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Abstract

Cloud computing is an emerging technology that offers on-demand services.
With the invention of sensors and actuators, more physical devices connects to
internet which creates bulk amount of data. The data generated from these de-
vices processed, analyzed, and transmitted on cloud which results massive load
on servers.

With the help of hardware monitoring chips integrated on CPU(s) servers we
can monitor temperature of data centers to reduce the electric energy consump-
tion of servers. To optimize data centers workload many techniques have been
explored, where load balancing technique is one of them which has been explored
by many researchers from all over the world to evenly distribute the workload.

In this paper, we proposed two modified version of ant colony optimization
algorithm based on static load balancing strategies to gives homogeneous tem-
perature on all NUMA node(s) server. Experiment results were illustrated with
the help of charts and statistical distribution tools. The results and experiments
showed that proposed high to low mechanism performed better and gives homo-
geneous temperature on all NUMA node(s) compared to move to next algorithm
technique.
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Chapter 1

Introduction

Earth is warming day by day. One of the reason is global warming which caused
by human activities who emits more Carbon Dioxide (CO2) and other green-
house gases in the atmosphere which results trapping of extra heat in Earth’s
climate system [54]. According to National Centers for Environmental Infor-
mation 90 percent of extra heat trapped in Earth’s climate system ends up in
oceans which makes ocean heating and sea level rise. Natural disasters like
Hurricanes, Drought, Inland floods, Severe local storms, Wildfires, Crop freeze
events and Winter storms are all results of ocean heating and sea level rise. [9]

With the rise of physical devices connected to the Internet, and growing bil-
lions of internet users, tons of data are collected from devices all over the world.
[32] The data generated by billions of internet users, requires huge storage space
called data centers which includes dedicated servers. These data centers needs
huge amount of energy to process data which heats up servers and become cause
of pollution, change of climate, and resource extraction. [55]

Data centers of big companies like Facebook, Google, Microsoft, and Ama-
zon consumes huge amount of electricity. According to the U.S. Department
of Energy, data centers in U.S consumes approximately "one-fiftieth of total
U.S. electricity use in 2014, equivalent to the energy consumption of 6.4 million
average U.S. homes." [39] As the computer servers heats up, there is a need of
cooling system at data centers which consumes roughly 40 percent of energy.
To reduce data center energy consumption Google and Microsoft are applying
different techniques like trapping hot air and cooling with water and to build
underwater data centers.[39]

Small, medium, and large organizations are moving their services to the
cloud because of high flexibility, cost efficiency, robustness and scalability. [4]
Cloud computing is a way to provide users remote access to virtualized com-
puting storage and resources to build their IT infrastructures. To make cloud
services up and running all the time, live migration techniques used which al-
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lows virtual machines to move from one host to another physical host without
considering of electricity consumption by servers.

Connectivity, networks, things, applications, big data and cloud are the main
components of IoT. With the invention of sensors and actuators, more physical
devices connects to internet which creates bulk amount of data.[36] This data
needs to process, analyze, and transmit to cloud for storage. One of the domain
of IoT is smart energy and utilities which focus on energy efficiency, reducing
cost, and automation of services. With the setup of temperature sensors at data
centers, we can optimize the cooling system to reduce energy costs. [27]

According to Gartner, the number of IoT devices will reach upto 20 billion by
year 2020. [15] As data and communication networks increase, centralized con-
trol management of whole network is challenging in this scenario. Traditional
centralized management systems may not be the optimal solution because of
single point of failure, and dynamic requirements of cloud services. So we need
some kind of optimization algorithms for self managed systems.

Bio inspired algorithms which includes artificial immune systems, genetic
algorithms, and neural networks are optimal solutions for self managed systems.
Ant Colony Optimization (ACO) is one of the optimization algorithm which
finds the optimal path from source to destination. [5] With implementation of
Ant Colony Optimization on data centers, we can reduce energy consumption,
balance load work between servers, and optimize the temperature at data centers
using IoT sensors.

1.1 Problem Statement
Implementation of Intelligent Algorithms on Data Centers for Smart Energy Uti-
lization

This paper addresses the following issues:

• How we can smartly utilize energy in Data Centers using Ant colony
optimization Algorithm ?

• How we can minimize temperature of data center using server sensors ?

• How an Ant colony optimization algorithm can used to balance servers
workload ?

• How server sensors are useful to prevent data centers overheating with the
implementation of ACO on workload ?

So to summarize with the help of monitoring hardware temperature sensors
on servers we will optimize the efficient usage of energy at data centers using
static load balancing mechanism based on Ant Colony Optimization algorithm.
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Chapter 2

Background

2.1 Internet of Things

2.1.1 Definition
We are living in a connecting world where physical devices are connecting to
the internet to improve our lives. The term Internet of Things comes up when
Kevin Ashton [35] was working on advanced technology called Radio Frequency
Identification in 1999.

Several components involve in the Internet of Things like: people, things,
infrastructure, processes, and data. People who utilize the things like ther-
mostats, wearable devices, cameras, home automation. Infrastructure which is
the way of communicating to Internet, data which collects from devices and
transfer to other devices, from human to machine (H2M), machine to machine
(M2M), or machine to human (M2H). Processes which make sure that people,
things, infrastructure and data all work together in a manageable way.

The Institution of Electrical and Electronic Engineering, or IEEE, which
is the world’s largest technical organization, defines the Internet of Things as
“An IoT is a network that connects uniquely identifiable "Things" to the in-
ternet. The "Things" have a sensing/actuating and potential programmability
capabilities. Through the exploitation of unique indentification and sensing,
information about the "Things" can be collected and the state of "Things" can
be changed from anywhere, anytime, by anything.” [20]

2.2 Physical Devices
One of the main component of IoT is hardware. The main objective of hardware
products is to capture data, sometime process the data and then transfer the
data over the network to the application. They also have the ability to convert
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analog to digital signals. In hardware products we usually have sensors, actua-
tors and embedded system.

2.2.1 Sensors
Sensors are playing important role in IoT hardware which enable communica-
tion between devices over the internet. Sensors collects real time data from
physical devices which are available in real environment.

Many applications are using sensors such as bio-sensors, nanosensors and im-
plantable sensors are implemented in health care industry for patient care and
monitoring patient health. Smartphones, tablets, and gaming consoles are using
motion sensors. Refrigerators, ACs, washing machines, and other appliances in
homes and kitchen are using pressure, temperature, and proximity sensors.

Figure 2.1: Sensors used in IoT Applications Area (Courtesy: Yole Develop-
ment, as presented at Sensors Expo 2015.)

2.2.2 Actuators
As sensors collects data from the real environment and that data sometimes
process locally or transferred to internet for analysis. Now after processing and
analysis of data, it has to trigger some action where the actuator takes part. [3]
In IoT, an actuator is a physical device which do some operations based on the
results of the data from sensors, it modifies the physical state of the device. [20]
For example, if room temperature gets hot, it triggers alarms and if there is a
fire in room it switched on water shower.
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2.2.3 Embedded Systems
The backbone of IoT are the sensors and actuators which are embedded in real
environment to work autonomously without the interaction of human. They
collect huge amount of data from various sensors like temperature sensors to
balance the room temperature and light sensors to optimize energy consumption
that are implemented in real environment. [36]

2.3 Applications of IoT

2.3.1 Buildings and Homes Automation
With the introduction of sensors and actuators, homes and buildings are taking
advantages to connect to the internet. With the help of IoT devices at homes
and buildings, energy consumption and budgets can be reduced. The imple-
mentation of IoT at homes and buildings improved the overall quality of life.
[34] For example, in terms of IoT within Smart Home automation devices are
being used for HVAC (heat ventilation and air conditioning) system to balance
the temperature and humidity inside rooms and buildings.

Smart locks, surveillance cameras, and security alarms are some of the ex-
amples in Smart Home automation. Within Smart buildings, light sensors are
being used for smart lighting to reduce energy consumption and ultrasonic sen-
sor for smart parking. [36]

Figure 2.2: Smart Home Segments [52]
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2.3.2 Medical and Healthcare Systems
E health management systems is one of the important domain in IoT appli-
cations. Medical monitoring of elderly and disabled patients while treatment
allowed them to feel comfortable in their zones. [10] Intelligent sensors applied
inside or outside of patient bodies depending on their conditions, intelligent
sensors collects patients physiological information and via gateways to process
autonomously or if there is a need of further analysis transferred to cloud and
transmitted to respective medical staff if there is a need of further treatment or
any emergency. [36]

It lowered the cost of healthcare and improve patients health with remote
monitoring. Huge amount of medical data stored on cloud assists in smart deci-
sion making by analyzing patients individual health. With smartphone devices
patients trust more on health apps rather than doctor.[40] Below figure shows
some of the Smart health cases:

Figure 2.3: Smart Health Use Cases [30]

2.3.3 Infrastructure Management
Another important domain in IoT applications is industrial automation. Wire-
less connectivity, innovative hardware, advanced sensors networks and machine
to machine communication is changing the automation process in industries.
For data communication with Cloud, many API libraries and industrial protocol
modules are developing to integrate with industrial devices. Some of industrial
protocols includes CAN Bus, RS-232 and RS-485.[21]
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To reduce the emission of carbon dioxide and other green house gases, orga-
nizations and governments all over the world are using wireless technologies to
reconstruct traditional energy infrastructure into interconnected Smart Energy
Grids.

Smart metering is plays a pivot role in this regard which has vision to give
consumers having control over energy usage to reduce carbon emission and save
money. With cellular connectivity for smart metering infrastructure provides
low power cost effective solution which can be accessible from anywhere. [8]

Figure 2.4: Smart meters: paving the way for our future energy system [58]

2.3.4 Energy Resource Management
Electricity plays a vital role in our daily life activities to run smoothly in of-
fice’s, buildings, homes, institutions, industry and transportation. With the
manufacturing of embedded devices containing distinct electronic circuits and
other components such as sensors and actuators, the utilization of appliances
and everyday objects becoming digitize and more smart day by day.
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Rapid growing of smart devices usage for personal purposes, gives more
attention to IoT based applications for smart homes, smart buildings, smart
mobility, and smart healthcare etc. [24]

Smart home applications which focuses on consuming energy efficiently, with
implementation of smart lights, heat controlling system alarms and security sys-
tems. IoT based devices connects remotely via wireless technologies such as
ZigBee, 6LoWPAN or Bluetooth etc to create smart energy ecosystems which
integrate smart meters, smart grids distribution facilities and power genera-
tion.[13]

The IoT enables new energy management with Smart metering and Smart
grid to build greener energy solutions such as:

• Smart meters to use energy efficiently, and managing of home electric
appliances remotely.

• Dynamic load balancing and decreasing peak energy consumption.

• Self managing grids in case of electrical failure.

• Optimization of generated power with forecasting and streamlining pro-
duction.

• Integration of renewable power sources.

• Monitoring of alarms and events and avoid energy leakages [53]

2.4 Connectivity
IoT based smart devices must have connectivity and exchange information be-
tween them and transferred to centralized servers. For that purpose, they need
some communication protocols which connects devices like sensors, actuators,
databases and cloud platforms, where information is stored. Machine to Ma-
chine (M2M) term is used where devices talk to each other. Based on data
collected from IoT devices, they make decisions locally or remotely which trig-
ger events such as turning lights on and off.[2]

Communication technologies used between IoT devices and servers are Wire-
less Wide Area Networks (WWAN) and Wireless Local Area Neworks (WLAN).
Some of medium range wireless technologies used to communicate between IoT
based devices and IoT gateways are WiFi, Zigbee and Bluetooth etc. [25]

2.4.1 ZigBee
ZigBee is a self healing, robust, and mesh capability protocol which defines the
network security and application layers TCP/IP using IEEE 802.11b network
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specification. ZigBee protocols are used where a cost effective solutions are
required, which supports low data rate, low power, security and reliability. IoT
domain where ZigBee protocols are being used are Smart homes, Smart buildings
automation and Smart health care. ZigBee protocol range lies between 10 to
100 meters, and supports data rate up to 250 kilobytes per second, and the
frequency band is around 2.4 GHz range to 915 MHz.[22]

2.4.2 6LoWPAN
Another low power wireless technology is 6LoWPAN which stands for Low power
Wireless Personal Area Networks where 6 represents IPv6. In this communi-
cation protocol, data is communicated over IEEE 802.15.4 networks specifica-
tion. IPv6 over low-power wireless standard is approved by Internet Engineering
TaskForce (IETF) organization to enable IP communication over any low-power
wireless or wired media. [41]

2.5 Data Centers
Data centers are spread all over the world which consists of multiple servers.
Data centers grows exponentially to store big data. It provides IT services for
infrastructure, cloud computing and virtualization. Big Data centers have hun-
dreds of servers which stores huge amount of information which serves their
respective users 24/7.[11]

Big businesses like banking, online stores, transactions and online services
are all dependent on data centers. As more devices are connecting to inter-
net, data centers are increasing as well.Due to extra workload, servers heats up,
which causes cooling system to run that consumes roughly 40 percent of total
energy at data centers.[44]

Without consideration of energy consumption, service providers keeps their
services online. One of the important challenge for service providers is to create
infrastructure of data centers environmentally friendly and fossil fuel free econ-
omy.

Big names in IT market Amazon, Google, Microsoft, and IBM providing
cloud services are experimenting to develop "Green Cloud". For example Google
Data Centers trap the hot air produced by servers and cooling down with wa-
ter.[57] Also Microsoft are building underwater data centers for energy efficiency
and to protect the environment. [56]
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2.5.1 Big Data
Massive amount of data generated by IoT devices needs to store for some useful
events or sometimes automated workflows. Big data comes handy which make
it possible to analyze the data and turns into meaningful actionable informa-
tion. Big Data is that everything we do is leaving a digital trail and is useful
for making self decision and making autonomous system.

Mainly big data is categorized into three V’s, Volume which defines as huge
data size from Terabytes (TBs) to Petabytes (PBs), Velocity means processing,
analyzing and modifying of real-time incoming data with high speed and output
the result without any delay, Variety includes different kinds of structured and
unstructured data.[17] Related to IoT the most prominent features of IoT is
its real-time or near real-time communication of data with the IoT connected
devices.

2.5.2 Cloud Computing
Cloud computing is a prominent technologies adopted by small, medium and
large organizations. Cloud computing provides resources which are shared to
computers and can access remotely. This means users paid for on-demand ser-
vices, instead of having physical data centers to match their enterprise comput-
ing requirements.

Access is given to users to their cloud-based computing resources, which they
can scaled up or down according to their own needs. With internet connection,
users can have access to their resources at anytime and from anywhere. [37]

In cloud computing system, two components are involved the front end which
displays interfaces and applications to manage cloud computing resources to
users and the back end which involves servers integration with resources to
store data. Some features of cloud computing environments are: on-demand
self service, scalability, availability, resource pooling and elasticity. [37] [38]
Following are three common service models of cloud computing:

2.5.2.1 Software as a Service (SaaS)

In this service, consumer have access to use applications running on infrastruc-
ture of cloud. Users don’t have control to modify the applications background
resources on which operating system, database or network the applications are
running. Office 365 and Google Docs are examples of SaaS model. [38] [51]
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2.5.2.2 Platform as a Service (PaaS)

In this service, users can deploy their applications on cloud infrastructure which
are compatible with PaaS provider set of tools and programming languages.
Same as SaaS model, users doesn’t have control on underlying technologies on
which their application will deploy. Google App Engine and Micrsoft Azure are
famous examples of PaaS model. [51]

2.5.2.3 Infrastructure as a Service (IaaS)

In this service, users have access to the infrastructure of computing resources
where they can manage servers, networks, operating systems, storage and other
resources. Clients can run any software regardless of operating systems, services
and applications compatibility as compared to Platform as a Service (PaaS)
model. Amazon Web Services EC2 and S3 are prominent example of IaaS
model. [38]

2.5.3 Virtualization
Vritaulization is the IT infrastructure which provides resources including oper-
ating systems, storage, servers, and networks. Small medium sized organizations
can build their own infrastructure virtually. Some features of virtualization are
dynamic application development and software testing which can be tested un-
der development servers before moving to production servers.

Dedicated servers for small organization who can run multiple virtual en-
vironments with small amount of processing power. System security which
introduced a layer of security policies. [33] Below are Some of the benefits of
virtualization

• Dedicated Servers

• Green Computing

• Availability, Scalability, Reliability

• Optimize Energy Utlization Solutions

2.5.4 Load balancing
With rapid growing of internet users and connected devices, number of users
also increasing in cloud technology. It is a challenging task for cloud providers
to balance the workload of their shared resources at data centers infrastructure.
Many algorithms have been suggested by researchers for load balancing in cloud
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environment for example distribution of task among nodes based on virtual ma-
chines performance, task scheduling and nodes temperature etc.[26]

The main objective of load balancing is to distribute the workloads across
servers without affecting resources in Cloud. Some features of load balancing
are:

• Performance: which ensure the execution of task and response in less
interval of time.

• System Stability: which ensure that their will be no data or packet loss
and communication delay.

• Security, reliability and customer satisfaction are important aspects in
cloud environment.

• Backup nodes: in case of system failure there should be backup servers.

2.6 Related work
With the increase of mobile dynamic applications, online gaming, live streamed
contents, social networking websites and other online services, the burden on
cloud services provider are getting high. Therefore cloud service providers are
more concern about the management of cloud computing shared resources effi-
ciently to enhance performances and quality of service (QoS).

As mentioned in load balancing section, the main objective of load balanc-
ing is to distribute the workload among resources to avoid resource utilization
overloaded or underloaded in cloud environment. Load balancing has been cat-
egorized into two types, dynamic load balancing which migrates the workload
while processes are running and static load balancing which scheduling the pro-
cesses on system start up.

Besides traditional algorithms like First Come First Serve (FCFS), Round
Robin (RR), Random Allocation (RA) and Shortest Job First (SJF) etc, many
other intelligent algorithms such as Genetic Algorithms (GA), Ant Colony Opti-
mization (ACO), Artificial Bee Colony (ABC) and Particle Swarm Optimization
(PSO) have been proposed for load balancing by researchers from all over the
world.

This section contains review of previously conducted research on load bal-
ancing of nodes on cloud environment using Genetic Algorithms (GA), Swarm
intelligent algorithms, Artificial Bee Colony (ABC) and Particle Swarm Opti-
mization (PSO).

21



2.6.1 Genetic Algorithms
Genetic algorithms have been proposed by researcher for its simple implemen-
tation of solving optimization problems such as load balancing. The main ob-
jective of this algorithm is to generate optimal solutions by filtration and search
problems by depending on bio-inspired operators such as mutation for strong
individuals, crossing over and selection.[16] In this [12] paper authors proposes
load balancing strategy to search overloaded node and under loaded node and
finally simulate the results using CloudAnalyst simulation tool.

In this paper[23] authors focuses on energy consumption of cloud environ-
ment. Based on genetic algorithm, the authors performed a scheduling strategy
for efficient energy usage in Cloud computing systems. [23] In this paper [43]
genetic algorithm (GA) based task scheduling in cloud is proposed where pop-
ulation is generated by enhanced Max Min technique for individual tasks. [43]

2.6.2 Particle Swarm Optimization
Another bio inspired algorithm is Particle Swarm Optimization, which simu-
lates the birds foraging process. PSO is a methodology for optimization whose
objective is to find a global optimal solution. The PSO algorithm iterates from
a set of local solutions and find the targeted value which obtained from the
fitness function.[46]

In PSO, the analogy of bird flocks referred to as “swarm” and the birds
referred to as “particles”. And if we consider population-based approach then
analogy would be “swarm” considered as population and the candidate solutions
referred to as “particles”.[14]

In low computational applications, PSO is useful due to its simple implemen-
tation. But in large scale optimization problems, it takes a lot of computational
costs therefore researchers considered other bio inspired algorithms like Ant
Colony Optimization (ACO). In this paper[49] authors, proposed a self adapt-
ability of ant colony optimization parameters, where the parameters of ACO
such as selection and pheromone’s update are taken from the implementation
of PSO.

With the help of CloudSim simulation tools, they compared the period ACO
based scheduling algorithm (PACO) and self adaptive ant colony optimization
(SAACO) algorithm and results shows that SAACO has better performance re-
garding makespan and load balancing as compared to PACO.
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2.6.3 Ant Colony Optimization
Ant Colony Optimization (ACO) is one of the optimization algorithm which
finds the shortest optimal path from source to destination. [31] This algorithm
inspired from Ant’s natural behavior. First, they explored the area randomly
through the path. As they found the food source they measure quantity and
quality of food. And take some of the food back to home. On their way back,
they use pheromones to guide other ant’s and set the shortest path between
destination and food source. Pheromones are temporary information and they
evaporate quickly from the path.[18][7]

Ant colony optimization algorithm have been explored by many researchers,
which they implemented for various tasks such as minimizing power consump-
tion, finding optimal routing path, load balancing of nodes in data centers, task
scheduling in cloud environment, balancing workload among virtual machines
etc.

In this paper[6], authors concerns is to enable green computing environment
for task scheduling where they proposed an ACO-based algorithm to reduce the
makspan time and ensure load balancing among resources.
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Chapter 3

Approach

This chapter will focus on methodology and procedure in order to address the
main problem stated in thesis title i.e "Implementation of Intelligent Algorithms
on Data Centers for Smart Energy Utilization". Furthermore, the proposed
technique of "Smart Energy Utilization" on data centers is based on "Intelligent
Algorithm" which is Ant Colony Optimization which will detect the overloaded
node and underloaded nodes on server and balance the temperature of nodes.
Following are the main objectives of our project which will be discussed in future
sections:

• Exploring the basic Ant Colony Optimization algorithm flow

• Making analogy with our model based on basic ACO model

• Generating workload on servers CPUs having sensors temperature

• Analyzing nodes temperature without modified algorithm

• Running our modified ACO algorithm on servers

• Analyzing nodes temperature with modified algorithm

• Comparing results

3.1 Objectives
As described in the problem statement, the main objective is to enable green
data centers based on the implementation of Ant Colony Optimization (ACO)
algorithm in order to have balanced temperature on nodes of servers. The model
presented in this thesis will be modified version of ACO algorithm which will
demonstrate self optimization of homogeneous temperature on server nodes.
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Figure 3.1: Expected scenario on servers CPU(s)

ACO algorithm benefits

To enable green cloud computing, is one of our main goal in this project. Be-
sides traditional algorithms implementation in cloud environment which have
centralized system, where one node works as master node who make decisions.
There are many drawbacks of implementation of traditional algorithms such as
single point of failure cause systems down, dynamic applications requirements
cannot be handled by this algorithm. Therefore, decentralized algorithms such
as swarm intelligence methods are useful for current era dynamic online ap-
plications. In our approach, the modified version of ant colony optimization
algorithm which is member of swarm intelligence methods will be implemented
which is self organized decentralized system. IBM[42] defines self-managed sys-
tems into following four areas:

• Self-Configuration which automatically configure system components

• Self-Healing which detect the failure and correct automatically

• Self-Optimization which monitor and having control over system resources
so the defined functions will be self-optimized

• Self-Protection which make sure the system security from attacks

Basic ACO algorithm

First, we will summarize the basic algorithms of Ant Colony Optimization
proposed in cloud environment by many researchers. ACO is inspired from
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natural behaviour of ants which works together in foraging process. In section
2.6.3, the natural behaviour of ants have been described briefly. Followings are
the main tasks of ACO algorithm for load balancing in Cloud:

• Ants started from head node and move over all the nodes in a network

• Ants lay down pheromone while travelling from source to destination and
vice versa.

• The strength of the pheromone trails defines the shortest optimal path
from source to destination.

• Pheromone evaporate quickly,therefore time and original strength matters.

• While traverse ants update pheromone table .

• Ants moves in two ways direction i.e forward and backward movement.

• In forward movement ants move in forward direction and if finds over-
loaded node, it will be marked current node and move the workload to
underloaded node after the current node. In backward movement if un-
derloaded node comes before overloaded node ants will move in backward
direction, and move the workload there.

The main goal of this thesis is to have balanced temperature on server
NUMA node(s) through the implementation of ant colony optimization algo-
rithm (ACO). To achieve that goal, this thesis has been structured into following
phases:

• Implementation and Testing phase

• Measurement and Analysis phase

• Comparison and Discussion phase

3.1.1 Implementation and Testing phase
In this phase, the modified version of basic ant colony optimization will be
implemented, where NUMA node(s) temperature will be stabilized. Following
tasks will be included in this phase:

1. Proposing use case for experimenting

2. Creating modified algorithm according to use case

3. Showing algorithm in form of flowchart

4. Creating bash script according to proposed algorithm

5. Performing multiple tests to achieve the required results
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Figure 3.2: Basic ACO algorithm flowchart for load balancing in Cloud
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Generating workload on testing environment

In testing environment, there will be no workload by default so in order to
generate some workload multiple methods can be applied. In our case we will
generate the workload using stress tool. "Stress is a deliberately simple workload
generator for POSIX systems. It imposes a configurable amount of CPU, mem-
ory, I/O, and disk stress on the system. It is written in C, and is free software
licensed under the GPLv2." [47]

It is very simple method to generate workload and quickly stress out on server
resources which in our case is very useful to move the processes while managing
nodes temperature. Stress tool can be installed using command: "apt-get in-
stall stress". The updated version of stress workload generator tool is stress-ng
which stress out not just CPU compute but also other server components like
I/O syncs, drive stress, pipe and UNIX socket stressors, shared memory stressor
and virtual memory stressor etc. To get CPU hot matrix size option is used in
stress-ng tool. [48]

Testing Environment

The testing environment will be one server at HiOA. The purpose of our
project is to have balanced temperature, and the workload will be generated on
server CPU(s), therefore no virtual environment will be used.Table 3.1 shows
the specifications of server used in our testing environment:

Table 3.1: Testing server specifications

Architecture x86_64
Model name AMD Opteron(TM) Processor 6234

Operating System Ubuntu 16.04.3 LTS
CPUs 48

CPU op-mode(s) 32-bit, 64-bit
On-line CPU(s) list 0-47
NUMA node(s) 8

AMD Opteron(TM) Processor are optimal for cloud infrastructure and host-
ing environment for delivering excellent performance. Server based on AMD
Opteron processor have two types of temperatures CPU temperatures and Core
temperatures. Core temperature isn’t a real temperature from CPU(s) socket,
it’s inconsistent which shows temperature in Celsius degrees. Whereas CPU
temperature will be our focus in this project which gives sensor temperature in
Celsius degrees.[19] In testing server 8 NUMA nodes and 48 CPU(s) will be used
to generate workload and temperature reading from sensors. Table 3.2 shows
the list of NUMA node(s) and their corresponding CPU(s) in testing server.
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Table 3.2: NUMA node(s) and CPU(s)

node 0 cpus 0 4 8 12 16 20
node 1 cpus 24 28 32 36 40 44
node 2 cpus 2 6 10 14 18 22
node 3 cpus 26 30 34 38 42 46
node 4 cpus 3 7 11 15 19 23
node 5 cpus 27 31 35 39 43 47
node 6 cpus 1 5 9 13 17 21
node 7 cpus 25 29 33 37 41 45

3.1.2 Measurement and Analysis phase
In this phase, the expected results of Implementation and testing phase will be
presented in form of graphing tools, charts and statistical data. List of tasks
performed in this section are following:

• Create a technique to capture NUMA node(s) temperature data consis-
tently based on time interval

• Multiple experiments results

• Comparison of different use cases with statistical data
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Chapter 4

Implementation

An algorithm for load balancing suggested that ants pheromone should evap-
orate after some interval of time. And spread the ants again when needed.
To make analogy and some modification in ant colony optimization algorithm
(ACO), we will generate work load at initial level after that no new work load
will be generated until all NUMA node(s) are stabilized with respect to temper-
ature. In other way, it will be implementation of proposed algorithm on static
load balancing instead of dynamic load balancing.

In basic ACO ants decide the path based on strength of pheromones guide
by other ants and they update the pheromone table while traversing from one
node to another. In our proposed ACO, the path to source or destination will be
based on level of NUMA node(s) temperature. Two use cases will be proposed
in our experiment to achieve the targeted goal. In following section, detailed
structure of proposed algorithm will be presented.

4.0.1 Use cases I: High to Low
In this use case, the generated workload from stress tool will stress out randomly
on all CPU(s) of NUMA node(s). After the workload is being generated using
stress tool, ants spread all over the network. Ants move to next node and check
whether it is high temperature node or low temperature node. If the current
node is having high temperature, it will be marked as max node otherwise it
will be move to next node until it finds the highest temperature node from all
over the node. Same way it will find the lowest temperature and mark it min
node.

After both nodes found out, processes running on highest temperature NUMA
node(s) CPU(s) which is max node will be moved to lowest temperature NUMA
node which is min node. The traversing of ants happens in order to search for
food sources in basic ACO algorithm. Same way after some interval of time

30



max node and min node will be marked to change the affinity of processes and
have balanced temperature. Some by default useful commands of linux will be
used in this project.

lm-sensors

This linux project main objective is to monitor hardware health. Monitoring
thermal sensors which are integrated in CPU of servers is one of the feature of
this linux project besides other feature such as monitoring voltage, fan speeds,
and hardware sensors integrated in I/O chips, memory modules etc.[29] For this
thesis, thermal sensors command "sensors" will be used in order to monitor
CPU temperature which will output temperature information in the Celsius
temperature format.

sort head tail commands

With the help of some simple linux command, the targeted result can be
achieved easily. For example sort command which sorts the data numerically
and alphabetically from a any output, one of the option in sort command is
"sort -n" which sorts all the values in a string numerically.[28] Another useful
commands in linux are head and tail, head which output the first lines from a
given data whereas tail which prints out the last lines from a given data. the
default value is 10, if there is no specific number is defined in head and tail
commands.[1] For example command "tail anyfile.txt" will print last 10 lines
from anyfile.txt whereas "tail anyfile.txt -3" will print last 3 lines of anyfile.txt.

Therefore the combination of these commands can help in finding the highest
and lowest value from a given data. For example the command "sort -n | head
-1" can print out the first line from a numerically sorted data. The command
to print the minimum value of NUMA node(s) CPU temperature is following:

1 #!/ bin /bash
2 s en s o r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 | s o r t −n |

head −1

Listing 4.1: command to get first lowest value

While tail command can print out the maximum value of NUMA node(s)
CPU temperature:

1 #!/ bin /bash
2 s en s o r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 | s o r t −n |

t a i l −1

Listing 4.2: command to get last highest value

When both values found out from given list of NUMA node(s) CPU(s) tem-
perature, the next task is to figure out which NUMA node have highest and
lowest temperature. In order to achieve that iteration from all the values is
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required and compare each value with our marked highest and lowest values.
Following is the pseudocode of for-loop which is implemented in this case:

Algorithm 1: ForEach loop to get corresponding NUMA node
Result: Set max and min NUMA node based on CPU temperature
Input: x is the NUMA node(s) starting from 0

1 x← 0

2 foreach no. of NUMA node(s) temperature values do

/* NUMA node(s) started from 0 */
3 if If NUMA node value = marked min or max value then
4 set NUMA node to max or min:
5 end
6 increase x by 1

7 end

When highest and lowest value NUMA node(s) are identified. The next step
is to find the running process IDs (PIDs) of stress inside CPU(s) from highest
and lowest temperature NUMA node(s). And change the CPU affinity of run-
ning processes from highest NUMA node to lowest value NUMA node based on
PIDs. There are multiple ways to figure out the PIDs of running processes. The
simple command "pidof stress" is used to find out the PIDs. As the work-
load is generated randomly, processes of stress spread out all over the CPU(s)
of NUMA node(s).

CPU Affinity and Taskset

Binding a process to only a specific CPU is CPU affinity so that process
will run only from specified CPU. With taskset command a process can be set
to CPU affinity by providing process ID (PID) of running process. There are
multiple options in taskset command such as "-p" which work on an existing
PID instead of launching new one and "-c" which gets the list of CPU in its
parameters. The list can have more than one CPU separated by comma, and
ranges. For example, 0,1,4,7-12 etc.[50]

Figure 4.1: CPU and Process architecture[59]
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Iterate through all the PIDs of stress and compare it with PIDs running
inside highest NUMA node and change the affinity of NUMA node has been
shown in following bash code:

1 #!/ bin /bash
2

3 c=0
4 pids=$ ( p ido f s t r e s s )
5 f o r item in ${pidsArray [@] }
6 do
7 cpuNo=$ ( cat /proc /$item/ s t a t | cut −d ' ' −f 39 )
8 echo Running proce s s [ $item ] on : $cpuNo
9

10 # Getting l i s t o f CPU( s ) o f cur r ent NUMA node
11 getListofCPUofNode=$ ( numactl −−hardware | grep cpus | head

−$maxTemNode | t a i l −1 )
12

13 # Put the l i s t i n to array
14 f o r i in ${nodeCPUArray [@] }
15 do
16 #echo Node $node CPU i s : $citem
17 i f [ [ $cpuNo −eq $ i ] ] ; then
18

19 i f [ $ ( echo "$c < "4"" | bc ) −eq 1 ] ; then
20 echo Counter : $c
21 ( ( c = $c + 1 ) )
22 echo "Running PID [ $item ] on CPU $cpuNo l i e s in

Node : $maxTemNode"
23 # Moving running proce s s to low temperature

node
24

25 listOFlowNodeCPU=$ ( numactl −−hardware | grep
cpus | head −$minTemNode | t a i l −1 )

26

27 # Put the l i s t i n to array
28 rand=$ [ $RANDOM % 6 ]
29 # RANDOM i s d e f au l t func t i on in bash , as we

have 6 CPU( s ) in each NUMA node , so i t w i l l randomly pick the
number upto 6

30

31 #
32 t a s k s e t −p −c ${lowNodeCPUArray [ $rand ] } $item
33 f i
34 f i
35 done
36 done

Listing 4.3: Bash scripting to change affinity from highest NUMA node to lowest
NUMA node

The modified ACO algorithm can further be described in form of following
flowchart:
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Figure 4.2: Flowchart: high to low algorithm
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4.0.2 Use cases II: Move to next
In this use case, the generated workload from stress tool will stress out ran-
domly on all CPU(s) of NUMA node(s). After the workload is being generated
using stress tool, ants spread all over the CPU(s) of NUMA node(s). Starting
from first node ants check whether it is high temperature node or low temper-
ature node. If the current node is having high temperature than next node,
processes of high temperature NUMA node CPU(s) will change affinity to next
node CPU(s). Below Figure 4.3 shows the changing affinity of CPU(s) while
experimenting.

Figure 4.3: CPU affinity change

The function will run until it reach to last node. Now the last node will
be compared to first node and change affinity with first node CPU(s) if it has
high temperature. If current node and next node same temperature, it will do
nothing and move to next node. The whole methodology will work in forward
direction. The methodology presented in use case I for finding process ID (PIDs)
of stress and list corresponding CPU(s) of NUMA node(s) will be same in this
case.

In this use case, current node and next node will be compared, so next node
temperature and changing of CPU affinity of NUMA node has been shown in
following bash code:

1 #!/ bin /bash
2

3 nextNodeTemp=${nodeTempArray [ $ ( ( $currentNode+1) ) ] }
4 lastNodeTemp=${nodeTempArray [ ${#nodeTempArray [@]}−1]}
5 i f [ −z "${lastNodeTemp}" ] ; then
6

7 # Change a f f i n i t y to f i r s t node CPU( s )
8 t a s k s e t −p −c ${lowNodeCPUArray [ $rand ] } $item
9 e l i f ( ( $ ( echo "$currentNodeTemp <= $nextNodeTemp" | bc − l ) ) ) ;

then
10 echo "Do nothing move to next node"
11 e l s e
12 # Change a f f i n i t y to next NUMA node
13 #echo Next Node i s : $s
14 nextNodeCPU=$ ( numactl −−hardware | grep cpus | head −$s | t a i l −1

)
15 rand=$ [ $RANDOM % 6 ]
16 t a s k s e t −p −c ${lowNodeCPUArray [ $rand ] } $item
17 f i

Listing 4.4: Bash scripting to change affinity to next NUMA node
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The Use Case II algorithm can further be described in form of following
flowchart:

Figure 4.4: Flowchart: Move to next algorithm
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Chapter 5

Results, Analysis and
Comparison

The experiment performed to enable green computing and having homogeneous
temperature on all NUMA node(s) will described in this chapter. The obtained
results from proposed modified algorithms will be analyzed using charts and
tables. Multiple experiments have been conducted to get required result. The
obtained data will be further discussed in discussion section to make a link with
proposed problem statement about the smart utilization of energy to enable
green cloud computing.

5.1 Preliminary Experiments
Multiple experiments have been conducted in order to have balanced average
temperature between lowest and highest temperature values. In testing server,
there are 48 NUMA node(s) CPU(s) therefore experiment is grouped in different
parameters. Workload generator tool "stress" will stress out CPU(s) with -c
options such as command: "stress -c 34" will generate workload randomly on
34 CPU(s).

For tuning and further analyzing of the parameters for our experiment, ran-
dom workload has been generated on 48 CPU(s) with "stress -c 48" command
and record the temperature with an interval of 1 minute. These experiments
done to have an idea of CPU(s) maximum temperature level and the time to
stressed on CPU(s), so that limitations are known before implementation of
modified algorithms.

Figure 5.1 shows the NUMA node(s) temperature of 48 CPU(s) stressed with-
out implementation of algorithm. The difference in node(s) temperature is due
to baseline of node(s) value i.e. node(s) 2,3,4 and 5 have baseline temperature
around 18°C whereas node(s) 0,1,6 and 7 baseline temperature around 22°C. All
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Figure 5.1: This figure shows the temperature of stressed NUMA node(s) on 48
CPU(s) without implementation of algorithm

the node(s) are stabilized after some time where highest value reach upto 60°C
and lowest value is around 48°C and average temperature is around 52°C.

Figure 5.2: This figure shows the temperature of stressed NUMA node(s) on 36
CPU(s) without implementation of algorithm

The tuning of CPU(s) by generating workload using different parameters of
stress was done to get an idea about the individual NUMA node(s) temper-
ature level. Further results using different parameters of stress -c Options
can be found in Appendices section. From above results, the parameters which
are identified in experiment are number of stress CPU(s) and time interval for
recording NUMA node(s) temperature. Therefore above experiments conclude
Table 5.1 which depict the average, lowest and highest temperature recorded
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Table 5.1: NUMA node(s) temperature with distinct no. of stress CPU param-
eters

in Celsius degree 24 CPU(s) stress
approx.

36 CPU(s) stress
approx.

48 CPU(s) stress
approx.

highest temp 52 58 60
lowest temp 40 45 48
average temp 43 46 52

after an interval of 1 minute.

Therefore specific parameters will be used in order to compare the results.
In testing server, there are 48 CPU(s), so stressing half CPU(s) 24 will work out
for changing affinity among them. For this project, workload will be generated
using stress -c 24 command and the server will choose 24 CPU(s) randomly
from NUMA node(s).

5.2 Experiment 1: High to Low
In this experiment, ant will search for high temperature node and low temper-
ature node and will change the affinity of processes between them. When the
workload will be generated from start, there is a possibility that corresponding
CPU(s) of one node has more processes inside so if all processes will move to
low temperature node that node will become overloaded.

To avoid this scenario there is decision made check which identifies the num-
ber of processes from high temperature node and move only few processes based
on threshold i.e. difference between highest temperature node and lowest tem-
perature node.

After generating the proposed workload, the stressed temperature of NUMA
node(s) has been recorded with interval of 1 minute to check the high,low and
average level.
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Figure 5.3: NUMA node(s) 24 CPU(s) stressed

Figure 5.4: Online Standard Deviation Calculator [45] is used to show the Stan-
dard deviation properties of average temperatures of NUMA node(s) without
implementation of algorithm

Figure 5.5: The figure shows the line chart of NUMA node(s) temperature with
implementation of modified ACO algorithm
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Figure 5.6: The figure shows the line chart of average temperatures of NUMA
node(s) with and without implementation of modified high to low ACO algo-
rithm

Figure 5.7: Online Standard Deviation Calculator [45] is used to show the Stan-
dard deviation properties of average temperatures of NUMA node(s) based on
modified high to low algorithm
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5.3 Analysis
Figure 5.3 shows the NUMA node(s) temperature of 24 CPU(s) stressed with-
out implementation of algorithm. The difference in node(s) temperature is due
to baseline of node(s) value i.e. node(s) 2,3,4 and 5 have baseline temperature
around 18°C whereas node(s) 0,1,6 and 7 have baseline temperature around
22°C. All the node(s) are stabilized after some time where highest temperature
reach around 52°C and lowest temperature is approximately 40°C so the average
temperature will be around 43°C.

The distributional characteristics of both records as well as the level of tem-
perature can be seen in Figure 5.8. From Figure 5.8, we can extract distribu-
tional data which is represented in Table 5.2.

This table 5.2 represent that interquartile range (IQR) which is the distance
between the 1st and 3rd quartiles (Q1 and Q3) of normal data i.e. stressed
24 CPU(s) of NUMA node(s) without implementation of algorithm is 4.59.
whereas interquartile range (IQR) of algorithm data i.e. stressed 24 CPU(s) of
NUMA node(s) with implementation of algorithm data is 3.04.

Min represents the lower outer fence whereas max represents the upper inner
fence. The shape of distribution of Normal data is skewed left means that data
is concentrated towards upper end of values whereas shape of distribution of
algorithm data is skewed right means that data more is concentrated towards
lower end of values.

Table 5.2: Distributional analysis of Figure 5.8

Q1 median (Q2) Q3 lower fence min max
Normal 42.24 45.96 46.83 38.23 19.64 47.19

Algorithm 35.66 35.80 38.70 31.84 20.54 39.54

From Figure 5.9, we can analyze how much data i.e. Normal and Algorithm
are spread out around the mean. From Figure 5.9, we can extract distributional
data which is represented in Table 5.3.

This table 5.3 represent that interquartile range (IQR) of average normal
data i.e. stressed 24 CPU(s) of NUMA node(s) without implementation of
algorithm is 1.46. whereas interquartile range (IQR) of average algorithm data
i.e. stressed 24 CPU(s) of NUMA node(s) with implementation of algorithm
data is 1.57.
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Figure 5.8: The figure shows the boxplot of average temperatures of NUMA
node(s) Normal data represents without implementation of algorithm and Al-
gortihm represents the implementation of modified high to low ACO algorithm

Figure 5.9: The figure shows the boxplot standard deviation of average temper-
atures of NUMA node(s).

Table 5.3: Distributional analysis of Figure 5.9

Q1 median (Q2) Q3 min max
Normal 3.21 4.31 4.67 1.92 4.76

Algorithm 0.80 1.78 2.37 0.51 3.07
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5.4 Comparison: High to Low
Other statistical data such as Population Standard Deviation, Sample Standard
Deviation, Variance and Confidence Interval (CI) are explained in Figures 5.11,
5.10. Figures 5.11 shows that Confidence interval of 68% of temperatures lies
within 1 standard deviation of the mean i.e. within approximately 41 to 44
degree Celsius. Whereas in modified ACO algorithm Figures 5.10 shows that
68% of temperature lies within 1 standard deviation of the mean i.e. within
approximately 35 to 36 degree Celsius. Therefore the modified ACO algorithm
decreases the temperature and balanced it to provide efficient usage of energy.

Figure 5.10: Online Standard Deviation Calculator [45] is used to show the
Confidence Interval and Range of average temperatures of NUMA node(s) based
on modified high to low algorithm

Figures 5.11 shows that Confidence interval of 99.7% of temperature lies
within 3 standard deviation of the mean i.e. within approximately 38 to 47
degree Celsius. Whereas in modified ACO algorithm Figures 5.10 shows that
99.7% of temperature lies within 3 standard deviation of the mean i.e. within
approximately 33 to 38 degree Celsius.

Figure 5.11: Online Standard Deviation Calculator [45] is used to show the Con-
fidence Interval and Range of average temperatures of NUMA node(s) without
implementation of algorithm
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5.5 Experiment 2: Move to Next Node
In this experiment, after the workload is being generated using stress tool, ant
will change the affinity of current node to next node without comparing to
the next node temperature. All of processes from current node will move to
next node whether temperature is high, low or equal on next node. When the
processes moved to last node, it will change the affinity to first node. In this
scenario there is no threshold or no self decision made check which identifies the
number of processes from high temperature node and move only few processes.

The generated workload uses 24 CPU(s) with stress -c 24 command. The
stressed NUMA node(s) temperature has been recorded with interval of 1 minute
to check the high,low and average level.

Figure 5.12: This figure shows the line chart of NUMA node(s) temperature
after implementation of move to next algorithm.

Figure 5.13: This figure shows the line chart of NUMA node(s) temperature
while moving processes to next node after comparing the next node temperature.
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Figure 5.14: The figure shows the line chart of average temperatures of NUMA
node(s) of both algorithms i.e. move to next node if current node is high and
move to next without comparing to next node.

5.6 Analysis
Figure 5.12 shows the NUMA node(s) temperature of 24 CPU(s) stressed based
on implementation of algorithm which move the processes from current node
to next node whether temperature is equal, high or low, . The difference in
node(s) temperature is due to baseline of node(s) value i.e. node(s) 2,3,4 and 5
have baseline temperature around 18°C whereas node(s) 0,1,6 and 7 have base-
line temperature around 22°C. All the node(s) are stabilized after some time
where highest temperature reach around 40°C and lowest temperature is ap-
proximately 21°C.

Figure 5.16 shows the balanced workload on 24 CPU(s) of NUMA node(s)
based on implementation of algorithm which move the processes from current
node to next node if and only if temperature is low on next node. If tempera-
ture is high on last node, it will compare with first node and move the processes
if first node is on low temperature. The difference in node(s) temperature is
due to baseline of node(s) value i.e. node(s) 2,3,4 and 5 have baseline tem-
perature around 18°C whereas node(s) 0,1,6 and 7 have baseline temperature
around 22°C. All the node(s) are balanced after some time where homogeneous
temperature is around 40°C.

The distributional characteristics of both records as well as the level of tem-
perature can be seen in Figure 5.17. From Figure 5.17, we can extract distribu-
tional data which is represented in Figure 5.15, 5.16 and Table 5.4.

This table 5.4 represent that interquartile range (IQR) which is the distance
between the 1st and 3rd quartiles (Q1 and Q3) of move to next algorithm with-
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out comparing next node temperature is 4.3 whereas interquartile range (IQR)
of move to next node if current node is high algorithm is 0.73.

Table 5.4: Distributional analysis of Figure 5.17

Q1 median (Q2) Q3 lower fence min max
Move2Next Any temp 28.30 29.91 32.60 27.31 20.39 33.64
Move2Next if High 39.78 40.24 40.51 39.46 19.66 41.40

Figure 5.15: Online Standard Deviation Calculator [45] is used to show the
Standard deviation characteristics of average temperatures of NUMA node(s)
based on move to next algorithm without comparing next node temperature

Figure 5.16: Online Standard Deviation Calculator [45] is used to show the
Standard deviation characteristics of average temperatures of NUMA node(s)
based on move to next node algorithm if current node is on high temperature
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Figure 5.17: The figure shows the box chart of standard deviation of average
temperatures of NUMA node(s) of both algorithms i.e. move to next node if
current node is high and move to next without comparing to next node.

Figure 5.18: The figure shows the box chart of standard deviation of average
temperatures of NUMA node(s)of both algorithms i.e. move to next node if
current node is high temperature and move to next without comparing next
node temperature.
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5.7 Comparison: Move to Next
Other statistical data such as Population Standard Deviation, Sample Standard
Deviation, Variance and Confidence Interval (CI) are explained in Figures 5.15,
5.16, 5.19 and 5.20.

Figures 5.19 shows that Confidence interval of 68% of temperature lies within
1 standard deviation of the mean i.e. within approximately 29 to 30 degree Cel-
sius temperature. Whereas move to next node algorithm if current node is on
high temperature Figures 5.20 shows that 68% of temperature lies within 1 stan-
dard deviation of the mean i.e. within approximately 38 to 39 degree Celsius
temperature.

Figures 5.19 shows that Confidence interval of 99.7% of temperature lies
within 3 standard deviation of the mean i.e. within approximately 28 to 31
degree Celsius. Whereas in move to next node algorithm if current node is
on high temperature Figures 5.20 shows that 99.7% of temperature lies within
3 standard deviation of the mean i.e. within approximately 36 to 41 degree
Celsius.

Figure 5.19: Online Standard Deviation Calculator [45] is used to show the
Confidence Interval and Range of average temperatures of NUMA node(s) based
on move to next algorithm without comparing next node temperature

Figure 5.20: Online Standard Deviation Calculator [45] is used to show the
Confidence Interval and Range of average temperatures of NUMA node(s) based
on move to next node algorithm if current node is on high temperature
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Chapter 6

Discussion

The objective of this chapter is to discuss the obtained results and related to
the problem statement.

Initial experiments start for the tuning of parameters and check the maxi-
mum, minimum and average temperature of NUMA node(s). Instead of NUMA
node(s) temperatures starting from zero, the temperature baseline is different
on every node which is useful information in order to subtract or add tempera-
ture into final result if required. Knowing the limitations of testing server CPU
sensors is very much important regarding final results analysis and comparisons.

By giving different parameters of stress on CPU(s), we found out that the
highest and lowest temperature of node(s) varies along with number of pro-
cesses. If number of processes generated by stress tool increases the tempera-
ture of node(s) will increase, so we can say that NUMA node(s) temperature is
directly proportional to number of processes generated by stress command.

After performing preliminary experiments and choosing right parameters for
our proposed algorithm, we record the node(s) temperature with specific -c op-
tions of stress workload generator. The specific parameters plays a vital role so
that the final results will be compared with same set of records and same time
interval.

Usually the servers NUMA node(s) CPU(s) have some virtual CPU(s) which
means every CPU have possibility of its sibling CPU, so if one CPU gets hot
its sibling CPU also gets hot. The NUMA node(s) CPU(s) siblings and cor-
responding node has been described in earlier section. While giving stress the
CPU siblings also considered to avoid all processes moved to low temperature
node.

Another important aspect is when to move the processes to low temperature
NUMA node. So we define some threshold in our algorithms which checks every
interval of time if current temperature is higher than threshold then the pro-
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cesses will change its affinity otherwise it will go for another interval.

6.1 Use Case I: High to Low
In this test, we can see that initially the workload generated randomly at start
which is considered as static load balancing. After running algorithm, it takes
some time to have equal processes on all NUMA node(s). The time it takes to
have homogeneous temperature on all NUMA node(s) depends on the number
of processes.

In comparing section of results chapter, we look at the results after generat-
ing workload at initial level of both experiments the one which just record the
temperature and the second which runs the algorithm. Th 99.7% confidence
interval (CI) of just record experiment is lies within 3 standard deviation of the
mean i.e. within approximately 38 to 47 degree Celsius. Whereas in modified
ACO algorithm results shows that 99.7% confidence interval (CI) of tempera-
ture lies within 3 standard deviation of the mean i.e. within approximately 33
to 38 degree Celsius.

So the modified ACO algorithm gives lower temperature to avoid over heat-
ing of servers CPU(s). From line charts it indicates that all NUMA node(s)
have same level of temperature. In case of algorithm it takes approximately 15
minutes to have homogeneous temperature with 24 number of processes. The
average mean of just record experiment is around 43 degree Celsius whereas
the average mean of modified ACO algorithm experiment is around 36 degree
Celsius. The difference between average means has huge gap which indicates
that modified algorithm efficiently self managed to have balanced temperature
lower than normal behaviour of servers CPU sensors temperature.

6.2 Use Case II: Move to Next
In this experiment, same scenario of time interval and workload and has been
generated using stress workload generator tool. Two different algorithm have
been implemented in this test instead of just recording normal behaviour as we
did in High to Low use case. First algorithm move all the processes to next node
regardless of temperature on next node in forward direction. Second algorithm
move the processes if and only if next node temperature is lower than current
node.

Based on specified threshold, self made decision has been taken to avoid
moving all processes. In comparing section of results chapter, we look at the
results after generating workload at initial level of both experiments. The 99.7%
confidence interval (CI) of first experiment lies within 3 standard deviation of
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the mean which is between 28 to 31 degree Celsius approximately. Whereas
the second experiment which move the processes to next node if and only if
current node is on high temperature shows that 99.7% confidence interval (CI)
of temperature lies within 3 standard deviation of the mean which is between
37 to 41 degree approximately.

From line charts and statistical distribution tool, we can see that even the
second experiment levels the NUMA node(s) temperature its average mean 39
degree Celsius approximately. And in case of first experiment, the average mean
is 30 degree Celsius approximately which is much lower than proposed Move to
Next algorithm. Thus the lower balanced temperature criteria doesn’t fulfill our
requirement, there is further modification in Move to Next algorithm is needed
regarding time interval, number of processes move and when to move the pro-
cesses.

The difference between Move to Next and High to Low experiments of bal-
anced temperature indicates that modified algorithm of High to Low has better
performance which efficiently self managed to have balanced temperature lower
than balanced algorithm of Move to Next.

Relation to Problem statement phrase "Energy Utilization at Data
Centers"

As proposed earlier in the problem statement the modified High to Low ACO
algorithm efficiently utilize energy of servers at data centers which enables green
cloud computing environment. Internet of Things (IoT) based CPU sensors
plays vital role to have an overlook of environmental conditions of servers hard-
ware at data centers.

Relation to Problem statement phrase "Intelligent Algorithms"

Nowadays where dynamic applications and 24/7 online services are every-
where, therefore consumers avoid traditional algorithms because these algo-
rithms uses centralized systems which causes whole systems down if they en-
counter single point of failure. Therefore, decentralized algorithms such as
swarm intelligence methods are useful for current era dynamic online appli-
cations.

In this project, the modified version of ant colony optimization algorithm
which is member of swarm intelligence methods implemented where Self-Optimization
features has been used which monitors CPU sensor temperature and shared the
resources based on threshold and time interval parameters of our algorithm.
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Chapter 7

Conclusion and Future Work

In this paper, two algorithms have been proposed based on ant colony optimiza-
tion for efficient energy utilization at data centers. The generated workload was
based on static load balancing strategies which was applied on both algorithms
with high to low and move to next mechanism. Experiment results were il-
lustrated with the help of charts and statistical distribution tools. The results
showed that proposed high to low mechanism performed better and gives ho-
mogeneous NUMA node(s) temperature than move to next algorithm technique.

Although in load balancing static algorithms are more suitable for homoge-
neous and stable environments but with rapid growth of dynamic services at
cloud infrastructures there is a need of dynamic algorithms. So future work can
be done by generating workload on run-time environment to improve the effi-
cient usage of energy at data centers. In this project, response time was fix this
parameter can further increase or decrease for dynamic applications scenario.

After workload has been generated system decides the CPU(s) for setting in-
finity, so one can bind the workload on specific CPU(s) of NUMA node(s) before
generating workload. Furthermore, the move to next algorithm was proposed
only in forward direction, so it can be further explored in backward direction
and neighbour nodes based on threshold and number of processes. After high
temperature node or low temperature node have been marked, the random
movement of processes can be further explored based on high to low algorithm.

Furthermore, live migration of virtual machines (VMs) can be looked after
the discovery of overloaded or underload NUMA node(s). CPU sensors temper-
ature have been explored in this project, there are also other system’s hardware
sensors such as Core sensors, thermal sensors and power sensors which can be
implemented in future work with our proposed algorithm . In future, we will
investigate how to implement other intelligent algorithms using our approach to
enable green cloud computing environment and efficient utilization of energy at
data centers.
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Chapter 8

Appendices

1 #!/ bin /bash
2

3 stemp=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5)
4 echo St r ing i s : $stemp
5

6 ar r+=(${stemp// / })
7 time=$ ( date '+%H:%M:%S ' ) ;
8 echo "$time"
9

10 sum=0
11 ar r=($time )
12 ar r+=(${stemp// / })
13 echo "Array l ength : "${#arr [@] }
14

15 f o r item in ${ ar r [@] }
16 do
17 #echo Node $sum temp i s : $item
18 p r i n t f "%s " "${ ar r [ $sum ]} " $ '\ t ' >> f2high2 low . txt
19 l e t sum=sum+1
20 done
21

22 p r i n t f "%s " $ '\n ' >> f2high2 low . txt
23

24 { p r i n t f 'Time\tNode0\tNode1\tNode2\tNode3\tNode4\tNode5\tNode6\
tNode7\n ' ; cat f2h igh2 low . txt ; } | t r "\\ t " " , " > /home/ s u f i /
f2highTolow . csv

25

26 # Find low temp Node number
27 node=0
28 minTemNode=0
29 minTemVal=0.0
30 lowVal=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |

s o r t −n | head −1)
31 f o r i in ${ ar r [@] : 1 }
32 do
33 #nodeTem=${ ar r [ $node+1]}
34 #echo NodeTem : $ i
35 i f [ "$ ( echo " $ i == $lowVal" | bc ) " −eq 1 ] ; then
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36 echo Min Matches : $ i = $lowVal Running on Node :
$node

37 minTemNode=$node
38 minTemVal=$ i
39 break
40 f i
41 l e t node=node+1
42 done
43

44 # Find high temp node number
45 node=0
46 maxTemNode=0
47 maxTemVal=0.0
48 highVal=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |

s o r t −n | t a i l −1)
49 l a s t3hVa l=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |

s o r t −n | t a i l −1)
50

51 maxValarr=(${ la s t3hVal // / })
52

53 d i f f="$ ( echo "$highVal − $lowVal" | bc ) "
54 echo $ d i f f
55

56 i f [ $ ( echo " $ d i f f < " 2 .7 "" | bc ) −eq 1 ] ; then
57 echo "$ ( tput s e t a f 3)Not Much d i f f e r e n c e $ ( tput sgr0 ) "
58 e l s e
59 f o r i in ${ ar r [@] : 1 }
60 do
61 maxTemVal=$ i
62 c=1
63 f o r max in ${maxValarr [@] }
64 do
65 #echo " $ i >= $max"
66 i f [ "$ ( echo " $ i == $max" | bc ) " −eq 1 ] ; then
67 echo Max Matches : $ i = $max Running on Node : $node
68 maxTemNode=$node
69 maxTemVal=$ i
70 #echo MaxTemNode : $maxTemNode
71 pids=$ ( p ido f s t r e s s )
72 s e t −f
73 pidsArr=($pids )
74 s e t +f
75 #c=1
76 #echo "PIDs Array l ength : "${#pidsArr [@] }
77 f o r item in ${ pidsArr [@] }
78 do
79 cpuNo=$ ( cat /proc /$item/ s t a t | cut −d ' ' −f 39 )
80 echo Running proce s s [ $item ] on : $cpuNo
81 loop=1
82 ( ( sum = $loop + $node ) )
83 # echo Sum i s : $sum
84 sen=$ ( numactl −−hardware | grep cpus | head −$sum |

t a i l −1 )
85 var=${ sen#∗ : }
86 sinCpuArr=($var )
87 #echo Node $node conta in s CPU: $var
88 #c=1
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89 f o r citem in ${sinCpuArr [@] }
90 do
91

92 #ta sk s e t −p −c ${nCpuArr [ $rand ] } $item
93 #echo Node $node CPU i s : $citem
94 i f [ [ $cpuNo −eq $citem ] ] ; then
95

96 i f [ $ ( echo " $ d i f f < " 4 .7 "" | bc ) −eq 1
] ; then

97 echo "$ ( tput s e t a f 3) l t : $c$ ( tput
sgr0 ) "

98 ( ( c = $c + 1 ) )
99 f i

100 i f [ $ ( echo "$c < "7"" | bc ) −eq 1 ] ;
then

101 echo Counter : $c
102 ( ( c = $c + 1 ) )
103 echo "$ ( tput s e t a f 3)Running PID [

$item ] on CPU $cpuNo l i e s in Node : $maxTemNode$( tput sgr0 ) "
104 # Moving running proce s s to low

temperature node
105 ( ( s = $minTemNode + $loop ) )
106 lowNodeCpu=$ ( numactl −−hardware |

grep cpus | head −$s | t a i l −1 )
107 va r l=${lowNodeCpu#∗ : }
108 nCpuArr=($var l )
109 #fo r f i t em in ${nCpuArr [@] }
110 #do
111 echo "$ ( tput s e t a f 5)Node

$minTemNode conta in s CPU: $var l $ ( tput sgr0 ) "
112 rand=$ [ $RANDOM % 6 ]
113 t a s k s e t −p −c ${nCpuArr [

$rand ] } $item
114 #done
115 f i
116 f i
117 done
118 done
119 break
120 f i
121 done
122 l e t node=node+1
123 done
124 f i

Listing 8.1: Bash scripting to change affinity from highest NUMA node to lowest
NUMA node

1

2 #!/ bin /bash
3

4 stemp=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5)
5

6 echo St r ing i s : $stemp
7

8 ar r+=(${stemp// / })
9
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10 time=$ ( date '+%H:%M:%S ' ) ;
11

12 echo "$time"
13

14 sum=0
15

16 ar r=($time )
17

18 ar r+=(${stemp// / })
19

20 echo "Array l ength : "${#arr [@] }
21

22 f o r item in ${ ar r [@] }
23 do
24 #echo Node $sum temp i s : $item
25 p r i n t f "%s " "${ ar r [ $sum ]} " $ '\ t ' >> ju s t r e c o r d . txt
26 l e t sum=sum+1
27 done
28

29 p r i n t f "%s " $ '\n ' >> ju s t r e c o r d . txt
30

31 { p r i n t f 'Time\tNode0\tNode1\tNode2\tNode3\tNode4\tNode5\tNode6\
tNode7\n ' ; cat j u s t r e c o r d . txt ; } | t r "\\ t " " , " > /home/ s u f i /
j u s t r e c o r d . csv

Listing 8.2: Bash Scripting to just record temperature after workload generation

1 #!/ bin /bash
2

3 stemp=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5)
4

5 ar r+=(${stemp// / })
6 time=$ ( date '+%H:%M:%S ' ) ;
7 echo "$time"
8

9 sum=0
10 ar r=($time )
11 ar r+=(${stemp// / })
12 echo "Array l ength : "${#arr [@] }
13

14 f o r item in ${ ar r [@] }
15 do
16 #echo Node $sum temp i s : $item
17 p r i n t f "%s " "${ ar r [ $sum ]} " $ '\ t ' >> lmove2next . txt
18 l e t sum=sum+1
19 done
20

21 p r i n t f "%s " $ '\n ' >> lmove2next . txt
22

23 { p r i n t f 'Time\tNode0\tNode1\tNode2\tNode3\tNode4\tNode5\tNode6\
tNode7\n ' ; cat lmove2next . txt ; } | t r "\\ t " " , " > /home/ s u f i /
lmoveToNext . csv

24

25 # Find low temp Node number
26 node=0
27 lowVal=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |

s o r t −n | head −1)
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28 highVal=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |
s o r t −n | t a i l −1)

29

30 d i f f="$ ( echo "$highVal − $lowVal" | bc ) "
31

32 i f [ $ ( echo " $ d i f f < " 3 .3 "" | bc ) −eq 1 ] ; then
33 echo "$ ( tput s e t a f 3)Not Much d i f f e r e n c e $ ( tput sgr0 ) "
34 e l s e
35 f o r i in ${ ar r [@] : 1 }
36 do
37 #pids=$ ( p ido f "qemu−system−x86_64")
38 pids=$ ( p ido f s t r e s s )
39 s e t −f
40 pidsArr=($pids )
41 s e t +f
42 c=1
43 echo "PIDs Array l ength : "${#pidsArr [@] }
44 f o r item in ${ pidsArr [@] }
45 do
46 cpuNo=$ ( cat /proc /$item/ s t a t | cut −d ' ' −f 39 )
47 #echo Running proce s s [ $item ] on : $cpuNo
48 loop=1
49 ( ( sum = $loop + $node ) )
50 # echo Sum i s : $sum
51 sen=$ ( numactl −−hardware | grep cpus | head −$sum |

t a i l −1 )
52 var=${ sen#∗ : }
53 sinCpuArr=($var )
54 #echo Node $node conta in s CPU: $var
55 f o r citem in ${sinCpuArr [@] }
56 do
57

58 #ta sk s e t −p −c ${nCpuArr [ $rand ] } $item
59 #echo Node $node CPU i s : $citem
60 i f [ [ $cpuNo −eq $citem ] ] ; then
61

62 i f [ $ ( echo "$c < "10"" | bc ) −eq 1 ] ; then
63 echo Counter : $c
64 ( ( c = $c + 1 ) )
65 nextVal=${ ar r [ $ ( ( $node+2) ) ] }
66 l a s t=${ ar r [ ${#arr [@]}−1]}
67 ( ( s = $node + 2 ) )
68 i f [ −z "${nextVal }" ] ; then
69 echo "$ ( tput s e t a f 2) Last Val$ ( tput

sgr0 ) "
70 nextVal=${ ar r [ 1 ] }
71 s=1
72 #echo 1 s t va l : $nextVal
73 f i
74 #i f ( ( $ ( echo " $ i == $nextVal " | bc − l )

) ) ; then
75 # echo "$ ( tput s e t a f 3) Current Val i s

Equal$ ( tput sgr0 ) "
76 #Do nothing
77 i f ( ( $ ( echo " $ i <= $nextVal " | bc − l ) )

) ; then
78 echo "$ ( tput s e t a f 4) Current Val i s
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low$ ( tput sgr0 ) "
79

80 e l s e
81 echo "$ ( tput s e t a f 3)Running PID [ $item ] on CPU

$cpuNo l i e s in Node : $node$ ( tput sgr0 ) "
82 # Moving running proce s s to low temperature node
83

84 #echo Next Node i s : $s
85 lowNodeCpu=$ ( numactl −−hardware | grep cpus | head

−$s | t a i l −1 )
86 va r l=${lowNodeCpu#∗ : }
87 nCpuArr=($var l )
88 #echo "$ ( tput s e t a f 5)Node $s conta in s CPU: $var l $ (

tput sgr0 ) "
89 rand=$ [ $RANDOM % 6 ]
90 t a s k s e t −p −c ${nCpuArr [ $rand ] } $item
91 f i
92 f i
93 f i
94 done
95 done
96 l e t node=node+1
97 done
98 f i

Listing 8.3: Move to next node if current node is high temperature

1 #!/ bin /bash
2

3 node=0
4 minTemNode=0
5 minTemVal=0.0
6 lowVal=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |

s o r t −n | head −1)
7 f o r i in ${ ar r [@] : 1 }
8 do
9 #nodeTem=${ ar r [ $node+1]}

10 #echo NodeTem : $ i
11 i f [ "$ ( echo " $ i == $lowVal" | bc ) " −eq 1 ] ; then
12 echo Min Matches : $ i = $lowVal Running on Node :

$node
13 minTemNode=$node
14 minTemVal=$ i
15 break
16 f i
17 l e t node=node+1
18 done
19

20 # Find high temp node number
21 node=0
22 maxTemNode=0
23 maxTemVal=0.0
24 highVal=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |

s o r t −n | t a i l −1)
25 l a s t3hVa l=$ ( s en so r s | grep ' temp1 ' | awk '{ p r i n t $2 } ' | cut −c2−5 |

s o r t −n | t a i l −2)
26

27 maxValarr=(${ la s t3hVal // / })
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28 echo "Max Val Array l ength : "${#maxValarr [@] }
29

30 echo "$ ( tput s e t a f 5) High Temp Node i s : $maxTemNode and Value i s :
$highVal$ ( tput sgr0 ) "

31 echo "$ ( tput s e t a f 4)Low Temp Node i s : $minTemNode and Value i s :
$minTemVal$ ( tput sgr0 ) "

32 d i f f="$ ( echo "$highVal − $lowVal" | bc ) "
33 echo $ d i f f
34

35 i f [ $ ( echo " $ d i f f < 3 .2 " | bc ) −eq 1 ] ; then
36 echo "$ ( tput s e t a f 3)Not Much d i f f e r e n c e $ ( tput sgr0 ) "
37 e l s e
38 f o r i in ${ ar r [@] : 1 }
39 do
40 maxTemVal=$ i
41 f o r max in ${maxValarr [@] }
42 do
43 #echo " $ i >= $max"
44 i f [ "$ ( echo " $ i == $max" | bc ) " −eq 1 ] ; then
45 echo Max Matches : $ i = $max Running on Node : $node
46 maxTemNode=$node
47 maxTemVal=$ i
48 #echo MaxTemNode : $maxTemNode
49 #pids=$ ( p ido f "qemu−system−x86_64")
50 pids=$ ( p ido f s t r e s s )
51 s e t −f
52 pidsArr=($pids )
53 s e t +f
54 c=1
55 echo "PIDs Array l ength : "${#pidsArr [@] }
56 f o r item in ${ pidsArr [@] }
57 do
58 cpuNo=$ ( cat /proc /$item/ s t a t | cut −d ' ' −f 39 )
59 echo Running proce s s [ $item ] on : $cpuNo
60 loop=1
61 ( ( sum = $loop + $node ) )
62 # echo Sum i s : $sum
63 sen=$ ( numactl −−hardware | grep cpus | head −$sum |

t a i l −1 )
64 var=${ sen#∗ : }
65 sinCpuArr=($var )
66 #echo Node $node conta in s CPU: $var
67

68 f o r citem in ${sinCpuArr [@] }
69 do
70

71 #ta sk s e t −p −c ${nCpuArr [ $rand ] } $item
72 #echo Node $node CPU i s : $citem
73 i f [ [ $cpuNo −eq $citem ] ] ; then
74

75 i f [ $ ( echo "$c < 4" | bc ) −eq 1 ] ; then
76 echo Counter : $c
77 ( ( c = $c + 1 ) )
78 #echo C Check : $c
79 echo "$ ( tput s e t a f 3)Running PID [

$item ] on CPU $cpuNo l i e s in Node : $maxTemNode$( tput sgr0 ) "
80 # Moving running proce s s to next
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node
81 ( ( s = $minTemNode + $loop ) )
82 lowNodeCpu=$ ( numactl −−hardware |

grep cpus | head −$s | t a i l −1 )
83 va r l=${lowNodeCpu#∗ : }
84 nCpuArr=($var l )
85 echo "$ ( tput s e t a f 5)Node

$minTemNode conta in s CPU: $var l $ ( tput sgr0 ) "
86 rand=$ [ $RANDOM % 6 ]
87 t a s k s e t −p −c ${nCpuArr [ $rand ] }

$item
88 f i
89 f i
90 done
91 done
92 break
93 f i
94 done
95 l e t node=node+1
96 done
97 f i

Listing 8.4: Bash Scripting: Move to next node regardless of next node
temperature

1 #! /bin /bash
2

3 echo "Below are the Nodes and corre spond ing CPU' s a r c h i t e c t u r e "
4 numactl −−hardware | grep cpu
5 echo $ '\n '
6 echo −e "Press 0 to run VM' s randomly\nPress 1 to run VM' s on

Nodes S e l f I n c r e a s i n g \nPress 2 to run VM' s on S p e c i f i c Node"
7 read input
8 case " $input " in
9 "0" )

10 echo "Randomly"
11 echo −e "Enter no . o f VM' s randomly"
12 read vm
13 #k i l l a l l −9 qemu−system−x86_64 2> /dev/ nu l l
14 node=0
15 COUNTER=1
16 whi le [ Your != "47" ]
17 do
18 f o r i in $ ( seq 1 $vm)
19 do
20 #qemu−system−x86_64 −−enable−kvm −ke rne l

cha in l oade r − i n i t r d calcDouble . img −m 16 −nographic &> /dev/
nu l l&

21 s t r e s s −c 24 &
22 done
23 f o r i in $ ( seq 1 "120" )
24 do
25

26 echo "Round : $COUNTER"
27 # Random number genera tor code
28

29 seconds =60; date1=$ (( ` date +%s ` + $seconds ) ) ;
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30

31 whi le [ " $date1 " −ge `date +%s ` ] ; do
32 timerun="$ ( date −u −−date @$( ( $date1 − `date +%s ` )

) +%H:%M:%S) \ r "
33 echo −ne $timerun ;
34 done
35

36 #echo "∗∗∗∗∗∗∗∗∗ Running Run3 f i l e ∗∗∗∗∗∗∗∗∗∗∗"
37 #/bin /bash . / run3
38 #/bin /bash . / high2low
39 #/bin /bash . / backuph2 lFi l e
40 #/bin /bash . / s t o r eT o f i l e
41 /bin /bash . / lmove2next
42 #k i l l a l l −9 qemu−system−x86_64 2> /dev/ nu l l
43 COUNTER=$ [$COUNTER +1]
44 done
45 node=0
46 COUNTER=$ [$COUNTER +1]
47 done
48 ; ;
49

50 "1" )
51 echo " S e l f I n c r e a s i n g Node"
52

53 node=0
54 k i l l a l l −9 qemu−system−x86_64 2> /dev/ nu l l
55 COUNTER=1
56 whi le [ Your != "47" ]
57

58 do
59 echo "Round : $COUNTER"
60

61 f o r i in $ ( seq 1 "8" )
62 do
63 echo "VM' s Started run on Node : $node"
64 f o r i in $ ( seq 1 "6" )
65 do
66 numactl −−cpunodebind=$node qemu−system−x86_64 −−

enable−kvm −ke rne l cha in l oade r − i n i t r d calcDouble . img −m 16 −
nographic &> /dev/ nu l l&

67 done
68 seconds =90; date1=$ (( ` date +%s ` + $seconds ) ) ;
69 whi le [ " $date1 " −ge `date +%s ` ] ; do
70 echo −ne "$ ( date −u −−date @$( ( $date1 − `date +%s `

) ) +%H:%M:%S) \ r " ;
71 done
72 /bin /bash . / run3
73 echo "VM' s k i l l e d on Node : $node"
74 l e t node=node+1
75 k i l l a l l −9 qemu−system−x86_64 2> /dev/ nu l l
76 s l e e p 5
77 p r i n t f "\033 c"
78 done
79 node=0
80 COUNTER=$ [$COUNTER +1]
81 done
82 ; ;
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83

84 "2" )
85 echo " S p e c i f i c "
86 echo −e "Enter S p e c i f i c Node No . "
87 read nm
88 k i l l a l l −9 qemu−system−x86_64 2> /dev/ nu l l
89 f o r i in $ ( seq 1 "6" )
90 do
91 numactl −−cpunodebind=$nm qemu−system−x86_64 −−enable−kvm −

ke rne l cha in l oade r − i n i t r d calcDouble . img −m 16 −nographic &> /
dev/ nu l l&

92 done
93 seconds =40; date1=$ (( ` date +%s ` + $seconds ) ) ;
94 whi le [ " $date1 " −ge `date +%s ` ] ; do
95 echo −ne "$ ( date −u −−date @$( ( $date1 − `date +%s ` ) ) +%H:%

M:%S) \ r " ;
96 done
97 k i l l a l l −9 qemu−system−x86_64 2> /dev/ nu l l
98 ; ;
99 ∗)

100 echo "You have f a i l e d to s p e c i f y what to do c o r r e c t l y . "
101 e x i t 1
102 ; ;
103 esac

Listing 8.5: Bash Scripting: To generate workload

Figure 8.1: Preliminary Experiments: Stressed 12 CPU(s) record
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Figure 8.2: Preliminary Experiments: Nodes Temperature with implementation
of High to Low Algorithm without setting threshold

Figure 8.3: Preliminary Experiments: Move to next node regardless of temper-
ature
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