
A Computational Environment for
Multiscale Modelling

by

Morten Ledum

Thesis
for the degree of

Master of Science

Faculty of Mathematics and Natural Sciences
University of Oslo

December 2017

This thesis was typeset with the LATEX typesetting system.
E�ort has been made to adhere to the ISO 80000-2:2009 standard on mathematics typesetting [39].

Abstract
We implement two di�erent ab initio electronic structure methods: Hartree-Fock
(HF), and quantum variational Monte Carlo (VMC). Gaussian type orbitals are used
for the HF method, while the VMC framework allows more general orbital bases (in-
cluding the possibility of using the optmized HF orbitals). A thorough introduction
to the underlying theory of both methods is presented, and the codes are tested on
selected �rst row atoms and simple molecules. Ground state energies are found to be
in good agreement with the litterature.

Secondly, a general function approximation scheme is implemented using arti�-
cial neural networks (ANN). The ANN implementation is based on the TensorFlow
library developed by the Google Brain team. It is thoroughly tested on single and
multivariable functions and subsequently shown to be able to approximate potential
energy surfaces (PES) using data from the aforementioned ab initio calculations.

The ANN may then be used as a force �eld in molecular dynamics (MD) simu-
lations—in place of ordinary parametrized e�ective MD potentials—thereby success-
fully bridging the quantum mechanical and the microscopic regimes. Whereas tradi-
tional MD potentials require hand crafting and tuning of a parametrized functional
form, the present work implements a multiscale modelling approach in which essen-
tially no human intervention is needed. Such "parameter-free" multiscale modelling
is preferable for obvious reasons: the results should be fundamentally independent
of the human experimenter’s ability to guess an appropriate functional form.

Lastly: Showcasing the full usage of the computational framework developed, we
present a simple—proof of concept—MD simulation using an ANN trained to approx-
imate a PES.

Acknowledgements
I would like to thank my supervisors (in no particular order) Anders Malthe-Sørensen,
Morten Hjorth-Jensen, and Anders Hafreager for their support during the years as a
master student here at the physics department. Along with the rest of the community
at the computational physics group, you have created a wonderful environment for
learning that I will sorely miss. To Morten: thank you for taking me under your wing
here at the computational physics group. It has been a pleasure to be your student and
later your TA. I am proud to have taken some small part in teaching the introductory
computational physics course with you these past several years.

To my tireless room-mate here in o�ce V306, Håkon Kristiansen. It feels like
we have been sitting here for decades, and I very much appreciate the company.
I promise to stop asking you di�cult questions you can’t answer (at some point).
Maybe one day the dream will come true and someone will pay us to just sit around
and �gure out whatever is interesting to us that day.

I want to acknowledge the two people who have probably in�uenced me as a stu-
dent the most. Anders Hafreager and Håvard Tveit Ihle, you both are an inspiration
to me, showing what you can achieve through diligent hard work. Anders, thank you
for teaching me how to write (less awful) code, and for helping me not fail QFT. I truly
appreaciate the endless enthusiasm and the willingness to go out of your way to help
regardless of the nature of the problem. Håvard, I am looking forward to �oundering
my way through your cosmology lectures this spring!

I also wish to thank the unlikely Johan, the interestingly true Icelandic bat-camel
for all the stimulating distractions throughout the time working on this thesis.

Lastly, to Vilde: Thank you for the endless encouragement (and all the sushi!).
Thank you for putting up with the largely absent and massively stressed out version
of myself for long months.

Collaboration Details

All the code developed for this thesis have been written from scratch by the author.
The ANN code has been developed in partial collaboration with Stende [1] and Trei-
der [2], the HF program was written with a lot of inspiration taken from Dragly [3],
and some ideas for the VMC code have been borrowed from an earlier program writ-
ten by the author and Håvard Tveit Ihle.

Morten Ledum
Oslo, December 2017

Contents

1 Introduction 1
1.1 Quantum and classical dynamics . 2
1.2 Machine learning and arti�cial neural networks 3
1.3 Machine learning in molecular dynamics 4
1.4 Goals . 5
1.5 Our contributions . 6
1.6 Developed source code . 6
1.7 Structure of the thesis . 7

I Foundational theory 9

2 Quantum Mechanics 11
2.1 A (very brief) review of classical mechanics 11
2.2 Canonical (�rst) quantization . 12

2.2.1 Short mathematical interlude 12
2.3 Schrödinger picture . 15
2.4 The quantum Hamiltonian . 18

2.4.1 Accuracy of molecular Hamiltonian 19
2.4.2 Born-Oppenheimer approximation 21

2.5 Anti-symmetry and the Pauli principle 26
2.5.1 Slater determinants . 26

2.6 Postulates of Quantum Mechanics . 29
2.7 The variational principle . 31

3 Wave functions 33
3.1 Properties of the exact wave function 33

3.1.1 Electron-nucleus cusp . 36
3.1.2 Electron-electron cusp . 38
3.1.3 Higher order coalescence conditions 39

3.2 Jastrow factor . 39
3.3 Orbitals . 40

3.3.1 Spherical and solid harmonics 40

Contents

3.3.2 Hydrogenic orbitals . 41
3.3.3 Slater type orbitals . 45
3.3.4 Gaussian type orbitals . 46
3.3.5 Some properties of Gaussians 51

3.4 Gaussian basis sets . 53

II Advanced theory 59

4 Hartree-Fock 61
4.1 Single Slater determinant ansatz . 62

4.1.1 Exchange correlation . 62
4.2 The Hartree-Fock energy . 63
4.3 Variational minimization of EHF . 65

4.3.1 De�ning Ĵ , K̂ and the Fock operator 68
4.4 Restricted Hartree-Fock . 68

4.4.1 The Roothan-Hall equations 70
4.5 Unrestricted Hartree-Fock and the Pople-Nesbet equations 71
4.6 Choice of orbital basis set . 71
4.7 The Hartree-Fock limit . 72

5 Density functional theory 73
5.1 The Hohenberg-Kohn theorems . 74
5.2 Kohn-Sham ansatz . 77
5.3 The Kohn-Sham equations . 79
5.4 Local density approximation . 80
5.5 Numerical integration grids . 82

5.5.1 Simple spherical grid . 82
5.5.2 E�ciency of angular grids and the product Gaussian quadra-

ture formula . 84
5.5.3 Lebedev quadrature . 86
5.5.4 Complete molecular grids, Voronoi and Wigner-Seitz parti-

tioning . 87
5.6 Becke grid . 89

6 Variational Monte Carlo 93
6.1 The Metropolis algorithm . 94

6.1.1 Markov chains, detailed balance and ergodicity 94
6.1.2 The Metropolis-Hastings algorithm and importance sampling 98

6.2 Monte Carlo integration . 104
6.2.1 Convergence properties of the Monte Carlo estimators 105
6.2.2 The local energy, EL . 106
6.2.3 Uncertainty estimates and correlated sampling 107

Contents

6.2.4 Blocking . 110

7 Arti�cial Neural Networks 111
7.1 Arti�cal neurons . 111
7.2 Network layers . 113
7.3 The full network . 114
7.4 Training the ANN . 115

III Implementation and results 117

8 Implementation: Hartree-Fock 119
8.1 Basis sets used . 120
8.2 Introductory examples . 120
8.3 Overview of selected classes . 121

8.3.1 Overlap and kinetic integral evaluation 121
8.3.2 Electron-nucleus Coulomb integrals 127
8.3.3 Electron-electron exchange integrals 131
8.3.4 The RestrictedHartreeFockSolver class 133

9 Implementation: Variational Monte Carlo 139
9.1 Introductory examples . 140
9.2 Overview of selected classes . 142

9.2.1 The SlaterWithJastrow class 142
9.2.2 The Orbital class . 159
9.2.3 The Metropolis class . 161

10 Implementation: Arti�cial Neural Networks 163
10.1 Introductory examples . 164
10.2 Overview of selected classes . 165

10.2.1 The NeuralNetwork class . 165
10.2.2 The NetworkTrainer class . 168
10.2.3 The TFPotential and the DataGenerator classes 170

11 Implementation and validation: Density Functional Theory 173

12 Hartree-Fock validation tests 175
12.1 Dissociation of the hydrogen molecule ion, H2

+ 175
12.2 Calculating the energies of the "ten-electron series" 177

13 Variational Monte Carlo validation tests 181
13.1 Non-interacting electrons . 181
13.2 The e�ect of the Jastrow factor . 182
13.3 First and second row closed-shell atoms and diatomics 186

Contents

13.4 Testing the gaussian orbitals . 187
13.5 Cusp e�ects and cusp corrections . 190

13.5.1 Cusp correction . 192
13.6 Blocking . 194

14 Neural Network validation tests 197
14.1 Single variable curve �t . 197
14.2 Approximating noisy data . 197
14.3 Multi-variable �tting . 200
14.4 Training on ab initio data . 203

15 Validation: ANN potentials in MD—the full framework 205

IV Conclusions and future work 211

16 Conclusions and perspectives 213

Appendices

Appendix A Natural units: Hartree atomic units 219

Appendix B Basics of numerical integration 221

Appendix C Functionals and functional variations 227

Bibliography 231

Chapter 1

Introduction

After being deveolped and pioneered around the middle of the last century, com-
puter modelling and numerical experiments have become ubiquitous in the natural
sciences. The list of areas in which simulations have been used to produce signi�cant
new results encompass now pretty much all of them. Today computer simulations
play as natural a part of the hard sciences as laboratory experiments and theory. In
most cases all three are used in order to glean new scienti�c insight. Without massive
scale computational e�orts, the existence of e.g. the Higgs boson and gravitational
waves would still be undetermined.

The advent of computer simulations during the last several decades have in par-
ticular made it possible to study moderately sized quantum mechanical systems from
�rst principles. Our ability to solve—in closed form—the governing equations of
quantum mechanics (QM) vanishes extremely quickly as the number of constituent
particles exceed just a few. Because of this, numerics are used to augment the prover-
bial pen and paper. It is nevertheless striking that the underlying theory for all of
chemistry and most of physics have been known for almost a century but the prob-
lem preventing us from essentially solving chemistry is almost purely computational:
the equations resulting from the exact application of this theoretical framework are
way too di�cult to solve.

Any approximative scheme which aims to solve the many-body Schrödinger equa-
tion from scratch subject to some (more or less) well-de�ned simpli�cations is called
an ab initio method. Working from �rst principles the aim of such algorithms is to
extract information from a theoretical QM system in a reasonable amount of time.
In order to accomplish this, a number of complicating intricacies need to be disre-
garded. The magnitude of the simpli�cations—essentially the number and impor-
tance of complicating factors dropped—determine both the e�cacy and the e�ciency
of the method: More simpli�cations made allow solutions to be found for larger sys-
tems (albeit less precise solutions), whereas extremely precise solutions can be found
for small systems if very few simpli�cations are employed.

Despite tremendous increases in available numerical computational power in the
latter half of the previous-, and the early parts of the current century, any such ap-

1

2 Introduction Chapter 1

proximate scheme used is still heavily limited w.r.t. the system size. In practice, most
methods are limited to systems of containing on the order of between 102 (for high-
precision methods such as con�guration interaction, coupled cluster, di�usion Monte
Carlo, etc.) and 105 electrons (for faster Hartree-Fock and density functional meth-
ods) [4–6]. Extracting information from larger systems neccessitate the use of semi-
classical or classical algorithms, such as molecular dynamics (MD). Using MD, the
time evolution of up to around 107 particles can feasibly be simulated over the order
of nano seconds [7, 8]. Using computationally inexpensive two-body inter-atomic po-
tentials and simulating for only a very short time, around 1012 particles can be mod-
elled [9]. Corresponding large-scale cosmologicalN -body simulations have been run
for as many as 1011 particles [10, 11]. For ensembles of particles larger than around
1012, simulating the individual constituents directly becomes too computationally
expensive and we have to use continuum models.

At the boundary between each domain, we are essentially forced into fundamen-
tally di�ering simulations. As our models move from �ne to more coarse-grained
with increasing system size, the internal degrees of freedom of the constituent parts
are frozen out. MD freezes the electronic motion, treating the atomic structure as
rigid and solid. Continuum models do away with the atomic motion all together—e.g.
treating only a density �eld de�ned on some lattice—thereby freezing all direct inter-
atomic interactions.

Being able to preserve—in some way—the properties of the �ne-grained model in
the larger domain is of tremendous scienti�c value. Lessons learnt from the ab ini-
tio QM simulations should ideally provide the fundamental basis for developing MD
schemes. In the same way, the �eld equations of the continuum model should incor-
porate as much of the physics of the molecular simulations as possible. This is the
heart of multiscale modelling. By simultanously considering a system at di�erent
scales (modelling domains) we may hope to arrive at a scheme which preserves most
of the crucial QM properties, while simultaneously retaining most of the e�ciency
of the coarse-grained models [12].

1.1 Quantum and classical dynamics
As previously noted, solving the Schrödinger equation (SE) exactly by hand is impos-
sible in the overwhelming majority of interesting cases. However, methods which can
get close to the exact solution exists. Full Con�guration Interaction (FCI) or direct di-
agonalization of the Hamiltonian is exact in the limit of an in�nite orbital basis set but
su�ers from an exponential complexity scaling (in system and basis size) [13]. The re-
lated Con�guration Interaction (CI) and Coupled Cluster (CC) approaches both trun-
cate the FCI expansion of Slater determinants, thus gaining speed but loosing some
accuracy [14, 15]. Di�usion Monte Carlo (DMC) techniques can in principle provide
the exact solution to the SE by imaginary-time evolution of an initial wave function
guess [16, 17]. In practice, DMC methods are highly dependent on this ansatz and

Section 1.2 Machine learning and arti�cial neural networks 3

thus require as input the results of less accurate method but faster methods. One
example may be the Variational Monte Carlo (VMC) method: conceptually simpler
and faster than DMC, but not as accurate [17–19].

The Hartree-Fock (HF) framework—which provides an e�cient but not enormously
accurate result—has seen extensive use since its inception in 1930 [20–22]. However,
by far the most popular approximation is Density Functional Theory (DFT), devel-
oped by W. Kohn and L. J. Sham in 1965 [23, 24]. Between 1980 and 2010, DFT was
the most active �eld in physics with eight out of the top ten most cited papers being
on the subject [25].

Computational scaling of ab initio QM models range from O(N !) in the extreme
(FCI), via O(N6) (CC with singles, doubles, and estimated connected triples) and
O(N4) (formal HF), toO(N3) for Hartree-Fock with integral pre-screening and den-
sity �tting [26].

In the intermediate region between these methods and molecular dynamics, we
�nd a range of hybrid models. Examples include Car-Parrinello MD—in which the va-
lence electrons are included in the dynamics and treated in a semi-classical way—and
Born-Oppenheimer MD, where the time independent Schrödinger equation is solved
approximately at each time step [27–29]. The computational complexity of such hy-
brids fall somewhere in the middle of the true ab initio methods and plain MD. The
latter has a naive scaling ofO(N2), but can be made linear by ingenious partitioning
schemes.

1.2 Machine learning and arti�cial neural networks

The term arti�cial intelligence (AI) describes machines which humans percieve as
smart. Narrow AI, machines focused sorely on a singular task and often achieving
super-human performance, are found everywhere in the 21st century. It is remark-
able that for example your phone can soundly beat you at the game of chess without
breaking a sweat1. A computer’s ability to beat the best chess players in the world
was once a huge breakthrough in the �eld of AI, but it is easy to just think of this as a
computer applying an algorithm to �nd the correct moves. As the father of the term
arti�cial intelligence—American computer scientist John McCarthy—put it [30]

“ As soon as it works, no one calls it AI any more.
J. McCarthy ”

While a computer beating a human at chess is impressive, it traditionally does so
by sheer brute force calculational power. A human programmed search algorithm

1If you happen to be a world-class chess player, substitute phone�laptop

4 Introduction Chapter 1

traverses vast trees of possible moves, evaluating each position using a human pro-
grammed evaluation function to try and �nd the optimal one. A di�erent approach is
taken in machine learning (ML). As a subdiscipline of AI, the �eld of machine learn-
ing is focused on creating computers which automatically learn and improve their
behaviour through experience [31]. Very recently, researchers at Google Deep Mind
were able to create a program which learns by playing itself [32]. With the only
input being the rules of the game and the conditions for victory, the AlphaZero al-
gorithm was able to beat one of the world’s top traditional (brute force) chess en-
gines—Stock�sh—with less than 24 hours of reinforcement training [33].

The most popular form of machine learning today is performed by a class of al-
gorithms called arti�cial neural networks (ANN). Inspired by networks of biological
neurons forming brains, the ANNs model a learning process by adjusting the weights
connecting individual arti�cial neurons in the network structure.

The chess example showcases beautifully the major problem inherent in the brute
force algorithmic approach: the e�cacy of the algorithm is fundamentally limited by
the human programmers ability to evaluate a given board position. The machine
learning approach—however—is not so limited, and essentially �gures out the objec-
tively best way to play by trial and error. We will see shortly that the analogue to the
way MD potentials are ordinarily created is clear: �nding the parameters of a pre-
de�ned functional form limits the possible forms we can describe wheras a machine
learning approach based on ANNs is in principle not so limited.

1.3 Machine learning in molecular dynamics
Traditionally, MD simulations are performed with classical e�ective potentials which
are parametrized to hopefully capture some of the underlying quantum physics. Such
empirical model potentials are computationally cheap, and may perform adequately
in isolated cases. A lot of hand-tuning of empirical, chemically motivated, param-
eters is however required in order to reproduce mesoscopic quantities within the
MD framework (pair correlation functions, crystalline structure, etc.). As such, con-
structing e�ective potentials is a highly non-trivial and time-consuming task—that
ultimately applies only to a small subset of atomic systems at best. Trying to employ a
given potential for a system it was not designed for may very well yield qualitatively
wrong results.

In the spirit of multiscale modelling, developing "parameter free" MD schemes is
very desirable. Foregoing the complicating, human labour intensive, and intrinsicly
di�cult step of empirical potential �tting, the method of Behler and Parrinello use in-
stead machine learning [34]. This and related models recently developed exploit the
unbiased predictive power of ab initio QM simulations to parameterize the e�ective
potential automatically by use of arti�cial neural networks [35]. In this way human
intervention is shunned and the accuracy of the MD simulation is no longer funda-
mentally limited by the imagination and physical intuition of the experimenter. De-

Section 1.4 Goals 5

spite being typically computationally more expensive than the traditionally param-
eterized e�ective potentials, ANNs still o�er orders of magnitude better performance
than ab initio or even hybrid models [26, 36].

1.4 Goals

The main goal of this thesis is to implement a fully functional (albeit simple) multi-
scale modelling framework for connecting quantum mechanics to microscopic molec-
ular dynamics simulations. Quantum ab initio training data will be generated at dif-
ferent levels of theory and used as training data for a feed-forward ANN. The fully
trained ANN-potential-energy surface (PES) is then used in molecular dynamics sim-
ulations.

This goal is naturally split into a few intermediate objectives:

(a) Develop ab initio quantum simulation software

(1) Develop a Hartree-Fock code
The �rst level of ab initio theory—and the starting point for the others—is
the Hartree-Fock scheme. We wish to write a completely general HF im-
plementation for atoms and molecular systems using Gaussian type or-
bitals as bases. This will be done completely from scratch in C++.

(2) Develop a Variational Monte Carlo code
Having solved the Hartree-Fock equations, the next level of theory we
want to employ is the variational quantum Monte Carlo approach. The
VMC framework should be general enough to both work with the results
from HF simulations, and as a fully stand-alone code. This will also be
done completely from scratch in C++.

(3) Develop a local density approximation—density functional theory
code
Having developed a functioning HF program, we wish to extend it to also
be able to handle density functional calculations at the LDA level. This
primarily entails developing a framework for e�cient numerical integra-
tion of the electronic density and derived quantities. This will be done
from scratch in C++, with the d�libs/numgrid library speci�cally handling
the integration grid setup [37].

(b) Develop an ANN model for PES �tting
Having developed various ab initio frameworks for computing molecular en-
ergy, we wish to develop a method of �tting said data to PES for use in molecu-
lar dynamics simulations. This will be done using the TensorFlow framework,
which we will interface from Python scripts.

6 Introduction Chapter 1

(c) Use the ANN-PES in simple MD simulations
As a proof of concept and validation of the entire multiscale modelling scheme,
we wish to implement the code necessary to run molecular dynamics simula-
tions using the ANN potential surfaces. This will be done using the MD package
LAMMPS.

1.5 Our contributions

Dozens of highly optimized, well-tested, and professional ab initio QM code bases
already exist. Developing code which is able to compete with such packages is un-
fortunately well outside the scope of the present work. The goal of developing ab
initio QM methods from scratch is to glean useful insight about the various methods,
their inner workings, their strenghts, and potential pit-falls associated with their use.

For the ANN and the training process, we employ the TensorFlow (TF) library.
We manually set up and feed the NN data for the training, but the optimization,
backpropagation, and automatic di�erentiation is all handled by TF.

For the molecular dynamics modelling, the LAMMPS library is used. In order to
evaluate the ANN and it’s derivatives, the custom LAMMPS extension of Stende and
Treider is used [1, 2].

All in all about 16 000 signi�cant lines of code2 was developed for the present work
of which about 85% is written in C++, about 10% in Python, with the remaining few
percentages written in a mix of Matlab, Mathematica, and Julia.

Bridging quantum mechanics and molecular dynamics with machine learning
techniques is not a new concept: researchers have been using ANNs for potential-
energy surface �tting for at least two decades. We do not o�er any fundamental con-
tributions to this �eld. We do however note that—to the best of our knowledge—the
coupling of quantum Monte Carlo, ANNs, and MD simulations is a relatively novel
approach.

1.6 Developed source code

All programs developed in conjunction with the present work is freely available on
the author’s github site, github.com/mortele, under a "do whatever you want with it"
public licence. (Re)Using any parts of it is highly encouraged.

2As counted by the cloc program which counts signi�cant lines of code, leaving out blank lines,
comment lines, etc. [38]

Section 1.7 Structure of the thesis 7

1.7 Structure of the thesis
This thesis is split into four parts. The �rst part, foundational theory presents an
overview of classical mechanics (very brie�y) and quantum mechanics as relevant for
molecular dynamics and electronic structure calculations. Part one lays the ground-
work and establishes most of the notation used later in part two: Advanced theory.
Here, the di�erent approximative schemes for solving the quantum equations of mo-
tion are presented. Alongside the theory of arti�cial neural networks.

The penultimate part contains information w.r.t. the concrete implementation of
frameworks described in part two. Key parts of each code base are outlined in de-
tail. Also contained in part three are validation tests of each implementation. Lastly,
results for the full work-�ow utilizing all the deveolped programs are presented.

The thesis ends with part four, containing conclusions and prospect for future
work.

Part I

Foundational theory

9

Chapter 2

Quantum Mechanics

Throughout this thesis we express all quantities in Hartree atomic units, unless we
explicitly say otherwise. The atomic units arise from enforcing e = ~ = 4πε0 =
me = 1, and they provide the natural units for working with quantum many-body
problems. See appendix A.

2.1 A (very brief) review of classical mechanics
Before venturing into the land of quantum mechanics (QM), it is useful to �rst review
the Hamiltonian formulation of classical mechanics (CM). Classical mechanics deals
with the dynamics of macroscopic objects.

Hamilton’s classical mechanics formalism revolves centrally around the Hamilto-
nian function (hereafter just refered to as the Hamiltonian),H. In order to de�ne this
function, it is necessary to �rst choose a set of canonical coordinates, qi and their
conjugate momenta pi. Generalized coordinate and momenta pairs are said to be
canonical if they satisfy the Poisson bracket1 {qi, pj} = δij . Examples of such canon-
ical pairs include e.g. the cartesian position and the respective linear momentum, or
the polar position and the angular momentum.

The phase space of a system is the space of all possible states of the system. A
system of n degrees of freedom will have a cooresponding 2n dimensional phase
space.2 A point in phase space, ξ = (q,p), speci�es the generalized coordinates and

1The Poisson bracket of two functions, f and g, w.r.t. the canonical coordinate pair p and q, is
de�ned as [40]

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

2Although we are free to choose a set of generalized coordinates larger than the number of degrees
of freedom, such a set will always be reducible to a smaller set of strictly independent coordinates with
size exactly equal to the number of degrees of freedom. Consider e.g. a point particle constrained to
move along the suface of a unit sphere. We may use the three cartesian coordinates to describe the
motion, however the system only has two degrees of freedom due to the constraint x2 +y2 +z2 = r2,

11

12 Quantum Mechanics Chapter 2

their respective conjugate momenta and is su�cient to uniquely determine the state
of the system as a whole.

Together with a choice of canonical coordinates and the resulting phase space, the
Hamiltonian encodes all information about a classical dynamical system. From the
Hamiltonian, we can �nd the equations of motion in terms of the chosen coordinates
by applying the Hamilton equations,

dpi
dt

= −∂H
∂qi

and dqi
dt

=
∂H
∂pi

. (2.1)

We may also state Hamilton’s equations more concisely in terms of the Poisson brack-
ets as

dpi
dt

= {pi,H} and dqi
dt

= {qi,H} . (2.2)

It is useful to note that we may interpret the Hamiltonian as the total energy of the
system, if and only if the generalized coordinates have no explicit time [40].

An important (to us at least) special case of classical Hamiltonian dymanics is the
system consisting of N identical particles of equal mass m, subject to inter-particle
forces stemming from a central potential w(qij) with qij = |qi − qj|, and moving in
an external potetial v(r). We may choose generalized coordinates with no explicit
time dependence, and this allows us to identify the Hamiltonian as the total energy
of the system. Following [14], we �nd that H = T + V + W , with T , V , and W ,
denoting the kinetic, the potential, and the interaction energy respectively. We may
write this out as

H(p,q) =
N∑
i=1

|pi|2

2m
+

N∑
i=1

V (qi) +
N∑
i=1

N∑
j=i+1

w(qij). (2.3)

2.2 Canonical (�rst) quantization
In order to go from a classical description to a quantum mechanical (QM) one, the
procedure known as canonical quantization is employed. This is sometimes refered to
as �rst quantization, to distinguish it from second quantization. Second quantization
is a QM framework used to study many-particle systems.

2.2.1 Short mathematical interlude
Under canonical quantization, the state of a system is no longer described by a point
in phase space, but rather by a state vector. The enclosing vector space is a Hilbert

so the three are not independent. It will thus inevitably be more convenient to use e.g. the polar and
azimuthal angles, θ and φ.

Section 2.2 Canonical (�rst) quantization 13

space over C, and almost always chosen as the space of square integrable functions3,
L2. More precisely, the vector space in question is the Sobolev space H1 over C, es-
sentially the subspace of L2 for which the �rst derivatives are also square integrable.
For a mathematically rigorous de�nition of Sobolev spaces, see e.g. [41].

Abstract vectors in our Hilbert spaces are denoted using Dirac’s bra-ket notation.
The state vector |ψ〉 is a member of L2, while the corresponding Hermitian conju-
gate, |ψ〉† = 〈ψ| is a member of the L2 dual space. In general, the dual of the Hilbert
space H is a Banach space and the bra corresponding to ket |ψ〉 is a linear func-
tional, 〈·| : H → C. Luckily, L2 is it’s own dual space, and this is usually stated as
the combination 〈ψ|φ〉 meaning the inner product between the two abstract vectors
|ψ〉 and |φ〉. Since the L2 inner product is the familiar integral over space, we have
〈ψ|φ〉 =

∫
R ψ(x)†φ(x) dx.

In a �nite dimensional Hilbert space, we may employ an orthonormal basis and
express the general vectors in terms of this basis. We can always represent the basis
vectors as ordinaryRn column vectors4, |e1〉 = (1, 0, . . . , 0)T , |e2〉 = (0, 1, 0, . . . , 0)T ,
. . . . In this case, bra-vectors are simply row vectors with the bra-ket composition
understood to be matrix multiplication. It is important to note that any vector in such
a space can be represented in terms of this basis, |ψ〉 =

∑n
i=1 ci|e1〉 and employing

this we may compute any inner product 〈ψ|φ〉 as a series of matrix multiplications
of the unit colum/row vectors.

When we are not fortunate enough to be able to work in a �nite dimensional
subspace of L2, we will assume that the in�nite space is separable. This means there
exists a countably in�nite set D = {|ei〉}∞i=1 of orthonormal functions which form
a basis for H [42]. In more mathematical terms, we say that D is a countable dense
subset ofH, the closure of which spanH. The existence of such a set is (perhaps anti-
intuitively) not at all obvious. Although we are guaranteed that any Hilbert space
(not neccessarily �nite dimensional) contains at least one orthonormal sequence, so
we can write for any |ψ〉 ∈ H: |ψ〉 =

∑∞
i=1〈ψ|ei〉|ei〉. However, we are in no way

guaranteed that this converges inH and if it does, we are in no way guaranteed that
it converges to |ψ〉 ∈ H [43]. As it turns out, the assumption that H be separable
is exactly the necessary and su�cient condition for this sum to behave like we are
used to in the �nite dimensional case. Perhaps the most important consequence of
separability is that we can realize unity in terms of this basis, that is the following
equation holds [44] ∑

i

|ei〉〈ei| = 1.

This is sometimes called the Parseval relation [43].
The orthonormal basis is sometimes called a complete orthonormal sequence [43]

3For any f ∈ L2, the integral
∫∞
−∞ |f(x)|2 dx must be �nite.

4Since the mapping f : H → Rn de�ned by f(|φ〉) = f(c1|v1〉 + c2|v2〉 + · · · + cn|vn〉) =
(c1, c2, . . . , cn)T (with the set {|vi〉}ni=1 being a basis for H) is a linear, injective map onto Rn and
thus de�ne an isomorphism betweenH and Rn.

14 Quantum Mechanics Chapter 2

which causes confusion: when physicists talk about completeness they are talking
about the existence of such a basis set and the resulting validity of

∑∞
i |ei〉〈ei| = 1

(sometimes called the completeness relation). However, when mathematicians talk
about completeness, they are almost always refering to the fact that any Cauchy
sequence inH converges inH.

We note that for an in�nite dimensional, separable Hilbert space, there exists an
isomorphism betweenH and `2, the Hilbert space of square summable sequences.

In the following, we will take |ψ〉 to denote an abstract state vector. Expanding
any such vector in terms of the basis of position-eigenstates (basically just an enu-
meration of all possible positions available to the system) yields what we will call the
wave function: ψ(x) =

∑
i |xi〉〈xi|ψ〉 =

∑
i ci|xi〉, with ci ≡ 〈xi|ψ〉.

From dynamical variables to operators

The classical observables, the generalized coordinates and conjugate momenta, are
promoted to operators acting on state vectors in the aforementioned Hilbert space.
Working in the position basis, the position operator becomes a simple multiplica-
tion operator: x̂ψ = xψ. The momentum operator becomes a di�erential operator,
p̂ψ = −i~(∂ψ/∂x). In addition, the old Possion brackets for classical mechanics are
promoted to commutator relations,

{f, g} → 1

i~

[
f̂ , ĝ
]
. (2.4)

This means the fundamental Poisson bracket, {qi, pj} = δij , is enforced as the fun-
damental commutator relation

{qi, pj} = δij → [x̂i, p̂j] = i~δij. (2.5)

It is striking to consider that the preceding three steps is all that is needed to take
us from the classical Hamilton equations of motion, and to the Heisenberg equations
of motion in the Heisenberg picture of quantum mechanics5. Indeed the classical Eq.
(2.2) directly yields the quantum equation of motion by promoting the classical ob-
servables to operators, q, p→ x̂, p̂, and the Poisson brackets to commutator relations,
{f, g} → −i/~[f̂ , ĝ], as6

dA

dt
= {A,H} → dA

dt
=

1

i~

[
Â, Ĥ

]
. (2.6)

Taking the expectation value (relative to some quantum state vector) of the Heisen-
berg equation of motion yields the familiar Ehrenfest theorem, which essentially

5The Heisenberg picture is a formulation of quantum mechanics in which the state vectors are
all constant, but the operators evolve in time according to the Heisenberg equation of motion (the
Heiseberg picture analogue to the Schrödinger equation).

6Assuming no explicit time dependence. If any such dependence is present, we need to add a ∂A/∂t
term to the right hand side of both the classical and quantum equations.

Section 2.3 Schrödinger picture 15

states that the quantum expectation values evolve in time in the same way the classical
observables do [45],

〈
Â
〉

=
1

i~

〈
ψ

∣∣∣∣ [Â, Ĥ] ∣∣∣∣ψ〉 . (2.7)

As usual, we will denote by 〈·|·〉 the integral L2 inner product, while 〈·〉 = 〈ψ| · |ψ〉
will denote the expectation value.

2.3 Schrödinger picture

The straightforward application of canonical quantization, starting from Hamilto-
nian classical mechanics, landed us in the Heisenberg picture of quantum mechan-
ics. This is the formulation of quantum theory in which the operators carry the time
dependence, with state vectors being constant in time with the equation governing
the evolution being the Heisenberg equation, Eq. (2.6). This is the quantum mechan-
ics formalism that behaves the most like classical mechanics does; classically, the
observables themselves, q and p (and derived quantities), evolve in time (the phase
space point moves along a trajectory according to the Hamilton equations of motion).

But there is another, more familiar, formulation of quantum mechanics in which
the operators are constant in time but the state vectors carry the time dependence.
This is called the Schrödinger picture, with the corresponding equation of motion
being the Schrödinger equation.

The wave function, a representation of the state vector which will be made rig-
orous in 2.6, Ψ(R; t) describes the state of a system at time t, where the vector R
encodes all the relevant degrees of freedom of the system. The Schrödinger equa-
tion can be derived by employing two key assumptions: The state Ψ(R; t) evolves in
time according to a linear and unitary time evolution operator, Û(t, t0) : L2 → L2

such that Ψ(R; t) = Û(t, t0)Ψ(R; t0) ≡ ˆ̂U(t)Ψ(R) [42]. Two other physically
motivated properties of Û are also assumed, namely that limt→t0 Û(t, t0) = 1 and
Û(t2, t0) = Û(t2, t1)Û(t1, t0). These properties are all satis�ed if we assume Û to
take the form

Û(t+ ∆t, t0) = 1− iΩ̂∆t, (2.8)

with Ω̂ being some Hermitian operator [46]. This is essentially nothing more than
a guess, but guided by the intuition from the classical analogue of our system, we
notice that Ω̂ has dimensions of frequency and postulate that we are really dealing
with Ĥ/~. This is after all pretty natural, since the classical Hamiltonian is what
governs time evolution before the quantization.

Taking the composition of Û(t2, t1) and Û(t1, t0) with t1 → t and t2 → t1 + ∆t

16 Quantum Mechanics Chapter 2

now yields

Û(t+ ∆t, t)Û(t, t0) = Û(t+ ∆t, t0) =

(
1− iĤ∆t

~

)
Û(t, t0) (2.9)

which we can rearrange as

Û(t+ ∆t, t0)− Û(t, t0) = −∆t
i

~
ĤÛ(t, t0). (2.10)

Dividing by ∆t and taking the limit ∆t → 0 yields the familiar de�nition of the
derivative of Û(t, t0) in terms of the Hamiltonian, i.e.

i~
∂

∂t
Û(t, t0) = ĤÛ(t, t0). (2.11)

This is known as the Schrödinger equation for the time evolution operator, Û and is
the fundamental equation from which all things connected to time evolution follows
[46].

The more familiar Schrödinger equation which govern the time evolution of states
emerges after we right-multiply by the wavefunction Ψ(R),

i~
∂

∂t
Û(t, t0)Ψ(R) = ĤÛ(t, t0)Ψ(R)

i~
∂

∂t
Ψ(R; t) = ĤΨ(R; t). (2.12)

We will denote Eq. (2.12) by the time dependent Schrödinger equation (TDSE). For
the important special case where Ĥ is time independent, the TDSE is separable in
spatial and temporal variables and admits the formal solution [14]

Ψ(R; t) = Û(t, t0)Ψ(R) = e−itĤ/tΨ(R). (2.13)

It is a central postulate of quantum mechanics that any observable is associated
with a Hermitian operator, Ô, and that it’s spectrum spans the entirety of L2. This
will be discusssed more thorougly in section 2.6, but for now we will anticipate things
to come and use the completeness of the operator Ô’s spectrum:∑

i

|Oi〉〈Oi| = 1. (2.14)

Let us now consider the energy, with corresponding Hermitian operator Ĥ . The
spectrum, the energyeigenstates, are labeled by |Ei〉. Inserting the unity of Eq. (2.14)
realized in terms of the energy eigenstates on both sides of the exponential expression

Section 2.3 Schrödinger picture 17

for Û(t, t0) yields

e−itĤ/~ =
∑
i

∑
j

|Ei〉〈Ei|e−itĤ/~|Ej〉〈Ej|

=
∑
i

∑
j

|Ei〉〈Ei|
∞∑
n=0

1

n!

(
tĤ

i~

)n

|Ej〉〈Ej|, (2.15)

where we have used the normal de�nition of the exponential in terms of it’s power se-
ries ex =

∑
n x

n/n!. Since Ĥ|Ei〉 = Ei|Ei〉 and Ĥn = EiĤ
n−1|Ei〉 = E2

i Ĥ
n−2|Ei〉 =

· · · = En
i |Ei〉, we �nd from Eq. (2.15) that

e−itĤ/~ =
∑
i

∑
j

|Ei〉〈Ei|
∞∑
n=0

1

n!

(
tÊi
i~

)n

|Ej〉〈Ej|

=
∑
i

∑
j

e−itEi/~|Ei〉 〈Ei|Ej〉︸ ︷︷ ︸
δij

〈Ej|

=
∑
i

|Ei〉e−itEi/~〈Ei|. (2.16)

This shows that if we can somehow �nd the energy-eigenstates and expand our
wave function in this basis, �nding the time evolution, governed by the TDSE, is
trivial [46]. Applying the result from Eq. (2.16) in Eq. (2.13) gives

Ψ(R; t) = Û(t, t0)Ψ(R) = e−itĤ/~Ψ(R)

= 〈R|
∑
i

|Ei〉e−itEi/~〈Ei|

(∑
j

|Ej〉〈Ej|Ψ〉

)
=
∑
i

∑
j

|〈R|Ei〉e−itEi/~ 〈Ei|Ej〉︸ ︷︷ ︸
δij

〈Ej|Ψ〉 =
∑
i

〈R||Ei〉e−itEi/~〈Ei|Ψ〉.

(2.17)

As illustrated above, the problem of computing the time evolution of a state when
the eigenstates of the Hamiltonian are known consists of calculating a series of inte-
grals (〈Ei|Ψ〉). For us, however, �nding the eigenstates and the corresponding eigen-
values will be the fundamental task. The governing equation is simply the eigenvalue
equation

Ĥ|Ψ〉 = E|Ψ〉, (2.18)

which is called the time independent Schrödinger equation (TISE). This is the spatial
result of the separation of variables we used to derive the TDSE [47].

18 Quantum Mechanics Chapter 2

Canonical quantization as a semi-classical model of quantum mechanics

In short, �rst (or canonical) quantization describes an attempt to construct a math-
ematical formulation of a quantum mechanical system emergent from the classical
description. It is important to note however that this is essentially a semi-classical
formulation in that the surrounding environment is treated classicaly. For example
the �rst quantized formulation ofN electrons con�ned in a harmonic oscillator treats
the external oscillator potential in a classical manner—despite the fact that this po-
tential inevitbly arises from some quantum e�ect.

A general assumption is that the surrounding system is large enough to be accu-
rately described by a classical treatment.

2.4 The quantum Hamiltonian
Since the Hamiltonian is the fundamental quantity which governs the dynamics of
any quantum mechanical system, the natural question is now: What does it look like?
In the simplest possible case, a free particle of mass m constrained to move in one
spatial dimension, it takes the form

Ĥfree = − ~
2

2m

∂2

∂x2
, (2.19)

after a straight forward to application of the operator promotion scheme for p→ p̂ =
−i~(∂/∂x). For a particle of massmmoving in a position dependent potential V (x),
the Hamiltonian takes the form

Ĥ = − ~
2

2m

∂2

∂x2
+ V (x). (2.20)

In the present work, we will focus on systems of interacting electrons in the pres-
ence of one or more positively charged nuclei. Under �rst quantization, the classical
Hamiltonian ofN particles of massme moving in an external potential changes from
that shown in Eq. (2.3). The total kinetic energy of all N electrons with masses me

becomes

T̂ =
N∑
i=1

− ~2

2me

∇2
i , (2.21)

where ∇i denotes di�erentiation w.r.t. the coordinates of particle i. Since the elec-
trons are negatively charged, the inter-particle potential will be the Coulomb poten-
tial

Ŵ =
N∑
i=1

N∑
j=i+1

kee
2

|r̂i − r̂j|
, (2.22)

Section 2.4 The quantum Hamiltonian 19

where ke = 1/4πε0 is the Coulomb constant. The sum limits ensure no double count-
ing is done. The positive nuclei give rise to a similar Coulomb potential, namely

V̂ = −
N∑
i=1

M∑
A=1

keZAe
2

|r̂A − r̂i|
, (2.23)

withM denoting the number of nuclei of (possibly di�ering) charge(s) +ZAe. Putting
it all together yields the total electron and nuclear Hamiltonian

Ĥ = −
N∑
i=1

~2

2me

∇2
i −

M∑
A=1

~2

2mA

∇2
A −

N∑
i=1

M∑
A=1

keZAe
2

|r̂A − r̂i|
+

N∑
i=1

N∑
j=i+1

kee
2

|r̂i − r̂j|
+

M∑
A=1

M∑
B=A+1

kee
2ZAZB

|rA − rB|
. (2.24)

The mass of nucleus A is here denoted mA.

2.4.1 Accuracy of molecular Hamiltonian
Of course, there are some imperfections. We have for example not included any
relativistic e�ects. The classical non-relativistic kinetic energy term takes the form
|p|2/2m = mv2/2. However, in order to account for relativistic e�ects, we should
really use

Tclassical, relativistic =
mc2√

1− (v/c)2
−mc2, (2.25)

with c being the vacuum speed of light. Expressing T in terms of the relativistic
momentum yields

Tclassical, relativistic =
√
p2c2 −m2c4 −mc2 = mc2

[√
1 +

(p

mc

)2

− 1

]

= mc2

[
1 +

1

2

(p

mc

)2

− 1

8

(p

mc

)3

+ · · · − 1

]
=

p2

2m
− p4

8m3c2
+O

(
p6

m5c4

)
. (2.26)

Evidently, the �rst order relativistic correction to the Hamiltonian is on the order of
p4/m3c2 [47].

We may also consider the charged nuclei moving (in the frame of refence of an
electron) setting up a magnetic �eld B. The energy involved in the interaction be-
tween this magnetic �eld and the dipole moment of the electron, µe, is Ĥspin-orbit =

20 Quantum Mechanics Chapter 2

µe ·B. This is called spin-orbit coupling. The electron magnetic dipole moment has
the magnitude

µe = − e

me

|S|, (2.27)

with S being the electron’s spin angular momentum. The magnetic �eld strenght set
up by the (apparen’t) motion of the nucleus (relative to the electron) is

B =
Zkee

mc2r3
L, (2.28)

with L being the electron’s orbital angular momentum. The correction to the Hamil-
tonian due to this e�ect becomes [47]

Hspin-orbit =
Zkee

2

2m2
ec

2r3
S · L. (2.29)

Combining both e�ects gives what is known as the �ne structure.
There is an additional relativistic e�ect which is derived by expanding the Dirac

equation Hamiltonian in powers of mc2 and taking the non-relativistic limit. This is
called the Darwin term, and for a central potential it can be written as [48]

HDarwin = −π~
2kee

2

2m2
ec

2
δ3(r− rA), (2.30)

with δ3(r−rA) being a Dirac delta function at the position of the nucleus. Since only
n = 1 (s symmetry) states have a non-vanishing magnitude at the origin, the Darwin
term only a�ects s states.

Furthermore we may take into account the Lamb shift, that is the splitting of 2s
and 2p states which is related to the quantization of the electric �eld. The charged
electrons interact with the vacuum �uctuations of the quantized electromagnetic �eld
which partially shield the Coulomb interactions between the electrons and the nuclei
[47, 49]. Even though quantum �eld theory is needed in order to handle this e�ect
for real7, we may use an e�ective Hamiltonian term which generates the shift [51]

ĤLamb shift =
4

3
α2mec

2

(
~
mec

)3

ln(1/α2)δ3(r− rA), (2.31)

with α = kee
2/~c ' 1/137 denoting the �ne structure constant.

Finally, let us consider the interaction between the electrons and the magnetic
dipoles of the protons. The proton has a magnetic dipole of magnitudeµp = (gpe/2mp)|Sp|
and sets up the magnetic �eld (according to classical electrodynamics) [47]

B =
keµ0

r3
[3(µ · r̂)r̂ − µ] +

2µ0

3
µδ3(r− rA), (2.32)

7In fact, the Dirac equation does not predict the shift, but a semi-classical model due to Welton
does [48, 50].

Section 2.4 The quantum Hamiltonian 21

Table 2.1: Order of magnitude energy corrections to the Hamiltonian due to
various e�ects un-accounted for by the ordinary atomic Hamiltonian.

Correction Approximate
term Expression Dimensions magnitude [Eh]

ĤRelativistic − p4

8m3c2

mek
4
ee

8

~4c2
5 · 10−6

ĤSpin-orbit
Zkee

2

2m2
ec

2r3
S · L kee

2~2

m2
ec

2a3
0

5 · 10−5

ĤDarwin −π~
2kee

2

2m2
ec

2
δ3(r− rA)

~2kee
2

m2
ec

2a3
0

5 · 10−5

ĤLamb
4

3
α2mec

2

(
~
mec

)3

ln(1/α2)δ3(r− rA)
α2~3

m2
eca

3
0

1 · 10−6

Ĥhyper�ne Eq. (2.33) µ0e
2~2

mpmea3
0

5 · 10−7

where µ0 denotes the permeability of free space and gp ≈ 5.59 is the gyromagnetic
ratio of the proton. The Hamiltonian correction term becomes

Ĥhyper�ne =
µ0gpe

2

mpme

(
[3(Sp · r̂)(Se · r̂)− Sp · Se]

8πr3
+

1

3
Sp · Seδ3(r− rA)

)
. (2.33)

We may now use dimensional analysis in order to work out the rough size of
these e�ects relative to the ground state energies of ordinary atoms. We will take
electronic distances to be on the order of the Bohr radius, r ∼ a0 and use the natural
time scale t ∼ ~a0/kee

2 in order to work out the typical momentum of an electron as
p ∼ mekee

2/~. The hydrogenic radial wave function of principal quantum number n
takes the value Rn(0) = 4Z3/a3

0n
3, so we take the delta function to be on the order

of δ3(r) ∼ 1/a3
0 [47]. All S and L terms carry units of ~.

Rough back of the envelope estimations of the order of magnitude of the correc-
tion terms are shown in Table 2.1. The binding energy of e.g. hydrogen is on the
order of ∼ 1Eh, so these are all miniscule compared to the typical energy scale we
are working with.

2.4.2 Born-Oppenheimer approximation

Let us now consider again the atomic Hamiltonian of Eq. (2.24). For a system of N
electrons in the presence of M nuclei in three spatial dimensions, we have a system

22 Quantum Mechanics Chapter 2

of 3(N +M) degrees of freedom (treating the nuclei as point particles). The solution
of the TDSE is the wave function, a function depending on at least 3(N + M) vari-
ables. If we were to seek the solution to the Schrödinger equation for, say an isolated
ca�eine molecule C8H10N4O2, then Ψ(R; t) would depend on a bit more than 300(!)
coordinates. This is an unbelievably monumentous task, and we are only asking for
the solution of an isolated, fairly small molecule consisting of �rst row atoms. As it
turns out, the wave function is a "very, very, very complicated function" and solving
the Schrödinger equation is a very, very, very hard problem for all but the smallest of
systems [14]. This was in fact realized in the very early days of quantum mechanics.
Dirac, for example, wrote in 1929 that [52]

“ The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the di�culty is only that the exact application of these equa-
tions leads to equations much too complicated to be soluble. It therefore
becomes desirable that approximate practical methods of applying quan-
tum mechanics should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much compu-
tation.

P. A. M. Dirac ”
In general, for an arbitrary Hamiltonian (for example the full Hamiltonian of

Eq. (2.18) with the �ve correction terms of section 2.4.1), solving the correspond-
ing Schrödinger equation is a problem classi�ed in complexity theory as NP-hard
[53]. Heuristically, we may consider this to be a problem that is not feasably soluble
even in theory using a deterministic algorithm.8 As it turns out, we will need to make
certain simpli�cations before we can proceed.

In a molecular system, little momentum transfer will happen between the nuclei
and the electrons on account of their di�ering masses [16]. As protons are almost 2000
times heavier than electrons, their movement will be drastically slower than their
lighter counterparts (assuming the momenta of the two are similar). As the electrons
will relax to a stationary state much faster than the typical time scales involved in
nucleonic motion, we may assume the nucleus to be e�ectively �xed and treat only
the electronic degrees of freedom. This is very similar to the idea of a quasistatic
process in thermodynamics in where change is forced upon a system su�ciently
slowly to allow it to continuously equilibrate throughout: at every instant, we may
regard the system to be equilibrated despite the continual change it is undergoing
[54]. In the framework of quantum mechanics, this is known as the adiabatic theorem

8The P class problems are problems which can be solved in polynomial time using a deterministic
algorithm. Assuming that P6=NP (which is belived to be true), it means that NP problems cannot and
NP-hard problems are by de�nition as hard as the hardest NP problems. In reality, this most likely
means we are stuck with a theoretical best case scenario of an algorithm with runs in exponential
(w.r.t. the system size) time.

Section 2.4 The quantum Hamiltonian 23

and sometimes the �xed nuclei approximation is called an adiabatic approximation
[46].

The separation of the nuclear and electronic degrees of freedom is known as the
Born-Oppenheimer approximation[55]. Recall that the full molecular Hamiltonian
reads (Eq. (2.24))

Ĥ = −
N∑
i=1

~2

2me

∇2
i −

M∑
A=1

~2

2mA

∇2
A −

N∑
i=1

M∑
A=1

keZAe
2

|r̂A − r̂i|
+

N∑
i=1

N∑
j=i+1

kee
2

|r̂i − r̂j|
+

M∑
A=1

M∑
B=A+1

kee
2ZAZB

|rA − rB|
. (2.34)

Taking the limitmA →∞ freezes out the proton motion, creating stationary clamped
nuclei. The Born-Oppenheimer Hamiltonian is given as

ĤBorn-Oppenheimer = −
N∑
i=1

~2

2me

∇2
i −

N∑
i=1

M∑
A=1

keZe
2

|r̂A − r̂i|
+

N∑
i=1

N∑
j=i+1

kee
2

|r̂i − r̂j|
+ constant,

(2.35)

where the constant is just the nucleus-nucleus interaction term,

constant =
M∑
A=1

M∑
B=A+1

kee
2ZAZB

|rA − rB|
. (2.36)

If the nuclei are all stationary, this is just a constant and can be disregarded as a
constant term in the Hamiltonian wont a�ect the dynamics. Crucially, the Born-
Oppenheimer Hamiltonian and the nuclei position operators R̂A commute so it is
possible to �nd solutions which are simultaneously eigenfunctions of ĤBorn-Oppenheimer
and have a de�nite value of the RAs [56]. It is important to note that solution of the
corresponding Schrödinger equation now depends only parametrically on the nuclei
positions, RA. This reduces the number of degrees of fredom by 3M [22].

If we are able to somehow �nd a solution to the electronic Schrödinger equa-
tion, Ψ(R;RA), it would then be possible to use a similar argument as before to
�nd a solution to the nuclear Schrödinger equation. When considering the motion of
the nucleus, it is reasonable to approximate the electronic in�uence by an averaging
of their coordinates over the electronic wave function [22]. This gives the nuclear

24 Quantum Mechanics Chapter 2

Hamiltonian

ĤNuclear = −
M∑
A=1

~2

2mA

∇2
A +

M∑
A=1

M∑
B=A+1

kee
2ZAZB

|rA − rB|

+

〈
−

N∑
i=1

~2

2me

∇2
i −

N∑
i=1

M∑
A=1

keZe
2

|r̂A − r̂i|
+

N∑
i=1

N∑
j=i+1

kee
2

|r̂i − r̂j|

〉

= −
M∑
A=1

~2

2mA

∇2
A +

M∑
A=1

M∑
B=A+1

kee
2ZAZB

|rA − rB|
+ Eelectronic(RA). (2.37)

The key insight to glean from this is that the electronic energy acts as an e�ec-
tive potential for the nucleonic motion: in the words of Szabo & Ostlund "the nuclei
in the Born-Oppenheimer approximation move on the potential energy surface ob-
tained by solving the electronic problem" [22, 56]. This lies at the heart of, and forms
the foundation for, most of quantum chemistry. Note carefully that all we need to
�nd is the energy, in principle we don’t need to concern ourselves with the elctronic
wave function. All molecular dynamics (disregarding vibration and rotation) emerge
e�ectively from Eelectronic(RA).

Accuracy of the Born-Oppenheimer approximation

In somewhat more tehcnical terms, the Born-Oppenheimer approximation can be
stated as: Assuming the full molecular Schrödinger equation has a solution on the
formψ(R,RA) ≡ Ψ(R)Φ(RA), with Ψ(R) being the solution of the electronic prob-
lem, then insertion of this total wave function into the full Hamiltonian yields

Ĥfull ψ(R,RA) =
[
T̂electronic + T̂nucleonic + V̂ (R) + V̂ (RA) + V̂ (R,RA)

]
Ψ(R)Φ(RA)

=
[
T̂nucleonic + V̂ (RA)︸ ︷︷ ︸

Ĥnucleonic

+Ĥelectronic

]
Ψ(R)Φ(RA). (2.38)

Since T̂ involves a di�erential operator, we need to consider the operation of a di�er-
entiation of Ψ(R) w.r.t. RA and Φ(RA) w.r.t. R. It turns out that the latter vanishes
exactly, however the former will have a non-zero contribution to the total molecu-
lar energy [56]. The Born-Oppenheimer approximation consists of disregarding this
di�erential cross-term and taking the full Hamiltonian acting on the product state to
be [46] [

Ĥnucleonic + Eelectronic(RA)
]

Φ(RA) ≈ ETotalΦ(RA). (2.39)

Let us now consider for a moment how much e�ect this intentional oversight will
have on the total energy of the system. Again we turn to dimensional analysis in order

Section 2.5 The quantum Hamiltonian 25

Atomic suppression
Atom number ratio

H 1 0.1527

He 2 0.1081

Be 4 0.0883

Ne 10 0.0722

Ar 18 0.0608

Sn 50 0.0463

U 92 0.0389

Og 118 0.0369

Table 2.2: Values of the Born-Oppenheimer
suppression ratio, S = (me/mA)1/4 for various
di�erent atomic systems. Note the very slow
scaling of quarter power, despite the widely dif-
fering masses.

to get a rough estimate. For the electronic wave function, we take the characteristic
length to be the only combination of ~, me, ke, and e with units of distance. This is
the Bohr radius, a0 = ~2/mee

2. For the vibrational nucleonic motion however, the
characteristic length is taken to be b0 ≡ ~2/e2m

1/4
A m

3/4
e [56]. Di�erentiation w.r.t. RA

will then yield appreciable change in Ψ(R) if the change is on the order of a0, but
di�erentiation of Φ(RA) will cause it to change appreciably if the variations in RA

are on the order of b0. It is thus the ratio a0 to b0 which determines how good of
an approximation the Born-Oppenheimer scheme is. As b0 depends, albeit weakly,
on the typical nucleonic mass, this changes depending on the molecular system in
question.

The ratio

S ≡ b0

a0

=

(
~2

e2m
1/4
A m

3/4
e

)
(

~2
mee2

) =

(
me

mA

)1/4

(2.40)

depends on the mass ratio to the one quarter power. Despite the almost three order of
magnitude di�erence in the electron and proton masses, the low exponent means this
suppression ratio worryingly large values for small atoms. The S ratio is calculated
for a few atoms of di�ering sizes in Table 2.2.

However, Born-Oppenheimer works because vibrational energies of atoms aren’t
large enough to excite electrons across electronic energy levels. The vibrational ener-
gies are smaller than the electronic ones roughly by a factor of

√
me/mA. Even larger

is the discrepancy between typical electronic energy scales and those of molecular
rotational energies, which carry an additional factor of

√
me/mA meaning they are

an overall factor of me/mA smaller [56].

26 Quantum Mechanics Chapter 2

2.5 Anti-symmetry and the Pauli principle
Let us now consider a system of N indistinguishable particles, i.e. particles that are
fundamentally identical as to make telling them apart from each other is impossible.
If our theory is to handle such a system with any logical consistency, we must require
our wave function (and thus also the observables we derive from it) to be permutation
invariant (up to a phase factor, which does not a�ect the physics [as per the postulates
of QM]). If we cannot tell the particles apart, it does not make sense to say particle
one is here, while particle two is over there—essentially we need our theory to account
for both cases simultaneously. We may do this by constructing a wave function that
is non-committal as to which particle is where [47].

Following Kvaal we may de�ne this mathematically by de�ning σ ∈ SN , a permu-
tation of the indices in a set of N such indices [14]. SN here denotes the symmetric
group of degree N .9 We must demand that |Ψ|2 be permutation invariant, that is

|Ψ(r1, r2, r3, . . . , rN)|2 =
∣∣Ψ(rσ(1), rσ(2), rσ(3), . . . , rσ(N))

∣∣2
⇒ Ψ(r1, r2, r3, . . . , rN) = αΨ(rσ(1), rσ(2), rσ(3), . . . , rσ(N)), (2.41)

with α ∈ C (possibly σ-dependent) with |α| = 1.
For each permutation in SN , we de�ne a linear operator P̂σ that evaluates the

wave function with permuted indices

P̂σ [Ψ(r1, r2, r3, . . . , rN)] = Ψ(rσ(1), rσ(2), rσ(3), . . . , rσ(N). (2.42)

Thus we can formulate particle indistinguishability in terms of P̂σ by demanding that
Ψ(r1, r2, r3, . . . , rN) be an eigenfunction of P̂σ. According to the postulates of quan-
tum mechanics, a fermionic wave function is totally anti-symmetric w.r.t. exchange
of particles, meaning this eigenvalue is (−1)|σ|, with |σ| being the minimal number
of transpositions10 needed to perform the full permutation σ. This is known as the
Pauli exclusion principle.

2.5.1 Slater determinants
A one-electron system is described by a one-body Hamiltonian operator, ĥ. This one-
body Hamiltonian is a di�erential operator w.r.t. the coordinates of this one electron
(kinetic energy operator), and possibly contains an external potential. It’s spectrum
forms a set of single-particle wave functions, φi(r). According to the postulates of
QM, this set is complete in the sense that it spans the enclosing Hilbert space. We
will denote the φis by spatial orbitals.

9The symmetric group on a �nite set M is a mathematical group, and consists of all possible
permutations of the elements of the set M . Mathematically, these permutations are bijections from
M onto M itself. There are N ! unique permutations in the group, including the identity permutation
(which just leaves the set un-changed).

10A transposition is de�ned as a permutation of only two indices.

Section 2.5 Anti-symmetry and the Pauli principle 27

In order to completely specify the quantum state of an electron, it is necessary to
also specify its spin state. The electron being a spin-1/2 particle, it admits only two
distrinct spin projections: Spin up, χ(↑), and spin down, χ(↓) [47]. The wave function
of the electron, completely specifying all of it’s properties is the product of a spatial
orbital and a spin function—a spin-orbital—ψi(r, σ) = φ(r)χ(σ), with σ labelling
the spin-projection. Mathematically, we may consider the original Hilbert space of
the spatial orbitals to be extended (in the cartesian product sense) with a simple two-
dimensional Hilbert space of spin-states. Thus strictly speaking we should be writing
the spin-orbitals as direct products, φi(r)⊗χ(σ), but we will omit this notation for the
entirety of the present work and let simple juxtapositioning represent this product.

Assume now that a many-electron quantum system is described by a Hamiltonian
of the form

Ĥ =
N∑
i=1

ĥi =
N∑
i=1

[
−∇

2
i

2
+ Vext(r)

]
, (2.43)

where the operators ĥi act only on the coordinates of particle i. It is natural to take
the one-electron states as a starting point when looking for the spectrum of the full
Hamiltonian, Ĥ . And in fact, it turns out that a simple product

Ψ(R,σ) = ψa(r1, σ1)ψb(r2, σ2) · · ·ψc(rN , σN) (2.44)

is an eigenfunction of Ĥ : it is known as a Hartree product [22]. The vector of spin
labels, σ = {σ1, σ2, . . . , σN}, here denotes the collection of all spin projections in
the same way R denotes the collection of all electronic coordinates. However, the
Hartree product does not have the correct (anti-)symmetry. In particular, the product
assigns to speci�c electrons (labelled 1, 2, 3, . . . , N) speci�c quantum states (labelled
ψa, ψb, . . .). In accordance with Pauli, we may anti-symmetrize the Hartree product
by considering every possible permutation of the electron labels, [14]

Ψ(R,σ) =
1√
N !

∑
γ∈SN

(−1)|γ|P̂γψa(r1, σ1)ψb(r2, σ2) · · ·ψc(rN , σN). (2.45)

The |γ| factor denotes the total number of transpositions in P̂γ , and (−1)|γ| is the sign
of the permutation. The normalization is necessary in order to ensure 〈Ψ|Ψ〉 = 1, as
there are N ! total possible permutations we must consider. Eq. (2.45) is known as a
Slater determinant, and is more commonly written as [57]

Ψ(R,σ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ2(r1, σ1) ψ3(r1, σ1) . . . ψN(r1, σ1)
ψ1(r2, σ2) ψ2(r2, σ2) ψ3(r2, σ2) . . . ψN(r2, σ2)
ψ1(r3, σ3) ψ2(r3, σ3) ψ3(r3, σ3) . . . ψN(r3, σ3)

...
ψ1(rN , σN) ψ2(rN , σN) ψ3(rN , σN) . . . ψN(rN , σN)

∣∣∣∣∣∣∣∣∣∣∣
.

(2.46)

28 Quantum Mechanics Chapter 2

We could of course have allowed the permutations to operate on the spin-orbital
labels instead of the electron labels, leading to analogous expressions. It is important
however that it acts on only electron labels or orbital labels, since acting on both
simultaneously leaves the product entirely unchanged [58].

Before moving on, let us note some key properties of the Slater determinant. In-
terchanging two electrons gives rise to an overall minus sign, since this corresponds
to interchanging two rows of the determinant [59]. Some authors choose to represent
the Slater determinant with rows corresponding to orbitals, and columns represent-
ing electron labels. The two representations are equal, since the determinant is invari-
ant under transposition [44]. The Hartree products form a basis for the fullL2 Hilbert
space of the N -electron system, and the Slater determinants span the sub-space of
anti-symmetric functions in the same space [14]. This means we can represent any
square integrable, normalized, anti-symmetric function of N electronic coordinates
as a sum over Slater determinants,

f(R,σ) =
∞∑
i=1

ciΨi(R,σ). (2.47)

Some numbering {Ψi}∞i=1 has here been chosen. We note that this is valid only when
the entire spectrum of ĥ is considered for the single-particle orbitals occupying the
determinant.

The Slater determinant is normalized whenever the spin-orbitals are normalized.
Consider one of the integral terms in the total 〈Ψ(R,σ)|Ψ(R,σ)〉, i.e.

〈ψi1ψi2 . . . ψiN |ψj1ψj1 . . . ψj1〉 =

∫
dx1 . . . dxN ψ

∗
i1

(r1, σ1)ψj1(r1, σ1)

· · ·ψ∗iN (rN , σN)ψjN (rN , σN)

=

∫
dx1ψ

∗
i1

(r1, σ1)ψj1(r1, σ1)∫
dx2ψ

∗
i2

(r2, σ2)ψj2(r2, σ2) · · ·∫
dxNψ

∗
iN

(rN , σN)ψjN (rN , σN)

= δi1j1δi2j2 · · · δiN jN . (2.48)

The x coordinate here denotes the collection of spatial and spin coordinates for each
electron, x = {r, σ}, and position in the string of orbitals—|ψ1ψ2 . . . ψN〉—determines
which electron occupies which state. For example in the state |ψiψjψk〉, spin-orbital
i is evaluated at the coordinates of electron one, the j orbital at electron two, and
the k orbital at the coordinates of electron three. The last equality follows from the

Section 2.6 Postulates of Quantum Mechanics 29

spin-orbitals being orthonormal. In terms of the total Slater, this means11

〈Ψ(R,σ)|Ψ(R,σ)〉 =

〈
1√
N !

∑
γ1∈SN

(−1)|γ1|P̂γ1ψa1ψa2 · · ·ψaN

∣∣∣∣∣∣∣∣∣∣ 1√
N !

∑
γ2∈SN

(−1)|γ2|P̂γ2ψb1ψb2 · · ·ψbN

〉

=

(
1√
N !

)2
〈 ∑
γ1∈SN

(−1)|γ1|ψγ1(a1)ψγ1(a2) · · ·ψγ1(aN)

∣∣∣∣∣∣∣∣∣∣ ∑
γ2∈SN

(−1)|γ2|ψγ2(b1)ψγ2(b2) · · ·ψγ2(bN)

〉

=
1

N !
N ! = 1, (2.49)

where we used that the only non-zero terms are the ones in which the delta functions
of Eq. (2.48) all survive, meaning γ1 = γ2. There are exactly N ! possible such terms
in which the two permutations coincide, and they all carry an overall +1 sign since
(−1)|γ1|(−1)|γ2| = 1 for any γ1 = γ2.

2.6 Postulates of Quantum Mechanics
The axiomatic formulation of QM was set up by British physicist P. Dirac and Hungarian-
American mathematician-physicist-computer scientist J. von Neumann in the 1930s
[60]. The fundamental postulates can be expressed as follows [42]:

(i) A quantum state of an isolated system is described fully by a state vector of
unit norm in some separable Hilbert spaceH.

In the notation due to Dirac, these vectors are represented as "kets," |ψ〉.
The kets can be expanded in any basis {|i〉}i |ψ〉 =

∑
i ci|i〉, with ci ∈ C.

For any ket, a corresponding "bra" vector, 〈ψ| can be assigned in the dual
space ofH by an anti-linear mapping

|ψ〉 → 〈ψ| =
∑
i

c∗i 〈i|. (2.50)

The (complex valued) inner product is a composition of a bra and a ket,
〈ψ1|ψ2〉.

11Using for the moment a permutation operator acting on the orbital indices as opposed to the prior
permutations which acted on the electron indices.

30 Quantum Mechanics Chapter 2

(ii) Each physical observable of the system is associated with a hermitian operator
onH. The spectrum of each such operator spans the Hilbert space.

If the spectrum is discrete, the eigenfunctions of such an operator are
orthogonal and can always be made orthonormal e.g. by a Gram-Schmidt
process [43]. The eigenfunctions form a complete set, in the sense that
the unit operator can be represented by∑

i

|i〉〈i| = 1. (2.51)

(iii) The time evolution of a state vector |ψ〉 = |ψ(t)〉 is governed by the time de-
pendent Schrödinger equation,

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉. (2.52)

The Hamiltonian, Ĥ , is a linear, hermitian operator onH.

(iv) The measurable (physical) values associated with observables are de�ned by
the eigenvalues.

With a quantum system in a state |ψ〉 before measurement, the probability
of measuring the value an corresponding to the |n〉 eigenvector of the
hermitian operator Â is given by

probability of an = |〈n|ψ〉|2. (2.53)

If the geometric multiplicity of an is> 1, the probability is the sum over all
corresponding eigenvectors, |n〉, |m〉, . . . , |k〉, with the same eigenvalue
[59].

(v) An ideal measurement of Â resulting in the value an projects the state vector
onto the sub-space ofH spanned by all eigenvectors of Â with eigenvalue an.

If an has geometric multiplicity unity, the resulting state is the corre-
sponding eigenfunction,

|ψ〉 measurement−−−−−−→ |ψ′〉 = P̂n|ψ〉 = |n〉, (2.54)

where P̂n is the projection on the eigenstate |n〉. This is often referred to
as "collapse of the wave function."

Section 2.7 The variational principle 31

2.7 The variational principle

For a given Hamiltonian, calculating the expectation value of 〈Ψ|Ĥ|Ψ〉 (for any Ψ ∈
L2) gives an upper bound on the ground state energy. Following Gri�ths, a simple
proof goes as follows: Since the spectrum of Ĥ spans12 all of L2. This means that any
normalized Ψ we choose can be expressed in terms of the eigenstates of Ĥ ,

Ψ =
∞∑
n=0

cnΦn, where ĤΦn = EnΦn. (2.55)

The ground state energy is by de�nition the lowest eigenvalue of Ĥ , we have E0 ≤
En for all n = 1, 2, . . .

Calculating the expectation value in terms of the Ens, we �nd

〈
Ψ|Ĥ|Ψ

〉
=

〈
∞∑
n=0

c∗nΦn

∣∣∣∣∣ Ĥ
∣∣∣∣∣
∞∑
n′=0

cn′Φn′

〉

=
∞∑
n=0

∞∑
n′=0

c∗ncn′
〈
Φn|Ĥ|Φn′

〉
=
∞∑
n=0

∞∑
n′=0

c∗ncn′En′
〈
Φn|Φn′

〉︸ ︷︷ ︸
δnn′

=
∞∑
n=0

c∗ncnEn =
∞∑
n=0

|cn|2En. (2.56)

Since Φ is assumed to be normalized, we know that
∑∞

n=0 |cn|2 = 1, meaning |cn| ≤ 1

for any n = 0, 1, 2, . . . This means that the expectation value 〈Ψ|Ĥ|Ψ〉 = |c0|2E0 +
|c1|2E1 + · · · ≥ E0.

The variational principle is an invaluable tool, and forms the basis for almost all
electronic structure methods.

The variational principle can be stated concisely as

E0 = min
Ψ∈L2

〈
Ψ|Ĥ|Ψ

〉
, (2.57)

where we can consider the energy to be a functional of the wave function, E[Ψ].
More generally, the variational principle can be expressed as: The energy functional
is stationary at all eigenvalues of the Hamiltonian, [61, 62]

δ E[Ψ]
∣∣∣
Φn

= 0. (2.58)

Explicitly calculating the variation gives simply the time independent Schrödinger
equation as the formal condition for δE[Φ] to vanish exactly [24]. Thus the general
variational principle and the Schrödinger equation are in a sense two sides of the
same coin.

12Asumming crucially that the Hamiltonian is hermitian [47]. This is not the case for e.g. the
similarity transformed H̄ used in coupled cluster theory, predictably leading to all kinds of di�culties.
We assume also that the eigenstates are orthonormalized.

Chapter 3

Wave functions

In ordinary quantum mechanics, the wave function is the primary quantity of in-
terest. It constitutes the solution of the Schrödinger equation and encodes within it
all information about the state of the isolated quantum system in question. Mathe-
matically speaking, the wave function is the complex valued spatial projection of the
abstract state vector which is a unitary vector in some separable Hilbert space [14,
60]. Formally, it is the solution to the Schrödinger equation, Ĥψk = Ekψk, and it has
a probabilistic interpretation originally after German physicist M. Born, which states
that the magnitude squared is a probability density, i.e. [56, 63, 64]

dP (r) = |ψ(r)|2 d3r. (3.1)

The probability dP (r) denotes here the probability of �nding the particle described
by the wave function in an in�nitesimal volume d3r around the position r.

Even though we are unable (in the overwhelming majority of cases) to �nd closed
form solutions to the Schrödinger equation, we may nevertheless write down a set
of conditions we know the exact solution must adhere to. In the following section,
we will go through properties of the exact wave function which are most relevant for
atomic and molecular systems. Thereafter, we will consider the most common bases
used to form approximate wave functions for many-body quantum systems.

3.1 Properties of the exact wave function
In the words of Helgaker and co-workers: Even though we are forced to make ap-
proximations in the solution of the Schrödinger equation, such... [13]

“ Approximations should not be made in a haphazard manner. Rather we
should seek to retain in our wave function as many symmetries and prop-
erties of the exact solution as possible. Indeed, some of the characteristics
of the exact wave function are so important that we should try to incor-

33

34 Wave functions Chapter 3

porate them at each level of theory, and a few are so fundamental that
they are introduced into our models without thought.

T. Helgaker, P. Jørgensen, and J. Olsen ”
Some of the most fundamental properties involve anti-symmetry and square in-

tegrability. These are normally relatively easily accounted for. However, there are
more subtle ones which may be easily missed without a thorough analysis of the
known properties of the exact wave function. We present here a(n incomplete) list of
properties and conditions for the exact solution of the Schrödinger equation.

Eigenfunction of the number operator, N̂

The exact wave function is a function of the spatial and spin degrees of freedom
of the particles it describes. For an atomic or molecular system, under the Born-
Oppenheimer approximation, the wave function depends only parametrically on the
positions of the nuclei, Ψ = Ψ(r1, r2, . . . , rN , σ1, σ2, . . . , σN ; rA, rB, . . . , rC). The
approximation we choose should thus be an eigenfunction of the number operator,
N̂ |ψ〉 = N |ψ〉. The number operator is de�ned under second quantization as N̂ =∑

q c
†
qcq, where the sum is taken to run over all possible single particle states [14].

Totally anti-symmetric under exchange of particles

A fermionic wave function must be totally anti-symmetric w.r.t. exhange of two par-
ticles [47]. In accordance with this, we must choose the approximating wave function
to be an eigenfunction of the permutation operator, P̂ij , which interchanges particles
i and j. We must also demand that the eigenvalue is −1, i.e. P̂ij|ψ〉 = −1|ψ〉.

Both of the aforementioned conditions are satis�ed if we take the approximation
to be an N × N (or a linear combination of) Slater determinant(s) �lled with single
electron orbitals.

Square integrability and normalization

For a bound state, the exact wave function is square integrable and normalized to
unity, 〈Ψ|Ψ〉 = 1 [13]. This means that the exact wave function is �nite almost
everywhere1 w.r.t. the L2 norm. A su�cient and natural way to ensure this holds for
the approximating wave function is to build it from �nite single-electron orbitals, i.e.
populate the Slater determinant(s) with spin-orbitals which are themselves parts of
L2.

1Mathematically, it is �nite except possibly on a set of measure zero such that the integral over
space is not a�ected by the divergent value.

Section 3.1 Properties of the exact wave function 35

Size-extensivity

The exact wave function is size-extensive in that a system of non-interacting subsys-
tems have the same total energy as the sum of the energies of the subsystems [13]. It
is thus reasonable to demand of the approximate wave function that (in some chosen
calculational scheme) the energy found by calculating the total energy of a system of
non-interacting subsystems to exactly coincide with the energies of the subsystems
themselves. In practice, we may check such a condition by separating subsystems by
a large distance and comparing the calculated energy with the energy resulting from
calculating the energies of the subsystems individually.

Eigenfunction of the total spin and spin projection operators, Ŝ2 and Ŝz

In non-relativistic theory, the exact wave function is an eigenfunction of the total spin
operator Ŝ2 and the spin projection operator Ŝz [65]. It would be natural to demand
that the approximating wave function also be an eigenfunction of these two oper-
ators. Taking the approximation to be a single Slater determinant, populated with
spin-orbitals of de�nite spin projection automatically means the total wave function
is an eigenfunction of Ŝz . However, single determinants are not necessarily eigen-
functions of Ŝ2 [22]. Linear combinations of determinants may be formed which
by construction are eigenfunctions of Ŝ2 [13]. Such wave functions are called spin-
adapted.

Asymptotic behaviour of the electronic density

Katriel and Davidson [66] showed that the electron density decays exponentially as

ρ(r) ≈ exp
(
−2
√

2Ir
)
, (3.2)

in the limit of large r. Here I denotes the �rst ionization potential of the molecule,
i.e. the energy needed in order to remove the least tightly bound electron. Since the
ionization potential is not known before the solution to the Schrödinger equation is
found, an a priori treatment of the long-range exponential decay of the density is
impossible [13].

Virial theorem

The exact wave function obeys the virial theorem, which states that (for a Coulombic
potential V̂) [67]

〈T̂ 〉 = −1

2
〈V̂ 〉. (3.3)

A simple proof2 by dimensional analysis due to Weinberg for the one-particle case
illustrates the condition: Since the square of the wave function has to integrate over

2More precisely, a heuristic (not entirely rigorous) justi�cation.

36 Wave functions Chapter 3

space to a probability, it must have dimensions of Length−3/2 [56]. Letting a denote
the chosen length scale, we can express the wave function as ψ(r) = a−3/2f(r/a),
with z ≡ r/a and f(z) being a dimensionless function of a dimensionless argument.
Changing integration variables in the expressions for 〈V̂ 〉 and 〈T̂ 〉,

〈ψ|V̂ |ψ〉 = 〈V̂ 〉ψ =

∫
d3rV (r)|ψ(r)|2∫

d3r |ψ(r)|2
, and (3.4)

〈ψ|T̂ |ψ〉 = 〈T̂ 〉ψ =

∫
d3r ~2

2m

(
|∂ψ
∂x
|2 + |∂ψ

∂y
|2 + |∂ψ

∂z
|2
)

∫
d3r |ψ(r)|2

, (3.5)

from r → z = r/a gives a single factor of a−1 in the former and a−2 in the latter
integral. For the denominators, the integration measure d3r carries dimensions of a3

which exactly cancel the (a−3/2)2 = a−3 from the wave function squared (by necces-
sity, since the integral represents a probability). In the 〈V 〉 integral, the same happens
in the numerator, and we are left with only the Coulomb potential a−1 contribution.
The numerator in the 〈T 〉 integral has dimensions of a−2, since each coordinate dif-
ferentiation carries a single inverse a.

As the exact wave function is a variational minimum of the Hamiltonian, the ex-
pectation value of 〈H〉ψ (note carefully that this is true only when evaluated at the
exact wave function [ground or excited states]) must be independent of variations in
ψ. Namely, they must be independent of variations of a since ψ(r) = a−3/2f(z) [56].
The derivative of 〈T̂ 〉ψ + 〈V̂ 〉ψ taken at the exact wave function must vanish, giving
Eq. (3.3).

The virial theorem generalizes to N particles in the same form as Eq. (3.3).

Cusp conditions

In general, when charged particles approach each other the Coulombic 1/r term of
the interaction energy diverges. In order for the energy to remain �nite, the wave
function needs to obey very speci�c sets of conditions dictating the behaviour of the
discontinuous derivatives at the collision points. First described by Kato, such cusp3

conditions describe known properties of the quantum system and wave function at
the divergent points of the inter-electron and electron-nucleus Coulomb potentials
[68]. These two cases will be described in depth in sections 3.1.2 and 3.1.1.

3.1.1 Electron-nucleus cusp

We will now consider in some detail the issue of the cusp condition arising from the
singular Coulombic potential at the position of point-like nuclei.

3The word cusp—from the latin cuspis, meaning a point—describes "a pointed end where two curves
meet."

Section 3.1 Properties of the exact wave function 37

Let us consider a system of a single atom of charge +Z withN bound electrons. It
will be useful in the following to de�ne the local energy,Elocal, as a spatially dependent
measure of the "instantaneous" energy of a system. We take

Elocal(R) ≡ 1

Ψ(R)
ĤΨ(R) (3.6)

to be the local energy, and note that for any eigenfunction Φ(R) of Ĥ , the local
energy is constant for all con�gurations R = {r1, r2, . . . , rN , σ1, σ2, . . . , σN} [69].
This is simply a trivial result of the Schrödinger equation, since ĤΦ(R) = EΦ(R)
we �nd that

Elocal(R) =
1

Φ(R)
ĤΦ(R) =

1

Φ(R)
EΦ(R) = E. (3.7)

We cannot normally �nd an approximate wave function for which Elocal(R) = E
holds, but we should at least make sure that it is well behaved. There are certain crit-
ical electronic con�gurations for which the Coulombic potential diverges. Keeping
the local energy �nite at these points leads to what is known as cusp conditions on
the wave function.

The �rst critical con�guration we will consider is the class of electronic positions
for which |ri − rA| → 0 for some electron i and nucleus A. Since the electron-
nucleus Coulomb potential diverges there must be a corresponding divergent term
in the laplacian which exactly cancels it. Let us consider the Born-Oppenheimer
Hamiltonian for a single electron in the presence of a charge-Z atom,

Ĥ(r) = −∇
2

2
− Z

|r|
, (3.8)

where we take the atom to be situated at the origin. The radial Schrödinger equation
can be written as [58][

∂2

∂r2
+

2

r

∂

∂r
+

2Z

r
− l(l + 1)

r2
+ 2E

]
R(r) = 0. (3.9)

For l = 0 states, we note that the two 1/r terms must exactly cancel if the local
energy is to remain �nite when r → 0. This means that

Elocal(r→ 0) = lim
r→0

{
1

R(r)

(
2

r

∂

∂r
+

2Z

r
+ �nite terms

)
R(r)

}
, (3.10)

and the exact wave function obeys [17]

lim
r→0

{
1

R(r)

∂R

∂r

}
= −Z. (3.11)

38 Wave functions Chapter 3

We see that a wave function of s-type symmetry (l = 0) which does not vanish at
r = 0 must be exponential in r in the limit of r → 0. What happens if l 6= 0 or
R(0) = 0? It turns out that considering the latter issue automatically resolves the
�rst, so let us take the case ofR(0) = 0 [17]. We may factor the leading r dependence
out of R(r), and de�ne R̃(r) ≡ rmR(r), so that R̃(0) 6= 0. Three applications of the
derivative product rule gives

∂

∂r
R(r) =

∂

∂r

[
R̃(r)rm

]
=
∂R̃

∂r
rm +mR̃(r)rm−1, (3.12)

and

∂2

∂r2
R(r) =

∂2

∂r2

[
R̃(r)rm

]
=
∂2R̃

∂r2
rm + 2

∂R̃

∂r
mrm−1 +m(m− 1)R̃(r)rm−2. (3.13)

Insertion into the radial Schrödinger equation, Eq. (3.7), we �nd that

∂2R̃

∂r2
rm +

∂R̃

∂r

2(m+ 1)

r
rm + R̃(r)

m(m+ 1)

r2
rm+

R̃(r)
2Z

r
rm − R̃(r)

l(l + 1)

r2
rm + 2ER̃(r)rm = 0. (3.14)

If the local energy is to remain �nite once again, we need the inverse powers of r to
cancel, which for 1/r2 yields m = l. Furthermore, for the 1/r terms, we have the
condition

lim
r→0

{
1

R̃(r)

∂R̃

∂r

}
= − Z

l + 1
. (3.15)

3.1.2 Electron-electron cusp
In the limit of two colliding electrons r12 → 0, another cusp condition is found. It
turns out that the corresponding radial equation for the inter-electronic separation
carries the same dependence on r12 as the in the electron-nucleus case. With the only
di�erence being the −Z/r potential being replaced by a repulsive 1/r12 and kinetic
term being twice as large [58].

We can write down the divergent parts of the local energy as

Elocal(r12 → 0) = lim
r12→0

{
1

R(r12)

(
2

r12

∂

∂r12

− 2

r12

−

l(l + 1)

r2
12

+ �nite terms
)
R(r12)

}
, (3.16)

where l = 1 if the spin-projections of electrons 1 and 2 are equal, and l = 0 other-
wise [69]. A derivation analogue to the previous one reveals a corresponding cusp

Section 3.2 Jastrow factor 39

condition:

lim
r12→0

{
∂R

∂r12

}
= − R(r12)

2(l + 1)
. (3.17)

This can be satis�ed by a term in the wave function proportional to

R(r12) ∝

exp

(r12

2

)
if σi = σj

exp
(r12

4

)
if σi 6= σj

. (3.18)

3.1.3 Higher order coalescence conditions
In a system ofN+M charged particles,N electrons andM nuclei there will in general
be a lot of such cusp conditions or coalescence points, where two or more electrons
or nuclei coalesce with each other. Assuming all nuclei have the same charge Z , and
disregarding nucleus-nucleus coalescence (recall that the Born-Oppenheimer wave
function depends only parametrically on the positions of the nuclei), leaves us with:
rij → 0, ria → 0, rij → 0 and simulaneously rik →, ria → 0 and simulaneously
rak →, etc. The i, j, k, . . . indices here denote electronic coordinates, while a, b, c, . . .
denote nucleonic coordinates.

We will not consider higher order conditions in the present work, but refer the
reader to e.g. [17, 70].

3.2 Jastrow factor
Multiple functional forms which account explicitly for the electron-electron cusp
condition described in section 3.1.2 are used in the literature. Some examples include
the Boys-Handy function, the double exponential, or the Gaussian geminal form [17].
However, the most commonly used form is the Jastrow factor, sometimes called the
Padé-Jastrow factor. Although originally proposed by Bijl in 1940, the form is com-
monly attributed to American physicist R. Jastrow [19, 71, 72].

The two-body Jastrow factor used in the current work has the form

J(R) = exp

[
N∑
i=1

N∑
j=i+1

aijrij
1 + βrij

]
, (3.19)

where β > 0 is a tunable parameter and a depends on the relative spin-projections
of electrons i and j as [69]

aij =

{
1/4 if σi = σj
1/2 if σi 6= σj

. (3.20)

40 Wave functions Chapter 3

In general, it is possible to add higher order polynomials terms to the exponent
resulting in [17]

J(R) = exp

[
N∑
i=1

N∑
j=i+1

a1rij + a2r
2
ij + . . .

1 + β1rij + β2r2
ij + . . .

]
. (3.21)

For optimized βk values this may yield a more precise approximation to the true
wave function, but it comes at the cost of more di�cult computations and parameter
optimizations.

3.3 Orbitals
As noted in section 2.5.1, the Slater determinant—populated with eigenfunctions of
the one-electron operator ĥ—is an exact solution for a non-interacting N -electron
problem. But Slater determinants are also used as wave function ansatzes for inter-
acting systems. The question of which functions should occupy the determinants
however is a fairly non-trivial one. It turns out—somewhat surprisingly—that the
chief concern is that of computational e�ciency.

Before diving in, we detail brie�y the spherical harmonics.

3.3.1 Spherical and solid harmonics
The spherical harmonics are a set of functions de�ned on the surface of a sphere. They
are complete in the sense that they span the space of complex-valued continuous
functions on the unit sphere, span{Y m

l (θ, φ)} = C(S), and the space of complex-
valued square integrable functions on S, span{Y m

l (θ, φ)} = L2(S) [73]. The surface
of the unit sphere is here denoted by S = {r = (x, y, z) : |r|2 = 1}. The spherical
harmonics thus naturally arise as an expansion basis for functions de�ned on the
sphere.

Even more importantly, the spherical harmonics are eigenfunctions of the both the
total angular momentum operator, L̂2, and the z-projection of the angular momen-
tum, L̂z [44]. For QM problems involving central potentials—i.e. Vext = Vext(r)—the
spherical harmonics are solutions to the angular part of the time independent Schrödinger
equation (arising from separation of variables).

Formally, the spherical harmonics are functions of θ and φ: Y m
l (θ, φ) proprotional

to P |m|l (θ)eimφ (up to a normalization constant), where P |m|l satis�es

− 1

sin θ

d

dθ

(
sin θ

dP
|m|
l

dθ

)
+

m2

sin2 θ
P
|m|
l = l(l + 1)P

|m|
l . (3.22)

The parameters l and m are both integers, with l ≥ 0 and −l ≥ m ≥ l. The polyno-
mials Pm

l are known as the associated Legendre functions. Explicit expressions for

Section 3.3 Orbitals 41

0 5 10 15

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.1: The �rst six hydrogenic orbitals for Z = 1, Rnl(r). The general
expression forRnl(r) is given in Eq. (3.25). Explicit expressions for these orbitals
are given in Table 3.2.

the normalized spherical harmonics can be written out as

Y m
l (θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
eimφPm

l (cos θ). (3.23)

The combination rlY m
l is a homogenous polynomial4 of order l in the cartesian

unit vector [56, 73]. The combinations rlY m
l which are also harmonic (i.e. solve the

Laplace equation,∇2rlY m
l = 0) are called the solid harmonics (up to a normalization),

and can be made real by taking linear combinations of ±m terms. The �rst few real
solid harmonics, Sml (x, y, z) are shown in Table 3.1.

The real solid harmonics are often a more convenient form to work with, simply
because they are real and de�ned in terms of cartesian coordinates. Please note that
the solid harmonics span (the real-valued part of)L2(S) in the same way the spherical
harmonics do, so we can do this without any loss of generality or applicability.

3.3.2 Hydrogenic orbitals
The non-interacting hydrogen-like Hamiltonian

Ĥ = −∇
2

2
− Z

|r− rA|
, (3.24)

4A homogenous polynomial is a polynomial in which all terms have the same degree, i.e. x2 +
xy + y2 or x3 + y3 + z3 + x2z.

42 Wave functions Chapter 3

Table 3.1: Examples of the �rst few normalized real solid harmonics,
Sml (x, y, z) = rlY m

l (θ, φ). We note that the solid harmonics of order l are
simply linearly independent homogenous polynomials in x, y, and z, of order
l.

Real solid Azimuthal, magnetic
harmonic quantum numbers, (l,m) Expression

S0
0 0, 0 1

S−1
1 1, -1 y

S0
1 1, 0 z

S1
1 1, 1 x

S−2
2 2, -2

√
3xy

S1
2 2, 1

√
3yz

S0
2 2, 0 −1

2
(x2 + y2) + z2

S−1
2 2, 1

√
3xz

S−2
2 2, 2

√
3

2
(x− y)(x+ y)

S−3
3 3, -3 −1

2

√
5

2
(−3x2 + y2)y

S2
3 3, -2

√
15xyz

S1
3 3, -1 −1

2

√
3

2
(x2 + y2 − 4z2)y

S0
3 3, 0 −3

2
(x2 + y2)z + z3

S−1
3 3, 1 −1

2

√
3

2
(x2 + y2 − 4z2)x

S−2
3 3, 2 1

2

√
15(x− y)(x+ y)z

S−3
3 3, 3 1

2

√
5

2
(x2 − 3y2)x

Section 3.3 Orbitals 43

with rA = 0 being the position of a single nucleus of charge +Z , has normalized
radial eigenfunctions

Rnl(r) =

√(
2Z

n

)3
(n− l − 1)!

2n[(n+ l)!]3
exp

[
−Zr
n

](
2Zr

n

)l
L2l+1
n−l−1

(
2Zr

n

)
. (3.25)

TheLαn here denotes the (generalized) Laguerre polynomials5. In order to produce the
full spin-orbitals, we need to append the spherical harmonic Y m

l (θ, φ) for appropriate
quantum numbers l (the azimuthal quantum number) and m (the magnetic quantum
number) in addition to a spin function, χ(σ). The corresponding eigenvalues depend
famously only on the principal quantum number n, as [47]

E = − Z
2

2n2
. (3.28)

The �rst six radial orbitals are shown in Fig. 3.1, with explicit expressions for the �rst
ten being shown in Table 3.2. Figure 3.2 shows a few examples of the full orbitals, i.e.
the radial functions multiplied by spherical harmonics.

5The (generalized) Laguerre polynomials are the solutions to the di�erential equation

x
d2y(x)

dx2
+ (1 + α− x)

dy(x)

dx
+ ny(x) = 0, (3.26)

with n a non-negative integer and α an arbitrary real constant [74]. An explicit expression for the
polynomials themselves can be found by the so-called Rodrigues formula:

Lαn(x) = x−α
1

n!

(
d

dx
− 1

)n
xn+α. (3.27)

44 Wave functions Chapter 3

Table 3.2: Explicit analytical expressions for the �rst few hydrogenic radial
wave functions, Rnl(r) [47]. The �rst six—R10 to R32—are shown for Z = 1
in Fig. 3.1.

Radial Principal, azimuthal
orbital quantum numbers, (n, l) Expression

R10 1, 0 2
√
Z3e−Zr

R20 2, 0
√
Z3

2

(
1− Zr

2

)
e−Zr/2

R21 2, 1
√
Z5

24
re−Zr/2

R30 3, 0 2
√
Z3

√
27

(
1− 2Zr

3
+

2Z2r2

27

)
e−Zr/3

R31 3, 1 8
√
Z5

27
√

6

(
1− Zr

6

)
re−Zr/3

R32 3, 2 4
√
Z7

81
√

30
r2e−Zr/3

R40 4, 0
√
Z3

4

(
1− 3Zr

4
+
Z2r2

8
− Z3r3

192

)
e−Zr/4

R41 4, 1
√

5Z5

16
√

3

(
1− Zr

4
+
Z2r2

80

)
re−Zr/4

R42 4, 2
√
Z7

64
√

5

(
1− Zr

12

)
r2e−Zr/4

R43 4, 3
√
Z9

768
√

35
r3e−Zr/4

Section 3.3 Orbitals 45

Figure 3.2: Examples of full hydrogenic orbitals, ψnlm(r, θ, φ) =
Rnl(r)Y

m
l (θ, φ): ψ100 (top left), ψ210 (top right), ψ311 (bottom left), and

ψ420 (bottom right). The relative scaling is not accurate. Each plot is sliced in
the x-y-plane and a colormap showing the density is inset. The outer contour
shows the isosurface of each orbital at |ψnlm|2 = 10−5.

In many ways, the hydrogenic orbitals appear to be natural orbitals to work with.
They obey—crucially—the electron-nucleus cusp condition of section 3.1.1. They also
fall o� exponentially as per the correct long range limit. However—as noted by Hel-
gaker and co-workers—because of some key de�ciencies, they turn out to not be very
useful as basis functions [13]. Firstly, they do not span the entire one-electron Hilbert
space. In order for completeness to be achieved, the unbounded positive energy con-
tinuum states need to be appended to the set. Secondly, they spread out and become
very di�use very qucikly for increasing n because of the inverse term in the expo-
nential. This means a (very) large number of terms need to be considered in order to
obtain a �exible description of the core regions of the many-body wave function.

In addition to this, integral evaluation with the hydrogenic orbitals turns out to
be unfeasibly slow compared to more e�cient basis sets.

3.3.3 Slater type orbitals

It is possible to create a complete set of hydrogen-like orbitals by considering instead
of the 2Z/n factor, a constant exponential term e−ζr, with ζ ∈ R. These orbitals are
sometimes known as the Laguerre fuctions. However, the single constant exponent
means it becomes exceedingly di�cult to approximate orbitals of widely di�erent

46 Wave functions Chapter 3

nature. With a chosen large exponent, the compact core orbitals may be well ap-
proximated. But convergence for the more wide-spread di�use valence orbitals will
be horribly slow, and vice versa.

The Slater type orbitals (STO) are a related set of orbitals which use variable expo-
nents. Introduced by American physicist J. C. Slater in 1930, they have the same expo-
nential decay but forego the nodal structure of the hydrogenic orbitals [75]. Building
on the previous work of American physicist C. M. Zener—who had noted that the
radial nodes of the generalized hydrogenic orbitals in general had little impact on
the Hartree-Fock-like integrals used to construct variational wave functions—Slater
proposed a much simpler polynomial radial structure [76]. In addition to this, once
variable exponents are introduced, the orthogonality of the Laguerre polynomials are
lost. Since the orthogonality alone is the reason for the complicated nodal structure,
it does not make much sense to keep the Laguerre polynomials in the wave function
once this is lost [13].

Slater instead proposed a much simpler polynomial structure: rn−1. The general
expression for the normalized STO with exponent ζ is given by [77]

Rn(r; ζ) =
(2ζ)n+1/2

[(2n)!]1/2
(2ζr)n−1e−ζr. (3.29)

These Rn(r)s are obviously radial functions only, and need to be paired with e.g. the
spherical or solid harmonics in order to produce a full one-electron wave function.

The variable exponent STOs are complete under certain conditions on the ζ and
the sequence of n-s used, see [78]. In short, the STOs remedy some of the weaknesses
of the hydrogenic orbitals. However, it turns out that the most important property of
a basis set is the ability to perform e�cient integrations on them. Ultimately thus, we
will end up working with a basis set intrinsicly less suited to the task (arguing from
a physical interpretation point of view) because the neccessary integrals are possible
to evaluate very quickly.

Please note that this picture may be set to change in the not so distant future, as
a lot of work is being put into making integral evaluation of STOs more feasible, see
e.g. [79, 80].

3.3.4 Gaussian type orbitals
The basis sets used in most modern electronic structure calculations are comprised of
Gaussian distributions, exp(−αr2). This is also the basis sets we will chie�y employ
in the present work. Although the radial decay is proportional to e−r

2 (qualitatively
wrong, the correct [long range] behaviour is∼ e−r) the Gaussians nevertheless have
the upper hand due to the ease with which many-center integrals in terms of them
can be performed. The Gaussian basis functions were �rst introduced in the con-
text of electronic structure calculations by Boys in 1950 as an alternative to STO-like
functions [81].

Section 3.3 Orbitals 47

A general (normalized) Cartesian Gaussian type orbital (GTO) is given as

gαijk(x, y, z) ≡
(

2α

π

)3/4 [
(8α)i+j+k(i!j!k!)

(2i)!(2j)!(2k)!

]1/2

xiyjzke−α(x2+y2+z2), (3.30)

where i, j, and k are non-negative integers and α determines the width according
to the variance σ2 = 1/(2α) [77]. We will denote these functions by Gaussian
primitives. The coordinates x, y, and z are in general given w.r.t. a nucleus, i.e.
x = x̃− xA for some nucleus index A. The global coordinate x̃ denotes a coordinate
w.r.t. the global origin. We will largely ignore this, except when we explicitly need to
include it in our calculations, in which case we will write out the Gaussian primitives
as

gαijk(x, y, z; rA) = (x− xA)i(y − yA)j(z − zA)ke−α[(x−xA)2+(y−yA)2+(z−zA)2], (3.31)

where we omitted the normalization for brevity.
With i = j = k = 0, the primitive has spherical symmetry and is a so-called

s-type GTO. If i (j) [k] is one, while the other two indices vanish, the Gaussian has
axial symmetry along the x (y) [z] direction. This is known as a p-type GTO. More
generally, the sum i+ j + k ≡ l denotes the angular momentum of any GTO, and as
usual we denote l = 0 as s, l = 1 as p, l = 2 as d, l = 3 as f, and so on.

Contracted Gaussian functions

In practical calculations, a number of these functions will be used for each atomic
center. The Gaussians do not look much like the true molecular orbitals (which re-
semble hydrogenic wave functions), but this is remedied by taking linear combina-
tions of GTOs for each orbital [13]. We will call the linear combinations contracted
Gaussians,

G(r) =
L∑
a=1

dag
αa
iajaka

(x, y, z). (3.32)

A key fault of the Gaussians is that any Gaussian of s-type symmetry (orbitals with
l = 0) fails to satisfy the electron-nucleus cusp condition described in section 3.1.1. As
the derivative at r = 0 of any s-type primitive vanishes, even linear combinations will
not remedy this fault. However, we can get close in a sense by taking combinations
of more and more primitives of varying exponents α. Even if at the limit of in�nite
primitives, the origin derivative still vanishes, we can still construct a combination
such that the integrals involved in the self-consistent �eld (SCF) methods become
arbitrarily close to their STO counterparts.

Since SCF theories are in practice solved via the weak integral formulation and
application of the Galerkin method (see e.g. Langtangen [82]), the overall form of the

48 Wave functions Chapter 3

Table 3.3: The number of Gaussian primitives of total angular momentum l,
(l+1)(l+2)/2, and the number of linearly independent homogenous harmonic
polynomials of order l, 2l + 1.

Angular Linearly independent
momentum, l Type Total primitives combinations

0 s 1 1

1 p 3 3

2 d 6 5

3 f 10 7

4 g 15 9

5 h 21 11

6 i 28 13

7 k 36 15

8 l 45 17

orbitals are more important than their failure to accurately capture the physics at
very small r.

We note before going on that a contracted Gaussian is uniquely determined by
an array of coe�cients, d = {da}a, an array of exponents, α = {αa}a, and the
coe�cients i, j, and k.

Number of Cartesian Gaussian primitives of angular momentum l

For p-type orbitals (l = 1), the hydrogenic or Slater type orbitals—when paired with
the appropriate l = 1 spherical or solid harmonics—are three-fold degenerate. The
same is true of the Gaussian primitives. This means that any p-type orbital pro-
duces three distinct (contracted) Gaussian functions: one for (linear combinations
of) gα100(r) = xe−αr

2 , one for (linear combinations of) gα010 = ye−αr
2 , and �nally one

for (linear combinations of) gα001 = ze−αr
2 . In terms of the real solid harmonics, this

corresponds naturally to the Slater type orbitals

Sm1 (x, y, z)ψ(r) =

ye−ζr for m = −1
ze−ζr for m = 0
xe−ζr for m = +1

. (3.33)

For higher angular momentum values, there are in general (l+1)(l+2)/2 possible
combinations6 of i, j, and k which gives i+ j+k = l. However, there are only 2l+ 1
linearly independent spherical (or real solid) harmonics of degree l. Essentially, this is

6The problem is identical to the combinatorial problem: "Given N indistinguishable objects, how

Section 3.3 Orbitals 49

just stating the fact that there existDH(d, v) linearly independent homogenous poly-
nomials of degree d in v variables, but onlyDHH(d, v) linearly independent harmonic
homogenous polynomials, where [83]

DH(d, v) =

(
v + d− 1

v − 1

)
, while DHH(d, v) =

2d+ v − 2

d

(
d+ v − 3

d− 1

)
. (3.35)

Examples of the dimensions of the spaces of homogenous (DH) and homogenous
harmonic (DHH) polynomials are shown in Table 3.3, for degree l in 3 variables. Since
the spherical (real solid) harmonics span the space of complex-valued (real-valued)
spherical functions, using a basis that is larger than that of the harmonic homogenous
polynomials is essentially a waste of computational e�ort [73]. In this sense the
Cartesian Gaussians are over-complete, and it is possible to construct from the (l +
1)(l + 2)/2 Gaussians of degree l a more compact set of 2l + 1 linearly independent
Gaussian combinations which are su�cient for the expansion of any function on S
[13].

As an example, consider the l = 2, d-type, Gaussian primitives. The three func-
tions gα110(r) = xye−αr

2 , gα101(r) = xze−αr
2 , and gα011(r) = yze−αr

2 coincide with the
corresponding harmonic set (as can be seen from the solid harmonics of Table 3.1).
However, there are three more d-type Cartesian primitives, but only two additional
spherical harmonics. Instead of the primitives gα200(r) = x2e−αr

2 , gα020(r) = y2e−αr
2 ,

and gα002(r) = z2e−αr
2 , we can form the linear combinations

ḡα1 (r) = gα200 − gα020

=
(
x2 − y2

)
e−αr

2 (3.36)
ḡα2 (r) = 2gα002 − gα200 − gα020

=
[
3z2 −

(
x2 + y2 + z2

)]
e−αr

2

. (3.37)

We note that these are exactly the same combinations as the solid harmonics of degree
l = 2 (up to a normalization, which we have omitted from the expressions of Eq.
(3.36)-(3.37)). A last linear combination may be formed by taking gα200(r) + gα020(r) +
gα002(r) = (x2 +y2 + z2)e−αr

2 , but we note that this has spherical symmetry and thus
is really an s-type orbital [77].

As can be seen by Table 3.3, this is especially important for higher angular mo-
mentum numbers l > 3. As we primarily use f-type (l = 3) or lower angular mo-
mentum primitives in the present work, we choose to keep the larger sets ofDH(l, 3)
Gaussians.
many possible ways can we distribute them into M distinguishable bins?" For three "bins" and l
"ojects," this is (

N +M − 1

M − 1

)
=

(
l + 3− 1

3− 1

)
=

(
l + 2

l

)
=

(l + 1)(l + 2)

2
. (3.34)

50 Wave functions Chapter 3

Figure 3.3: Examples of Gaussian orbitals with α = 1.0, Gijk(x, y, z) =

xiyjzke−αr
2 : G000 (top left), G100 (top right), G201 (bottom left), and G002 −

G020 − G200 (bottom right). The latter combination is one of the �ve linearly
independent set of d-type Gaussian orbitals (there are a total of six Gaussian
primitives with l = 2—G200, G020, G002, G110, G101, and G011—but the set is
linearly dependent: a linearly independent set may be formed by taking G110,
G101, G011, G200 − G020, and G002 − G020 − G200). Each plot is sliced in the
x-y-plane and a colormap showing the density is inset. The outer contour shows
the isosurface of each orbital at |Gijk|2 = 10−5.

Section 3.3 Orbitals 51

3.3.5 Some properties of Gaussians

Cartesian Gaussians

Before we go on, we will state some properties of the Gaussians which will be crucial
for us in the implementation of the Hartree-Fock machinery in section 8. First of all,
each Cartesian primitive factorizes in the Cartesian coordinates,

gαijk(r) = gαi (x)gαj (y)gαk (z), (3.38)

where gαi (x) ≡ xie−αx
2 and similarly for y and z [84]. Please note that this is not

true for either of the hydrogenic, Slater type, or spherical harmonic Gaussians7. The
Gaussian components adhere to the simple recurrence relation

xgαi (x) = gαi+1(x), (3.39)

and from this it is immideately clear that di�erentiation w.r.t. x yields [85]

∂gαi (x; rA)

∂xA
=

∂

∂xA

(
(x− xA)ie−α(x−xA)2

)
= −∂g

α
i (x; rA)

∂x

= 2αgαi+1(x; rA)− igαi−1(x; rA). (3.40)

Note that we have brie�y re-inserted the rA back into the primitive at this point
because of the explicit dependence on the nucleonic position.

Hermite Gaussians

The Cartesian Gaussians can be written in terms of Hermite Gaussians—products
of exponentials and Hermite polynomials8—which are de�ned as follows: [86]

Λα
tuv(r;P) =

(
∂

∂Px

)t(
∂

∂Py

)u(
∂

∂Pz

)v
e−α|r−P|

2

. (3.43)

7The spherical harmonic Gaussian primitives account for the angular dependency in the wave
function by appending to the Gaussian function spherical harmonics Y ml (θ, φ).

8The Hermite polynomials are a family of orthogonal real-valued polynomials, solutions of the
Hermite di�erential equation [83]

∂2Hn(x)

∂x2
− dHn(x)

dx
+ nHn(x) = 0. (3.41)

An explicit formula for the n-th Hermite polynomial can be written down as [74]

Hn(x) = (−1)nex
2 dn

dxn
ex

2

. (3.42)

52 Wave functions Chapter 3

The P = (Px, Py, Pz) simply denotes some real-valued vector representing a point in
space. It is clear that the Hermite Gaussians also factorize in Cartesian coordinates,
with

Λα
t (x;Px) =

(
∂

∂Px

)t
e−α(x−Px)2 , (3.44)

and similar for y and z coordinates, such that Λα
tuv(r;P) = Λα

t (x;Px)Λ
α
u(y;Py)Λ

α
v (z;Pz).

It is possible to use the Hermite Gaussians themselves as basis functions, but for our
purposes we consider them only as intermediates involved in the neccessary inte-
grals. Since they are de�ned in terms of derivatives they will—not surprisingly—lead
to tremendous simpli�cations in that regard. Di�erentiation of the Hermite Gaus-
sians naturally leads to a recurrence relation similar to Eq. (3.39),

∂Λα
t (x;Px)

∂Px
= −∂Λα

t (x;Px)

∂x
= Λα

t+1(x;Px), (3.45)

and it can be shown that left-multiplying by xp yields [84]

xpΛ
α
t (x;Px) =

1

2α
Λα
t+1(x;Px) + tΛα

t−1(x;Px). (3.46)

Let now rp = r−P denote the vectorial di�erence w.r.t.P, such that Λα
t (xp;Px) =

(∂/∂Px)
te−αx

2
p with rp = (xp, yp, zp). Now, we may consider Λα

t (xp;Px) as a product
of two Hermite polynomials, Ht(xp) and H0(xp) = 1, multiplied by an exponential
factor. From this consideration it follows trivially that the integral∫ ∞

−∞
dxΛα

t (xp;Px) =

∫ ∞
−∞

dxHt(xp)H0(xp)e
−αx2p

t6=0
= 0, (3.47)

since the Hermite polynomials are orthogonal w.r.t. the weight function w(x) =
e−x

2/2 [74]. The coordinate transformation xp 7→ xp/
√

2α gives the correct scaling
such that the integrand becomes Ht(xp)H0(xp)w(xp) only changed by a constant
pre-factor which does not change the conclusion of Eq. (3.47). In the case of t = 0,
the integral is simply∫ ∞

−∞
dxΛα

0 (xp;Px) =

∫ ∞
−∞

dx e−αx
2
p =

√
π

α
, (3.48)

and in general ∫ ∞
−∞

dxΛα
t (xp;Px) = δt0

√
π

α
. (3.49)

Section 3.4 Gaussian basis sets 53

Gaussian product rule

The property which turns out to be most crucial for our use is the fact that a product
of Gaussians centered at di�erent points yield again a Gaussian. This is known as the
Gaussian product rule and can be stated as

e−α(x−Ax)2e−β(x−Ax)2 = e−µx
2
ABe−px

2
p , (3.50)

where p ≡ α + β, xAB ≡ Ax − Bx, µ ≡ αβ/p, and P denotes the "center of mass,"
[58]

P ≡ αA + βB

α + β
=
αA + βB

p
. (3.51)

The product of Cartesian Gaussian primitives is known as an overlap distribu-
tion, [85]

Ωij(x) ≡ gαi (x;Ax)g
β
j (x;Bx) = KABx

i
Ax

j
Be−px

2
P . (3.52)

These overlap distributions can then be expanded in terms of Hermite Gaussians,
greatly simplifying the evaluation of so called two-center integrals. We will expand
on this when the Hartree-Fock implementation is discussed in section 8.

3.4 Gaussian basis sets
STO-nG basis sets

One approach to constructing viable contracted orbital basis sets is to approximate
Slater type orbitals. This may be done by applying a least-squares �t of L primi-
tives to a given STO. Such contracted Gaussians are normally denoted STO-nG, with
n being the number of primitives used. The STO-3G basis sets of Hehre and co-
workers have long been considered an e�cient comprimise between e�ciency and
accuracy—useful for running preliminary simulations before bringing out the prover-
bial big guns [77, 84, 87]. Examples of such �ttings9 can be seen in Fig. 3.5, where all
of STO-1G through STO-7G are shown. Normally, the highest number of primitives
used is six. From Fig. 3.4 we see that the mean absolute error compared to the Slater
orbital, ε, scales approximately as

ε(n) ∼
√

1

10n . (3.53)

We note that the overall function shape of STO-3G already closely resembles the
actual STO. At higher values of n, they become indistinguishable without extremely

9All curve �tting in the present work is done in Matlab using the LAD (least absolute deviations,
as opposed to the more familiar least squared deviations) approach and the trust-region algorithm
proposed by Moré and co-workers [88–90].

54 Wave functions Chapter 3

Figure 3.4: Example showing the aver-
age absolute error relative to the 1s STO
for each of the STO-nG approximations
with di�erent number of primitives n
shown in Fig. 3.5. The s-type STO has
exponent ζ = 3

√
π ≈ 1.4646, arbitrarily

chosen simply to ensure STO(r) → 1 as
r → 0.

1 2 3 4 5 6 7
10-4

10-3

10-2

10-1

close inspection. From the insets of Fig. 3.5 we note that the Gaussians always satisfy
d/dr

∑
k g

α
k (r)

∣∣
r=0
6= 0, so in the limit of very small r the STO-nG and the STO

digress.

Split-valence basis sets

The electrons mostly involved in chemical bonding in any given atom are the ones
occupying the highest principal quantum number (n) states. These are known as
valence electrons, as opposed to the remaining core electrons [91]. Because the
former are much more important to the chemical properties of atoms, it is common
to provide multiple basis functions to represent the valence orbitals. Orbitals sets for
which this is done are called split-valence.

Single and multiple-ζ basis sets

The STO-nG basis sets are known as minimal or single-ζ , in that for each electron
there is only a single basis function. For example a minimal H basis only has a single
orbital of s-type symmetry (l = 0). It does not require much imagination to realize
that this o�ers little in the way of �exibility w.r.t. representing atomic and molecular
orbitals. In order to add such �exibiliy it is common to add more contracted Gaussians
for each electron present.

One way to achieve this is to de-contract the STO-nG basis sets. For example, take
the STO-2G basis and use each primitive of the contracted Gaussians as a contracted
orbital in its own right [77]. This makes the single-ζ STO-2G basis set into a double-ζ
basis, in which each atomic orbital is represented by two distinct contracted Gaussian
functions.

A fundamentally di�erent approach is taken by e.g. Pople and co-workers in their
widely used family of basis sets [92]. Instead of using the Slater type orbitals as a start-
ing point, the primitive exponents and contraction coe�cients are instead optimized
in variational manner by SCF iteration. The resulting sets are denoted C-V1V2G,
where C represents the number of primitives used in the single contracted function
representing each core electronic orbital. V1 and V2 denote the number of primitives

Section 3.4 Gaussian basis sets 55

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.02 0.04

0.96

0.98

1

Figure 3.5: Example showing a STO-nG �t with di�erent number of primitives
to the 1s STO which we were trying to approximate. The s-type STO has ex-
ponent ζ = 3

√
π ≈ 1.4646, arbitrarily chosen simply to ensure STO(r) → 1 as

r → 0.

56 Wave functions Chapter 3

used in either of the two valence contracted Gaussians. An example is the 3-21G set,
where each core orbital is allotted a single contracted function consisting of three
primitives. Next, a contracted function of two primitives and a contracted function
of a single primitive is used to represent each valence orbital.

As an instructive example, consider the electronic structure of B. Of the �ve elec-
trons in the boron atom, two occupy the 1s states essentially, forming a He core.
The outermost electrons inhabit the 2s atomic orbitals. This is denoted B: 1s22s22p
or more frequently [He]2s22p [47]. In the 6-31G boron basis set of Dill and Pople,
the core 1s orbital is represented by one contracted Gaussian of six primitives [93].
The 2s valence orbital is given one contracted of three primitives, and one of a sin-
gle primitive. The same is done for each of the three di�erent 2p orbitals, yielding
two contracted functions for each. In total this gives 22 primitives across 9 total con-
tracted basis functions.

Polarized, di�use, and correlation-consistent basis sets

Instead of merely adding more Gaussian functions representing the electron orbitals
present in any given atom, even more �exibility may be added by considering also
orbitals which are not occupied. For example, trying to represent molecular bond-
ing in H2 with a minimal basis set would be impossible because there is no way to
engineer a higher electron density in between the atoms with only s-type orbitals.
An orbital of p-type symmetry or higher is needed in order to achive this. Pople and
co-workers’ notation adds one or more *s to denote the presence of such polarizing
functions. For example, the 6-31G** basis set adds three single primitive contracted
2p orbitals to H (6-31G* only adds polarization to heavier atoms, making 6-31G and
6-31G* identical for H).

The same philosophy is applied for di�use functions, which have signi�cantly
smaller exponents than the most wide-spread valence Gaussians. Such basis func-
tions are neccessary to obtain an adequate description of e.g. negative ions, highly
excited states, or loosely bonded (non-covalent, i.e. van der Waals bonds or similar)
molecular structures [77]. In the Pople family, addition of di�use orbitals is denoted
by prepending one or more +s to the trailing G, e.g. 6-31++G** which adds a single
di�use 1s function of one primitive to H (again, 6-31+G** only adds di�use functions
to heavier atoms, making it identical to 6-31G** for H).

Lastly, we discuss brie�y the correlation-consistent Dunning familiy of basis sets
[94]. Correlation-consistent means the exponents and contraction coe�cients are
variationally optimized for post-Hartree-Fock methods, involving dynamic electron
correlations. The notation used by Dunning and co-workers is cc-pVNZ, where N
can be D (double ζ), T (triple ζ), Q (quadruple ζ), and so on. The cc-pV stands for
correlation-consistent polarized, valence only: polarizing functions are added (more
for higher ζ sets), and the basis only describes valence orbitals. For a complete de-
scription the cc-pVNZ basis needs to be paired with a corresponding basis set for the
core orbitals. Some complete sets are used, denoted cc-pCVXZ, with X signifying the

Section 3.4 Gaussian basis sets 57

ζ number for core electrons. Whenever di�use basis functions are added, aug (for
augmented) is prepended resulting in aug-cc-pVNZ.

Part II

Advanced theory

59

Chapter 4

Hartree-Fock

The Hartree-Fock (HF) method is one of the most important models in all of quantum
chemistry, not only because it may yield acceptable approximations in certain sce-
narios, but because it is also an important stepping stone on the way to more accurate
methods. Only a few of the more sophisticated quantum chemistry methods bypass
HF entirely, while most of them use it as a �rst step and then build on the HF or-
bitals to obtain more accurate descriptions [22]. In particular, for larger systems, the
Hartree-Fock approach may be the only feasible one and it is the only approximate
method that is routinely being applied to large systems of several hundred atoms and
molecules [13].

The Hartree-Fock method is a mean �eld method in that it treats the inter elec-
tron interaction only in an averaged way [14]. Any single electron does not feel the
e�ect of every other localized electron, but rather just an averaged potential from all
other remaining ones. This is sometimes also called an independent-particle model.
The Hartree-Fock approximation usually de�nes the dynamical coulomb correlation
between electrons by saying the di�erence between the Hartree-Fock energy and
the exact quantum mechanical energy is the correlation energy. Hartree-Fock nev-
ertheless deals exactly with the electron correlations arising from the anti-symmetry
condition of Pauli, namely the exchange correlations.

In essence, the Hartree-Fock procedure �nds the most energetically favorable elec-
tronic con�guration under the assumption that the full ground state wave function
consists of a single Slater determinant populated by orthonormal spin-orbitals. In
older litterature, the HF method is often called self-consistent �eld method due to the
way the resulting equations are usually solved [95]. However, the self-consistent �eld
iterations are not the only way to solve the HF equations, and thus not an essential
part of the method itself [13].

In the following we will apply the variational principle to the single Slater deter-
minant ansatz wave function for the interacting system of N electrons. We will then
expand the solution in a given basis and derive the Roothan-Hall and Pople-Nesbet
equations, for the closed-shell and open-shell systems respectively.

61

62 Hartree-Fock Chapter 4

4.1 Single Slater determinant ansatz
The method itself essentially �nds the most energetically favorable electronic wave
function, under the assumption that the full ground state consists of a single Slater
determinant populated by orthonormal spin-orbitals, φi. We denote this Slater deter-
minant |Ψ〉,

|Ψ〉 = |φ0φ1φ2 . . . φN−1φN〉, 〈φi|φj〉 = δij. (4.1)

We may write down an explicit expression for the determinantal wave function in
the position basis as

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)

...
φ1(xN) φ2(xN) . . . φN(xN)

∣∣∣∣∣∣∣∣∣ , (4.2)

withφn(xk) being the indexn spin-orbital evaluated at the spatial and spin-projection
coordinates xk. Under the assumption that the spin-orbitals themselves are orthonor-
mal, the total determinant will also be normalized in the sense that 〈Φ|Φ〉 = 1 [14].

Recall from section 2.4.2 that the Born-Oppenheimer Hamiltonian for a system of
N electrons subject to the Coulomb potential from M atoms takes the form

Ĥ = −
N∑
i=1

∇2

2
−

N∑
i=1

M∑
A=1

ZA
|rA − ri|︸ ︷︷ ︸+

N∑
i=1

N∑
j=i+1

1

|ri − rj|

≡
N∑
i=1

ĥi +
N∑
i=1

N∑
j=i+1

ŵij, (4.3)

where we have de�ned the one-body operator ĥi = −∇2/2 −
∑

A ZA/|rA − ri|.
The two-body operator ŵij represents the Coulombic electron-electron interaction
between electrons labelled i and j.

4.1.1 Exchange correlation
With only applying the Slater determinant ansatz, the electrons are already corre-
lated. If we consider the probability of �nding two electrons at coordinates x1 and
x2 respectively, [58]

ρ(x1,x2) =

∫
d4x3 d4x4 . . . d4xN |Ψ(x1,x2, . . . ,xN)|2

=
1

N(N − 1)

N∑
k=1

N∑
l=1

[
|φk(x1)|2|φl(x2)|2 − φ∗k(x1)φk(x2)φ∗l (x2)φl(x1)

]
.

(4.4)

Section 4.2 The Hartree-Fock energy 63

In order to relate this to spatial coordinates only, we need to sum over the spin vari-
ables,

ρ(r1, r2) =
∑
s1

∑
s2

ρ(x1,x2), (4.5)

which means the second term vanishes for opposite spin electrons. However, for
same spin electrons, the second term of Eq. (4.4) gives rise to a correlation e�ect:
for electrons of the same spin-projection the �rst and second term cancel exactly for
r1 = r2 [58]. This is known as exchange correlation, all electrons are surrounded
by exchange holes where the chance of �nding other like-spin electrons is drastically
reduced.

4.2 The Hartree-Fock energy
Assuming now the wave function takes the form of a single Slater determinant in-
habited by orthonormal orbitals, let us work out what the exected value of the energy
is. The Hamiltonian consists of two parts—a one-body and a two-body term—which
we will handle separately.

One-body Hamiltonian

The electronic one-body part of the Hamiltonian takes the form

Ĥ0 =
N∑
i=1

ĥi =
N∑
i=1

[
−∇

2
i

2
−

M∑
A=1

ZA
|xi − xA|

]
, (4.6)

where M denotes the number of nuclei. Since ĥi only acts on the coordinates of
particle i, we �nd

〈Ψ|Ĥ0|Ψ〉 =

∫
d4x1 . . . d

4xN Ψ∗(X)
N∑
i=1

ĥiΨ(X) (4.7)

with terms

(4.7) =

∫
d4x1 . . . d

4xN Ψ∗(X)ĥkΨ(X)

=
1

N !

∫
d4x1 . . . d

4xN
∑

µ,ν∈SN

(−1)|µ|+|ν|P̂µP̂νΨ
∗(xµ(1) . . .xµ(N))ĥkΨ(xν(1) . . .xν(N))

=
1

N !

∑
µ,ν∈SN

(−1)|µ|+|ν|P̂µP̂νδ
ν(1)
µ(1) . . . δ

ν(k−1)
µ(k−1)δ

ν(k+1)
µ(k+1) . . . δ

ν(N)
µ(N)

×
∫

d4xkφ
∗
µ(k)(xk)ĥkφν(k)(xk). (4.8)

64 Hartree-Fock Chapter 4

Note thatx = {r, σ} labels both spatial and spin coordinates, withX = {x1,x2 . . . ,xN}.
Here, P̂µ acts on the orbital indices of Ψ∗(X), while P̂ν acts on the corresponding in-
dices of Ψ(X). Since all indices must appear exactly once, and there are N − 1 delta
functions, the only suriving terms appear for permutations which satisfy µ(k) =
ν(k). In fact, µ must be equal to ν on the whole, making (−1)|µ|+|ν| = +1.

In total, there are N ! possible permutations, meaning we have (N − 1)! permuta-
tions in the sum of Eq. (4.8),

(4.8) =
(N − 1)!

N !

N∑
i=1

∫
d4xkφ

∗
i (xk)ĥkφi(xk)

=
1

N

N∑
i=1

∫
d4xkφ

∗
i (xk)ĥkφi(xk). (4.9)

Since we have one such term for each k, we �nd in total that [22]

〈Ψ|Ĥ0|Ψ〉 =
N∑
i=1

∫
d4xφi(x)ĥφi(x), (4.10)

where we have omitted the arbitrary subscript on x and ĥ.

Two-body Hamiltonian

The electronic two-body part of the Hamiltonian takes the form

Ŵ =
N∑
i=1

N∑
j=i+1

ŵij =
N∑
i=1

N∑
j=i+1

1

|xi − xj|
. (4.11)

In the same way as before, we insert into 〈Ψ|Ŵ |Ψ〉 the de�nition of the Slater deter-
minants and �nd

〈Ψ|Ŵ |Ψ〉 =

∫
d4x1 . . . d

4xN Ψ∗(X)
N∑
i=1

N∑
j=i+1

ŵijΨ(X), (4.12)

with terms

1

N !

∫
d4x1 . . . d

4xN (−1)|µ|+|ν|P̂µP̂νΨ
∗(xµ(1) . . .xµ(N))ŵijΨ(xµ(1) . . .xµ(N)).

(4.13)

The orthogonality of the orbitals ensures that all µ(k) = ν(k) for all k except for i
and j. There are now two non-vanishing contributions: µ(i) = ν(i) and µ(j) = ν(j),
or µ(i) = ν(j) and µ(j) = ν(i). In the latter case, the factor (−1)|µ|+|ν| contributes

Section 4.3 Variational minimization of EHF 65

an overall minus sign. The sum over all non-zero permutations now entails (N − 2)!
terms,

(4.13) =
(N − 2)!

N !

N∑
i=1

N∑
j=i+1

∫
d4x1d4x2

[
φ∗i (x1)φ∗j(x2)ŵφi(x1)φj(x2)−

φ∗i (x1)φ∗j(x2)ŵφj(x1)φi(x2)
]
,

(4.14)

with N(N − 1) total such terms giving �nally [14]

〈Ψ|Ŵ |Ψ〉 =
N∑
i=1

N∑
j=i+1

∫
d4x1d4x2 φ

∗
i (x1)φ∗j(x2)ŵ

[
φi(x1)φj(x2)− φj(x1)φi(x2)

]
.

(4.15)

Total expression for the Hartree-Fock energy

Combining the one-, and two-body expectation values, we �nd

〈Ψ|Ĥ|Ψ〉 =

〈
Ψ

∣∣∣∣∣
N∑
i=1

[
−∇

2
i

2
−

M∑
A=1

ZA
|xA − xi|

+
N∑

j=i+1

1

|xi − xj|

] ∣∣∣∣∣Ψ
〉

=
N∑
i=1

〈φi|ĥ|φi〉+
N∑
i=1

N∑
j=i+1

[
〈φiφj|ŵ|φiφj〉 − φiφj|ŵ|φjφi〉

]
EHF =

N∑
i=1

〈i|ĥ|i〉+
N∑
i=1

N∑
j=i+1

〈ij|ŵ|ij〉 − 〈ij|ŵ|ji〉, (4.16)

where we used the notation

〈φi|ĥ|φi〉 = 〈i|ĥ|i〉 =

∫
d4xφ∗i (x)ĥφi(x), (4.17)

and

〈φiφj|ŵ|φiφj〉 = 〈ij|ŵ|ij〉 =

∫
d4x1d4x2 φ

∗
i (x1)φ∗j(x2)ŵφi(x1)φj(x2). (4.18)

4.3 Variational minimization of EHF

We now vary the spin-orbitals φk → φk + δφk in order to �nd the variational min-
imum. Recall from section 2.7 that the energy functional satis�es δE[Ψ]|Ψ=Ψ0 = 0
evaluated at the true ground state and that �nding such a wave function constitutes
solving the Schrödinger equation.

66 Hartree-Fock Chapter 4

In order to ensure orthonormality still holds during and after the variation, we
introduce Lagrange multipliers εij , one for each integral∫

d4xφ∗i (x)φj(x)
!

= δij. (4.19)

The resulting Lagrange functional takes the form

L
[
φ1, φ2, . . . , φN

]
= 〈Ψ|Ĥ|Ψ〉 −

N∑
i=1

N∑
j=1

εij

(
〈φi|φj〉 − δij

)
=

N∑
i=1

〈i|ĥ|i〉+
1

2

N∑
i=1

N∑
j=1

〈ij|ŵ|ij − ji〉 −
N∑
i=1

N∑
j=1

εij

(
〈φi|φj〉 − δij

)
,

where we included a factor 1/2 in front of the Ŵ term because the sum is now taken
from j = 1 [69].

It turns out that varying only φ∗k is su�cient to derive all the Hartree-Fock equa-
tions [14]. In addition, due to the symmetry of the Langrange multipliers, the mul-
tiplier matrix ε can be assumed to be Hermitian [58]. Assume now that ε is a small
complex number and η a normalized orbital, and take δφk to be εη. We de�ne the
function

f(ε) = L
[
φ1, φ2, . . . , φk−1, φk + εη, φk+1, . . . , φN], (4.20)

and note that to �rst order in ε, f(ε) = f(0) + εf ′(0) + O(ε2). At the variational
minimum, f ′(0) for any η. For a (very) brief introduction to functional derivatives,
see appendix C.

Keeping the other orbitals �xed, we consider now the Taylor expansion of f to
�rst order in ε:

f(ε) =
N∑
i=1

〈i+ εikεη|ĥ|i〉+
1

2

N∑
i=1

N∑
j=1

〈(
i+ εkiεη

)(
j + εkjεη

)∣∣ŵ∣∣ij − ji〉
−

N∑
i=1

N∑
j=1

[〈(
i+ εikεη

)∣∣j〉− εij]
=

N∑
i=1

〈i|ĥ|i〉+
1

2

N∑
i=1

N∑
j=1

〈
ij
∣∣ŵ∣∣ij − ji〉+ ε〈η|ĥ|φk〉

+
ε

2

[
N∑
i=1

〈ηi|ŵ|ki〉+ 〈iη|ŵ|ik〉 − 〈ηi|ŵ|ik〉 − 〈iη|ŵ|ki〉

]

−
N∑
j=1

εjkε〈η|j〉 −
N∑
i=1

N∑
j=1

εij

(
〈φi|φj〉 − δij

)
+O(ε2). (4.21)

Section 4.3 Variational minimization of EHF 67

By the symmetry of the ŵ integrals we obtain

f(ε) =
N∑
i=1

〈i|ĥ|i〉+
1

2

N∑
i=1

N∑
j=1

〈
ij
∣∣ŵ∣∣ij − ji〉− N∑

i=1

N∑
j=1

εij

(
〈φi|φj〉 − δij

)
+ ε〈η|ĥ|φk〉+ ε

N∑
j=1

[
〈ηj|ŵ|kj〉 − 〈ηj|ŵ|jk〉

]
−

N∑
j=1

εjkε〈η|j〉+O(ε2),

(4.22)

where we note that f(0) = L[φ1, φ2, . . . , φN , ε] and we can read o� f ′(0) as [14]

f ′(0) = 〈η|ĥ|φk〉+
N∑
j=1

[
〈ηj|ŵ|kj〉 − 〈ηj|ŵ|jk〉

]
−

N∑
j=1

εjk〈η|j〉
!

= 0. (4.23)

Without changing the Slater determinant (up to a phase which doesnt a�ect the
physics) we may apply a unitary transformation to the orbitals such that

φ̃k =
N∑
j=1

φjUjk. (4.24)

Since detU = eiθ for some real θ—and we know that the Slater transforms as |Φ̃〉 =
detU |Φ〉—the state does not change under this transformation and so the energy
must also remain the same. As mentioned, ε can be assumed to be Hermitian, which
means we may choose U such that ε = UEU † with Eij = δijεi (with εi being the
eigenvalues of the ε matrix).

Since Eq. (4.23) must hold for any η, the only possible solution is for all the inte-
grands to vanish. Notice that

〈 · i|ŵ|jk〉 =

∫
d4x2 φ

∗
i (x2)ŵφj(x1)φk(x2) (4.25)

de�nes a single particle operator where the inner product with any 〈l| gives the two-
body integral 〈li|ŵ|jk〉. The condition that the integrands of Eq. (4.23) must exactly
vanish can be written in terms of these operators, as

N∑
j=1

εjk|φj〉 = ĥ|φk〉+
N∑
j=1

[
〈 · φj|ŵ|φkφj〉 − 〈 · φj|ŵ|φjφk〉

]
. (4.26)

Under the unitary transformation of Eq. (4.24), this yields �nally the canonicalHartree-
Fock equations

εi|φi〉 = ĥ|φi〉+
N∑
j=1

[
〈 · φj|ŵ|φiφj〉 − 〈 · φj|ŵ|φjφi〉

]
. (4.27)

68 Hartree-Fock Chapter 4

4.3.1 De�ning Ĵ , K̂ and the Fock operator
The expression for the Hartree-Fock energy and the Hartree-Fock equations can be
simpli�ed by the introduction of three operators. The Coulomb and exchange opera-
tors,

Ĵk(x)φ(x) = 〈 · φk|ŵ|φφk〉 =

∫
d4x2 φ

∗
k(x2)ŵφ(x1)φk(x2)

=

∫
d4x2 |φk(x2)|2ŵφ(x1), and (4.28)

K̂k(x)φ(x) = 〈 · φk|ŵ|φkφ〉 =

∫
d4x2 φ

∗
k(x2)ŵφ(x2)φk(x1) (4.29)

are de�ned such that the HF equations can be written in the succinct form [58][
ĥ+ Ĵ − K̂

]
φi = εiφi. (4.30)

The Ĵ and K̂ with no subscripts are sums over all orbitals,

Ĵ =
N∑
k=1

Ĵk, and K̂ =
N∑
k=1

K̂. (4.31)

In this notation, the HF energy may also be expressed with brevity:

E
[
Ψ
]

=
N∑
k=1

〈
φk

∣∣∣∣ĥ+
1

2

(
Ĵ − K̂

)∣∣∣∣φk〉 . (4.32)

The Coulomb operator represents the averaged electronic repulsion from all the
other electrons. This also includes un-physical self-interaction with i = j, but this
is luckily cancelled exactly by corresponding terms in the exchange term. The ex-
change operator is present simply because of the anti-symmetry properties of the
wave function—as was mentioned brie�y in section 4.1.1—which makes same-spin
electrons repel each other. This is nothing more than a manifestation of the Pauli
principle, see section 2.5 [69].

The sum of ĥ, and the Coulomb and exchange operators de�nes the Fock oper-
ator, [58]

F̂ = ĥ+ Ĵ − K̂, (4.33)

and we note that the HF equations can be written as F̂ φk = εkφk.

4.4 Restricted Hartree-Fock
Under the assumption that all spatial orbitals are doubly occupied—i.e. the even in-
dex spin-orbitals represent φ2n′(x) = ψn(r)χ(↑), with odd numbered φ2n′+1(x) =

Section 4.4 Restricted Hartree-Fock 69

ψn(r)χ(↓), for spatial orbitals ψ—the Hartree-Fock framework simpli�es consider-
ably. Under Restricted Hartree-Fock (RHF), we may explicitly integrate out the spin-
dependency of the Fock operator.

Let us now consider the Coulomb operator, Ĵ . Since the spin-orbitals entering Ĵ
are always lined up in the sense that the integral overx2 happens overφ∗k′(x2)φk′(x2) =
ψ∗k(r2)χ∗(σk)ψk(r2)χ(σk), the spin functions χ(σk) are always equal. This means
they integrate out, and we can write the spatial Coulomb operator J̃ as [58]

Ĵ(x)φ(x) =
N∑
i=1

∫
d4x2 φ

∗
i (x2)φi(x2)ŵφ(x)

=
N∑
i=1

∫
dσ2

∫
d3r2 ψ

∗
i (r2)χ∗(σ2)ψi(r2)χ(σ2)ŵψ(r)χ(σ)

= 2

N/2∑
l=1

∫
d3r2 ψ

∗
l (r2)ψl(r2)ŵψ(r) = J̃(r)ψ(r). (4.34)

Note the changed sum limits in the last equation, we are now only summing over half
l up to N/2. A corresponding doubling of the exchange operator does not happen,
since the spin integral only evaluates to one half of the time. We �nd thus [22]

K̂(x)φ(x) =
N∑
i=1

∫
d4x2 φ

∗
i (x2)φ(x2)ŵφi(x)

=
N∑
i=1

∫
dσ2

∫
d3r2 ψ

∗
i (r2)χ∗(σ2)ψ(r)χ(σ)ŵψ(r2)χ(σ2)

=

N/2∑
l=1

∫
d3r2 ψ

∗
l (r2)ψ(r)ŵψl(r2) = K̃(r)ψ(r). (4.35)

This partial suppression of the exchange operator can be understood by the fact that
exchange correlation is only felt by same-spin electrons. Thus explicitly integrating
away the spin degrees of freedom reveals that for any spin-orbital φ(x) = ψ(r)χ(σ),
the K̂k operator only has an e�ect for orbitals of corresponding spin projection σ.
The number of such orbitals is exactly N/2.

Since the one-body operator ĥ has no explicit or implicit spin-dependence, it re-
mains unchanged in the RHF scheme. We may now write down the spatial, restricted,
Fock operator

F̃ (r) = ĥ(r) + 2J̃(r)− K̃(r) (4.36)

and the restricted Hartee-Fock energy

ẼHF = 2

N/2∑
k=1

〈ψk|ĥ|ψk〉+

N/2∑
k=1

[
2
〈
ψk|J̃ |ψk

〉
−
〈
ψk|K̃|ψk

〉]
. (4.37)

70 Hartree-Fock Chapter 4

Note carefully the subtle (read: lazy) rede�nition of 〈 · | · 〉 to now only include spatial
integrals when discussing RHF.

4.4.1 The Roothan-Hall equations
In order to discretize the RHF equations in a way suitable for numerical solution, we
apply the method of Galerkin [82]. This method was independently developed by
both Dutch physicist C. C. J. Roothan and Irish mathematician G. C. Hall in 1951 [96,
97].

Consider a �nite basis set of L spatial orbitals, {ϕk}Lk=1. Whereas the number of
occupied restricted Hartree-Fock orbitals is constrained to be N/2, this basis set can
in general be any size. Let us now expand ψi in terms of this basis,

ψi =
L∑
k=1

Ckiϕk(r), (4.38)

which gives us the RHF equations projected onto the Hilbert subspace spanned by
the new basis set—H′ = span{ϕk}—as

L∑
k=1

CkiF̃ (r)ϕk(r) = εi

L∑
k=1

Ckiϕk(r). (4.39)

Taking the inner product with ϕq(r) gives the weak formulation of the RHF equations
onH′:

L∑
k=1

Cki

∫
d3rϕq(r)F̃ (r)ϕk(r) = εi

L∑
k=1

Cki

∫
d3rϕq(r)ϕk(r). (4.40)

We can identify Eq. (4.40) as a matrix equation in terms of the Fock matrix F , the
coe�cient matrix C , and the overlap matrix S,

FC = εSC. (4.41)

The components of the (restricted) Fock matrix are sums of one-, and two-body
integrals in terms of the new basis functions

Fpq = hpq +

N/2∑
k=1

L∑
r=1

L∑
s=1

C∗rkCsk︸ ︷︷ ︸
≡ Drs/2

[
2
〈
pr|ŵ|qs

〉
−
〈
pr|ŵ|sq

〉]
, (4.42)

with

hpq = 〈p|ĥ|q〉 =

∫
d3rϕ∗p(r)

[
−∇

2

2
−

M∑
A=1

ZA
|r− rA|

]
ϕq(r). (4.43)

Section 4.7 Unrestricted Hartree-Fock and the Pople-Nesbet equations 71

It is convenient to de�ne the density matrix, Dpq = 2
∑N/2

k=1 C
∗
pkCqk with a factor 2

coming from the spin-restricted nature of the Roothan-Hall equations [14]. In terms
of the density matrix, and the one-, and two-body integrals over ϕs, the energy is
given as

EHF =
∑
pq

Dpqhpq +
1

2

∑
pqrs

DpqDsr

[〈
pr|ŵ|qs

〉
− 1

2

〈
pr|ŵ|sq

〉]
. (4.44)

We outline in detail how such an equation may be solved in section 8.3.4.

4.5 UnrestrictedHartree-Fock and the Pople-Nesbet
equations

Relaxing the condition that all occupied spatial orbitals be paired leads to what is
known as unrestricted Hartree-Fock. In the weak formulation—à la the Roothan-
Hall equation—the unrestricted scheme gives rise to the Pople-Nesbet equations [98].
These are essentially two sets of coupled Roothan-Hall equations, one for spin-up and
one for spin-down electrons,

F ↑C↑ = ε↑SC↑, and (4.45)
F ↓C↓ = ε↓SC↓. (4.46)

Since K̂ only couples same-spin electrons, there is no cross-term. The Coulumb term,
however, couples opposite and same-spin electrons, and gives rise to a cross-term in
F ↑ depending on C↓ [58]

F ↑pq = hpq +
N↑∑
k=1

L∑
r=1

L∑
s=1

C↑rkC
↑
sk

[〈
pq|ŵ|qs

〉
−
〈
pq|ŵ|sq

〉]
+

N↓∑
k=1

L∑
r=1

L∑
s=1

C↓rkC
↓
sk

[〈
pq|ŵ|qs

〉]
. (4.47)

The F ↓ results from exchanging ↑� ↓ in Eq. (4.47).

4.6 Choice of orbital basis set

In the present work we use Gaussian type orbitals exclusively because of their favor-
able integration properties. This is discussed in depth in chapter 3. The speci�c basis
sets in use are discussed alongside the HF code implementation in chapter 8.

72 Hartree-Fock Chapter 4

4.7 The Hartree-Fock limit
In order to achieve completeness in the basis set representation of the Hartree-Fock
orbitals, we need to (in general) use an in�nite set. This is clearly not computationally
feasible, so a cut-o� is always chosen. However, using only L orbitals limits the
accuracy with which we can represent arbitray spin-orbitals ψ ∈ H. Expansion in
the {ϕk}Lk=1 basis constitutes a projection onto the L-dimensional Hilbert subspace
H′ = span{ϕi}. This means we introduce an error in the Hartree-Fock orbitals ψ
proportional to ψ ∈ H�H′ = {ψ ∈ H and ψ 6∈ H′}.

This is known as basis set truncation error [69]. Taking larger and larger basis sets
will predictably reduce this error and the limiting value—with an in�nite basis—is
known as the Hartree-Fock limit [22]. Even though we can never evaluate EHF at the
limit, there are ways to estimate the limiting value, see e.g. [99, 100].

The di�erence between the true (non-relativistic) ground state energy and the
Hartree-Fock limit is known as the correlation energy,

Ecorr = Eexact − EHF (limit). (4.48)

Calling HF an un-correlated method altogether is a bit of a misnomer, as electron-
electron correlations are taken into account albeit in the mean-�eld sense. Also worth
noting is that HF fully accounts for the exchange correlation of same-spin electrons,
c.f. section hfexchange. However, so-called dynamic correlation e�ects are completely
neglected at the Hartree-Fock level of theory. Dynamic correlation refers the instan-
taneous Coulomb repulsion of two electrons moving around in space.

A separate correlation e�ect which HF fails to take into account is what is known
as static correlation. A single Slater determinant may be fundamentally unable to
accurately represent the true ground state wave function of any given quantum sys-
tem. In some systems, only a linear combination of (nearly-)degenerate Slater de-
terminants may describe the state well. This may be important in certain molecular
systems, for which the single-Slater HF approximation is qualitatively wrong.

Chapter 5

Density functional theory

Because the wave function is such an unbelievably complicated function, depending
on 4N degrees of freedom (of which 3N are spatial coordinates), it is natural to ask
the question: Is it possible to represent the state of an electronic system in a more
succinct way? A natural candidate for such an entity is the electronic number density,
ρ(r), which we will mostly refer to as simply the density. It would be remarkable if
we could deal with enormously complex quantum mechanical systems by means of
a function depending only on three spatial coordinates and spin(!) [62].

It turns out that exactly this is possible. There is a one-to-one correspondance
between the ground state density, ρ0(r), and the external potential (up to an addi-
tive constant) and thus also the Hamiltonian [101]. Since the Hamiltonian uniquely
determines all properties of a quantum mechanical system, we can in principle deter-
mine all the information in the many-body wave function (of the ground state and all
excited states) from the ground state density alone [24]. The fact that the density can
be determined from the wave function is almost trivially true, but that the converse
is true is the content of the Hohenberg-Kohn theorems.

However, the theorems of Hohenberg and Kohn guarantee only the existence and
uniqueness of an energy functional, E[ρ], which can be used to determine the energy
from the density. Without knowing the form ofE[ρ] and a computational scheme for
calculating it, we are still no closer to being able to use the electron density as the basic
variable in electronic structure calculations. This is where the Kohn-Sham ansatz
comes in, making it possible for us to calculate structure properties of electronic
systems by essentially solving a di�erent system: a non-interacting system with the
electrons moving in an e�ective potential which by construction yields the same
ground state density as the original system.

We will begin our discussion of Density functional theory (DFT [sometimes
prepended KS, making it Kohn-Sham density functional theory {KS-DFT}]) by con-
sidering the theoretical framework and the Hohenberg-Kohn theorems. Then we will
consider the Kohn-Sham ansatz and how DFT calculations are performed in practice.

73

74 Density functional theory Chapter 5

V̂ext(r)
Hohenberg-Kohn←−−−−−−−−− ρ0(r)

↓ ↑

Ĥ
Schrödinger equation−−−−−−−−−−−→ Ψ(R)

Figure 5.1: Schematic representation of the Hohenberg-Kohn theorems. Know-
ing the external potential �xes the Hamiltonian, from which we can extract the
spectrum. The ground state density may then be extracted from the ground state
wave function. The Hohenberg-Kohn theorems allows us (in principle) to �nd
the potential if we know only the ground state wave function, making a one-
to-one correspondence, V̂ext(r) ⇔ ρ0(r). Adapted from a similar �gure in [24].

5.1 The Hohenberg-Kohn theorems
Recall from 2.4.2 that the electronic Hamiltonian under the Born-Oppenheimer ap-
proximation takes the form

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j=i+1

1

|ri − rj|
−

N∑
i=1

M∑
A=1

ZA
|ri − rA|

. (5.1)

We will in the following relabel the last term, and de�ne

N∑
i=1

M∑
A=1

−ZA
|ri − rA|

≡ V̂ext. (5.2)

Since the �rst two terms of the Hamiltonian are the same for any system of N elec-
trons, the external potential term V̂ext completely �xes the electronic Hamiltonian as
a whole. In �xing Ĥ , we also �x the spectrum and so the ground state and all its
derived properties are determined by N and V̂ext alone [61]. One such property is of
course the ground state electronic density.

In the following, we will denote by v(r) the spatial (position basis) representation
of the external potential V̂ext

The �rst Hohenberg-Kohn theorem
As mentioned already, the external potential trivially determines the electron density.
The �rst theorem of Hohenberg and Kohn proves the highly non-trivial converse

Section 5.1 The Hohenberg-Kohn theorems 75

statement: the external potential is uniquely determined (up to an additive constant)
by the ground state electron density [102]. We outline the deceptively simple proof
in the following paragraphs.

Consider two potentials, V̂1 and V̂2, di�ering by more than an additive constant,
V̂1 6= V̂2 + const and denote the ground state energies of the corresponding Hamilto-
nians by E1 and E2 respectively. Assume now that the ground state wave functions
of the two Hamiltonians are the same, Ψ1(R) = Ψ2(R). Since all parts of the Hamil-
tonian apart from V̂ext coincide, subtracting the two Schrödinger equations gives

Ĥ1|Ψ〉 − Ĥ2|Ψ〉 =
(
V̂1 − V̂2

)
|Ψ〉 = (E1 − E2) |Ψ〉. (5.3)

In terms of the wave functions (projecting the equation onto the position basis) this
yields

N∑
i=1

[
v̂1(ri)− v̂2(ri)

]
Ψ(r1, r2, . . . , rN) = (E1 − E2) Ψ(r1, r2, . . . , rN), (5.4)

which means V̂1 − V̂2 = const, in contradiction with the assumption.
We proceed thus with Ψ1(R) and Ψ2(R) neccessarily di�erent. Assume now that

Ψ1(R) and Ψ2(R) have the same ground state electronic density, ρ0(r). From the
variational principle (c.f. section 2.7), we know that

E1 =
〈
Ψ1|Ĥ1|Ψ1

〉
<
〈
Ψ2|Ĥ1|Ψ2

〉
=
〈
Ψ2|Ĥ2 + V̂1 − V̂2|Ψ2

〉
= E2 +

∫
d3r
[
v1(r)− v2(r)

]
|Ψ2(R)|2

⇒ E1 < E2 +

∫
d3r
[
v1(r)− v2(r)

]
ρ0(r). (5.5)

Exchanging the arbitrary indices 1↔ 2, gives rise to

E2 < E1 +

∫
d3r
[
v2(r)− v1(r)

]
ρ0(r), (5.6)

and adding Eq. (5.5) from Eq. (5.6) gives �nally the contradiction E1 +E2 < E1 +E2

since the integrals di�er only by a sign. But this means that clearly, di�erent V̂ext
necessarily produce di�erent ρ0(r) [101].1

1As a hands-on example of the �rst theorem in practice, it is instructive to consider the Coulom-
bic external potential of M stationary nuclei, V̂ = −

∑M
A=1 ZA/|r − rA|. In order to uniquely de-

termine the system, we need to know the number of electrons, N , the position of the nuclei, rA,
and their charges, ZA. The local maxima of the ground state density coincides perfectly with the
nuclei positions. Furthermore, the Kato cusp condition states that at the nuclei (c.f. section 3.1)
(∂ρ̄0(rA)/∂rA)rA→0 = −2ZAρ̄0(0), where ρ̄(rA) denotes the spherical average of density around
nucleus A and rA = |r − rA|. This determines ZA from the ground state density also. Finally, the
integral over the density itself gives the number of electrons, N =

∫
d3rρ0(r).

This is known as E. Bright Wilson’s observation [103].

76 Density functional theory Chapter 5

The statement of the �rst Hohenberg-Kohn theorem is represented in diagram-
matic form in Fig. 5.1.

The second Hohenberg-Kohn theorem
Since, by the �rst theorem, the Hamiltonian is determined uniquely by the density,
that means the wave function can be considered a functional of the density also, Ψ[ρ].
Following the original article by Hohenberg and Kohn[102], we note that this means
the kinetic energy operator and the electron-electron interaction operators are also
both functionals of the density. These can be combined into the universal functional,

F [ρ(r)] ≡
〈
Ψ|T̂ + Ŵ |Ψ

〉
. (5.7)

A further energy functional, EV [ρ], can be de�ned as

EV [ρ(r)] ≡ F [ρ(r)] +

∫
d3r v(r)ρ(r), (5.8)

where v(r) is the position basis representation of an arbitrary external potential. It
is clear that minimizing EV [ρ] will yield the ground state energy of the system with
Hamiltonian Ĥ = T̂ + Ŵ + V̂ext. In the present section we restrict ourselves to
densities representing a system of N electrons, i.e. �xing

∫
d3r ρ(r) = N .

We now consider the energy functional evaluated at some other density, ρ(r) 6=
ρ0(r), with ρ0(r) being the corresponding density of the ground state of Ĥ , ρ0(r) =∫
|Ψ0(R)|2. The other density, ρ(r), is taken to be the corresponding ground state

density of some other external potential, V̂ ′ext. Evaluating the functional gives

EV [ρ(r)] =
〈
Ψ|T̂ + Ŵ |Ψ

〉
+
〈
Ψ|V̂ext|Ψ

〉
=
〈
Ψ|Ĥ|Ψ

〉
. (5.9)

Having established that the external potential is a functional of the density, this gives
us now almost trivially that EV [ρ] > EV [ρ0] for any density that is not the one
associated with the true ground state corresponding to V̂ext [24].

The way forward
Essentially, the two Hohenberg-Kohn theorems say that all properties of an elec-
tronic quantum mechanical system is uniquely determined by the ground state den-
sity alone. Also, a universal functional for the energy in terms of the density, valid
for any external potential, exists and it attains a global minimum for exactly the true
ground state density ρ0(r). In the words of Hohenberg and Kohn [102]:

“ If F [ρ] were a known and su�ciently simple functional of ρ, the problem
of determining the ground-state energy and density in a given external
potential would be rather easy since it requires merely the minimization
of a functional of the three-dimensional density function.

P. Hohenberg & W. Kohn ”

Section 5.2 Kohn-Sham ansatz 77

Indeed, all of electronic structure theory would have been solved in one fell swoop.
Predictably, this is not the case. Determination of the universal functional is anything
but trivial. In order to make real progress with the approach of considering the elec-
tronic density as the primary variable, we turn now to the framework proposed by
Kohn and Sham.

5.2 Kohn-Sham ansatz

In their seminal 1965 paper [23], Kohn and Sham outlined a way to obtain a set of
single electron equations in the density that can be solved self-consitently to obtain
the total electronic energy. In order to accomplish this, they consider an auxiliary
non-interacting system in place of the original one [24].

Kohn and Sham tell us to consider a non-interacting system for which the ground
state density is the same as the ground state density for the interacting system in
question. The existence of such a non-interacting system of electrons is far from ob-
vious. In fact, determining necessary constraints on V̂ext for it to be non-interacting
v-representable is still an open question in the theoretical foundations of density func-
tional theory. For almost all real world problems, it is necessary to simply assume the
existence of a non-interacting system for which the ground state density coincides
with that of V̂ext [24, 104]. The assumption that such a non-interacting system exists
constitutes the Kohn-Sham ansatz.

We denote the non-interacting Hamiltonian and the corresponding e�ective po-
tential by Ĥs and V̂s, with spatial representation vs(r). Since the electrons in this
auxiliary system do not feel the coulombic inter-electron force, we know that the ex-
act ground state is represented by a Slater determinant �lled with the energetically
lowest N single electron solutions of the single electron Schrödinger equation [61].
Note that the Schrödinger equation is by construction separable, since it only in-
volves the kinetic energy operator and a (multiplicative) external potential operator.
The one-electron Hamiltonian takes the form

ĥsψi =

[
−1

2
∇2 + vs(r)

]
ψi = εiψi, (5.10)

with eigenstates ψi. Since Ĥs is spin-independent2 and obviously commutes with Ŝz ,
we may choose the ψi to be products of spatial orbitals and the normalized spinor
eigenstates of Ŝz , ψi(r, σ) = φn(r)χ(σ). We note that the quantum number i rep-
resents both spatial and spin quantum numbers. This means we can write the exact

2If the original Hamiltonian is spin-dependent, the e�ective potential needs to also carry spin-
dependency in order to give the required spin-density. This is a complication we will fully ignore
here.

78 Density functional theory Chapter 5

ground state wave function and the density as

Ψ0(R) =
1√
N

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) . . . ψN(r1)
ψ1(r2) ψ2(r2) . . . ψN(r2)

...
ψ1(rN) ψ2(rN) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣ , (5.11)

with

ρ0(r) =
N∑
i=1

|ψi(r)|2 =
∑
σ

N/2∑
n=1

|φn(r)|2 = 2

N/2∑
n=1

|φn(r)|2. (5.12)

In general, the kinetic energy operator as a functional of the density is not known.
However, in the auqiliary non-interacting system, we can write down the closed form
expression in terms of the ψis [61]:

Ts[ρ(r)] = −
N∑
i=1

〈
ψi| −

1

2
∇2
i |ψi

〉
. (5.13)

Recall that the universal energy functional has the form F [ρ] = T [ρ] + W [ρ], i.e.
the sum of the kinetic and the inter-electronic potential functionals. Kohn and Sham
now suggest we rewrite F [ρ] in terms of the known non-interacting kinetic energy
functional as

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (5.14)

where J [ρ] is the classical coulomb interaction functional and Exc[ρ] is essentially
everything that is left over [102]. The J [ρ] functional we will shortly see is the func-
tional form of the Ĵ operator in the Hartree-Fock approximation (see section 4), while
Exc[ρ] is called the exchange-correlation energy and contains the (hopefully small)
correction needed for Ts[ρ] in order to make it into T [ρ] and the non-classical part of
the electron-electron interaction Ŵ [24, 61].

The exact (recall that the density of the auqiliary system is the same as the original
density) energy functional of the fully interacting system can now be written as

E[ρ] = Ts[ρ] + J [ρ] +

∫
d3r ρ(r)v(r) + Exc[ρ], (5.15)

where v(r) is the position basis representation of V̂ext. For completeness, we state
also the explicit form of the exchange-correlation energy

Exc[ρ] = (T [ρ]− Ts[ρ]) + (W [ρ]− J [ρ]) , (5.16)

where W [ρ] = J [ρ]−K[ρ] is the functional corresponding to the two-body term in
the original Hamiltonian.

Section 5.3 The Kohn-Sham equations 79

It may seem like we have made no progress at all: We started o� with an unknown
functional F [ρ], and after introducing the Kohn-Sham ansatz we are still left with an
unknown (albeit di�erent) functional, Exc[ρ]. The exchange-correlation functional,
however, may be easier to approximate. Also, we have introduced a separable (by
construction) Hamiltonian from which we can extract a set of coupled one-electron
Schrödinger equations which we may solve in order to obtain the true ground state
density (and in principle all other properties of the system). Note carefully that at
this point, no approximations (beyond Born-Oppenheimer and the assumption that
the original density was non-interacting v-representible) have been made, and so we
may consider the preceding results to be exact. This represents a conceptually major
di�erence between DFT and Hartree-Fock theory: The latter is an approximate set
of equations which we solve exactly, while DFT constitutes a set of exact equations
which we are forced to solve approximately (because we don’t know closed form
expressions for Exc).

5.3 The Kohn-Sham equations
In the same way Roothan and Hall introduced orbitals to the Hartree-Fock formalism
4, we now introduce a set of spin-orbitals in the DFT scheme. The single determi-
nantal wave function is constructed from N orthonormal spin-orbitals, {ψi(r)}Ni=1,
where we have absorbed the spin quantum number into the label i. In the restricted
case, this means that i and i + 1 are spatially pair-wise identical, with di�ering spin
index. The energy functional can now be written in terms of the orbitals as

E[ρ, ψ] = Ts[ψ] + J [ρ] + Exc[ρ] +

∫
d3r v(r), (5.17)

with

J [ρ] =

∫ ∫
d3r1d3r2

ρ(r1)ρ(r2)

|r1 − r2|

=
N∑
i=1

N∑
j=1

∫ ∫
d3r1d3r2

|ψi(r1)|2|ψj(r2)|2

|r1 − r2|
, (5.18)

and

Ts[ψ] = −1

2

N∑
i=1

∫
d3rψ∗i (r)∇2ψi(r). (5.19)

Minimizing this functional—analogous to the Hartree-Fock minimization procedure
of chapter 4—yields the Kohn-Sham orbital equations [24][

−∇
2

2
− v(r) +

∫
d3r′

ρ(r′)

|r′ − r|
+
δExc[ρ]

δρ(r)︸ ︷︷ ︸
≡ F̂ KS

]
ψi(r) =

N∑
j=1

εijψj(r), (5.20)

80 Density functional theory Chapter 5

where ε is once again a matrix of Lagrange multipliers. Expanding the Kohn-Sham
orbitals in a known basis of atomic orbitals {ϕk(r)}Lk=1, applying a unitary transfor-
mation diagonalizing the Kohn-Sham operator F̂ KS, and writing Eq. (5.20) in weak
form (c.f. section 4.4.1) gives the Kohn-Sham equations

L∑
k=1

CkiF̂
KSϕk(r) = εi

L∑
k=1

Ckiϕk(r), (5.21)

or in matrix representation

F KSC = εSC. (5.22)

In the restricted case, the matrix elements F KS
pq are given by

F KS
pq = 〈ϕp|ĥ|ϕq〉+ 2

∑
rs

Drs〈pq|ŵ|rs〉+

∫
d3rϕp(r)ϕq(r)vxc(r), (5.23)

where 〈 · | · 〉 denotes integration over spatial coordinates only and the exchange-
correlation potential is de�ned as the functional derivative (see appendix C) of the
exchange-correlation energy

vxc(r) ≡
δExc[ρ]

δρ(r)
. (5.24)

5.4 Local density approximation
The e�cacy of the DFT scheme now depends sorely on the quality of the basis set
{ϕk}Lk=1, and more importantly the form of the exchange-correlation energy func-
tional. Since we do not know the exact form, we are forced to parameterize approx-
imations to it. This can be done in various ways, the simplest of which—the local
density approximation (LDA)—is the only one we will discuss in this thesis. The
LDA is based on the exchange-correlation energy of the uniform electron gas as per
the original suggestion of Kohn and Sham [14, 23]. It is usually written down in terms
of the exchange-correlation energy per particle, εxc,

ELDA
xc [ρ] =

∫
d3r ρ(r)εxc

[
ρ(r)

]
. (5.25)

The exchange part was shown by Dirac to be [105]

ELDA
x [ρ] = −3

4

(
3

π

)1/3 ∫
d3r ρ

4/3. (5.26)

For the correlation part, however, no such simple expression exists. Despite this
di�culty, highly accurate quantum Monte Carlo calculations on the correlation en-
ergy of the free electron gas were performed in 1980 by Ceperley and Alder [106] and

Section 5.4 Local density approximation 81

these were subsequently parameterized in several di�erent ways by Vosko, Wilk, and
Nussair (VWN) [107]. This resulted in functional forms usable in practical DFT cal-
culations. In the present work we use the VWN5 parameterization (c.f. the original
paper), which depends on the electron gas parameter,

rs ≡
(

3

4πρ(r))

)1/3

, (5.27)

and the spin polarization

ξ(r) ≡ ρ↑(r)− ρ↓(r)
ρ↑(r) + ρ↓(r)

. (5.28)

The gas parameter is simply a rescaling of the density, while the spin polarization
represents the relative di�erence in spin-up and spin-down densities at r. If ξ is
large, Vosko and co-workers suggest using the "ferromagnetic" exchange

εF
x(rs) = −3(2

1/3)

(
9

32π2

)1/3
1

rs
, (5.29)

while for ξ = 0, the "paramagnetic"

εP
x(rs) = −3

(
9

32π2

)1/3
1

rs
(5.30)

is used. In total, the polarized exchange part of Exc takes the form

εx(rs, ξ) = εP
x(rs) +

[
εF

x(rs)− εP
x(rs)

]
f(ξ), (5.31)

with

f(ξ) ≡ (1 + ξ)4/3 + (1− ξ)4/3 − 2

2(21/3 − 1)
. (5.32)

A similar expression is used for the correlation part, with

εP
c (rs) +

[
εF

c(rs)− εP
c (rs)

]
f(ξ). (5.33)

The εc terms are parametrized by [61]

εc(rs) =
A

2

{
ln

(
x

X(x)

)
+

2b

Q
tan−1

(
Q

2x+ b

)
− bx0

X(x0)

[
ln

(
(x− x0)2

X(x)

)
+

2(b+ 2x0)

Q
tan−1

(
Q

2x− b

)]}
, (5.34)

82 Density functional theory Chapter 5

with

x ≡
√
rs,

X(x) ≡ x2 + bx+ c,

Q ≡
√

4c− b2.

For ξ = 0 we have A = 0.0621814, x0 = −0.409286, b = 13.0720, and c = 42.7198,
while for ξ 6= 0 the parameters change, but the functional form of Eq. (5.34) remains
the same.

5.5 Numerical integration grids

Since the integral of the exchange-correlation potential over the density is rarely (if
ever) calculable analytically, we are forced to resort to numerical integration schemes
in order to evaluate it. In the one dimensional case, strong and robust integration
schemes based on gaussian quadrature integrate any su�ciently smooth function to
high accuracy using a modest number of integration points [16]. However, in multi-
ple dimensions, the problem of numerically integrating a multi-variable function is
considerably more challenging. Although the philosophy behind is unchanged, the
actual application required a lot more thought. This is in large part because all the
nuclei represent singularities which hinder the sucessful application of products of
gaussian quadrature rules [108]. Before we begin discussing integrals in density func-
tional theory, we refer the reader to a short introduction to numerical integration in
section B of the appendix.

The integrals of interest within the framework of density functional theory are
integrals over the electronic density. Since we know a priori that the density falls
o� exponentially in the long range limit (c.f. section 3.1), this reduces to a locally
contained integral in some �nite and small region in space close to the nuclei. Since
the potentials are in general functions of the density and its derivatives (which of
course also falls o� exponentially) we are guaranteed that the exchange-correlation
potentials also vanishes exponentially as we move far away from the nuclei.

5.5.1 Simple spherical grid

When dealing with a single nucleus, we may simply choose some cut-o� radius and
place integration points either linearly or in some other fashion along the radius up
to this cut-o� radius. Since we are primarily interested in integrands which fall o�
exponentially with the radius, having more points closer to the nucleus will yield a
better approximation with fewer points. A simple example is logarithmically spaced
points along the radius. At every such radius, we place k2 angular points, m linearly
spaced points in the polar and the azimuthal angle respectively.

Section 5.5 Numerical integration grids 83

Figure 5.2: Example of a simple spherical
shell grid for a single radius r. The full grid
employsm total such shell grids, one for each
of the logarithmically spaced values ri. Note
the relatively higher density at the pole. This
example grid uses 20 linearly spaced points
in both the polar and azimuthal angles, θ and
φ for a total of 400 points.

The weight for each of the points is simply the volume element of the sphere at
radius ri, polar angle θj , and azimuthal angle φk. In addition we need to multiply
by the �nite change in r, θ, and φ. In total, we recover the familiar spherical polar
volume element [74] with the addition of ∆r∆θ∆φ,

wijk = r2
i sin θj(ri − ri−1︸ ︷︷ ︸

∆ri

)(θj − θj−1︸ ︷︷ ︸
∆θj

)(φk − φk−1︸ ︷︷ ︸
∆φk

)

= r2
i sin θj∆ri

(
π

m− 1

)(
2π

m− 1

)
=

2πr2
i sin θj∆ri

(m− 1)2
. (5.35)

Under this approximation, the numerical integral over a functional of the density,
F [ρ], is given by (in terms of cartesian coordinates)

∫
F [ρ] d3r ≈

n∑
i=1

m∑
j=1

m∑
k=1

wijkF [ρ(xα, yβ, zγ)] , (5.36)

with xα = ri sin θj cosφk, yβ = ri sin θj sinφk, and zγ = ri cos θj being the normal
transformation form spherical polar→ cartesian coordinates.

The cut-o� radius may be chosen to be the radius at which the most di�use basis
function has fallen to below some pre-assigned threshold value, ε. With cartesian
gaussian basis functions, {χb(r)}Mb=1 = B, the cut-o� takes the value

rcut-o� =

√
log ε

min {|αb| : χb ∈ B}
. (5.37)

An example of such a grid is shown in Fig. 5.2. Only the shell at ri = 1 is shown,
the full grid consists of m such shells at logarithmically spaced ris.

84 Density functional theory Chapter 5

5.5.2 E�ciency of angular grids and the productGaussian quadra-
ture formula

The naive grid described in the previous section works, but is far from optimal. In
order to derive a quadrature rule more suited to our purpose, we turn our attention
to the general problem of integrating a function f(θ, φ) on the surface of a unit sphere
S2 = {r ∈ R3 : |r| = 1}. Let us now ask: Is there an optimal way to distribute points
and �nd associated weights such that the approximation

I =

∫ π

0

dθ

∫ 2π

0

dφ f(θ, φ) ≈
n∑
i=1

wif(θi, φi) (5.38)

is the best possible approximation for a given number of points n? In order to make
the question more precise, we note that any such function f : S2 → R may be ex-
pressed in terms of the spherical harmonics (since they form a complete basis for the
square integrable functions on S2, L2(S2) [73]. So let us rephrase the question as: Is
there a way to distribute points and �nd associated weights such that the approxi-
mation in Eq. (5.38) integrates exactly any linear combination of spherical harmonics
with degree up to L?

Before we go on to answer this question, let us de�ne more rigorously what we
mean by an expansion in terms of spherical harmonics. The spherical harmonics
themselves are given by [74]

Y m
l (θ, φ) =

1√
2π
Pm
l (cos θ)eimφ, (5.39)

with −l ≤ m ≤ l and l,m ∈ N. The polynomials Pm
l are the normalized associated

Legendre polynomials.3 Expanding f in terms of these harmonics constitutes �nding
clm,

f̃(θ, φ) =
L∑
l=0

l∑
m=−l

clmY
m
l (θ, φ) (5.42)

such that e = ‖f̃ − f‖ is minimized [82] (in the sense that the "error" e is orthog-
onal to the �nite dimensional subspace of L2(S2) spanned by the harmonics up to

3The associated Legendre polynomials are solutions to the di�erential equation

d

dx

[(
1− x2

) d

dx
Pml (x)

]
+

[
l(l + 1)− m2

1− x2

]
Pml (x) = 0, (5.40)

which attains non-zero and non-singular solutions in [−1, 1] if and only if m and l are both integers,
with l ≥ m [74]. An explicit formula for the polynomials is for example

Pml (x) =
(−1)m

2ll!

√
(1− x2)

m dl+m

dxl+m
(
x2 − 1

)l
. (5.41)

Section 5.5 Numerical integration grids 85

and including degree L). This is known as the Galerkin method, and the governing
equation for the coe�cients is the inner product

clm =

∫
S2

dθdφ f(θ, φ)Y m
l (θ, φ). (5.43)

The decay rate of the coe�cients with increasing l determines how well f̃ approxi-
mates f , i.e. the convergence rate of the spherical harmonic expansion [109].

Dealing with the problem of integrating functions across the surface of a sphere,
McLaren de�ned in 1963 a measure of the e�ectiveness of a quadrature rule by how
high orderL the rule would integrate exactly usingK independent arbitrary variables
used. In terms of the number of points used, the McLaren e�ciency is de�ned as [110]

E =
Number of spherical harmonics up to and including order L

Number of variables associated with N points =
(L+ 1)2

3N
.

(5.44)

The total number of independent variables is 3 for each point: two angles and a
weight. The total number of spherical harmonics up to and including order L is

L∑
l=0

l∑
m=−l

1 =
L∑
l=0

(2l + 1) =
L∑
l=0

2l +
L∑
l=0

1

= L(L+ 1) + (L+ 1) = (L+ 1)(L+ 1) = (L+ 1)2. (5.45)

In general we expect E ≤ 1, although in rare cases E > 1 [73].
Let us now consider the e�cacy of the common practice of applying a Newton-

Cotes quadrature rule (for example the trapezoidal rule) in φ and a Gauss-Legendre
scheme for the θ integral. An equally spaced grid of M points ensures exact integra-
tion of ∫ 2π

0

dφ eimφ, (5.46)

for all m ≤ M , whereas a gaussian quadrature rule using the Legendre polynomials
gives exact integration of the associated Legendre polynomials∫ π

0

dθ Pm
l (cos θ), (5.47)

for l ≤M if (M +1)/2 points are used [109]. In total, the "product Gaussian quadra-
ture formula" takes the form [73]

I ≈
M∑
i=1

wi

L+1
2∑
j=0

wjf(θi, φj), (5.48)

and the e�ciency is E = 2/3 [110].

86 Density functional theory Chapter 5

Figure 5.3: Example of the product gaussian grid (left) and the Lebedev grid
(right). The former employs 20 integration points in the Legendre quadrature
and 20 points in the equidistant φ grid, for a total of 400 points. The latter is a
25th order grid, with a total of 266 points. Note the cluttering of points at the
pole for the product gaussian grid. Adapted from a similar �gure in [109].

5.5.3 Lebedev quadrature
Since the product Gaussian quadrature fails to attain E ≈ 1, it is natural to consider
it’s �aws and look for an improved scheme. An obvious weakness of the product
scheme is the clustering of integration points at the poles. Because the spacing in the
polar angle θ is linear and there are a constant number of azimuthal angle φ points for
every θi, the distance along the surface of the unit sphere between adjacent angular
points φj and φj+1 approaches zero as θ → 0 or π. Intuitively, the points close to
the poles should not be more important than the points at the equator, since we are
fully allowed to rotate the coordinate system 90◦ along the polar angle—essentially
switching the poles and the equator—without a�ecting the value of the integral.

In fact, this very observation is crucial in order to make progress: Any rotation or
inversion (all points reversed through a given plane) that leaves the sphere invariant
should also leave the quadrature invariant. This observation is the contents of a
theorem due to Sobolev (for an english translation of his seminal 1962 paper, see e.g.
[111]). Essentially, Sobolev states that given a quadrature rule to integrate a spherical
harmonic monomial4 f on S2, I(f), the rule must neccessarily give the same result
as the quadrature rule resulting from �rst applying a rotation or inversion,

I(f) = I(γ[f]), (5.49)

if f is invariant under γ. Here, γ ∈ G and G denotes the discrete symmetry group
of the sphere. The theorem further states crucially that in order for I to integrate all
spherical harmonic monomials (and thus also all linear combinations of harmonics,
such as the approximation f̃ from Eq. (5.42)) it is su�cient to only demand I integrate
exactly all the monomoials which are invariant under γ ∈ G [73].

4I.e. f(θ, φ) = Y ml (θ, φ) for some single unique l and m.

Section 5.5 Numerical integration grids 87

In the 1970s, Lebedev (who was a Ph.D. student under Sobolev) constructed a class
of invariant quadratures based on this idea by working out the invariant spherical
harmonics and solving the resulting system of non-linear equations for the points and
weights [109, 112]. Lebedev published multiple articles deriving higher and higher
order methods, culminating in quadrature rules of degree over a hundred.

An example of a Lebedev grid is shown in Fig. 5.3, alongside a gaussian product
grid. We note the di�erence in the cluttering of the points towards the poles for the
gaussian grid. Lebedev’s grid attains e�ciency E = 1, and as such we expect about
equal integration results as when using a gaussian product grid of 3/2 as many points
[109]. This means that the 400 point gaussian quadrature on the left and the 266 point
Lebedev quadrature on the right should in practice yield the exact same precision.
We note that in using the Lebedev grid, we are implicitly expanding the integrand in
terms of spherical harmonics which means the precision of the quadrature depends
heavily on the relatively rapid convergence of the spherical harmonics coe�cients
clm of Eq. (5.5) [108].

5.5.4 Completemolecular grids, Voronoi andWigner-Seitz par-
titioning

In order to expand the previous spherical shell grid to a full integral over the entire
molecular volume, we need to pair it with a quadrature rule for the radius. For the
case of a single atom we may simply pair the Lebedev grid with a Gauss-Laguerre
scheme5 for the radial integral.

However, the polyatomic case is considerably harder to deal with because of the
aforementioned problem of the nuclei representing singularities which ruin the fa-
vorably low error scaling and convergence properties enjoyed by gaussian quadrature
applied to more well-behaved integrands. Before we dive into the thick of things, we
need to �rst introduce the notion of Voronoi partitioning.

Assume we are given a set of K points {ri}Ki=1. We may partition any volume
enclosing these points (e.g. all of R3) into K separate regions in a unique way such
that any point in region j is closer to rj than to any other ri, i = 1, 2, . . . , j −
1, j + 1, . . . , K . Even if the idea dates back at least as far as the 17th century and

5The (generalized) Laguerre polynomials are the solutions to the di�erential equation

x
d2y(x)

dx2
+ (1 + α− x)

dy(x)

dx
+ ny(x) = 0, (5.50)

with n a non-negative integer and α an arbitrary real constant [74]. An explicit expression for the
polynomials themselves can be found by the so-called Rodrigues formula:

Ln(x) = x−α
1

n!

(
d

dx
− 1

)n
xn+α. (5.51)

The weight function W (x) for the Laguerre polynomials in the setting of gaussian quadrature takes
the form W (x) = xαe−x.

88 Density functional theory Chapter 5

Figure 5.4: Example of a Voronoi partition-
ing for the water molecule H2O. Since this is
a planar molecule, the Voronoi partitioning is
strictly two-dimensional, with trivial vertical
components. All surfaces stretch out to in�n-
ity, but is truncated in the plot at ±1 and ±5
for the vertical and horizontal directions, re-
spectively. The polar covalent O – H bonds are
marked with black lines.

Descartes, the procedure and the resulting structure takes its name from Russian-
Ukrainian mathematician G. Voronoi: it is called Voronoi partitioning or a Voronoi
diagram (or sometimes also Dirichlet tesselation, after German mathematician P.G.L.
Dirichlet) [113]. For the special case of a regular crystalline lattice of atoms in three-
dimensional space is considered the Voronoi partitioning is known as Wigner-Seitz
cells [108]. An example of a Voronoi partitioning of a molecular volume is shown
in Fig. 5.4, where the boundaries between the Voronoi cells for the H20 molecule are
drawn as gray walls.

In the following we will describe Boerrigter, Velde, and Baerends’ integration
scheme for polyatomic molecules which employ Lebedev spherical grids and han-
dle the radial integral by partitioning the molecular volume into Voronoi cells [108].
We will call the resulting quadrature rule for the Voronoi grid.

Boerrigter and co-workers note that much of the di�culty in computing the inte-
grals for such multi-atomic molecular systems stem from the singularities inherent
in the point-like nuclei. A relatively straight forward way to circumvent these diver-
gencies is to integrate in spherical polar coordinates centered at the nuclei. Since the
r2 factor of the Jacobian associated with the coordinate transformation supresses the
1/r factor of the Coulomb interaction, the resulting quadrature rule is well-behaved
at and around r → 0. The proposed algorithm divides the molecular volume into
a set of Voronoi cells for each atom. Next, non-overlapping spheres are constructed
by �xing the largest atom-centered spheres that can be contained in each cell. This
divides the entire volume into a set of spheres (on which the integration is relatively
easy), and an "interstitial" region [108].

The integral over the atomic spheres is done by a Lebedev and Gauss-Legendre
product (possibly with the Legendre grid split into multiple sub-regions for heavy
atoms, in order to ensure enough emphasis is given to the tight core) [114].

The integral over the interstitial region is split into quadrangular and triangular
pyramids, as shown in Fig. 5.5. This essentially means we are integrating over what is
left of the Voronoi partition, after we have already dealt with the atomic spheres. The
base of the pyramids can in general be any polygon, but it is always possible to split a

Section 5.6 Becke grid 89
NUMERICAL INTEGRATION FOR POLYATOMIC SYSTEMS 87

In this case a division in subregions is thus dictated by
peculiarities of the integrands, rather than by the form of the
region of integration.

Pyramids of the Voronoy Polyhedra

For the pyramids a threefold product formula is used.
Three parameters u, V, w are defined to map the truncated
pyramid onto the unit cube (0, 1) x (0, 1) x (0, 1). u and v
parametrize the base as well as the spherical surface cut out
by the pyramid; they define points Q(u, v) and P(u, u) on
these regions. The third parameter w parametrizes the
connection line PQ.

The base is a polygon and may have any number of
vertices. Product formulas for quadrangles and triangles are
easily written down. To treat a general polygon with more
than four vertices we repeatedly split off a quadrangle
(Fig. 1) and deal with that part until a quadrangle or tri-
angle remains (depending on the total number of polygonal
vertices being even or odd). So a final further splitting in
subregions is performed, writing the pyramid as a sum of
pyramids with each a quadrangular (or triangular) base.

(a) Quadrangular base. The base is parametrized by
u and v, such that a general point Q of the base is

Q(u,u)=(l-u)(l-v)A+u(l-v)B+uvC+(l-u)uD.
(2.3)

A, B, C, and D are the vertices of the base. The parametriza-
tion defines a (bilinear) map from a general quadrangle to
the unit square, which can then be treated with a product
formula (in u and u).

To deal with the appropriate part of the spherical surface
we first introduce two auxiliary angular coordinates, in the
following way (Fig. 2). Let S, be the common line of the
planes ABO and CDO, and S, the common line of ADO and
CBO; 0 is the top of the pyramid; c(is the angle between S,
and S,. Choose the Cartesian coordinate system such that
S, and S2 are in the xy-plane, and S, is the x-axis. Consider
the set of half planes through S, and define coordinate 4, as

FIG. 1. A general polygon P, P,, split into a quadrangle P, P,
and a remaining (n - 2)-gon P, , P,, P, '. P,.

FIG. 2. Truncated pyramid with quadrangular base ABCD.

the angle of such a plane with the z-axis, such that the half
plane containing the positive x-axis has b1 = n/2 and the
plane containing the negative x-axis has d1 = -n/2. & is
similarly defined for the set of half planes through SZ.

The spherical surface inside the pyramid is a rectangle in
the di, &-coordinates. The relations between (4,, &) and
the Cartesian coordinates (x, y, z) for points on the unit
sphere with radius R are

x = z (tg ff$ + tg $4* cos G1) sin cx

y=ztg42
z=J(R*-x2- y’)

(2.4)

Turning back to the parameters u and v, we define them to
parametrize the intervals for 4i and ti2,

dl(“)=il,rnax + U(dl,min-41,max)

42(u) = d2,max +442,mi" -4%,max).
(2.5)

The signs and orderings have been chosen to let the
parametrizations of the base and the sphere respectively
correspond in orientation. A point P(u, u) on the sphere is
thus given by (2.4) with b1 and d2 depending on u and u
via (2.5).

The third parameter w describes the line segment PQ
from the sphere to the base, and for a general point in the
region of integration we have

X(u, u, w) = P(u, v) + w(Q(u, u) - P(u, v)). (2.6)

Figure 5.5: Illustration of a triangular inter-
stitial region outside of the atomic sphere. The
base of the quadrangular pyramid, ABCD, is
the edge of the Voronoi cell between the atom
at O and the neighbouring atom. The integral
is taken over cartesian coordinates in the basal
plane and radially from the atomic sphere sur-
face z0(x, y) to (x, y, zB) at the base. This is
equivalent to the beam of solid angle ∆Ω with
correspondingφ1 andφ2 associated withx and
y. The z coordinate at the base is denoted zB .
Figure taken from [114].

n-vertex polygon into a quadrangle and a n−2-vertex polygon and iteratively reduce
the number of sides of the polygon while generating more and more quadrangles.
Depending on if the starting side number n of the original n-gon was even or odd,
the last partition ends up as a quadrangle or a triangle.

In order to map the general truncated (atomic sphere removed) pyramid onto the
unit cube, three parameters u, v, and w are de�ned. A general point on the base is
given in terms of u and v as

Q(u, v) = (1− u)(1− v)A + u(1− v)B + uvC + (1− u)vD, (5.52)

with A, B, C, and D being the vertices of the base [108]. The line S1 is de�ned as the
common line of the planes ABO and CDO, while S2 is the common line of ADO
and CBO [114]. The angles φ1 and φ2 are aligned 45◦ w.r.t. the x and y-axes.

We will leave out the rest of the technicalities here. The important take-away
is that the Voronoi grid always integrates over volumes containing nuclei in terms
of spherical polar coordinates centered at said nuclei. This ensures the Lebedev-
Legendre quadrature is well-behaved for the atomic spheres. For the complete ex-
pressions for the quadrature points and weights for both the atomic spheres and the
interstitial regions, see [114].

5.6 Becke grid
The Voronoi grid of Boerrigter and co-workers is unfortunately not very well suited
for complete automation. A complication which was largely ignored in the previous
section is that in order for optimal integral convergence, further splitting of the ra-
dial grids is needed. E.g. a partitioning of the atomic sphere into two or even three
separate regions, say (0, 0.1.), (0.1, 0.3), and (0.3, 1) may be needed in order to ob-
tain acceptable results [108]. It is however hard to come up with general guide lines
for where exactly such splitting should occur, given arbitrary atomic charges and ge-

90 Density functional theory Chapter 5

ometries. We will therefore end our discussion of numerical integration with the grid
due to Becke [115].

He suggests a scheme based on the same philosophy, dividing the molecular vol-
ume into Voronoi cells. However, instead of constructing "hard atomic spheres" and
treating the left-over interstitial regions separately, he introduces a "fuzzy" cellular
partitioning, i.e. a Voronoi tessellation with smooth and continuous transitions be-
tween cells.

Becke starts out with a two-center coordinate system known as confocal elliptical
coordinates, (λ, µ, φ), where theφ coordinate denotes the angle about the internuclear
axis, while λ and µ are de�ned as

λ =
r1 + r2

R12

, and µ =
r1 − r2

R12

, (5.53)

where r1, r2, and R12 denote distance to nucleus one, distance to nucleus two, and
the internuclear separation, respectively [115]. The confocal coordinate system cor-
responds to representing positions in terms of confocal (i.e. all sharing focal points)
quadrics, generalizations of the conic sections: ellipses, hyperbolas, and parabolas.
The µ coordinate represents the inter-nuclear separation, with the surface at µ = 0
being the edge of the Voronoi cells of nuclei 1 and 2, i.e. the surface at which r1 = r2.
The limit µ → −1 (µ → +1) correspond to the ray extending from the midpoint,
through nucleus 1 (nucleus 2), and out to in�nity [74].

For nucleus i, taking the confocal elliptical coordinates relative to all other nuclei
j gives a set of coordinate systems {(λij, µij, φij)}Mj=1,j 6=i, with which we can express
the Voronoi cells as step functions of µij :

s(µij) =

{
1 for −1 ≤ µij ≤ 0
0 for 0 < µij ≤ 1

(5.54)

with Pi(r) =
∏

j 6=i s(µij) being the cell function for nuclei i which takes the value 1
whenever r is inside the Voronoi cell for nuclei i, and 0 otherwise [115]. Becke now
suggests replacing the sharp step function by a less sharp "cuto� function," yielding
the aforementioned "fuzzy" Voronoi partitioning.

The cuto� function is not unique (the only necessary properties being f(−1) =
−1, f(+1) = +1, and vanishing derivatives at both these points), so Becke simply
chooses a simple one: sn(µ) = [1 − pn(µ)]/2 with p(µ) = 3µ/2 − µ3/2 and pn(µ)
being the n times iterated p. The iterations pn(µ) yield progressively sharper cuto�
pro�les pn ≡ p ◦ p ◦ p ◦ · · · ◦ p (n-times), pn(r) = p {p (. . . p [r] . . .)}, with limn→∞ sn
recovering Eq. (5.54) [116]. Examples of the iteration for various values of n is shown
in Fig. 5.5.

Next, for each nucleus assign to each point in the (entire) molecular volume a
relative weight wm(r), such that for any given r, the following holds

M∑
m=1

wm(r) = 1. (5.55)

Section 5.6 Becke grid 91

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.6: The Becke cuto� pro�le as a func-
tion of the confocally elliptical inter-nuclear
separation coordinate, µ, for various values of
iteration, k. We note that in the limit of very
high k, the step function of Eq. (5.54) is repro-
duced. Adapted from a similar �gure in [115].

We demand that wm(r) be assigned in such a way as to take the value unity in the
viscinity of nucleus m, and vanish in the viscinity of every other nucleus. Using the
previously described cuto� functions (Becke suggests a value of n = 3 iterations of
the polynomial p), we can assign wm(r) as [115]

wn(r) =
Pn(r)∑M
m=1 Pm(r)

. (5.56)

Having de�ned the relative weight of each point in space, the only thing that
remains to be done is to de�ne around each nucleus a local spherical polar coordinate
system (rm, θm, φm) and we can rewrite the integral any (scalar-valued) real-valued
function F (r) as a sum over single center integrals Fm(r) as

I =

∫
F (r) d3r (5.57)

=
M∑
m=1

∫
Fm(r) d3r. (5.58)

Each Fm(r) is the single center integrand de�ned by the weight function Eq. (5.56),

Fm(r) ≡ wm(r)F (r), (5.59)

and we note that since
∑M

m=1wm(r) = 1, the sum over all Fm(r) is equal to F (r) for
every point r, and so the two integrals of Eqs. (5.57) and (5.58) are equal.

In short, the scheme proposed by Becke maps the problem of integrating across
the whole molecular volume onto a series of much simpler single center integrals
over the viscinity of each nucleus. Since the weight function of nucleus m vanishes
close to any other nucleus, we can just integrate over a simple spherical Lebedev grid
(with the r integral handled by a Gauss-Chebychev quadrature of the second kind,
as proposed by Becke and co-workers) for each nucleus without having to worry
about the singularities at the other nucleonic centers [117]. Since we can create a

92 Density functional theory Chapter 5

spherical grid around each nucleus with cuto� radii dependent on the orbitals of the
basis centered around that nucleus, we know that we always include enough of the
surrounding space to obtain su�cient precision in the integral. This is in contrast
to the scheme proposed by Boerrigter and co-workers [108], described in previously
in section 5.5.4. In that scheme we are guaranteed only to directly hit the volume
enclosed by the largest sphere that we can totally enclose within each Voronoi cell,
and subsequently have to handle in some intricate and complicated way the "left-over
volume" that is inside each Voronoi cell but not inside this sphere.

Chapter 6

Variational Monte Carlo

A large collection of computational methods exist which attempt to solve the Schrödinger
equation via the use of stochastic Monte Carlo methods. These are collectively known
as Quantum Monte Carlo methods, and the (arguably) simplest such method is known
as Variational Monte Carlo (VMC). The VMC scheme attempts to directly evalu-
ate the integral governing the ground state energy expectation value of a quantum
mechanical system,

E0 = 〈Ψ|Ĥ|Ψ〉 =

∫
d3NRΨ∗(R)Ĥ(R)Ψ(R)∫

d3NRΨ∗(R)Ψ(R)
, (6.1)

with R = {r1, r2, . . . , rN} being all electronic coordinates. It is fairly obvious from
the name that said integral is evaluated using Monte Carlo integration. Any other
quantum mechanical quantity of interest can be expressed in terms of the expectation
value of an operator à la Eq. (6.1), which means we can essentially formulate all of
electronic structure theory in terms of such high-dimensional integrals [69]. Since
Monte Carlo methods are well suited to solving such integrals (for which grid-based
methods fail spectacularly) the matching of quantum mechanics and Monte Carlo
integration has widespread applicability [17].

Of course, we do not a priori know the form of the ground state wave function,
Ψ(R), and in electronic structure problems we have to construct an ansatz wave func-
tion by �lling a (linear combination of) Slater determinant(s) with spin-orbitals from
some chosen basis set. However, in contrast with the previously described Hartree-
Fock and (Kohn-Sham) Density Functional methods, VMC does not in general require
the use of spin-orbitals for which one-, and two-electron Coulombic interaction in-
tegrals can be readily calculated [70]. Whereas we are essentially forced into using
combinations of gaussian basis functions under the former schemes, the Variational
Monte Carlo method o�ers much more freedom in the choices of orbital basis. Essen-
tially the only requirement on the orbital basis functions is that we need to be able
to evaluate the orbitals and their second derivatives realatively e�ciently.

The Variational Monte Carlo method is an explicitly correlated one, meaning dy-
namic electron-electron correlation is taken into account. Unlike the Hartree-Fock

93

94 Variational Monte Carlo Chapter 6

formalism which treats (opposite spin) electron-electron correlations purely in terms
of a mean-�eld approximation, the electrons under the VMC formalism interact in-
stantaneously. Electrons are at all times surrounded by "correlation holes" where the
probability of �nding other electrons vanish. Introducing explicit many-body corre-
lation terms in Hartre-Fock and post Hartree-Fock methods lead to the introduction
of molecular integrals which are signi�cantly harder to solve numerically than oth-
erwise ignoring such terms. For this reason, the vast majority of such work is done
using Slater determinants �lled with independent-particle orbitals. However, due to
the �exibility of the Monte Carlo integration scheme, we may (and should) relatively
easily include correlation terms explicitly in the VMC wave function [118].

In the following, we will present the fundamentals of Monte Carlo integration and
its application to the electronic quantum mechanical problem. But �rst of all we will
derive the Metropolis algorithm which we will employ to sample the con�guration
space of ourN -electron system according to the wave function squared |Ψ(R)|2 (the
probability density).

6.1 The Metropolis algorithm

The Metropolis algorithm, originally proposed by Metropolis and co-workers [119]
and later generalized by Hastings [120] is a method for sampling probability distri-
butions which may be impossible to sample directly1 [70]. The Metropolis-Hastings
algorithm generates a Markov chain of random samples distributed according to the
PDF in question.

6.1.1 Markov chains, detailed balance and ergodicity

A Markov chain is a sequence of stochastic variables {Xi}ni=1 for which step i + 1
depends soley on step i, meaning the process has no "memory." In other words, the
probability of stepping from state Xk to state Xl depends only on the states k and l,
not on how it got to Xk, [17, 122]

W (Xi+1; i+ 1|Xi; i|Xi−1; i− 1| . . . |X0; 0) = W (Xi+1; i+ 1|Xi; i) . (6.2)

Given the stateXi, the step to the next con�guration—the stateXi+1—is governed by
the stepping probability W (· ; i+ 1|Xi; i). Even though the stepping probability has
no memory, the probability of �nding the chain in con�guration Y at step i is implic-
itly dependent on the starting con�guration, X0. The Markov assumption means we
can write the conditional probability of the chain going from X0, through X1, X2,

1Direct sampling in this context means e.g. inverse transform sampling, which necessitate inverting
the cumulative distribution associated with the probability density function (PDF) [121]. For compli-
cated distributions, this is often either impossible of unfeasible [70].

Section 6.1 The Metropolis algorithm 95

. . . , Xi, and �nally to Y (at step i+ 1) as a simple product [123]

P (i)(Y |Xi|Xi−1| . . . |X0) = W (Y ; i+ 1|Xi; i)W (Xi; i|Xi−1; i− 1) . . .W (X1; 1|X0; 0).
(6.3)

In order for the Markov chain to be of much use to us, we need to demand that
given any starting point, after su�cient time has passed the chain must gradually
"forget" about its initial value. In other words, P (i)(· |X0) must converge to some
unique stationary distribution independent of X0 for large i [122]. necessary and
su�cient conditions for this to hold will be derived shortly.

Markov chain as a random walk

We can visualize the evolution of the Markov chain as a walker, taking steps around
in the con�guration space according to the stepping probability. The attributes of
the walker de�ne completely the state of the system, X , which in the present work
is the coordinate con�guration of all electrons R = {r1, r2, . . . , rN}. Standing at
position X in the con�guration space, the probability of the walker of stepping to
con�guration Y in the next step is then given by the stepping probability W (Y |X).

If the con�guration space is discrete, i.e. only a �nite numberK of con�gurations
are possible, then the stepping probability is a K × K matrix, with the con�gura-
tions of the system being represented by K-dimensional unit vectors. The states of
the walker then become K-dimensional vectors, with the elements representing the
probability of the system being in any given con�guration. For a system in which the
con�gurations take continuous values, the stepping probability is an operator on an
in�nite dimensional vector space. We will ignore any possible subtle complications
introduced by considering the continuous integrals as opposed to discrete sums, and
refer to W as a matrix also in the continuous case.

It is important to note that even though the con�guration space consists of quan-
tities with continuous ranges, the sample path of the Markov chain is still discrete
[123]. In other words, stepping from Markov step i to the next step i + 1 involves
some �nite (not in�nitesimal) change in the con�guration.2 Since the stepping prob-
ability is in fact a probability, the following equation must hold∑

Y ∈X

W (Y ; i+ 1|X; i) = 1, or
∫
X

dY W (Y ; i+ 1|X; i) = 1, (6.4)

in the discrete and continuous cases, respectively [17]. The set of all possible con-
�gurations of the system is here denoted X . Eq. (6.4) essentially states the when the
walker is situated at con�guration X , a Markov step means the walker either moves
or stays put. In addition, non-negativity W (Y |X) ≥ 0 must hold [70]. This means
W is a stochastic matrix.

2In�nitesimal changes are of course in general also allowed. This ensures for example that there
is a non-zero chance of the system remaining in place at the i→ i+ 1 step.

96 Variational Monte Carlo Chapter 6

A related but somewhat more useful relation can be found when considering a
subsequent step from one of all the possible intermediate con�gurations Y , to some
state Z . Summing (integrating) over the intermediate state yields the Chapman-
Kolmogorov equation, [123]

W (Z; i+ 2|X; i) =
∑
Y ∈X

W (Z; i+ 2|Y ; i+ 1)W (Y ; i+ 1|X; i), or (6.5)

W (Z; i+ 2|X; i) =

∫
X

dY W (Z; i+ 2|Y ; i+ 1)W (Y ; i+ 1|X; i). (6.6)

This is also sometimes known as the Einstein–Smoluchowski–Kolmogorov–Chapman
or the Chapman-Einstein-Enskog-Kolmogorov relation [69, 124].3

In the following, we drop the temporal i-indices on the stepping probability which
we assume to not depend on the Markov time. In addition, without any loss of gener-
ality, we split it into two parts: a proposal probability and a corresponding acceptance
probability. We write thus

W (Y ; i+ 1|X; i) = W (Y |X) ≡ T (Y ← X)A(Y ← X), (6.7)

where T and A are proposal and acceptance probabilities, respectively. When the
temporal indices are omitted, a single step is always assumed. It turns out that we
can express the condition that resulting probability density converge to some unique
distribution in terms of the Chapman-Kolmogorov relation of Eq. (6.6). Since the
probability of the walker being in con�guration X at time i is P (i)(X), the total
probability of being in state Y at time i + 1 is the sum of probabilities of being in X
and stepping into Y (for all possible state X) plus the probability of being in Y and
rejecting a suggested move out to any other state X [125]:

P (i+1)(Y) =

∫
X

dX
[
P (i)(X)W (Y |X) + P (i)(Y)¬W (X|Y)

]
=

∫
X

dX
[
P (i)(X)T (Y ← X)A(Y ← X)+

P (i)(Y)T (X ← Y) {1− A(X ← Y)}
]
.

=

∫
X

dX
[
P (i)(X)T (Y ← X)A(Y ← X) + P (i)(Y)T (X ← Y)−

P (i)(Y)T (X ← Y)A(X ← Y)
]
. (6.8)

Since the integral of T (X ← Y) over all possible X neccessarily must be unity, the

3Or apparen’tly pretty much any combination of two or more of the names Chapman, Kolmogorov
Einstein, Smoluchowski, and Enskog; depending on who you ask.

Section 6.1 The Metropolis algorithm 97

middle term is simply P (i)(Y) [69]. This means we can rewrite Eq. (6.8) as

P (i+1)(Y)− P (i)(Y) =

∫
X

dX
[
P (i)(X)T (Y ← X)A(Y ← X)−

P (i)(Y)T (X ← Y)A(X ← Y)
]
, (6.9)

and the condition that once equilibrium is reached, the Markov chain cannot exit the
equilibrium again can now be stated as P (i+1)(Y)− P (i)(Y) = 0, i.e.

P (i)(X)T (Y ← X)A(Y ← X) = P (i)(Y)T (X ← Y)A(X ← Y)

P (i)(X)

P (i)(Y)
=
T (X ← Y)A(X ← Y)

T (Y ← X)A(Y ← X)
. (6.10)

This is known as detailed balance [58].
Systems generated by random walks such as this one can be characterized into

a few catergories. If, after vising X , the probability of later re-visiting the neigh-
bourhood around X vanishes we classify the system as null. If, on the other hand,
after vising X , the walker re-visits X every subsequent T steps, we call the system
periodic. Crucially, a system which is neither null nor periodic is called ergodic: re-
visiting X is allowed but is not done periodically [125]. The ergodicity condition
can be stated as: For every pair of states X and Y there exists a non-zero stepping
probability (possibly with intermediate steps)

W (n)(Y |X) = W (Y |Zn)W (Zn|Zn−1) . . .W (Z1|X) 6= 0, (6.11)

where the W -superscript denotes the number of steps taken. In short, ergodicity
ensures we can reach any con�guration in �nite time, regardless of starting point.

It turns out that detailed balance and ergodicity are exactly su�cient4 for the con-
ditions stated at the end of section 6.1.1 to hold, i.e. the asymptotical distribution after
a large numberM of Markov steps converges to a unique distribution independently
of starting con�guration [126].

Connecting stepping probability with the asymptotic probability density

Having shown that under certain conditions, the asymptotic probability density re-
sulting from the Markov chain is unique, it is now time to ask how we can construct
the stepping probability in a way which produces the desired P (X). It is exactly
this the Metropolis algorithm achieves. The stepping probability W (Y |X) associ-
ated with the known probability density P (X) is in general unknown, and often too
complicated to even easily write down [69]. However, according to Metropolis and
co-workers, we can use a uniform suggestion probability T and accept any suggested

4Although not necessary: detailed balance is more stringent demand than needed [70].

98 Variational Monte Carlo Chapter 6

step with the probability

A(Y ← X) = min

{
1,
P (Y)

P (X)

}
. (6.12)

This ensures the sampled Markov steps adhere to the correct relative probabilities
within the distirbution [17]. For completeness, the transition matrix can under the
Metropolis-scheme be written as [70]

W (Y |X) =

{
T (Y ← X)A(Y ← X) Y 6= X
1−

∫
X dZ T (Z ← X)A(Z ← X) Y = X

. (6.13)

The steps of the basic Metropolis algorithm (sometimes referred to as brute-force
Metropolis) can be written as

(1) Start in con�guration X0.

(2) Generate a suggested new con�guration Y , according to the uniform sug-
gestion probability T (Y ← X).

(3) Accept the new value with probability min{1, A(Y ← X)}. The accep-
tance probability is given by A(Y ← X) = P (Y)/P (X).

(4) Assign X1 = Y if step (3) was accepted, else assign X1 = X0.

(5) Repeat steps (2)—(4).

6.1.2 TheMetropolis-Hastings algorithmand importance sam-
pling

The uniform suggestion probability proposed by Metropolis and co-workers is just
one way of satisfying the detailed balance condition [119]. More generally, we need
Eq. (6.10) to hold and thus

A(Y ← X) = min

{
1,
T (X ← Y)P (Y)

T (Y ← X)P (X)

}
. (6.14)

It is immediately obvious that if the proposal probability T (Y ← X) is uniform in
the sense that the probability is constant within the hyper-cube in the con�gration
space—any con�guration with |rnew

i − rold
i | ≤ ∆x for all i is equiprobable—then the

T s drop out and we are left with the maximized A(Y ← X) of Eq. (6.12) [70].
In general, we have a lot of freedom in the choice of T (Y ← X). The only condi-

tions being that it must be stochastic—in the sense of a stochastic matrix, i.e. non-zero
and satisfying

∫
X dY T (Y ← X) = 1—and we must be able to easily sample it di-

rectly. Instead of using a T uniform in all degrees of freedom, we can instead take

Section 6.1 The Metropolis algorithm 99

advantage of information about the target distribution. A clever choice of such a
sampling probability can take into account the local gradient of P (X), and steer the
Markov chain towards areas of higher probability. A good choice turns out to be the
Greens function of the short-time approximation Fokker-Planck equation [70].

Fokker-Planck equation

In order to derive the Fokker-Planck equation, we �rst backtrack a short distance. Re-
call that the Chapman-Kolmogorov equation for a (in general time-dependent) tran-
sition probability takes the form

W (Y ; t2|X; t0) =

∫
X

dZW (Y ; t2|Z; t1)W (Z; t1|X; t0). (6.15)

Let now P (X) be the probability distribution associated with the transition matrix
W (Y ; t1|X; t0). We assume that the following holds:

lim
t→τ

1

(t− τ)

∫
X

dY (Y −X) W (Y ; t|X; τ) = A(X, τ), (6.16)

lim
t→τ

1

(t− τ)

∫
X

dY (Y −X)2 W (Y ; t|X; τ) = 2B(X, τ), and (6.17)

lim
t→τ

1

(t− τ)

∫
X

dY (Y −X)3+kW (Y ; t|X; τ) = 0, (6.18)

for any non-negative integer k = 0, 1, 2, These integrals are sometimes called
Kramers-Moyal-expansions. If we take the distribution to represent e.g. the position
of a particle, the �rst condition constrains the mean velocity of the particle to be
A(X, τ) [122]. Similarily, the second condition describes the in�uence on the par-
ticle’s position by some random force. The third condition essentially ensures the
motion must be continuous, in that W (Y ; t1|X; t0) must vanish for Y 6= X if t1 6= t0
[123]. We will denote these integrals themselves (sans the denominator and limit) by
〈(Y −X)n〉.

We will now consider some arbitrary function g(x) which vanishes along with
it’s �rst derivative on the edges of our con�guration space, g(X → ±∞) → 0 and
g′(X → ±∞) → 0. Taking the integral of g(x) weighed by W (Y ; t|X; 0) over the
all possible con�gurations, and employing the Chapman-Kolmogorov relation, yiels

∫
X

dY g(Y)W (Y ; t|X; 0) =

∫
X

∫
X

dY dZ g(Y)W (Y ; t|Z; τ)W (Z; τ |X; 0). (6.19)

100 Variational Monte Carlo Chapter 6

Exchanging g for it’s Taylor series to second order around Z gives next

(6.19) ≈
∫
X

dZ g(Z)W (Z; τ |X; 0)+∫
X

dZ g′(Z)W (Z; τ |X; 0)
〈
(Y − Z)

〉
+

1

2

∫
X

dZ g′′(Z)W (Z; τ |X; 0)
〈
(Y − Z)2

〉
. (6.20)

Dividing this by (t− τ) and taking the limit t→ τ gives �nally (after integration by
parts and interchanging the limit and the integral)∫

X
dY g(Y)

[
∂W

∂t
+
∂AW

∂Y
− ∂2BW

∂Y 2

]
= 0, (6.21)

where we used the fact that g vanishes at in�nity to handle the boundary term arising
from the integration by parts [124]. We note that in the limit of vanishing t− τ , the
approximation of Eq. (6.20) is exact since all terms of order three or higher in the
Taylor expansion vanish after the integration.

Since g is completely arbitrary, we see that

∂W

∂t
+
∂(AW)

∂X
− ∂2(BW)

∂X2
= 0 (6.22)

must hold. This is known as the Fokker-Planck equation or sometimes the second
Kolmogorov equation. It describes the time evolution of the prabability density of a
particle (such as a Markovian walker) subject to a drift force. With A(X, t) = 0 and
B(X, t) = B(X), the Fokker-Planck equation reduces to a simple di�usion equation.

By taking the Master equation as a starting point, we can show that a correspond-
ing equation also holds for the probability density itself, i.e. [127]

∂P (X, t)

∂t
+
∂
[
A(X, t)P (X, t)

]
∂X

−
∂2
[
B(X, t)P (X, t)

]
∂X2

= 0. (6.23)

Alternatively, note that P (X, t) =
∫
X dX0W (X; t|X0; 0)P (X0, t)—thus if we as-

sume P (X0, 0) = δ(X − X0) then W (X; t|X0; 0) = P (X, t)—hence Eq. (6.22) im-
mideately implies Eq. (6.23).

Solving the Fokker-Planck equation

Isotropic Brownian motion adheres to the usual di�usion equation in the same way
that a Markovian random walker subject to a drift force satis�es the Fokker-Planck
equation. A natural question thus arises: Can we solve the Fokker-Planck equation
in the case of a random walker traversing the con�guration space of our electronic
positions? The answer is yes, and it will help us to improve the e�ciency of the
Metropolis algorithm.

Section 6.1 The Metropolis algorithm 101

Let now P (R, t) be a probability distribution function subject to a drift force
F(R) = (F1, F2, . . . , FN), where R = {ri}Ni=1 as usual and Fi = Fi(xi) denotes
the drift term on compontent i of R.5 This probability density satis�es the Fokker-
Planck equation [17]

∂P (R, t)

∂t
=

dN∑
i=1

D
∂

∂xi

(
∂

∂xi
− Fi(xi)

)
P (R, t). (6.24)

The di�usion constant is here denoted by D while lowercase d indicates the num-
ber of spatial dimensions. Since we are interested in the probability density which
converges to P (R, t) = P (R) = |Ψ(R)|2 (assuming for the moment that Ψ(R)
is normalized), we look for the solution in the case where the left hand side of Eq.
(6.24) vanishes. An obviously su�cient (but possibly not necessary) condition for
this equation to hold is if it holds for each individual term of the sum, such that

∂2P (R)

∂x2
i

= P (R)
∂Fi(xi)

∂xi
+ Fi(xi)

∂P (R)

∂xi
. (6.25)

We note that in order for the right hand side to include a second derivative of P (R),
we must require

Fi(r) ∼ g[P]
∂P (R)

∂xi
. (6.26)

In addition, in order for cancellation of the P in the �rst term on the right hand side,
g[P] = 1/P (R). It can be shown that the drift vector which results in a stationary
probability density P (R) = |Ψ(R)|2 is

F = 2
1

Ψ(R)
∇Ψ(R), (6.27)

with∇ = (∇1,∇2, . . . ,∇N) being the vector of gradients w.r.t. each of the electrons
[69]. This quantity is sometimes referred to as the quantum force, and acts to push
the Markovian random walker in the direction of higher probability density. 6

It turns out that a good choice for the transition probability T (Y ← X) which
incorporates the information in the quantum force F is the Green’s function of the
Fokker-Planck equation in the limit of small ‖X − Y ‖ [70]. We can rewrite the
Fokker-Planck equation in terms of a di�erential operator L,

∂P

∂t
= LP, with L ≡ D∇ · (∇− F). (6.28)

5The i-th component of F is the drift term corresponding to coordinate i mod d of electron bi/dc
in d dimensions.

6Please note that even though the quanitity F is called a quantum force, it is strictly speaking not
a force. In fact it has dimensions of inverse length. We may instead think of the combination DF as a
drift velocity. With D having dimensions of length squared per time, the combination has dimensions
of lenght per time. This is in fact the combination which we will encounter (multiplied with a time
step δt) shortly in the Green’s function of the Fokker-Planck equation.

102 Variational Monte Carlo Chapter 6

The Green’s function G(Y,X; δt) is then the operator inverse of L in the sense that
[44]

LG(Y,X; δt) = δ(tY − tX︸ ︷︷ ︸
δt

)δ(Y −X). (6.29)

The �nite time step δt is the temporal distance between con�gurations X and Y .
By inspection of we can straight away write down a representation of the solution,

the Green’s function is simply given by G(Y,X; δt) = exp(−δtL) [17]. Assuming
a short time step δt, we can assume also correspondingly short spatial step ‖Y −
X‖ meaning the quantum force will remain essentially unchanged between the two
con�gurations. Under this assumption, we can integrate the Green’s function,

G(Y,X; δt) = exp
(
Dδt

[
∇2 −∇ · F− F · ∇

])
, (6.30)

over the time interval δt to obtain

G(Y,X; δt) =

(
1

4πDδt

)−3N/2

exp

(
− [Y −X −DδtF(X)]2

4Dδt

)
. (6.31)

Recall that X here denotes a full con�guration of the system, meaning all the elec-
tronic coordinates. This means that a more natural labelling of X and Y would be
Y = Rnew and X = Rold, however we keep the Xs and Y s to remain in line with the
notation of the previous sections.

The Langevin equation

Having found the solution, we are still left with the question of how to generate
Fokker-Planck trajectories in practice. This is where we need to introduce theLangevin
equation

∂x(t)

∂t
= DF(x(t)) + η. (6.32)

The Langevin equation which corresponds to our Fokker-Planck equation describes
e.g. the movement of a particle under the in�uence of a rapid and irregularly �uctu-
ating random function of time [123]. The random force η is distributed according to
a multidimensional Gaussian with a vanishing mean and variance 2D.

The Langevin approach of adding random terms to the equations of motion, some-
times called noise sources, is fundamentally di�erent but mathematically equivalent to
the Fokker-Planck equation [128]. Whereas the former describes the evolution of the
degrees of freedom of a system, the latter describes the evolution of the probability
density of said degrees of freedom.

Integrating Eq. (6.32) over a short time interval δt gives rise to a time discrete
form which we will �nd useful in generating Markov trajectories for use with the
generalized Metropolis-Hastings algorithm: [17]

y = x+DF(x)δt+ χ. (6.33)

Section 6.2 The Metropolis algorithm 103

The random variable χ = ηδt is a rescaled Gaussian, now with variance 2Dδt.

Importance sampling

Having introduced both the Fokker-Planck and the Langevin equation we are now
ready to extend the original Metropolis algorithm with a non-uniform proposal distri-
bution. The standard approach used to implement the Metropolis-Hastings algorithm
with importance sampling in quantum mechanical problems is the following: Use the
Langevin equation to propose moves and then accept or reject them according to the
solution of the corresponding Fokker-Planck equation [69].

Whereas the Metropolis suggestion step described previously assigned equal prob-
ability of stepping to any point inside a 3N dimensional hyper-box of side lengths
‖yi − xi‖ < ∆x, the importance sampled Metropolis-Hastings suggestions take the
form

xnew
i = xold

i +DδtF(xi) + χ. (6.34)

The random variable χ is distributed as a Gaussian around zero with variance 2D∆t.
Without the velocity drift term, this is the stepping scheme for an isotropic Brownian
random walk in con�guration space. However, with the added quantum force, the
walker is pushed in the direction of higher probability, meaning more signi�cant
areas of the con�guration space are visited proportionally more often.

Once a step has been suggested, the Metropolis test is performed. The full prob-
ability of accepting the step now has a non-vanishing contribution from T (xnew

i ←
xold
i): the ratio of the Green’s functions of the Fokker-Planck equation. The accep-

tance probability is thus—according to Eq. (6.14)—the following [70]

A(xnew
i ← xold

i) = min

{
1,
G(xnew

i , xold
i ; δt)|Ψ(Rnew)|2

G(xold
i , x

new
i ; δt)|Ψ(Rold)|2

}
. (6.35)

In summary, the Metropolis-Hastings algorithm with importance sampling con-
sists of the following steps

(1) Start in con�guration X0.

(2) Generate a suggested new con�guration Y according to the solution of the
Langevin equation, Eq. (6.34).

(3) Accept the new value with probability min{1, A(Y ← X)}. The accep-
tance probability is given by the Green’s function ratio of Eq. (6.35).

(4) Assign X1 = Y if step (3) was accepted, else assign X1 = X0.

(5) Repeat steps (2)—(4).

104 Variational Monte Carlo Chapter 6

6.2 Monte Carlo integration
Monte Carlo integration is a numerical scheme for estimating the value of de�nite in-
tegrals. The method di�ers from the usual grid-based methods in that the evaluation
points are chosen at random. Whereas grid-based methods fail spectacularly as the
number of dimensions increase past a few7, the Monte Carlo scheme can somewhat
overcome this "curse of dimensionality."

In the most basic form, Monte Carlo integration provides an estimate of the inte-
gral value I by an average of N samplings of the integrand, uniformely within the
integration range [a, b], i.e.

I ≡
∫ b

a

dx f(x) ≈ b− a
N

N∑
i=1

f(Xi). (6.36)

The set of values {Xi}Ni=1 are independent, identically distributed random samples.
In general, the distribution need not be uniform. For any probability distribution
function P (x), we can obtain an estimate of I by

I =

∫ b

a

dx f(x) ≈ 1

N

N∑
i=1

f(Xi)

P (Xi)
, (6.37)

where the Xis are distributed according to P . Essentially, we are weighing the sum
by how likely the value Xi is to be picked, according to the probability distribution
P (x). If P (x1) = 2P (x2), then we weigh any sampling of x1 only half as much as a
corresponding sampling of the value x2.

The advantage of the latter approach is immediately obvious: Imagine attempting
to compute an approximation to the integral

I =

∫ 100

0

dx e−x
2

x2 (6.38)

using the uniform sampling technique. Heuristically, at least 95% of sampled points
will give an absolutely negligible contribution to the overall value of I . We may how-
ever, pick P (x) = e−x

2 and use Eq. (6.37). Using this scheme, every sampled point
7As of November 2017, the fastest super computer in the world is situated at the National Super-

computing Center in Wuxi, China: it has a performance of about 100 petaFLOPS = 1017 FLOPS [129].
Let us say we wish to perform an integral over some electronic observable for a Neon atom. Under
the Born-Oppenheimer approximation, this integral would be 30-dimensional. Using a conventional
grid-based method, a conservative estimate for the number of grid points needed in each dimension
to get a somewhat decent approximation may be e.g. 30. This means the grid would be 30 by 30 by
. . . by 30 = 3030 ∼ 1044 large. Assuming every evaluation of the integrand consists of a single
FLOP (again, a [very] conservative estimate), this means the total problem involves on the order of
1044 FLOPs. Running on the aforementioned Chinese super-computer, this would take on the order of
1027 s ∼ 1019 yr or about 1010 times the current age of the universe [69]. This is clearly not feasible.

Section 6.2 Monte Carlo integration 105

would have a meaningful impact on the average since any x for which the integrand
is negligible also now has a negligible chance to be sampled. This approach is called
importance sampling and has two—already obvious—distinct advantages over the
uniform or brute force method of Eq. (6.36). First, no time is wasted computing in-
tegrand values for which the integral is essentially independent because f(x) ∼ 0.
And secondly, for clever choices of P (x), the computational load may be decreased
because g(x) ≡ f(x)/P (x) is a less computationally expensive quantity to sample.
Furthermore, ideally �uctuations in g(x) are considerably reduced. If we are e.g. able
to sample our random points according to f(x) itself, then g(x) = 1 and a single
sample is su�cient.8 In general, a distribution P (x) close to f(x) will give reduced
statistical �uctuations in the integral estimate [17]. The importance sampling scheme
also opens up the possibility of extending to an in�nite range of integration.

6.2.1 Convergence properties of the Monte Carlo estimators

Taking a short step backwards, let now

〈IN〉 =
b− a
N

N∑
i=1

f(Xi) ≈
∫ b

a

dx f(x) = I (6.39)

denote the brute force Monte Carlo estimator of I using N samples. Computing the
expectation value of 〈IN〉 yields

E
[
〈IN〉

]
= E

[
b− a
N

N∑
i=1

f(Xi)

]
=
b− a
N

N∑
i=1

E
[
f(Xi)

]
=
b− a
N

N∑
i=1

∫ b

a

dx f(x)P (x)

= (b− a)
1

b− a

∫ b

a

dx f(x) =

∫ b

a

dx f(x) = I, (6.40)

where we used that P (x) = 1/(b−a) for the uniform probability density [125]. This
shows that 〈IN〉 is a so-called unbiased estimator of I [130]. The same is true of the
generalized Monte Carlo estimator with non-uniform distribution P (x), which we

8Assuming the integral is taken over the entire domain of P .

106 Variational Monte Carlo Chapter 6

will denote 〈JN〉:

E
[
〈JN〉

]
= E

[
1

N

N∑
i=1

f(Xi)

P (Xi)

]
=

1

N

N∑
i=1

E

[
f(Xi)

P (Xi)

]

=
1

N

N∑
i=1

∫ b

a

dx
f(x)

P (x)
P (x)

=

∫ b

a

dx f(x) = I. (6.41)

For uncorrelated random variables, {Yi}Mi=1, the variance of the sum equals the
sum of the variance, i.e. σ2[

∑N
i=1 Yi] =

∑N
i=1 σ

2[Yi]. Note also the relation σ2[aYi] =
a2σ2[Yi] [130] Using this, we may compute the variance of the Monte Carlo estimator
as

σ2
[
〈JN〉

]
= σ2

[
1

N

N∑
i=1

f(Xi)

P (Xi)

]
=

1

N2

N∑
i=1

σ2

[
f(Xi)

P (Xi)

]
=

1

N
σ2

[
f(Xi)

P (Xi)

]
. (6.42)

We note that the standard deviation in the mean σ[〈JN〉]→ 0 as O(
√
N). The same

is true of the basic Monte Carlo estimator 〈IN〉, but σ2[f(Xi)/P (Xi)] is likely much
smaller (for a good choice of P) than the corresponding σ2[f(Xi)].

6.2.2 The local energy, EL

Like we did in section 3.1.1, we introduce a spatially dependent measure of the "in-
stantaneous" energy, EL. The local energy is de�ned as

EL(R) =
ĤΨ(R)

Ψ(R)
=

1

Ψ(R)

N∑
i=1

[
−∇

2
i

2
−

M∑
A=1

ZA
|ri − rA|

+
N∑

j=i+1

1

|ri − rj|

]
Ψ(R).

(6.43)

Note that if Ψ(R) is the exact ground state wave function then EL(R) = EL is con-
stant for all electronic con�gurations because

ĤΨ(R)

Ψ(R)
=
E0Ψ(R)

Ψ(R)
= E0. (6.44)

Section 6.2 Monte Carlo integration 107

The variational energy can be written in terms of the local energy by [70]

EV =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=

∫
dRΨ∗(R)ĤΨ(R)∫
dRΨ∗(R)Ψ(R)

=

∫
dRΨ∗(R)

(
Ψ(R)

Ψ(R)

)
ĤΨ(R)∫

dR |Ψ(R)|2

=

∫
dRΨ∗(R)Ψ(R)

ĤΨ(R)

Ψ(R)∫
dR |Ψ(R)|2

=

∫
dR ρ(R)EL(R), (6.45)

with

ρ(R) ≡ |Ψ(R)|2∫
dR |Ψ(R)|2

. (6.46)

Consider now this in light of Eq. (6.37), and note that for any trial wave function
ansatz ΨT the following is an unbiased estimator for the true variational energy [17]

E
[
ΨT
]

= 〈EM
L 〉 =

1

M

M∑
i=1

EL(Ri). (6.47)

In the language of the previous section, f = ρ(R)EL(R), g = EL(R), and P = ρ(R)
which is the normalized probability density. This means that if we can pick samples
randomly from the probability density function ∼ |ΨT(R)|2/

∫
dR |ΨT(R)|2, then

we can simply evaluate the local energy and take the average. This will give us an
estimate for the true variational energy, as well as a measure of the stastical uncer-
tainty from calculating the variance.

The Metropolis-Hastings (MH) algorithm of the previous section enables us to
draw samples directly from ρ(R). Note carefully that since MH always works in
terms of ratios, ρ(R) need strictly speaking not be normalized. We require simply a
quantity proportional to |ΨT(R)|2.

A relatively short burn-in time is usually employed, wherein the �rst K samples
are taken to be thermalization samples which are discarded. This is done in order to
allow the MH Markov chain time to "forget" about it’s starting point, and to allow
the system as a whole to equilibrate and an energetically favourable region of the
con�guration space found [122].

6.2.3 Uncertainty estimates and correlated sampling

A stochastic method such as quantum Monte Carlo is useless without an estimate of
the precision of the result. The quantity normally used to gauge this is the estimated

108 Variational Monte Carlo Chapter 6

standard error of the mean, err〈EL〉. The standard error is the standard deviation of
the mean (for un-correlated samples),

err〈EL〉 = σ〈EL〉 =
σ√
n
, (6.48)

where σ denotes the true standard deviation which we can estimate by the sample
standard deviation,

s =

√√√√ 1

N − 1

N∑
i=1

(xi − 〈x〉)2 ≈ σ. (6.49)

Note the N − 1 in the denominator9. In order to �nd a point estimate of σ, we could
simply calculate

s2 =

∑N
i=1(xi − 〈x〉)2

N − 1
=

1

N − 1

N∑
i=1

x2
i −

1

N(N − 1)

(
N∑
i=1

xi

)
(6.51)

where the sample variance s2 is an unbiased estimator of σ2, i.e. [130]

s2 ≈ σ2 = 〈E2
L〉 − 〈EL〉2. (6.52)

This, however, has the under-lying assumption that all the samples are un-correlated.
If this is not the case—i.e. subsequent samples are correlated—then this equation will
seriously underestimate the error [125].

In order to account for the auto-correlation of the Markov chain samples, we start
instead from the de�nition of the variance in terms of the covariance, Var(X) =
Cov(X,X). Setting err〈EL〉 =

∑
ij Cov(Xi, Xj)/N

2 accounts for the correlation be-
tween subsequent samples [69]. The covariance Cov(Xi, Xj) can we written as

Cov(Xi, Xj) =
〈(
xi − 〈xi〉

)(
xj − 〈xj〉

)〉
=
〈
xixj − xi〈xj〉 − 〈xi〉xj + 〈xi〉〈xj〉

〉
= 〈xixj〉 − 〈xi〉〈xj〉, (6.53)

9The reason for using a N − 1 denominator—as opposed to the more intuitive N—is that

s2 =
1

N − 1

N∑
i=1

(xi − 〈x〉)2 (6.50)

is an unbiased estimator of the variance, but the corresponding expression with the denominator
replaced by (N − 1)→ N is not. This is sometimes referred to as Bessel’s correction [130]. Although
it is not true that s is an unbiased estimator of the standard deviation (because of the non-linearity of
the square root), it is in a sense less biased than the N -denominator version.

Section 6.2 Monte Carlo integration 109

with

1

N2

N∑
i=1

N∑
j=1

Cov(Xi, Xj) =
1

N2

N∑
i=1

N∑
j=1

(xi − 〈x〉)(xj − 〈x〉) =
1

N
Cov(x). (6.54)

A proper estimate for the standard error of the mean can now be written in terms of
the sample covariance, Cov(x), as [69]

err2
〈EL〉 =

1

N2

N∑
i=1

N∑
j=1

Cov(Xi, Xj) =
1

N2

N∑
i=1

N∑
j=1

1

N
Cov(x) =

1

N
Cov(x). (6.55)

Note carefully that Eq. (6.55) requires simultaneous knowledge of every single
sample, and the evaluation is a double sum over the number of MC samples: a variable
which routinely runsN & 106. We would very much like to avoid having to perform
this calculation. In order to circumvent this costly and inconvenient summation, lets
us consider the standard error of the mean split into two terms as

err2
〈EL〉 =

1

N
Var(x) +

1

N

(
Cov(x)− Var(x)

)
. (6.56)

The second term—the correlation term—can be written in terms of it’s partial sums
as

1

N

(
Cov(x)− Var(x)

)
=

2

N

N∑
k=1

N∑
l=k+1

(
xk − 〈x〉

)(
xl − 〈x〉

)
= 2

N−1∑
d=1

[
1

N − d

N−d∑
k=1

(
xk − 〈x〉

)(
xk+d − 〈x〉

)
︸ ︷︷ ︸

≡ fd

]
. (6.57)

Dividing fd by the sample variance yields the autocorrelation function κd = fd/Var(x)
[17]. De�ning now the autocorrelation time τ ,

τ ≡ 1 + 2
N−1∑
d=1

κd, (6.58)

we can rewrite err〈EL〉 as

err2
〈EL〉 =

1

N
Var(x) +

1

N

(
Cov(x)− Var(x)

)
=

(
1 + 2

N−1∑
d=1

)
1

N
Var(x) =

τ

N
Var(x). (6.59)

Note that if the samples are indeed uncorrelated, then τ = 1 and we recover the
expression for the standard error of the mean as err〈EL〉 = σ/

√
N .

110 Variational Monte Carlo Chapter 6

6.2.4 Blocking
In order to account for the correlation in the sampling, we may simply treat blocks of
samples—with block size b ≥ τ —as the samples. From N total samplings of EL, this
gives an e�ective number of samples

Ne� =
N

b
. (6.60)

Each e�ective sample is thus taken to be the average of b samples, and since b ≥ τ
we know subsequent block samples are uncorrelated. This means we can calculate
the standard error of the mean of the blocks simply as

errblocks
〈EL〉 =

1

Nblocks

√
〈E2

L〉block −
(
〈EL〉block

)2

=
1

Nblocks

√√√√Nblocks∑
i=1

(
b∑

j=1

Eib+j
L

)2

−

(
Nblocks∑
i=1

b∑
j=1

Eib+j
L

)2

=
1

Nblocks

√√√√Nblocks∑
i=1

(
b∑

j=1

Eib+j
L

)2

−

(
N∑
i=1

Ei
L

)2

, (6.61)

where Ei
L denotes the i-th sample of the local energy. Calculating τ directly con-

stitutes calculating the autocovariance, but we can estimate it using the calculated
standard deviation for di�erent block sizes, b. This procedure is known as blocking
[131]:

(1) Calculate the standard deviation of the measurement set with block size
b = 1, i.e. the usual standard deviation.

(2) Calculate the standard deviation using b = 1, 2, . . . , and plot σ(b) versus
b.

(3) Take the value for which σ(b) seems to plateu to be b∗ ≈ τ .

(4) The blocking estimate of the true standard deviation is then taken to be
σ(b∗).

Since the standard deviation with block size b = k contains k/(k+1) as many samples
as the corresponding deviation with block size b = k + 1, the expected change in
the standard deviation is on the order of ∼

√
(k + 1)/k. However, if the samples

are correlated with τ < k, then increasing the block size will sharply increase the
calculated standard deviation. As τ & k, this e�ect vanishes and leaves only the√

(k + 1)/k order change. The resulting plot has a sharp increase for low k and then
a characteristic plateu around k = τ .

Chapter 7

Arti�cial Neural Networks

The following is a brief introduction to the theory underlying the construction and
training of arti�cial neural networks (ANNs). For a more comprehensive review of the
subject, the reader is encouraged to survey relevant chapters from the recent master
theses of Stende and Treider [1, 2]. This introduction follows closely the introduction
of Ra� and co-workers [132].

Arti�cial neural networks can be created in numerous ways, but we will focus
exclusively on the most common architecture, namely multilayer perceptrons (MLP).
The MLP neural networks are built from layers of connected neurons. In the arti�cial
network, an input value (possibly a vector) is fed into the network model and then
propagated through the layers, being processed through each neuron in turn. We will
deal only with feed forward ANNs, meaning information always �ows through the
net in one direction only—essentially there are no loops. The entire ANN produces
an output value (possibly a vector), which means we can think of it as a complicated
function Rn 7→ Rm. As we will see, it is possible to write down a closed form expres-
sion for this function and it is—crucially—possible to devise an e�cient algorithm for
calculating the gradient of the entire function w.r.t. any of the internal parameters.

7.1 Arti�cal neurons

A neuron is simply a model function for propagating information through the net-
work. Inspired by biological neurons, the arti�cial neuron "�res" if it is stimulated by
a su�ciently strong signal. The arti�cial neuron receives a vector of input valuesp. If
the neuron is part of the very �rst hidden layer (this will be expanded upon shortly),
the input is simply the input value(s) to the NN. If one or more layers preceded the
current one, p is a vector of outputs from the neurons in the previous layer.

The neuron is connected to the previous layers’ neurons, and the strength of the
connection is represented by a vector of weights, w. Let us now consider a neuron
which we will label by the index k. The output from neuron i (of the preceding layer),
pi, is multiplied by the weight corresponding to the i—k connection, wi. The com-

111

112 Arti�cial Neural Networks Chapter 7

p1

p2

p3

...

pN

N∑
i=1

wipi f
[
wTp + b

]

Input

b

ActivationSum

p̃

Output

Figure 7.1: A model neuron, a constituent part of the arti�cial neural network
model. The input from the previous layerpmultiplied by corresponding weights
w and summed. Then the bias b is added, and the activation function f is applied
to the resulting wTp + b. The output p̃ goes on to become input for neurons in
the next layer.

bined weight vector multiplied by the input vector gives part of the total activation
of the neuron,

N∑
i=1

wipi = wTp. (7.1)

The remaining part is known as the bias, bk. This is a single real number. There is
one for each neuron, and it acts as modi�er making the neuron more or less likely to
�re independently of the input.

The total input is passed to an activation (or transfer) function, which transforms
it in some speci�ed way, yielding the neuron output p̂k. This in turn becomes input
for the neurons in subsequent layers.

Various di�erent activation functions f are used for di�erent purposes. The func-
tion may be linear or non-linear, but should vanish for small inputs and saturate for
large inputs. For reasons that will become clear shortly, the conditions we enforce
on f is continuity, boundedness, as well as non-constantness. We also demand it be
monotonically increasing. A popular example, the sigmoid, takes the form

f(x) =
1

1 + e−x
. (7.2)

An example of the sigmoid is shown in Fig. 7.2. Numerous alternative transfer func-
tions are in popular use, including the hyperbolic tangent tanh, the inverse tangent
tan−1, the recti�ed and exponential linear units (ReLU and ELU), Gaussians, and iden-
tity functions f(x) = x.

In total, the action of a single neuron can be written

input → f
(
wTp + b

)
= p̃ → output. (7.3)

Section 7.2 Network layers 113

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

Figure 7.2: Example of a sigmoid function,
used as a non-linear activation function for
arti�cial neural networks.

A schematic representation of the single neuron connected to the previous and acting
as input for the next layers is shown in Fig. 7.1.

7.2 Network layers

The full arti�cial neural network is built up of layers of neurons. Data is fed se-
quentially through the network, starting in the input layer (the input values can be
thought of as the �rst layer), through the hidden layers, and ending up in the out-
put layer. The propagation needs to happen simultaneously across the network, as
layer k needs the fully computed output of layer k − 1 before the activations can be
calculated.

A layer is—put simply—a collection of neurons, all of which are connected to the
previous layer’s neurons and the next layer’s neurons. Let us label the individual
neurons in layer k by index i, i.e. nki . The bias of neuron i is then denoted bki , and the
weights connecting nk−1

i to nkj is calledwji. For each neuron there is a corresponding
weight, so the weight vector is denoted wk

i . The combination of all weight vectors
for layer k thus makes a matrix, which we will denote by a capital W k,

W k =

wk11 wk12 wk13 . . . wk1N
wk21 wk22 wk23 . . . wk2N
wk31 wk32 wk33 . . . wk3N

...
wkN1 wkN2 wkN3 . . . wkNN

 , (7.4)

or more compactly (W k)ij = wkij . The collection of all biases for layer k is bk. In this

114 Arti�cial Neural Networks Chapter 7

Figure 7.3: Schematic representation of a single
ANN layer. Each neuron of the layer indexed k
is connected from behind to all neurons in layer
k − 1. The connection weights can be organized
into a matrix,W k−1, and the action of layer k can
be succinctly stated as f(W kpk−1 + bk) where
element-wise operation is assumed for the acti-
vation f .

Layer
k

Layer
k − 1

Layer
k + 1

notation, we may write the propagation of the signal from layer k − 1 to layer k as

yk = f(W kyk−1 + bk)

= f

wk11 wk12 . . . wk1N
wk21 wk22 . . . wk2N

...
wkN1 wkN2 . . . wkNN

yk−1

1

yk−1
2
...

yk−1
N

+

bk1
bk2
...
ykN

 (7.5)

or in Einstein notation

yki = f
(
wkijy

k−1
j + bki

)
. (no sum over k implied) (7.6)

In all of the preceeding three equations, application of f indicates element wise func-
tional evaluation.

It is clear from Eq. (7.5) that propagation through an entire layer can be thought of
as a matrix-vector product, a vector-vector summation, and a subsequent application
of the transfer function f element-wise on the resulting vector.

A schematic representation of a layer consisting of three arti�cial neurons in a
fully connected ANN is shown in Fig. 7.3.

7.3 The full network
A collection of L layers connected to eachother forms a full network. Note carefully
that the network is nothing more than a (somewhat complex) function. If a single
input and a single output value is speci�ed, the action of the NN can be written out
in closed form as [1]

ŷ=
M∑
j=1

wL1jf

(
M∑
k=1

wL−1
jk f

(
M∑
i=1

wL−2
ki f

(
. . .f
(
w1
m1x1+b1

m

)
. . .
)

+ bL−2
i

)
+bL−1

k

)
+bL1

(7.7)

Here, we have taken the each layer to consist ofM neurons. The scalar x1 denotes the
input value, while ŷ is the NN output. From looking at Eq. (7.7), the usefulness of the

Section 7.4 Training the ANN 115

model is in no way obvious. But it turns out that for an ANN with at least one hidden
layer populated with a �nite amount number of neurons is a universal approximator
[133]. This holds under the aforementioned assumptions on f , c.f. section 7.1. Being
a universal approximator means (in this context) that the NN function can be made
to be arbitrarily close to any continuous Borel-measurable function (essentially any
function we are likely to encounter) [134].

7.4 Training the ANN

Knowing that ANNs can be universal approximators is not helpful unless we can �nd
a systematic way of obtaining suitable parameters to approximate any given function
g(x). This is where training comes in. In section 1.2 we de�ned machine learning as
the science of creating computers capable of learning from experience. Teaching a
NN to approximate a function is conceptually simple, and involves only three steps:

Assume input x and corresponding correct output y is known.

(1) Compute output NN(x) = ŷ of the arti�cial neural network, and evaluate
the cost function, typically C(ŷ) ≡ ‖y − ŷ‖2.

(2) Compute the gradient of C(ŷ) w.r.t. all the parameters of the network, wkij
and bkj .

(3) Adjust the parameters according to the gradients, yielding a better estimate
ŷ of the true output value y.

(4) Repeat (1)—(4).

The training scheme is known as supervised learning, because the NN is continually
presented with x, y pairs, i.e. an input and an expected output. The cost (or objective
or loss) function determines how happy the network is with it’s own performance.
A common choice for the cost function is the `2 norm, essentially the root squared
di�erence,

C(ŷ) = ‖y − ŷ‖2 =

√√√√ NO∑
i=1

(yi − ŷi)2. (7.8)

In general, the output of the neural network is a vector of values, y, and the cost
function is taken across all outputs. In Eq. (7.8), the network produces NO outputs
for each input (which itself may be a vector).

Step (3) is easy to understand, but complex in practice. In order to update the
network weights and biases, a measure of the expected change in the total output is

116 Arti�cial Neural Networks Chapter 7

needed. Otherwise, any change would just be done at random1. This means we need
to compute the set of derivatives

gkij ≡
∂C(ŷ)

∂wkij
, and hki ≡

∂C(ŷ)

∂bki
. (7.9)

The most common algorithm for computing these derivatives is the backpropaga-
tion algorithm [135]. The method works by �rst pushing an input through the ANN,
and computing the derivatives of the cost function w.r.t. the last layer weights and
biases. The network is then traversed backwards, and the gradient w.r.t. all neuron
parameters is found by repeated application of the chain rule. An explicit statement
of the algorithm is found in any book on neural networks, see e.g. Ra� and co-workers
[132].

The �nal step in the training algorithm constitutes updating the weights according
to the computed gradient. Possibly the simplest scheme for updating the weights is to
just blindly follow the direction of the negative gradient, moving some set step length
∆w and ∆b. This is known as gradient descent, or steepest descent. Since the gradient
represents the direction in the parameter-hyperspace giving the fastest decrease in
C(ŷ), this will in principle lead to a minimum. However, modern ANN methods use
more sophisticated optimization schemes.

Whereas the gradient descent is a �rst order optimization algorithm—depending
only on the �rst derivative (gradient)—it is possible to devise higher order methods
taking advantage of the information contained in e.g. the second derivative (Hessian
matrix). Often, the second order schemes require calculation and inversion of the
Hessian. This is true of for example Newton’s method, which minimizes C(ŷ) by
�nding the roots of

∇C(ŷ) = 0. (7.10)

If the Hessian is too expensive to compute directly, it may be possible to estimate
it in a computationally more feasible manner. This leads to a class of optimization
algorithms known as Quasi-Newton methods, see e.g. the algorithm of Barzilai and
Borwein [136].

A popular approach in modern ANN codes is using gradient descent based meth-
ods which automaticall adjust the training rate (the stepping size) for each parameter
individually. The Adagrad and Adadelta methods are both examples of such methods,
which also attempt to �ne-tune the learning rate by considering a decaying backlog
of stored squared gradient values [137]. The algorithm we will use in the present
work is called Adam (derived from [but not an acronym for] adaptive moment esti-
mation), which stores exponentially decaying averages of both gradients and squared
gradients in order to �nd optimal step sizes [138]. For an accessible introduction to
the speci�cs of the Adam optimizer, see e.g. the recent Master thesis of Stende [1].

1This is a possible approach, yielding a class of genetic optimization algorithms. We will not discuss
such schemes in the present work.

Part III

Implementation and results

117

Chapter 8

Implementation: Hartree-Fock

The following is a description of the implementation of the Hartree-Fock framework
described in chapter 4. The main body of the method consists of around 7 000 sig-
ni�cant1 lines of C++ code. It consists of about 15 signi�cant classes, with associated
sub-classes, of which a generic user is required to interact with only three for basic
usage: The managing System class, an appropriate sub-class of the Atom super-class,
and either one of RestrictedHartreeFock or UnrestrictedHartreeFock depending on which
framework is desired.

The code is object oriented and completely general in that it can compute an ap-
proximation to the energy of any molecular con�guration possible. Although it will
of course be unfeasibly slow in doing so for large systems where the basis size far
exceeds 102. As noted in section 3.3.4, the mathematically more tractable Cartesian
Gaussian basis functions are used in place of the physically more realistic Slater type
orbitals. It is in principle tuneable to any desired precision—bounded from below by
the Hartree-Fock limit (see section 4.7)—by employing larger and larger basis sets.
All basis sets used in the current work are taken from the Basis Set Exchange [139].
The speci�c basis sets used are described in section 8.1.

The code consists of two mostly disjoint parts. The bulk of the program consists
of code necessary to solve—in analytic fashion—one-, and two-electron integrals in
terms of Gaussian orbitals. The second and more succinct part deals with setting up
and solving the Roothan-Hall (Pople-Nesbet) equations.

The code base has been rigorously tested for �rst and second row atoms, with
Gaussian orbitals up to and including f type, but expanding to heavier atoms and
higher angular momentum basis functions is in principle straightforward. A number
of basis sets are available, and adding new ones is made easy by the accompanying
python script basisFileParser.py. It parses Gaussian basis set �les in the Turbomole
format, .tm, and outputs C++ code ready for use in the Hartree-Fock program [140].

After calculating the energy, the Hartree-Fock basis may be output to �le for use

1As counted by the cloc program which counts signi�cant lines of code, leaving out blank lines,
comment lines, etc. [38]

119

120 Implementation: Hartree-Fock Chapter 8

later in e.g. the VMC code (see 9).
Before going on we present an overview of the basis sets employed. We then start

o� by describing simple usage of the code with some examples and then go on to
expand on the implementation of some key classes and methods.

8.1 Basis sets used
In the present work we employ a range of di�erent basis sets for the �rst and second
row elements. The minimal 3–21G as well as the 3–21++G set which adds di�use functions
to hydrogen are taken from Binkley and co-workers [141]. The 6–31G sets—doubling
the number of contracted functions for each core electron—are taken from Hehre and
co-workers and Dill and co-workers (for Li and B) [92, 93]. Double zeta sets, adding
another contracted function for each atomic orbital denoted 6–311G originate from
the work of Krishnan and co-workers [142]. The corresponding sets with added dif-
fuse and polarization functions G–311++G∗∗, aswell as the G–311++G(2d,2p) basis set which
adds p and d polarization functions to H is also taken from their work. Lastly, the
correlation-consistent polarized triple zeta cc–pVTZ and the corresponding augmented
aug–cc–pVQZ quintuple zeta with added di�use functions are taken from Dunning and
co-workers [94].

8.2 Introductory examples
The simplest usage of the HF code requires four lines of C++ code:

System He ;
He .addAtom(new Helium ("3–21G" , vec { 0 , 0 , 0 })) ;
RestrictedHartreeFock solver (&He) ;
solver . solve () ;

First the System instance is created. Secondly, a He atom is added at the origin with
a minimal 3–21G basis set. The vector vec parameter to the System::addAtom method
determines the position of the atom. Subsequently, an RestrictedHartreeFock solver is
setup and the last line solves the Roothan-Hall equations using default parameters
of tolerance ε = 10−8Eh, and a maximum of 50 iterations. Running the above code
gives on the �y output shown in Fig. 8.1, and the �nal HF energy E = −2.8356Eh.

More complicated molecular structures can easily be set up by simply adding more
atoms. The following code sets up an un-restricted Hartree-Fock calculations of the
ground state H2O molecule

vec O { 0 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0 } ;
vec H1 { – 1 . 4 3 0 , 1 . 1 0 8 , 0 . 0 0 0 } ;
vec H2 { 1 . 4 3 0 , 1 . 1 0 8 , 0 . 0 0 0 } ;

System H2O;
H2O.addAtom(new Oxygen ("6–311++G∗∗ " , O)) ;

Section 8.3 Overview of selected classes 121

H2O.addAtom(new Hydrogen ("6–311++G∗∗ " , H1)) ;
H2O.addAtom(new Hydrogen ("6–311++G∗∗ " , H2)) ;

UnrestrictedHartreeFock solver (&H2O) ;
solver . solve () ;

with the output E = −76.0529Eh. Using the di�use-polarized 6–311++G∗∗ basis set, the
water molecule problem contains a grand total of 37 contracted basis functions.

8.3 Overview of selected classes

8.3.1 Overlap and kinetic integral evaluation

The majority of the code base and the majority of the run-time of the Hartree-Fock
program is taken up by the integral evaluation code. The dominating factor w.r.t.
computational complexity is the evaluation of the four-index J and K integrals. We
will begin our discussion of integral evaluation with the OverlapIntegrator class.

Overlap integrals

In order to perform the overlap integrals we will employ the scheme of McMurchie
and Davidson, hinted at in section 3.3.5 [86]. Exploiting the properties of the Hermite
Gaussians (c.f. section 3.3.5), we can integrate Gaussian products with relative ease.

Recall the notation of the overlap distributions of Eq. (3.52),

Ωij(x) = gαi (x;Ax)g
β
j (x;Bx) = KABx

i
Ax

j
Be−px

2
p , (8.1)

withKAB constant and p = α+β. By the completeness of the Hermite polynomials,
we may expand any polynomial of degree i + j in terms of Hermite polynomials
of degree t ≤ i + j [83]. This means we can write Ωij(x) in terms of Λt(x) with
expansion coe�cients Eij

t , i.e. [84]

Ωij =

i+j∑
t=0

Eij
t Λt. (8.2)

Consider now the incremented Ωi+1,j , obtained by left-multiplying by an additional
factor of xA. We may use the Gaussian recurrence relation, Eq. (3.39), to relate this
to Ωij by

Ωi+1,j = AxΩij = (x− Ax)Ωij

= (x− Px)Ωij + (Px − Ax)Ωij

= xpΩij − xPAΩij. (8.3)

122 Implementation: Hartree-Fock Chapter 8

================== Starting SCF iterations =================
=> Maximum iterations : 50
=> Convergence criterion : 1e–08
=> Total basis size : 2
=> Number of atoms : 1
=> Number of electrons : 2

–––
| Helium : 3–21G (0 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0) |
–––

==
Iteration Energy Convergence

––
0 – 1 . 6 7 1 4 6 8 5 5
1 – 2 . 3 0 4 9 9 7 1 8 0 . 7 2 6 6 3 5 9 0 2
2 – 2 . 5 8 0 1 9 8 6 1 0 . 3 4 0 7 7 1 4 1 1
3 – 2 . 7 0 9 6 0 7 1 8 0 . 1 5 9 8 1 9 8 7 5
4 – 2 . 7 7 2 8 4 1 4 4 0 . 0 7 4 6 8 2 9 7 3 6
5 – 2 . 8 0 4 2 4 8 9 4 0 . 0 3 4 6 6 2 6 5 6 5
6 – 2 . 8 1 9 9 4 4 2 4 0 . 0 1 5 9 3 1 9 3 8 5

. . .

23 – 2 . 8 3 5 6 7 9 7 5 2 . 0 9 6 1 6 3 3 5 e–07
24 – 2 . 8 3 5 6 7 9 8 1 1 . 2 1 2 5 0 9 6 5 e–07
25 – 2 . 8 3 5 6 7 9 8 4 6 . 9 3 8 6 7 5 3 8 e–08
26 – 2 . 8 3 5 6 7 9 8 6 3 . 9 3 6 1 6 7 3 e–08
27 – 2 . 8 3 5 6 7 9 8 7 2 . 2 1 6 8 2 6 0 1 e–08
28 – 2 . 8 3 5 6 7 9 8 7 1 . 2 4 0 9 5 1 3 e–08
29 – 2 . 8 3 5 6 7 9 8 7 6 . 9 1 0 9 6 4 5 8 e–09

==

Self consistency SUCCESFULLY reached .

=> Iterations used : 29
=> Final convergence test : 6 . 9 1 0 9 6 4 5 7 8 3 8 8 2 4 6 e–09
=> Final electronic energy : – 2 . 8 3 5 6 7 9 8 6 9 8 7 3 3 5 5
=> Final energy (eV) : – 7 7 . 1 6 2 7 9 0 8 5 4 2 7 3 1 1
=> Final energy : – 2 . 8 3 5 6 7 9 8 6 9 8 7 3 3 5 5
==

Figure 8.1: Output of the �rst example program shown at the start of section 8.2.
The right hand side column labeled convergence shows the average of absolute
di�erence between eigenvalues of the Fock matrix between iterations. This is the
test used to check for convergence, with ε being the convergence criterion given
as input to RestrictedHartreeFock::solve. If no ε is provided, a default value of 10−8

is used.

Section 8.3 Overview of selected classes 123

We will now use the multiplication result for Hermite Gaussians shown in section
3.3.5—Eq. (3.46)—to expand the xpΩij term as

xpΩij =

i+j∑
t=0

Eij
t

[
tΛt−1 +

1

2p
Λt+1

]

=

i+j+1∑
t=1

[
(t+ 1)Eij

t+1 +
1

2p
Eij
t−1

]
, (8.4)

yielding �nally [85]

Ωi+1,j =

i+j+1∑
t=1

[
1

2p
Eij
t−1 + (t+ 1)Eij

t+1 + xPAE
ij
t

]
Λt. (8.5)

Equating this with the straight-forward expansion Ωi+1,j =
∑i+j+1

t=1 Eij
t Λt, we �nd

the recurrence relations for Eij
t as [84]

E00
0 = KAB, (8.6)

Ei+1,j
t =

1

2p
Eij
t−1 + xPAE

ij
t + (t+ 1)Eij

t+1, and (8.7)

Ei,j+1
t =

1

2p
Eij
t−1 + xPBE

ij
t + (t+ 1)Eij

t+1. (8.8)

Using the conditions Eij
t = 0 if t < 0 or t > i + j, this gives us an algorithm for

calculating Hermite expansion coe�cients [3].
Having calculated the expansion, �nding the overlap integral is trivial:〈

gαijk(rα;A)
∣∣gβlmn(rβ;B)

〉
=

∫ ∞
−∞

d3r gαijk(rα;A)gβlmn(rβ;B)

=
i+l∑
t=0

j+m∑
u=0

k+n∑
v=0

Eil
t E

jm
u Ekn

v

∫ ∞
−∞

d3rΛα+β
tuv (rP)

SilSjmSkn = Eil
0E

jm
0 Ekn

0

√(
π

α + β

)3

. (8.9)

The OverlapIntegrator class computes the integral by Eq. (8.9) as

double OverlapIntegrator : : computeIntegral (GaussianPrimitive ∗ primitive1 ,
GaussianPrimitive ∗ primitive2) {

m_hermiteGaussian . setupCoefficients (primitive1 , primitive2) ;
const double exponentSum = m_hermiteGaussian . getExponentSum () ;
m_sqrtPiOverP = sqrt (M_PI / exponentSum) ;
const int xExponent1 = primitive1–>xExponent () ;
const int yExponent1 = primitive1–>yExponent () ;
const int zExponent1 = primitive1–>zExponent () ;

124 Implementation: Hartree-Fock Chapter 8

const int xExponent2 = primitive2–>xExponent () ;
const int yExponent2 = primitive2–>yExponent () ;
const int zExponent2 = primitive2–>zExponent () ;

m_Ex = m_hermiteGaussian . getCoefficientX (xExponent1 , xExponent2) ;
m_Ey = m_hermiteGaussian . getCoefficientY (yExponent1 , yExponent2) ;
m_Ez = m_hermiteGaussian . getCoefficientZ (zExponent1 , zExponent2) ;
return m_Ex ∗ m_Ey ∗ m_Ez ∗

m_sqrtPiOverP ∗ m_sqrtPiOverP ∗ m_sqrtPiOverP ;
}

Evaluating the Hermite Gaussian expansion coe�cients

The OverlapIntegrator class has a member instance of the HermiteGaussian class which
sets up the Hermite factorization. This class essentially has one job: Computing the
Eab
q coe�cients for any given gαijk(r;A)gβlmn(r;B) product. The Hermite coe�cients

are stored in an array of arma::cube objects, which themselves are vectors of matrices
or rank 3 tensors. In total, this makes the m_coe�icients object a rank 4 tensor with
indices ordered as (x, i, j, t) and size (3, i+ 1, j + 1, i+ j + 1).

An excerpt of the HermiteGaussian::computeCoe�icients method is shown here:

void HermiteGaussian : : computeCoefficients () {
/ / . . .
double alpha = m_exponent1 ;
double beta = m_exponent2 ;
double p = alpha + beta ;
double mu = alpha ∗ beta / p ;
vec AB = m_nucleusPosition1 – m_nucleusPosition2 ;
vec P = (alpha ∗ m_nucleusPosition1 +

beta ∗ m_nucleusPosition2) / p ;
vec PA = P – m_nucleusPosition1 ;
vec PB = P – m_nucleusPosition2 ;

for (int i = 0 ; i < 3 ; i ++) {
cube& E = m_coefficients [i] ;
double AB_ = AB(i) ;
double PA_ = PA(i) ;
double PB_ = PB(i) ;

int iA = 0 ;
E (0 , 0 , 0) = exp (– mu ∗ AB_ ∗ AB_) ;
for (int iB = 0 ; iB < iB_loopLimits [i] ; iB++) {

for (int t = 0 ; t < t_loopLimits [i] ; t ++) {
i f (! (iA == 0 && iB == 0 && t == 0)) {

/ / E(i , j–1 , t–1)
double previousIBpreviousT = 0 ;
i f (isCoefficientNonZero (iA , iB– 1 , t– 1)) {

previousIBpreviousT = E (iA , iB– 1 , t– 1) ;
}
/ / E(i , j–1 , t)
double previousIB = 0 ;
i f (isCoefficientNonZero (iA , iB– 1 , t)) {

previousIB = E (iA , iB– 1 , t) ;
}
/ / E(i , j–1 , t+1)
double previousIBnextT = 0 ;

Section 8.3 Overview of selected classes 125

i f (isCoefficientNonZero (iA , iB– 1 , t +1)) {
previousIBnextT = E (iA , iB– 1 , t +1) ;

}
E (iA , iB , t) = (1 . / (2 ∗ p)) ∗ previousIBpreviousT +

PB_ ∗ previousIB +
(t +1) ∗ previousIBnextT ;

}
}

}

/ / Repeat for i
/ / . . .

}

The HermiteGaussian::isCoe�icientZero method checks if t < 0 or t > i+ j, in which case
Eij
t = 0 is returned. Only the building of the i = 0, j = 0, 1, 2, . . . coe�cients is

shown; the loop over iA is omitted. The setup of the loopLimits arrays at the beginning
of the function is also omitted, but the iA and iB upper limits are set to i + 1, l + 1,
etc. The t, u, and v loops run from zero to i+ l + 1, j +m+ 1, and k + n+ 1.

Computing kinetic integrals

The kinetic integrals,

TIJ ≡ −
1

2

〈
gαijk(rα;A)

∣∣∣∣ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

∣∣∣∣gβlmn(rβ;B)

〉
(8.10)

are evaluated as linear combinations of overlap integrals, Sab. We denote gijk ≡ gI
and glmn ≡ gJ for brevity when de�ning TIJ . From Eq. (3.40) we know the e�ect
on Cartesian Gaussians of di�erentiation w.r.t. x, and so we may write the kinetic
integral components as

Tij = −1

2

〈
gαi (xα;Ax)

∣∣∣∣ ∂2

∂x2

∣∣∣∣gβj (xβ;Bx)

〉
= −1

2

〈
gαi (xα;Ax)

∣∣∣∣4β2gβj+2 − 2β(2j + 1)gβj + j(j − 1)gβj−2

〉
, (8.11)

where we have suppressed the arguments on gβj (xβ;Bx). Since the other two terms
are independent of x, the full kinetic integral can be written in terms of the overlap
integrals as

TIJ = −1

2

〈
gαijk(rα;A)

∣∣∣∣ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

∣∣∣∣gβlmn(rβ;B)

〉
= −1

2
[TilSjmSkn + SilTjmSkn + SilSjmTkn] (8.12)

with

Tij = 4β2Si,j+2 − 2β(2j + 1)Sij + j(j − 1)Si,j−2. (8.13)

126 Implementation: Hartree-Fock Chapter 8

The implementation of the KineticIntegrator class exploits the fact that if Eij
t is

known, then any overlap integral with i′ < i and/or j′ < j is already computed—simply
extract the component of E with the correspondingly lower indices. Since building
Eij
t necessitates the evaluation of allEi′j′

t with i′ < i and j′ < j, these are guaranteed
to already be known once the overlap Si,j+2 is computed.

An excerpt of KineticIntegrator::computeIntegral is presented in the following. Note
that the KineticIntegrator::computeAdjustedOverlapIntegral simply extracts the relevant Eij

t

indices and computes the corresponding Sij accordingly, without re-computing the
Hermite expansion.

double KineticIntegrator : : computeIntegral (GaussianPrimitive ∗ primitive1 ,
GaussianPrimitive ∗ primitive2) {

/ / . . .
primitive2–>adjustExponentX (2) ;
primitive2–>adjustExponentY (2) ;
primitive2–>adjustExponentZ (2) ;
m_overlapIntegrator . computeIntegral (primitive1 , primitive2) ;
primitive2–>adjustExponentX (– 2) ;
primitive2–>adjustExponentY (– 2) ;
primitive2–>adjustExponentZ (– 2) ;

vec& S = m_overlapIntegrals ;
S (0) = m_overlapIntegrator . getIntegralIndicesDimension (ix , jx , 0) ;
S (1) = m_overlapIntegrator . getIntegralIndicesDimension (iy , jy , 1) ;
S (2) = m_overlapIntegrator . getIntegralIndicesDimension (iz , jz , 2) ;

for (int dimension = 0 ; dimension < 3 ; dimension++) {
for (int adjustment = – 2 ; adjustment <= 4 ; adjustment+=4) {

computeAdjustedOverlapIntegral (dimension , adjustment) ;
}

}
for (int dimension = 0 ; dimension < 3 ; dimension++) {

computeT (dimension) ;
}

return – 0 . 5 ∗ (m_T(0) ∗ S (1) ∗ S (2) +
S (0) ∗ m_T(1) ∗ S (2) +
S (0) ∗ S (1) ∗ m_T(2)) ;

}

The KineticIntegrator::computeT simply computes Tij by

void KineticIntegrator : : computeT (int d) {
double beta = m_primitive2–>exponent () ;
int j = m_primitive2–>getExponentDimension (d) ;
m_T(d) = 4 ∗beta ∗beta ∗ m_adjustedOverlapIntegrals (d , 1) –

2 ∗beta ∗ (2 ∗ j +1) ∗ m_overlapIntegrals (dimension) +
j ∗ (j – 1) ∗ m_adjustedOverlapIntegrals (dimension , 0) ;

}

Section 8.3 Overview of selected classes 127

8.3.2 Electron-nucleus Coulomb integrals
The electron-nucleus Coulomb integrals are on the form

VIJ =

∫
d3r

gαI (r;A)gβJ (r;B)

|r− rC |
, (8.14)

where gI and gJ are primitives centered on nuclei A and B, respectively, and the
integral is taken over coordinates relative to (a potentially di�erent) nucleus C . We
will denote |r − rC | ≡ rC , and we recognize the overlap distribution ΩIJ in the
numerator of the integrand,

VIJ =

∫
d3 r

ΩIJ

rC
. (8.15)

Unfortunately, these integrals do not factor in Cartesian coordinates, but it turns out
that we may �nd a closed form solution in terms of the lower incomplete gamma
function. We may rewrite the 1/rC factor in terms of the integral over a Gaussian by
employing the identiy [74] ∫ ∞

−∞
dx e−λx

2

=

√
π

λ
. (8.16)

Using Eq. (8.16), 1/rC becomes

1

rC
=

1√
π

∫ ∞
−∞

dt e−r
2
Ct

2

. (8.17)

With the integral representation of 1/rC , VIJ is a four dimensional integral,

VIJ =
KAB√
π

∫
d3r
(
xiAy

j
Az

k
A

)(
xlBy

m
B z

n
B

)
e−pr

2
P

∫ ∞
−∞

dt e−r
2
Ct

2

, (8.18)

where p = α+ β, P is the "center of mass" between A and B, and KAB = e−αβr
2
AB/p

as usual (c.f. section 3.3.4). As we did with the overlap integrals, we may of course
again expand the overlap distribution in terms of Hermite Gaussians

VIJ =
1√
π

∫
d3r

∑
tuv

Eil
t E

jm
u Ekn

v Λα+β
tuv (rP)

∫ ∞
−∞

dt e−r
2
Ct

2

. (8.19)

One center Coulomb integrals

In order to make progress, we turn to the simpli�ed one center integral of just

Vp ≡
∫

d3r
e−pr

2
P

rC
=

1√
π

∫
d3r

∫ ∞
−∞

dt e−pr
2
P e−t

2r2C . (8.20)

128 Implementation: Hartree-Fock Chapter 8

Using the Gaussian product rule and subsequently applying Eq. (8.16) thrice gives
[85]

Vp =
2√
π

∫ ∞
0

dt exp

(
pR2

CP

t2

p+ t2

)(
π

p+ t2

)3/2

. (8.21)

The even integral over (−∞,∞) was transformed to twice the integral over [0,∞),
and RCP denotes (predictably) the distance RCP = |C − P|. Performing next the
substitution u2 ≡ t2/(p+ t2) with transformed integration measure

dt =
1

p

(
t2

u2

)3/2

du, (8.22)

and integration limits [0, 1] we obtain

Vp =
2π

p

∫ 1

0

du e−pR
2
CPu

2

. (8.23)

Introducing the Boys function, Fn(x) =
∫ 1

0
dt e−xt

2
t2n, we can rewrite this �nally

as [84]

Vp =
2π

p
F0(pR2

CP). (8.24)

Evaluing the Boys function

The Boys function is related to the lower incomplete gamma function as

Fn(x) =
γ(n+ 1/2, x)

2xn+1/2
(8.25)

where the integral representation of the incomplete gamma function can be written
as

Γ(s, x) =

∫ ∞
x

dt ts−1e−t and γ(s, x) =

∫ x

0

dt ts−1e−t, (8.26)

for the upper (Γ) and lower (γ) regions, respectively [143, 144]. The gamma function
proper is obviously just the sum of the lower and upper regions, Γ(α) = γ(α, x) +
Γ(α, x). Integrating γ(s, x) by parts yields the relation

γ(s, x) =

∫ x

0

dt ts−1e−t = −e−tts−1 +

∫ x

0

dt ts−2e−t, (8.27)

from which we can derive the following recurrence relation for Fn(x) [84]

Fn(x) =
2xFn+1(x) + e−x

2n+ 1
. (8.28)

Section 8.3 Overview of selected classes 129

Using Eq. (8.28) we may e�ciently �nd Fm(x) for anym ≤ n if we compute once the
value Fn(x). This involves only 5(n − m) FLOPs, as opposed to the re-evaluation
in terms of the gamma function which is signi�cantly more computationally ex-
pensive (see e.g. [145]). In the Hartree-Fock framework, this is implemented in the
BoysFunction class, and the method

double BoysFunction : : computeAndApplyDownwardRecurrence (double x , double n) {
m_recurrenceValues = zeros<vec >(n+1) ;
m_recurrenceValues (n) = compute (x , n) ;

const double expMinusX = std : : exp (–x) ;
for (int m=n ; m> 0 ; m––) {

m_recurrenceValues (m– 1) = (2 ∗ x ∗m_recurrenceValues (m) + expMinusX) /
(2 . 0 ∗m– 1 . 0) ;

}
return m_recurrenceValues (0) ;

}

The BoysFunction::compute method simply evalues the Boys function Fn(x) by applica-
tion of Eq. (8.25) and the boost::math library2,

double BoysFunction : : analyticalIncompleteGammaFunction (double x , double n) {
const double nPlusOneHalf = n+ 0 . 5 ;
return (x==0) ? 1 . 0 / (n+1) : 1 . 0 / (2 ∗pow(x , nPlusOneHalf)) ∗

boost : : math : : tgamma_lower (nPlusOneHalf , x) ;
}

Computing Hermite integral expansions

Recall the Hermite Gaussian expansion of the VIJ integrand of Eq. (8.19),

VIJ =
1√
π

∫
d3r

∑
tuv

Eil
t E

jm
u Ekn

v Λα+β
tuv (rP)

∫ ∞
−∞

dt e−r
2
Ct

2

. (8.29)

Moving the expansion coe�cients out of the integral, and inserting the de�nition of
the Hermite Gaussians gives

VIJ =

∑
tuv E

il
t E

jm
u Ekn

v√
π

∫
d3r

∂t∂u∂v

∂P t
x∂P

u
y ∂P

v
z

e−pr
2
P

rC

=

∑
tuv E

il
t E

jm
u Ekn

v√
π

∂t∂u∂v

∂P t
x∂P

u
y ∂P

v
z

∫
d3r

e−pr
2
P

rC

=

∑
tuv E

il
t E

jm
u Ekn

v√
π

∂t∂u∂v

∂P t
x∂P

u
y ∂P

v
z

[
2π

p
F0(pR2

PC)

]
, (8.30)

2http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/sf_gamma/igamma.
html

http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html

130 Implementation: Hartree-Fock Chapter 8

where the result of the one center Coulomb integral—Eq. (8.24)—were inserted and
the order of integration and di�erentiation were swapped in accordance with Leib-
niz’s rule [85, 146].

De�ning the Hermite integrals

Rn
tuv(p,RPC) ≡ (−2p)n

∂t+u+vFn(pR2
PC)

∂P t
x∂P

u
y ∂P

v
z

, (8.31)

we can rewrite the complete electron-nucleus Coulomb integral in its �nal form as
[84]

VIJ =
2π

p

i+l∑
t=0

j+m∑
u=0

k+n∑
v=0

Eil
t E

jm
u Ekn

v R0
tuv(p,RPC). (8.32)

Di�erentiation of the Boys function leads to the three recurrence relations which
we—together with Rn

000 = (−2p)Fn—will use to compute the Rn
tuv values:

Rn
t+1,uv = tRn+1

t−1,uv + xPCR
n+1
tuv , (8.33)

Rn
t,u+1,v = uRn+1

t,u−1,v + yPCR
n+1
tuv , and (8.34)

Rn
tu,v+1 = vRn+1

tu,v−1 + zPCR
n+1
tuv . (8.35)

In the source code of the Hartree-Fock program, this is implemented in the class
HermiteGaussianIntegral. Once again, the coe�cients are stored in a rank 4 tensor called
m_coe�icients. An excerpt of the method computing Rn

tuvs is shown here:

void HermiteGaussianIntegral : : setupCoefficients (int t ,
int u ,
int v ,
double p ,
arma : : vec PC) {

/ / . . .
arma : : field <arma : : cube>& R = m_coefficients ;
BoysFunction& F = m_boysFunction ;

double x = p ∗ arma : : dot (m_PC, m_PC) ;
R (0) (0 , 0 , 0) = F . computeAndApplyDownwardRecurrence (x , m_tuv+1) ;

double minusTwoPPowerM = 1 ;
for (int m = 1 ; m < m_tuv+ 1 ; m++) {

minusTwoPPowerM ∗= (– 2 ∗p) ;
R(m) (0 , 0 , 0) = minusTwoPPowerM ∗ F [m] ;

}

for (int tuv = 1 ; tuv < m_tuv+ 1 ; tuv++)
for (int n = 0 ; n < m_tuv+1–tuv ; n ++)
for (int t = 0 ; t < m_t+ 1 ; t ++)
for (int u = 0 ; u < m_u+ 1 ; u ++)
for (int v = 0 ; v < m_v+ 1 ; v ++) {

i f (t + u + v != tuv | | t + u + v == 0) {
continue ;

}
int tuvMax = max(t , max(u , v)) ;

Section 8.3 Overview of selected classes 131

double newCoefficient = 0 ;
i f (tuvMax == t) {

newCoefficient = (t– 1) ∗ getCoefficient (n+1 , t– 2 ,u , v) +
m_PC(0) ∗ getCoefficient (n+1 , t– 1 ,u , v) ;

} else i f (tuvMax == u) {
newCoefficient = (u– 1) ∗ getCoefficient (n+1 , t , u– 2 ,v) +

m_PC(1) ∗ getCoefficient (n+1 , t , u– 1 ,v) ;
} else i f (tuvMax == v) {

newCoefficient = (v– 1) ∗ getCoefficient (n+1 , t , u , v– 2) +
m_PC(2) ∗ getCoefficient (n+1 , t , u , v– 1) ;

}
R(n) (t , u , v) = newCoefficient ;

}
}

The m_tuv variable holds the sum t+u+v, and maxIndex representsmmax ≡ t+u+v+1.
This is the highest order Rmmax

000 we need to compute directly by Rn
000 = (−2p)Fn

(by downward recurrence on Fmmax) before applying the recurrence relations of Eq.
(8.33)-(8.35).

Finally, the full electron-nucleus interaction integrals are computed in the Hartree-
Fock code as

double ElectronNucleusIntegrator : : computeIntegral (
GaussianPrimitive ∗ primitive1 ,
GaussianPrimitive ∗ primitive2) {

HermiteGaussianIntegral& R = m_hermiteGaussianIntegral ;
HermiteGaussian& E = m_hermiteGaussian ;
R . setupCoefficients (primitive1 , primitive2 , m_nucleusPosition) ;
E . setupCoefficients (primitive1 , primitive2) ;
/ / . . .
double integral = 0 ;
for (int t = 0 ; t < tLimit ; t ++)
for (int u = 0 ; u < uLimit ; u++)
for (int v = 0 ; v < vLimit ; v++) {

double Eproduct = 1 ;
Eproduct ∗= E . getCoefficientDimension (x1 , x2 , t , 0) ;
Eproduct ∗= E . getCoefficientDimension (y1 , y2 , u , 1) ;
Eproduct ∗= E . getCoefficientDimension (z1 , z2 , v , 2) ;
integral += Eproduct ∗ R . getCoefficient (0 , t , u , v) ;

}
return integral ∗ 2 ∗M_PI / p ;

}

8.3.3 Electron-electron exchange integrals

The electron-electron exchange integrals are on the form

VABCD =

∫
d3r1

∫
d3r2

gαA(r1;A)gβB(r1;B)gγC(r2;C)gδD(r2;D)

|r1 − r2|
. (8.36)

132 Implementation: Hartree-Fock Chapter 8

As with the Coulomb integrals, we recognize a set of overlap distributions in the
numerator which we can expand in terms of Hermite Gaussians as

VABCD =

∫
d3r1

∫
d3r2

Ωα+β
AB (r1;P)Ωγ+δ

CD (r2;Q)

r12

=
∑
tuv

EAB
tuv

∑
τµν

ECD
τµν

∫
d3r1

∫
d3r2

Λα+β
AB (r1;P)Λγ+δ

CD (r2;Q)

r12

. (8.37)

It turns out we can write the integration over r1 and r2 in terms of the Hermite
integrals, as

VABCD =
2π5/2

pq
√
p+ q

∑
tuv

EAB
tuv

∑
τµν

ECD
τµν(−1)τ+µ+νRt+τ,u+µ,v+ν(ζ,RPQ), (8.38)

where with ζ = pq/(p + q), p = α + β, q = γ + δ, RPQ = P − Q, and P (Q) is
the "center of mass" between A and B (C and D) (for details, see e.g. Helgaker and
Taylor, McMurchie and Davidson, or Boys [81, 84, 86]).

In the source code, the ElectronElectronIntegrator class sets up two Hermite Gaussian
expansions—one for the A,B overlap and one for the C,D overlap—and a single
Hermite integral expansion. The implementation is straightforward, the heavy lifting
is done in the HermiteGaussian and HermiteGaussianIntegral classes:

double ElectronElectronIntegrator : : computeIntegral (
GaussianPrimitive ∗ primitive1 ,
GaussianPrimitive ∗ primitive2 ,
GaussianPrimitive ∗ primitive3 ,
GaussianPrimitive ∗ primitive4) {

HermiteGaussian& E12 = m_hermiteGaussian12 ;
HermiteGaussian& E34 = m_hermiteGaussian34 ;
HermiteGaussianIntegral& R = m_hermiteGaussianIntegral

E12 . setupCoefficients (primitive1 , primitive2) ;
E34 . setupCoefficients (primitive3 , primitive4) ;
setupHermiteGaussianIntegral (primitive1 , primitive2 ,

primitive3 , primitive4) ;
/ / . . .
double integral = 0 ;
for (int t = 0 ; t < tuvLimits [0] ; t ++)
for (int u = 0 ; u < tuvLimits [1] ; u ++)
for (int v = 0 ; v < tuvLimits [2] ; v ++)
for (int t_ = 0 ; t_ < tuvLimits [3] ; t_ ++)
for (int u_ = 0 ; u_ < tuvLimits [4] ; u_++)
for (int v_ = 0 ; v_ < tuvLimits [5] ; v_++) {

double Eproduct = 1 ;
Eproduct ∗= E12 . getCoefficientDimension (x1 , x2 , t , 0) ;
Eproduct ∗= E12 . getCoefficientDimension (y1 , y2 , u , 1) ;
Eproduct ∗= E12 . getCoefficientDimension (z1 , z2 , v , 2) ;

Eproduct ∗= E34 . getCoefficientDimension (x3 , x4 , t_ , 0) ;
Eproduct ∗= E34 . getCoefficientDimension (y3 , y4 , u_ , 1) ;
Eproduct ∗= E34 . getCoefficientDimension (z3 , z4 , v_ , 2) ;

double R = R . getCoefficient (0 , t+t_ , u+u_ , v+v_) ;

Section 8.3 Overview of selected classes 133

double sign = ((t_ + u_ + v_) % 2) == 0 ? 1 : – 1 ;
integral += Eproduct ∗ R ∗ sign ;

}
double p1 = primitive1–>exponent () + primitive2–>exponent () ;
double p2 = primitive3–>exponent () + primitive4–>exponent () ;
return m_2sqrtPiToThe5 ∗ integral / (p1 ∗p2 ∗ sqrt (p1+p2)) ;

}

The variables xn,yn, and zn represent the exponent of the x, y, and z term in primitive
n. The limits of the sum x1+x2+1, y1+y2+1, and so on.

The ContractedIntegrator class

Having presented the integrators for the Gaussian primitives, the integrals over the
contracted Gaussians is trivial: we simply take a linear combination of the primitive
integrals.

8.3.4 The RestrictedHartreeFockSolver class
For brevity, only the restricted case is presented in the following. As we derive in
section 4, the restricted Hartree-Fock formalism expanded in a basis {φi}i orbitals
lead to the Roothan-Hall (RH) equations. The RH equations take the form

FC = εSC, (8.39)

where F is the Fock matrix with eigenvalues ε, S is the overlap matrix relative to the
orbitals, and C the coe�cient matrix representing the expansion of the new Hartree-
Fock orbitals in the {φi}i basis. The Fock matrix depends crucially on the coe�cient
matrix, F = F (C), meaning we must solve the non-linear RH equations by em-
ploying some linearization scheme. The universally used scheme is the �xed-point
iterative scheme referred to as self-consistent �eld iterations (SCF), wherein an ini-
tial guess is chosen for C and the Fock matrix computed. Secondly, the RH equations
are solved and a new (hopefully improved) estimate for C is produced. This is then
re-inserted into F (C), giving an updated Fock matrix for which the RH equations
are solved once again. This is reapeated until convergence is achieved.

Diagonalization of the Fock matrix

The overlap matrix, S, contains the overlap integrals of all combinations of basis
functions. If the basis set is orthonormal, S = 1, we may simply ignore it and solve
the Roothan-Hall equations at every iteration like an ordinary eigenvalue equation.
However, the contracted Gaussian basis is in general not orthonormal and so we must
transform Eq. (8.39) into an equation we are able to solve using normal linear algebra
tools. In theory we could simply compute S−1 and apply it to Eq. (8.39) from the left,
leaving us with

S−1FCk = εkS
−1SCk = εkCk, (8.40)

134 Implementation: Hartree-Fock Chapter 8

for each eigenvector indexed in k. However, S−1F is in general not Hermitian leading
to potential di�culties. Instead, we will take a di�erent route.

We will apply a coordinate transformation which renders S an identity matrix,
solve the equation, and then transform back to the original basis. Applying a basis
change to a matrix constitutes a similarity transform, thus we require a matrix V
such that [59]

V †SV = 1. (8.41)

The dagger superscript denotes here the Hermitian conjugate, V † = (V ∗)T . The
same transformation needs to be applied to the Fock matrix, but F does of course
not become diagonal as a result. Let us now left multiply the RH equation by V †,
considering for the moment the equation for only a single eigenvector-eigenvalue
pair:

V †FCk = εkV
†SCk

V †F V V −1︸ ︷︷ ︸
1

Ck = εkV
†S V V −1︸ ︷︷ ︸

1

Ck

V †FV︸ ︷︷ ︸
F ′

V −1Ck︸ ︷︷ ︸
C′k

= εk V
†SV︸ ︷︷ ︸
1

V −1Ck︸ ︷︷ ︸
C′k

. (8.42)

This is called a whitening transform. Note carefully that ε is just a number, thus
is guaranteed to commute with V †. De�ning the transformed eigenvector C′k ≡
V −1Ck, and the coordinate transformed Fock matrix F ′ ≡ V †FV , we �nd the trans-
formed RH equation (which is now a regular eigenvalue problem)

F ′C′k = εkC
′
k. (8.43)

This leaves us still with the problem of �nding a suitable matrix V . It turns out
that S is guaranteed to be positive de�nite, meaning the set of matrices for which
V †SV = 1 holds is in�nite. We will choose V = Us−1/2, with U being the matrix of
eigenvectors of S (the columns) and s holds the inverse square root of the eigenvalues
on the diagonal [58]. We note that

V †SV = (Us−
1/2)†SUs−

1/2

= (s−
1/2)† U †SU︸ ︷︷ ︸

s

s−
1/2

= s−
1/2ss−

1/2 = 1, (8.44)

since U diagonalizes S in the sense that U †SU = s. Note also that s−1/2 is real and
diagonal, so (s−1/2)† = s−1/2.

The implementation of the diagonalization of S and the creation of the transfor-
mation matrix V is done once, at the start of the SCF iterations. This is handled
by the HartreeFock super-class, since the method is shared for both the restricted and
un-restricted formalisms.

Section 8.3 Overview of selected classes 135

void HartreeFock : : diagonalizeOverlapMatrix () {
vec s ;
mat U;
arma : : eig_sym (s , U, m_overlapMatrix) ;
m_transformationMatrix = U ∗ arma : : diagmat (1 . 0 / sqrt (s)) ;

}

Diagonalizing the Fock matrix

Using the m_transformationMatrix, the Fock matrix can now be diagonalized by the
RestrictedHartreeFock class as

void RestrictedHartreeFock : : diagonalizeFockMatrix () {
const mat& V = m_transformationMatrix ;
const mat& F = m_fockMatrix ;
mat& Ftilde = m_fockMatrixTilde ;
mat& C = m_coefficientMatrix ;
mat& Ctilde = m_coefficientMatrixTilde ;

Ftilde = V . t () ∗ F ∗ V ;
arma : : eig_sym (m_epsilon , Ctilde , Ftilde) ;
C = V ∗ Ctilde . submat (0 ,

0 ,
m_numberOfBasisFunctions – 1 ,
m_numberOfElectrons / 2 – 1) ;

}

Since we are not interested in the virtual Hartree-Fock orbitals in the present work,
we grab only the slice of the m_coe�icientMatrix which corresponds to occupied orbitals.

Setting up the Fock matrix and computing the energy

Before we can diagonalize it, we �rst need to construct the Fock matrix. The elements
of the Fock matrix consist of one-body and two-body integrals,

Fpq = 〈p|ĥ|q〉+
L∑
r=1

L∑
s=1

N/2∑
k=1

CrkCsk
(
2〈pr|ŵ|qs〉 − 〈pq|ŵ|sq〉

)
= 〈p|ĥ|q〉+

L∑
r=1

L∑
s=1

Dsr

(
2〈pr|ŵ|qs〉 − 〈pq|ŵ|sq〉

)
, (8.45)

where L denotes the basis size,N the number of electrons,D the density matrix, and
the one-body and two-body integrals are de�ned by (c.f. chapter 4)

〈p|ĥ|q〉 =

∫
d3rφ∗p(r)

[
−∇

2

2
−

M∑
A=1

ZA
|r− rA|

]
φq(r), (8.46)

136 Implementation: Hartree-Fock Chapter 8

and

〈pq|ŵ|rs〉 =

∫
d3r1

∫
d3r2 φ

∗
q(r1)φ∗q(r2)

1

|r1 − r2|
φq(r1)φs(r2). (8.47)

This is implemented in the Hartree-Fock framework as

void RestrictedHartreeFock : : computeFockMatrix () {
for (int p = 0 ; p < m_numberOfBasisFunctions ; p++)
for (int q = 0 ; q < m_numberOfBasisFunctions ; q++) {

m_fockMatrix (p , q) = m_oneBodyMatrixElements (p , q) ;

for (int r = 0 ; r < m_numberOfBasisFunctions ; r ++)
for (int s = 0 ; s < m_numberOfBasisFunctions ; s ++) {

m_fockMatrix (p , q) += 0 . 5 ∗
m_densityMatrix (s , r) ∗
twoBodyMatrixElementsAntiSymmetric (p , q , r , s) ;

}
}

}

with the anti-symmetric matrix elements being 2〈pq|ŵ|rs〉 − 〈pq|ŵ|sr〉.
After setting up and diagonalizing the Fock matrix, we can compute the Hartree-

Fock energy, given by

EHF =
L∑
p=1

L∑
q=1

Dpq〈p|ĥ|q〉+
1

2

∑
pqrs

DpqDrs

[
〈pr|ŵ|qs〉 − 1

2
〈pr|ŵ|sq〉

]
. (8.48)

This is straight forwardly implemented as

void RestrictedHartreeFock : : computeHartreeFockEnergy () {
m_hartreeFockEnergy = 0 ;

for (int p = 0 ; p < m_numberOfBasisFunctions ; p++)
for (int q = 0 ; q < m_numberOfBasisFunctions ; q++) {

m_hartreeFockEnergy += m_densityMatrix (p , q) ∗
m_oneBodyMatrixElements (p , q) ;

for (int r = 0 ; r < m_numberOfBasisFunctions ; r ++)
for (int s = 0 ; s < m_numberOfBasisFunctions ; s ++) {

m_hartreeFockEnergy += 0 . 2 5 ∗ m_densityMatrix (p , q) ∗
m_densityMatrix (s , r) ∗

twoBodyMatrixElementAntiSymmetric (p , q , r , s) ;
}

}
m_hartreeFockEnergy += m_nucleusNucleusInteractionEnergy ;

}

Updating the density matrix and possible convergence problems

Similar to other iterative schemes, the Hartree-Fock SCF iterations sometimes suf-
fer from convergence problems. Naive, straight forward, SCF iterations in fact has

Section 8.3 Overview of selected classes 137

very problematic convergence properties, and one usually attempts to help it some-
how [14]. The most commonly used such �x is called direct inversion in the iterative
subspace (DIIS) or Pulay mixing and essentially uses the errors from the m previous
iterations to extrapolate to a coe�cient matrix C which hopefully minimizes said
error [147]. A simpler scheme, which we implement in the present work, is called
mixing: instead of updating the density fully at each iteration, a weighted average
of the old and the newly computed D is taken to be the new density [58]. A mixing
factor a is introduced and the updated density matrix is taken equal

D = aDold + (1− a)Dnew, (8.49)

where Dnew = 2CnewC
†
new. In the program, this is implemented as

void RestrictedHartreeFock : : computeDensityMatrix () {
i f (m_smoothing) {

double a = m_smoothingFactor ;
mat densityMatrixTmp = 2 ∗ m_coefficientMatrix ∗

m_coefficientMatrix . t () ;
m_densityMatrix = a ∗ m_densityMatrix +

(1 . 0 – a) ∗ densityMatrixTmp ;
} else {

m_densityMatrix = 2 ∗ m_coefficientMatrix ∗ m_coefficientMatrix . t () ;
}

}

Chapter 9

Implementation: Variational Monte
Carlo

The following is a description of the implementation of the VMC framework de-
scribed in chapter 6. The main body of the method consists of about 4 000 signi�cant
lines1 of C++ code. It is object oriented and modular, and written to be as general
as possible while still retaining execution speed. It consists of about 12 signi�cant
classes, with associated sub-classes, of which a generic user is required to interact
with four in order to run simulations: The managing System class, the Atom class for
setting up the chemical environment, and appropriate sub-classes of the WaveFunction
and Orbital classes to choose which kind of wave function is to be used.

Wherever possible, the modularity makes it possible to in principle directly reuse
the classes for di�erent purposes. As an example, the Metropolis class—which handles
the accept/reject Metropolis steps and generates a Markov chain of samples drawn
from our PDF—can be reused to run e.g. a statistical mechanics simulation of the
Ising spin model without changing more than a handful lines of code. The same is
true of e.g. the Sampler class which handles sampling the local energy and computing
averages, etc.: this class is reusable without changing a single line of code.

The developed code can perform multiple di�erent calculations: Atomic or molec-
ular systems in addition to harmonic oscillator quantum dot systems are supported.
Various di�erent Slater determinant types are available, such as direct evaluation de-
terminant, or the more sophisticated and faster inverse determinant machinery. In
either case, a relative distance-dependent Jastrow factor can be included. The orbitals
which build the Slater can be chosen as either Slater-type orbitals (STO) or Gaussian-
type orbitals (GTO). The latter can be taken from a Hartree-Fock basis computed
using the code described in chapter 8, automatically parsed from the Hartree-Fock
output by the HatreeFockBasisParser class.

However, the only parts of the code which have been rigorously tested and which

1As counted by the cloc program which counts signi�cant lines of code, leaving out blank lines,
comment lines, etc. [38]

139

140 Implementation: Variational Monte Carlo Chapter 9

will be described in the following are the molecular full inverse Slater machinery
with a two-body Jastrow factor, �lled with either STOs or GTOs.

We will start o� with a few usage examples and then later expand on the imple-
mentation of some key classes and methods.

9.1 Introductory examples
The simplest usage of the VMC code requires only a few lines of C++ code:

int Z = 2 ;
double alpha = 1 . 8 4 3 ;
double beta = 0 . 3 4 7 ;
vec position { 0 , 0 , 0 } ;

System He ;
He . setImportanceSampling (true) ;
He . addCore (new Atom (&He, position , Z)) ;
He . setWaveFunction (new SlaterWithJastrow (&He, beta)) ;
He . setOrbital (new HydrogenOrbital (alpha)) ;
He . runMetropolis ((int) 1e7) ;

First the System instance is created, and importance sampling is enabled. Then a new
Core is added: a charge-2 atom placed at the origin. The WaveFunction is selected as
a standard SlaterWithJastrow which is then �lled with HydrogenOrbitals. The α and β
parameters are the variational input parameters in the hydrogenic radial wave func-
tions and the Jastrow factor, respectively. The values of α = 1.843 and β = 0.347
have been optimized for a single He atom.

Running the above code gives on the �y output shown in Fig. 9.1, and the �nal
energy E = −2.890± 0.001Eh.

More complicated systems can also easily be set up for simulation, e.g. the follow-
ing code runs a simulation on Ne+ cation with non-interacting electrons, no Jastrow-
factor, and a manually speci�ed importance sampled step length δt:

System Ne ;
Ne . setImportanceSampling (true) ;
Ne . setElectronInteraction (false) ;
Ne . setStepLength (0 . 0 2 5) ;
Ne . addCore (new Atom (&Ne, position , 1 0 , 5 , 4)) ;
Ne . setWaveFunction (new SlaterWithJastrow (&Ne, – 1 , false)) ;
Ne . setOrbital (new HydrogenOrbital (1 0 . 0)) ;
Ne . runMetropolis ((int) 1e7) ;

The penultimate input parameter of the Atom constructor de�nes the number of spin-
up electrons, while the last parameter gives the number of spin-down electrons. As
the total number of electrons is 9, while the nucleus charge is Z = 10, this de�nes a
Ne+ ion. Since the hydrogenic Slater determinant forms the exact wave function for
non-interacting electrons, the energy E = −187.5Eh is calculated with vanishing
variance.

Section 9.1 Introductory examples 141

=============== Starting Metropolis Algorithm ==============
=> Number of steps : 1e+07
=> Number of dimensions : 3
=> Number of electrons : 2
=> Step length : 1
=> Number of cores : 1

–––
| He (0 . 0 0 0 , 0 . 0 0 0 , 0 . 0 0 0) |
–––

===
Total Block

Step Energy Std . dev . Energy Variance Acc . rate
–––

5e4 – 2 . 8 8 9 4 0 . 1 3 4 4 8 – 2 . 8 7 6 4 3 . 4 7 5 6 e–05 0 . 9 9 7 6
1e5 – 2 . 8 8 2 5 0 . 0 6 9 6 9 6 – 2 . 8 3 6 7 3 . 7 5 1 7 e–05 0 . 9 9 7 6
1e5 – 2 . 8 8 1 4 0 . 0 4 7 0 9 9 – 2 . 9 3 4 6 6 . 4 2 1 7 e–05 0 . 9 9 6 4
2e5 – 2 . 8 8 5 2 0 . 0 3 5 6 7 2 – 2 . 8 1 6 4 0 . 0 0 0 1 1 6 0 2 0 . 9 9 7 6
2e5 – 2 . 8 8 5 1 0 . 0 2 8 6 9 – 2 . 8 8 3 7 6 . 4 7 4 4 e–05 0 . 9 9 4
3e5 – 2 . 8 8 7 8 0 . 0 2 4 0 4 7 – 2 . 9 3 8 7 0 . 0 0 0 1 2 3 0 1 0 . 9 9 5 2

. . .

9e6 – 2 . 8 8 9 6 0 . 0 0 1 0 2 0 2 – 2 . 8 4 0 7 5 . 2 6 7 1 e–05 0 . 9 9 4 4
9e6 – 2 . 8 8 9 5 0 . 0 0 1 0 1 6 7 – 2 . 8 2 2 8 3 . 3 0 5 3 e–05 0 . 9 9 7 2
9e6 – 2 . 8 8 9 5 0 . 0 0 1 0 1 3 – 2 . 8 9 7 4 . 0 0 3 5 e–05 0 . 9 9 6 8
9e6 – 2 . 8 8 9 6 0 . 0 0 1 0 0 9 2 – 2 . 8 7 7 1 5 . 1 9 7 1 e–05 0 . 9 9 4
9e6 – 2 . 8 8 9 6 0 . 0 0 1 0 0 5 – 2 . 8 6 2 3 3 . 1 2 2 e–05 0 . 9 9 8

===

Metropolis Algorithm finished .

=> Metropolis steps : 1e+07
=> Final acceptance rate : 0 . 9 9 6 7 6 1 4 9 0 0 4 8 6 6 1 2
=> Final energy average : – 2 . 8 8 9 5 2 2 4 1 5 9 2 3 0 4 7
=> Final variance : 1 . 0 0 2 0 7 3 9 0 6 5 8 7 6 8 6 e–06
==

Figure 9.1: Output of the �rst example program show at the start of section 9.1.
The �rst two Total-columns show the full energy computed so far, treating blocks
of 2500 Monte Carlo step as single samples. The three right hand side Block-
columns show the values computed for the last completed such block. Please
note that the block variance shown is treating every single Monte Carlo cycle
as an independent sample, and thus massively underestimates the size of the
variance. The same is also true of the printed Final variance at the very end of the
output.

142 Implementation: Variational Monte Carlo Chapter 9

Cartesian Gaussian orbitals can be requested by calling System::setOrbital with a
SlaterTypeOrbital object. The name of a basis �le—output from the Hatree-Fock code
described in detail in section 8, de�ning the chemical environment and the basis set
itself—is given as input to the constructor of SlaterTypeOrbital. The basis �le is the
result of previously run Hartree-Fock calculations, and de�nes the positions of any
atoms present. This means there is no need to specify nucleonic positions when
SlaterTypeOrbitals are used. An example calculation can be ran by the following code:

string basisFileName = "Be–STO–3G" ;
System Be ;
Be . setImportanceSampling (true) ;
Be . setWaveFunction (new SlaterWithJastrow (&Be , beta , true)) ;
Be . setOrbital (new GaussianOrbital (&Be , basisFileName)) ;
Be . runMetropolis ((int) 1e7) ;

Here, a STO-3G Gaussian Hartree-Fock basis set is used.

9.2 Overview of selected classes

9.2.1 The SlaterWithJastrow class

The work-horse of the VMC program is the WaveFunction class and associated sub-
classes. The code can in principle be run with any trial wave function, as long as it
can be evaluated, and allows the computation of the Laplacian (and the gradient if
importance sampling is desired).

The particular sub-class used in the entirety of the current work is the SlaterWithJastrow
class. It represents a product of a Slater determinant |D(R)| and a two-body Jastrow
factor J(R),

ΨT(R) = |D(R)|J(R). (9.1)

The determinant is populated with orbitals represented by the Orbital class. When us-
ing a restricted set of orbitals—in the sense that each spatial orbital is doubly occupied
by one spin-up and one spin-down electron—the full Slater determinant

|D(R)| = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ̃1(r1) φ̃2(r1) φ̃3(r1) . . . φ̃N(r1)

φ̃1(r2) φ̃2(r2) φ̃3(r2) . . . φ̃N(r2)

φ̃1(r3) φ̃2(r3) φ̃3(r3) . . . φ̃N(r3)
...

φ̃1(rN) φ̃2(rN) φ̃3(rN) . . . φ̃N(rN)

∣∣∣∣∣∣∣∣∣∣∣
(9.2)

is singular. The restricted orbitals φ̃(r) are spatially pairwise equal, odd indices carry
spin-up while even indices carry spin-down. This means we can write the determi-

Section 9.2 Overview of selected classes 143

nant in terms of spatial orbitals φk(r) and φk(r) as

|D(R)| = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1↑(r1) φ1↓(r1) φ2↑(r1) φ2↓(r1) . . . φN/2↓(r1)
φ1↑(r2) φ1↓(r2) φ2↑(r2) φ2↓(r2) . . . φN/2↓(r2)
φ1↑(r3) φ1↓(r3) φ2↑(r3) φ2↓(r3) . . . φN/2↓(r3)

...
φ1↑(rN) φ1↓(rN) φ2↑(rN) φ2↓(rN) . . . φN/2↓(rN)

∣∣∣∣∣∣∣∣∣∣∣
, (9.3)

where φk↑(r) = φk(r)χ(↑) = φ̃2k−1(r) and φk↓(r) = φk(r)χ(↓) = φ̃2k(r). The χs
represent spin-1/2 spinors. It can be shown that for a spin-independent operator,
such as all the Hamiltonians in the present work, the expectation value

ET =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

, (9.4)

is invariant under a splitting of the determinant. We can split the Slater determinant
in two factors: one representing the spatial orbitals for the spin-up electrons, and one
representing the corresponding orbitals for the spin-down electrons. Even though the
new wave function is no longer anti-symmetric w.r.t. interchange of two electrons of
opposite spin, the expectation value—all we care about—remains the same, with the
added bene�t of reducing computational cost [69].

The full split-determinant trial wave function takes the form

ΨT = |D↑(R)||D↓(R)|J(R), (9.5)

where

|D↑(R)| ∝

∣∣∣∣∣∣∣∣∣∣∣

φ1↑(r1) φ2↑(r1) φ3↑(r1) . . . φN/2↑(r1)
φ1↑(r2) φ2↑(r2) φ3↑(r2) . . . φN/2↑(r2)
φ1↑(r3) φ2↑(r3) φ3↑(r3) . . . φN/2↑(r3)

...
φ1↑(rN/2) φ2↑(rN/2) φ3↑(rN/2) . . . φN/2↑(rN/2)

∣∣∣∣∣∣∣∣∣∣∣
, (9.6)

and a corresponding expression for |D↓(R)|. Since we are always working with ratios
of wave functions in the Metropolis-Hastings algorithm, the normalization factor of
the determinant does not enter our equations and we can safely forget about it from
now on.

Evaluating the wave function ratio

In order to perform the Metropolis test step of the Metropolis-Hastings algorithm,
we need to be able to calculate the ratio

R =
ΨT(Rnew)

ΨT(Rold)
. (9.7)

144 Implementation: Variational Monte Carlo Chapter 9

We may of course directly evaluate the determinant at every Monte Carlo step. After
the splitting, we can rewrite R in a more convenient form:

R =

[
|D↑(Rnew)||D↓(Rnew)|
|D↑(Rold)||D↓(Rold)|

]
J(Rnew)

J(Rold)
≡ RSDRJ. (9.8)

From this it is immediately obvious that if the new coordinate set Rnew di�ers from
the old Rold for only a single electron of spin ↑ (↓) then the spin-down (spin-up) deter-
minants falls out of Eq. (9.8). In other words: moving only one electron at the time
ostensibly halves the required computation cost associated with RSD. This of course
comes at the cost of correlation—subsequent samples are less correlated if we simul-
taneously move multiple electrons—a complication which we will return to shortly.

Even after the splitting however, the direct evaluation of our determinants still
requiresO(N3) operations, albeit with a pre-factor 1/8 compared to the original full
determinant. It turns out that we can do better.

Consider the terms of the Slater matrix: Dij(r) ≡ φj(ri). The usual Laplace-
expansion of the determinant is de�ned as

|D| =
N∑
j=1

DijCij, (9.9)

where Cij is the i, j cofactor of D, i.e. the determinant of the sub-matrix with row
i and column j removed multiplied by (−1)i+j [59]. The determinant of the sub-
matrix is called the i, j minor of D. By using Cramer’s rule2 we can �nd an explicit
expression for the matrix inverse in terms of the determinant as [44]

D−1 =
adjD
|D|

. (9.11)

The adjugate matrix3, adjD, is simply the transposed matrix of cofactors. In terms of
the entries, we can write

|D| =
N∑
j=1

Cji

D−1
ij

=
n∑
j=1

DijCji. (9.12)

2Cramer’s rule states that for any invertible n× n matrix A and b ∈ Rn, the unique solution x of
the matrix-vector equation Ax = b has entries

xi =
|Ai(b)|
|A|

, where i = 1, 2, . . . , n, (9.10)

where Ai(b) is the matix formed by replacing the i-th column of A by b [59].
3Sometimes, rather confusingly, called the adjoint. In more modern terminology, the adjoint is

reserved for the complex conjugate-transpose, while the transposed cofactor matrix is called the ad-
jugate or the classical adjoint [69, 148].

Section 9.2 Overview of selected classes 145

As only one electron is moved at each Monte Carlo step, only a single row of the
Slater matrix changes at each cycle. Recall that the i, j cofactors are determinants
of the sub-matrix resulting from removing column i and row j from D. This means
that as row i of D is changed, the i-th column of the adjugate remains unchanged.
In short, Cij(rnew) = adjDij(rold) = Cji(rold) [69].

By de�nition, the Slater matrix and its inverse must satisfy
N∑
k=1

DikD
−1
kj = δij, (9.13)

meaning the denominator drops out of Eq. (9.14) and RSD simpli�es immensely to
[17, 69, 149]

|D(Rnew)|
|D(Rold)|

= RSD =

∑N
j=1Dij(rnew)Cji(rold)∑N
j=1Dij(rold)Cji(rold)

=

∑N
j=1Dij(rnew)D−1

ji (rold)|D(rold)|∑N
j=1Dij(rold)D

−1
ji (rold)|D(rold)|

(9.14)

=
N∑
j=1

Dij(rnew)D−1
ji (rold). (9.15)

Note carefully that the inverse need only be re-calculated if the new con�guration
is accepted in the Metropolis test.

Eq. (9.15) is implemented in the VMC code as

void SlaterWithJastrow : : computeSlaterRatio () {
Electron ∗ iElectron = m_system–>getElectrons () . at (m_changedElectron) ;
int i = iElectron–>getSpinIndex () ;
int nElectrons = (m_spinChanged == 1 ? m_numberOfSpinUpElectrons :

m_numberOfSpinDownElectrons) ;
double xi = iElectron–>getPosition () . at (0) ;
double yi = iElectron–>getPosition () . at (1) ;
double zi = iElectron–>getPosition () . at (2) ;
mat& slater = (m_spinChanged == 1 ? m_slaterUp : m_slaterDown) ;

double sum = 0 ;
for (int j = 0 ; j < nElectrons ; j ++) {

sum += m_orbital–>evaluate (xi , yi , zi , j , m_spinChanged) ∗ slater (j , i) ;
}
m_Rsd = sum ;

}

The m_changedElectron is communicated to the WaveFunction by the Metropolis class as it
suggets a step, and m_spinChanged—the spin of the moved electron—is subsequently
found. Depending on this spin projection, we index into either m_slaterUp or m_slaterDown
according to the spin index of the moved electron. All electrons have a unique global
identifying index k, but they also have a local place in the spin-up (spin-down) de-
terminant: This is what we denote by the spin-index.

146 Implementation: Variational Monte Carlo Chapter 9

The m_orbital variable holds an instance of the class corresponding to the spin-
orbitals which populate the Slater determinant. We give an outline of the Orbital in
section 9.2.2.

Updating the inverse

The algorithm of the previous section requires the inverse of the Slater matrix, evalu-
ated at the previous electronic con�guration, to be know. In principle we may simply
directly evaluate the inverse for every Monte Carlo cycle, but the O(N3) computa-
tional scaling cost quickly makes this approach unfeasible. We require therefore a
more e�cient algorithm which makes use of the fact that when we update it, the
inverse is already known at the old con�guration. Recall that the new Slater matrix
di�ers from the old one only in a single row. In the eloquent words of William H.
Press and co-workers in the third edition of Numerical Recipes [121]

“ Suppose you have already obtained, by herculean e�ort, the inverse ma-
trix A−1 of a square matrix A. Now you want to make a "small" change
in A, for example change (...) one row, or one column. Is there any
way of calculating the corresponding A−1 without repeating your dif-
�cult labors?

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery ”
It turns out that such a convenient formula exists. It is known as the Sherman-

Morrison formula. The original formulation due to Sherman and Morrison deals with
the problem of updating the inverse of a matrix, given a change in a single element.
However, what is normally referred to as the Sherman-Morrison formula (and indeed
what we will be referring to by that name) is a straightforward extension of this. The
formula states the following: Suppose a square n × n matrix A and it’s inverse A−1

is (by heroic e�ort) known. Assume u and v are elements in Rn, then the matrix
inverse of A+ uvT is given by

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (9.16)

Note that uvT (sometimes dentoed u ⊗ v) is the outer product, and in our case u is
the k-th unit vector, with k corresponding to the index of the moved electron. The
vector v contains the change in the orbitals for the moved electron,

vi = φi(r
new
k)− φi(rold

k) ≡ ∆φi(rk). (9.17)

In short, uvT is a matrix with vanishing elements in all but a single row—row number
k—which contains the change in the Slater matrix due to the moving of a single
electron.

Section 9.2 Overview of selected classes 147

The Sherman-Morrison formula can be derived as follows: Finding the matrix
inverse of (A + uvT) constitutes �nding a vector x such that (A + uvT)x = y is
satis�ed for some given y. Expanding and de�ning s ≡ vTx, we �nd [150](

A+ uvT
)
x = y

Ax = y − uvTx

x = A−1y − A−1u vTx︸︷︷︸
=s

. (9.18)

Insertion of x into the the expression for s yields

s = vTx

= vTA−1y − vTA−1us

s
(
1 + vTA−1u

)
= vTA−1y

s =
vTA−1y

1 + vTA−1u
. (9.19)

Substituting �nally Eq. (9.19) into the previous expression for x gives

x = A−1y − A−1uvTA−1y

1 + vTA−1u

=

(
A−1 − A−1uvTA−1

1 + vTA−1u︸ ︷︷ ︸
(A+ uvT)−1

)
y. (9.20)

In terms of the matrix entries, we have(
A+ uvT

)−1

kj
= A−1

kj −
A−1
ki

(
uvT

)
il
A−1
lj

1 + λ
, (9.21)

where λ ≡ 1+vTA−1u. The index i of the recently displaced electron dictates which
row of uvT takes non-zero values. Inserting va = ∆φa(ri), A−1

bc = D−1
bc (rold), and

ud = δid, Hammond �nds [17]

D−1
kj (rnew) =

D−1
kj (rold)−

1

RSD
D−1
ji (rnew)

n∑
l=1

Dil(rnew)D−1
lj (rold) if j 6= i

1

RSD
D−1
kj (rold) if j = i

(9.22)

where D−1
kj (rnew) corresponds to (A+ uvT)−1 of Eq. (9.20) and

RSD =
|D(Rnew)|
|D(Rold)|

=
n∑
j=1

Dij(rnew)D−1
ji (rold) (9.23)

148 Implementation: Variational Monte Carlo Chapter 9

as per Eq. (9.15).
The modi�ed Sherman-Morrison scheme of Eq. (9.22) is implemented in the VMC

framework as

void SlaterWithJastrow : : updateSlaterInverse () {
Electron ∗ iElectron = m_system–>getElectrons () . at (m_changedElectron) ;

const int i = iElectron–>getSpinIndex () ;
const int sc = m_spinChanged ;
const double x = iElectron–>getPosition () . at (0) ;
const double y = iElectron–>getPosition () . at (1) ;
const double z = iElectron–>getPosition () . at (2) ;

mat& newS = (sc == 1 ? m_slaterUp : m_slaterDown) ;
mat& oldS = (sc == 1 ? m_slaterUpOld : m_slaterDownOld) ;
int nElectrons = (sc == 1 ? m_numberOfSpinUpElectrons :

m_numberOfSpinDownElectrons) ;

for (int k = 0 ; k < nElectrons ; k++) {
for (int j = 0 ; j < nElectrons ; j ++) {

i f (j != i) {
double sum = 0 ;
for (int l = 0 ; l < nElectrons ; l ++) {

sum += oldS (l , j) ∗ m_orbital–>evaluate (x , y , z , l , sc) ;
}
newS(k , j) = oldS (k , j) – oldS (k , i) ∗ sum / m_Rsd ;

} else {
newS(k , j) = oldS (k , i) / m_Rsd ;

}
}

}
}

The Slater matrix evaluated at the old con�guration is contained in the variables
m_slaterUpOld and m_slaterDownOld. Note carefully that the RSD value stored in m_Rsd
here is the updated value, which is independent of D−1(Rnew) and so can be calcu-
lated before we update the inverse in this member function.

At the very start of the Metropolis run, the full Slater matrix needs to be calculated
and inverted once. This is done (in addition to a whole range of other operations) in
SlaterWithJastrow::evaluateWaveFunctionInitial:

void SlaterWithJastrow : : evaluateWaveFunctionInitial () {
. . .
const int eUp = m_numberOfSpinUpElectrons ;
const int eDown = m_numberOfSpinDownElectrons ;
m_slaterUp = zeros<mat>(eUp , eUp) ;
m_slaterDown = zeros<mat>(eDown, eDown) ;

vector<Electron ∗> spinUpElectrons = m_system–>getSpinUpElectrons () ;
vector<Electron ∗> spinDownElectrons = m_system–>getSpinDownElectrons () ;

for (int electron = 0 ; electron < eUp ; electron ++) {
const double x = spinUpElectrons . at (electron) –>getPosition () . at (0) ;
const double y = spinUpElectrons . at (electron) –>getPosition () . at (1) ;
const double z = spinUpElectrons . at (electron) –>getPosition () . at (2) ;

for (int basis = 0 ; basis < eUp ; basis ++) {
m_slaterUp (electron , basis) = m_orbital–>evaluate (x , y , z , basis , 1) ;

Section 9.2 Overview of selected classes 149

}
}
for (int electron = 0 ; electron < eDown ; electron ++) {

const double x = spinDownElectrons . at (electron) –>getPosition () . at (0) ;
const double y = spinDownElectrons . at (electron) –>getPosition () . at (1) ;
const double z = spinDownElectrons . at (electron) –>getPosition () . at (2) ;

for (int basis = 0 ; basis < eDown ; basis ++) {
m_slaterDown (electron , basis) = m_orbital–>evaluate (x , y , z , basis , 0) ;

}
}

m_slaterUp = m_slaterUp . i () ;
m_slaterDown = m_slaterDown . i () ;
. . .

}

E�cient evaluation of the gradient,∇iD(R)

The calculation of the quantum force involved in the importance sampling of the
Metropolis-Hastrings algorithm requires the evaluation of the ratio of the gradient
to the wave function itself. Since, by repeated application of the product rule,

∇iΨT

ΨT
=
∇i

[
|D↓(R)||D↑(R)|J(R)

]
ΨT

=
J(R)∇i

[
|D↓(R)||D↑(R)|

]
+ |D↓(R)||D↑(R)|∇iJ(R)

ΨT

=
J(R)|D↓(R)|∇i|D↑(R)|

ΨT
+
J(R)|D↑(R)|∇i|D↓(R)|

ΨT
+

|D↓(R)||D↑(R)|∇iJ(R)

ΨT

=
∇i|D↑(R)|
|D↑(R)|

+
∇i|D↓(R)|
|D↓(R)|

+
∇iJ(R)

J(R)
, (9.24)

we require an e�cient algorithm for calculating ∇i|D(R)|/|D(R)| terms. The in-
dexed del operator∇i denotes di�erentiation w.r.t. the coordinates of electron i. We
note that if said electron has spin projection σi = χ(↑), then∇i|D↓| neccessaily van-
ishes. The same is true of∇i|D↑| if the spin state is �ipped. This means we only ever
need to calculate one such term for every Monte Carlo move.

A similar derivation to the one resulting inRSD gives an expression for∇i|D(R)|
in terms of the inverse Slater matrix as [69]

∇i|D(Rold)|
|D(Rold)|

=
n∑
j=1

∇iDij(rold)D
−1
ji (rold) =

n∑
j=1

∇iφj(r
old
i)D−1

ji (rold), (9.25)

where D(R) denotes either one of D↑ or D↓ (whichever contains electron i). When

150 Implementation: Variational Monte Carlo Chapter 9

the gradient evaluated at the new positions is needed, the equation changes to [17]

∇i|D(Rnew)|
|D(Rnew)|

=
|D(Rold)|
|D(Rnew)|

n∑
j=1

∇iφj(r
new
i)D−1

ji (rold)

=
1

RSD

n∑
j=1

∇iφj(r
new
i)D−1

ji (rold). (9.26)

The implementation of Eq. (9.26) is straightforward:

void SlaterWithJastrow : : updateSlaterGradient (double Rsd , int electron) {
Electron ∗ iElectron = m_system–>getElectrons () . at (electron) ;
int cs = iElectron–>getSpin () ;
int i = iElectron–>getSpinIndex () ;
int nElectron = (cs == 1 ? m_numberOfSpinUpElectrons :

m_numberOfSpinDownElectrons) ;
mat& slaterInverse = (cs == 1 ? m_slaterUp : m_slaterDown) ;
mat& slaterGradient = (cs == 1 ? m_slaterGradientUp :

m_slaterGradientDown) ;

const double x = iElectron–>getPosition () . at (0) ;
const double y = iElectron–>getPosition () . at (1) ;
const double z = iElectron–>getPosition () . at (2) ;

for (int dimension = 0 ; dimension < m_numberOfDimensions ; dimension++) {
double sum = 0 ;
for (int j = 0 ; j < nElectrons ; j ++) {

sum += m_orbital–>computeDerivative (x , y , z , j , dimension , cs) ∗
slaterInverse (j , i) ;

}
slaterGradient (i , dimension) = sum / Rsd ;

}
}

Please note that instead of using directly the m_changedElectron index and the local
m_Rsd value already calculated, Rsd and the electron index is given as parameters
to SlaterWithJastrow::updateSlaterGradient. This is done in order to make it possible to
compute the entire gradient matrix—the gradient w.r.t. all the electron coordinates
in turn—by simply iterating over i and providing Rsd=1. Computing from scratch the
entire gradient matrix is done exactly once in the VMC implementation, at the very
start of the Metropolis sampling. Subsequent calculations are done by updating only
the row corresponding to the moved electrons.

E�cient evaluation of the Laplacian,∇2
iD(R)

Whereas the gradient is needed for the evaluation of the quantum force, the Laplacian
is needed in order to calculate the kinetic energy. In the same way we split the total
gradient, we may split the total Laplacian into terms corresponding to di�erentiation
of either D↓(R), D↑(R), J(R). By, again, repeated application of the product rule,

Section 9.2 Overview of selected classes 151

we �nd that

∇2
iΨT

ΨT
=
∇i · ∇iΨT

ΨT

=
1

ΨT
∇i ·

[
J |D↓|∇i|D↑|+ J |D↑|∇i|D↓|+

|D↓||D↑|∇iJ
]

=
1

ΨT

[
|D↓|∇i|D↑| · ∇iJ + J∇i|D↓| · ∇i|D↑|+ J |D↓|∇2

i |D↑|+

|D↑|∇i|D↓| · ∇iJ + J∇|D↑| · ∇i|D↓|+ J |D↑|∇2
i |D↓|+

|D↑|∇iJ · ∇i|D↓|+ |D↓|∇i|D↑ · |∇iJ + |D↓||D↑|∇2
iJ
]

=
∇2
i |D↑|
|D↑|

+
∇2
i |D↓|
|D↓|

+
∇2
iJ

J
+ 2

[
∇i|D↑|
|D↑|

+
∇i|D↓|
|D↓|

]
· ∇iJ

J
, (9.27)

where we have supressed the arguments R. As we can see, the computation of the
Laplacian involves expressions on the form ∇2

i |D|/|D|. Analogous to the gradient
expression, we can write out the Laplacian in terms of the inverse Slater matrix as
[69]

∇2
i |D(Rnew)|
|D(Rnew)|

=
N∑
j=1

∇2
iDij(r

new)D−1
ji (rnew) =

N∑
j=1

∇2
iφj(r

new
i)D−1

ji (rnew). (9.28)

Since the Laplacian is only ever computed after an accepted Metropolis step, we need
no corresponding expression for∇2

i |D(Rold)|/|D(Rold)|.
Eq. (9.28) is implemented in the VMC framework as

void SlaterWithJastrow : : computeSlaterLaplacian (int electron) {
Electron ∗ kElectron = m_system–>getElectrons () . at (electron) ;
int kSpin = kElectron–>getSpin () ;
int nElectrons = (kSpin == 1 ? m_numberOfSpinUpElectrons :

m_numberOfSpinDownElectrons) ;
const vector<Electron∗>& electrons = (kSpin==1 ?

m_system–>getSpinUpElectrons () :
m_system–>getSpinDownElectrons ()) ;

const mat& slater = (kSpin==1 ? m_slaterUp : m_slaterDown) ;
double& slaterLaplacian = (kSpin==1 ? m_slaterLaplacianUp :

m_slaterLaplacianDown) ;
double value = 0 ;
for (int i = 0 ; i < nElectrons ; i ++) {

Electron ∗ iElectron = electrons . at (i) ;
const double xi = iElectron–>getPosition () . at (0) ;
const double yi = iElectron–>getPosition () . at (1) ;
const double zi = iElectron–>getPosition () . at (2) ;

for (int j = 0 ; j < nElectrons ; j ++) {
double jLaplacian = m_orbital–>computeLaplacian (xi , yi , zi , j , kSpin) ;
value += slater (j , i) ∗ jLaplacian ;

152 Implementation: Variational Monte Carlo Chapter 9

}
}
slaterLaplacian = value ;
m_slaterLaplacian = m_slaterLaplacianUp + m_slaterLaplacianDown ;

}

The Jastrow ratio

The correlation part of the VMC trial wave function is stored in the matrix m_correlationMatrix,
which holds the value of

uij =
aijrij

1 + βrij
, (9.29)

where aij equals 1/2 (1/4) for opposite (parallel) spins and β is a variational param-
eter (c.f. section 3.2). The inter-electronic distance is denoted rij = |ri − rj|. Only
the upper diagonal part of the u matrix needs to be �lled, since the correlations are
obviously symmetric relations, i.e. uij = uji. The same is true of rij , the values of
which are stored in a matrix called m_interElectronDistances. The computation of the
full u matrix is done exactly once, at the very �rst Metropolis step. This is handled
by the SlaterWithJastrow::fillCorrelationMatrix method:

void SlaterWithJastrow : : fillCorrelationMatrix () {
mat& u = m_correlationMatrix ;
for (int k = 0 ; k < m_numberOfElectrons ; k++) {

Electron ∗ kElectron = m_system–>getElectrons () . at (k) ;
for (int i = k+ 1 ; i < m_numberOfElectrons ; i ++) {

Electron ∗ iElectron = m_system–>getElectrons () . at (i) ;
u (k , i) = computeJastrowFactor (kElectron , iElectron) ;

}
}
for (int k = 0 ; k < m_numberOfElectrons ; k++) {

for (int i = k+ 1 ; i < m_numberOfElectrons ; i ++) {
u (i , k) = u (k , i) ;

}
}

}

The method which evaluates the elements of the matrix u, computeJastrowFactor is im-
plemented in the following

inline double SlaterWithJastrow : : computeJastrowFactor (Electron ∗ i , Electron ∗ j) {
const double a = spinCoefficient (i , j) ;
const double rik = m_interElectronDistances (i , j) ;
return a ∗ r i j / (1 . 0 + m_beta ∗ r i j) ;

}

with the spin coe�cient aij being computed in the spinCoe�icient method by a sim-
ple return (i–>getSpin()== j–>getSpin()? 0.25 : 0.5) . The m_interElectronDistances, the matrixR, is
also fully computed only once.

Section 9.2 Overview of selected classes 153

As a single electron is moved, only one row and column of u and R change. E�-
ciently updating instead of re-computing is done in the following two SlaterWithJastrow
methods:

void SlaterWithJastrow : : updateElectronDistanceMatrices () {
Electron ∗ kElectron = m_system–>getElectrons () . at (m_changedElectron) ;
mat& r = m_electronPositions ;
mat& R = m_interElectronDistances ;
int k = m_changedElectron ;

for (int dimension = 0 ; dimension < 3 ; dimension++) {
r (k , dimension) = kElectron–>getPosition () . at (dimension) ;

}
for (int i = 0 ; i < k ; i ++) {

double x = r (k , 0) – r (i , 0) ;
double y = r (k , 1) – r (i , 1) ;
double z = r (k , 2) – r (i , 2) ;
R(k , i) = sqrt (x ∗x + y ∗y + z ∗ z) ;
R(i , k) = R(k , i) ;

}
for (int i = k+ 1 ; i < m_numberOfElectrons ; i ++) {

double x = r (k , 0) – r (i , 0) ;
double y = r (k , 1) – r (i , 1) ;
double z = r (k , 2) – r (i , 2) ;
R(k , i) = sqrt (x ∗x + y ∗y + z ∗ z) ;
R(i , k) = R(k , i) ;

}
double x = r (k , 0) ;
double y = r (k , 1) ;
double z = r (k , 2) ;
R(k , k) = sqrt (x ∗x + y ∗y + z ∗ z) ;

}

and

void SlaterWithJastrow : : updateCorrelationsMatrix () {
mat& R = m_interElectronDistances ;
mat& u = m_correlationMatrix ;
mat& a = m_spinMatrix ;

int k = m_changedElectron ;
for (int i = 0 ; i < k ; i ++) {

u (i , k) = a (i , k) ∗ R(i , k) / (1 + m_beta ∗ R(i , k)) ;
u (k , i) = u (i , k) ;

}
for (int i = k+ 1 ; i < m_numberOfElectrons ; i ++) {

u (k , i) = a (k , i) ∗ R(k , i) / (1 + m_beta ∗ R(k , i)) ;
u (i , k) = u (k , i) ;

}
}

Please note that the k-th diagonal element of the m_interElectronDistance matrix is used
to hold the distance of electron k relative to the global origin.

Because of the exponential nature of the Jastrow factor as a whole, extensive can-

154 Implementation: Variational Monte Carlo Chapter 9

celation happens when taking the ratio of J(Rnew) to J(Rold), since

J(Rnew)

J(Rold)
= exp

[
N∑
i=1

N∑
j=i+1

uij(r
new
ij)

]/
exp

[
N∑
i=1

N∑
j=i+1

uij(r
old
ij)

]

= exp

[
N∑
i=1

N∑
j=i+1

uij(r
new
ij)−

N∑
i=1

N∑
j=i+1

uij(r
old
ij)

]

= exp

[
N∑
i=1

N∑
j=i+1

{
uij(r

new
ij)− uij(rold

ij)
}]

, (9.30)

and uij(rnew
ij) − uij(rold

ij) obviously vanishes if rnew
i = rold

i and rnew
j = rold

j . The only
terms which survive the sum are the ones involving m_changedElectron, which we (for
the moment) will call k for ease of notation. We �nd that

J(Rnew)

J(Rold)
= exp

[
N∑
i=1

N∑
j=i+1

{
uij(r

new
ij)− uij(rold

ij)
}

(δik + δkj)

]

= exp

[
k−1∑
i=1

{
uik(r

new
ik)− uik(rold

ik)
}

+
N∑

j=k+1

{
ukj(r

new
kj)− ukj(rold

kj)
}]

.

(9.31)

In the VMC framework this is implemented as

void SlaterWithJastrow : : computeJastrowRatio () {
double sum = 0 ;
int k = m_changedElectron ;
for (int i = 0 ; i < k ; i ++) {

sum += m_correlationMatrix (i , k) – m_correlationMatrixOld (i , k) ;
}
for (int i = k+ 1 ; i < m_numberOfElectrons ; i ++) {

sum += m_correlationMatrix (k , i) – m_correlationMatrixOld (k , i) ;
}
m_Rc = exp (sum) ;

}

E�cient calculation of the gradient,∇iJ(R)

The calculation of the quantum force involves calculating that ratio of the gradient
of the wave function. Recall from Eq. (9.24) that

∇iΨT

ΨT
=
∇i|D↑(R)|
|D↑(R)|

+
∇i|D↓(R)|
|D↓(R)|

+
∇iJ(R)

J(R)
. (9.32)

Section 9.2 Overview of selected classes 155

We require therefore an e�cient algorithm for calculating ∇kJ(R)/J(R). By the
chain rule on the exponential form of J(R), we have trivially that

∇kJ(R) = ∇k exp

[
N∑
i=1

N∑
j=i+1

uij(rij)

]
= J(R)∇k

[
N∑
i=1

N∑
j=i+1

uij(rij)

]

= J(R)

[
N∑
i=1

N∑
j=i+1

∇kuij(rij)

]
. (9.33)

Furthermore, only the terms containing coordinate indexed k survive the di�erenti-
ation without vanishing, i.e. ukj or uik. The �rst Cartesian coordinate of the gradient
w.r.t. the coordinates of electron k correspond to the di�erentiation ∂/∂xk,

1

J(R)

∂J(R)

∂xk
=

N∑
i=1

N∑
j=i+1

∂

∂xk
uij(rij) =

k−1∑
i=1

∂

∂xk
uik(rik) +

N∑
j=k+1

∂

∂xk
ukj(rkj),

(9.34)

but with uij(rij) depending exclusively on the relative coordinates |ri−rj| it is more
natural to di�erentiate w.r.t. rij . By the chain rule we have

∂

∂xk
=
∂rik
∂xk

∂

∂rik
=
xk − xi
rik

∂

∂rik
= −xi − xk

rki

∂

∂rki
, (9.35)

meaning Eq. (9.34) simpli�es to [69]

1

J(R)

∂J(R)

∂xk
=

k−1∑
i=1

xk − xi
rik

∂

∂rik
uik(rik)−

N∑
j=k+1

xj − xk
rkj

∂

∂rkj
ukj(rkj). (9.36)

Identical arguments for the Cartesian yk and zk coordinates lead �nally to the gradi-
ent

∇kJ(R)

J(R)
=

k−1∑
i=1

rik
rik

∂uik
∂rik

−
N∑

j=k+1

rkj
rkj

∂ukj
∂rki

. (9.37)

For the simple two-body Jastrow factor used in the present work, the partial deriva-
tives of uij take the simple form [17]

∂uij
∂rij

=
∂

∂rij

(
aijrij

1 + βrij

)
=

aij
(1 + βrij)2

. (9.38)

Updating the terms of the Jastrow gradient is done in the method updateJastrowGradient
of the SlaterWithJastrow class:

156 Implementation: Variational Monte Carlo Chapter 9

void SlaterWithJastrow : : updateJastrowGradient (int k) {
mat& a = m_spinMatrix ;
mat& R = m_interElectronDistances ;

for (int i = 0 ; i < k ; i ++) {
const double rik = R(k , i) ;
double factor = 1 + m_beta ∗ rik ;
m_jastrowGradient (i , k) = a (k , i) / (factor ∗ factor) ;

}
for (int j = k+ 1 ; j < m_numberOfElectrons ; j ++) {

const double rkj = R(k , j) ;
double factor = 1 + m_beta ∗ rkj ;
m_jastrowGradient (k , j) = a (j , k) / (factor ∗ factor) ;

}
}

At the very �rst Metropolis step a loop over the electrons where updateJastrowGradient
is performed—on each one in turn—is performed. This calculates∇kJ(R) from scratch
for all electrons, and is of course done only once.

E�cient calculation of the Laplacian,∇2
iJ(R)

As the gradient was needed for the quantum force calculation, the Laplacian is nec-
cessary for computing the kinetic energy. Recall from Eq. (9.27) that

∇2
iΨT

ΨT
=
∇2
i |D↑|
|D↑|

+
∇2
i |D↓|
|D↓|

+
∇2
iJ

J
+ 2

[
∇i|D↑|
|D↑|

+
∇i|D↓|
|D↓|

]
· ∇iJ

J
. (9.39)

In the following we derive an e�cient scheme for calculating the ∇2
iJ(R)/J(R)

term.
Let us consider the di�erentiation w.r.t. the �rst Cartesian coordinate of electron

k, i.e. xk. By Eq. (9.33) we have

∂2J

∂x2
k

=
∂

∂xk

{
∂J(R)

∂xk

}
=

∂

∂xk

{
J(R)

N∑
i=1

N∑
j=i+1

∂uij
∂xk

}

=
∂J(R)

∂xk

N∑
i=1

N∑
j=i+1

∂uij
∂xk

+ J(R)
N∑
i=1

N∑
j=i+1

∂2uij
∂x2

k

=

{
J(R)

N∑
m=1

N∑
n=m+1

∂umn
∂xk

}
N∑
i=1

N∑
j=i+1

∂uij
∂xk

+ J(R)
N∑
i=1

N∑
j=i+1

∂2uij
∂x2

k

. (9.40)

Taking the ratio of ∂2J(R)/∂x2
k with J(R) will cancel the J(R) factors. The double

Section 9.2 Overview of selected classes 157

derivatives in the last term evaluate to

∂2uik
∂x2

k

=
∂

∂xk

[
(xk − xi)

rik

∂uik
∂rik

]
=

(xk − xi)
rik

∂

∂rik

[
(xk − xi)

rik

∂uik
∂rik

]

=
(xk − xi)

rik

 r2ik
(xk−xi)

− (xk − xi)
r2
ik

∂uik
∂rik

+
(xk − xi)

rik

∂2uik
∂r2

ik

 , (9.41)

after two applications of the chain rule to move the di�erentiation onto rik and using
that

∂

∂rik

[
(xk − xi)

rik

]
=

∂
∂rik

(xk − xi)
y

(9.42)

with

∂(xk − xi)
∂rik

=
1[
∂rik

∂(xk−xi)

] =
1[

(xk−xi)
rik

] =
rik

(xk − xi)
. (9.43)

Taking the sum over all three Cartesian coordinates, Eq. (9.41) simpli�es dramat-
ically to

∇2
kuik =

[
d− 1

rik

]
∂uik
∂rik

+
∂2uik
∂r2

ik

, (9.44)

where d denotes the number of spatial dimensions used. In our case, d = 3 always.
Note carefully that the same equation holds when di�erentiating w.r.t. the second
index, i.e. ∂2ukj/∂x

2
k does not carry a minus sign as was the case for the gradient.

As before, only the N − 1 terms in the sum containing a k index survive the
di�erentiation, giving in total

N∑
i=1

N∑
j=i+1

∇2
kuij =

k−1∑
i=1

{
2

rik

∂uik
∂rik

+
∂2uik
∂r2

ik

}
+

N∑
j=k+1

{
2

rkj

∂ukj
∂rkj

+
∂2ukj
∂r2

kj

}
. (9.45)

The �rst term of Eq. (9.40) equals—after taking the sum over the three Cartesian
coordinates—the inner product of the gradient with itself [69]. Since the evaluation of
this term neccessitates the evaluation of the gradient, we perform this computation
in conjunction with computing the quantum force. This is also where we handle the
cross term in the total Laplacian, c.f. Eq. (9.27). The rest of the Jastrow laplacian is
calculated in

158 Implementation: Variational Monte Carlo Chapter 9

void SlaterWithJastrow : : updateJastrowLaplacianTerms (int k) {
mat& a = m_spinMatrix ;
mat& R = m_interElectronDistances ;
mat& laplacianJ = m_jastrowLaplacianTerms ;

for (int j = 0 ; j < k ; j ++) {
double factor = 1 + m_beta ∗ R(k , j) ;
laplacianJ (j , k) = – 2 ∗a (j , k) ∗ m_beta / (factor ∗ factor ∗ factor) ;

}
for (int j = k+ 1 ; j < m_numberOfElectrons ; j ++) {

double factor = 1 + m_beta ∗ R(k , j) ;
laplacianJ (k , j) = – 2 ∗a (k , j) ∗ m_beta / (factor ∗ factor ∗ factor) ;

}
}

and

void SlaterWithJastrow : : computeJastrowLaplacian () {
mat& R = m_interElectronDistances ;
mat& laplacianJ = m_jastrowLaplacianTerms ;
mat& gradientJ = m_jastrowGradient ;

double sum = 0 ;
for (int k = 0 ; k < m_numberOfElectrons ; k++) {

for (int i = 0 ; i < k ; i ++) {
sum += 2 /R(i , k) ∗ gradientJ (i , k) + laplacianJ (i , k) ;

}
for (int i = k+ 1 ; i < m_numberOfElectrons ; i ++) {

sum += 2 /R(i , k) ∗ gradientJ (k , i) + laplacianJ (k , i) ;
}

}
m_jastrowLaplacian = sum ;

}

Here, the double derivative of uij w.r.t. rij is computed as

∂2

∂r2
ij

[
aijrij

1 + βrij

]
= − 2aijβ

(1 + βrij)3
. (9.46)

Calculating the quantum force

Combining methods for calculating the gradients of the Slater determinants and the
Jatrow factor, computing the quantum force

F = 2
∇Ψ(R)

Ψ(R)
, (9.47)

is relatively straight forward.

void SlaterWithJastrow : : computeQuantumForce () {
mat& R = m_interElectronDistances ;
mat& r = m_electronPositions ;

m_energyCrossTerm = 0 ;

Section 9.2 Overview of selected classes 159

for (int k = 0 ; k < m_numberOfElectrons ; k++) {
const int kSpin = m_system–>getElectrons () . at (k) –>getSpin () ;
const int kSpinIndex = m_system–>getElectrons () . at (k) –>getSpinIndex () ;

mat& slaterGradient = (kSpin==1 ? m_slaterGradientUp :
m_slaterGradientDown) ;

for (int j = 0 ; j < 3 ; j ++) {
double sum = 0 ;
for (int i = 0 ; i < k ; i ++) {

const double xk = r (k , j) ;
const double xi = r (i , j) ;
sum += (xk – xi) / R(i , k) ∗ m_jastrowGradient (i , k) ;

}
for (int i = k + 1 ; i < m_numberOfElectrons ; i ++) {

const double xk = r (k , j) ;
const double xi = r (i , j) ;
sum –= (xi – xk) / R(i , k) ∗ m_jastrowGradient (k , i) ;

}
m_quantumForce (k , j) = 2 ∗ slaterGradient (kSpinIndex , j) ;

i f (m_jastrow) {
m_quantumForce (k , j) += 2 ∗ sum ;
m_energyCrossTerm –= 0 . 5 ∗ sum∗sum +

(slaterGradient (kSpinIndex , j) ∗ sum) ;
}

}
}

}

Note carefully that the m_energyCrossTerm described earlier is computed here, as we
have direct access to the fully computed Jastrow gradient, as well as the gradient of
the Slater determinant. Also computed is the ∇kJ(R) · ∇kJ(R) factor which was
missing in the computeJastrowLaplacian method earlier.

9.2.2 The Orbital class

The orbitals populating the Slater determinants can in principle be any linearly in-
dependent square integrable R3 7→ C functions. The only neccessary conditions
for adding new orbital types in the VMC program is that three methods are present:
evaluate, computing the value; computeDerivative, which evaluates the derivative w.r.t.
one of the Cartesian coordinates; and computeLaplacian which predictably evaluates
the Laplacian at given coordinates.

A global ordering of the orbitals is assumed, and all three neccessary methods
provide an index telling which speci�c orbital is to be evaluated / di�erentiated. As an
example, if index 2 is provided to the HydrogenOrbital::evaluate function, the following
code is executed

double HydrogenOrbital : : evaluate2s (double r) {
return m_2sNormalization ∗ (1 – m_alpha ∗ 0 . 5 ∗ r) ∗ exp (–m_alpha ∗ 0 . 5 ∗ r) ;

}

160 Implementation: Variational Monte Carlo Chapter 9

Both the HydrogenOrbital and the SlaterTypeOrbital sub-classes use the standard num-
bering, 1s, 2s, 2px, 2py, and so on. The global ordering of the GaussianOrbitals is—in a
sense—more arbitrary. As the raw Hartree-Fock orbitals are used, we are in no way
guaranteed that they are sorted in the sense that the orbital Hartree-Fock energies
satisfy ε1 < ε2 < ε3 < . . .

The Gaussian type orbitals employ two classes, PrimitiveGaussian and ContractedGaussian.
The orbital class holds the Hartree-Fock basis expansion coe�cients, and organizes
the evaluation of the former two. Calling the GaussianOrbital::evaluate method produces
the following cascade

double GaussianOrbital : : evaluate (double x , double y , double z ,
int index , int spin) {

double value = 0 ;
for (int i = 0 ; i < m_basisSize ; i ++) {

double c = (spin==1 ? m_spinUpCoefficients (i , index) :
m_spinDownCoefficients (i , index)) ;

value += (spin==1 ? m_spinUpCoefficients (i , index) :
m_spinDownCoefficients (i , index)) ∗
m_basis . at (i) –>evaluate (x , y , z) ;

}
return value ;

}

which calls

double ContractedGaussian : : evaluate (double x , double y , double z) {
double result = 0 ;
for (PrimitiveGaussian ∗ primitive : m_primitives) {

result += (∗ primitive) (x – m_x, y – m_y, z – m_z) ;
}
m_currentValue = result ;
return result ;

}

which �nally computes the Gaussian function value in

double PrimitiveGaussian : : operator () (double x , double y , double z) {
const double r2 = x ∗x + y ∗y + z ∗ z ;
const double value = m_constant ∗

pow(x , m_i) ∗
pow(y , m_j) ∗
pow(z , m_k) ∗
exp (– m_alpha ∗ r2) ;

m_currentValue = value ;
return value ;

}

Note that the current value of each primitive is saved, to avoid having to re-compute
the function value when derivatives are computed shortly thereafter.

Section 9.2 Overview of selected classes 161

9.2.3 The Metropolis class
The Metropolis class sets up and runs the Markov chain in theN -electron con�guration
space. The user calls the Metropolis::runSteps, which handles the "time" steps. Some
automatic estimates are used if no user input is speci�ed, e.g. the minimum size atom
present determines the step length if no user speci�ed step length is provided.

The proposition of new con�gurations, aswell as the accept-reject Metropolis test
is performed in the Metropolis::step method. In order to draw samples from pseudo-
random distributions, the standard C++11 machinery is used: A random device and a
generator is de�ned, and then samples are drawn according to some distribution. An
excerpt of the step method is shown in the following:

bool Metropolis : : step () {
std : : normal_distribution <double> normalDistribution { 0 , 1 } ;
std : : uniform_real_distribution <double> uniformDouble { 0 , 1 } ;
std : : uniform_int_distribution <int > uniformIntElectron

{ 0 ,
m_numberOfElectrons– 1 } ;

int electron = uniformIntElectron (m_randomGenerator) ;
double D = 0 . 5 ;
double xProposedChange = normalDistribution (m_randomGenerator) ∗

m_dtSqrt + m_waveFunction–>getQuantumForceOld (electron , 0) ∗
m_dt ∗ D;

double yProposedChange = normalDistribution (m_randomGenerator) ∗
m_dtSqrt + m_waveFunction–>getQuantumForceOld (electron , 1) ∗
m_dt ∗ D;

double zProposedChange = normalDistribution (m_randomGenerator) ∗
m_dtSqrt + m_waveFunction–>getQuantumForceOld (electron , 2) ∗
m_dt ∗ D;

m_waveFunction–>passProposedChangeToWaveFunction (electron , dimension) ;

m_system–>getElectrons () . at (electron) –>
adjustPosition (xProposedChangeImportanceSampling , 0) ;

m_system–>getElectrons () . at (electron) –>
adjustPosition (yProposedChangeImportanceSampling , 1) ;

m_system–>getElectrons () . at (electron) –>
adjustPosition (zProposedChangeImportanceSampling , 2) ;

m_waveFunction–>updateOldWaveFunctionValue () ;

double R = m_waveFunction–>computeWaveFunctionRatio (electron) ∗
computeGreensFunction () ;

i f (R > uniformDouble (m_randomGenerator)) {
m_waveFunction–>updateWaveFunctionAfterAcceptedStep () ;
return true ;

} else {
m_waveFunction–>updateWaveFunctionAfterRejectedStep () ;

m_system–>getElectrons () . at (electron) –>
adjustPosition (–xProposedChangeImportanceSampling , 0) ;

m_system–>getElectrons () . at (electron) –>
adjustPosition (–yProposedChangeImportanceSampling , 1) ;

m_system–>getElectrons () . at (electron) –>
adjustPosition (–zProposedChangeImportanceSampling , 2) ;

return false ;
}

}

162 Implementation: Variational Monte Carlo Chapter 9

Note that the possibility of not using importance sampling is removed in this excerpt.
In the actual Metropolis::step, this possibility is of course preserved.

As a �nal note on the speci�c implementation of the VMC framework, we present
the evaluation of the Green’s function. This is handled by the Metropolis class, which
asks the wave function currently in use—m_waveFunction—for quantum force values.
Recall from Eq. (6.31) that the Green’s function of the short-time limit Fokker-Planck
equation is given by

G(Y,X; δt) =

(
1

4πDδt

)−3N/2

exp

(
− [Y −X −DδtF(X)]2

4Dδt

)
. (9.48)

This is computed as follows

double Metropolis : : computeGreensFunction () {
const double D = 0 . 5 ;
WaveFunction ∗ wf = m_waveFunction ;
double greensFunction = 0 ;
for (int i = 0 ; i < m_numberOfElectrons ; i ++) {

for (int j = 0 ; j < 3 ; j ++) {
greensFunction += 0 . 5 ∗

(wf–>getQuantumForceOld (i , j) + wf–>getQuantumForce (i , j)) ∗
(D ∗ m_dt ∗ 0 . 5 ∗

(wf–>getQuantumForceOld (i , j) – wf–>getQuantumForce (i , j)) –
wf–>getPosition (i , j) + wf–>getPositionOld (i , j)) ;

}
}
return exp (greensFunction) ;

}

Chapter 10

Implementation: Arti�cial Neural
Networks

The following is a description of the implementation of the arti�cial neural network
(ANN) framework described in chapter 7. The main body of the implementation con-
sists of around 1 500 lines of object oriented Python code. The structure of the neural
networks (NN) and the training procedure is implemented by us, but the underlying
back-propagation (by automatic di�erentiation1) and parameter optimization is han-
dled by the TensorFlow library [151]. Our code consists of around 10 classes, but a
generic user needs only interact with a single Python source �le. The program is de-
signed to be run from the command line where numerous command line arguments
dictate which computation is run and how the output is handled/visualized.

The NN framework is essentially used as a general curve �tting procedure, ca-
pable of "parameter free" �tting of (in principle) any real mapping f : RM 7→ RN .
Apart from possibly some examples of pathologically badly-behaved functions, the
NN machinery can �nd a least squares2 �t to any f . Whereas ordinary curve �tting
algorithms require a parametrized ansatz, the ANN approach is completely general.

Given a functional form (with or without added random noise), the developed
code is capable of �nding an approximation to the noise-less underlying function. It
is also possible to provide the program with a �le consisting of data points and have
the code compute a parametrization of the data points based on one or more inputs.

1Automatic di�erentiation denotes the process of analytically evaluating the derivative of an
arbitrary computer program w.r.t. any variable in that program. It exploits the fact that any
code—regardless of how complicated—at the end of the day only applies a series of elementary oper-
ations to a set of variables. Since the derivative of such elementary operations (addition, subtraction,
multiplication, sines, exponentiation, etc.) are all known analytically, repeated application of the chain
rule can in principle give the closed form analytical derivative of any computer code. Please note very
carefully that this di�ers fundamentally from an ordinary numerical (�nite di�erence) derivative ap-
proximation.

2The precise meaning of least squares in this context is made clear in chapter 7.

163

164 Implementation: Arti�cial Neural Networks Chapter 10

For example, a set of energies originating from ab initio QM calculations,

Ei
ab initio = Eab initio(r

i
12, r

i
13, r

i
23, . . . , θ

i
123, θ

i
134, θ

i
124, . . .). (10.1)

The superscript i signi�es the discrete sampling—the energy is only calculated quan-
tum mechanically at a �nite set of N con�gurations—with given inter-nucleus sepa-
rations rij and nucleus-nucleus-nucleus angles θijk. Feeding the ANN with the dis-
crete nucleonic con�gurations (distances and angles) and the corresponding ab initio
energies, the network can learn the underlying patterns and provide an continuous
interpolation

ENN = ENN(r12, r13, r23, . . . , θ123, θ134, θ124, . . .). (10.2)

We will start o� our description by presenting examples of the usage of the code,
before we delve deeper into the speci�c implementation.

10.1 Introductory examples
The ANN code is controlled primarily from the command line, and interaction with
the source directly is only necessary for advanced use. Querying the program with a
––help option gives an overview of the usage, i.e.

(tensorflow) $ python tfpotential . py ––help

The (tensorflow) denotes an active (possibly virtual) environment which has Tensor-
Flow (TF) and all required libraries in the appropriate Python paths. As a rule, it is
generally bene�cient to install TensorFlow in a virtual environment (to avoid inter-
fering with the system default Python binaries) using e.g. Anaconda package system
[152].

By default—if not otherwise speci�ed—a Lennard-Jones (LJ) functional form is
used as an example. The code admits a single positional argument, namely the num-
ber of training epochs to go through. For example, the following command line state-
ment will run training over 200 epochs on a default LJ data set, and (once �nished)
visualize the NN output, the training progress, and the approximation error:

(tensorflow) $ python tfpotential . py 200 –– plotal l

The structure of the network (number of layers and the amount of neurons per
hidden layer) can be speci�ed with the ––size option. Additionally, training with a data
set from e.g. ab initio QM calculations can be done by specifying the name of a �le
containing said data. For long training processes, it is convenient to be able to save
the NN state. This enables pausing and resuming the training, and is handled in the
code by the ––save and ––load key-words. The following example runs 1000 training
epochs on a data set from the �le QMData.dat, saving the network structure and state
to facilitate subsequent reloading for more training:

Section 10.2 Overview of selected classes 165

(tensorflow) $ python tfpotential . py 1000 ––size 3 10 –– f i l e QMData. dat ––save

A network size of 3 hidden layers—each consisting of 10 neurons—is used, and an
example of the on the �y output of the program is shown in Fig. 10.1.

10.2 Overview of selected classes

10.2.1 The NeuralNetwork class

The actual structure and evaluation of the NN is done in the NeuralNetwork class. Here,
the weights and biases are initialized and organized into hidden layers. Weights are
initialized using the Xavier method [153]

def i n i t i a l i z e W e i g h t (s e l f , shape , layer) :
nIn = shape [0]
nOut = shape [1]
i f s e l f . hiddenActivation = t f . nn . sigmoid :

l imit = 4 ∗ np . sqrt (6 . 0 / (nIn + nOut))
e l i f s e l f . hiddenActivation == t f . nn . tanh :

l imit = np . sqrt (6 . 0 / (nIn + nOut))

lowerLimit = – l imit
upperLimit = l imit

name = ’w%d’ % (layer)
with tf . name_scope ("Weights") :

weight = t f . Variable (t f . random_uniform (shape ,
lowerLimit ,
upperLimit) , name=name) ;

s e l f .summary(name, weight)
return weight

The TensorFlow variables are classi�ed according to their uses, and can later be vi-
sualized using the TensorBoard web visualization tool [154]. An analogous method
initializes the biases. Both of the initialization functions are used to create layers by

def l a y e r (s e l f ,
y_ ,
layerNumber ,
activation=None ,
inputLayer=False ,
outputLayer=False) :

iSize = s e l f . nNodes i f (not inputLayer) else s e l f . inputs
jSize = s e l f . nNodes i f (not outputLayer) else s e l f . outputs
s e l f .w. append (s e l f . i n i t i a l i z e W e i g h t ([iSize , jSize] , layerNumber))
s e l f . b . append (s e l f . i n i t i a l i z e B i a s ([jSize] , layerNumber))
y_ = t f . add (t f .matmul (y_ , s e l f .w[– 1]) , s e l f . b [– 1])
return y_ i f (activation == None) else activation (y_)

166 Implementation: Arti�cial Neural Networks Chapter 10

In i t ia l iz ing network :
=> layers 3
=> neurons 10
=> type sigmoid

Training network :
=> epochs 1000
=> function QMData. dat
=> data set size 10000
=> batch size 200
=> test set size 1000

==
Cost / Test Cost /

Epoch Cost DataSize Test Cost TestSize
––

0 2 9 4 9 8 4 . 9 2 . 9 4 9 8 4 9 6 2 9 6 . 4 0 9 2 6 . 2 9 6 4 0 9 2
1 5 9 4 6 . 0 3 3 2 0 . 0 5 9 4 6 0 3 3 2 5 7 4 6 . 3 6 2 8 5 . 7 4 6 3 6 2 8
2 5 9 0 9 . 0 9 3 3 0 . 0 5 9 0 9 0 9 3 3 5 7 4 3 . 9 2 6 8 5 . 7 4 3 9 2 6 8
3 5 9 0 6 . 6 2 0 6 0 . 0 5 9 0 6 6 2 0 6 5 7 4 1 . 6 6 8 9 5 . 7 4 1 6 6 8 9
4 5 9 0 3 . 2 3 0 9 0 . 0 5 9 0 3 2 3 0 9 5 7 3 6 . 8 6 2 3 5 . 7 3 6 8 6 2 3
5 5 8 9 9 . 0 2 6 4 0 . 0 5 8 9 9 0 2 6 4 5 7 3 3 . 3 2 4 2 5 . 7 3 3 3 2 4 2 saved : ckpt–0
6 5 8 9 3 . 5 3 7 1 0 . 0 5 8 9 3 5 3 7 1 5 7 2 5 . 3 3 2 5 . 7 2 5 3 3 2
7 5 8 8 5 . 2 4 4 7 0 . 0 5 8 8 5 2 4 4 7 5 7 1 6 . 1 6 2 6 5 . 7 1 6 1 6 2 6
8 5 8 7 5 . 6 5 2 4 0 . 0 5 8 7 5 6 5 2 4 5 7 0 4 . 4 2 7 7 5 . 7 0 4 4 2 7 7
9 5 8 6 1 . 1 8 2 3 0 . 0 5 8 6 1 1 8 2 3 5 6 8 9 . 1 6 8 9 5 . 6 8 9 1 6 8 9
10 5 8 4 3 . 8 2 6 8 0 . 0 5 8 4 3 8 2 6 8 5 6 6 8 . 0 8 2 5 . 6 6 8 0 8 2 saved : ckpt–1
11 5 8 2 2 . 3 5 9 2 0 . 0 5 8 2 2 3 5 9 2 5 6 4 7 . 6 0 7 4 5 . 6 4 7 6 0 7 4
12 5 7 9 1 . 2 0 4 3 0 . 0 5 7 9 1 2 0 4 3 5 6 1 2 . 1 6 9 9 5 . 6 1 2 1 6 9 9
13 5 7 5 1 . 5 5 9 7 0 . 0 5 7 5 1 5 5 9 7 5 5 6 3 . 3 5 0 1 5 . 5 6 3 3 5 0 1

. . .

995 1 3 . 4 0 5 8 2 8 0 . 0 0 0 1 3 4 0 5 8 2 8 1 7 . 9 3 2 5 6 4 0 . 0 1 7 9 3 2 5 6 4
996 1 3 . 5 6 8 5 5 3 0 . 0 0 0 1 3 5 6 8 5 5 3 1 7 . 4 4 1 4 5 4 0 . 0 1 7 4 4 1 4 5 4
997 1 3 . 5 5 2 0 8 2 0 . 0 0 0 1 3 5 5 2 0 8 2 1 7 . 3 1 4 4 1 1 0 . 0 1 7 3 1 4 4 1 1
998 1 3 . 4 9 8 8 8 7 0 . 0 0 0 1 3 4 9 8 8 8 7 1 7 . 5 6 8 0 6 9 0 . 0 1 7 5 6 8 0 6 9
999 1 3 . 5 7 5 4 8 3 0 . 0 0 0 1 3 5 7 5 4 8 3 1 7 . 6 5 5 4 5 7 0 . 0 1 7 6 5 5 4 5 7

==

Figure 10.1: Output produced by the example run of the NN program shown
in section 10.1. Saving of the network state is done at most every 5 epochs, but
only if the current cost function computed for the test set attains a minimum.
If other states with lower values of this cost function have already been saved
as a previous checkpoint, the current one is not saved. The output has been
lightly edited to make it �t (a column showing the elapsed time per epoch is
removed, and some non-UTF8 characters have been replaced with similar UTF8
characters, among other things).

Section 10.2 Overview of selected classes 167

In each layer, the signature "matrix multiply and bias add" is performed, with weight
matrices and bias vectors being initialized according to the size of the incoming/out-
going signal.

Layers can then be combined to form the full network model, which we subse-
quently will evaluate. This is done in the fullNetwork method

def f u l l N e t w o r k (s e l f ,
y_ ,
inputs ,
nLayers ,
nNodes ,
outputs ,
hiddenActivation ,
lastActivation) :

s e l f .w, s e l f . b = [] , []
s e l f . inputs = inputs
s e l f . nNodes = nNodes
s e l f . hiddenActivation = hiddenActivation
s e l f . lastActivation = lastActivation

y_ = s e l f . l a y e r (y_ , 0 , activation= s e l f . hiddenActivation , inputLayer=True)
for i in xrange (1 , nLayers) :

y_ = s e l f . l a y e r (y_ , i , activation= s e l f . hiddenActivation)

y_ = s e l f . l a y e r (y_ , nLayers , activation= s e l f . lastActivation)
y_ = s e l f . l a y e r (y_ , nLayers+1 , activation=None , outputLayer=True)
return y_

In order to construct a persistent network, and avoid having to pass around several
function arguments, a constructNetwork method is used, which creates and saves the net-
work con�guration.

def c o n s t r u c t N e t w o r k (s e l f ,
inputs ,
nNodes ,
nLayers ,
outputs ,
networkType=None) :

s e l f . networkType = networkType
s e l f . nLayers = nLayers
s e l f . nNodes = nNodes
s e l f . inputs = inputs
s e l f . outputs = outputs
s e l f . x = t f . placeholder (’ f loat ’ , [inputs , None] , name= ’x ’)
s e l f . y = t f . placeholder (’ f loat ’ , [outputs , None] , name= ’y ’)
s e l f . p a r s e T y p e S t r i n g (networkType)
s e l f . network = lambda x : \

s e l f . f u l l N e t w o r k (x ,
inputs = s e l f . inputs ,
nLayers = s e l f . nLayers ,
nNodes = s e l f . nNodes ,
outputs = s e l f . outputs ,
hiddenActivation = s e l f . hiddenActivation ,
lastActivation = s e l f . lastActivation)

def _ _ c a l l _ _ (s e l f , inputData) :
return s e l f . network (inputData)

168 Implementation: Arti�cial Neural Networks Chapter 10

Note that the call-method enables usage of a NeuralNetwork instance as a callable object,
essentially using the class instance directly as a function.

The activation functions can be any one of the pre-de�ned TensorFlow activa-
tions, including recti�ed linear (ReLU), exponential linear (ELU) sigmoid, or hyper-
bolic tangent, among others. In order to avoid unnecessarily constraining the �nal
output, no activation is applied for the last layer.

10.2.2 The NetworkTrainer class

The training of the Network is handled entirely by the NetworkTrainer class. Here, the
TensorFlow session is initialized, and a cost function is minimized according to some
speci�ed optimization algorithm. Changing the cost function or the optimizer is not
currently supported via command line arguments, but can be done by interchanging
a single line of code in the source. For all runs in the present work we use the Adam
(adaptive moment estimation) optimizer and an `2 norm di�erence,

Cost(ŷ) = ‖y − ŷ‖2, (10.3)

is used as the cost function [138]. Recall that for an input vector x, the NN output
is denoted ŷ while the true result is y. The `2 norm cost function is thus simply the
square root squared di�erence between the true result and the network output. The `2

space—brie�y mentioned in section 2.2.1—is the space of square summable sequences,
essentially a special case of the L2 space (see e.g. Rynne and Youngson [43]).

The NetworkTrainer constructor de�nes two placeholders, which are later assigned to
TF variables. In addition, the network is assembled and cost function and optimizer
is set up.

def _ _ i n i t _ _ (s e l f , system , saver) :
s e l f . system = system
s e l f . x = t f . placeholder (’ f loat ’ ,

[None , system . inputs] ,
name= ’x ’)

s e l f . y = t f . placeholder (’ f loat ’ ,
[None , system . outputs] ,
name= ’y ’)

s e l f . prediction = system . network (s e l f . x)
s e l f . cost = t f . nn . l2_loss (t f . subtract (s e l f . prediction , s e l f . y))
s e l f .adam = t f . train . AdamOptimizer ()
s e l f . optimizer = s e l f .adam . minimize (s e l f . cost)
s e l f . save = system . argumentParser () . save
s e l f . saver = saver

The system parameter is an instance of the TFPotential class, which acts as a driver for the
program, glueing the di�erent pieces together. This is the only class the user needs
interact with for basic usage of the NN machinery.

Initialization of the TensorFlow session and the optimization takes place in the
trainNetwork method. The statements

Section 10.2 Overview of selected classes 169

s e l f . sess = t f . Session ()
s e l f . sess . run (t f . global_variables_initializer ())

initializes variables to TF structures, essentially constructing the computational graph.
The input variables—usually NumPy (see e.g. Langtangen [155]) arrays—are con-
verted to TensorFlow tensors. These are only explicitly evaluated and di�erentiated
(up to the required order, depending on the graph) when the TF run method is called
on them. An example of this is the evaluation of the optimizer and cost function in
conjunction with the training step. This is done by

s e l f . sess = t f . Session ()
s e l f . sess . run (t f . global_variables_initializer ())
bOpt , bCost = s e l f . sess . run ([s e l f . optimizer , s e l f . cost] ,

feed_dict ={ s e l f . x : xBatch ,
s e l f . y : yBatch })

The feed_dict feeds NumPy arrays into the placeholder variables self .x and self .y. The
cost function is then evaluated in the TF graph, alongside self .optimizer. Recall that
the latter variable was de�ned as

s e l f . optimizer = s e l f .adam . minimize (s e l f . cost)

and evaluating it constitutes an update of the NN weights according to the gradients
w.r.t. the cost function (see chapter 7 for a brief description of the back-propagation
algorithm).

In total the trainNetwork function takes the following (abridged) form:

def t r a i n N e t w o r k (s e l f , numberOfEpochs) :
s e l f . sess = t f . Session ()
s e l f . sess . run (t f . global_variables_initializer ())
. . .
xEpoch , yEpoch , xTest , yTest = s e l f . system . dataGenerator . generateData \

(s e l f . system . dataSize ,
s e l f . system . testSize)

. . .
for epoch in xrange (numberOfEpochs) :

indices = np .random . choice (dataSize , dataSize , replace=False)
xEpoch = xEpoch[indices]
yEpoch = yEpoch[indices]

s e l f . epochCost = 0
for i in xrange (dataSize / batchSize) :

startIndex = i ∗batchSize
endIndex = startIndex + batchSize
xBatch = xEpoch[startIndex : endIndex]
yBatch = yEpoch[startIndex : endIndex]
bOpt , bCost = s e l f . sess . run ([s e l f . optimizer , s e l f . cost] ,

feed_dict ={ s e l f . x : xBatch ,
s e l f . y : yBatch })

s e l f . epochCost += bCost

tCost = –1

170 Implementation: Arti�cial Neural Networks Chapter 10

i f epoch % s e l f . system . testInterval == 0 :
tOpt , tCost = s e l f . sess . run ([s e l f . testCost , s e l f . cost] ,

feed_dict ={ s e l f . x : xTest ,
s e l f . y : yTest })

. . .

The DataGenerator class is used to provide the training and validation data sets, either
from a generating functional form (e.g. a Lennard-Jones form) or from a �le contain-
ing e.g. ab initio QM data.

Online learning and order randomization

The training scheme used in the current work is an online leaning method. Online
learning describes a way of feeding inputs through the neural network and is usually
contrasted with the batch learning. In the batch learning scheme, the entire data set is
pushed through the NN in one fell swoop at every epoch. The weights and biases are
then updated according to the gradient w.r.t. the cost function of the entire data set.
In order to facilitate data sets which are too big for simultaneous evaluation in the
network, online methods feed only a part of the data set through before updating the
parameters. If each online batch is size M , and the total data set is N samples, then
each epoch consists of evaluating M/N mini-batches with subsequent parameter
update.

Crucially, the training data is reordered in a random manner before each training
epoch begins. If this is not done—and especially if the training samples are heavily
correlated such as e.g. training point i is given by f(xi) for xi = x0 + ∆x—then it is
conceivable that the model becomes stuck in place. As each mini-batch only trains the
NN in very constrained range of inputs with heavily homogenous function values,
the model has no way of optimizing in the global sense, i.e. for the entire data set.

10.2.3 The TFPotential and the DataGenerator classes
Lastly, let us brie�y discuss the TFPotential and DataGenerator classes. The former class acts
as the interface between the user and the ANN machinery, being the class which is
used to start calculations. Calling the tfpotential.py �le evaluates

i f __name__ == "__main__" :
tfpot = TFPotential ()
tfpot . t r a i n (tfpot . argumentParser () . epochs)

which creates a TFPotential class instance and then calls the train method

def t r a i n (s e l f , epochs=– 1) :
numberOfEpochs = s e l f . numberOfEpochs i f epochs == –1 else epochs
s e l f . numberOfEpochs = numberOfEpochs
s e l f . networkTrainer . t r a i n N e t w o r k (numberOfEpochs)
s e l f . sess = s e l f . networkTrainer . sess

Section 10.2 Overview of selected classes 171

which sets up and facilitates the training. In order to help with setting the correct
parameters asked for by the user, the ArgumentParser class is used to handle command
line ––argument and value pairs.

The data generation (or data organization in the case of QM training data) is han-
dled by the DataGenerator class, who’s primary job is to ensure the training data is struc-
tured correctly to be fed through the network. Since The default behaviour—with the
default LJ functional form—is to create a NumPy linspace between two cuto�s, using
a number of points speci�ed by the user. Note that since we shu�e the training data
around prior to every single training epoch, there is no inherent problem with such
a heavily spatially correlated data set.

Chapter 11

Implementation and validation:
Density Functional Theory

In order to retain some semblance of brevity in the present work, further description
of the DFT implementation is omitted. In following, we will rigorously test and use
only two di�erent ab initio, namely the HF and VMC frameworks. The developed
DFT code—much of which derives from the HF program described in the previous
chapter—is in a functional state and available on github.com/mortele/HartreeFock under a
branch called DFT.

The DFT program is essentially ready for inclusion in the multiscale modelling
framework we are developing, but lacks the proper testing done on the remaining
two QM methods in this thesis. Thus a natural extension of the present work entails
rigorous testing and comparison of the DFT code with the other two algorithms. We
expand on this in the closing remarks of chapter IV.

The theory section on DFT is intentionally left in the thesis—as a chapter in part
II—and we hope it can provide a helpful introduction to implementation speci�c de-
tails. We �nd it especially likey that the accessible introduction to numerical grid
based integration techniques used extensively in practical DFT calculations will prove
useful to any reader wishing to implement their own density functional scheme from
scratch.

173

Chapter 12

Hartree-Fock validation tests

Recall that we are working in Hartree atomic units, meaning energies are given in
terms of the Hartree [Eh], and lengths in Bohr radii [a0]. See appendix A.

12.1 Dissociation of the hydrogenmolecule ion, H2
+

The conceptually simplest possible diatomic molecule is the hydrogen molecule ion,
H2

+, sometimes also called the dihydrogen cation. Being a positively ionized hydro-
gen molecule, it consists of a single electron in the Coulomb �eld of two hydrogen
atoms. Dissociation of this molecule involves breaking up the covalent one-electron
bond, H2

+ −−⇀↽−− H+ + H. The dissociation energy, De, is calculated as the di�erence
between the energy of the bound molecule and the sum of the energies of the con-
stituent parts at in�nite separation.

Fixing the intermolecular distance, R, it is relatively straight forward to calcu-
late variational bounds on the dissociation energy using simple trail wave functions
(armed with no more than pen, paper, and some patience). Using a single 1s hy-
drogen orbital centered on each molecule gives a bond length of Re = 2.4a0 with
a corresponding dissociation energy of De = 0.07Eh, see e.g. [47]. A natural next
step in improving on this is to include more orbitals. Hinchli�e notes that adding
2p orbitals centered on the nuclei yields Re = 2.005a0 and De = 0.09981Eh. It is a
testament to the simplicity of the problem that this is already within 0.1% and 3% of
the experimental values of Re and De, respectively [157].

As a test of our Hartree-Fock machinery, let us now see how close we can get
using our gaussian basis functions. Since the system has only a single electron, we
emply the un-restricted Hartree-Fock method throughout this section. In order to
�nd the bond length we perform a brute force search for a wide range of R values.
The resulting potential energy surfaces are shown in Fig. 12.1. First o�, we may note
from the �gure that H2

+ bonds under the Hartree-Fock approximation for all our basis
sets as the energy minima are all < 0.5Eh: the energy of a free proton and a neutral
hydrogen atom.

175

176 Hartree-Fock validation tests Chapter 12

Table 12.1: Geometries used in the validation Hartree-Fock calculations. The
�rst part of the table is adapted from [22], while the latter part takes values from
[156]. For descriptions of the bonding geometry, see e.g. [91].

Molecule Bond length [a0] Bond angle [rad]

H2 (Dihydrogen) 1.400
CH4 (Methane) 2.050 1.911 (Tetrahedral)
NH3 (Ammonia) 1.913 1.862 (Trigonal pyramid)
H2O (Water) 1.809 1.824
HF (Hydrogen �uoride) 1.733
N2 (Dinitrogen) 2.074
CO (Carbon monoxide) 2.132

LiF (Lithium �uoride) 2.955
LiO (Lithium monoxide) 3.203
BeF (Beryllium mono�u-

oride)
2.572

BeO (Beryllium oxide) 2.515

Table 12.2: Total energies in Hartrees, Hf , calculated with restricted (RHF)
and un-restricted (UHF) Hartree-Fock. Two di�erent basis sets are used,
namely 3-21G and 6-311++G**. The Hartree-Fock limits are taken from Sz-
abo & Ostlund [22]. Produced using github.com/mortele/HartreeFock commit
f01b2f65f0d3a6dd3e0a35260686f6ea65292eb4.

3-21G 6-311++G**
Molecule RHF UHF RHF UHF HF limit

H2 −1.122 93 −1.122 93 −1.132 49 −1.132 49 −1.134

CH4 −39.9769 −39.9769 −40.2092 −40.2092 −40.225

NH3 −55.8705 −55.8705 −56.2145 −56.2145 −56.225

H2O −75.5854 −75.5854 −76.0529 −76.0529 −76.065

HF −99.4598 −99.4598 −100.053 −100.053 −100.071

N2 −108.300 −108.300 −108.972 −108.972 −108.997

CO −112.093 −112.093 −112.770 −112.770 −112.791

github.com/mortele/HartreeFock

Section 12.2 Calculating the energies of the "ten-electron series" 177

The calculated bond lengths and dissociation energies for all the basis sets tested
can be seen in Table 12.3. The Slater type trial wave function described previously
used only two orbitals for each atom, but we needed to use the 6-311++G** in order
to get a more accurate result. The 6-311++G** for hydrogen has eight primitive or-
bitals spread over six contracted orbitals. The di�erence illustrates how much more
natural the Slater orbitals are for calculating molecular properties. The sole reason
we are using gaussian type orbitals is ease of integral calculation. The Slater orbitals
are solutions of the hydrogenic Schrödinger equation and an ideal starting point for
designing multi-atomic wave function anzatses. The gaussians, on the other hand,
can only try to combine multiple primitives in order to emulate the form of the Slater
orbitals.

There appears to be two distinct jumps in accuracy: The �rst one when going
from 6-31G (3s1s) to 6-31G** (3s1s1p) and a second one when making the change
from 6-31G** (3s1s1p) to 6-311++G** (3s1s1s1s1p). The �rst one can be understood
by the addition of three polarized gaussians which combine to form an orbital of
p symmetry. It is clear from this that the H2

+ ground function has a contribution
from a bonding π-orbital1 that we cover to some extent with the 1p (l = 1) gaussian.
The second step up in accuracy comes after introduction of a di�use s-type (l = 0)
gaussian. It is clear that this covers a part of the σ-symmetric 2σg orbital that is not
e�ectively covered by the other s-symmetric gaussians with larger exponents.

As a validation example, we feel con�dent that our unrestricted Hartree-Fock code
works as it should for small systems. With a basis set consisting of only 15 contracted
gaussians (17 total primitives) per atom, we calculate the dissociation energy of H2

+

to within about 0.3% accuracy. As we will not be very focused on large Hartree-Fock
basis sets in the present work, we declare ourselves satis�ed with this and move on
to testing larger diatomic systems.

12.2 Calculating the energies of the "ten-electron se-
ries"

We will now concern ourselves with calculating the total energy for a series of molec-
ular systems totalling ten electrons. We will also consider H2, N2, and CO. Geometry
optimization will not be done here, but we will instead use bond lengths given in [22].

1Linear diatomic molecular orbitals can be modelled as being comprised of states with a de�nite
value of the axial (along the inter-molecular axis) angular momentum, ` = 0,±1,±2, Molecular
orbitals with ` = 0 are called σ-orbitals, while ` = ±1 are called πu-orbitals. Orbitals with non-
vanishing electron density between the nuclei contribute to Coulomb shielding of the atoms from
each other and thus promote the inter-atomic bond. These are called bonding orbitals (in contrast
to orbitals for which this is not the case which are called anti-bonding). A subscript g means the
molecular orbital has positive inversion symmetry, i.e. P̂ φ(r) = φ(−r) = +φ(r), where P̂ denotes
the party operator w.r.t. inversion through the inter-molecular center. A subscript umeans the orbital
has negative inversion symmetry. See e.g. [91]

178 Hartree-Fock validation tests Chapter 12

The atomic con�guration used throughout this section is shown in Table 12.1. For
methane (CH4), a tetrahedral structure is assumed: The four hydrogen atoms placed
at the four corners of a tetrahedron with the carbon atom in the center. The bond
angle refers to the H—C—H angle between any of the four hyrogen atoms. Similarily,
the ammonia molecule (NH3) assumes a trigonal pyramid structure with the shortest
H—N—H angle between any two hydrogen atoms being the bond angle. Reference
energies are also taken from [22], where the authors have used the 4-31G and 6-31G*
basis sets, in addition to STO-G3.

As the the total energy is the primary quantity available in any ab initio calculation
such as ours [22], it seems like a good place to start validation for larger systems.
Using two di�erent basis sets, 3-21G and 6-311++G**, we calculate the energies for all
the ten-electron series molecules in addition to CO, N2 and H2. The results are shown
in Table 12.2. We note that in every case, our results are better than the corresponding
results of [22]using the 6-31G** basis set, as expected; we are using a larger basis.
Our results are also consistent with the results of [3], from which we can directly
compare results for the 6-311++G** basis set. We also notice that the restricted and
unrestricted versions of our code seem to output the exact same values, meaning that
forcing electrons pairs to occupy the same molecular orbitals is a valid assumption
we can make in these cases.

Also shown in Table 12.2 are the Hartree-Fock limits for all the molecules. With
the 6-311++G** basis sets, we are already within 0.02% of the limit for all the systems,
except for H2. For the dihydrogen molecule the relative error w.r.t. the Hartree-Fock
limit is 0.13%. Using the cc-pVTZ basis set reduces this down to about 0.08%, and
using the even bigger cc-pVQZ yields an error of the same order as for the other
molecules, 0.04% at E = −1.1335Eh.

Finding results which correspond perfectly to those of [22] and especially [3] (for
the exact same basis sets) makes us even more con�dent in assuming our Hartree-
Fock machinery works as it should.

Section 12.2 Calculating the energies of the "ten-electron series" 179

Table 12.3: Dissociation energies and bond lengths calculated for the hydro-
gen molecule ion H2

+ using six di�erent basis sets. The experiemental value
is taken from [156]. Produced using github.com/mortele/HartreeFock commit
c251e9835d5534f0c957308fec585ec918cb2e94.

Bond length, Dissociation energy, Relative error w.r.t
Basis set Re [a0] De [Hf] expt De [%]

3-21G 1.994 0.083 151 18.96

6-31G 1.968 0.084 082 18.05

6-31G** 1.940 0.090 927 11.38

6-311++G** 1.984 0.101 180 1.384

6-311++G(2d,2p) 1.997 0.101 863 0.7183

cc-pVTZ 1.997 0.102 267 0.3245

Expt 2.003 0.1026

R[a0]
1 2 3 4 5 6 7

E
[E

h
]

-0.62

-0.6

-0.58

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

cc-pVTZ
6-311++G(2d,2p)
6-311++G**
6-31G**
6-31G
3-21++G
3-21G

R[a0]
1.7 1.8 1.9 2 2.1 2.2 2.3

-0.6

-0.595

-0.59

-0.585

-0.58

Figure 12.1: Energy as a function of the intermolecular distance, R, for the
hydrogen molecule ion H2

+. Six di�erent hydrogen basis sets were used, yield-
ing various values of the energy minima and equilibrium bond length. Detail
around the minima shown on the right. Produced using github.com/mortele/
HartreeFock commit c251e9835d5534f0c957308fec585ec918cb2e94.

github.com/mortele/HartreeFock
github.com/mortele/HartreeFock
github.com/mortele/HartreeFock

180 Hartree-Fock validation tests Chapter 12

Figure 12.2: Example of a molecular orbital in the CH4 molecule (top) and the
electronic density (bottom) as calculated by the Hartree-Fock code using the
di�use-polarized 6–311++G∗∗ basis set for all atoms. The C and H atoms are shown
as points connected by bars. Multiple isosurfaces of the orbital are shown, with
increasing opaqueness denoting higher values. The density was calculated using
the density matrix by ρ(r) =

∑
pq Ppqψp(r)ψq(r). Produced using github.com/

mortele/HartreeFock commit a587a2f88184db05d679311058525cebc7ef1ee2.

github.com/mortele/HartreeFock
github.com/mortele/HartreeFock

Chapter 13

Variational Monte Carlo validation
tests

Recall that we are working in Hartree atomic units, meaning energies are given in
terms of the Hartree [Eh], and lengths in Bohr radii [a0]. See appendix A.

13.1 Non-interacting electrons

The simplest possible VMC calculations can be done on non-interacting, hydrogen-
like atoms. With N electrons orbiting a single charge-Z nucleus, with no electron-
electron interaction, the Hamiltonian takes the form

Ĥ =
N∑
i=1

[
−∇

2
i

2
− Z

|ri − rA|

]
. (13.1)

In this case the Schrödinger equation has a known solution, taking the form of a
single Slater determinant �lled with hydrogenic orbitals. As this is an actual closed
form solution, the local energy becomes independent of the electronic con�guration

EL(R) =
1

Ψ(R)
ĤΨ(R) =

1

Ψ(R)
EΨ(R) = E. (13.2)

Since samples are all identical, the variance vanishes exactly. The orbital energies de-
pend on the squared principal quantum number —c.f. the hydrogen atom energies—as

Enon-interacting
n = − Z

2

2n2
. (13.3)

181

182 Variational Monte Carlo validation tests Chapter 13

The total energy of the �rst and second row closed shell systems thus is

E
non-interacting
He = −2

22

212
= −4, (13.4)

E
non-interacting
Be = −2

42

212
− 2

42

222
= −20, and (13.5)

E
non-interacting
Ne = −2

102

212
− 8

102

222
= −200. (13.6)

All three results are reproduced exactly by the VMC implementation, with standard
deviations (no blocking) on the order of the machine precision, σ ∼ 10−15.

13.2 The e�ect of the Jastrow factor
The Jastrow factor introduces dynamic electron correlations to the wave function. As
opposed to the Hartree-Fock scheme—in which all electrons interact only with the
combined averaged charge density of the other electrons—dynamic correlations in-
troduce instantaneous repulsion between electrons moving around in the molecular
volume. In general, VMC is able to recover roughly 80-90% of the correlation en-
ergy—c.f. section 4.7—with highly optimized (multi-parameter) Jastrow factors (and
possibly a linear combination of Slater determinants) [158].

The single-parameter, two-body Jastrow factor used in the present work ensures
the electron-electron cusp—c.f. section 3.1.2—condition is upheld by reducing the
value of the wave function whenever two electrons get close to each other. Same-
spin electrons occupying the same spot in space is strictly forbidden by the Pauli
princple, and the determinantal form of the wave function ensures that is vanishes
exactly as such con�gurations. This is however not true of opposite-spin electrons.
While the Jastrow factor changes the wave function in regions of con�guration space
where r1 and r2 are close, it does not make it vanish. Under certain conditions, the
probability density at r1 = r2 is even higher than the surrounding con�gurations
[159]. An example of the Jastrow factor’s e�ect on the electron density is shown in
Fig. 13.1. The plot shows the wave function as function of r1 varying over a plane
intersecting r2, with r2, r3, and r4 held �xed. The Be nucleus is located at rA = 0, and
we note the exponential decay away from the origin is the overall form. However,
we also note a distinct Jastrow hole at the position of electron two.

Introduction of the Jastrow factor makes the VMC framwork in principle better
suited to handle interacting many-electron systems than e.g. HF. We have built in a
single variational parameter in J(R), namely β. Recall that

J(R) = exp

[
N∑
i=1

N∑
j=i+1

aijrij
1 + βrij

]
, (13.7)

with aij depending on the spin-projections of electrons i and j. In order to obtain
a better parametrization of the many-electron wave function than the single Slater

Section 13.2 The e�ect of the Jastrow factor 183

Figure 13.1: Detail of the Be wave function at the point where two electrons
meet. Shown is |Ψ(r1; r2, r3, r4)|2 for a part of the x1−y1-plane of the electronic
coordinates of electron one, when the (opposite-spin) electron two is held at r2 =
(1, 1, 0). The placement of electron two is indicated by a �oating sphere. The
remaining two electrons are far separated and held �xed far from the location of
this plot. The plot set into the surface beneath indicate the contours of the wave
function. The single Be is located at rA = 0.

184 Variational Monte Carlo validation tests Chapter 13

Figure 13.2: Energy expectation value as
function of the Jastrow variational parameter,
β. Error bars shown are estimated standard de-
viations obtained by blocking. The minimum
found by a gradient descent search is located
at β = 0.347. The inset shows details around
the minimum.

0 0.2 0.4 0.6 0.8 1
-2.89

-2.88

-2.87

-2.86

-2.85

-2.84

-2.83

-2.82

-2.81

-2.8

0.3 0.32 0.34 0.36 0.38

-2.888

-2.887

-2.886

-2.885

determinant, we need to �nd the optimal value of β. The naive brute force method
of just trying every single β you can think of works at the small scale, but becomes
unfeasible as the system size increases. An example of such a search is shown in Fig.
13.2, for He using a STO-6G HF Slater determinant. The statistical error bars shown
are standard deviation estimates obtained by blocking.

However, with a Slater determinant already optimized with HF orbitals, we can
ideally have a VMC wave function which depends on only a single parameter. This
makes optimization much easier. Even so, in the present work we employ a simple
gradient descent scheme. Between each run of the Metropolis algorithm, the value
of β is updated according to

βk+1 = βk − γ∇〈EL〉, (13.8)

with the gradient calculated by [69]

∂〈EL〉
∂β

= 2

(〈
1

Ψ[β]

∂Ψ[β]

∂β
EL[β]

〉
−
〈

1

Ψ[β]

∂Ψ[β]

∂β

〉〈
EL[β]

〉)
. (13.9)

The basic gradient descent uses γ = 1, but this can be extended to various more opti-
mal alternatives1. An example of the gradient descent in action can be seen in Table
13.1, where we use the He atom as an example—this time with a Slater determinant
occupied by hydrogenic orbitals (with a previously optimized value of the variational
exponent α).

Once an optimization run has been done with relatively few Monte Carlo cycles
and the energy minimum w.r.t. the variational parameters has been found we run
a computationally heavier single-point calculation with these parameters. With the
optimal α and β, we �nd e.g. using the Slater type orbitals an energy of −2.8901Eh
with standard deviation (after blocking) σ ∼ 10−4Eh.

1See e.g. the method of Barzilai and Borwein which attempts to approximate the Hessian without
having to actually calculate it [136]. This is an example of a larger class of Quasi-Newton methods for
optimization in cases where the Hessian (or even the gradient) is too expensive to compute directly.

Section 13.3 The e�ect of the Jastrow factor 185

Table 13.1: Example of the gradient descent algorithm applied to the He
atom with hydrogenic orbitals. The already optimized α = 1.843 was used
for all iterations. The tollerance criteria for stopping was a change in β
of ε ≤ 0.001 which was achieved in 14 iterations, each with a modest
106 Monte Carlo cycles. Produced using github.com/mortele/VMC commit
a4a2fd7a8698a7fe5a0118b9e78786e118e52d67.

Gradient Change
Iteration Energy [Eh] β w.r.t. β in β

0 −2.8872 0.2 −0.080 519

1 −2.8897 0.280 52 −0.024 79 0.0805

2 −2.8918 0.305 31 −0.013 644 0.0248

3 −2.8887 0.318 95 −0.008 953 5 0.0136

4 −2.8925 0.327 91 −0.007 184 1 0.0090

5 −2.8929 0.335 09 −0.002 936 9 0.0072

6 −2.8922 0.338 03 −0.001 789 3 0.0029

7 −2.8894 0.338 82 −0.001 968 8 0.0018

8 −2.8923 0.340 79 −0.002 046 6 0.0020

9 −2.8890 0.342 83 −0.001 075 6 0.0020

10 −2.8878 0.343 91 −0.001 190 9 0.0011

11 −2.8895 0.345 10 −0.001 962 8 0.0012

12 −2.8914 0.347 06 −0.001 573 9 0.0020

13 −2.8891 0.348 64 0.000 186 6 0.0016

14 −2.8866 0.348 45 −0.0002

github.com/mortele/VMC

186 Variational Monte Carlo validation tests Chapter 13

Table 13.2: Energies of �rst and second row closed-shell atomic and homoge-
nous diatomic systems, calculated under VMC. Hydrogenic orbitals are used,
with parameters α and β as given below. The given standard deviations are
computed using the blocking technique. Reference energies taken from Filippi
and Umrigar (Be2), Buendía and co-workers (Be and Ne), and Moskowitz and
Kalos (He and H2) [158, 160, 161]. Varying numbers of Metropolis cycles used,
from 4 · 109 for the lightest He to only 4 · 107 for the heaviest Be2.

Standard Relative error
α β Energy [Eh] deviation, σ w.r.t. reference [%]

He 1.843 0.347 −2.890 18 0.000 075 0.47

H2 1.289 0.401 −1.1581 0.000 13 1.43

Be 3.983 0.094 −14.503 0.0019 1.15

Be2 3.725 0.246 −28.75 0.024 2.23

Ne 10.22 0.091 −127.91 0.0012 0.81

13.3 First and second row closed-shell atoms and di-
atomics

If we want to run VMC on open-shell systems, we need to account for di�erent spin
con�gurations meaning we need to also suggest spin-�ip Metropolis steps. This is
a complication we want to avoid, so we will focus the testing now on closed-shell
systems. First and second row closed-shell atoms include He, Be, and Ne with 2, 4,
and 10 electrons, respectively. In addition we will include the homogenous diatomics
Be2 and H2 in our validation set. The results of the validation runs are shown in Table
13.2.

We note that for He, the VMC approach improves considerably on the HF energy
(−2.8599Eh at the 6-311++G** level). The Slater determinant consists of a single or-
bital only meaning the variational Monte Carlo single-parameter-orbital o�ers com-
parable freedom in functional form as the HF linear combinations. In addtion, the
presence of the Jastrow factor improves heavily on the ability to model the electron-
electron interaction and thus has quite a large e�ect on the resulting calculated en-
ergy. The same observation is true of the H2 molecule, for which the HF energy is
−1.1325Eh at the 6-311++G** level. Even though our simple VMC wave function
recovers some of the missing correlation energy, we are still quite far o� of the ref-
erence −1.1746Eh [161].

For the case of Be, we �nd that our VMC estimate di�ers more from the reference
energy of Buendía and co-workers of −14.667Eh. Even though Be is a closed-shell
atom, the �rst excitation corresponds to a lower energy gap than the corresponding

Section 13.4 Testing the gaussian orbitals 187

gaps for the noble gasses He and Ne. Essentially, the transition E2s → E2p is smaller
than the �rst excitation possible in e.g. Ne, namely E2p → E3s. Note carefully that
even though the non-interacting hydrogen-like atoms have energies independent of
the azimuthal quantum number l, this is of course not true of actual atoms for which
the electronic interaction breaks the l-degeneracy.

In cases such as Be—where the HOMO-LUMO2 energy gap is small—we expect
the multi-con�gurational nature of the true wave function to play an important role.
Such near-degeneracies are well handled by using e.g. a multi-con�gurational self-
consistent �eld 3 linear combination of determinants [162]. This means that our single
Slater determinant is less suited to approximating the true wave function, resulting
in less accuracy in calculated energies.

For the larger systems, the single-parameter determinant starts to rear it’s prover-
bial ugly head. As the number of orbitals needed increases, the ability of a sin-
gle variational parameter to approximate well all of them becomes more and more
unrealistic. This drawback of our simple variational form begins to overshadow
the Jastrow factor asset (as compared to HF) for larger atomic systems At Z = 10
the Hartree-Fock energy is more accurate than VMC at the 6-311++G** level (at
−128.527Eh), only narrowly beating out the minimal 3-21G (at −127.804Eh com-
pared to EVMC = −127.91Eh).

A comment on the overall accuracy compared to literature results

In general, our variational wave function is much less sophisticated than correspond-
ing ones found in the contemporary litterature. Even the parametrizations used by
Moskowitz and Kalos in the early 1980s exhibit more parameters and greater free-
dom than our functional form [161]. In more modern VMC approaches, many more
variational parameters are used. An example is the Jastrow factor of Buendía and
co-workers, consisting of two-, and three-body terms with 17 distinct variational
parameters [160]. Their Slater determinant combination is the result of an OEP cal-
culation (optimized e�ective potential method, see e.g. Talman and co-workers [163])
which yields results roughly analogous to HF.

In short, competing with such results with our simple trial wave function is in no
way realistic. Obtaining results di�ering from the literature by on the order of∼ 1%
is thus interpreted as a sign the machinery is working well.

13.4 Testing the gaussian orbitals

A natural next step in the validation is testing the implementation of the Gaussian
type orbitals in the VMC program. In order to isolate only this part for testing, we

2Highest occupied molecular orbital and lowest unoccupied molecular orbital, respectively.
3Multi-con�gurational self-consistent �eld methods, see e.g. [13].

188 Variational Monte Carlo validation tests Chapter 13

Table 13.3: Energies calculated using the Gaussian �ts of the hydrogenic
orbitals, denoted HTO-nG (with n = 1, 2, . . . , 6 representing the number
of Gaussian primitives used for each orbital) for the He atom with non-
interacting electrons. The exact wave function is the hydrogenic Slater,
giving σhydrogenic = 0. Produced using github.com/mortele/VMC commit
a4a2fd7a8698a7fe5a0118b9e78786e118e52d67.

Standard Relative error
Orbital Energy [Eh] deviation [Eh] w.r.t. HTO [%]

HTO-1G −2.8227 0.0034 29.43

HTO-2G −3.8156 0.0025 4.61

HTO-3G −3.9636 0.0020 0.91

HTO-4G −3.9913 0.0016 0.22

HTO-5G −3.9973 0.0014 0.07

HTO-6G −3.9991 0.0012 0.02

Hydrogenic −4.0 0.0

consider the same non-interacting hydrogen-like atoms as in section 13.1. Fitting4

Gaussian type orbitals to the hydrogen orbitals in a manner à la the STO-nG wave
functions, we compare the ground state energy to the true E0 for varying n. The
results for He can be seen in Table 13.3, where we have dubbed the Gaussian �ts
HTO-nG.

We note that the implementation appears to work as it should. The next step is
to include the 2s orbitals, and calculate the non-interacting energy for Be. This is
done in Table 13.4. Evidently, the HTO-1G orbitals are qualitatively wrong, failing to
capture the nodal structure of the 2s hydrogenic orbital with only a single primitive.
With positive energy, the 1G Be does not admit bound state solutions.

Despite the catastrophic failure at HTO-1G, already with two primitives is the 2s
node su�ciently well approximated to result in roughly a ∼ 5% relative error. The
convergence looks strikingly similar to that of the He atom in Table 13.3.

Corresponding examples of calculations with the Jastrow factor and interacting
electrons are shown in Tables 13.5 and 13.6, for He and Be respectively.

4All curve �tting in the present work is done in Matlab using the LAD (least absolute deviations,
as opposed to the more familiar least squared deviations) approach and the trust-region algorithm
proposed by Moré and co-workers [88–90].

github.com/mortele/VMC

Section 13.5 Testing the gaussian orbitals 189

Table 13.4: Energies calculated using the Gaussian �ts of the hydrogenic
orbitals, denoted HTO-nG (with n = 1, 2, . . . , 6 representing the number
of Gaussian primitives used for each orbital) for the Be atom with non-
interacting electrons. The exact wave function is the hydrogenic Slater,
giving σhydrogenic = 0. Produced using github.com/mortele/VMC commit
a4a2fd7a8698a7fe5a0118b9e78786e118e52d67.

Standard Relative error
Orbital Energy [Eh] deviation [Eh] w.r.t. HTO [%]

HTO-1G 33.509 0.061 267.6

HTO-2G −18.999 0.019 5.05

HTO-3G −19.841 0.015 0.80

HTO-4G −19.964 0.011 0.18

HTO-5G −19.9804 0.0091 0.10

HTO-6G −19.9921 0.0074 0.04

Hydrogenic −20.0 0.0

Table 13.5: Binding energies for He calculated using Slater type orbitals (STO)
and n gaussians �tted to the slater orbitals (STO-nG). Only the 1s slater type
orbital is used. 107 monte carlo cycles were used for all simulations. An e�ective
charge of α = 1.843 was used as exponent for the STO, and β = 0.347 was used
as parameter for the Jastrow factor. Produced using github.com/mortele/VMC
commit a5a3580b2dc7c4a48594b853c32ad7082b99345c.

Standard Relative error
Orbital Energy [Eh] deviation [Eh] w.r.t. STO [%]

STO-1G −1.775 0.0031 38.57

STO-2G −2.675 0.0022 7.43

STO-3G −2.841 0.0017 1.69

STO-4G −2.877 0.0013 0.44

STO-5G −2.886 0.0011 0.13

STO-6G −2.887 0.0011 0.09

STO −2.8897 0.000 86

github.com/mortele/VMC
github.com/mortele/VMC

190 Variational Monte Carlo validation tests Chapter 13

13.5 Cusp e�ects and cusp corrections
As discussed in section 3.3.4, the Gaussian orbitals do not satisfy the electron-nucleus
cusp condition at riA → 0. For the SCF methods—which depend on the orbitals only
in the weak integral sense (see section 4.4.1)—this is not a big problem. When the
only quantities entering the equations are integrals over all space, then minute im-
perfections in one tiny region of con�guration space is not critical. When performing
VMC integration, however, we are continuously sampling the local energy at speci�c
con�gurations. If EL seemingly diverges for a small portion of these con�gurations,
it poses a very real problem since sampling only a couple such points will cause the
Monte Carlo average to become imprecise and make the variance explode. Especially
worrying is the fact that this happens at the position of maximum probability, i.e. the
only place where Ψ(R) attains a maximum.

As we discussed in chapter 3, any �nite linear combination of Gaussian primitives
will yield a vanishing derivative at riA → 0. For increasing numbers of primitives,
we can force the contracted Gaussian into a STO-shape, which holds for smaller and
smaller riA. This leads to linear combinations in which some primitives have enor-
mously large exponents. When di�erentiating twice, these exponents make

∂2

∂r2
iA

ψSTO-nG (13.10)

oscillate rapidly and with large amplitude close to the nucleus (see Fig. 13.4). A case
study is presented in Fig. 13.3.

Let us now de�ne the e�ective local single-electron energy,

Es-e
L (r) =

1

ψ(r)

[
−∇

2

2
− Z

|r− rA|

]
ψ(r), (13.11)

for the spatial orbital ψ(r) [164]. In Fig. 13.3, we consider Es-e
L for the 1s orbital

of a non-interacting Be atom. Analogous to the actual full local energy, the single-
electron local energy is constant in r when considering the true ground state. In this
case, the true ground state is simply the 1s STO which is shown together with a STO-
5G Gaussian �t. The top-left plot shows very good correspondence between the two,
but di�erentiating reveals the subtle di�erences. Taking the Laplacian accentuates
the spread, and shown in the bottom-left plot is the absolute di�erence

|ψSTO-5G(r)− ψSTO(r)|. (13.12)

For small r, the di�erence blows up. The bottom-right graph shows the proverbial
bottom line: The di�erence between the correct cusp STO and the Gaussians diverges.
Since Es-e

L [ψSTO] = Es-e is constant,∣∣∣Es-e
L [φSTO-5G]− Es-e

L [φSTO]
∣∣∣ =

∣∣∣Es-e
L [φSTO-5G]− Es-e

∣∣∣. (13.13)

The bottom-right plot is worryingly far from the constant it ideally should be.

Section 13.5 Cusp e�ects and cusp corrections 191

-1 -0.5 0 0.5 1
0

1

2

3

4

5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-25

-20

-15

-10

-5

0

-0.5 0 0.5
-200

-150

-100

-50

0

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

10-5

100

105

-0.4 -0.2 0 0.2 0.4

10-4

10-2

100

102

104

Figure 13.3: Example showing the cusp problems of the Gaussian linear com-
binations. A STO-5G �t to the 1s STO of a non-interacting Be atom is shown
(top-left), along with a comparison of the double derivative of the two (top-right
and bottom-left [logarithmic absolute di�erence]). The bottom-right shows the
di�erence in local single-electron energy—as de�ned in Eq. (13.11)—for the two
orbitals.

192 Variational Monte Carlo validation tests Chapter 13

Figure 13.4: Example showing the double
derivative of the STO-5G of Fig. 13.3, com-
pared to the double derivative of the corre-
sponding STO.

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

The case of Ne

For a noble gas—such as Ne—this e�ect is emphasized by the tight electronic struc-
ture. With a small spatial extent of only r ∼ 0.72a0, the Ne atom is more tightly
bound than e.g. Beryllium at r ∼ 2.11a0 [165]. A higher density of electrons around
the nucleus point combined with the sharper exponential decay—necessitating higher
exponent Gaussians for �tting—give us problems in the VMC calculations. Shown in
Table 13.7 are results from running Ne with varying STO-nG wave function ansatzes
through the Metropolis machinery. Electron-interaction and Jastrow factor are both
enabled for these calculations.

The calculated variance is an order of magnitude worse than for the lighter atoms,
and the convergence to the STO energy is erratic at best. The results are, however,
passable. We are within about ∼ 1% of the reference STO energy, but there is really
no reason to use the less stable STO-nG basis sets in the VMC calculations. The reason
for employing Gaussian orbitals in the �rst place was only for ease of integration in
SCF methods.

13.5.1 Cusp correction
Recall that these previous results were all ran with basis sets which by design mimic
the STO orbitals. The cusp conditions are not met, but the local energy remains well-
behaved for reasonably small values of the electron-nucleus distance. This all breaks
down—however—when we consider e.g. the Pople family basis sets (see section 3.4).
In such cases, handling the cusp problem explicitly in post-HF calculations is the only
way to obtain reasonable, low-variance results in a reasonable amount of (CPU-)time.

There are multiple ways to perform cusp correction of the contracted Gaussian
functions. One approach is to use the Jastrow factor, including in it a term propor-
tional to

Jnuclear(R) ∼ exp

[
N∑
i=1

M∑
A=1

ZAriA
2(1 + γriA)

]
. (13.14)

Section 13.5 Cusp e�ects and cusp corrections 193

Table 13.6: Binding energies for Be calculated using slater type orbitals (STO)
and n gaussians �tted to the slater orbitals (STO-nG). Only the 1s and 2s slater
type orbitals are used. 5 · 106 monte carlo cycles were used for all simulations.
An e�ective charge of α = 3.983 was used as exponent for the STO, and β =
0.094 was used as parameter for the Jastrow factor. Produced using github.com/
mortele/VMC commit a5a3580b2dc7c4a48594b853c32ad7082b99345c.

Standard Relative error
Orbital Energy [Eh] deviation [Eh] w.r.t. STO [%]

STO-1G −10.10 0.023 30.00

STO-2G −13.53 0.024 6.22

STO-3G −14.03 0.022 2.76

STO-4G −14.27 0.013 1.10

STO-5G −14.41 0.012 0.12

STO-6G −14.425 0.014 0.02

STO −14.428 0.0090

Table 13.7: Energies calculated using the Gaussian �ts of the Slater type orbitals,
STO-nG (with n = 1, 2, . . . , 6 representing the number of Gaussian primitives
used for each orbital) for the Ne atom. A STO calculations is presented for com-
parison. Note that the α and β parameters were not properly tuned to the vari-
ational minimum for this calculations. However, the key point is comparison of
STO and STO-nG and in this regard the value of the energy is immaterial—the
di�erence is what matters. Produced using github.com/mortele/VMC commit
a4a2fd7a8698a7fe5a0118b9e78786e118e52d67.

Standard Relative error
Orbital Energy [Eh] deviation [Eh] w.r.t. STO [%]

STO-1G −97.07 0.24 22.35

STO-2G −115.90 0.23 7.29

STO-3G −118.83 0.20 4.95

STO-4G −124.09 0.28 0.74

STO-5G −123.91 0.13 0.89

STO-6G −123.63 0.13 1.11

STO −125.02 0.10

github.com/mortele/VMC
github.com/mortele/VMC
github.com/mortele/VMC

194 Variational Monte Carlo validation tests Chapter 13

Figure 13.5: Example of the blocking proce-
dure applied to the Be atom, running N =
106 Monte Carlo cycles. The notation σ(b)
denotes the standard deviation, calculated
with a block size of b. We note the clear
plateau starting at around b = 1500. Final
blocking estimate for the standard deviation
is calculated to be σ(1500) = 0.011Eh.

0 1000 2000 3000 4000 5000
0

0.002

0.004

0.006

0.008

0.01

0.012

The γ parameter is another variational parameter which needs to be optimized vari-
ationally, analogous to β. See e.g. [162, 166, 167]. A di�erent approach consists of
modifying the orbitals of s-type symmetry directly, ensuring they satisfy the electron-
nucleus cusp. Most proposed algorithms de�ne a cut-o�, inside which the s orbitals
are replaced:

ψs(r) =

{
Contracted Gaussian for |r| > rcuto�
Replacement function for |r| ≤ rcuto�

(13.15)

The method of replacement di�ers, with various researchers using quintic splines
(Manolo and co-workers), a fourth order polynomial (Ma and co-workers), or substi-
tution by STOs (Manten and Lüchow), among other approaches [164, 168, 169]. An
illustration of the idea is shown in Fig. 13.4, where replacement within some �nite
cuto� rcuto� yields a smooth second derivative à la the STO.

Performing any form of cusp correction is unfortunately outside the scope of the
present work. This means we are consigned to work with Slater type orbitals for
VMC in the main body of this thesis.

13.6 Blocking

A short example of the blocking procedure is shown in the following. We consider the
Be atom with an STO Slater-Jastrow wave function. Running 106 Monte Carlo cycles
yields an energy of E = −14.4937Eh with a naive non-blocking estimate of the
standard deviation of σ(1) = 0.00137Eh. We de�ne in the following σ(b) to denote
the value of the standard deviation, calculated with a block size b. The calculated
blocking deviations are shown in Fig. 13.5, where we note a clear initial increase and
a subsequent plateau.

As demonstrated by Flyvbjerg and Petersen, we interpret the (approximate) point
at which the plateau starts to be an estimate of the correlation time τ [131]. In this
case, that appears to be around b = 1500. The blocking estimate for the true standard

Section 13.6 Blocking 195

deviation thus becomes σ(1500) = 0.011, and the energy can be presented as

E = −14.494Eh ± 0.011Eh. (13.16)

Once the correlation length is known for a system, it is reasonable to assume the
same correlation length holds for similar systems. For this reason, the actual blocking
procedure needs only be performed a handful of times. When the correlation length is
known for a particular system (or one closely related), the calculation of the blocking
variance and standard deviations can be done on the �y directly in the C++ code. In
order to avoid having to perform blocking too many times, we use a modest over-
estimate of the correlation length τ in the present work. This over-estimate is then
used for numerous more or less similar systems. This comes at the cost of essentially
reporting under-estimates of the real accuracy of our program.

Chapter 14

Neural Network validation tests

14.1 Single variable curve �t
The natural place to start the testing of our Neural Network potential �tting scheme
is with a simple function of a single variable, f : R → R. As an initial test, the
speci�c functional form is of little importance. However—in the spirit of the present
context—we choose a Lennard-Jones (LJ) parameterization,

VLJ(r) =
1

r6
− 1

r12
. (14.1)

For the moment we forget about the normalization, and the scaling of the distances
by the usual σ parameter. Using a simple network structure of a single hidden layer
consisting of 10 neurons, we train for 103 with a data set consisting of 106 samples
of the LJ potential for 0.9 ≤ r ≤ 1.6. The resulting network output and training
details are shown in Fig. 14.1. We note the network output and the training data
coincide—approximately—perfectly after 1000 epochs of training, with the average
squared di�erence between the validation points and the true potential is on the order
of 10−7.

From the bottom graph of Fig. 14.1, it is clear that an overall minimum has not yet
been reached: the cost is still steadily decreasing (albeit slowly).

14.2 Approximating noisy data
When performing ab initio calculations using VMC the results will always be slightly
distorted due to the statistical nature of the method. The statistical errors can be made
arbitrarily small by increasing the sampling set, but for a �nite number of Monte
Carlo samples, it will never be identically zero1. Because of this, it is inherently es-

1Assuming for the moment that the true wave function is not known, in which case any number
of cycles would give zero statistical error.

197

198 Neural Network validation tests Chapter 14

1 1.1 1.2 1.3 1.4 1.5 1.6

-0.2

0

0.2

0.4

0.6

0.8

1 1.1 1.2 1.3 1.4 1.5 1.6

-0.2

0

0.2

0.4

0.6

0.8

1 1.1 1.2 1.3 1.4 1.5 1.6

-0.2

0

0.2

0.4

0.6

0.8

1 1.1 1.2 1.3 1.4 1.5 1.6

-0.2

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000
10-1

100

101

102

103

104

Figure 14.1: Samples showing the training of an ANN on samplings of the
Lennard-Jones potential between 0.9 ≤ r ≤ 1.6. The evolution of the net-
work output with increasing epochs is shown (top) in addition to the cost as a
function of epoch (bottom).

Section 14.3 Approximating noisy data 199

1 1.1 1.2 1.3 1.4 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

Figure 14.2: Example data set created to
contain noise of di�erent frequencies, as de-
scribed in section 14.2. The red curve is the
one used for the training described in the
same section.

sential that our ANN potential is able to perform it’s job in the presence of noisy
data.

Thus, in order to test the suitability of our model in the presence of noise, we
generate a sine curve with Gaussian noise. Since we ideally want the NN to be able
to handle noise of a wide range of frequencies, we add the random �uctuations of
di�erent frequencies. In order to easily generate such a data set, we start from the
Fourier coe�cients of the data. We want the data to not be dominated by noise, so
we set a2 = 1, and then take

ak ∝ N

[
0,

1

2k

]
, for k = 30, 31, . . . , 99, 100. (14.2)

TheN(µ, σ) denotes a random Gaussian of mean µ and standard deviation σ. Taking
the real inverse Fourier transform of the α vector, f(x) ≡ F−1[α] now yields a sine
curve with random noise of di�ering frequencies. An exmaple of such a data set is
shown in Fig. 14.2.

For the training we use a neural network consisting of a single layer of 20 neu-
trons. A selection of training snapshots are shown in Fig. 14.4. Also shown is the
magnitude of the cost function plotted versus the epoch number. In order to vali-
date the training, we use a separate set of data points—which the NN is never trained
on—to check the state of the training. Since we are interested in a network solution
independent of the noise, only capturing the underlying shape, we use a validation
set with the same structure but with di�erent noise. For simplicity, we use the data
set shown in red in Fig. 14.2. We note that the cost functions relative to both data
sets fall o� in mostly the same fashion, with an apparen’t slight di�erence in the fully
trained state.

Crucially, we see no signs of over-training, which would cause the NN output to
begin to follow the structure of the training data noise. Over-training can be seen
from the contiuing fall of the cost function relative to the training data, with a si-
multaneous increase in the cost function relative to the validation set. We note that
the randomization of the order of the training input, aswell as the online learning
scheme e�ciently counteracts the over-training phenomenon in the current model.

200 Neural Network validation tests Chapter 14

Figure 14.3: The radial part of the SW molec-
ular dynamics potential, used as an example
data set for multi-variable potential �tting.
The set contains combinations of r1 and r2 val-
ues for 0.8 < r < a = 1.8.

14.3 Multi-variable �tting
So far we have tried single-variable functions only. In the following, we explore the
performance of our ANN model as a multi-variable curve �tting tool. We choose—entirely
arbitrarily—a functional form based on the Stillinger-Weber (SW) molecular dynam-
ics potential, originally developed to model Si interacting atoms [170]. We consider
con�gurations of three Si atoms, indexed by i, j, and k. For simplicity, we use only
the radial component, holding the θijk angle constant at π/2. The radial part of the
SW potential (in units of the ε parameter) takes the form between

V (ri, rj, rk) = φ(rij) + φ(rik) + φ(rjk), (14.3)

with

φ(r) ≡

A

(
B

r4
− 1

r

)
exp

[
1

r − a

]
for r < a

0 for r ≥ a

(14.4)

We use the parametersA = 7.049556277 andB = 0.6022245584 according to Stiller
and Webers original suggestions, with the distance scaling a = 1.8.

The training data set is shown in Fig. 14.3. We use a grid of rij and rik values
with 0.8 ≤ r ≤ a. For the training, we set up a NN with three layers of 20 neurons
each. We allow the training to run a set of 106 samples of the potential V (r1, r2) for
a total of 104 epochs. The training is visualized in Fig. 14.5, from which we note that
the resulting network output is indistinguishable from the training set of Fig. 14.3.
From the cost evolution we conclude that the ANN model we implement is able to
also approximate multi-dimensional data sets satisfactorily.

Section 14.3 Multi-variable �tting 201

1 1.1 1.2 1.3 1.4 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

1 1.1 1.2 1.3 1.4 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

1 1.1 1.2 1.3 1.4 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

1 1.1 1.2 1.3 1.4 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

1 1.1 1.2 1.3 1.4 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

0 2000 4000 6000 8000 10000

102

103

Figure 14.4: Training snapshots for the noisy data test of section 14.2. The
training set is shown in blue, while the NN output is shown in red. The epoch
number—denoting the length of the training—is inset for each graph. The bottom
right plot shows the evolution of the cost function—‖y − ŷ‖2—as a function of
the epoch number for the training data and the separate validation set.

202 Neural Network validation tests Chapter 14

100 101 102 103 104
10 -1

100

101

102

103

104

105

106

107

Figure 14.5: Example network trained to approximate the radial SW potential
shown in Fig. 14.3. The absolute error w.r.t. the training data (top) and the net-
work output post training (bottom left) is shown, as well as the evolution of
the cost as a function of epoch number (bottom right). We note that the func-
tional form of the output from the network is indistinguishable from the train-
ing set shown in Fig. 14.3. The approximation error is on the order of ∼ 0.005ε
for the interior points, but increases some towards the edges of the training set.
Note that the validation cost closely follows the training cost, indicating no over-
training is happening.

Section 14.4 Training on ab initio data 203

14.4 Training on ab initio data
Out �rst foray into the use of ab initio data will be a case study of the required amount
of data. Since QM calculations are exceedingly expensive from a computational per-
spective, it is interesting to explore how many calculations we need to perform in
order to have enough data to train a ANN adequately. For this test we employ the
H2

+ data set—presented in section 12—at the 6-311++G** level.
In order to explore the training behaviour of the NN on small data sets, we train

di�erent networks using only parts of the complete data set, but retain—crucially—the
complete set for validation. In Fig. 14.6 we present data from training runs using
N = 50, 75, 100, . . . , 475, 500 total data points. The removal of training pairs is done
by excluding a given number of data points at random:

xData = np . asarray (inputFileData) . reshape ([dataSize , s e l f . inputs])
i f N < dataSize :

I f the requested size is smaller than the total data size , we prune
the set at random.
toRemove = dataSize – N
toRemove = np .random . choice . (np . arange (dataSize) ,

toRemove ,
replace=False)

xData = np . delete (xData , toRemove)

This ensures we are still training on a representative subset of the full data set.
From the visualizations of Fig. 14.6, it is clear that handling small data sizes is

something our model handles in stride. While the larger sizes perform better on the
whole, the statistical nature of the initialization and training process seems to intro-
duce a signi�cant variance in the resulting network quality. We note that in general,
the sizes ≥ 200 all achieve comparable performance w.r.t. the total cost function,
with the only outlier being the NN trained on the smallest data set. This fact that
none of the cost function graphs appear to have plateaued completely indicates two
things: Primarily, 104 epochs may not be su�cient training time for small data sets.
Secondly, comparing the results of the bottom right hand plot with the top right hand
one, shows that a small cost function value is not neccesarily synonymous with being
able to reproduce critical parts of the functional form.

The "so far" minimum—shown in the bottom right hand side of Fig. 14.6—is de�ned
at epoch #t as

min(cost) so far ≡ min{costk : k ≤ t}, (14.5)

i.e. at step t the minimum so far is the minimum across all steps prior to (and includ-
ing) t.

204 Neural Network validation tests Chapter 14

2 3 4 5 6

-0.6

-0.59

-0.58

-0.57

-0.56

-0.55

-0.54

-0.53

-0.52

-0.51

1.85 1.9 1.95 2 2.05 2.1 2.15

-0.6015

-0.601

-0.6005

-0.6

-0.5995

100 200 300 400 500

10-5

10-4

10-3

2000 4000 6000 8000 10000

10-5

10-4

10-3

10-2

10-1

Figure 14.6: Overview of the e�ect of small sample sizes on the ANN training
process. The trained functional form, along with the training data is shown in the
top left, with a magni�ed inset around the minimum shown top right. Further,
the �nal minimum of the cost function for each data set size (bottom left), and
the minimum attained so far is shown as a function of the epoch time (bottom
right).

Chapter 15

Validation: ANN potentials in
MD—the full framework

It is now time to put all the pieces together, and demonstrate the full work�ow of
the multiscale modelling framework. Please note carefully that this may be regarded
as nothing more than a preview, as time did nor permit a thorough regime of tests
to be ran with ab initio data. In the following, molecular dynamics simulations will
be performed using the LAMMPS1 program [171]. Neither MD simulations, nor the
usage of LAMMPS will be discussed in any signi�cant detail in the present work.
For information on the former, the book by Frenkel and Smit provides an excellent
reference [172]. For the latter, the Masters theses of Stende and Treider provide (in
some detail) an accessible introduction to the usage of the LAMMPS code [1, 2]. Using
the ANN potentials in LAMMPS necessitates extending the LAMMPS code with a
new pair_style. The developed extension can be found on the author’s github site,
github.com/mortele, along with the run scripts used to set up the simulations.

It is natural to �rst test whether or not the ANN potential trained according to
some classical e�ective potential parametization can reproduce the results of said
potential. For this we will use one of the simplest possible MD potentials, namely
the Lennard-Jones (LJ) "12-6" potential [173]. In terms of the two parameters ε and
σ—describing the depth of the potential and the length at which it vanishes, respec-
tively—the LJ potential takes the form

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (15.1)

For the moment we will deviate from the atomic units used elsewhere in this thesis,
and scale our units according to ε = σ = 1. In practical MD simulations—to avoid the

1LAMMPS is an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator, the name
of an open source massively parallel molecular dynamics code base written in C++. It is available for
download at http://lammps.sandia.gov/index.html.

205

github.com/mortele
http://lammps.sandia.gov/index.html

206 Validation: ANN potentials in MD—the full framework Chapter 15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
-1

-0.5

0

0.5

1

1.12 1.125 1.13

-0.984

-0.982

-0.98

1 1.5 2 2.5

-3

-2

-1

0

1

10-4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

-40

-35

-30

-25

-20

-15

-10

-5

0

5

1.1101 1.11015 1.1102

-0.792

-0.79

-0.788

-0.786

1 1.2 1.4 1.6 1.8 2 2.2 2.4

-5

0

5

10

10-3

Figure 15.1: The ANN output after 80 000 epochs of training. The training data
is a shifted Lennard-Jones potential with cuto� at 2.5σ. The raw network output
is shown and compared to the LJ data (top left and top right), and the same
comparison is made for the gradient (bottom left and bottom right). We note
that the ∇V (r) − ∇NN(r) di�erence is approximately one to two orders of
magnitude larger than the corresponding V (r)− NN(r) gap.

naiveO(N2) scaling with the number of particles N—partitioning schemes are used
which limit the range of the interactions to a �nite cuto� rcut. This introduces a dis-
continuity in the energy at rcut, which can be removed by shifting the entire potential
by VLJ(rcut) (note that such a shift does not a�ect the dynamics as the dynamics all
derive from the gradient of the potential which remains unchanged under a shift).
A shift makes the potential continuous, but leaves the �rst derivative discontinuous.
This means we need to choose a rcut large enough that the potential has died out, and
become �at. A standard choice for the ε = σ = 1 LJ potential is rcut = 2.5, which
we will adopt here. The value of the potential derivative—the force—at this cuto� is
F (rcut) = −0.039, which we deem su�ciently small for our purposes.

A 10 000 sample data set of VLJ(r) values between 0.88 ≤ r ≤ 2.5 were computed
and fed into an ANN of two layers with 20 neurons in each. The training was allowed
to run for 80 000 epochs. Training results are shown in Fig. 15.1, where we note that
the error in the gradient exceeds the error in the potential by one to two orders of

207

102 103 104

10-2

100

102

104

Figure 15.2: Evolution of the training and
validation cost across 80 000 epochs of train-
ing. We note no signs of over-training.
The smoothing procedure described in sec-
tion 14.4 is used in order to make clear the
behaviour of the cost, C , as a function of the
epoch number.

magnitude. This is simply because the NN is not trained on the gradient directly2.
The evolution of the cost function over the training epochs is shown in Fig. 15.2.

As a �rst test, we consider a Lennard-Jones liquid at temperature (in LJ units)
T = 0.2. We set up a LAMMPS simulation with 4 000 atoms starting in a face cen-
tered cubic lattice con�guration (in a simulation bos of size 10 × 10 × 10 with pe-
riodic boundary conditions), and then allow it time to melt. 10 000 time steps are
done initially for thermalization, with 10 000 subsequent time steps performed for
measurements (at time step ∆t = 0.001, again in LJ units). For a simple comparison,
we consider the pair correlation function (or radial distribution function) g(r). The
pair correlation function at distance r is de�ned as the (particle) number density at
a distance r from an particles, averaged over all particles (and normalized such that
g(r)→ 1 as r becomes large) [172]. For the LJ liquid, g(r) is essentially zero up until
around the zero point of the potential, at r = 1. A peak occurs at the minimum of the
potential, before it falls o� towards unity. A comparison of the pair correlation func-
tion computed with the ANN approximation and the LJ potential directly is shown
in Fig. 15.3. We note that they appear to coincide almost perfectly.

Another test of the validity of the ANN potential as utilized in MD simulations
is to consider the energy. In order to do a direct comparison with the ordinary LJ
potential, we consider the single-particle (potential) energy, ε, de�ned as

εi =
N∑
j=1
j 6=i

V (rij) =
i∑

j=1

V (rij) +
N∑

j=i+1

V (rij). (15.2)

The single-particle energy is related to the full potential energy Ep by
N∑
i=1

εi =
N∑
i=1

N∑
j=1
j 6=i

V (rij) = 2
N∑
i=1

N∑
j=i+1

V (rij) = 2Ep, (15.3)

2A possible extension to the work done in this thesis is implementation of such a training scheme
involving the potential and the gradient. This is sometimes called the Combined Function and Deriva-
tive Approximation (CFDA), see e.g. Pukrittayakamee and co-workers [174]

208 Validation: ANN potentials in MD—the full framework Chapter 15

Figure 15.3: The pair correlation function,
g(r), calculated during a MD simulation with
LAMMPS. A total of 4 000 atoms are simu-
lated, using a standard shifted Lennard-Jones
potential with cuto� at 2.5σ, and an ANN po-
tential trained on the LJ data.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

since the sum over the single-particle energy counts every interaction twice.
Picking an arbitrary atomic index3 and following the corresponding atom during

the MD time evolution results in the single-particle energies shown in Fig. 15.4. We
note that the energies of the LJ and ANN potentials mirror each other for about the
�rst 2 000 but later drift apart. After a su�ciently long time, the two appear com-
pletely uncorrelated. This does not mean—crucially—that the total energy drifts. It
means just that the energy in the ANN simulation is distributed di�erently across the
particles than in the corresponding LJ simulation. A simple test shows that the total
energy does drift slightly when using the ANN potential, but the variations are on the
same order as the corresponding drift in the energy of the LJ potential simulations.

A snapshot of the simulation (after 10 000 time steps) is shown in Fig. (15.5, left),
with the particle we are computing the energy for indicated.

Next, let us brie�y consider the solid state of the Lennard-Jones system. For low
tempratures, T < Tmelt, the face centered cubic (FCC) lattice is a stable con�guration
of the Lennard-Jones system. It it thus interesting to verify that this structure is in-
deed stable also when running the simulations with the ANN potential. A quick test
shows qualitatively that this holds. Shown in Fig. (15.5, right) is a snapshot taken
of the ANN solid, after 1 000 time steps (with 10 000 thermalization steps ran prior).
We note the characteristic symmetry lines indicating the crystalline structure is pre-
served.

3For the record: index 2412.

209

0 500 1000 1500 2000 2500
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

Figure 15.4: Example time evolution of the one-atom energy, ε. The ANN po-
tential mimics its LJ counterpart perfectly for more than 1 500 time steps, but
eventually the subtle gradient di�erences push the curves apart. After a signi�-
cantly longer time, the two curves will appear completely un-correlated due to
the amplifying e�ect of propagating gradient di�erences.

Figure 15.5: A snapshot of the atom for which the single particle energy ε is
shown in Fig. 15.4 (left) and a sample con�guration for a solid, with T < Tmelt
calculated with the ANN potential (right). Particles are shaded according to their
distance from the center of the simulation box. The total number of atoms is
4 000 in both cases, but the right hand side plot has three periodic images show-
ing in x, y, and z-directions.

Part IV

Conclusions and future work

211

Chapter 16

Conclusions and perspectives

The aims of this project were to implement a general multiscale modelling framework
capable of bridging QM and microscopic physics by using arti�cial neural networks.
This has been done, and the framework has been validated. It is straightforward
to employ the present framework with codes like LAMMPS. As LAMMPS permits
working directly in atomic units (by the units electron command), ANN potentials �tted
to HF, DFT, or VMC calculations can quite literally be used directly in MD simulations
of tens of thousands of atoms.

As explained in chapter 1, schemes allowing the quantum mechanical accuracy to
be brought into the domain of the microscopic—without the crippling computational
scaling of �rst principles quantum methods—are of enormous scienti�c value. Many
modern problems in the natural sciences involve multiscale phenomena, with phys-
ically important features across multiple (potentially very) di�erent length and time
scales. Accurate ab initio quantum mechanical computations are in practice limited
to systems of < 1 000 atoms wih length scales of few nanometers. The length scales
involved in modelling of e.g. biological systems of interest may be on the order of ten
nanometers, while for example exploring interfacial e�ects between grains in com-
posite materials may require hundreds of nanometers. Ignoring quantum e�ects in
such systems may very well yield qualitatively wrong results, while the direct appli-
cation of quantum calculations may be unrealistic at best.

This lies at the heart of multiscale modelling. Calculations based on �rst principles
are oftentimes untenable, while macroscale techniques do not o�er the required accu-
racy. In this thesis we have demonstrated the feasibility of performing multiscale sim-
ulations—by bridging �rst principles quantum mechanics and machine learning—and
implementing a general computational framework in which such simulations can be
run. Crucially, our framework is (nearly) parameter-free in the sense that the result-
ing simulations depend very weakly on the parameters directly put in "by hand." The
one signi�cant human input used is the choice of orbital basis sets and—in the case
of the quantum Monte Carlo scheme—the form the correlation part of the wave func-
tion ansatz. For both HF and VMC, the roles of the basis size and the wave function
ansatz impact the resulting PES. In principle, it is possible to include, in a systematic

213

214 Conclusions and perspectives Chapter 16

way, more and more accurate wave function bases.
Most classically parametrized molecular dynamics potentials fail rather quickly

when taken outside the regime they were optimized for. For example, a potential
�tted to reproduce the thermodynamic properties of liquid water may fail spectacu-
larly to reproduce those of ice. The machine learning approach has the potential to
be general, in the sense that it can in princple handle any physical system for which
ab initio calculations can be done on the constituent parts. This of course represents
a potentially enormous advantage over the traditional approach.

The validation results performed in the present work indicate that the full ma-
chinery is working well. The Hartree-Fock program has been compared to similar
codes, and our results agree well in all cases with the existing scienti�c literature.
For all tested atoms and small molecules, the energy is found to be within 0.04% of
the Hartree-Fock limit. Direct comparison with the literature is harder in the case of
the variational Monte Carlo program, because we use a wave function parametriza-
tion which is much less �exible than most researchers in the �eld use. Despite this, we
�nd a di�erence (w.r.t. reference litterature) on the order of 1% for atomic systems,
and about twice that for molecular systems. The Gaussian basis sets (approximating
Slater type and hydrogenic orbitals) reproduce the energies of the underlying basis
set to within 0.1%, but results for the Ne atom deviate by about 1%. The trained
neural networks perform well, approximating the underlying potentials with errors
on the order of 0.001% (relative magnitude of the cost function per sample divided
by the function value). When noise is present, the relative errors predictably increase
some. For the multivariable networks, the relative error was shown to be on the or-
der of 0.001% also. The ANN was shown to be able to do its job, even when the
set of training data was small. Lastly, simple MD calculations showed that the ANN
potentials can reproduce the results of classically parametrized potentials.

The comprehensive nature of this thesis means we have only just scratched the
surface of possibilities. The possible extensions of the present work fall naturally
into two groups: improving or extending. There is a very natural possible extension
to the present work in the form of testing and implementing the density functional
code into the larger multiscale computational framework. This can be considered
"low-hanging fruit" in the sense that not much work is needed in order to obtain
interesting results. In addition to this, applying the framework in full to physically
interesting systems is an obvious next step.

Work involved in the former category would entail optimizing and stream-lining
the developed QM calculation code in order to facilitate applications on heavier sys-
tems. Currently, the Hartree-Fock program is limited to about 100 total basis func-
tions per calculation with reasonable speed. The quantum Monte Carlo code—being
an inherently slower scheme—is currently limited to only a small handful of �rst and
second row atoms per calculation. Only light pro�ling and optimization has been

215

performed for the present work, leaving a large body of possible computational im-
provements open.

In addition to simple optimization, there are numerous ways in which small as-
sumptions and simpli�cations can be employed to drastically speed up ab initio cal-
culations. Techniques for Hartree-Fock involve e.g. integral pre-screening, density
�tting, early density contraction, or multipole techniques for handling longer range
interactions, among many others. Ultimately, this leads to a near linear HF scheme.
For VMC, possbilities involve for example using a more sophisticated optimization
algorithm, including pseudo-potential replacement of core electrons, or proper inclu-
sion of HF orbitals. For the DFT code, the single bottleneck currently is calculating
four center interaction elements for the Coulomb interaction. Unless some fraction
of exact exchange1 is needed in the exchange-correlation potential, these integrals
can be computed orders of magnitude more e�ciently by a Poisson solver technique.

The second category of extensions to the present work may include e.g.

More precise ab initio calculations.
The accuracy of the ab initio energy parametrization (in terms of nucleonic
coordinates) is of crucial importance to the overall predictive power of the
multiscale modelling framework described in this thesis. Therefore a natural
augmentation of the present work is either applying more sophisticated QM
calculations, or improving the accuracy of the VMC scheme by parametrizing
more complicated wave function ansatzes (three-body and higher order Jas-
trow factors, multicon�gurational Slater determinant, etc.).

ANN parametrization of e�ective three-body (and higher order) interactions.
Only the most rudimentary potential energy surface (PES) �tting was done in
this thesis. As demostrated in chapter 10, the extension to higher dimensional
energy hypersurfaces is in principle straight forward. As most molecular dy-
namics systems of interest depend critically on e�ective three(or higher)-body
interactions, an obvious extension of the current work is inclusion of such
terms in the ANN training and subsequent MD simulations.

Implementing the Behler-Parrinello method.
Taking the previous point to the extreme, we may do away with the e�ective
two-body, three-body, etc. parametrization entirely. Instead, we may compute
the ab initio energy of the atoms in their chemical environment directly. This
involves QM calculations currently inaccessible to the codes developed in the
present work (they would be unfeasibly slow), but are in principle possible
after some optimization. Since the calculated energies exhibit a high degree of
symmetry w.r.t. rotations and interchange of atoms, processing them through

1This is an example of awful but widespread notation. The K̂ operator represents the exact ex-
change only under the assumption of a single-Slater Hartree-Fock wave function, and not (as the name
might imply) the exact exchange energy functional for the true wave function.

216 Conclusions and perspectives

so-called symmetry functions is necessary prior to ANN training. For more
information, see [1, 2].

Devise an e�cient strategy for sampling the needed molecular con�gurations.
Sampling the PES on a grid is almost certainly not the most e�cient scheme
for generating training data inputs to the ANNs. A relatively standard way
to �nd which con�gurations to sample is to run hybrid MD simulations (e.g.
Car-Parrinello or Born-Oppenheimer MD) on small systems, and picking ap-
pearing geometries in some random fashion. Based on this approach it might
be prudent to devise a Markov chain scheme in which a "walker" traverses the
con�guration space of nucleonic coordinates. This should be able to exploit the
fact that a fully converged HF density matrix, or a fully optimized VMC ansatz
for a set of nuclei at positions R is an excellent starting point for the solution
at R + ∆R for "small" nucleonic displacements ∆R.

Appendices

217

Appendix A

Natural units: Hartree atomic units

When working within a speci�c branch of physics, it is often useful to deviate from
the every-day SI units of measurements and instead use units which are natural to
the systems under study. Since we are working with "small" systems, the SI meter,
second, kilogram, and coulomb are of little use to us. Instead we will work in a system
of units in which we de�ne the mass of the electron, me, to be the scale by which we
measure all other masses. This obviously means the numerical value of the electron
mass becomes unity, me = 1. In the same way, we will use Planck’s constant, ~, as
the scale by which we measure angular momentum and action, the electron charge,
e, will be our scale for electrical charge, and �nally Coulomb’s constant, ke, will be
our scale of electric permittivity.

The usual way to state this is to set ~ = e = me = ke = 1, and the system of
units derived from these four de�nitions is called Hartree atomic units. We can think
of this as the natural system of units for the Hydrogen atom system. To better see
why this is the case, let us combine these four quantities in such a way as to produce
a length.

In terms of the four fundamental dimensions of physics: Length(L), time(T), mass(M),
and charge(C), the units of ~, me, e, and ke are [~] = ML2T−1, [me] = M, [e] = C,
and [ke] = ML3C−2T−2, respectively. Combining arbitrary powers of these four
constants gives

[λ(a, b, c, d)] =
[
kae~bmc

ee
d
]

=
(
MaL3aC−2aT−2a

) (
MbL2bT−b

)
(Mc)

(
Cd
)

= L2a+3bT−a−2bMa+b+cC−2b+d. (A.1)

There is exactly one way to realize a length from these exponents, i.e. solving the
four equations 2a+ 3b = 1, −a− 2b = 0, a+ b+ c = 0, and −2b+ d = 0: a = −1,
b = 2, c = −1, and d = −2. This means that the natural length scale of our problem
is simply (up to a numerical constant)

Lscale = a0 = k−1
e ~2m−1

e e−2 =
~2

kemee2
=

4πε0~2

mee2
, (A.2)

219

220 Natural units: Hartree atomic units Chapter A

which re recognize as simply the Bohr radius.
We can go through this same exercise to �nd a natural time scale for our system.

There is a unique way to combine the exponents a, b, c, and d in order to realize a
time, namely a = −2, b = 3, c = −1, d = −4, or

Tscale = k−2
e ~3m−1

e e−4 =
~3

k2
emee4

=
~a0

kee2
. (A.3)

This is the revolution time of an electron in the lowest lying hydrogen state in the
Bohr model (apart from a factor of 2π).

From a0 and Tscale we can �nd the natural energy scale,

Escale = me
a2

0

a2
0

(
~

kee2

)2 =
mek

2
ee

4

~2
≡ Eh, (A.4)

which we will call a Hartree.
Finally, before we go on we may use the expression for the �ne structure constant

to �nd the numerical value of c in this system. From

α =
kee

2

~c
⇒ c =

kee
2

~α
=

1

α
' 137, (A.5)

after substituting ~ = e = ke = 1.

Appendix B

Basics of numerical integration

Riemann integral and Riemann integrable functions
Given a function f(x) and a closed �nite subset of R, [a, b] with a < b, a Riemann
sum of f is de�ned as the sum of values attained on n sub-intervals of [a, b], i.e.

Sn =
n∑
i=1

(xi − xi−1) fi. (B.1)

The xis here de�ne the partitionining into sub-intervals [xi−1, xi] (i.e. a = x0 < x1 <
· · · < xn−1 < xn = b), while fi ≡ f(ξi) with ξi some point in sub-interval i.

A su�cient condition for the Riemann integral to exist for the function f is that
any such sum (any choice of xi [for which maxi |xi− xi−1| → 0] and ξi) converge to
the same value in the limit n→∞ [175]. In this case we say

lim
n→∞

Sn = S =

∫ b

a

f(x) dx, (B.2)

and that f is Riemann integrable.
A less strict, but still su�cient condition is to chose fi = max{f(x) : x ∈

[xi−1, xi]} and fi = min{f(x) : x ∈ [xi−1, xi]} and then only demand that the
two sums converge to a common limit [176],

lim
n→∞

Sn = lim
n→∞

n∑
i=1

(xi − xi−1)fi

= lim
n→∞

n∑
i=1

(xi − xi−1)fi = lim
n→∞

Sn

=

∫ b

a

f(x) dx.

Although easier than checking every possible Riemann sum, checking that the
two upper and lower sums converge to a common limit is still a somewhat tedious

221

222 Basics of numerical integration Chapter B

procedure for checking integrability. In fact it turns out that a su�cient condition
on f is that it is continuous and bounded on [a, b] [175]. The latter condition is not
necessary on a �nite interval since all continuous functions on a closed �nite domain
are bounded according to the extreme value theorem. However, if we extend the
limits of integration to an in�nite interval, for example [0,∞), then the boundedness
of f is not guaranteed by the continuity we need to explicitly demand |f(x)| < ∞
for all x ∈ [a, b].

It is easy to see that the converse is not true. Any Riemann integrable function is
not automatically continuous. Take for example the integral over [0, 1] with the step
function

f(x) =

{
1 if x > 1/2
0 else . (B.3)

Even though the upper and lower Riemann sums both attain the value 1/2 in the limit
n→∞ and the function is Riemann integrable, it demonstrably is not continuous. A
more careful analysis shows that a less strict but su�cient condition on f is that it be
continuous almost everywhere on [a, b] (i.e. continuous on all of the interval, except
possibly on a subset C ⊂ [a, b] with measure zero) [134]. With this condition, the
converse also holds.

Newton-Cotes quadrature
Since the Riemann integral is de�ned in terms of the limit of a sum, numerical approx-
imations to it arise naturally from any scheme for choosing ξi and the partitioning.
One of the simplest possible approximations is to take the midpoint value of each
sub-interval to be ξi with a uniform mesh of equispaced xis. This constitutes the
midpoint rule [175],

I ≈
n∑
i=1

f(xi−1 + ∆x/2)(xi − xi−1) = ∆x
n∑
i=1

f(xi−1 + ∆x/2), (B.4)

where ∆x ≡ (xi − xi−1) which is the same for all i.
Instead of the midpoint, we can use the average of the left and right endpoints of

the subinterval as fi. Geometrically, this means we are approximating the integral of
each sub-interval by the integral over a right trapezoid with base points at (xi−1, 0)
and (xi, 0) and upper point at the function values (xi−1, f(xi−1)) and (xi, f(xi)). The
resulting approximation is known as the trapezoidal rule [16],

I ≈
n∑
i=1

f(xi−1) + f(xi)

2
(xi − xi−1) = ∆x

n∑
i=1

f(xi−1) + f(xi)

2
. (B.5)

Yet another numerical scheme arises from replacing the integrand in each sub-
interval with an interpolating polynomial of degree two, which by construction co-
incides with f at the endpoints and the midpoint. This constitutes Simpson’s rule

223

[175],

I ≈
n∑
i=1

(xi − xi−1)

(
f(xi−1

6
+

4f(xi−1 + ∆x/2)

6
+
f(xi

6

)
=

∆x

6

n∑
i=1

(
f(xi−1) + 4f(xi−1 + ∆x/2) + f(xi)

)
. (B.6)

All three approximations are examples of Newton-Cotes quadrature rules, which
approximate the integral by replacing the integrand by interpolating polynomials of
order k on each of the n sub-intervals. We can build arbitrarily high order methods
by constructing higher order interpolating polynomials within each interval. The
interpolation procedure is described for example in [177]. We have just seen Newton-
Cotes method for orders zero (midpoint rule, zero order polynomial [constant]), one
(trapezoidal rule, linear polynomial), and two (Simpson’s rule, quadratic polynomial).
The next few commonly used methods are the third order Simpson’s 3/8 rule and the
fourth order Boole’s rule.

Gaussian quadrature
Note that so far we have assumed the sub-intervals to all be the same size. If we
drop this requirement, we can construct more advanced rules which exploit some
convenient properties of orthogonal polynomials. Gaussian quadrature rules are a
set of schemes for numerical intergration in which we extract a weight function from
the integrand ∫ b

a

f(x) dx =

∫ b

a

W (x)g(x) dx ≈
n∑
i=1

wig(xi). (B.7)

The weight function is associated with a set of orthogonal polynomials, and the in-
tegration points xi are chosen as the zeros of the polynomial of degree n − 1. Note
carefully that wi 6= W (xi). The weights wi can in general be expressed as [178]

wi =

(
an
an−1

) ∫ b
a
W (x)pn−1(x)2 dx

p′n(xi)pn−1(xi)
(B.8)

where pn(x) is the orthogonal polynomial of degree n and an is the coe�cient of
the xn term in pn(x). In some cases, the weight function is present in the original
integral and the extraction constitutes a strict simpli�cation of the function. For ex-
ample, with Chebyshev polynomials1 the weight function takes the form W (x) =

1The Chebyshev polynomials are solutions to the di�erential equation

(1− x2)
∂2y(x)

∂x2
− x∂y(x)

∂x
+ n2y(x) = 0, (B.9)

224 Basics of numerical integration Chapter B

1/
√

1− x2, so trying to apply Gauss-Chebyshev quadrature to the integrand (x10 +
x + 2)/

√
1− x2 would yield simply g(x) = x10 + x + 2 and we would just have

to evaluate gi according to the zeroes of the nth Chebyshev polynomial. Each class
of polynomials is associated with a speci�c interval of integration. For Chebyshev,
this is [−1, 1]. So using our previous example, we note that with only 3! integration
points (exclamation point for emphasis and factorial function) we integrate exactly

I ≡
∫ 1

−1

x10 + x+ 2√
1− x2︸ ︷︷ ︸
≡f(x)

dx =
6∑
i=1

wi (x
10 + x+ 2)︸ ︷︷ ︸

g(x)

=
575π

256
. (B.11)

In general, if g(x) is a polynomial of degree 2n − 1 for a weight function associ-
ated with some class of orthogonal polynomials, then the gaussian quadrature rule
associated with the same class of polynomials will integrate the original f(x) (recall
that g(x) = f(x)/W (x)) exactly with only n integration points [16].

Multiple integrals

Both of the aforementioned rules are straight forward to extend to higher dimensional
integrals. For the Newton-Cotes rules, we can simply apply the rule again to the sum
resulting from the application of the rule, i.e.

I2D =

∫ b

a

∫ b

a

f(x, y) dx dy ≈
∫ b

a

n∑
i=1

∆xf(ξi, y) dy

≈
n∑
i=1

n∑
j=1

∆x∆yf(ξi, ζj). (B.12)

Since function evaluations on the endpoints of sub-intervals (sub-areas to be precise)
coincide with the endpoints of the neighbouring sub-intervals, a number of points
may be evaluated multiple times and thus have a higher weight in the �nal sum. For
example, the 1D trapezoidal rule carries weights

1/2 1 1 1 . . . 1 1 1 1/2, (B.13)

with n a non-negative integer. In general, the solution can be written as [74]

Tn(x) =

b1/2c∑
k=0

(
n

2k

)
(x2 − 1)xn−2k. (B.10)

225

since

∆x

2

n∑
i=1

(
f(xi−1 + f(xi)

)
=

∆x

2

[
f(x0) + 2

n−1∑
i=1

(
f(xi) + f(xi+1)

)]

=
∆x

2

[
f(x0) + 2

(
n−1∑
i=1

f(xi)

)
+ f(xn)

]
=

∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−2) + 2f(xn−1) + f(xn)] .

(B.14)

In a similar way, the 2D trapezoidal rule has the weights

1/2 1 1 1 . . . 1 1 1 1/2

1 2 2 2 . . . 2 2 2 1
1 2 2 2 . . . 2 2 2 1
...
1 2 2 2 . . . 2 2 2 1
1 2 2 2 . . . 2 2 2 1

1/2 1 1 1 . . . 1 1 1 1/2 ,

(B.15)

while the 2D Simpson’s rule attains the weights (apart from a factor 1/6)

1 4 2 4 2 . . . 2 4 2 4 1
4 16 8 16 8 . . . 8 16 8 16 4
2 8 4 8 4 . . . 4 8 4 8 2
4 16 8 16 8 . . . 8 16 8 16 4
...
4 16 8 16 8 . . . 8 16 8 16 4
2 8 4 8 4 . . . 4 8 4 8 2
4 16 8 16 8 . . . 8 16 8 16 4
1 1 2 4 2 . . . 2 4 2 4 1 .

(B.16)

A similar scheme yields multi-dimensional Gaussian quadrature rules, where the
total weights become products of the 1D weights.

Appendix C

Functionals and functional
variations

Recall that a function is a mapping from some algebraic scalar �eld F to another
(possibly di�erent) �eld F′, i.e. g : F → F′. In physics, we are usually interested
mainly in the cases where F and F′ are the real or complex numbers, R or C. An
example is the complex exponential, x 7→ eix, which takes complex values but the
argument is real, so g : R→ C in this case.

A functional, on the other hand, is a mapping from some function space, F , to a
scalar �eld F, i.e. f : F → F . We will take the space of functions to be the underlying
Hilbert space of our quantum mechanical system,H, and the �eld to be the complex
numbers, C. The functional thus assigns to each f ∈ H a complex number.

As a familiar example of such a construction, let us consider the de�nite integral.
For the moment, let us take the function space to be continuous real functions of a
single real arguments in the range [0, 1], C([0, 1]). We call this functional I , such that
I : C([0, 1])→ R.

I[f] =

∫ 1

0

dxf(x) (C.1)

thus assigns a real number to any continuous function on [0, 1]. For example, I[ex] =
e− 1 ≈ 1.7183 or I[

√
x] = 2/3 ≈ 0.6667.

When working in a separable Hilbert space as we always do in quantum mechan-
ics, we may always express any function f ∈ H in terms of some basis {
chin}∞n=1, (recall the Parseval relation from section 2.2.1)

|f〉 =

(
∞∑
n=1

|χn〉〈χn|

)
|f〉 =

∞∑
n=1

〈χn|f〉︸ ︷︷ ︸
cn

|χn〉 =
∞∑
n=1

cn|χn〉, (C.2)

meaning we can think of a functional F [f] as a function of the vector of coe�cients
relative to the basis set, c = (c1, c2, . . .) [14].

227

228 Functionals and functional variations Chapter C

Short mathematical interlude

Let B(X, Y) denote the set of all continuous linear transformations from normed
vector spaces X and Y (over the algebraic scalar �eld F1). For example we may con-
siderX = Rn and Y = Rm, i.e. the set of real vectors of length n andm, respectively.
The set of continuous linear transformations from X to Y , B(X, Y), thus consists of
real valued matrices of dimensions m× n, so we may write B(Rn,Rm) = Rm×n.

A Banach space is a normed vector space which is complete under the metric
associated with the norm. Since any norm, ‖ · ‖ induces as metric by d(x,y) =
‖x− y‖, and the inner product 〈·|·〉 induces a norm by ‖ · ‖ =

√
〈·|·〉 we can de�ne

a Hilbert space as a Banach space which is complete w.r.t. this speci�c metric [134,
176].

The space of linear transformations from X to F, with X being some normed
vector space, is called the dual space of X , sometimes denoted X∗. We note that a
linear transformation from X to F is exactly a linear functional, and so functionals
"live in the dual" of the vector space itself. It turns out that ifX is normed, the dual is
always a Banach space [43]. Since we are inherently working with Hilbert spaces in
quantum mechanics, it is natural to ask: What can we say in general about the vector
space of functionals on a Hilbert spaceH?

In the following, we take f ∈ H∗ to be a linear functional on H and x ∈ H to be
a function in the Hilbert space itself. It can be shown that for any such x there exists
a unique y ∈ H such that f [x] = fy[x] = 〈x|y〉, where the functional fy[·] ≡ 〈·|y〉
[43, 134]. This is known as the Riesz representation theorem or sometimes the Riesz-
Fréchet theorem. Essentially, this means that we can associate the dual space of H
with the space itself since there is a correspondance between the functionals and the
elements of the space itself. This is more succintly stated as Hilbert spaces are self-
dual, and it is this property that justi�es the use of Dirac bra-ket notation since we
are guaranteed that any ket has a unique corresponding bra which is its Hermitian
conjugate.

Functional di�erentials and derivatives

The di�erential of a functional F [f] is the part of the di�erence F [f + δf] − F [f]
that depends linearly on δf , where δf is an in�nitesimal variation of the argument
function f [61]. Since we need to account for the continuous variation of F over the
in�nitesimal range [f, f + δf] we take the integral

δF [f] =

∫
δF [f]

δf(x)
δf(x) dx, (C.3)

1Meaning X and Y are closed under scalar multiplication with elements c ∈ F.

229

where we have de�ned the functional derivative of F w.r.t. f at the point x as

F ′[f] ≡ δF [f]

δf(x)
. (C.4)

If the underlying space is a Banach space, meaning the dual space is also a Banach
space (c.f. section C), we can write the functional di�erential in a way that is familiar
[179]:

δF [f] = lim
ε→0

F [f + εδf(x)]− F [f]

ε
=

∫
δF [f]

δf(x)
δf(x) dx. (C.5)

In the following, assume g[f] is a functional of the function f . It turns out that
the functional derivative behaves a lot like ordinary derivatives, [101]

δ

δf(x)

(
aF [f] + bG[f]

)
= a

δF [f]

δf(x)
+ b

δG[f]

δf(x)
(linearity)

δ

δf(x)

(
F [f] G[f]

)
= G[f]

δF [f]

δf(x)
+ F [f]

δG[f]

δf(x)
(product rule)

δ

δf(x)

(
F [g]

)
=

∫
δF [g]

δg(x′)

δg(x′)

δf(x)
dx (chain rule)

We can also de�ne higher-order functional derivaties, for example the equivalent
of the ordinary double derivative

δ2F [f]

δf(x)δf(x′)
=

δ

δf(x)

(
δF [f]

δf(x′)

)
. (C.6)

We may use this to compute the Taylor expansion of a functional F [f] as

F [f + ∆f] = F [f] +
∞∑
n=1

1

n!

∫
· · ·
∫

δ(n)F [f]

δf(x1) . . . δf(xn)
∆f(x1)∆f(x2) . . .∆f(xn)dx1dx2 . . . dxn

F [f + ∆f] = F [f] +

∫
δF [f]

δf(x)
∆f(x) dx+

1

2

∫ ∫
δ2F [f]

δf(x)δf(x′)
∆f(x)∆f(x′) dx dx′ + . . . ,

(C.7)

where ∆f(x) is a �nite (not in�nitesimal) variation in the function f(x) [61].

Bibliography

[1] John-Anders Stende. “Constructing high-dimensional neural network poten-
tials for molecular dynamics”. MA thesis. University of Oslo, 2017.

[2] Håkon Treider. “Speeding up ab-initio molecular dynamics with arti�cial neu-
ral networks”. MA thesis. University of Oslo, 2017.

[3] Svenn-Arne Dragly. “Bridging Quantum Mechanics and Molecular Dynamics
with Arti�cial Neural Networks”. MA thesis. University of Oslo, 2014.

[4] Wei Hu, Lin Lin, and Chao Yang. “DGDFT: A massively parallel method for
large scale density functional theory calculations”. In: The Journal of Chemical
Physics 143.12 (2015), p. 124110. doi: 10.1063/1.4931732. eprint: https://doi.
org/10.1063/1.4931732. url: https://doi.org/10.1063/1.4931732.

[5] D.R. Bowler and T. Miyazaki. “Calculations for millions of atoms with density
functional theory: linear scaling shows its potential”. In: Journal of Physics:
Condensed Matter 22.7 (2010), p. 074207. url: http : / / stacks . iop .org /0953 -
8984/22/i=7/a=074207.

[6] Joost VandeVondele, Urban Borštnik, and Jürg Hutter. “Linear Scaling Self-
Consistent Field Calculations with Millions of Atoms in the Condensed Phase”.
In: Journal of Chemical Theory and Computation 8.10 (2012). PMID: 26593003,
pp. 3565–3573. doi: 10.1021/ct200897x. eprint: http://dx.doi .org/10.1021/
ct200897x. url: http://dx.doi.org/10.1021/ct200897x.

[7] Gongpu Zhao et al. “Mature HIV-1 capsid structure by cryo-electron microscopy
and all-atom molecular dynamics”. In: Nature 497 (May 2013). url: http://dx.
doi.org/10.1038/nature12162.

[8] Tyler Reddy et al. “Nothing to Sneeze At: A Dynamic and Integrative Com-
putational Model of an In�uenza A Virion”. In: Structure 23.3 (2015), pp. 584–
597. issn: 0969-2126. doi: https : / /doi .org/10 .1016/ j . str.2014 .12 .019. url:
https://www.sciencedirect.com/science/article/pii/S0969212615000325.

[9] TIMOTHY C. GERMANN and KAI KADAU. “TRILLION-ATOM MOLECU-
LAR DYNAMICS BECOMES A REALITY”. In: International Journal of Mod-
ern Physics C 19.09 (2008), pp. 1315–1319. doi: 10.1142/S0129183108012911.
eprint: http://www.worldscienti�c.com/doi/pdf/10.1142/S0129183108012911.
url: http://www.worldscienti�c.com/doi/abs/10.1142/S0129183108012911.

231

http://dx.doi.org/10.1063/1.4931732
https://doi.org/10.1063/1.4931732
https://doi.org/10.1063/1.4931732
https://doi.org/10.1063/1.4931732
http://stacks.iop.org/0953-8984/22/i=7/a=074207
http://stacks.iop.org/0953-8984/22/i=7/a=074207
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1038/nature12162
http://dx.doi.org/10.1038/nature12162
http://dx.doi.org/https://doi.org/10.1016/j.str.2014.12.019
https://www.sciencedirect.com/science/article/pii/S0969212615000325
http://dx.doi.org/10.1142/S0129183108012911
http://www.worldscientific.com/doi/pdf/10.1142/S0129183108012911
http://www.worldscientific.com/doi/abs/10.1142/S0129183108012911

232 Bibliography Chapter 16

[10] R. E. Angulo et al. “Scaling relations for galaxy clusters in the Millennium-
XXL simulation”. In: Monthly Notices of the Royal Astronomical Society 426.3
(2012), pp. 2046–2062. doi: 10.1111/j.1365-2966.2012.21830.x. eprint: /oup/
back�le/content_public/ journal/mnras/426/3/10.1111/j .1365- 2966.2012.
21830.x/2/426- 3- 2046.pdf. url: +%20http: / /dx .doi .org/10 .1111/ j .1365-
2966.2012.21830.x.

[11] Juhan Kim et al. “The new horizon run cosmological N-body simulations”. In:
arXiv preprint arXiv:1112.1754 (2011).

[12] E. Weinan. Principles ofMultiscaleModeling. Cambridge University Press, 2011.
isbn: 1-107-09654-5.

[13] T. Helgaker, P. Jørgensen, and J. Olsen. Molecular Electronic-Structure Theory.
John Wiley & Sons, 2000. isbn: 0-471-96755-6.

[14] S. Kvaal. Lecture notes for FYS-KJM4480. Lecture notes. Sept. 2017. url: http:
//theory.rutgers.edu/~giese/notes/DFT.pdf.

[15] I. Shavitt and R.J. Bartlett.Many-BodyMethods in Chemistry and Physics. MBPT
and Coupled-Cluster Theory. Cambridge University Press, 2009. isbn: 0-521-
81832-X.

[16] M. Hjorth-Jensen.Computational Physics. Lecture notes. Aug. 2015.url: https:
//github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/
lectures2015.pdf.

[17] B.L. Hammond, W.A. Lester Jr., and P.J. Reynolds. Monte Carlo Methods in Ab
Initio Quantum Chemistry. Wspc, 1994. isbn: 981-02-0322-5.

[18] Harold Conroy. “Molecular Schrödinger Equation. II. Monte Carlo Evaluation
of Integrals”. In: The Journal of Chemical Physics 41.5 (1964), pp. 1331–1335.
doi: 10 . 1063 / 1 . 1726069. eprint: https : / / doi . org / 10 . 1063 / 1 . 1726069. url:
https://doi.org/10.1063/1.1726069.

[19] J.B. Anderson. Quantum Monte Carlo. Origins, Development, Applications. Ox-
ford University Press, 2007. isbn: 0-19-531010-1.

[20] D. R. Hartree. “The Wave Mechanics of an Atom with a Non-Coulomb Central
Field. Part I. Theory and Methods”. In: Mathematical Proceedings of the Cam-
bridge Philosophical Society 24.1 (1928), pp. 89–110.doi: 10.1017/S0305004100011919.

[21] V. Fock. “Näherungsmethode zur Lösung des quantenmechanischen Mehrkör-
perproblems”. In: Zeitschrift für Physik 61.1 (Jan. 1930), pp. 126–148. issn:
0044-3328.doi: 10.1007/BF01340294.url: https://doi.org/10.1007/BF01340294.

[22] A. Szabo and N.S. Ostlund. Modern Quantum Chemistry. Dover Publications,
1996. isbn: 0-486-69186-1.

http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
/oup/backfile/content_public/journal/mnras/426/3/10.1111/ j.1365-2966.2012.21830.x/2/426-3-2046.pdf
/oup/backfile/content_public/journal/mnras/426/3/10.1111/ j.1365-2966.2012.21830.x/2/426-3-2046.pdf
/oup/backfile/content_public/journal/mnras/426/3/10.1111/ j.1365-2966.2012.21830.x/2/426-3-2046.pdf
+%20http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
+%20http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
http://theory.rutgers.edu/~giese/notes/DFT.pdf
http://theory.rutgers.edu/~giese/notes/DFT.pdf
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf
http://dx.doi.org/10.1063/1.1726069
https://doi.org/10.1063/1.1726069
https://doi.org/10.1063/1.1726069
http://dx.doi.org/10.1017/S0305004100011919
http://dx.doi.org/10.1007/BF01340294
https://doi.org/10.1007/BF01340294

Bibliography 233

[23] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and
Correlation E�ects”. In: Phys. Rev. 140 (4A Nov. 1965), A1133–A1138. doi: 10.
1103/PhysRev.140.A1133. url: https://link.aps.org/doi/10.1103/PhysRev.140.
A1133.

[24] R.M. Martin. Electronic Structure. Cambridge University Press, 2004. isbn: 0-
521-53440-2.

[25] Axel D. Becke. “Perspective: Fifty years of density-functional theory in chem-
ical physics”. In: The Journal of Chemical Physics 140.18 (2014), 18A301. doi:
10.1063/1.4869598. eprint: https://doi .org/10.1063/1.4869598. url: https:
//doi.org/10.1063/1.4869598.

[26] Laura E. Ratcli� et al. “Challenges in large scale quantum mechanical calcu-
lations”. In: Wiley Interdisciplinary Reviews: Computational Molecular Science
7.1 (2017). e1290, e1290–n/a. issn: 1759-0884. doi: 10.1002/wcms.1290. url:
http://dx.doi.org/10.1002/wcms.1290.

[27] R. Car and M. Parrinello. “Uni�ed Approach for Molecular Dynamics and
Density-Functional Theory”. In: Phys. Rev. Lett. 55 (22 Nov. 1985), pp. 2471–
2474. doi: 10.1103/PhysRevLett.55.2471. url: https://link.aps.org/doi/10.
1103/PhysRevLett.55.2471.

[28] Renata M. Wentzcovitch and JoséLuís Martins. “First principles molecular dy-
namics of Li: Test of a new algorithm”. In: Solid State Communications 78.9
(1991), pp. 831–834. issn: 0038-1098. doi: https : / / doi . org / 10 . 1016 / 0038 -
1098(91)90629- A. url: http://www.sciencedirect .com/science/article/pii/
003810989190629A.

[29] R. N. Barnett et al. “Born–Oppenheimer dynamics using density-functional
theory: Equilibrium and fragmentation of small sodium clusters”. In: The Jour-
nal of Chemical Physics 94.1 (1991), pp. 608–616. doi: 10.1063/1.460327. eprint:
https://doi.org/10.1063/1.460327. url: https://doi.org/10.1063/1.460327.

[30] Moshe Y Vardi. “Arti�cial intelligence: past and future”. In: Communications
of the ACM 55.1 (2012), pp. 5–5.

[31] M. I. Jordan and T. M. Mitchell. “Machine learning: Trends, perspectives, and
prospects”. In: Science 349.6245 (2015), pp. 255–260. issn: 0036-8075. doi: 10.
1126/science.aaa8415. eprint: http://science.sciencemag.org/content/349/
6245/255.full.pdf. url: http://science.sciencemag.org/content/349/6245/255.

[32] David Silver et al. Mastering Chess and Shogi by Self-Play with a General Re-
inforcement Learning Algorithm. 2017. eprint: arXiv:1712.01815.

[33] Tord Romstad, Marco Costalba, and Joona Kiiski. Stock�sh Chess. https : / /
stock�shchess.org/. 2008–2017.

http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.4869598
https://doi.org/10.1063/1.4869598
http://dx.doi.org/10.1002/wcms.1290
http://dx.doi.org/10.1002/wcms.1290
http://dx.doi.org/10.1103/PhysRevLett.55.2471
https://link.aps.org/doi/10.1103/PhysRevLett.55.2471
https://link.aps.org/doi/10.1103/PhysRevLett.55.2471
http://dx.doi.org/https://doi.org/10.1016/0038-1098(91)90629-A
http://dx.doi.org/https://doi.org/10.1016/0038-1098(91)90629-A
http://www.sciencedirect.com/science/article/pii/003810989190629A
http://www.sciencedirect.com/science/article/pii/003810989190629A
http://dx.doi.org/10.1063/1.460327
https://doi.org/10.1063/1.460327
https://doi.org/10.1063/1.460327
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1126/science.aaa8415
http://science.sciencemag.org/content/349/6245/255.full.pdf
http://science.sciencemag.org/content/349/6245/255.full.pdf
http://science.sciencemag.org/content/349/6245/255
arXiv:1712.01815
https://stockfishchess.org/
https://stockfishchess.org/

234 Bibliography Chapter 16

[34] Jörg Behler and Michele Parrinello. “Generalized Neural-Network Represen-
tation of High-Dimensional Potential-Energy Surfaces”. In: Phys. Rev. Lett. 98
(14 Apr. 2007), p. 146401. doi: 10 .1103/PhysRevLett .98 .146401. url: https :
//link.aps.org/doi/10.1103/PhysRevLett.98.146401.

[35] Lin Shen, Jingheng Wu, and Weitao Yang. “Multiscale Quantum Mechanic-
s/Molecular Mechanics Simulations with Neural Networks”. In: Journal of
Chemical Theory and Computation 12.10 (2016). PMID: 27552235, pp. 4934–
4946. doi: 10.1021/acs.jctc.6b00663. eprint: http://dx.doi.org/10.1021/acs.jctc.
6b00663. url: http://dx.doi.org/10.1021/acs.jctc.6b00663.

[36] Jörg Behler. “Perspective: Machine learning potentials for atomistic simula-
tions”. In: The Journal of Chemical Physics 145.17 (2016), p. 170901. doi: 10.
1063 / 1 . 4966192. eprint: https : / / doi . org / 10 . 1063 / 1 . 4966192. url: https :
//doi.org/10.1063/1.4966192.

[37] Radovan Bast and Roberto Di Remigio. Numgrid. https://github.com/dftlibs/
numgrid. 2017.

[38] A. Danial. cloc. https://github.com/AlDanial/cloc. 2017.
[39] Quantities and units – Part 2: Mathematical signs and symbols to be used in the

natural sciences and technology. Standard. Geneva, CH: International Organi-
zation for Standardization, Dec. 2009.

[40] H. Goldstein, C.P. Poole Jr., and J.L. Safko. Classical Mechanics. 3rd ed. Pear-
son, 2001. isbn: 0-201-65702-3.

[41] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Di�erential Equa-
tions. Springer, 2010. isbn: 0-387-70913-4.

[42] J.M. Leinaas. Modern QuantumMechanics. Lecture notes. Aug. 2016. url: http:
//www.uio.no/studier/emner/matnat/fys/FYS4110/h17/undervisningsmateriale/
lecturenotes2016.pdf.

[43] B.P. Rynne and M.A. Youngson. Linear Functional Analysis. 2nd ed. Springer-
Verlag London, 2008. isbn: 1-84800-004-9.

[44] S. Hassani. Mathematical Physics. Springer-Verlag, 1999. isbn: 0-387-98579-4.
[45] R. Shankar. Principles of Quantum Mechanics. 2nd ed. Plenum Press, 2011.

isbn: 0-306-44790-8.
[46] J.J. Sakurai. Modern QuantumMechanics. revised. Addison Wesley, 1993. isbn:

0-201-53929-2.
[47] D.J. Gri�ths. Introduction to Quantum Mechanics. 2nd ed. Pearson Prentice

Hall, 2005. isbn: 0-13-191175-9.
[48] G.D. Mahan. Quantum Mechanics in a Nutshell. Princeton University Press,

2009. isbn: 0-691-13713-7.

http://dx.doi.org/10.1103/PhysRevLett.98.146401
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1021/acs.jctc.6b00663
http://dx.doi.org/10.1021/acs.jctc.6b00663
http://dx.doi.org/10.1021/acs.jctc.6b00663
http://dx.doi.org/10.1021/acs.jctc.6b00663
http://dx.doi.org/10.1063/1.4966192
http://dx.doi.org/10.1063/1.4966192
https://doi.org/10.1063/1.4966192
https://doi.org/10.1063/1.4966192
https://doi.org/10.1063/1.4966192
https://github.com/dftlibs/numgrid
https://github.com/dftlibs/numgrid
https://github.com/AlDanial/cloc
http://www.uio.no/studier/emner/matnat/fys/FYS4110/h17/undervisningsmateriale/lecturenotes2016.pdf
http://www.uio.no/studier/emner/matnat/fys/FYS4110/h17/undervisningsmateriale/lecturenotes2016.pdf
http://www.uio.no/studier/emner/matnat/fys/FYS4110/h17/undervisningsmateriale/lecturenotes2016.pdf

Bibliography 235

[49] C. Itzykson and J.B. Zuber. Quantum Field Theory. McGraw-Hill Book Com-
pany, 1980. isbn: 0-07-032071-3.

[50] Theodore A. Welton. “Some Observable E�ects of the Quantum-Mechanical
Fluctuations of the Electromagnetic Field”. In: Phys. Rev. 74 (9 Nov. 1948),
pp. 1157–1167. doi: 10.1103/PhysRev.74.1157. url: https://link.aps.org/doi/
10.1103/PhysRev.74.1157.

[51] U. D. Jentschura et al. “Long-range interactions of hydrogen atoms in ex-
cited states. II. Hyper�ne-resolved 2S−2S systems”. In: Phys. Rev. A 95 (2
Feb. 2017), p. 022704. doi: 10.1103/PhysRevA.95.022704. url: https://link.aps.
org/doi/10.1103/PhysRevA.95.022704.

[52] Paul Adrien Maurice Dirac. “Quantum mechanics of many-electron systems”.
In: Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences. Vol. 123. 792. The Royal Society. 1929, pp. 714–733.

[53] A Bolotin. “Any realistic model of a physical system must be computationally
realistic”. In: Journal of Physics: Conference Series 574.1 (2015), p. 012088. url:
http://stacks.iop.org/1742-6596/574/i=1/a=012088.

[54] D.V. Schroeder.An Introduction to Thermal Physics. Pearson, 2005. isbn: 0-201-
38027-7.

[55] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: An-
nalen der Physik 389.20 (1927), pp. 457–484. issn: 1521-3889. doi: 10 . 1002 /
andp.19273892002. url: http://dx.doi.org/10.1002/andp.19273892002.

[56] S. Weinberg. Lectures on Quantum Mechanics. 2nd ed. Cambridge University
Press, 2015. isbn: 1-107-11166-8.

[57] J. C. Slater. “The Theory of Complex Spectra”. In: Phys. Rev. 34 (10 Nov. 1929),
pp. 1293–1322. doi: 10.1103/PhysRev.34.1293. url: https://link.aps.org/doi/
10.1103/PhysRev.34.1293.

[58] J. Thijssen. Computational Physics. 2nd ed. Cambridge University Press, 2007.
isbn: 1-107-67713-0.

[59] D.C. Lay. Linear Algebra and Its Applications. 4th ed. Pearson Education, 2012.
isbn: 0-321-62335-5.

[60] L. Salasnich. Quantum Physics of Light and Matter. A Modern Introduction to
Photons, Atoms and Many-Body Systems. Springer, 2016. isbn: 3-319-38271-3.

[61] R.G. Parr and W. Yang. Density-functional theory of atoms and molecules. Ox-
ford University Press, 1989. isbn: 0-19-504279-4.

[62] E.S. Kryachko and E.V. Ludeña. Energy Density Functional Theory of Many-
Electron Systems. Kluwer Academic Publishers, 1990. isbn: 0-7923-0641-4.

http://dx.doi.org/10.1103/PhysRev.74.1157
https://link.aps.org/doi/10.1103/PhysRev.74.1157
https://link.aps.org/doi/10.1103/PhysRev.74.1157
http://dx.doi.org/10.1103/PhysRevA.95.022704
https://link.aps.org/doi/10.1103/PhysRevA.95.022704
https://link.aps.org/doi/10.1103/PhysRevA.95.022704
http://stacks.iop.org/1742-6596/574/i=1/a=012088
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1103/PhysRev.34.1293
https://link.aps.org/doi/10.1103/PhysRev.34.1293
https://link.aps.org/doi/10.1103/PhysRev.34.1293

236 Bibliography Chapter 16

[63] Max Born. “Quantenmechanik der Stoßvorgänge”. In: Zeitschrift für Physik
38.11 (Nov. 1926), pp. 803–827. issn: 0044-3328. doi: 10 . 1007 / BF01397184.
url: https://doi.org/10.1007/BF01397184.

[64] J.A. Wheeler and W.H. Zurek. Quantum Theory and Measurement. Princeton
University Press, 1983. isbn: 0-691-61316-8.

[65] E.K.U. Gross, E.Runge, and O. Heinonen. Many-Particle Theory. Adam Hilger,
1991. isbn: 0-7503-0155-4.

[66] J. Katriel and E. R. Davidson. “Asymptotic behavior of atomic and molecu-
lar wave functions”. In: Proceedings of the National Academy of Sciences 77.8
(1980), pp. 4403–4406. eprint: http://www.pnas.org/content/77/8/4403.full.
pdf. url: http://www.pnas.org/content/77/8/4403.abstract.

[67] M. Weissbluth.Atoms andMolecules. Academic Press, 1978. isbn: 0-12-744450-
5.

[68] Tosio Kato. “On the eigenfunctions of many-particle systems in quantum me-
chanics”. In: Communications on Pure and Applied Mathematics 10.2 (1957),
pp. 151–177. issn: 1097-0312. doi: 10.1002/cpa.3160100201. url: http://dx.doi.
org/10.1002/cpa.3160100201.

[69] M. Hjorth-Jensen.Computational Physics. Lecture notes. Aug. 2015.url: https:
//github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/
lectures2015.pdf.

[70] J. Toulouse, R. Assaraf, and C.J. Umrigar. “Introduction to the Variational and
Di�usion Monte Carlo Methods”. In:Advances in Quantum Chemistry, Volume
73. Ed. by P.E. Hoggan and T. Ozdogan. Elsevier, 2016, pp. 285–314. isbn: 978-
0-12-803060-8.

[71] A. Bijl. “The lowest wave function of the symmetrical many particles system”.
In: Physica 7.9 (1940), pp. 869–886. issn: 0031-8914. doi: https://doi.org/10.
1016/0031- 8914(40)90166- 5. url: http://www.sciencedirect .com/science/
article/pii/0031891440901665.

[72] Robert Jastrow. “Many-Body Problem with Strong Forces”. In: Phys. Rev. 98
(5 June 1955), pp. 1479–1484. doi: 10 . 1103 / PhysRev. 98 . 1479. url: https :
//link.aps.org/doi/10.1103/PhysRev.98.1479.

[73] K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction. Springer-Verlag Berlin Heidelberg, 2012. isbn: 3-642-
25982-0.

[74] K. Rottmann.Matematisk Formelsamling. 10th ed. Spektrum Forlag, 2008. isbn:
8278220050.

[75] J. C. Slater. “Atomic Shielding Constants”. In: Phys. Rev. 36 (1 July 1930),
pp. 57–64. doi: 10 .1103/PhysRev.36 .57. url: https : / / link.aps .org/doi/10 .
1103/PhysRev.36.57.

http://dx.doi.org/10.1007/BF01397184
https://doi.org/10.1007/BF01397184
http://www.pnas.org/content/77/8/4403.full.pdf
http://www.pnas.org/content/77/8/4403.full.pdf
http://www.pnas.org/content/77/8/4403.abstract
http://dx.doi.org/10.1002/cpa.3160100201
http://dx.doi.org/10.1002/cpa.3160100201
http://dx.doi.org/10.1002/cpa.3160100201
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf
https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf
http://dx.doi.org/https://doi.org/10.1016/0031-8914(40)90166-5
http://dx.doi.org/https://doi.org/10.1016/0031-8914(40)90166-5
http://www.sciencedirect.com/science/article/pii/0031891440901665
http://www.sciencedirect.com/science/article/pii/0031891440901665
http://dx.doi.org/10.1103/PhysRev.98.1479
https://link.aps.org/doi/10.1103/PhysRev.98.1479
https://link.aps.org/doi/10.1103/PhysRev.98.1479
http://dx.doi.org/10.1103/PhysRev.36.57
https://link.aps.org/doi/10.1103/PhysRev.36.57
https://link.aps.org/doi/10.1103/PhysRev.36.57

Bibliography 237

[76] Clarence Zener. “Analytic Atomic Wave Functions”. In: Phys. Rev. 36 (1 July
1930), pp. 51–56. doi: 10.1103/PhysRev.36.51. url: https://link.aps.org/doi/10.
1103/PhysRev.36.51.

[77] C.J. Cramer. Essentials of Computational Chemistry. Theories andModels. 2nd ed.
Wiley, 2004. isbn: 0-470-09182-7.

[78] Bruno Klahn and Werner A. Bingel. “The convergence of the Rayleigh-Ritz
Method in quantum chemistry”. In: Theoretica chimica acta 44.1 (Mar. 1977),
pp. 27–43. issn: 1432-2234. doi: 10.1007/BF00548027. url: https://doi.org/10.
1007/BF00548027.

[79] J. Fernández Rico et al. “E�ciency of the algorithms for the calculation of
Slater molecular integrals in polyatomic molecules”. In: Journal of Computa-
tional Chemistry 25.16 (2004), pp. 1987–1994. issn: 1096-987X. doi: 10.1002/
jcc.20131. url: http://dx.doi.org/10.1002/jcc.20131.

[80] I. Ema et al. “Polarized basis sets of Slater-type orbitals: H to Ne atoms”. In:
Journal of Computational Chemistry 24.7 (2003), pp. 859–868. issn: 1096-987X.
doi: 10.1002/jcc.10227. url: http://dx.doi.org/10.1002/jcc.10227.

[81] S Francis Boys. “Electronic wave functions. I. A general method of calculation
for the stationary states of any molecular system”. In: Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 200.
1063. The Royal Society. 1950, pp. 542–554.

[82] H.P. Langtangen.Numerical Methods for Partial Di�erential Equations. Lecture
notes. 2016. url: http://hplgit.github.io/num-methods-for-PDEs/doc/pub/
index.html.

[83] H. Hochstadt. The Functions of Mathematical Physics. revised. Dover Publica-
tions, 2012. isbn: 0-486-65214-9.

[84] T. Helgaker and P.R. Taylor. “Gaussian basis sets and molecular integrals”.
In: Modern Electronic Structure Theory, Part II. Ed. by David Yarkony. World
Scienti�c, 1995, pp. 725–856. isbn: 981-02-2988-7. url: %5Curl%7Bhttp://folk.
uio .no/helgaker/reprints /ModElectStructTheory_GaussianBasisIntegrals_
1995.pdf%7D.

[85] T. Helgaker. “Molecular Integral Evaluation”. The 11th Sostrup Summer School:
Quantum Chemistry and Molecular Properties. 2010. url: %5Curl%7Bhttp :
//folk.uio.no/helgaker/talks/SostrupIntegrals_10.pdf%7D.

[86] Larry E McMurchie and Ernest R Davidson. “One- and two-electron integrals
over cartesian gaussian functions”. In: Journal of Computational Physics 26.2
(1978), pp. 218–231. issn: 0021-9991. doi: https : / / doi . org / 10 . 1016 / 0021 -
9991(78)90092- X. url: http://www.sciencedirect .com/science/article/pii/
002199917890092X.

http://dx.doi.org/10.1103/PhysRev.36.51
https://link.aps.org/doi/10.1103/PhysRev.36.51
https://link.aps.org/doi/10.1103/PhysRev.36.51
http://dx.doi.org/10.1007/BF00548027
https://doi.org/10.1007/BF00548027
https://doi.org/10.1007/BF00548027
http://dx.doi.org/10.1002/jcc.20131
http://dx.doi.org/10.1002/jcc.20131
http://dx.doi.org/10.1002/jcc.20131
http://dx.doi.org/10.1002/jcc.10227
http://dx.doi.org/10.1002/jcc.10227
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/index.html
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/index.html
%5Curl%7Bhttp://folk.uio.no/helgaker/reprints/ModElectStructTheory_GaussianBasisIntegrals_1995.pdf%7D
%5Curl%7Bhttp://folk.uio.no/helgaker/reprints/ModElectStructTheory_GaussianBasisIntegrals_1995.pdf%7D
%5Curl%7Bhttp://folk.uio.no/helgaker/reprints/ModElectStructTheory_GaussianBasisIntegrals_1995.pdf%7D
%5Curl%7Bhttp://folk.uio.no/helgaker/talks/SostrupIntegrals_10.pdf%7D
%5Curl%7Bhttp://folk.uio.no/helgaker/talks/SostrupIntegrals_10.pdf%7D
http://dx.doi.org/https://doi.org/10.1016/0021-9991(78)90092-X
http://dx.doi.org/https://doi.org/10.1016/0021-9991(78)90092-X
http://www.sciencedirect.com/science/article/pii/002199917890092X
http://www.sciencedirect.com/science/article/pii/002199917890092X

238 Bibliography Chapter 16

[87] W. J. Hehre, R. F. Stewart, and J. A. Pople. “Self-Consistent Molecular-Orbital
Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals”. In:
The Journal of Chemical Physics 51.6 (1969), pp. 2657–2664. doi: 10.1063/1.
1672392. eprint: https://doi.org/10.1063/1.1672392. url: https://doi.org/10.
1063/1.1672392.

[88] Abraham Charnes, William W Cooper, and Robert O Ferguson. “Optimal esti-
mation of executive compensation by linear programming”. In: Management
science 1.2 (1955), pp. 138–151.

[89] Roger Koenker and Gilbert Bassett Jr. “Regression quantiles”. In: Economet-
rica: journal of the Econometric Society (1978), pp. 33–50.

[90] Jorge J Moré and Danny C Sorensen. “Computing a trust region step”. In:
SIAM Journal on Scienti�c and Statistical Computing 4.3 (1983), pp. 553–572.

[91] S.S. Zumdahl. Chemical Principles. 6th ed. Brooks-Cole Publishing, 2009. isbn:
0-538-73456-6.

[92] Warren J Hehre, Robert Ditch�eld, and John A Pople. “Self—consistent molec-
ular orbital methods. XII. Further extensions of gaussian—type basis sets for
use in molecular orbital studies of organic molecules”. In: The Journal of Chem-
ical Physics 56.5 (1972), pp. 2257–2261.

[93] James D Dill and John A Pople. “Self-consistent molecular orbital methods.
XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron”. In:
The Journal of Chemical Physics 62.7 (1975), pp. 2921–2923.

[94] Thom H Dunning Jr. “Gaussian basis sets for use in correlated molecular cal-
culations. I. The atoms boron through neon and hydrogen”. In: The Journal of
chemical physics 90.2 (1989), pp. 1007–1023.

[95] I.N. Levine. Quantum Chemistry. 7th ed. Pearson, 2014. isbn: 0-321-80345-0.
[96] C. C. J. Roothaan. “New Developments in Molecular Orbital Theory”. In: Rev.

Mod. Phys. 23 (2 Apr. 1951), pp. 69–89. doi: 10.1103/RevModPhys.23.69. url:
https://link.aps.org/doi/10.1103/RevModPhys.23.69.

[97] “The molecular orbital theory of chemical valency VIII. A method of calcu-
lating ionization potentials”. In: Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences 205.1083 (1951), pp. 541–
552. issn: 0080-4630. doi: 10 . 1098 / rspa . 1951 . 0048. eprint: http : / / rspa .
royalsocietypublishing . org / content / 205 / 1083 / 541 . full . pdf. url: http : / /
rspa.royalsocietypublishing.org/content/205/1083/541.

[98] J. A. Pople and R. K. Nesbet. “Self-Consistent Orbitals for Radicals”. In: The
Journal of Chemical Physics 22.3 (1954), pp. 571–572. doi: 10.1063/1.1740120.
eprint: http://dx.doi.org/10.1063/1.1740120. url: http://dx.doi.org/10.1063/1.
1740120.

http://dx.doi.org/10.1063/1.1672392
http://dx.doi.org/10.1063/1.1672392
https://doi.org/10.1063/1.1672392
https://doi.org/10.1063/1.1672392
https://doi.org/10.1063/1.1672392
http://dx.doi.org/10.1103/RevModPhys.23.69
https://link.aps.org/doi/10.1103/RevModPhys.23.69
http://dx.doi.org/10.1098/rspa.1951.0048
http://rspa.royalsocietypublishing.org/content/205/1083/541.full.pdf
http://rspa.royalsocietypublishing.org/content/205/1083/541.full.pdf
http://rspa.royalsocietypublishing.org/content/205/1083/541
http://rspa.royalsocietypublishing.org/content/205/1083/541
http://dx.doi.org/10.1063/1.1740120
http://dx.doi.org/10.1063/1.1740120
http://dx.doi.org/10.1063/1.1740120
http://dx.doi.org/10.1063/1.1740120

Bibliography 239

[99] Werner Kutzelnigg and John D. Morgan III. “Rates of convergence of the
partial-wave expansions of atomic correlation energies”. In: The Journal of
Chemical Physics 96.6 (1992), pp. 4484–4508. doi: 10.1063/1.462811. eprint:
https://doi.org/10.1063/1.462811. url: https://doi.org/10.1063/1.462811.

[100] Frank Jensen. “Estimating the Hartree—Fock limit from �nite basis set cal-
culations”. In: Theoretical Chemistry Accounts 113.5 (June 2005), pp. 267–273.
issn: 1432-2234. doi: 10.1007/s00214-005-0635-2. url: https://doi.org/10.
1007/s00214-005-0635-2.

[101] J. Toulouse. Introduction to density-functional theory. Lecture notes. June 2017.
url: http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_
dft.pdf.

[102] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys. Rev.
136 (3B Nov. 1964), B864–B871. doi: 10.1103/PhysRev.136.B864. url: https:
//link.aps.org/doi/10.1103/PhysRev.136.B864.

[103] B.O. Roos, ed. Lecture Notes in Quantum Chemistry II. Springer-Verlag Berlin
Heidelberg, 1994. isbn: 3-540-58620-2.

[104] E. Engel and R.M. Dreizler. Density Functional Theory. Springer-Verlag Berlin
Heidelberg, 2011. isbn: 3-642-14089-0.

[105] Paul AM Dirac. “Note on exchange phenomena in the Thomas atom”. In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 26. 3.
Cambridge University Press. 1930, pp. 376–385.

[106] David M Ceperley and BJ Alder. “Ground state of the electron gas by a stochas-
tic method”. In: Physical Review Letters 45.7 (1980), p. 566.

[107] S. H. Vosko, L. Wilk, and M. Nusair. “Accurate spin-dependent electron liquid
correlation energies for local spin density calculations: a critical analysis”. In:
Canadian Journal of Physics 58.8 (1980), pp. 1200–1211. doi: 10.1139/p80-159.
eprint: https://doi.org/10.1139/p80-159. url: https://doi.org/10.1139/p80-159.

[108] P. M. Boerrigter, G. Te Velde, and J. E. Baerends. “Three-dimensional numeri-
cal integration for electronic structure calculations”. In: International Journal
of Quantum Chemistry 33.2 (1988), pp. 87–113. issn: 1097-461X. doi: 10.1002/
qua.560330204. url: http://dx.doi.org/10.1002/qua.560330204.

[109] C.H.L. Beentjes. Quadrature on a Spherical Surface. Lecture notes. 2015. url:
http://people.maths.ox.ac.uk/beentjes/Essays/QuadratureSphere.pdf.

[110] A. D. McLaren. “Optimal Numerical Integration on a Sphere”. In: Mathematics
of Computation 17.84 (1963), pp. 361–383. issn: 00255718, 10886842. url: http:
//www.jstor.org/stable/2003998.

[111] S.L. Sobolev. Selected Works of S.L. Sobolev. Vol. 1. Springer, 2006. isbn: 0-387-
34148-X.

http://dx.doi.org/10.1063/1.462811
https://doi.org/10.1063/1.462811
https://doi.org/10.1063/1.462811
http://dx.doi.org/10.1007/s00214-005-0635-2
https://doi.org/10.1007/s00214-005-0635-2
https://doi.org/10.1007/s00214-005-0635-2
http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf
http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf
http://dx.doi.org/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
http://dx.doi.org/10.1002/qua.560330204
http://dx.doi.org/10.1002/qua.560330204
http://dx.doi.org/10.1002/qua.560330204
http://people.maths.ox.ac.uk/beentjes/Essays/QuadratureSphere.pdf
http://www.jstor.org/stable/2003998
http://www.jstor.org/stable/2003998

240 Bibliography Chapter 16

[112] V. I. Lebedev. “Values of the nodes and weights of quadrature formulas of
Gauss–Markov type for a sphere from the ninth to seventeenth order of accu-
racy that are invariant with respect to an octahedron group with inversion”.
In: USSR Computational Mathematics and Mathematical Physics 15.1 (1975),
pp. 48–54.

[113] J.R. Sack and J. Urrutia.Handbook of Computational Chemistry. North Holland,
1999. isbn: 0-444-82537-1.

[114] G. te Velde and E.J. Baerends. “Numerical integration for polyatomic systems”.
In: Journal of Computational Physics 99.1 (1992), pp. 84–98. issn: 0021-9991.
doi: https : / / doi . org / 10 . 1016 / 0021 - 9991(92) 90277 - 6. url: http : / / www.
sciencedirect.com/science/article/pii/0021999192902776.

[115] A. D. Becke. “A multicenter numerical integration scheme for polyatomic
molecules”. In: The Journal of Chemical Physics 88.4 (1988), pp. 2547–2553.
doi: 10 . 1063 /1 . 454033. eprint: http : / /dx .doi . org /10 . 1063 /1 . 454033. url:
http://dx.doi.org/10.1063/1.454033.

[116] M. Kuczma, B. Choczewski, and R. Ger. Iterative Functional Equations. Cam-
bridge University Press, 1990. isbn: 0-521-35561-3.

[117] José M. Pérez-Jordá, Axel D. Becke, and Emilio San-Fabián. “Automatic nu-
merical integration techniques for polyatomic molecules”. In: The Journal of
Chemical Physics 100.9 (1994), pp. 6520–6534. doi: 10.1063/1.467061. eprint:
https://doi.org/10.1063/1.467061. url: https://doi.org/10.1063/1.467061.

[118] Dario Bressanini and Peter Reynolds. “Between Classical and Quantum Monte
Carlo Methods: “Variational” QMC”. In:Advances in Chemical Physics. Vol. 105.
Mar. 2007, pp. 37–64. isbn: 0-470-14164-6.

[119] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing
Machines”. In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–1092.
doi: 10 . 1063 / 1 . 1699114. eprint: https : / / doi . org / 10 . 1063 / 1 . 1699114. url:
https://doi.org/10.1063/1.1699114.

[120] W. K. Hastings. “Monte Carlo sampling methods using Markov chains and
their applications”. In: Biometrika (1970), pp. 97–109. doi: 10.1093/biomet/57.
1.97. eprint: /oup/back�le/content_public/journal/biomet/57/10.1093/biomet/
57.1.97/3/57-1-97.pdf. url: +%20http://dx.doi.org/10.1093/biomet/57.1.97.

[121] W.H. Press et al. Numerical Recipes. The Art of Scienti�c Computing. 3rd ed.
Cambridge University Press, 2007. isbn: 0-521-88068-8.

[122] W.R. Gilks, S. Richardson, and D. Spiegelhalter. Markov Chain Monte Carlo in
Practice. Chapman and Hall, 1995. isbn: 0-412-05551-1.

[123] C.W. Gardiner. Handbook of Stochastic Methods. for Physics, Chemistry and the
Natural Sciences. 3rd ed. Springer-Verlag, 2004. isbn: 3-540-20882-8.

http://dx.doi.org/https://doi.org/10.1016/0021-9991(92)90277-6
http://www.sciencedirect.com/science/article/pii/0021999192902776
http://www.sciencedirect.com/science/article/pii/0021999192902776
http://dx.doi.org/10.1063/1.454033
http://dx.doi.org/10.1063/1.454033
http://dx.doi.org/10.1063/1.454033
http://dx.doi.org/10.1063/1.467061
https://doi.org/10.1063/1.467061
https://doi.org/10.1063/1.467061
http://dx.doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
/oup/backfile/content_public/journal/biomet/57/10.1093/ biomet/57.1.97/3/57-1-97.pdf
/oup/backfile/content_public/journal/biomet/57/10.1093/ biomet/57.1.97/3/57-1-97.pdf
+%20http://dx.doi.org/10.1093/biomet/57.1.97

Bibliography 241

[124] M. Chaichian and A. Demichev. Path Integrals in Physics. Stochastic Processes
and Quantum Mechanics. Vol. 1. CRC Press, 2001. isbn: 0-7503-0801-X.

[125] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods. Second, Revised and En-
larged. Wiley-VCH, 2008. isbn: 3-527-40760-X.

[126] W. W. Wood and F. R. Parker. “Monte Carlo Equation of State of Molecules
Interacting with the Lennard-Jones Potential. I. A Supercritical Isotherm at
about Twice the Critical Temperature”. In: The Journal of Chemical Physics
27.3 (1957), pp. 720–733. doi: 10.1063/1.1743822. eprint: https://doi.org/10.
1063/1.1743822. url: https://doi.org/10.1063/1.1743822.

[127] E.H. Hauge. Kinetisk Teori. Transportteori. Lecture notes. 1970.
[128] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. 3rd ed. North

Holland, 2007. isbn: 0-444-52965-9.
[129] E. Strohmaier et al. Top 500: November 2017. 2017. url: %5Curl%7Bhttps : / /

www.top500.org/lists/2017/11/%7D (visited on 11/15/2017).
[130] J.L. Devore and K.N. Berk. Modern Mathematical Statistics with Applications.

Brooks/Cole, 2006. isbn: 0-495-11022-1.
[131] H. Flyvbjerg and H. G. Petersen. “Error estimates on averages of correlated

data”. In: The Journal of Chemical Physics 91.1 (1989), pp. 461–466. doi: 10.
1063/1.457480. eprint: https://doi.org/10.1063/1.457480. url: https://doi.org/
10.1063/1.457480.

[132] L.M. Ra� et al. Neural networks in chemical reaction dynamics. Oxford Univer-
sity Press, 2012. isbn: 0-19-976565-0.

[133] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5 (1989),
pp. 359–366. issn: 0893-6080. doi: https : / /doi .org/10 .1016/0893- 6080(89)
90020-8.url: http://www.sciencedirect.com/science/article/pii/0893608089900208.

[134] J.M. McDonald and N.A. Weiss. A course in Real Analysis. 2nd ed. Academic
Press, 2013. isbn: 0-12-387774-1.

[135] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. In: Nature 323 (Oct. 1986). url:
http://dx.doi.org/10.1038/323533a0.

[136] J. Barzilai and J.M. Borwein. “Two-Point Step Size Gradient Methods”. In: IMA
Journal of Numerical Analysis 8.1 (1988), pp. 141–148. doi: 10.1093/imanum/
8.1.141. eprint: /oup/back�le/content_public/journal/imajna/8/1/10.1093/
imanum/8.1.141/2/8-1-141.pdf. url: +%20http://dx.doi.org/10.1093/imanum/
8.1.141.

[137] Sebastian Ruder.An overview of gradient descent optimization algorithms. 2016.
eprint: arXiv:1609.04747.

http://dx.doi.org/10.1063/1.1743822
https://doi.org/10.1063/1.1743822
https://doi.org/10.1063/1.1743822
https://doi.org/10.1063/1.1743822
%5Curl%7Bhttps://www.top500.org/lists/2017/11/%7D
%5Curl%7Bhttps://www.top500.org/lists/2017/11/%7D
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1063/1.457480
https://doi.org/10.1063/1.457480
https://doi.org/10.1063/1.457480
https://doi.org/10.1063/1.457480
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/10.1093/imanum/8.1.141
/oup/backfile/content_public/journal/imajna/8/1/10.1093/ imanum/8.1.141/2/8-1-141.pdf
/oup/backfile/content_public/journal/imajna/8/1/10.1093/ imanum/8.1.141/2/8-1-141.pdf
+%20http://dx.doi.org/10.1093/imanum/8.1.141
+%20http://dx.doi.org/10.1093/imanum/8.1.141
arXiv:1609.04747

242 Bibliography Chapter 16

[138] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[139] Karen L. Schuchardt et al. “Basis Set Exchange: A Community Database for
Computational Sciences”. In: Journal of Chemical Information and Modeling
47.3 (2007). PMID: 17428029, pp. 1045–1052. doi: 10.1021/ci600510j. eprint:
http://dx.doi.org/10.1021/ci600510j. url: http://dx.doi.org/10.1021/ci600510j.

[140] TURBOMOLEV7.2 2017, a development of University of Karlsruhe and Forschungszen-
trum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available
from
http://www.turbomole.com.

[141] J Stephen Binkley, John A Pople, and Warren J Hehre. “Self-consistent molec-
ular orbital methods. 21. Small split-valence basis sets for �rst-row elements”.
In: Journal of the American Chemical Society 102.3 (1980), pp. 939–947.

[142] RBJS Krishnan et al. “Self-consistent molecular orbital methods. XX. A basis
set for correlated wave functions”. In: The Journal of Chemical Physics 72.1
(1980), pp. 650–654.

[143] I. I. Guseinov and B. A. Mamedov. “Evaluation of the Boys Function using
Analytical Relations”. In: Journal of Mathematical Chemistry 40.2 (Aug. 2006),
pp. 179–183. issn: 1572-8897. doi: 10.1007/s10910- 005- 9023- 3. url: https:
//doi.org/10.1007/s10910-005-9023-3.

[144] N. M. Temme. “A Set of Algorithms for the Incomplete Gamma Functions”. In:
Probability in the Engineering and Informational Sciences 8.2 (1994), pp. 291–
307. doi: 10.1017/S0269964800003417.

[145] I.I. Guseinov and B.A. Mamedov. “Evaluation of Incomplete Gamma Func-
tions Using Downward Recursion and Analytical Relations”. In: Journal of
Mathematical Chemistry 36.4 (Aug. 2004), pp. 341–346. issn: 1572-8897. doi:
10 . 1023 /B : JOMC.0000044521 .18885 .d3. url: https : / /doi .org /10 .1023 /B :
JOMC.0000044521.18885.d3.

[146] M.L. Boas. Mathematical Methods in the Physical Sciences. 3rd ed. John Wiley
& Sons, 2006. isbn: 0-471-19826-9.

[147] Péter Pulay. “Convergence acceleration of iterative sequences. the case of scf
iteration”. In: Chemical Physics Letters 73.2 (1980), pp. 393–398. issn: 0009-
2614. doi: https://doi.org/10.1016/0009-2614(80)80396-4. url: http://www.
sciencedirect.com/science/article/pii/0009261480803964.

[148] A.S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell Pub-
lishing Co., 1964. isbn: 1-124-05391-3.

http://dx.doi.org/10.1021/ci600510j
http://dx.doi.org/10.1021/ci600510j
http://dx.doi.org/10.1021/ci600510j
http://dx.doi.org/10.1007/s10910-005-9023-3
https://doi.org/10.1007/s10910-005-9023-3
https://doi.org/10.1007/s10910-005-9023-3
http://dx.doi.org/10.1017/S0269964800003417
http://dx.doi.org/10.1023/B:JOMC.0000044521.18885.d3
https://doi.org/10.1023/B:JOMC.0000044521.18885.d3
https://doi.org/10.1023/B:JOMC.0000044521.18885.d3
http://dx.doi.org/https://doi.org/10.1016/0009-2614(80)80396-4
http://www.sciencedirect.com/science/article/pii/0009261480803964
http://www.sciencedirect.com/science/article/pii/0009261480803964

Bibliography 243

[149] D. Ceperley, G. V. Chester, and M. H. Kalos. “Monte Carlo simulation of a
many-fermion study”. In: Phys. Rev. B 16 (7 Oct. 1977), pp. 3081–3099. doi:
10.1103/PhysRevB.16.3081. url: https://link.aps.org/doi/10.1103/PhysRevB.
16.3081.

[150] Paul Hanson. Insightful proofs for Sherman-Morrison Formula and Matrix De-
terminant Lemma. Mathematics Stack Exchange.url: https://math.stackexchange.
com/q/1167112.

[151] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensor�ow.org. 2015. url: %5Curl%
7Bhttps://www.tensor�ow.org/%7D.

[152] Anaconda.Anaconda Software Distribution (version 2-2.4.0). 2016.url: %5Curl%
7Bhttps://anaconda.com%7D.

[153] Xavier Glorot and Yoshua Bengio. “Understanding the di�culty of training
deep feedforward neural networks”. In: Proceedings of the Thirteenth Interna-
tional Conference on Arti�cial Intelligence and Statistics. 2010, pp. 249–256.

[154] Dandelion Mane et al. TensorBoard. https://github.com/tensor�ow/tensorboard.
2017.

[155] H. P. Langtangen. A Primer on Scienti�c Programming with Python. 2nd ed.
Springer-Verlag Berlin Heidelberg, 2011. isbn: 978-3-642-18365-2.

[156] Stephen R. Langho�, Charles W. Bauschlicher, and Harry Partridge. “Theo-
retical Dissociation Energies for Ionic Molecules”. In: Comparison of Ab Ini-
tio Quantum Chemistry with Experiment for Small Molecules: The State of the
Art Proceedings of a Symposium Held at Philadelphia, Pennsylvania, 27–29 Au-
gust, 1984. Ed. by Rodney J. Bartlett. Dordrecht: Springer Netherlands, 1985,
pp. 357–407. isbn: 978-94-009-5474-8. doi: 10.1007/978-94-009-5474-8_13.
url: https://doi.org/10.1007/978-94-009-5474-8_13.

[157] A. Hinchli�e.ModellingMolecular Structures. 2nd ed. Wiley, 2000. isbn: 0-471-
62380-6.

[158] Claudia Filippi and C. J. Umrigar. “Multicon�guration wave functions for
quantum Monte Carlo calculations of �rst-row diatomic molecules”. In: The
Journal of Chemical Physics 105.1 (1996), pp. 213–226. doi: 10.1063/1.471865.
eprint: https://doi .org/10.1063/1.471865. url: https://doi .org/10.1063/1.
471865.

[159] P. Atkins and J. de Paula. Atkins’ Physical Chemistry. 10th ed. Oxford Univer-
sity Press, 2014. isbn: 987-0-19-969740-3.

[160] E. Buendía et al. “Quantum Monte Carlo ground state energies for the atoms
Li through Ar”. In: The Journal of Chemical Physics 131.4 (2009), p. 044115.
doi: 10 . 1063 / 1 . 3187526. eprint: https : / / doi . org / 10 . 1063 / 1 . 3187526. url:
https://doi.org/10.1063/1.3187526.

http://dx.doi.org/10.1103/PhysRevB.16.3081
https://link.aps.org/doi/10.1103/PhysRevB.16.3081
https://link.aps.org/doi/10.1103/PhysRevB.16.3081
https://math.stackexchange.com/q/1167112
https://math.stackexchange.com/q/1167112
%5Curl%7Bhttps://www.tensorflow.org/%7D
%5Curl%7Bhttps://www.tensorflow.org/%7D
%5Curl%7Bhttps://anaconda.com%7D
%5Curl%7Bhttps://anaconda.com%7D
https://github.com/tensorflow/tensorboard
http://dx.doi.org/10.1007/978-94-009-5474-8_13
https://doi.org/10.1007/978-94-009-5474-8_13
http://dx.doi.org/10.1063/1.471865
https://doi.org/10.1063/1.471865
https://doi.org/10.1063/1.471865
https://doi.org/10.1063/1.471865
http://dx.doi.org/10.1063/1.3187526
https://doi.org/10.1063/1.3187526
https://doi.org/10.1063/1.3187526

244 Bibliography Chapter 16

[161] Jules W Moskowitz and MH Kalos. “A new look at correlations in atomic
and molecular systems. I. Application of fermion Monte Carlo variational
method”. In: International Journal of QuantumChemistry 20.5 (1981), pp. 1107–
1119.

[162] E. Buendía, F.J. Gálvez, and A. Sarsa. “Correlated wave functions for the ground
state of the atoms Li through Kr”. In: Chemical Physics Letters 428.4 (2006),
pp. 241–244. issn: 0009-2614. doi: https://doi.org/10.1016/j.cplett.2006.07.027.
url: http://www.sciencedirect.com/science/article/pii/S0009261406010372.

[163] James D Talman and William F Shadwick. “Optimized e�ective atomic central
potential”. In: Physical Review A 14.1 (1976), p. 36.

[164] A Ma et al. “Scheme for adding electron–nucleus cusps to Gaussian orbitals”.
In: The Journal of chemical physics 122.22 (2005), p. 224322.

[165] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. “Atomic Screening Con-
stants from SCF Functions. II. Atoms with 37 to 86 Electrons”. In: The Journal
of Chemical Physics 47.4 (1967), pp. 1300–1307. doi: 10.1063/1.1712084. eprint:
https://doi.org/10.1063/1.1712084. url: https://doi.org/10.1063/1.1712084.

[166] O. El Akramine, A. C. Kollias, and W. A. Lester Jr. “Quantum Monte Carlo
study of singlet–triplet transition in ethylene”. In: The Journal of Chemical
Physics 119.3 (2003), pp. 1483–1488. doi: 10 . 1063 /1 . 1579466. eprint: https :
//doi.org/10.1063/1.1579466. url: https://doi.org/10.1063/1.1579466.

[167] Peter J. Reynolds et al. “Fixed-node quantum Monte Carlo for moleculesa) b)”.
In: The Journal of Chemical Physics 77.11 (1982), pp. 5593–5603. doi: 10.1063/
1.443766. eprint: https://doi.org/10.1063/1.443766. url: https://doi.org/10.
1063/1.443766.

[168] Manolo C. Per, Salvy P. Russo, and Ian K. Snook. “Electron-nucleus cusp
correction and forces in quantum Monte Carlo”. In: The Journal of Chemi-
cal Physics 128.11 (2008), p. 114106. doi: 10 . 1063 /1 . 2890722. eprint: https :
//doi.org/10.1063/1.2890722. url: https://doi.org/10.1063/1.2890722.

[169] Sebastian Manten and Arne Lüchow. “On the accuracy of the �xed-node dif-
fusion quantum Monte Carlo method”. In: The Journal of Chemical Physics
115.12 (2001), pp. 5362–5366. doi: 10.1063/1.1394757. eprint: https://doi.org/
10.1063/1.1394757. url: https://doi.org/10.1063/1.1394757.

[170] Frank H. Stillinger and Thomas A. Weber. “Computer simulation of local or-
der in condensed phases of silicon”. In: Phys. Rev. B 31 (8 Apr. 1985), pp. 5262–
5271. doi: 10.1103/PhysRevB.31.5262. url: https://link.aps.org/doi/10.1103/
PhysRevB.31.5262.

[171] Steve Plimpton. “Fast parallel algorithms for short-range molecular dynam-
ics”. In: Journal of computational physics 117.1 (1995), pp. 1–19.

http://dx.doi.org/https://doi.org/10.1016/j.cplett.2006.07.027
http://www.sciencedirect.com/science/article/pii/S0009261406010372
http://dx.doi.org/10.1063/1.1712084
https://doi.org/10.1063/1.1712084
https://doi.org/10.1063/1.1712084
http://dx.doi.org/10.1063/1.1579466
https://doi.org/10.1063/1.1579466
https://doi.org/10.1063/1.1579466
https://doi.org/10.1063/1.1579466
http://dx.doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
https://doi.org/10.1063/1.443766
http://dx.doi.org/10.1063/1.2890722
https://doi.org/10.1063/1.2890722
https://doi.org/10.1063/1.2890722
https://doi.org/10.1063/1.2890722
http://dx.doi.org/10.1063/1.1394757
https://doi.org/10.1063/1.1394757
https://doi.org/10.1063/1.1394757
https://doi.org/10.1063/1.1394757
http://dx.doi.org/10.1103/PhysRevB.31.5262
https://link.aps.org/doi/10.1103/PhysRevB.31.5262
https://link.aps.org/doi/10.1103/PhysRevB.31.5262

Bibliography 245

[172] D. Frenkel and B. Smit. Understanding Molecular Simulation. From Algorithms
to Applications. Academic Press, 2002. isbn: 0-12-267351-4.

[173] “On the determination of molecular �elds. —II. From the equation of state of a
gas”. In: Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 106.738 (1924), pp. 463–477. issn: 0950-1207. doi:
10 . 1098 / rspa . 1924 . 0082. eprint: http : / / rspa . royalsocietypublishing . org /
content/106/738/463.full.pdf. url: http://rspa.royalsocietypublishing.org/
content/106/738/463.

[174] A Pukrittayakamee et al. “Simultaneous �tting of a potential-energy surface
and its corresponding force �elds using feedforward neural networks”. In: The
Journal of chemical physics 130.13 (2009), p. 134101.

[175] P.J. Davis and P. Rabinowitz. Methods of Numerical Integration. 2nd ed. Aca-
demic Press, 1984. isbn: 0-12-206360-0.

[176] T. Lindstrøm. Mathematical Analysis. Lecture notes. 2017. url: http://folk.uio.
no/snorrec/17VMat2400/Spaces.pdf.

[177] K. Mørken. Numerical Algorithms and Digital Representation. Lecture notes.
Sept. 2017. url: http : / /www.uio .no / studier / emner /matnat /math /MAT-
INF1100/h17/kompendiet/matinf1100.pdf.

[178] V.I. Krylov. Approximate Calculation of Integrals. 1st ed. Dover Publications,
2005. isbn: 0-486-44579-8.

[179] P. Echenique and J.L. Alonso. “A mathematical and computational review
of Hartree-Fock SCF methods in quantum chemistry”. In: Molecular Physics
105.23-24 (2007), pp. 3057–3098. doi: 10.1080/00268970701757875. eprint: http:
//dx.doi.org/10.1080/00268970701757875. url: http://dx.doi.org/10.1080/
00268970701757875.

http://dx.doi.org/10.1098/rspa.1924.0082
http://rspa.royalsocietypublishing.org/content/106/738/463.full.pdf
http://rspa.royalsocietypublishing.org/content/106/738/463.full.pdf
http://rspa.royalsocietypublishing.org/content/106/738/463
http://rspa.royalsocietypublishing.org/content/106/738/463
http://folk.uio.no/snorrec/17VMat2400/Spaces.pdf
http://folk.uio.no/snorrec/17VMat2400/Spaces.pdf
http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h17/kompendiet/matinf1100.pdf
http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h17/kompendiet/matinf1100.pdf
http://dx.doi.org/10.1080/00268970701757875
http://dx.doi.org/10.1080/00268970701757875
http://dx.doi.org/10.1080/00268970701757875
http://dx.doi.org/10.1080/00268970701757875
http://dx.doi.org/10.1080/00268970701757875

	Introduction
	Quantum and classical dynamics
	Machine learning and artificial neural networks
	Machine learning in molecular dynamics
	Goals
	Our contributions
	Developed source code
	Structure of the thesis

	I Foundational theory
	Quantum Mechanics
	A (very brief) review of classical mechanics
	Canonical (first) quantization
	Short mathematical interlude

	Schrödinger picture
	The quantum Hamiltonian
	Accuracy of molecular Hamiltonian
	Born-Oppenheimer approximation

	Anti-symmetry and the Pauli principle
	Slater determinants

	Postulates of Quantum Mechanics
	The variational principle

	Wave functions
	Properties of the exact wave function
	Electron-nucleus cusp
	Electron-electron cusp
	Higher order coalescence conditions

	Jastrow factor
	Orbitals
	Spherical and solid harmonics
	Hydrogenic orbitals
	Slater type orbitals
	Gaussian type orbitals
	Some properties of Gaussians

	Gaussian basis sets

	II Advanced theory
	Hartree-Fock
	Single Slater determinant ansatz
	Exchange correlation

	The Hartree-Fock energy
	Variational minimization of EHF
	Defining , and the Fock operator

	Restricted Hartree-Fock
	The Roothan-Hall equations

	Unrestricted Hartree-Fock and the Pople-Nesbet equations
	Choice of orbital basis set
	The Hartree-Fock limit

	Density functional theory
	The Hohenberg-Kohn theorems
	Kohn-Sham ansatz
	The Kohn-Sham equations
	Local density approximation
	Numerical integration grids
	Simple spherical grid
	Efficiency of angular grids and the product Gaussian quadrature formula
	Lebedev quadrature
	Complete molecular grids, Voronoi and Wigner-Seitz partitioning

	Becke grid

	Variational Monte Carlo
	The Metropolis algorithm
	Markov chains, detailed balance and ergodicity
	The Metropolis-Hastings algorithm and importance sampling

	Monte Carlo integration
	Convergence properties of the Monte Carlo estimators
	The local energy, EL
	Uncertainty estimates and correlated sampling
	Blocking

	Artificial Neural Networks
	Artifical neurons
	Network layers
	The full network
	Training the ANN

	III Implementation and results
	Implementation: Hartree-Fock
	Basis sets used
	Introductory examples
	Overview of selected classes
	Overlap and kinetic integral evaluation
	Electron-nucleus Coulomb integrals
	Electron-electron exchange integrals
	The RestrictedHartreeFockSolver class

	Implementation: Variational Monte Carlo
	Introductory examples
	Overview of selected classes
	The SlaterWithJastrow class
	The Orbital class
	The Metropolis class

	Implementation: Artificial Neural Networks
	Introductory examples
	Overview of selected classes
	The NeuralNetwork class
	The NetworkTrainer class
	The TFPotential and the DataGenerator classes

	Implementation and validation: Density Functional Theory
	Hartree-Fock validation tests
	Dissociation of the hydrogen molecule ion, H2+
	Calculating the energies of the "ten-electron series"

	Variational Monte Carlo validation tests
	Non-interacting electrons
	The effect of the Jastrow factor
	First and second row closed-shell atoms and diatomics
	Testing the gaussian orbitals
	Cusp effects and cusp corrections
	Cusp correction

	Blocking

	Neural Network validation tests
	Single variable curve fit
	Approximating noisy data
	Multi-variable fitting
	Training on ab initio data

	Validation: ANN potentials in MD—the full framework

	IV Conclusions and future work
	Conclusions and perspectives
	Appendix Natural units: Hartree atomic units
	Appendix Basics of numerical integration
	Appendix Functionals and functional variations
	Bibliography

