
zontal components in a particular frequency band, we choose a man-
ually defined feature set for our unsupervised recognition method
(Section 2). We use a set of six features (not including the slow-
ness estimates) generated from the horizontal components in a fre-

quency band between 0.4 and 1.2 Hz. We compute four features
which reflect the coherency and plane wave character of the tangen-
tial and radial-polarized wavefield (pr_r, pr_t, spacim_r, spacim_t;
Table 1). Furthermore, variation in the horizontal frequency
spectrum is considered by the instantaneous frequency (if ) and
the power spectrum amplitude normalized with the overall energy
between 0.4 and 2.6 Hz (sono_h). The time window length for all
features is 100 s. We choose this length to be in a similar range
compared to the typical durations of transients in the record. The
reason is that we are now more interested in long-term patterns
and do not aim to resolve patterns on a very small scale (i.e. the
changing character of a transient over duration of the signal).

Figs 6 and 7 show the SOM visualizations and the component
planes of all features. We choose the clustering in Fig. 6(b) because
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Figure 6. SOM visualizations for ambient vibration wavefield recorded close to Colfiorito (Umbria-Marche region, Central-Italy). U-matrix in (a) shows
distances in data space. Colouring in (b) distinguishes clusters. Interpretation of clustering is given (see also text).
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Figure 7. SOM component planes for ambient vibration data set. Features are semblance on the radial (pr_r) and tangential component (pr_t), imaginary
part of the averaged autocorrelation coefficient on the radial (spacim_r) and tangential component (spacim_t), normalized amplitude of power spectrum on
horizontal component (sono_h) and instantaneous frequency (if_4). More information about features is given in Table 1.

it is in good agreement with the identifiable regions shown by the
U-matrix in Fig. 6(a). Fig. 8 presents the seismograms, the cluster
membership of each time window, and the Love wave dispersion
curve for each hour of the record. As for the previous data set, the
daily cycle due to human activity is highlighted. The green and
yellow clusters (nighttime) are mainly defined by increased energy
contribution at lower frequencies compared to the blue and violet
clusters (daytime) (compare Figs 6b and 7). Furthermore, high sem-
blances are observed on the radial and tangential components for
the green and blue clusters. On the other hand, the radial is clearly
lower than the tangential semblance for the violet clusters, which in-
clude mainly high-amplitude signals. It is known that anthropogenic
seismic noise at daytime mainly consists of ground motion above
1 Hz and is dominated by Love waves (Bonnefoy-Claudet ez al.
2006). Furthermore, transients exist due to close sources like local
traffic. On the other hand, Rayleigh-wave-dominated oceanic mi-
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croseisms have a higher contribution below 1 Hz and dominate at
nighttime (Bonnefoy-Claudet et al. 2006). This behaviour is well
reflected by the clustering of all time windows and by their prop-
erties. There is a main road and agricultural activity close to the
measurement site, which probably generates the violet signal clus-
ters. The continuous high noise level during daytime (blue cluster)
can be associated with human activity in the village of Colfiorito.
At night, oceanic microseisms become dominant compared to the
anthropogenic noise level.

The right-hand panel of Fig. 8 shows that the estimated Love
wave dispersion curves become unstable below 1 Hz between
9 p.m. and 1 a.m.. Unrealistic high slowness values and increased
uncertainties are obtained. Within the same time interval, most fea-
ture vectors belong to the yellow cluster. Low semblance and high
imaginary SPAC coefficients indicate that the assumption of pla-
nar and coherent surface waves is not fulfilled within this cluster
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Figure 8. Vertical component seismograms of one array station for ambient vibration data set for all analysed hours. Background colouring corresponds to
cluster membership of each time window. SOM clustering and colours from Fig. 6b are used. Blue and violet coloured time windows correspond to seismic
noise at daytime due to human activity close to the measurement site. Greenish and yellow time windows show background wavefield at night. Yellow time
windows are associated with unstable dispersion curve estimates. Right panel shows Love wave dispersion curves averaged over each hour. The Y-axis labels

are given in slowness (skm™!).

(Fig. 7). An explanation could be the lack of Love waves in the
noise wavefield due to the minimal human activity.

5 CONCLUSIONS

In this study, we have applied an unsupervised processing scheme
for the general discovery of temporal patterns in continuous seismic
wavefield records based on SOMs. The technique has shown to be a
very useful tool to have a first and unbiased look on seismic data. It
has the potential to identify long-term variations and short seismic
events. Manual inspection of suggested clustering solutions and
interpretation based on expert knowledge is an integral part of this

approach. Selecting automatically the number of clusters based on
a validity measure for example, may not tap the full discrimination
potential of the approach.

The method has shown its potential to monitor variations in wave-
fields close to active volcanos. We have analysed recordings of seis-
mic signals from the volcano Mount Merapi (Indonesia). We have
been able to detect and discriminate two characteristic volcano-
seismic signal classes which are crucial for eruption forecasting.
We have found that they form distinct clusters over the entire day
independent of the event amplitudes, which allows to classify those
events automatically. Compared to a previously implemented su-
pervised classifier, similar recognition rates have been obtained.
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Moreover, we have confirmed the 24-hr cycle, which is known to
be related to human activity.

Furthermore, we have applied our method to an ambient seismic
vibration data set. We have shown the potential to recognize long-
term variations which may potentially affect estimates of surface
wave dispersion curves. The analysed data set could be decomposed
into clusters of waveforms recorded at day- and nighttime. Further-
more, we have identified a cluster of time windows at night which
have impaired the estimate of a local Love wave dispersion curve.
By omitting this cluster before stacking the dispersion curves of all
time windows, it is possible to decrease the measurement uncer-
tainty. Therefore, this approach can be applied as a pre-processing
method for local site characterization based on ambient seismic
vibrations.

ACKNOWLEDGMENTS

The study was funded by a PhD-scholarship of the University of
Potsdam. Parts of this work have been made possible under the EU-
Projects NERIES (contract no. 026130) and SESAME (Colfiorito
data set). We used the SOM toolbox implemented in MATLAB
of Vesanto et al. (2000). We would like to express our thanks to
both anonymous reviewers.

REFERENCES

Aki, K., 1957. Space and time spectra of stationary stochastic waves, with
special reference to microtremors, Bull. Earthq. Res. Inst., Univ. Tokyo,
35, 415-456.

Asten, M., 2006. On bias and noise in passive seismic data from finite
circular array data processed using SPAC methods, Geophysics, 71(6),
153-162.

Bai, C. & Kennett, B., 2000. Automatic phase-detection and identification
by full use of a single three-component broadband seismogram, Bull.
seism. Soc. Am., 90(1), 187-198.

Bard, P, 1998. Microtremor measurements: a tool for site effect estimation?,
in Proceedings of the Second International Symposium on the Effects of
Surface Geology on Seismic Motion, Vol. 3, pp. 1251-1279, eds Irikura,
K., Kudo, K., Okada, H. & Sasatani, T., Balkema, Rotterdam.

Bardainne, T., Gaillot, P, Dubos-Sallée, N., Blanco, J. & Sén échal, G.,
2006. Characterization of seismic waveforms and classification of seismic
events using chirplet atomic decomposition. Example from the Lacq gas
field (Western Pyrenees, France), Geophys. J. Int., 166(47), 699—718.

Bonnefoy-Claudet, S., Cotton, F. & Bard, P, 2006. The nature of noise
wavefield and its applications for site effects studies A literature review,
Earth Sci. Rev.,(3—4), 205-227.

Christoffersson, A., Husebye, E. & Ingate, S., 1988. Wavefield decom-
position using ML-probabilities in modelling single-site 3-component
records, Geophys. J. Int., 93(2), 197-213.

Dai, H. & MacBeth, C., 1995. Automatic picking of seismic arrivals in
local earthquake data using an artificial neural network, Geophys. J. Int.,
120(3), 758-774.

Davies, D. & Bouldin, D., 1979. A cluster separation measure, /EEE Trans.
Pattern Anal. Machine Intell., 1(2), 224-227.

De Matos, M., Osorio, P. & Johann, P, 2007. Unsupervised seismic facies
analysis using wavelet transform and self-organizing maps, Geophysics,
72,9-21.

Dowla, F., Taylor, S. & Anderson, R., 1990. Seismic discrimination with
artificial neural networks: preliminary results with regional spectral data,
Bull. seism. Soc. Am., 80(5), 1346-1373.

Esposito, A., Giudicepietro, F., D’Auria, L., Scarpetta, S., Martini, M., Col
telli, M. & Marinaro, M., 2008. Unsupervised neural analysis of very-
long-period events at Stromboli volcano using the self-organizing maps,
Bull. seism. Soc. Am., 98(5), 2449-2459.

Essenreiter, R., Karrenbach, M. & Treitel, S., 2001. Identification and

© 2010 The Authors, GJI, 182, 1619-1630
Journal compilation © 2010 RAS

Unsupervised seismic pattern recognition 1629

classification of multiple reflections with self-organizing maps, Geophys.
Prospect., 49(3), 341-352.

Hearn, S. & Hendrick, N., 1999. A review of single-station time-domain
polarisation analysis techniques, J. Seismic Explor., 8, 181-202.

Herrmann, R., 2002. Computer Programs in Seismology: An Overview of
Synthetic Seismogram Computation, Version 3.20, 183 pp. Department of
Earth and Atmospheric Sciences, Saint Louis University.

Jepsen, D. & Kennett, B., 1990. Three-component analysis of regional seis-
mograms, Bull. seism. Soc. Am., 80(6 B), 2032-2052.

Joswig, M., 1990. Pattern recognition for earthquake detection, Bull. seism.
Soc. Am., 80(1), 170-186.

Jurkevics, A., 1988. Polarization analysis of three-component array data,
Bull. seism. Soc. Am., 78(5), 1725-1743.

Klose, C., 2006. Self-organizing maps for geoscientific data analysis: ge-
ological interpretation of multidimensional geophysical data, Comput.
Geosci., 10(3), 265-277.

Kohler, A., Ohrnberger, M., Scherbaum, F., Wathelet, M. & Cornou, C.,
2007. Assessing the reliability of the modified three-component spatial
autocorrelation technique, Geophys. J. Int., 168(2), 779-796.

Kohler, A., Ohrnberger, M., Riggelsen, C. & Scherbaum, F., 2008. Unsuper-
vised feature selection for pattern search in seismic time series, J Mach.
Learn. Res., Workshop and Conference Proceedings: New challenges
for feature selection in data mining and knowledge discovery, 4, 106—
121.

Kohler, A., Ohrnberger, M. & Scherbaum, F., 2009. Unsupervised feature
selection and general pattern discovery using Self-Organizing Maps for
gaining insights into the nature of seismic wavefields, Comput. Geosci.,
35(9), 1757-1767.

Kohonen, T., 2001. Self-Organizing Maps, Springer Series in Information
Sciences, Vol. 30, Third Extended Edition, 501 pp, Springer Berlin, Hei-
delberg, New York, 1995, 1997, 2001.

Kvaerna, T. & Ringdahl, F., 1986. Stability of various fk estimation
techniques, Technical Report, Semianual Technical Summary 1-86/87,
1 October 1985 to 31 March 1986, NORSAR Scientific Report, Kjeller,
Norway, 20 pp.

Maurer, W., Dowla, E. & Jarpe, S., 1992. Seismic event interpretation
using self-organizing neural networks, in Proceedings of the Interna-
tional Society for Optical Engineering (SPIE), Vol. 1709, pp. 950-958,
doi:10.1117/12.139971.

McNutt, S., 1996. Seismic monitoring and eruption forecasting of volcanoes:
a review of the state-of-the-art and case histories, in Monitoring and
Mitigation of Volcano Hazards, pp. 99—146.

Milana, G., Barba, S., Del Pezzo, E. & Zambonelli, E., 1996. Site response
from ambient noise measurements: new perspectives from an array study
in Central Italy, Bull. seism. Soc. Am., 86(2), 320-328.

Minakami, T., 1960. Fundamental research for predicting volcanic eruptions
(Part 1). Earthquakes and crustal deformations originating from volcanic
activities, Bull. Earthq. Res. Inst., 38, 497-544.

Morozov, I. & Smithson, S., 1996. Instantaneous polarization attributes and
directional filtering, Geophysics, 61, 872—881.

Musil, M. & Plesinger, A., 1996. Discrimination between local mi-
croearthquakes and quarry blasts by multi-layer perceptrons and Kohonen
maps, Bull. seism. Soc. Am., 86(4), 1077-1090.

Ohmachi, T. & Umezono, T., 1998. Rate of Rayleigh waves in microtremors,
in Proceeding of the Second International Symposium on the Effects of
Surface Geology on Seismic Motion, pp. 587-592, eds Irikura, K., Kudo,
K., Okada, H. & Sasatani, T., Balkana, Rotterdam.

Ohrnberger, M., 2001. Continuous automatic classification of seismic
signals of volcanic origin at Mt. Merapi, Java, Indonesia, PhD the-
sis, University of Potsdam, http://opus.kobv.de/ubp/volltexte/2005/31/
pdf/ohrnberg.pdf, 158 pp (accessed on 31 March 2009).

Parolai, S., Picozzi, M., Richwalski, S. & Milkereit, C., 2005. Joint inversion
of phase velocity dispersion and H/V ratio curves from seismic noise
recordings using a genetic algorithm, considering higher modes, Geophys.
Res. Lett., 32,1L01303, doi:10.1029/2004GL021115.

Pedersen, H. & Kriiger, F., 2007. Influence of the seismic noise character-
istics on noise correlations in the Baltic shield, Geophys. J. Int., 168(1),
197-210.

Downl oaded from https://academ c.oup.com gji/article-abstract/182/3/1619/ 600346
by University of Oslo Library. Library of Medicine and Heal th Sciences user
on 25 January 2018



1630  A. Kéhler, M. Ohrnberger and E Scherbaum

Pinnegar, C., 2006. Polarization analysis and polarization filtering of three-
component signals with the time-frequency S transform, Geophys. J. Int.,
165(2), 596-606.

Plesinger, A., Ruzek, B. & Bouskova, A., 2000. Statistical interpretation
of WEBNET seismograms by artificial neural nets, Studia Geophysica et
Geodaetica, 44(2), 251-271.

Reading, A., Mao, W. & Gubbins, D., 2001. Polarization filtering for auto-
matic picking of seismic data and improved converted phase detection,
Geophys. J. Int., 147(1), 227-234.

René, R., Fitter, J., Forsyth, P, Kim, K., Murray, D., Walters, J. & Westerman,
J., 1986. Multicomponent seismic studies using complex trace analysis,
Geophysics, 51, 1235-1251.

Riggelsen, C., Ohrnberger, M. & Scherbaum, F., 2007. Dynamic bayesian
networks for real-time classification of seismic signals, Lecture Notes
Comput. Sci., 4702, 565-572.

Sabra, K., Gerstoft, P, Roux, P., Kuperman, W. & Fehler, M., 2005. Extract-
ing time-domain Green(tm)s function estimates from ambient seismic
noise, Geophys. Res. Lett., 32, 103310, doi:10.1029/2004GL021862.

Samson, J. & Olson, J., 1981. Data-adaptive polarization filters for multi-
channel geophysical data, Geophysics, 46, 1423—-1431.

Scherbaum, F., Hinzen, K. & Ohrnberger, M., 2003. Determina-
tion of shallow shear wave velocity profiles in the Cologne, Ger-
many area using ambient vibrations, Geophys. J. Int., 152(3), 597-
612.

Schimmel, M. & Gallart, J.,2004. Degree of polarization filter for frequency-
dependent signal enhancement through noise suppression, Bull. seism.
Soc. Am., 94(3), 1016-1035.

Shapiro, N., Campillo, M., Stehly, L. & Ritzwoller, M., 2005. High-
resolution surface-wave tomography from ambient seismic noise, Science,
307(5715), 1615-1618.

Stehly, L., Campillo, M. & Shapiro, N., 2006. A study of the seismic noise
from its long-range correlation properties, J. geophys. Res, 111, 1-12.
Taner, M., Koehler, F. & Sheriff, R., 1979. Complex seismic trace analysis,

Geophysics, 44, 1041-1063.

Tarvainen, M., 1999. Recognizing explosion sites with a self-organizing
network for unsupervised learning, Phys. Earth planet. Int., 113(1-4),
143-154.

Vesanto, J. & Ahola, J., 1999. Hunting for correlations in data using the
self-organizing map, in Proceedings of the International Congress on
Computational Intelligence Methods and Applications (CIMA 99), Inter-
national Computing Sciences Conferences (ICSC), Academic Press, pp.
279-285.

Vesanto, J. & Alhoniemi, E., 2000. Clustering of the self-organizing map,
IEEE Trans. Neural Network, 11(3), 586—600.

Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., Team, S. & Oy,
L., 2000. Som toolbox for matlab, Techn. Ber, Helsinki University of
Technology.

Vidale, J., 1986. Complex polarization analysis of particle motion, Bull.
seism. Soc. Am., 76(5), 1393-1405.

Wald, A. & Wolfowitz, J., 1940. On a test whether two samples are from the
same population, Ann. Math. Stat., 11(2), 147-162.

Wang, J. & Teng, T., 1997. Identification and picking of S phase using an
artificial neural network, Bull. seism. Soc. Am., 87(5), 1140-1149.

Wathelet, M., Jongmans, D. & Ohrnberger, M., 2004. Surface wave inversion
using a direct search algorithm and its application to ambient vibration
measurements, Near Surface Geophysics, 2,211-221.

Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S. &
Trujillo, J., 1998. A comparison of select trigger algorithms for automated
global seismic phase and event detection, Bull. seism. Soc. Am., 88(1),
95-106.

© 2010 The Authors, GJI, 182, 1619-1630

Journal compilation © 2010 RAS

Downl oaded from https://academ c.oup.com gji/article-abstract/182/3/1619/ 600346
by University of Oslo Library. Library of Medicine and Heal th Sciences user
on 25 January 2018



