
Vortex motion around a circular cylinder above a plane
G. L. Vasconcelos and , and M. Moura

Citation: Physics of Fluids 29, 083603 (2017); doi: 10.1063/1.4996241
View online: http://dx.doi.org/10.1063/1.4996241
View Table of Contents: http://aip.scitation.org/toc/phf/29/8
Published by the American Institute of Physics

Articles you may be interested in
Control of vortex-induced vibration using a pair of synthetic jets: Influence of active lock-on
Physics of Fluids 29, 083602 (2017); 10.1063/1.4996231

Numerical study of shear rate effect on unsteady flow separation from the surface of the square cylinder
using structural bifurcation analysis
Physics of Fluids 29, 083604 (2017); 10.1063/1.4996229

Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and
heat source
Physics of Fluids 29, 082001 (2017); 10.1063/1.4996034

A deformable plate interacting with a non-Newtonian fluid in three dimensions
Physics of Fluids 29, 083101 (2017); 10.1063/1.4996040

 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows
Physics of Fluids 29, 111101 (2017); 10.1063/1.4990082

Very large scale motions and PM10 concentration in a high-Re boundary layer
Physics of Fluids 29, 061701 (2017); 10.1063/1.4990087

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/522021942/x01/AIP-PT/PoF_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Vasconcelos%2C+G+L
http://aip.scitation.org/author/Moura%2C+M
/loi/phf
http://dx.doi.org/10.1063/1.4996241
http://aip.scitation.org/toc/phf/29/8
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4996231
http://aip.scitation.org/doi/abs/10.1063/1.4996229
http://aip.scitation.org/doi/abs/10.1063/1.4996229
http://aip.scitation.org/doi/abs/10.1063/1.4996034
http://aip.scitation.org/doi/abs/10.1063/1.4996034
http://aip.scitation.org/doi/abs/10.1063/1.4996040
http://aip.scitation.org/doi/abs/10.1063/1.4990082
http://aip.scitation.org/doi/abs/10.1063/1.4990087


PHYSICS OF FLUIDS 29, 083603 (2017)

Vortex motion around a circular cylinder above a plane
G. L. Vasconcelos1,a) and M. Moura2
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The study of vortex flows around solid obstacles is of considerable interest from both a theoretical
and practical perspective. One geometry that has attracted renewed attention recently is that of vortex
flows past a circular cylinder placed above a plane wall, where a stationary recirculating eddy can
form in front of the cylinder, in contradistinction to the usual case (without the plane boundary) for
which a vortex pair appears behind the cylinder. Here we analyze the problem of vortex flows past a
cylinder near a wall through the lenses of the point-vortex model. By conformally mapping the fluid
domain onto an annular region in an auxiliary complex plane, we compute the vortex Hamiltonian
analytically in terms of certain special functions related to elliptic theta functions. A detailed analysis
of the equilibria of the model is then presented. The location of the equilibrium in front of the
cylinder is shown to be in qualitative agreement with recent experimental findings. We also show that
a topological transition occurs in phase space as the parameters of the systems are varied. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4996241]

I. INTRODUCTION

The formation of vortices in viscous flows past cylindrical
structures is a problem of considerable interest from both a the-
oretical and applied perspective, as this process is relevant for
many practical situations, such as vortex-induced vibrations
and stability of submerged structures.1–3 The beauty and intri-
cacies of vortex formation around solid obstacles are well on
display in the classical problem of a flow past a circular cylin-
der, where a pair of counter-rotating vortices forms behind the
cylinder at small Reynolds numbers, which then goes unstable
at higher Reynolds numbers and eventually evolves into a von
Kármán vortex street. This system was first studied analyti-
cally by Föppl in 19134 by considering the motion of a point
vortex around a cylinder placed in an inviscid and irrotational
flow. Since then, the point-vortex model has become an impor-
tant tool to study vortex dynamics around obstacles, in great
part because the model is amenable to analytical treatment and
can be analyzed with standard methods from nonlinear dynam-
ics. In this context, it is worth pointing out the Föppl system
has been reanalyzed by several authors5–7 and new dynami-
cal features have recently been discovered7 in this century-old
problem. The question of multiple vortices moving around a
cylinder has also been extensively investigated8–11 within the
point-vortex model.

The motion of point vortices in the presence of multiple
obstacles is also of great interest but here the problem is much
more mathematically challenging because the flow domain is
inherently multiply connected. Although many experiments
and numerical studies of vortex flows around two or more

a)Author to whom correspondence should be addressed: giovani.
vasconcelos@ufpe.br

circular cylinders are found in the literature (see, e.g., Ref. 12
for a brief review of the recent literature), theoretical analyses
for such cases are much more sparse. Johnson and McDon-
ald13 studied the motion of a vortex near two cylinders (with
and without an imposed background flow) using both a point-
vortex model and a vortex-patch approach. This study was
generalized by Marshall and Crowdy14 for the case of a point-
vortex in the presence of an arbitrary number of cylinders
(with no background flow) using conformal mapping tech-
niques based on the Schottky-Klein (SK) prime functions. The
formalism of the SK prime functions was also used by Sakajo15

to study the motion of point vortices in a multiply connected
domain consisting of many circular obstacles inside the unit
circle.

There has also been considerable interest in vortex flows
past a circular cylinder near a plane wall; see, e.g., Refs. 16–20
and references therein. One interesting aspect of this geometry
is that a recirculating eddy can form upstream of the cylinder as
observed by Lin et al.,18 in contrast to the usual Föppl system
where the vortices appear behind the cylinder. This observation
of a stationary vortex upstream of the cylinder has formed part
of the motivation for the present work.

Here we study this problem in more detail by consider-
ing the motion of a point vortex in a uniform stream past a
cylinder above a plane. By mapping the physical flow domain
onto an annulus in an auxiliary complex plane, we obtain the
Hamiltonian of the model and study in detail its equilibrium
points, with particular emphasis on the fixed point in front of
the cylinder. It is shown that this equilibrium is neutrally sta-
ble and hence accessible to experimental realization, as was
indeed verified by Lin et al.18 Furthermore, the locus of these
equilibria in the model is in qualitative agreement with the
location of the center of the recirculating eddy observed in
the experiments.18 Other aspects of the experiments, such as
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the fact that the center of the recirculating eddy moves closer
to the cylinder as the gap between the cylinder and the plane
decreases, can also be explained by the point-vortex model, as
will be shown later. Another interesting dynamical feature of
our point-vortex system is that it exhibits a topological tran-
sition in the phase space as the gap or the vortex strength
is varied, implying that the nature of the vortex trajectories
can vary drastically as the parameters of the problem crosses
certain critical values.

The paper is organized as follows. In Sec. II, the problem
of a point vortex in a uniform stream past a circular cylin-
der above a plane is formulated and both the instantaneous
complex potential and the vortex Hamiltonian are computed
analytically. The equilibrium points of the system and their
associated separatrices are studied in detail in Sec. III. We
conclude in Sec. IV with a summary of our main results and a
discussion of their physical relevance, and we briefly comment
on possible extensions of the analysis reported here to the case
of vortex motion around multiple cylinders.

II. PROBLEM FORMULATION

We consider the motion of a point vortex of circulation
Γ placed in a uniform stream of velocity U past a circular
cylinder of radius a, whose center lies at a distance d from
a plane wall taken to be at y = 0, so that the gap between
the plane and the cylinder is ∆ = d − a; see Fig. 1 for a
schematic of the problem geometry. It is assumed that the
fluid is inviscid, irrotational, and incompressible and that the
flow has translational symmetry in the direction of the cylin-
der axis, chosen to be the z-axis. Under these assumptions, the
fluid velocity field ~v(x, y) is two-dimensional and given by the
gradient of a potential function: ~v = ~∇φ, where the velocity
potential φ(x, y) obeys Laplace equation, ∇2φ = 0. It is then
convenient to introduce the complex potential w(z) = φ(x, y)
+ iψ(x, y), where z = x + iy and ψ(x, y) is the associated stream
function.

A. The complex potential

To construct the desired complex potential w(z), we intro-
duce a conformal mapping z(ζ) from an annular region,
ρ < |ζ | < 1, in the auxiliary complex ζ-plane onto the fluid
domain in the physical z-plane, see Fig. 2. The inner circle
(|ζ | = ρ) is chosen to map to the cylinder, whilst the unit cir-
cle (|ζ | = 1) is mapped to the plane boundary (y = 0), with
the points ζ = i and ζ = −i being mapped to z = 0 and
z = ∞, respectively. The preimage of the vortex position z0 is
denoted by ζ0. It is not difficult to observe that the function that
enacts the desired mapping is given by the following Möbius
transformation:

FIG. 1. Point vortex in a uniform stream past a circular cylinder above a plane.

FIG. 2. Circular domain in the auxiliary complex ζ -plane (left) and the
physical domain in the physical z-plane (right).

z(ζ) = −i
√

d2 − a2

(
ζ − i
ζ + i

)
, (1)

whose inverse is

ζ(z) = −i *
,

z − i
√

d2 − a2

z + i
√

d2 − a2
+
-

. (2)

The radius ρ of the inner circle in the ζ-plane is related to the
physical parameters a and d by the following expression:

ρ =
1 −

√
d−a
d+a

1 +
√

d−a
d+a

. (3)

Next, we introduce the function

W (ζ) ≡ w(z(ζ)),

which corresponds to the complex potential in the auxiliary
ζ-plane. The function W (ζ) can be written as the sum of two
contributions,

W (ζ) = WU (ζ) + ΓG0(ζ ; ζ0), (4)

where WU (ζ) is the complex potential of a dipole at ζ = −i,
corresponding to a uniform flow of speed U in the z-plane, and
G0(ζ ; ζ0) is the potential for a point vortex of unit circulation
at position ζ = ζ0.

The complex potentials for both a point vortex and a
dipole in an annulus have been obtained by several authors.
For example, Johnson and McDonald13 mapped the annulus
to a rectangle and then computed both potentials in terms of
elliptic functions. Crowdy and Marshall21 used the proper-
ties of the SK prime functions to obtain the complex potential
for a point vortex in a multiply connected circular domain
of arbitrary connectivity, of which the annulus is a particu-
lar case. Using the same formalism, Crowdy22 obtained the
complex potential for a uniform flow past multiple cylinders,
which entails computing the complex potential for a dipole in
a multiply connected circular region.

Following Crowdy and Marshall21 and Crowdy,22 one
finds that the relevant potentials for our case20 are given by

G0(ζ ; ζ0) =
1

2πi
log

[
|ζ0 |P(ζ/ζ0, ρ)

P(ζ̄0ζ , ρ)

]
(5)

and

WU (ζ) = −2πUi
√

d2 − a2

(
∂G0

∂ζ̄0
−
∂G0

∂ζ0

) �����ζ0=−i
, (6)
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where P(x, y) is defined by

P(x, y) = (1 − x)
∞∏

n=1

(
1 − y2nx

) (
1 − y2nx−1

)
. (7)

The function P(x, y) is related to the first Jacobi theta function
ϑ1, see Ref. 14 for details.

In the problem discussed so far there is no net circulation
around the cylinder. A flow with a nonzero circulation γ around
the cylinder in the z-plane can be generated by simply adding
to W (ζ) a term of the form

γ

2πi
log ζ , (8)

which corresponds in the ζ-plane to a vortex of circulation γ
at the origin.

Before leaving this section, let us establish some aux-
iliary results that will be needed later. First, we recall that
the so-called hydrodynamic Green function, here denoted by
G(ζ , ζ , ζ0, ζ0), is defined as the stream function associated
with G0(ζ ; ζ0). In other words,

G(ζ , ζ , ζ0, ζ0) = Im
[
G0(ζ , ζ0)

]
, (9)

which in view of (5) becomes

G(ζ , ζ , ζ0, ζ0) = −
1

4π
log



ζ0ζ0P(ζ/ζ0, ρ)P(ζ/ζ0, ρ)

P(ζ ζ0, ρ)P(ζ ζ0, ρ)


,

(10)
where we used that P(ζ , ρ) = P(ζ , ρ), with the bar denoting
complex conjugation.

Another quantity that will be needed later is the so-called
Robin function, R(ζ0, ζ̄0), which is given by the regular part
of G(ζ , ζ , ζ0, ζ0) evaluated at the vortex position,

R(ζ0, ζ̄0) =

[
−G(ζ , ζ , ζ0, ζ0) −

1
2π

log |ζ − ζ0 |

]

ζ=ζ0

(11)

which in view of (10) becomes

R(ζ0, ζ̄0) =
1

2π
log *

,

P′(1, ρ)

P(ζ0ζ0, ρ)
+
-

, (12)

where P′(x, y) = P(x, y)/(1−x). After disregarding the (irrele-
vant) constant term depending only on ρ, the expression above
simplifies to

R(ζ0, ζ̄0) = −
1

2π
log

[
P(ζ0ζ0, ρ)

]
. (13)

B. The Hamiltonian

For convenience of notation, we shall henceforth drop
the subscript from the symbols denoting the location of
the vortex, and so we will use z(t) = x(t) + iy(t) to rep-
resent the position of the vortex in the z-plane at time t,
while denoting the position of the vortex in ζ-plane simply
by ζ .

As shown by Lin,23 the motion of point vortices in the
presence of rigid boundaries can be formulated as a Hamilto-
nian dynamics, with the same canonical structure as in the case
without boundaries. Let us first consider the vortex dynamics
in the ζ-plane and denote the corresponding Hamiltonian by

H (ζ )(ζ , ζ). It has been shown by Lin23 that H (ζ )(ζ , ζ) is of the
form

H (ζ )(ζ , ζ) = Γψ(ζ , ζ) −
1
2
Γ

2R(ζ , ζ), (14)

where ψ(ζ , ζ) is the stream function associated with the back-
ground flow and R(ζ , ζ) is the Robin function, which in our
case is given by Eq. (13). The background flow in the ζ-
plane is described by the potentials (6) and (8), and so we
have

ψ(ζ , ζ) = Im
[
WU (ζ)

]
−

γ

4π
log(ζ ζ). (15)

Substituting (15) and (13) into (14) yields

H (ζ )(ζ , ζ) = ΓIm
[
WU (ζ)

]
−
γΓ

4π
log(ζ ζ)−

Γ2

4π
log

[
P(ζ ζ , ρ)

]
.

(16)
It also follows from a general result due to Lin23 that the

Hamiltonian H (z)(z, z) in the z-plane is given by the following
relation:

H (z)(z, z) = H (ζ )(ζ , ζ) +
Γ2

4π
log ���zζ (ζ)��� , (17)

where zζ denotes the derivative of the mapping z(ζ). Now,
from (1) one finds

zζ (ζ) = −
2
√

d2 − a2

(ζ + i)2
,

which implies that

|zζ (ζ)| =
2
√

d2 − a2

(ζ + i)(ζ − i)
,

and hence (17) becomes

H (z)(z, z) = H (ζ )(ζ , ζ) −
Γ2

4π
log

[
(ζ + i)(ζ − i)

]
, (18)

where an irrelevant additive constant was omitted. Inserting
(16) into (18) and using the inverse mapping (2), then gives
the desired Hamiltonian H (z) in the z-plane.

III. EQUILIBRIUM CONFIGURATIONS

Here we wish to compute the equilibrium points of the
system and study how they depend on the parameters of the
problem. Without loss of generality, we shall set U = 1 and a
= 1, so that we are left with only three free physical parame-
ters, namely the vortex circulation Γ, the gap ∆ between the
cylinder and the plane, and the net circulation γ around the
cylinder.

A. Phase portrait

As the Hamiltonian is a conserved quantity, the vortex
trajectories correspond to level curves of the Hamiltonian H (z).
Figure 3 shows the phase portrait of the system obtained from
a contour plot of the Hamiltonian given in (18) for Γ = −10,
∆ = 0.3, and γ = 0. From this figure one can immediately
identify four equilibrium points (black dots in the figure): two
saddle points located above and below the cylinder on the axis
bisecting the cylinder perpendicularly to the oncoming flow;
and two centers, being one behind and the other in front of the
cylinder. (In Fig. 3 and subsequent figures, the function P(x, y)
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FIG. 3. Vortex trajectories obtained from a contour plot of the Hamiltonian.
The black dots denote the fixed points and the arrows indicate the direction of
motion. Here the parameters are Γ = −10, ∆ = 0.3, and γ = 0.

has been calculated by considering terms up to the fifth level,
i.e., by computing the product appearing in (7) up to terms
with n = 5. We found that increasing the number of terms does
not make any noticeable difference within the scale of our
plots.)

In addition to these four equilibria, there is another fixed
point at infinity, namely at

x = ±∞, y∞ =
Γ

4πU
, (19)

which corresponds to the equilibrium for a vortex pair placed
in a uniform stream in the absence of boundaries. This equilib-
rium is analogous to the fixed point at infinity that exists in the
Föppl system.7 As discussed in detail in Ref. 7, this equilibrium
corresponds to a nilpotent saddle in the sense that the Jacobian

matrix of the linearized system has two zero eigenvalues with
identical eigenvectors.

Other general dynamical features of our system seen in
Fig. 3 are worth commenting on here. First, note that there is
a set of closed (periodic) orbits encircling each of the equi-
libria behind and in front of the cylinder, thus confirming
their elliptic nature. Far above the cylinder, there are open
orbits going from negative infinity to plus infinity, meaning
that in these cases the vortex follows an almost straight tra-
jectory from left to right as it is simply carried away by the
uniform stream without being much affected by the cylin-
der. On the other hand, a vortex placed very close to the
cylinder (or to the plane) will circle around the cylinder (or
move parallel to the plane) because it feels very strongly the
velocity induced by the nearest images on these boundaries.
The nature of the other “intermediate” trajectories depends on
the strength of the vortex and the gap between the cylinder
and the plane, as will be discussed in Sec. III C. But before
that, let us study in more detail the equilibria in front of the
cylinder.

B. Equilibrium in front of the cylinder

The exact location of the equilibria of the system can be
obtained by finding the extrema of the Hamiltonian,

∂H (z)

∂x
= 0, (20)

∂H (z)

∂y
= 0. (21)

FIG. 4. Locus of equilibria for ∆ = 0.2
and γ = 0 (left panel), with the right
panel showing in perspective the value
of the vortex circulation Γ (vertical axis)
on the curve of equilibria shown in the
left panel.

FIG. 5. Equilibria in front of the cylin-
der. (a) Loci of equilibria for γ = 0
and∆= 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 (from
right to left). (b) Loci of equilibria for
∆ = 0.2 and γ = 0,−1, . . . ,−10. On
each curve the vortex circulation varies
from Γ = −0.1 (closer to the plane) to
Γ = −10 (away from the plane).
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We have solved these equations numerically for the location
of the fixed point in front of the cylinder as a function of the
parameters of the problem. An example of the locus of these
equilibria for ∆ = 0.2 and γ = 0 is shown in the left panel
of Fig. 4, while the right panel of this figure shows the cor-
responding value of the vortex circulation on the equilibrium
curve. The equilibrium starts (for Γ = 0) at the real axis and
moves away from the cylinder as |Γ | increases. For |Γ | → ∞,
the numerical results seem to indicate that the curve of equi-
libria approaches a straight line, but we have not been able to
prove this analytically.

As the gap decreases (increases), the locus of equilibria
moves towards (away from) the cylinder as shown in Fig. 5(a).
This is in agreement with the experiments performed by Lin
et al.18 where it was found that the center of the recirculat-
ing eddy moves closer to the cylinder as the gap decreases.
However, the vertical positions of the equilibria shown in Fig.
5(a) remain approximately the same irrespective of the gap,
whereas in the experiments the distance from the center of the
recirculating eddy to the plane boundary increases more sig-
nificantly as the gap decreases. This suggests that one needs
to include the effect of circulation around the cylinder if one
wishes to get a better qualitative agreement between the model
and the experiments.

In Fig. 5(b) we show the loci of equilibria for ∆ = 0.2 and
different values of the circulation γ around the cylinder. One
observes from this figure that the equilibrium moves away from
the plane y = 0 and towards the cylinder as more (negative) cir-
culation is added to the cylinder. As mentioned above, a similar
behavior for the location of the recirculating eddy was found
in the experiments18 as the gap was decreased. Our results thus
seem to indicate that, insofar as the location of the recirculat-
ing eddy is concerned, the most relevant effect of decreasing
the gap in the experiments is a corresponding increase in the
clockwise circulation around the cylinder, which tends to bring
the vortex closer to the cylinder.

A more direct comparison between the model and the
experiments is given in Fig. 6, where we show pictures of the
flow from the experiments by Lin et al.18 for three values of
the gap: ∆ = 0.6 (a), 0.4 (b), and 0.2 (c). The red curves on
the left of each figure indicate the loci of equilibria predicted
by the model for the case of zero circulation (γ = 0) around
the cylinder. As one can see from the figures, the centers of
the recirculating eddies do not fall on the theoretical curves of
equilibria with γ = 0, and hence nonzero circulation around
the cylinder needs to be taken into account. For each case
shown in Fig. 6, we then determined the circulation γ around
the cylinder for which the theoretical locus of equilibria (yel-
low curves on the right) passes through the center z0 of the
recirculating eddy, and we also recorded the vortex circulation
Γ0 at that point (i.e., where the theoretical equilibrium coin-
cides with the eddy center). The calculated values for each case
are as follows: γ = −1.1, Γ0 = −2.5, and z0 = �2.34 + 0.24i
for ∆ = 0.6; γ = −1.6, Γ0 = −4.0, and z0 = �2.02 + 0.41i for
∆ = 0.4; and γ = −3.0, Γ0 = −4.5, and z0 = �1.69 + 0.52i for
∆ = 0.2.

Several comments about these results are in order. First,
note that the point-vortex strength (|Γ0 |) for the equilibrium
at the center of the recirculation zone increases as the gap

FIG. 6. Comparison with experiments performed by Lin et al.18 for different
gaps: (a) ∆ = 0.6, (b) ∆ = 0.4, and (c) ∆ = 0.2. The curves on the left (red)
are the loci of equilibria predicted by the model with no circulation around
the cylinder (γ = 0), whereas the curves on the right (yellow) are forγ = −1.1
(a), γ = −1.6 (b), and γ = −3.0 (c). The centers z0 of the recirculating eddies
and the corresponding vortex circulations Γ0 at these points are as follows: z0
= �2.34 + 0.24i and Γ0 = −2.5 (a); z0 = �2.02 + 0.41i and Γ0 = −4.0 (b); and
z0 = �1.69 + 0.52i and Γ0 = −4.5 (c). Photographs courtesy of C. Lin.

decreases. This is in agreement with the experimental find-
ing that “the size of the recirculating eddy increases with the
decrease in gap ratio.”18 In other words, the vortex strength
in the model is directly related to the size of the observed
recirculation zone. The point-vortex model also explains the
experimental observation that the vertical position of the recir-
culating eddy increases as the gap decreases—such an upward
displacement of the eddy centre is mainly due to the accompa-
nying increase in circulation around the cylinder, as mentioned
above. In fact, the authors of Ref. 18 implicitly noticed this
connection when they argued that reducing the gap causes an
enlargement of the eddy, which “deflects part of the fluid from
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FIG. 7. Streamlines obtained from the point vortex model superimposed on
the photograph of the experimental flow shown in Fig. 6(c). The parameters
are Γ = −4.5, ∆ = 0.2, andγ = −3, with the vortex at the equilibrium position
z0 = �1.69 + 0.52i. The faint white streak at the bottom of the streamline plot
is an artifact of the plotting routine.

upstream of the plane boundary over the top of the circular
cylinder,” thus effectively increasing the circulation around
the cylinder. Our analysis above based on the point-vortex
model shows that this is indeed the case: the circulation around
the cylinder increases from 1.1 to 3.0 (in magnitude) as the
gap decreases from 0.6 to 0.2. It should be pointed out, how-
ever, that since additional experimental parameters of the flow
are not known, such as the effective vortex strength and the

circulation around the cylinder, there is admittedly some
degree of flexibility in our fitting of the center of the recircu-
lation zone with the point-vortex model. But notwithstanding
this caution, the model does provide a coherent physical frame-
work in which the experimental observations can be under-
stood, as shown above. Further comparison between theory
and experiment is discussed below.

In Fig. 7, we show a set of streamlines obtained from
the point-vortex model, superimposed on the photograph of
the flow corresponding to Fig. 6(c), where it is seen that
the theoretical streamlines bear a general resemblance to the
experimental flow pattern. Note, in particular, that the model
correctly predicts the approximate location of the stagnation
point in front of the cylinder. There is also, of course, noticeable
disagreement between theory and experiments, particularly
with respect to the shape of the recirculation zone. This is not
surprising given that the point-vortex model is not designed to
reproduce the streamline patterns of the real flows it intends
to describe. For instance, recirculating eddies in real flows are
quite sensitive to viscous effects that are not accounted for in
the idealized model of point vortices in an inviscid fluid. This
explains in part the fact that the experimental eddy in Fig. 7
is considerably elongated in the upstream direction in com-
parison to the model prediction, which is a consequence of
viscous effects near the plane boundary. Similar effect is seen

FIG. 8. Topological transition in phase
space as the vortex circulation is varied
while the gap is kept fixed at ∆ = 0.3
andγ = 0. The trajectories shown in the
figure correspond to the separatrices for
(a) Γ = −5, (b) Γ = Γc = −7.763, and
(c) Γ = −10.
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in the case of a flow past a surface-mounted blunt obstacle,
where the recirculating eddy upstream of the obstacle becomes
more elongated with increasing Reynolds number as a result
of the increased viscous effects near the upstream surface.24

The discrepancy between theory and experiments regarding
the shape of the recirculating eddy is also reminiscent of sim-
ilar behavior observed in an unbounded flow past a cylinder,
where the general properties of the vortex pair behind the cylin-
der are well described by the Föppl point-vortex system,4,7

although the theoretical and experimental streamline patterns
differ somewhat.25 In the case of a flow past a cylinder above a
plane, viscous effects are more pronounced owing to the pres-
ence of the solid plane wall. Nonetheless, it is remarkable that
the point-vortex model is capable of explaining most of the
experimental findings concerning the equilibria in front of the
cylinder, as shown above.

Another shortcoming of the point-vortex model is the
fact that it has a singular vorticity distribution concentrated
at isolated points, whereas in real flows the vorticity is dis-
tributed over a finite volume. One possible way to desingu-
larize the model is to consider an approach where patches
of constant vorticity are embedded in an inviscid and irro-
tational fluid.13,26,27 The added complication in this case is
that the boundaries of the vortex patches have to be com-
puted as part of the solution. As analytical solutions for such
free-boundary problems are rare, particularly if solid surfaces
are present, a numerical treatment is almost always required
to tackle the problem.13 The point-vortex model, in con-
tradistinction, has the advantage that it is more amenable to
analytical treatment while still representing a valid approx-
imation for vortex flows around solid obstacles. In this
context, it is noteworthy to point out that the point-vortex
model has also been successfully used to investigate vortex
flows in the presence of free surfaces.28–30 This is another
instance where the model captures the physics of the flow
while allowing for a simpler mathematical treatment of the
problem.

C. Topological transitions

As discussed above, our system possesses five equilib-
rium points: two centers, two saddles, and a nilpotent saddle
point at infinity, see Fig. 3. The stable and unstable manifolds
associated with the saddle points correspond to separatrices of
the vortex motion, which play an important role in defining
the nature of the orbits in phase space. We recall, in particular,
that separatrices connecting a saddle point either to itself or to
another saddle point form a homoclinic or a heteroclinic loop,
respectively, so that for any initial condition inside one such
loop the vortex remains “trapped” within the loop.

To illustrate the possible topological patterns in phase
space, we show in Fig. 8 the separatrices for ∆ = 0.3, γ = 0,
and three different values of Γ. As seen in this figure, the sepa-
ratrices (thick solid lines) associated with the nilpotent saddle
point at infinity form two homoclinic loops, called nilpotent
saddle loops,7 which encircle the centers. These nilpotent sad-
dle loops define the region of nonlinear stability of the two
centers, in the sense that for any initial condition inside one
such loop the ensuing orbit is closed (i.e., periodic). The sep-
aratrices emanating from the saddle points on the vertical axis

can form either homoclinic or heteroclinic orbits, depending on
the value of Γ. This is illustrated in Fig. 8, where one observes
that for a critical value of Γ = Γc = −7.763, there exists a
heteroclinic loop connecting the two saddles and encircling
the cylinder, see Fig. 8(b), whereas for Γ , Γc the heteroclinic
loop breaks up and one homoclinic loop is formed connect-
ing either the saddle above the cylinder (if |Γ| < |Γc |) or the
saddle point below (for |Γ | > |Γc |), see Figs. 8(a) and 8(c).
This formation and disappearance of loops as the parameter
Γ is varied corresponds to a “topological transition” in phase
space, which induces a drastic change in the nature of the
vortex trajectories as the critical value Γc is crossed. For exam-
ple, for |Γ | < |Γc |, there is a set of trajectories for which the
vortex—starting from upstream infinity—will approach the
cylinder, go around it counterclockwise, and pass between the
cylinder and the plane, before moving off to infinity down-
stream, see Fig. 8(a). For |Γ | ≥ |Γc |, no such trajectories exist,
meaning that a vortex coming from upstream infinity is either
“reflected” back to infinity upstream or moves to downstream
infinity without being very much affected by the cylinder, see
Figs. 8(b) and 8(c).

A similar change in the topology occurs if one keeps the
vortex circulation fixed and varies the gap∆ between the cylin-
der and the plane. This is illustrated in Fig. 9 where we show
a schematic of the separatrices for Γ fixed, γ = 0, and for
three different values of ∆. In this figure we represent the
fixed points at x = ±∞ as visible points to indicate more
clearly the nilpotent saddle loops encircling the two centers.

FIG. 9. Topological transition in phase space as the gap ∆ is varied while the
vortex circulation Γ is kept fixed (and γ = 0). Here, only a schematic of the
separatrices is shown.



083603-8 G. L. Vasconcelos and M. Moura Phys. Fluids 29, 083603 (2017)

As seen in Fig. 9(b), there is a critical gap ∆c for which a
heteroclinic loop forms connecting the two saddles on the
normal axis, whereas for ∆ > ∆c (∆ < ∆c) this heteroclinic
orbit becomes a homoclinic loop associated with the upper
(lower) saddle.

IV. DISCUSSION AND CONCLUSIONS

We have studied a point-vortex model for the formation of
recirculating eddies in front of a circular cylinder placed above
a plane wall in the presence of a uniform stream. By mapping
the fluid domain in the physical plane onto an annular region
in an auxiliary complex plane, we have been able to compute
an explicit formula for the Hamiltonian of the system in terms
of certain special functions related to elliptic theta functions.
A detailed analysis of the equilibria of the system and their
associated separatrices was presented. In particular, we have
shown that there is a topological transition in phase space as the
gap between the cylinder and the plane or the vortex strength
is varied, which implies different sets of possible trajectories
for each topology.

Special emphasis was given to the study of the equilib-
rium in front of the cylinder and how it varies with the physical
parameters of the model. It was shown that the vertical posi-
tion of this equilibrium is more strongly dependent on the
amount of circulation around the cylinder and less so on the
gap between the cylinder and the plane wall. This property
of the model may help to understand the behavior seen in
the experiments18 where the center of the recirculating eddy
moves away from the plane boundary and towards the cylinder
as the gap decreases. Reducing the gap in the real case leads
to a natural increase in circulation around the cylinder, and
we have argued that the latter is the dominant effect on the
position of the center of the recirculating eddy.

Our analysis can in principle be extended to the case of
vortex motion around multiple circular cylinders by means
of the formalism of the Schottky-Klein prime functions. This
formalism is well suited to construct conformal mappings
between multiply connected domains of arbitrary connectiv-
ity and was used by Crowdy14 to study the motion of a point
vortex around multiple circular cylinders with no background
flow. The inclusion of an imposed stream will likely give rise
to several additional fixed points and produce a richer set of
topological patterns in phase space. This will be pursued in
more detail elsewhere.
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