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Abstract

The nonlinear shallow water model is widely used in the study of tsunami

propagation, but an increasing number of studies are dedicated to the dispersion

dynamics of tsunamis. If the wave dispersion becomes important, Boussinesq-

type models are often used. In this work, a general purpose Boussinesq solver,

BoussClaw, is introduced for modeling non-linear dispersive tsunami propa-

gation, taking into account inundation. The BoussClaw model is an extension

of the GeoClaw tsunami model. It employs a hybrid of finite volume and finite

difference methods to solve Boussinesq equations from the literature, which are

based on the depth-averaged velocity and include enhanced dispersion proper-

ties. On the other hand, in the selected formulation only some non-linearity is

retained in the dispersion term. In order to validate BoussClaw, numerical

results are compared to analytic solutions, solutions obtained by pre-existing

models, and laboratory experiments. Even though the equations of Bouss-

Claw are not fully nonlinear they perform far better than standard Boussinesq

equations with only linear dispersion terms. Furthermore, the wave steepen-

ing and breaking motion is carefully scrutinized, and we demonstrate that the

point of wave breaking may be wrongly identified in many of the commonly

used Boussinesq models.
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1. Introduction

Tsunamis are generally long waves compared to the water depth, and long-

wave models are consequently widely used in the study of their propagation

and inundation. Through the use of numerical shock capturing techniques for

modeling the near-shore bore formation of the tsunami, nonlinear shallow water5

(NLSW) models did become the standard model for modeling tsunami propa-

gation and run-up, see e.g. (Titov and Synolakis, 1995; Imamura, 1996; Harig

et al., 2008; Berger et al., 2011).

The NLSW models do not incorporate frequency dispersion, which may be

included by ascending in the hierarchy of long wave expansion to Boussinesq10

type equations. Numerical models based on Boussinesq type equations have

been used for idealized studies of wave processes since 1966 (Peregrine, 1966)

and additionally to simpler problems in coastal engineering in the following

decades (Brocchini, 2013). The accumulated effect of the frequency dispersion

for the wave propagation over the open sea is a function of propagation time15

and the shape of the disturbance (Glimsdal et al., 2013), and may become

important for some tsunamis, in particular for landslide sources (Løvholt et al.,

2015). Dispersion may further be of importance, in combination with non-

linear effects, for the evolution of undular bores for tsunamis (Glimsdal et al.,

2013; Grue et al., 2008; Løvholt et al., 2008; Behrens and Dias, 2015). In20

the last decades we have seen a development on long wave expansions and

their numerical formulations. In the 1990s the modeling with Boussinesq type

equations were vitalized by new formulations, in particular those of Madsen

and Sørensen (1992) and Nwogu (1993) which displayed improved dispersion

properties in comparison to the standard formulation of Peregrine (1967). Later25

still more extensions and improvements have followed as described in the reviews

Madsen et al. (2003), Brocchini (2013) and Kirby (2016).

Boussinesq-type equations differ in mathematical structure from the NLSW

equations and do not inherit characteristics in the same simple form. Hence,

other strategies have been attempted for inclusion of wave breaking and post-30
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breaking motion in Boussinesq models. Schäffer et al. (1993) employed the con-

cept of the surface roller, first proposed by Svendsen (1984), which is a volume of

water passively riding at the bore front. Tissier et al. (2012) suggested a break-

ing model based on the surface roller, the maximal front angle and the Froude

number. Another way of incorporating breaking was suggested by Kennedy35

et al. (2000) who included diffusive terms in the momentum equation. These

diffusive terms were activated and deactivated as a steepness measure crossed

thresholds. The original steepness measure was the temporal rate of surface

elevation corresponding to a very steep solitary wave. Later, Lynett (2006) in-

vestigated a variety of steepness measures and then identified that the surface40

steepness provides the least sensitive breaking threshold. Løvholt et al. (2013)

similarly employed a diffusive model including transport terms, but pointed out

that breaking wave Boussinesq models were prone to instabilities. An alter-

native non-linear diffusive ad-hoc breaking term was suggested by Matsuyama

et al. (2007), based on their large scale experiments of the wave propagation of45

undular bores on various slope angles.

Naturally, there is a desire to exploit the efficient and well established shock

capturing framework of the NLSW models also in a dispersive context. Antuono

et al. (2009) remolded the whole Boussinesq equations into a framework on

hyperbolic form. However, most of the recently developed Boussinesq models50

are based on some combination of approximate Riemann solvers, with TVD

limiters, for the hydrostatic transport terms and finite differences for dispersion

terms (Erduran et al., 2005; Kim et al., 2009; Shiach and Mingham, 2009; Roeber

et al., 2010; Dutykh et al., 2011; Shi et al., 2012). Among other models, this

has led to the popular Funwave-TVD and Coulwave-TVD applications. In55

most Boussinesq models that include runup on beaches, the dispersion term is

turned off in the vicinity of the shoreline to avoid interference of the wetting-

drying techniques with the larger computational stencils from the dispersion

terms. Still, the dispersion terms are often seen to cause stability problems in

the strongly nonlinear parts of the shoaling process (Løvholt et al., 2013). In60

fact, a practice of switching to the NLSW equations in the near-shore region,
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where large amplitude-to-depth-ratios occur, has evolved. This allows for a

relatively robust treatment of the modeling of the post breaking phase. To

this end, Tonelli and Petti (2009) and Shi et al. (2012), for instance, employ

a wave-height to depth threshold of 0.8 which is motivated by the maximum65

height of an undular bore, which again is related to the extreme solitary wave.

This threshold is a pragmatic choice for gentle bottom gradients and may be

questionable under other circumstances.

In this paper, we present a new hybrid Boussinesq type model BoussClaw,

of similar mold as Funwave-TVD and Coulwave-TVD, but with a different70

Boussinesq formulation. In particular, the dispersion term is simpler and not

fully nonlinear, as robustness is given priority over high formal order. The

goal of the present article is twofold. First, to present a careful validation of the

BoussClaw model, both towards laboratory experiments and reference models.

Second, we use the new model to explore the breaking phenomena in the context75

of Boussinesq equations. It is investigated how different Boussinesq type models

can represent the wave evolution until the point of breaking. In the presented

example, we are finally able to demonstrate that Boussinesq models may stably

compute the near shore tsunami propagation beyond the standard 0.8 wave-

height-to-depth threshold. Conversely, we find that the use of this threshold80

invokes a too early formation of a breaking bore. This points indicates that the

breaking criteria employed so far lacks generality.

This paper is organized as follows: In Section 2, the base model for the wave

equations is given and the numerical scheme is outlined, while a von Neuman

stability analysis is put in Appendix A. Sections 3 compares results from the85

BoussClaw with analytic ones, laboratory experiments and those from other

models. In subsection 4.1 we scrutinize the pre-breaking shoaling of Boussinesq

type equations through comparison with full potential theory, while the post-

breaking evolution is investigated in subsection 4.2.
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2. Model Description90

Boussinesq-type equations are derived on the assumption that the ratio of

depth to wavelength, µ, is small. In addition one may assume that the ratio of

wave amplitude to depth, ε, is small. Different kinds of long wave assumptions

are then generally characterized by relative errors in terms of these two parame-

ters. Herein we will neither derive Boussinesq equation nor make the equations

dimensionless as such. Still, µ and ε will sometimes be used to indicate relative

errors. Moreover, when presenting results we will often use dimensionless quan-

tities which are marked by a star. The horizontal and vertical and temporal

coordinates are denoted by x, y and t, respectively, while the depth averaged

horizontal velocity and the surface elevation are denoted by u and η, respec-

tively. Dimensionless variables are then defined as

t∗ =

√
g

h0
t, x∗ =

x

h0
, η∗ =

η

h0
, u∗ =

u√
gh0

, etc. (1)

where h0 is a reference depth which is chosen as the maximum equilibrium

depth. Dimensional variables will be used in the sections 2, 3.2, Appendix

A, Appendix B, and finally the figures 3, 4 and 5. Elsewhere, dimensionless

variables are employed. Sometimes the dimensionless quantities are spelled out,

such as x/h0, but mostly starred quantities are used.95

2.1. BoussClaw - a new long wave model for tsunami propagation and run-up

In this work, a new numerical model, called BoussClaw, is introduced. It

is an extension of GeoClaw (Clawpack Development Team, 2016), and solves

the Boussinesq-type equations derived by Schäffer and Madsen (1995). The

extended model is formulated in two horizontal directions, but herein we fo-100

cus on the description of plane waves for simplicity. Tests and details on the

performance with two horizontal directions are found in Kim (2014).

The BoussClaw model employ a finite volume technique for the NLSW

part of the equations and a finite difference discretization in fractional steps.

The GeoClaw software is a part of Clawpack (Clawpack Development Team,105
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2016) developed mainly by LeVeque (1997), George (2008) and Berger et al.

(2011), which is designed to solve the nonlinear shallow water equations.

2.1.1. Boussinesq-type equations

Schäffer and Madsen (1995) derived Boussinesq-type equations where ad-

dition of a higher order O(µ4) term enabled optimization of linear dispersion

properties. We restrict ourselves to the choice B2 = 0 from the formulation of

Schäffer and Madsen (1995). The equations then read

Ht + (Hu)x = 0, (2)

(1−D)
[
(Hu)t

]
+
(
Hu2 +

g

2
H2
)
x
− gHhx −Bgh2 (hηx)xx = −fD, (3)

where we have added a Manning type friction term, denoted by fD and defined

in eq. (12) The operatorD is defined in terms of the dummy variable w according

to

D(w) =

(
B +

1

2

)
h2wxx −

1

6
h3
(w
h

)
xx
, (4)

for any w(x, t). In the above equations H(x, t) and u(x, t) are the total flow

depth and the depth averaged velocity of the water, respectively, h(x) is the still110

water depth, η(x, t) is the surface elevation, and thus H(x, t) = h(x) + η(x, t).

Moreover, g is the acceleration of gravity, and B is a dispersion parameter.

Madsen and Sørensen (1992) have chosen B = 1/15 for which the dispersion re-

lation from the Boussinesq equations follows linear potential theory to a higher

order in wave number times depth. When B = 0, this set of the Boussinesq-type115

equations approximately reduces to that of Peregrine (1967) as the linear dis-

persion relations are identical. However, unlike Peregrine’s momentum equation

the hydrostatic parts of (3) are written in a conservative form. Moreover, some

nonlinearity is introduced in the dispersion term. Even though (2), (3) and (4)

do not constitute a fully nonlinear set of Boussinesq equations, inheriting rela-120

tive errors of order µ2, εµ2, they do describe shoaling of solitary waves markedly

better than, for instance, the Peregrine equations, as will be demonstrated in

section 4.1.
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The BoussClaw model solves the Boussinesq-type equations (2) and (3)

numerically with a hybrid combination of the finite volume and finite difference125

methods that will be explained in a moment. There have been several studies

of this type of hybrid schemes. For example, see Tissier et al. (2011), Shi et al.

(2012) and Dutykh et al. (2013).

To facilitate a fractional step method, as outlined below, we move the hy-

drostatic terms of (3) inside the (1 − D) operator, while balancing with extra

terms in the Ψ, to obtain

(1−D)
[
(Hu)t +

(
Hu2 +

g

2
H2
)
x
− gHhx

]
= −Ψ(x, t)− fD, (5)

where

Ψ(x, t) =

(
B +

1

2

)
h2
(
(Hu2)x + gHηx

)
xx

− 1

6
h3

(
(Hu2)x + gHηx

h

)
xx

−Bgh2 (hηx)xx . (6)

2.1.2. Numerical scheme

The equations (2) and (5) are written in a conservative form with respect

to the leading order terms in µ, but with the Ψ term as a pseudo source. Such

equations may be solved by a fractional step method as described in LeVeque

(2002). First, it is observed that (5) may be formally rewritten as

(Hu)t = −
{(
Hu2 +

g

2
H2
)
x
− gHhx

}
− (1−D)−1Ψ(x, t)− (1−D)−1fD,

(7)

At the first stage of the hybrid scheme, we integrate Hu over a time step taking130

into account all hydrostatic terms, namely those within the braces on the right

hand side, and omitting the source terms involving Ψ. When this is combined

with the continuity equation (2) this simply corresponds to advancing the shal-

low water equations one time step forward. To this end we employ Geoclaw,

a high-order accurate finite volume solver for the shallow water equations.135

Next, the Manning resistance term is accounted for. To this end we ignore

the coupling of bottom friction and dispersion (replace (1 −D)−1 by 1 in (7))

and employ the semi-implicit solver in Geoclaw for (Hu)t = −fD.

7



In the final stage, we retain the H value, but integrate Hu (essentially being

the momentum density) further from the two first stages by solving

(1−D)
[
(Hu)t

]
= −Ψ. (8)

Since the differential operator D contains spatial derivatives, a systems of dif-

ference equations must then be solved.140

The spatial and time discretization should be carefully chosen for the sta-

bility of the second stage. In our numerical scheme, the second order centered

scheme is used for the spatial discretization, and a four stage Runge-Kutta

method is used for the time integration. The von Neumann stability analysis of

this numerical scheme is outlined in Appendix A.145

Suppose the spatial domain is divided into n grid cells with the spatial grid

size ∆x. Arrays of nodal values for flow depth and Hu, respectively, are defined

as

H = (H1, H2, . . . ,Hn)T ,

M = (H1u1, H2u2, . . . ,Hnun)T .

With time increment ∆t the fourth order Runge-Kutta scheme can be writ-

ten as follows,

M1 = M, M2 = M +
∆t

2
S1, M3 = M +

∆t

2
S2, M4 = M + ∆tS3, (9)

where Mk are intermediate value arrays and Sk are correspondingly arrays for

the time derivatives of Hu, obtained by solving

(I − D̄)Sk = −Ψ̄(H,Mk), for k = 1, . . . , 4. (10)

Here Ψ̄ and D̄ represent centered spatial discretization for the term Ψ and the

operator D, respectively. These are given explicitly below. Finally the value of

M at the new time level is obtained by

M+ = M +
∆t

6

[
S1 + 2S2 + 2S3 + S4

]
. (11)
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In (10), D̄ is a tri-diagonal n× n matrix with elements

D̄i,i−1 =
1

∆x2

[(
B +

1

2

)
h2
i −

1

6

h3
i

hi−1

]
,

D̄i,i =
1

∆x2

(
−2B − 2

3

)
h2
i ,

D̄i,i+1 =
1

∆x2

[(
B +

1

2

)
h2
i −

1

6

h3
i

hi+1

]
.

Correspondingly, the i-th element of ¯Ψ(H,q) is

Ψ̄i =

(
B +

1

2

)
h2
i

2∆x3

[(
M2
i+2

Hi+2
− 2

M2
i+1

Hi+1
+ 2

M2
i−1

Hi−1
−
M2
i−2

Hi−2

)

+ g (Hi+1 (ηi+2 − ηi)− 2Hi (ηi+1 − ηi−1) +Hi−1 (ηi − ηi−2))

]

− 1

6

h3
i

2∆x3

[
M2
i+2/Hi+2 −M2

i /Hi

Hi+1
− 2

M2
i+1/Hi+1 −M2

i−1/Hi−1

hi

+
M2
i /Hi −M2

i−2/Hi−2

Hi−1

+ g

(
Hi+1(ηi+2 − ηi)

Hi+1
− 2

Hi(ηi+1 − ηi−1)

hi
+
Hi−1(ηi − ηi−2)

Hi−1

)]

− Bgh2
i

2∆x3
(Hi+1 (ηi+2 − ηi)− 2Hi (ηi+1 − ηi−1) +Hi−1 (ηi − ηi−2)) ,

for i = 1, 2, . . . , n.

2.1.3. Additional numerical features

Following Tonelli and Petti (2009) and Shi et al. (2012) we may represent

wave breaking in a heuristic fashion through invocation of a threshold εB :=

η/h = 0.8 in BoussClaw . When the threshold is reached, the wave breaking is150

supposed to be initiated, and the dispersive terms are suppressed throughout the

computational domain. This is adequate for the applications presented herein,

which involve a single solitary wave. For other applications the switch to the

NLSW equations should be made for only a subregion of the computational

domain.155

Bottom friction is important for inundation on gentle slopes. Figure 10

exemplifies that the friction reduces the run-up height. BoussClaw uses the
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Manning-type friction as follows,

fD = −gC
2
du|u|
H5/3

. (12)

In Section 3, a non-dimensional Manning friction coefficient is used as C∗
d =

Cd
√

g
h0
h
−1/3
0 , with the typical range between 0.01 and 0.04 (Chow, 1959).

In the wetting-drying process during runup a parameter for the dry tolerance

dtol is chosen such that H is put to 0 if H < dtolh0, where h0 is the reference

depth (maximum equilibrium depth). In this work, the parameter dtol is set160

to 10−4. The dispersion terms of the Boussinesq equations imply an extended

computational stencil as compared to that for the NLSW equations. To prevent

this stencil from including dry nodes and thereby produce irregularities and even

instabilities, the dispersion terms are switched off when h < Ndtolh0 (close to

the equilibrium shoreline), where the number N is set to 100 for the simulations165

herein. Accordingly, for the dry land inundation, the BoussClaw invariably

utilizes the NLSW solver of the Geoclaw software, which can handle wet and

dry states with the depth positivity property. Details can be found in George

(2008). The near-shore truncation of the dispersive terms produce small wriggles

(see figure 6, right panel) that remain small as ∆x is reduced and do not influence170

the overall solution.

2.2. Models for comparison

The performance of the Boussinesq model presented here is partly assessed

by comparison with numerical results from a full potential flow model which is

described in Løvholt et al. (2013) and references therein. The model is based175

on a boundary integral technique and is run with fully nonlinear solitary wave

solutions as initial conditions. During shoaling and breaking this model can

describe the evolution of a plunger, but breaks down when the plunger reaches

the free surface. Hence, the potential flow results are used to determine the

point of breaking due to shoaling and to evaluate the evolution of amplitude180

and wave shape of the current model until this point. Below we refer to the full

potential model as the BIM (Boundary Integral Method) model.
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Comparison with a pre-existing, fully nonlinear Boussinesq model is facil-

itated by the application of a Lagrangian model, described in Løvholt et al.

(2013). Apart from the use of Lagrangian coordinates the equations employed185

in this model are similar to (2) and (3). They differ only in the nonlinearities in

the dispersion terms and in that the dispersion optimization terms are added in

a fully nonlinear fashion. Presently, the Lagrangian model has no established

bore capturing facility and is hence valid only to the point of breaking. Re-

sults from this model will be referred to as Serre, even though the dispersion190

enhancement is invoked.

Results for the Peregrine-type equations are obtained by the GloBouss model.

This is a model for oceanic tsunami propagation which is based on discretization

on a staggered grid. Further details are found in Løvholt et al. (2008).

For comparison also the version 2.1 of the Funwave-TVD model by Shi195

et al. (2012) is used. The Funwave-TVD model shares important features

with BoussClaw, employing a hybrid of the finite volume and finite difference

scheme to solve the fully non-linear higher order dispersive Boussinesq model

numerically. While we refer to Shi et al. (2012) for details, we briefly note that

Funwave-TVD is based on the fully nonlinear Boussinesq equations of Chen200

(2006). The numerical spatial representation in Funwave-TVD is MUSCL

TVD scheme to discretize for the flux and first order terms, whereas a cen-

tral finite difference scheme (Wei et al., 1995a) is utilized for the higher order

momentum terms. A Runge-Kutta scheme is employed for the time stepping.

3. Comparing BoussClaw simulations with well-defined tests205

Four different test of BoussClaw is presented. In Section 3.1 solitary wave

propagation is considered. Even if this test is simple it includes dispersion and

nonlinearity. Moreover, a scrutiny of the variation of energy with time and

resolution shows that the artificial dissipation induced by the TVD part of the

numerical scheme is very small for smooth waves. Solitary wave propagation in a210

moderately complex bathymetry is computed in section 3.2 and compared with
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experiments. Finally, more detailed studies of shoaling and runup properties

of the model concern non-breaking (section 3.3.1) and breaking (section 3.3.2)

runup. Together these tests should provide a solid assessment of BoussClaw.

The results in the sections 3.1 and 3.3 are mainly presented in normalized co-215

ordinates, t∗ and x∗, as defined by (1), whereas results in section 3.2 are more

conveniently expressed with dimensions retained.

3.1. Solitary wave propagation

For validation of the numerical approach solitary wave propagation is com-

puted in constant water depth. For the initial conditions, the analytic solitary

wave solution of the Serre’s equations is used since exact analytic solutions are

unknown for the set (2) and (3). In dimensionless coordinates the solitary wave

solution of Serre’s equations is given as

η∗(x∗, t∗) = α sech2 (κ(x∗ + ct∗ − x∗i )) , and u∗ = −c η∗

1 + η∗
, (13)

where x∗i is the initial location of the crest peak, and

κ =

√
3α

4(α+ 1)
, and c =

√
1 + α. (14)

In these expressions h0 is the equilibrium depth and α is the dimensionless

amplitude. For the Serre model with enhanced dispersion we employ a modified220

version of (13) while the BIM model is initiated with Tanaka’s solution. Details

are given in Løvholt et al. (2013).

In Figure 1 surfaces from a BoussClaw simulation with ∆x∗ = ∆x/h0 =

0.05 are shown for amplitude α = 0.2. The computational results are in good

agreement with the analytic solutions concerning height, shape and propagation225

speed. The amplitude decreases very gently as the wave propagates.

The integrated wave energies (per width) for the NLSW and Boussinesq

equations are E0 and E0 +E1, respectively, as described in Appendix B. These

quantities are made dimensionless by Ec = ρgh3
0, which is minus two times the

equilibrium potential energy per width. In Figure 2a the time evolution of these

energies are shown for α = 0.2 and ∆x∗ = 0.2. There are tiny fluctuations both
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Figure 1: Analytic and computed solitary wave surfaces for α = 0.2 and ∆x∗ = 0.1. The

curves are marked by the normalized time t∗. The wave propagates from right to left, and

the analytic solutions are solid lines.

(a) (b)

Figure 2: Evolution of energies for a solitary wave with α = 0.2. (a): Different parts of the

dimensionless energy E∗ = E/Ec. for ∆x∗ = 0.1. (b): log-log plot of relative error of energy

at t∗ = 10 for ∆x∗ = 0.05, 0.1, 0.2 and 0.5.

in the potential and kinetic energy that is evident when we zoom in, and the total

energy decrease shows that the numerical procedure has a slight dissipation. In
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Figure 2b, the relative error of the energy at t∗ = 10,

Error =
|E∗
t∗=0 − E∗

t∗=10|
|E∗
t∗=0|

,

is shown for different ∆x∗. For a solitary wave on a constant depth, the energy

dissipation decreases with the grid increments.

3.2. Waves on a composite slope

A physical model was constructed at the Coastal Hydraulic Laboratory of230

the U.S. Army Corps of Engineers in order to address beach erosion and severe

flooding problems (Briggs et al., 1995). The model beach consisted of three

piece-wise linear slopes of 1:53, 1:150, and 1:13 with a vertical wall at the shore-

line as shown in Figure 3. In the laboratory, the wave maker was located at

23.23 m from vertical wall and produced incident waves that were close to soli-235

tary waves. The gauge data from three cases are provided where the relative

amplitude α equals 0.038, 0.259 and 0.681, respectively, where h0 = 21.8 cm is

the depth at the wave maker.

Wave Maker Solid Wall

1 2 3 4 5 6 7 8 9 10

1:53

1:150

1:13

23.23 m

15.04 m 4.36 m 2.93 m 0.90 m

Figure 3: A sketch of the water tank used by Briggs et al. (1995).

For the second case, α = 0.259, numerical results have been compared to

experiments with 400 grid points on a computational domain of [−0.98, 8.19]240
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To specify the incident wave in BoussClaw, data from Gauge 4 were used

for the wave height, while the second relation in (13) was used to obtain the

corresponding velocity.

In Figure 4, water surface elevations at gauges 5, 7 and 8 are shown. The

simulated waves are in good agreement with the laboratory measurements. For245

the reflected waves, larger discrepancies are observed. The increased discrepancy

occurs because the full interaction between the wave and the wall at the right

boundary is less accurately captured. Presumably, viscosity influences the wave

evolution along the shallow region near the right wall, but we have not included

these in the present numerical simulation. A better fit may possibly be obtained250

by incorporating a bottom friction.

3.3. Shoaling and run-up of solitary waves

Figure 5 shows the initial set-up for a test which follows the laboratory

experiments by Synolakis (1987). The bathymetry of the wave tank is composed

of a horizontal bottom, where the equilibrium depth is h0 = 0.196 m, and a255

uniform slope as shown in Figure 5. A solitary wave of height A0, hence α =

A0/h0, is generated at the right end of the tank and propagates leftwards to the

beach.

In the present section and throughout section 4 we present the results using

the non-dimensional coordinates (t∗,x∗), as defined by (1) with h0 as the equi-

librium depth in the flat bottom region In Synolakis (1987), t∗ = 0 was defined

as when the wave crest was a non-dimensional distance, L∗, from the toe of the

slope, where

L∗ =

√
4

3α
arccosh

(
1

0.05

)
.

However, at t∗ = 0, the solitary wave has an elevation of 5% of it maximum at

the toe of the beach, meaning that the slope has started to interact with the260

solitary wave. To avoid any such interaction obscuring our analysis, we instead

place the initial solitary wave using equation (13) with x∗i = L∗+5c. In this way,
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Figure 4: Comparison of BoussClaw and experiment from Briggs et al. (1995). Water surface

elevation (m) in time (s) at gauges 5,7 and 8 for the α = 0.259 case.

an incident solitary wave of amplitude α ≈ 0.3, say, has a negligible interaction

with the slope when initialized.

3.3.1. Run-up of a non-breaking wave on a steep slope265

On a 10◦ slope an incident solitary wave of amplitude α = 0.3 will not break

until the end of the draw-down phase (Grilli et al., 1997). Still, this may be a

challenging task for Boussinesq type models (Løvholt et al., 2013). Run-up on a

10◦ slope was investigated experimentally by Pedersen et al. (2013) who found

a theoretical overshoot of roughly 20% in the maximum run-up height. This270

was allotted to the viscous boundary layer on the beach and capillary effects.
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Figure 5: Definition sketch for shoaling and runup of solitary waves. The scale on the axes is

the equilibrium depth, h0.

Moreover, the measurements showed that the boundary layer flow during run-up

was mostly laminar, albeit indications of transition was observed in the upper

part of the swash tongue close to flow reversal. Hence, it is not appropriate to

employ a Manning friction term and we compare the models without any bed275

friction, while leaving the experiments out.

Figure 6: Runup of non-breaking solitary wave (α = 0.3 and θ = 10◦). Left panel displays

surfaces from the BIM, Serre and BoussClaw models at t∗ = 10, 15, 20 for ∆x∗ = 0.05.

Right figure is a zoom of the results at t∗ = 15

In Figure 6, the numerical results from BIM, Serre, and BoussClaw are

shown at t∗ = 10, 15, and 20, and a zoom at t∗ = 15 is shown in the right panel.
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The agreement between the dispersive models are very good. Even though the

fully nonlinear Serre model follows the BIM slightly better, the BoussClaw280

is also very close to the full potential theory. The small wrinkles observed on

the surface from the BoussClaw (right of Figure 6), are due to the switch to

NLSW at the shore as discussed in section 3.3.1. As demonstrated in Figure

7, the BoussClaw model yields a solid grid convergence for the maximum

runup height, R∗. This is in a stark contrast to observations for other models285

as presented in Løvholt et al. (2013).

In Figure 8, the run-up heights are shown, and Table 1 shows the maximum

run-up heights. The NLSW model yields premature breaking (see discussion

on theoretical and observed breaking in Pedersen et al. (2013)) and a too high

maximum run-up height. And it is observed that the NLSW model yields larger290

run-up height than the Boussinesq-type equations for the non-breaking wave on

a 10◦ slope.

Figure 7: Non-breaking solitary wave (α =

0.3 and θ = 10◦). Maximum run-up di-

vided by amplitude (R∗/α) from BoussClaw

with different grid sizes. The dashed line is

from BIM. The grid size ∆x∗ is 0.04/N and

0.025/N for N = 1, 2, 4

Figure 8: Non-breaking solitary wave (α =

0.3 and θ = 10◦). Time series for the runup

height from Serre, BoussClaw and NLSW

with ∆x∗ = 0.05.

3.3.2. Comparison with experiments on a breaking wave

From the experiments of Synolakis (1987) on runup of solitary waves on

beaches, we select the breaking case α = 0.28 incident on a 1 : 19.85 slope295
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Model BIM Serre BoussClaw NLSW

Max. Run-up/Amp. 4.2432 4.2488 4.0941 4.6561

Table 1: Maximum run-up height divided by the incoming wave amplitude (R∗/α) for α = 0.3

and θ = 10◦.

for comparison with the BoussClaw model. Experimental date is obtained at

Synolakis et al. (2008).

In Figure 9, the laboratory measurements are shown with the computational

results from the BoussClaw (in Boussinesq and NLSW mode), the Serre and

the BIM models for α = 0.28 and a 1 : 19.85 slope at t∗ = 15. The grid size ∆x∗300

is 0.05 in the following simulations unless otherwise is stated. This is before the

wave breaks and the BoussClaw , the Serre, and the BIM model are all in

good agreement with the experiments.

Figure 9: The surface elevation, η∗ as function of x∗ at t∗ = 15 from the laboratory experi-

ments (Synolakis, 1987) (α = 0.28, slope 1 : 19.85), the BIM, the Serre, the BoussClaw and

the NLSW models.

The ratio of amplitude to depth, A∗/h∗ (A∗ is the maximum value of η∗

and h∗ is the equilibrium depth at the corresponding location), is about 2 at305

the point of breaking. The potential flow model cannot be run much beyond

the breaking points (until the attachment of the plunger only) and gives no
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information on the following bore propagation. In figure 10 we have compared

the experimental data with the BoussClaw model of C∗
d = 0 and 0.03.

The agreement is good and the introduction of bed-friction even seem to310

match the truncated swash tongue of the experiments well. However, this may

be a coincidence. Even though the wave has broken and some irregular flow

features are introduced thereby, we have no evidence of the flow state being

anywhere near turbulent, which is required for a quadratic bottom resistance

to be appropriate. Capillary effects and experimental errors may also affect the315

comparison as observed by Pedersen et al. (2013).

Figure 10: The surface elevation η∗ as function of x∗ at t∗ = 25, 30 for the breaking case

(α = 0.28 and a 1 : 19.85 slope). Experiments and BoussClaw results with and without

bottom drag are included. The resolution in the model is ∆x∗ = 0.05.
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In Figure 11 and Table 2, we show the run-up height in time and the max-

imum run-up height respectively. Unlike what was observed for θ = 10◦, the

NLSW model reduces the run up height. The opposite behavior for the two may

be explained by two competing effects of dispersion. First, for a non-breaking320

wave the omission of non-hydrostatic effects lead to an excessive steepening of

the wave front which implies higher run-up. On the other hand, the premature

breaking dissipates energy and will reduce run-up heights. For the steeper slope,

there is insufficient time for the second effect to fully counterbalance the first.

For the gentler slope the early onset of breaking in the NLSW model, at a long325

distance form the shoreline, causes a large dissipation which dominates over the

first effects.

In addition to affecting the runup a non-zero Cd will delay, or even inhibit

the withdrawal. A detailed discussion of such effects is outside the scope of the

present article and we refer instead to a profound investigation in Antuono et al.330

(2012).

Figure 11: Dimensionless shoreline elevation for the breaking case (α = 0.28 and a 1 : 19.85

slope) computed by BoussClaw (without εB) and NLSW with different C∗
d .
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C∗
d 0 0.01 0.02 0.03

BoussClaw (without εB) 1.634 0.921 0.691 0.576

BoussClaw (εB = 0.8) 1.193 0.848 0.696 0.608

NLSW 0.936 0.702 0.596 0.528

Experiment 0.551

Table 2: Maximum run-up height, R∗, for a solitary wave of amplitude α = 0.28 incident on

a 1 : 19.85 slope.

4. Shoaling and breaking phenomena

4.1. Shoaling until breaking

Wei et al. (1995b) made computations of pre-breaking solitary wave shoaling

using their fully nonlinear extension of Nwogu’s model, a full potential theory,335

and the weakly nonlinear version of Nwogu’s model. They found that the fully

nonlinear Boussinesq equations were superior to those of Nwogu in the later

stages of the shoaling. In this subsection we will do a similar comparison for

our models on the 1 : 19.85 slope which was not included in the reference. Our

fully nonlinear Boussinesq model is different from that of the references, as it is340

a Serre type model with the depth averaged velocity as primary unknown, and

our BoussClaw model is not fully nonlinear. Hence, it is imperative to test

the shoaling properties, particularly for the latter model.

We use the set-up described in section 3.3.2 for the Boussinesq modeling of

solitary waves on a slope. The BoussClaw simulations are compared with those345

of other Boussinesq solvers, namely Funwave (Shi et al., 2012), GloBouss

(Løvholt et al., 2010) and the Serre type formulation (Løvholt et al., 2013). As

noted above, the original Serre’s equations are enhanced by adding the same

kind of dispersion correction terms as are used in (3).

In Figure 12 surfaces from the different wave models are shown at selected350

times. The BoussClawmodel is run without the switch to the NLSW equations

at εB = 0.8 and with the dispersion parameter B = 1/15. However, the results

for B = 0 are rather similar to those for B = 1/15 in this case. At t∗ = 16, the
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Figure 12: Evolution of η∗ for α = 0.28 and a 1 : 19.85 slope. Surfaces from the BIM,

Serre, GloBouss, BoussClaw and Funwave models at t∗ = 16, 18, 20 are included. The

BoussClaw model is used with B=1/15, and the Peregrine’s equations are used for GloBouss.

computational results from all the Boussinesq-type equations are similar. The

NLSW model, on the other hand, yields premature breaking causing a too low355

amplitude. At t∗ = 18, some discrepancies are observed. The models can be split

into two groups; GloBouss and Funwave are similar, while the BoussClaw

and the Serre results are similar. The wave front from the BoussClaw model
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is somewhat more advanced toward the beach than that from the BIM model.

Still, the results from the Serre and BoussClaw models are clearly closer to360

those of the BIM model, than those from the other group. Especially, the wave

amplitudes are well determined by the BoussClaw and the Serre models. The

wave amplitudes computed by the GloBouss and Funwave models, on the

other hand, are more than 33 % larger than those from the BIM model at t∗ =

18. The wave amplitude continues to increase in the GloBouss simulations,365

and the difference from the BoussClaw result becomes larger at t∗ = 20. At

the t∗ = 20 there are no results from the BIM model as the wave has broken.

Our observations on model performance during shoaling are in line with those

of Wei et al. (1995b).

4.2. Wave breaking and run-up370

In the BIM model we may identify the onset of breaking as the instant when

we first observe a vertical slope at the wave front. For an incident amplitude of

α = 0.28 on a 1 : 19.85 slope, a vertical wave front is observed at x∗ = 4.09 and

t∗ = 18.6 with A∗/h∗ = 2.01. When the crest in the BoussClaw simulation

reaches x∗ = 4.09, we find A∗/h∗ = 1.97. The threshold value εB = 0.8 (see375

sec. 2.1.3) is reached already at t∗ = 14.9 when the peak of the wave is at

x∗ = 8.03. In the following, we explore the wave evolution with and without

the switch to the NLSW equations at this threshold.

In Figure 13, snapshots are shown for t∗ equal to 20, 25 and 30 of the

solutions from BoussClaw and NLSW with the Manning coefficient C∗
d = 0.03.380

At t∗ = 20 the simulation with εB = 0.8 has already been in NLSW mode for

5 time units and the difference in the wave height from the full Boussinesq

simulation is significant. In fact, the threshold solution is closer to the NLSW

solution.

At t∗ = 25 and t∗ = 30, the wave is running up the slope, and the difference385

in the swash tongue is relatively small.

Other measures of nonlinearity than εB may be used for model decisions

(Lynett, 2006; Matsuyama et al., 2007). Figure 14 shows εB , u∗/
√
H∗ (H∗
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Figure 13: Breaking case (α = 0.28 and a 1 : 19.85 slope). Comparison of η∗ from BoussClaw

and NLSW with εB = 0.8 and ∆x∗ = 0.05 at t∗ = 20, 25 and 30. Friction forces have been

added with C∗
d = 0.03 in all simulations.

is the total, dimensionless, flow depth) and the maximum frontal angle as a

function of the crest location. When the the BIM model yields a vertical front390

at x∗ = 4.09, we obtain u∗/
√
H∗ = 1.034 and the surface slope angle of 39.1◦

at the peak. For the present case this might indicate that the value of u∗/
√
H∗

at the peak surpassing unity or the slope angle surpassing 30◦ may be sounder

criteria for identifying breaking than εB > 0.8.
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Figure 14: Plot of A∗/h∗, u∗/
√
H∗ and maximum angle of waves vs. crest location. The

vertical line indicates where the BIM model yields breaking (x∗ = 4.09).

4.3. Wave Energy395

The gross wave energies for the shallow water equations and Boussinesq

equations are E∗
0 and E∗

0 + E∗
1 respectively, as explained in Appendix B. As

stated in section 3.1 they are made dimensionless by the factor Ec = ρgh3
0. In

Figure 15 the energy densities are depicted as functions of the crest location,

x∗c . In the left panel we observe that the E∗
0 is nearly constant for the shallow400

water equations until a shock is formed around x∗c = 13. Thereafter, energy is

quickly dissipated. For the BoussClaw simulations E∗
0 increases slightly, but

noticeably, during shoaling, indicating that E∗
1 needs to be accounted for. In

the BoussClaw simulation with no threshold (right panel) E∗
0 + E∗

1 is nearly

constant when the wave propagates in constant depth. On the deeper parts405

of the slope there is first a small increase, then a very moderate reduction.

Presumably, the increase is due to the absence of strict energy conservation

in the Boussinesq equations. Close to the shoreline this tiny increase is then

dominated by a stronger, but still mild, energy dissipation. When the threshold

εB = 0.8 is invoked there is no difference from the full Boussinesq solution until410

the threshold is reached for x∗c = x∗B = 8.03. After x∗c = x∗B the hydrostatic

energy measure, E∗
0 , is the most appropriate for this case. The energy drops

momentarily due to the change of energy formula, then remains constant until
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the wave breaks (x∗c around 6), after which a strong dissipation ensues.

In this case the dissipation is due to a single shock. The dissipation rate per

width, Dth, may then be approximated as (Tissier et al., 2011)

D∗
th =

1

4

(
2h∗ + d∗

2h∗(h∗ + d∗)

)1/2

(d∗)3, (15)

where d∗ is the shock height, which, for a fully developed bore, corresponds to415

maximum η∗ (A∗) in our case, and h∗ is the undisturbed water depth. The rate

D∗
th has been made dimensionless by the factor Ec

√
g
h0

, where Ec is given above.

In figure 16 we observe that the dissipation rates of the models has a build-up,

before the shock is fully developed, and then agree well with formula (15).

Moreover, due to larger shock heights the BoussClaw(εB = 0.8) dissipation420

rate is much larger than that of the NLSW model, when the wave finally has

broken. This reduces the difference between the models to some extent. It is

obvious that the NLSW model in this case is severely inaccurate, while it is

more difficult to assess the BoussClaw with and without the switch to the

NLSW.425

(a) (b)

Figure 15: Wave energy (α = 0.28, slope 1 : 19.85) as function of crest position. The vertical

line is at x∗ = 8.03227 where εB = 0.8. (a): E∗
0 . (b): Solid line is E∗

0 + E∗
1 of BoussClaw

without εB . With εB = 0.8, E∗
0 is shown in dashed line after the threshold is reached.

The onset of the dissipation in the threshold model comes slightly before

the a vertical front is observed in the BIM solution x∗c = 4.09. This may

point to a too early and strong dissipation. On the other hand, the Boussinesq
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Figure 16: Dimensionless energy dissipation rates for α = 0.28 and a 1 : 19.85 slope. The

label “formula” represents (15) inserted the wave heights from the numerical simulations.

BoussClaw with εB = 0.8 switches to the NLSW at t∗ = 14.9.

solution without the threshold most likely yields too little dissipation. In this

context we remark that the experimental data in the upper panel of figure430

13 apparently fall between the BoussClaw results with and without the εB

threshold, even though there is scatter in the experimental surface. The last step

of the procedure in section 2.1.2, which deals with the dispersion, increases the

wave front width to the order of the local depth and thus reduces the dissipation

of the next TVD step. This effect of the dispersion terms may be inferred from,435

for instance, the Green function of Helmholtz type equations as outlined in

Glimsdal et al. (2004), section 3.1.1. Still, the BoussClaw model, without the

threshold, is stable during both the last part of shoaling and during runup, even

for refined grids. This contrasts the non-dissipative Serre model which may be

run beyond x∗c = 4, without the strong artificial amplification of the Peregrine440

type models, but breaks down when the wave reaches the shoreline (results not

shown). Hence, BoussClaw, without the switch to the NLSW equation at

εB = 0.8, may be a good model for gently spilling breakers.
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5. Concluding remarks

The BoussClaw extension to the GeoClaw package includes Boussinesq445

type equations and resembles much used general purpose models such as Funwave-

TVD and Coulwave-TVD, but is based on a different and somewhat simpler

set of governing equations, as well as a slightly different numerical scheme.

Comparisons with other models as well as experiments are good. Moreover, the

model does not display the vulnerability to instabilities for strong nonlineari-450

ties in shallow water as is observed for some fully nonlinear Boussinesq models

(Løvholt et al., 2013).

The experiments of Synolakis (1987) and a full potential reference model

enabled us to assess a set of different long wave models, and BoussClaw in

particular. Using the potential model, we were able to assess in detail the455

pre-breaking behavior of the models, and to identify the point of breaking ac-

curately. First, we found that by using standard NLSW models, the point of

breaking will be located too far offshore and that the resulting dissipation ar-

tificially check the amplification. Standard Boussinesq equations, like the so

called Peregrine variant, yield marked over-amplification even before the poten-460

tial theory predicts breaking and they eventually produce completely erroneous

wave shape as well as height. The fully nonlinear, non-dissipative model of the

Serre type, on the other hand, follows full potential theory very well up to the

point of potential-model breaking and avoid severe over-amplification and shape

distortion also in the following evolution, until it breaks down at the shoreline.465

For the pre-breaking part, this is in agreement with earlier investigations of

equations of the Nwogu/Wei type (Wei et al., 1995a) and shows that the com-

bined effects of nonlinearities and dispersion influence the solution markedly,

when accumulated to the point of breaking. However, herein we find also a

very good pre-breaking performance of the BoussClaw Boussinesq equations470

where only some nonlinearity is retained in the dispersion. This suggest that

the practice of retaining full nonlinearity in Boussinesq shoaling/runup models

may be relaxed, especially when the switch to the NLSW equations are invoked.
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This may help reducing stability problems that are observed for fully nonlinear

Boussinesq equations (Løvholt et al., 2013).475

A current practice has evolved in which the Boussinesq terms are omitted

near shore through the A/h > 0.8 threshold criterion, inspired by the maximum

height of a non-breaking undular bore. In an example presented herein, we

investigated the near shore propagation over a relatively gentle shelf of 1 : 19.85

slope, and in this case the actual onset of breaking occurred for A/h ≈ 2,480

which is significantly later than what would be predicted by the threshold.

Hence, a threshold criterion may lead to an erroneous breaking point as well as

an inaccurate description of the later stages of the shoaling. It is noted that

the artificial effect discovered would depend on the slope, and a 0.8 threshold Jihwan:

This is not

clear to me.

Jihwan:

This is not

clear to me.

may well work better on a much gentler slope as it is primarily derived based485

on solitary wave properties in constant depth. On the other hand, 1 : 19.85

slope is already quite gentle, and the offset between the reference solution and

Boussinesq models using this criteria may be even more pronounced for steeper

slopes.

Appendix A. Stability of the hybrid scheme490

It is difficult to analyze the numerical stability for our full Boussinesq equa-

tions. To obtain some insight in the stability of the proposed hybrid numerical

scheme, we thus consider a closely related, but simpler, equation, namely the

linearized Benjamin-Bona-Mahony (BBM) equation (Benjamin et al. (1972))

ut + cux =
h2

6
utxx, (A.1)

where c =
√
gh. This equation describes weakly dispersive, uni-directional waves

in constant depth. The equation replaces the momentum equation, whereas no

separate continuity equation is involved.

Following the steps of section 2.1.2, we rearrange the equation (A.1) as

(I −D)(ut + cux) +Dux = 0, (A.2)
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where D = h2

6 ∂
2
x. The first step of hybrid scheme for this equation is integration

of the advection equation

ut + cux = 0, (A.3)

by the finite volume method. Then the Runge-Kutta method is applied to,

(1−D)ut + cDux = 0. (A.4)

which is the counterpart to (8).

If we use the centered spatial difference approximation of O(∆x2) accuracy495

on a regular grid we may employ a standard von Neumann analysis where we

calculate the growth of an harmonic mode over a single time step. Expressing

the coefficients of the velocity array before the time step as uj = eiξj∆x we then

replace the coefficient of Mk, defined in section 2.1.2, by Mk
j = Ukj = gkeiξj∆x,

where k is 1, 2, 3, 4 or +. Correspondingly, the coefficients of the Sk array,500

which contains auxiliary, nodal values for ut, is expressed (Skj ) = skeiξj∆x.

The stability of the first step, (A.3), is assured by the standard CFL criterion

c∆t

∆x
< 1.

If we instead solve the NLSW equations, as in BoussClaw, c must be replaced

by the nonlinear characteristic velocity, which may lead to a more strict criterion.

However, the method employed in the first step is not suited for a von Neumann

stability analysis and we thus apply this technique to the second step only.

Hence, we may put g1 to unity, but it is preferable to retain it in the calculations.

The Runge-Kutta scheme for time stepping, (9), may now be expressed as

g2 = g1 +
∆t

2
s1, g3 = g1 +

∆t

2
s2, g4 = g1 + ∆ts3, (A.5)

The discrete version of (A.4), which is the counterpart to (10) for the BBM

equation reads

Skj −
h2

6

Skj+1 − 2Skj + Skj−1

∆x2
= −ch

2

6

Ukj+2 − 2Ukj+1 + 2Ukj−1 − Ukj−2

2∆x3
,
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which, inserted the harmonic expressions, implies

sk = i
γ

∆t
gk, γ = c∆t

2 sin(ξ∆x)(1− cos(ξ∆x))

6∆x3h−2 + 2∆x(1− cos(ξ∆x))
, (A.6)

where the ∆t factors are included for convenience. The assembling of the inter-

mediate values in the Runge-Kutta procedure, (11), now yields

g+ = g1 +
∆t

6

[
s1 + 2s2 + 2s3 + s4

]
. (A.7)

By combination of (A.5) and (A.6) sk and gk, k = 1, . . . , 4 can be calculated

successively and combined in (A.7) to provide the value of g+,

g+(γ) =

(
1− 1

2
γ2 +

γ4

24
+

(
γ3

6
− γ
)
i

)
g1

|g+(γ)|2 =

(
1 +

1

4
γ4 +

γ8

242
− γ2 +

γ4

12
− γ6

24
+ γ2 +

γ6

36
− γ4

3

)
|g1|2

=

(
1− 1

72
γ6 +

1

576
γ8

)
|g1|2.

Stability requires |g+(γ)/g1| < 1 which is equivalent to |γ| < 2
√

2. Moreover,

it is easily seen that γ < c∆t/∆x. Hence, a sufficient condition for stability of

the second step of the hybrid scheme is

c∆t

∆x
< 2
√

2.

This is more relaxed than the CFL condition for the advection equation (A.3).

Therefore, if the CFL condition is satisfied in the advection equation, the frac-

tional step is always stable with the suggested numerical scheme.

Appendix B. Energy estimates and dissipation505

Appendix B.1. Velocity field

To derive the energy estimates for the Boussinesq-type equations, we define

the depth-averaged velocity as,

ū =
1

H

∫ η

−h
udz.
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Then the velocity u can be expressed as u = ū+ u1 where u1 = O(µ2ū) and∫ εη

−h
u1dz = 0. (B.1)

Then the kinematic boundary condition at the bottom and zero divergence

implies

w = −hxū− ūx(z + h) +O(µ2).

Appendix B.2. Energy integrals

The potential energy density per horizontal area is

V =

∫ η

−h
ρgzdz =

1

2
ρgη2 − 1

2
ρgh2,

In finite depth, the last term, 1
2ρgh

2, is the equilibrium energy, which is normally

excluded from the wave energy. Correspondingly, the first term, which is of order

ε2 relative to equilibrium energy, is then associated with the wave. However, in

the swash zone and during draw-down this distinction is not applicable. Hence,

instead of omitting the equilibrium energy locally, we will eventually compute

the total energy of the computational domain and then subtract the total, initial

equilibrium energy. The kinematic energy density has two contributions,

T = Tu + Tw; Tu =
ρ

2

∫ η

−h
u2dz, Tw =

ρ

2

∫ η

−h
w2dz.

where Tw = O(µ2Tu). For the horizontal part, Tu is

Tu =
ρ

2

∫ η

−h
u2dz =

ρ

2

∫ η

−h

[
ū2 + 2ūu1 + u2

1

]
dz =

ρ

2
Hū2(1 +O(µ4)),

since ū is independent of z and u1 = O(µ2ū). The vertical part becomes

Tw =
ρ

2

∫ η

−h

[
h2
xū

2 + 2hxūūx(z + h) + ū2
x(z + h)2

]
dz

=
ρ

2
H

(
h2
xū

2 +Hhxūūx +
1

3
H2ū2

x

)
,

where relative errors of order µ2 are implicit. Thus the energy of a wave can be

approximated as

e =
(
e0 + e1 +O(µ4ε2e0)

)
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where e1 = O(µ2ε2e0) and

e0 =
ρ

2

(
gη2 − gh2 +Hū2

)
, (B.2)

e1 = ρ

(
1

6
H3ū2

x +
1

2
H2hxūūx +

1

2
Hh2

xū
2

)
. (B.3)

We assume a beach to the left, a fixed off-shore boundary of computational

domain to the right and an initial wave that does not affect the shoreline. Then,

the total wave energies per width are defined as

E0 =

xb∫
xa

e0dx−
xb∫
x0

−1

2
ρgh2dx, E1 =

xb∫
xa

e1dx, (B.4)

where xa is the position of the instantaneous shoreline, x0 is the position of the

equilibrium shoreline, and xb denote off-shore boundary of the computational

domain. The latter term is in E0 yield subtraction of the initial equilibrium en-510

ergy. For other geometries, the integration limits must be modified accordingly.

References

V. V. Titov, C. E. Synolakis, Modeling of breaking and nonbreaking long-wave

evolution and runup using VTCS-2, J. Waterw., Port, Coast., Ocean Engrg.

121 (6) (1995) 308–316.515

F. Imamura, Long-wave runup models, chapter Simulation of wave-packet prop-

agation along sloping beach by TUNAMI-code, World Scientific 3 (1996) 4.

S. Harig, Chaeroni, W. S. Pranowo, J. Behrens, Tsunami simulations on several

scales, Ocean Dynamics 58 (5) (2008) 429–440, ISSN 1616-7228.

M. J. Berger, D. L. George, R. J. LeVeque, K. T. Mandli, The GeoClaw software520

for depth-averaged flows with adaptive refinement, Adv. Water Res. 34 (2011)

1195–1206.

D. H. Peregrine, Calculations of the development of an undular bore,

J. Fluid Mech. 25 (1966) 321–330.

34



M. Brocchini, A reasoned overview on Boussinesq-type models: the interplay be-525

tween physics, mathematics and numerics, Proc. R. Soc. 469 (2013) 20130496.

S. Glimsdal, G. Pedersen, C. Harbitz, F. Løvholt, Dispersion of tsunamis: does

it really matter?, Nat. Hazards Earth Syst. Sci. 13 (2013) 1507–1526.

F. Løvholt, G. Pedersen, C. Harbitz, S. Glimsdal, J. Kim, On the characteristics

of landslide tsunamis, Phil. Trans. R. Soc. A 373 (2053) (2015) 20140376.530

J. Grue, E. N. Pelinovsky, D. Fructus, T. Talipova, C. Kharif, Formation of

undular bores and solitary waves in the Strait of Malacca caused by the 26

December 2004 Indian Ocean tsunami, J. Geophys. Res. 113 (2008) C05008.

F. Løvholt, G. Pedersen, G. Gisler, Oceanic propagation of a potential tsunami

from the La Palma Island, J. Geophys. Res. 113 (2008) C09026.535

J. Behrens, F. Dias, New computational methods in tsunami science, Phil.

Trans. R. Soc. A 373 (2053) (2015) 20140382.

P. A. Madsen, O. R. Sørensen, A new form of the Boussinesq equations with im-

proved linear dispersion characteristics. Part 2. A slowly-varying bathymetry,

Coastal Engineering 18 (3) (1992) 183–204.540

O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propa-

gation, J. Waterw., Port, Coast., Ocean Engrg. 119 (6) (1993) 618–638.

D. H. Peregrine, Long waves on a beach, J. Fluid Mech. 27 (04) (1967) 815–827.
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