
Towards High Performance

Dynamic Cloud Environments

Evangelos Tasoulas

Doctoral Dissertation

Submitted to

the Faculty of Mathematics and Natural Sciences

at the University of Oslo in partial fulfillment

of the requirements for the degree

Philosophiae Doctor

June, 2017



© Evangelos Tasoulas, 2017 

Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 1922 

ISSN 1501-7710 

All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.  

Cover: Hanne Baadsgaard Utigard. 
Print production: Reprosentralen, University of Oslo. 



Abstract

The advent of the Internet of Things, sensor and social networks, to mention just a

few examples, all contribute towards the solid establishment of the Big Data era. High

Performance Computing (HPC) becomes necessary for the efficient processing of the

massive amounts of data our society generates, and cloud computing is a critical component

to deliver this processing power to a broader audience that cannot afford to acquire and

maintain such complex computing systems themselves. However, HPC specific technology

and performance is not yet apt to be delivered efficiently over highly flexible and dynamic

environments, as typically are the virtualized cloud infrastructures.

In this thesis, we address challenges that arise in high performance dynamic cloud

environments, that are equipped with HPC specific technology, in the context of networking

and virtualization. We use InfiniBand, a high performance lossless interconnection network

as the basis of our research, and first show that lossless networks pose prime challenges when

the nature of the infrastructure is very dynamic, i.e. exhibits continuous changes. Then we

propose a network I/O virtualization architecture, the InfiniBand vSwitch architecture, that

can make lossless network technologies more favorable in the cloud. Moreover, we propose

different network reconfiguration methods to enable performance-driven reconfigurations in

very large network topologies that are commonly found in data centers. Performance-driven

reconfigurations are frequently needed to adapt to unpredictable workload changes resulting

from the shared and on-demand nature of a cloud platform, or when cloud providers employ

live migration of virtual machines to optimize the resource usage of their infrastructure.

Last but not least, we propose a new Quality-of-Service metric, called delay, to capture the

directly observable service degradation in consolidated cloud environments. We suggest that

the delay can be used as a direct service level agreement metric between cloud providers

and cloud tenants.





Acknowledgements

First, I would like to express my gratitude to my three supervisors; Ernst Gunnar Gran,

Tor Skeie and Kyrre Begnum. Without their positiveness, supervision, suggestions and

encouragement, my PhD journey would not have been so fruitful and enjoyable during both

the good and hard times. Then I would like to thank Bjørn Dag Johnsen from Oracle

Norway, our closest collaborate in the ERAC project, the project that mainly funded this

thesis, for his enthusiastic attitude and participation in the important discussions that

shaped the direction of my work and introduced industrial relevance. My appreciation

goes as well to Feroz Zahid for being the most easygoing colleague whom I could imagine

sharing office with, and a brilliant and ambitious associate, and Sven-Arne Reinemo for his

supervision during my early days.

A special thank you must be directed to H̊arek Haugerud, Anis Yazidi, Hugo Lewi Hammer,

Laurence Marie Anna Habib and the whole NETSYS group at the Oslo and Akershus

University College for being so supportive towards me since I started my Master program

and all the way through my PhD, even if they were not directly involved in the ERAC

project. It must be noted that without their partial funding it would have been much

harder for me to reach the finishing line.

Last but not least, I want to communicate my utmost respect, love, and appreciation to my

parents, Alexandros and Anna Tasoula, for their infinite support and the unconditional love

they always gave to me. To the rest of my family and my little niece, Anna-Maria, for

making me laugh so easily; To Dr. Xinoula Song for believing in me, supporting me in so

many different ways and praising me unconditionally; To my friend and soon-to-be Dr.

Dimitrios Agiakatsikas (also known as Lakis) for his eternal wisdom and discussions we had

in so many different topics of sheer importance during our PhD moments; To all of the

anonymous reviewers of this thesis. I would like to conclude by thanking my very good late

friend and the most kind hearted person I met so far, Karolos Trivizas. During the short

eight years that I knew him, his love towards me and his experienced advices made him feel

like a second father to me. I feel grateful to have met you, and your memory will be with

me always.





Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Challenges Addressed in this Thesis . . . . . . . . . . . . . . . . 5

1.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13

2.1 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Live Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Virtualization Overhead . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Input/Output Virtualization . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Infrastructure as a Service and Resource Consolidation . . . . . . . 17

2.3 Lossless Interconnection Networks . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Network Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 InfiniBand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 InfiniBand Addressing Schemes . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Subnet Management . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 InfiniBand, SR-IOV, and Live Migrations in the Cloud . . . . . . . 29

2.5 Simulators Used in this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Infiniband Fabric Simulator . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Oblivious Routing Congestion Simulator . . . . . . . . . . . . . . . 32

2.5.3 Virtual Switch Migration Simulator . . . . . . . . . . . . . . . . . . 33

3 Summary of Research Papers 35

3.1 Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Closing Remarks 41

List of Papers 45

List of Acronyms 157

Bibliography 159





Appended Papers

Paper I: A Novel Query Caching Scheme for Dynamic InfiniBand Subnets . . . . . 47

Paper II: Towards the InfiniBand SR-IOV Architecture . . . . . . . . . . . . . . . 61

Paper III: Fast Hybrid Network Reconfiguration for Large-Scale Lossless Intercon-

nection Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Paper IV: Compact Network Reconfiguration in Fat-Trees . . . . . . . . . . . . . 83

Paper V: Efficient Routing and Reconfiguration in Virtualized HPC Environments

with vSwitch-enabled Lossless Networks . . . . . . . . . . . . . . . . . . . . . . 115

Paper VI: The Concept of Workload Delay as a Quality-of-Service Metric for

Consolidated Cloud Environments with Deadline Requirements . . . . . . . . . 143





Chapter 1

Introduction

This thesis aims to address challenges that arise in high performance cloud computing

environments in different layers of a cloud stack. A core component for delivering high

performance in the cloud is the interconnection network. High performance lossless networks

typically provide lower latency and higher bandwidth when compared to lossy networks.

When cloud environments are combined with lossless interconnection network technologies,

like InfiniBand (IB) [1], scalability issues with respect to managing the network come into

sight. Lossless networks have been traditionally used in static environments, such as High

Performance Computing (HPC) clusters, and the dynamic nature of the cloud challenges

such network fabrics.

In this work, we first undertake network oriented challenges in the context of virtualization1.

Then, we move further up in the cloud stack and study an evidently perceptible Quality of

Service (QoS) metric, the delay of workloads, for cloud consolidation.

1.1 Motivation

New, tiny devices with increased computing power and embedded sensors are being deployed

ubiquitously every day. Sensor networks and the Internet of Things (IoT) are more palpable

than ever before and many smart connected products such as phones, fridges, lamps,

watches and other wearables, just to name a few, have already hit the market. The

number of connected devices is projected to expand from the roughly 20 billion that exist

today, to 30 billion by 2020 and 80 billion by 2025, as presented by a recent International

Data Corporation (IDC) report [3]. These devices as well as the rise of social media like

Facebook2 and YouTube3 produce enormous amount of data, contributing towards the Big

Data era we are going through.

1Virtualization is one of the core technologies powering up Infrastructure as a Service (IaaS) [2] clouds.
2Facebook generated four new Petabytes of data per day as of 2014 [4] and had 1.86 billion active users by
the end of 2016 [5].

3YouTube users upload more than 400 hours of video per minute [6].

1



2 Introduction

Big Data is a term commonly used to describe the polynomial growth of data generation

we have seen in recent years. In 2005 the amount of data created and copied was 130

Exabytes [7]. In 2015 that number had grown to approximately 10 Zettabytes, and it

is estimated that by 2025 we will be producing 180 Zettabytes (180 trillion Gigabytes)

annually [3]. Notwithstanding the great amounts of data we produce, our ability to analyze

those data is poor. Only half percent (0.5%) of the generated data is ever analyzed [7].

The three main Big Data characteristics are widely known as the 3V’s ; Volume, Variety and

Velocity [8]. The 3V’s bring several research challenges along the way loosely summarized

as: how to process the huge V olume (Exabytes, Zettabytes) of V arying data (video, text,

structured, unstructured) with high V elocity (real time generating and processing interval

requirements) efficiently? How to turn more than half percent of the generated data into

value by extracting accurately what is needed in a timely manner?

It becomes noticeable that performance is critical to address the Big Data challenges,

and for this reason HPC clusters are typically used for efficient Big Data analytics [9].

On the other hand, HPC clusters have a very high deployment and maintenance cost

that individuals or small organizations cannot afford. However, with the emergence of

cloud computing, the Computer Science (CS) society tends to agree that there will be a

convergence of HPC, Big Data and the Cloud, with the Cloud performing as the vehicle for

delivering the associated services to a broader audience [10, 11].

Cloud computing, or simply cloud, is a paradigm shift in the Information Technology

(IT) sector. Cloud computing refers to the usage of computing resources delivered as

services over a network in a server-centric model. The infrastructure is usually4 not

owned or maintained by the cloud clients5, but rented on demand. The cloud brings

some attractive features such as: a) resource elasticity and consolidation that provide

both monetary benefits for the cloud tenants and environmentally friendlier (greener)

computing, b) infrastructure management as a service that can be controlled and automated

with software, c) the opportunity for cloud users to cost-effectively try out new ideas

that would otherwise require a large upfront investment in hardware6, and d) lifting the

infrastructure maintenance burden from the end user since the cloud provider is taking

care of the infrastructure. Due to the valuable advantages the cloud can offer, it is no

coincidence that Cisco predicts the total global data center traffic to reach 15.3 Zettabytes

annually by 2020, and 92% of all workloads to be processed in the cloud by then [15].

Server or hardware virtualization7 is arguably one of the core cloud components [2].

Virtualization breaks the one-to-one relationship between the Operating System (OS)

4Unless the cloud is private or hybrid [12].
5The cloud clients can also be referred to as cloud tenants.
6Dropbox Inc. is a shinny example of a company that grew on the shoulders of a big cloud provider.
Dropbox started small without investing in its own hardware, as that would require a major upfront
investment to provide a reliable, robust and highly durable service for storing files. Since its inception,
Dropbox was storing files in the Amazon Web Services (AWS) [13] cloud platform and only when Dropbox
became big enough did Dropbox invest on its own data centers [14].

7There are several types of virtualization. Some examples include the network virtualization [16], service
virtualization [17] and server/hardware virtualization [18]. When we plainly refer to virtualization in the
rest of this work we are referring to server/hardware virtualization.



1.1 Motivation 3

Monitor

Optim
iz

e

A
n

alyze

OS

 

Networking

Storage/Servers

Virtualization

Orchestration

Applications

Throughput, Latency, Faults

Hardware, Power consum
ption, Failu

re
s

Utilization, Resource distribution

SLA compliance

Lin
k lo

a
d

s, H
o

t sp
ots

Server co
n

so
lid

a
tio

n
, R

e
so

u
rce o

vercom
m

itm
ent

P
o

w
e
r m

e
trics, H

a
rd

w
are stats

C
lie

n
t p

ro
file

, S
LA

 vio
latio

n
s

Service perfo
rm

an
ce

Virtual machine place
m

en
t, 

Li
ve

 M
ig

ra
ti

o
n

Server s
ele

ct
io

n

Load balancing, R
oute

 re
co

n
fi

gu
ra

ti
o

n

Fig. 1.1: Different layers and research objectives of interest for the corresponding layer of a
self-adaptive cloud.

and the hardware by means of logical abstraction of the hardware that is exposed to the

virtualized Operating Systems (OSs) in the form of Virtual Machines (VMs) [18]. As a

result more OSs can run simultaneously, but at the same time independently in isolated

VMs, on top of the same physical hardware. At a glance the outcome of the hardware

abstraction is increased server consolidation, but more importantly, the computing resources

can be treated as virtual entities that remove the hard physical boundaries of the physical

systems. The removal of the physical boundaries opens up a whole new world of ways to

handle computing infrastructure since the hardware can be treated similarly to software.

Most of the cloud benefits that were mentioned in the previous paragraph can be directly

attributed to virtualization. Further details about the cloud concepts and virtualization

features will be given in Chapter 2.

Along with the benefits of the cloud and virtualization, there also come challenges. The

several layers of abstraction in consideration of achieving a fully self-adaptive software

defined architecture, as shown in Fig. 1.1, are desired in order to allow for dynamic

optimization of resources [19, 20], but add to the complexity of the cloud components,

opening up new frontiers in several research areas. Moreover, the added overhead due to

the additional layer of virtualization between the OS and the hardware has a performance

impact. As a consequence, the performance of a fully virtualized cloud is not on par with

that of physical, non-virtualized systems. The performance gaps are even larger in the HPC

domain where HPC specific technologies such as lossless interconnection networks are

common, but not yet ready to be fully virtualized without sacrificing cloud flexibility [21].

Correspondingly, cloud providers have not adopted true HPC clouds yet that can perform

on par with traditional HPC systems [22, 23], a necessary move in order to accommodate

high performance workloads efficiently in the cloud, and therefore bring HPC and efficient

Big Data analytics access to an extended audience.



4 Introduction

Cloud Layers

A fully virtualized environment with several layers of abstraction is needed to accomplish a

software defined architecture that uncouples services from location. This uncoupling is

necessary for the realization of self-adaptive clouds that are able to monitor their state,

analyze, and eventually optimize the offered services by rearranging/reallocating resources.

Fig. 1.1 liberally presents the layers of a typical cloud infrastructure with the rectangles on

the left of the figure, and corresponding research objectives for each layer8 in the context

of the monitor-analyze-optimize loop9 on the right side of the figure. Starting from the

bottom layer and working up we meet the Networking layer. The network is an integral

part of any cloud infrastructure, as by definition all the cloud resources are served to the

clients through the network. However, this work focuses in intra-cloud challenges related

to the virtualized network resources that are allocated to cloud tenants, thus, with the

term Networking we refer to that aspect of the interconnection network itself, and not the

networking resources that are used for the management of the cloud data center. One layer

above the network we have the Storage/Servers layer. This is the layer where the physical

hardware that delivers the computing resources to the cloud users is located. On the

third layer we have the layer of Virtualization that is responsible for the decoupling of the

services from the underlying physical infrastructure, i.e. servers and storage etc. Then

comes the Orchestration layer where the operational intelligence is implemented. The

responsibility of the orchestration layer is to enforce security and usage policies for the

cloud tenants, ensure Service Level Agreement (SLA) compliance between the tenants and

the cloud provider, tracking of resource utilization and billing. Above the orchestration

layer sit the OS and Applications that are being deployed on demand to the cloud by the

tenants via the orchestration layer.

Each of these layers have different objectives in the monitor-analyze-optimize loop. For

example, in the monitoring phase the orchestration layer is responsible to monitor the SLA

compliance and pass the necessary metrics to the next phase for analysis. In the Analysis

phase the client profiles should be checked and potential SLA violations must be identified.

The optimization phase should try to reallocate resources if needed based on the input of

the analysis with the ultimate goal to improve the service performance. Note that in

most situations coordination is needed between different layers in order to improve overall

performance.

Plenty of research has been done in the different objectives for each of the cloud layers in

the effort to materialize self-adaptive cloud infrastructures [26, 27, 28], but not in the

context of clouds with HPC specific technologies such as lossless HPC interconnection

networks. To be more distinct, modern virtualized clouds that offer high performance based

8Note that the different cloud layers and corresponding research objectives in Fig. 1.1 are presented as a
high-level overview of cloud architectures. We do not address issues in all of the cloud layers in this thesis.
Details about the focus of the thesis are to be found in Section 1.2.

9For the sake of simplicity, the monitor-analyze-optimize loop that is used in Fig. 1.1 is a relaxed
presentation of the widely recognized Monitor-Analyze-Plan-Execute (MAPE) [24] classification for
autonomic computing, where the Plan/Execute phases are presented as the Optimize phase. The MAPE
classification is common in self-adaptive cloud environments [25].



1.2 Research Challenges Addressed in this Thesis 5

Networking

Virtualization

Server co
n

so
lid

a
tio

n
, R

e
so

u
rce o

vercom
m

itm
ent

Virtual machine place
m

en
t, 

Li
ve

 M
ig

ra
ti

o
n

Load balancing, R
oute

 re
co

n
fi

gu
ra

ti
o

n

Fig. 1.2: Highlighting research objectives that this thesis is focusing on. We target the
networking and virtualization layers from the perspective of a lossless network when virtual
machines are migrating in the optimization phase, as well as the virtualization layer with respect
to resource overcommitment in the analysis phase.

on lossless networks have been demonstrated in scientific papers [29, 30, 31, 32], but not

much effort has been put in the dynamic nature and self-adaptation of a cloud when a cloud

is based on such network technologies as explained in more detail in Section 1.2.

1.2 Research Challenges Addressed in this Thesis

This thesis targets a subset of the research objectives of the monitor-analyze-optimize loop

in self-adaptive clouds. As highlighted in Fig. 1.2 we concentrate in the networking and

virtualization (from the perspective of the network) layers of the optimization phase, as well

as the virtualization layer with respect to resource overcommitment in the analysis phase.

In particular, we first address challenges related to high performance lossless interconnection

network technologies in the context of dynamic virtualized cloud environments. Once we

have demonstrated techniques that would allow for efficient live migration of VMs that use

a lossless network, as well as network performance optimization techniques that are needed

due to the constant workload or infrastructure changes in a cloud environment, then we

look at the problem of consolidation from the orchestration perspective. We use IB as the

network interconnect of choice10 for demonstrating our prototype implementations, but the

concepts and challenges presented in this thesis are related to the nature of lossless high

performance interconnection networks, thus, even similar competing technologies could

benefit from our results [34, 35]. As long as something is purely IB specific it will be clearly

10IB is a popular lossless interconnection network technology holding a significant 35.4% market share in
the list of the top 500 supercomputers [33] as of June 2017.



6 Introduction

mentioned throughout the text in this document.

Although the operating principles of lossless networks in general improve performance, the

fact that packets are stored in a sender node and are neither dropped nor forwarded until

there is available buffer space in the receiver node, introduces the potential for deadlock

situations if routing cycles (loops) exist11 [36]. Ultimately, the network may come to a halt

until the deadlock is resolved. To prevent deadlocks from happening lossless networks

typically engage a management authority, also known as Subnet Manager (SM). The SM is

responsible for the overall arbitration of the network: discover, configure the nodes with

layer-two Local Identifier (LID)12 addresses, calculate deadlock-free routing paths based on

the LID assigned to each node, provide path resolutions and once the network is running,

continuously monitor the health of the network.

In large subnets the SM can become a bottleneck that prevents scalable management of

the subnet. For two peers to communicate, they need to know key characteristics of the

communication path, such as which is the maximum supported Maximum Transmission Unit

(MTU) or speed rate. A path resolution performed by the SM provides this information to

the peers. As we demonstrate in Paper I13 one scalability issue can emerge from the path

resolutions that increase polynomially as the size of a subnet increases. Cloud environments

are very dynamic with constant workload changes and need for re-optimizations when

VMs live migrate. Especially for the case where a Virtual Machine (VM) live migrates,

the LID address of the VM will change as the LID is shared with the physical host in

current generation Host Channel Adapters (HCAs)14 [38, 39]. This layer-two address

change will force the peers communicating with the migrated VM to ask for the new path

characteristics to reconnect, a behavior that leads us to the first Research Question (RQ) of

this thesis:

RQ 1: In dynamic cloud environments VMs can live migrate to optimize resource

usage and performance. With the readily available technology in the IB architecture

the VMs do not get a dedicated LID address, i.e. when a VM migrates, its LID

address will change. What are the implications on the subnet management scalability?

RQ 1 is addressed in Paper I where we show that the SM performance can get a serious

hit when VMs migrate and their LID addresses change. We show that it is possible to

remediate the scalability issues if we introduce a client-side cache for paths that have

already been resolved. A necessary condition for the cache to work is that the VMs should

have dedicated LID addresses. But then again, with dedicated LID addresses in the

VMs the SM would have to reconfigure the network and reroute the traffic after each live

migration. Reconfiguring the network while running –an operation known as dynamic

reconfiguration– is a costly and challenging task. When a lossless network is reconfigured,

11The necessary background about the operating principles of lossless networks is located in section 2.3.
12The terminology that is used throughout this thesis (SM, LID, etc.) is based on IB. However, most of
the terms are similar or identical even in competing technologies that are based on the same lossless
principles [1, 37].

13The six research papers written as part of the PhD work leading to this thesis are all attached in the last
chapter of this thesis.

14A Host Channel Adapter (HCA) is the term the IB specification uses to refer to a network card.



1.2 Research Challenges Addressed in this Thesis 7

deadlock-free routes have to be recalculated and distributed to all switches. This task can

take several minutes depending on the network size and topology [40, 41]. Normally, HPC

clusters are static environments and once deployed the SM rarely intervenes to reconfigure

the network unless critical faults are detected. In a cloud environment reconfigurations are

common. Therefore, the next two research questions are:

RQ 2: What would the implications be of having a network architecture that would

allow VMs to be assigned with their own layer-two addresses and what should one take

into account when designing such an architecture?

RQ 3: If an architecture that allows VMs to be assigned with their own layer-two

addresses exist, a reconfiguration of the network would be needed after each VM

live migration to redirect the traffic to the new destination of the VM. How would

it be feasible to have continuous cloud optimizations with VM live migrations in

large subnets if one takes into account that each reconfiguration may impose a large

overhead in the network and take minutes to complete?

In Paper II we present a vSwitch network Input/Output Virtualization (IOV) architecture

that takes into account different scalability aspects of the network. Firstly, the vSwitch

architecture allows VMs to get a dedicated layer-two address, thus, whenever a migration of

a VM happens the scalability issues that have been presented in Paper I can be resolved.

The first part of Paper II provides answers to RQ 2. Then, in the same paper, we present

analytically a topology-agnostic reconfiguration technique that would allow for very quick

reconfigurations even in very large subnets. In Paper V we complement our proposed

vSwitch architecture by providing an even more efficient topology-aware reconfiguration

technique, and we discuss routing considerations for vSwitch-based subnets. The latter part

of Paper II as well as Paper V provide insights for RQ 3.

When VMs migrate or cloud tenants spawn new VMs the traffic patterns of the network

change. This diverse and continuously changing workloads are the norm and not the

exception in cloud environments. In several situations the performance can be improved

with a dynamic network reconfiguration. Nonetheless, reconfiguring a large subnet is

burdensome. As previously mentioned a reconfiguration can take several minutes depending

on the network size and topology. The research question for this challenge is:

RQ 4: Reconfiguration of the network can take several minutes in large subnets. Due

to the dynamic nature of cloud environments performance-driven reconfigurations are

more relevant than ever before. How could one reduce the reconfiguration overhead to

allow up to several performance-driven reconfigurations per minute if needed?

One solution for RQ 4 is presented in Paper III. A topology-aware method that allows

for fast reconfiguration of the network in order to keep up with constant changes is

demonstrated. The method identifies the switches and nodes that are located in a sub-part

of the network that could benefit from a reconfiguration, and reconfigures only that sub-part

by orders of magnitude faster when compared to a full subnet reconfiguration. Moreover,

different routing algorithms can be used as fit in different sub-parts of the network. In

Paper IV another solution is presented where a meta-database with alternative paths –that



8 Introduction

can be used during a reconfiguration– is generated during the initial configuration phase.

When a reconfiguration is needed the network can be reconfigured quicker by selecting

paths from the alternative pre-calculated options available in the meta-database.

Up until now we added building blocks in different levels of the interconnection network

layer (architectural level, network management) for dynamic environments. Now we move

further up in the cloud hierarchy and look at the problem of performance fluctuation in the

cloud which is mostly a result of running unpredictable workloads and overcommitting

resources [42, 43]. It is known that HPC workloads can have tight deadlines [44, 43], and

after all, what the user typically experiences when the performance fluctuates is the varying

delay of the workload execution. This problem leads us to the last research question for this

thesis:

RQ 5: Cloud workloads can be time constrained. A metric that users directly perceive

when executing a well known workload, is how much time did the computation need to

complete and if the execution has been delayed. How can cloud providers increase

consolidation in cloud environments without compromising the performance expected

by the customers?

In Paper VI we introduce the concept of delay as a QoS metric in our quest to address RQ 5.

The delay of a workload is an evidently perceptible metric from both the cloud provider and

the cloud tenants, thus, the delay could serve as a fair SLA metric for consolidated cloud

environments. This work provides preliminary insight about how the delay of workloads

could be formulated, and demonstrates a simple bin packing method for consolidation of

VMs based on the delay.

For a quick reference, Fig. 1.3 maps the different RQs and Papers to the corresponding

layers of a self-adaptive cloud.

1.3 Research Methods

Generally, there are two methodological approaches in Computer Science: Theoretical and

Experimental [45, 46, 47, 48, 49, 50]. In theoretical CS, conceptual and formal modeling,

and mathematical proofs of propositions are commonly used. In experimental CS the

research is mainly comparative and is based on methods such as benchmarking, prototyping,

simulating, and analyzing the results. According to need, this thesis uses several research

methods that mostly belong to the experimental CS class. In particular, Lab-based

Experiments, Concept Implementation or Prototyping, Simulation, Data Analysis and

Conceptual Analysis/Mathematical (CA/M) have been used.

The purpose of the Lab-based Experiments can be twofold. First, lab-based experiments are

controlled and can be carefully designed to collect data and study the real-life behavior of a

particular element of interest in complex systems. Second, lab-based experiments can be

used to compare the performance of a newly-proposed system with existing systems. For

example, in Paper I we designed and used a lab-based experiment to benchmark and



1.3 Research Methods 9

Paper II (RQ2, RQ3)

Paper V (RQ3)

Paper III (RQ4)

Paper I (RQ1)

Paper VI (RQ5)

Paper IV (RQ4)

Monitor

Analyze Optimize

Storage/Servers

Orchestration

Networking

Virtualization Server Consolidation Live Migration

SM/Network Reconf

Scalability of the SM
in a dynamic environment

A scalable network IOV arch
for dynamic lossless networks

A fast and hybrid network
reconfiguration method

Fast network reconfiguration
based on a meta-database

Minimal network reconfiguration
and routing in dynamic clouds

Server consolidation based on
the concept of workload delays

Fig. 1.3: A flattened version of Fig. 1.2, that maps the different RQs and Papers to the
corresponding layers of a self-adaptive cloud.

study the scalability and behavior of the IB SM for the particular case where too many

path resolution queries need to be served. In the same work we set up experiments to

compare our proposed prototype solution, that introduces a client-side path resolution

cache to reduce the load imposed to the SM, with the behavior of the unmodified system.

Experimentation is a valuable research method that is commonly used to verify or refute

the claims of a hypothesis [49]. Lab-based experiments have been thoroughly used in all of

the papers in this thesis.

Concept Implementation or Prototyping is used to provide proof of concepts, and this

research method has been used in all of the proposed concepts in this thesis. Most

theoretical approaches involve some level of modeling abstraction. Modern computing

systems are very complex and it is not possible to model every aspect of each studied

system in detail. As such, something that is proved theoretically feasible may not be

practical to implement due to unexpected behavior of system parts that have been left out

in the abstract model. A prototype can reduce the gap between theory and what is actually

possible in a real-life scenario. Prototyping can also reveal potential mis-modeling in the

theoretical part. Depending on the level of modeling abstraction of a research idea, a

prototype can be hard to implement. If a radical concept needs several other pieces that

do not yet exist, a concept implementation may not be feasible at all. The operational

level of the prototypes presented in this thesis differs with the nature of each research

idea. For example, in Paper II a non-existing hardware architecture is proposed. The

implemented prototype that accompanies this work tests the practicality and performance

of the proposed reconfiguration method for the proposed architecture by emulating the

proposed IB vSwitches with real switches, and the VMs that would be connected to the



10 Introduction

vSwitches with real nodes connected to the switches. One the other hand, in Paper III

the presented prototype is a more straight-forward implementation since the proposed

solution can be applied and fully demonstrated with readily available hardware. It is

noteworthy that although prototyping is a valuable research method, only a demonstration

of a prototype cannot stand alone as a scientific research method when not accompanied by

detailed experiments and analysis of the results [50].

Simulations can reproduce the behavior of a system in study by using a model. Accurate

modeling of complex real-life systems is almost impossible, thus, a simulation model is

usually abstract and captures only the variables of the system that are required for the

study. Therefore, the results of a simulation cannot offer a real-life certainty, but depending

on how accurately the system variables have been captured and modeled, the results can be

very close to reality. Although simulations require lots of computing resources and can be

very slow, the insights provided by a simulation may be impossible or cost ineffective to

acquire otherwise. Simulations are typically used when one wants to study system variables

that cannot be easily observed by other means (e.g. the necessary tools to observe or

measure a phenomenon do not yet exist), for feasibility studies when the system one wants

to look at does not exist and wants to find out if it even makes sense to try to build it

(e.g. before building a prototype aircraft with a radical new design), or when concepts

that would otherwise require big upfront investments need to be studied (e.g. ideas need

to be evaluated in an expensive system that one cannot get hold of). This thesis uses

simulations in the latter context, i.e. evaluating how our prototype concepts would perform

in large-scale systems that we cannot afford to get access to15. The Oblivious Routing

Congestion Simulator (ORCS) [51] has been used for testing the routing quality of our

proposed routing/reconfiguration algorithms in Paper III, Paper IV and Paper V. As part

of Paper III we made significant contributions back to the ORCS project. The Infiniband

Fabric Simulator (ibsim)16 has also been used to test the algorithm execution performance

of different routing/reconfiguration methods in Paper II, Paper III and Paper V. To

fulfill the evaluation requirements for Paper V, we also created a new simulator, the

vSwitchMigrationSim simulator, that was used to simulate live migration of VMs and

reconfigure the network as our proposed algorithms would do in a network powered by our

proposed vSwitch architecture.

The goal of Data analysis is to inspect a series of collected data and try to extract useful

information that will provide new insight. During the analysis phase different statistical

tools, such as standard deviation, mean, probability distribution fitting, quantiles of the

data etc., are commonly used to identify patterns. In the evaluation sections of all of the

papers in this work we analyzed the data from our results, that are based on simulations

and prototypes. Particularly in Paper VI, we had to deal with and analyze a very large

15Such large-scale systems are in general very expensive and precious production-systems where it is
extremely hard to get access to experimenting with the infrastructure/system itself.

16Ibsim is distributed as part of the OpenFabrics Enterprise Distribution (OFED™) [52] software. Strictly
speaking, ibsim is not a simulator but an emulator. In contrary to simulation where all parts of the
simulated system are modeled, in emulation some functional part of the model is carried out by a part of
the real system [53]. Thus, an emulation can provide results that reflect reality with greater certainty. In
the ibsim case, the part of the real system that participates in the emulation is the SM.



1.4 Thesis Outline 11

Lab-based
Experiments

Prototyping Simulation
Data

Analysis
Conceptual Analysis

/Mathematical
Paper I ✓ ✓ ✓

Paper II ✓ ✓ ✓ ✓ ✓

Paper III ✓ ✓ ✓ ✓

Paper IV ✓ ✓ ✓ ✓

Paper V ✓ ✓ ✓ ✓

Paper VI ✓ ✓ ✓ ✓

Table 1.1: Summary of which research methods have been used in each research paper.

dataset of real-life performance data (Central Processing Unit (CPU)/Memory utilization)

collected from more than 1500 Linux-based systems. After the dataset was cleaned up

from erroneous values, we applied our proposed concept algorithms, that are presented in

the same paper, on the real-life dataset in order to base our final results on a genuine

input.

Conceptual Analysis/Mathematical is a method that falls under the theoretical CS. In

Conceptual Analysis (CA) one tries to break a problem into smaller well understood

components. Then the necessary and sufficient conditions for the relation between the

components are defined [54]. The CA/M is defined by Ramesh et al. [46] as an extension

of the CA research method where mathematics are used to show the connection of the

components. We have used the CA/M method to formally describe the overhead of our

proposed vSwitch architecture in Paper II. Moreover, the same method was used to define

the concept of delay that we proposed in Paper VI.

Table 1.1 provides a short summary about which research methods have been used in each

research paper.

1.4 Thesis Outline

This thesis is divided into two parts. The first part contains the Introduction (this chapter),

Background, Summary of Research Papers and Closing Remarks in chapters 1, 2, 3 and 4,

respectively. In the introduction the topic is motivated before we unfold the research

objectives, research questions and research methods that have been used. In the background

chapter we provide insight to related technologies and concepts that concern this work. In

the research paper summary chapter, an extended abstract for each of the research papers

is presented before we provide the closing remarks where the future research directions are

included. The second part contains a collection of the six research papers that have been

published or submitted as part of this doctoral dissertation. These six papers reflect the

actual research that has been conducted and contain details about the devised algorithms,

designs, prototypes and evaluation of our results. Note that the six papers that form the

second part of this thesis are the same ones that have been summarized in Chapter 3, and

referred to with the “Paper I – VI” notation throughout this thesis.





Chapter 2

Background

In this chapter we introduce background technology, prior work and tools related or used in

this thesis. First we discuss virtualization, as virtualization is one of the main technologies

powering up cloud infrastructures. We focus in the overhead of virtualization, Input/Output

Virtualization (IOV), and the feature of live migration of VMs that enables much of the

dynamicity in the clouds. Then we discuss cloud environments, before we move into the

operating principles of lossless interconnection networks and IB, where we put everything

together. We conclude this chapter with a description of each one of the simulators that

have been used in this thesis.

2.1 Virtualization

The term virtualization in computing refers to emulation of hardware, software, or services

to allow abstraction and isolation from the underlying hardware, operating systems, or

lower level functionalities. Server or Hardware virtualization is arguably one of the best

known applications of virtualization technology and usually when the term virtualization is

used directly, people mostly refer to hardware virtualization.

The roots of hardware virtualization and VMs can be traced back to the 60s, when IBM

introduced the concept for their mainframe systems [55, 56]. The goal for IBM was to offer

the means for isolated hardware sharing between different clients and software portability

between different IBM systems. However, it was not before the end of the 90s, that

hardware virtualization gained mainstream adoption and evolved to become one of the

primary technologies that today powers modern data centers and cloud infrastructures.

In particular, VMware introduced software that provided virtualization capabilities to

commodity hardware based on the widely adopted x86 architecture [57].

Hardware virtualization breaks the one-to-one relationship between the OS and the hardware

by means of logical abstraction of the hardware that is exposed to the virtualized OSs in

the form of VMs [18]. As a result more OSs can run simultaneously, but at the same

time independently in isolated VMs, on top of the same physical hardware. The software

13



14 Background

component which is responsible to control and allocate the hardware resources needed to

create and run VMs is called Virtual Machine Monitor (VMM) or hypervisor [58], while

each VM can also be called a guest.

One of the often highlighted benefits provided by virtualization is the increased server

consolidation. Server consolidation promotes greener and cheaper computing as multiple

VMs can share the same physical hardware. That is, less, but more efficiently utilized

servers (servers that have less idling time) can be used to serve the same workload. Server

underutilization is a well known problem [59]. Yet, the new tools and features provided

by virtualization, that enable novel ways for infrastructure management, are of equal

importance. One such feature is the ability of VMs to live migrate to different physical

locations (servers) with service downtimes in the order of milliseconds [60].

2.1.1 Live Migration

Migration of VMs to different physical hosts is one of the most prominent features of

virtualization. Live or hot migration offers the ability to migrate while the VM is operational

and enables a new range of infrastructure management possibilities. Live migrations are

typically used for workload optimization and server consolidation [61], maintenance [60]

and disaster recovery [62]. Live migration is a key feature to enable resource efficient,

dynamically reconfigurable data centers [63, 64]. There are two well known live migration

methods: Pre-copy and Post-copy [65].

In the pre-copy method the source hypervisor starts with the warm-up phase by sending

memory pages of the VM-in-migration to the destination hypervisor. The VM is still in

operation during this phase so some of the transferred memory pages will become dirty

(change) during this process. The warm-up phase is iterative, i.e. tries to resend memory

pages that have been dirtied, and typically lasts until some condition is met. For instance,

the remaining dirty memory pages will not take more than x seconds to be transferred

to the destination hypervisor based on the estimated transferring speed from previous

memory page copying iterations. When the condition is met, the stop-and-copy phase is

following where the VM is suspended in the source hypervisor, the remaining dirty memory

pages are being transferred, and the operation is resumed at the destination. During the

stop-and-copy phase the VM experiences downtime. An issue of the pre-copy scheme is that

if during the warm-up phase the memory pages become dirty with a rate that is faster than

the network speed, it may not be possible to meet the required condition to transition to

the stop-and-copy phase.

The post-copy method follows a slightly different approach to overcome the issue of the

pre-copy method, at the cost of imposing a performance penalty to the VM during the

migration. The VM is transferred immediately and resumed to the destination hypervisor1

and the memory page copying is following. When the VM requests to access a memory

page that hasn’t been transferred to the destination yet, a (remote) page fault fetches the

page from the source.

1In practice there may still exist a warm-up phase but it is not necessary.



2.1 Virtualization 15

Type 1 VMM
(bare metal)

Type 2 VMM
(hosted)

HARDWARE

HYPERVISOR

OS OS

HARDWARE

HYPERVISOR

OS OS

OS

APPAPP

Fig. 2.1: Types of hardware virtualization hypervisors

2.1.2 Virtualization Overhead

There exist two types of hypervisors as shown in Fig. 2.1. The Type 1 hypervisors, also

known as bare metal, are dedicated hypervisors that sit directly on top of the hardware and

the sole purpose of a system that runs a type 1 hypervisor is to deploy VMs. The Type 2

hypervisors on the other hand run as an application on top of an existing OS. No matter

which of the two types of hypervisor one is using, virtualization adds performance overhead

as the OS and applications that run inside a VM access the hardware through an additional

software layer, the hypervisor [66, 67].

Over the years, the situation has improved considerably as CPU overhead has been

practically removed through hardware virtualization support [68, 69]; storage overhead

reduced by the use of fast Storage Area Network (SAN) storages or distributed networked

file systems; and network I/O overhead reduced by the use of device passthrough techniques

like Single Root I/O Virtualization (SR-IOV) [70]. Although these different techniques

improve performance by reducing the virtualization overhead, not all of them come without

drawbacks as we will see in the next section for the particular case of network IOV.

2.1.3 Input/Output Virtualization

The purpose of IOV is to provide multiple VMs with shared and protected access to I/O

resources. Typically, IOV decouples the logical device which is exposed to a VM from its

physical implementation [58, 71] and there are two common approaches:

a) Software emulation, which is a decoupled front-end/back-end software architecture.

The front-end software is a device driver placed in the VM that is able to communicate

with the back-end implemented by the hypervisor.

b) Direct device assignment, which involves either decoupling at the hardware level

or coupling of a device and no sharing between multiple VMs.

Both of the approaches have advantages and disadvantages. A brief discussion of the four



16 Background

most commonly used network IOV techniques and their characteristics follows:

• Emulated real devices fall under the software emulation approach. Emulating

real devices (such as an existing Intel network interface card for example) is the

dominating technique when it comes to guest OS support, sharing ratio and supported

virtualization features. VMs can run by using unmodified drivers of the emulated

device, and the guest OS behaves as if it was running on real hardware. Live migration

is possible with minimum network downtime in the order of milliseconds. Note that

since the hardware that the VM sees is virtual, the VM hardware state is stored in

memory as well in the software emulated techniques. Thus, live migration can migrate

a VM efficiently without the need for checkpointing individual software/hardware

components that are running in the VM. However, emulating real devices suffer from

poor performance and adds overhead to the hypervisor since CPU cycles have to be

dedicated for emulating some non existing hardware.

• Paravirtualization is a different software emulation approach. Paravirtualization

improves performance compared to the emulated devices by exposing some optimized

virtual hardware to the guest OS, rather than emulating a real device. Sharing ratio

and supported virtualization features are on par –or even better due to the reduced

overhead– when compared to emulated devices. The disadvantage is that special

drivers need to be installed in the guest OS for the virtual hardware to be enabled.

• Device pass-through is a direct device assignment method that provides near to

native non-virtualized performance and minimum overhead. A Peripheral Component

Interconnect (PCI) device is directly attached to the VM and bypasses the hypervisor.

The VMs can run by using unmodified drivers. The downside of this approach is the

limited scalability as there is no sharing. One physical network card is coupled with

one VM. Furthermore, currently there is no simple way to live migrate VMs without

having a long network downtime in the order of several seconds.

• Single-Root IOV (SR-IOV) is a form of device pass-through that introduces the

notion of a PCI-Express Physical Function (PF) and multiple Virtual Functions

(VFs). The VFs are light-weight instances that are identical to the PF, but are

not allowed to reconfigure the PCI device. The VFs are assigned to VMs. As a

direct device assignment method, SR-IOV is supported by non-modified drivers and

provides near to native performance while solving the problem of scalability of the

full device pass-through method. The cons of direct device assignment regarding

live-migration are unfortunately inherited as well [72].

2.2 Cloud Computing

Cloud computing is a term that is used ubiquitously to refer to the usage of computing

resources delivered as services over a network in a server-centric model. The users of a

cloud service do not own the computing infrastructure, but rent resources on demand in a

pay-as-you-go model. This computing model provides numerous benefits both for the users



2.2 Cloud Computing 17

and the cloud providers. The users do not need to worry about maintenance or hardware

upgrades to fulfill their computing needs, because the provider of the cloud service takes

care of these details. Moreover, when users need more resources (e.g. storage space or

CPU power) they can pay more and get access to the additional resources instantly for as

long as needed. For the providers, a major benefit is that they have full control of the

infrastructure which makes it easier to maintain, consolidate and effectively drive down

costs while offering a service which is of higher quality. Consider the example where a

database company sells databases to clients on premises versus renting the databases that

are hosted by the database company itself. In the case where the database is installed on

customer premises, different customers may use different database versions on different

hardware with different configurations. In case of a fault there are multiple parameters that

may be responsible and all these parameters may be different for each customer. When the

databases are hosted by the database company and rented out to customers, the database

company can keep a better control of all the different parameters that can affect the quality

of the offered services.

Cloud services can be different in nature and are commonly referred to with the XaaS

notation. XaaS stands for X -as-a-Service, where X is substituted with the service

type that is being served by the cloud. The three most common cloud offerings are:

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service

(IaaS) [73, 74].

• SaaS refers to different kinds of software running over the network, usually served as a

web application to the client. All the processing is done centrally in a server, and the

results are sent to the client. Minimum, or no configuration is needed by the client.

Example SaaS services: Hosted e-mail, hosted storage (e.g. Dropbox), web sites.

• PaaS serves different kinds of platforms that other applications can be built upon.

The clients get lower level access in the cloud stack and by using PaaS, one could

deliver SaaS applications.

Example PaaS services: Amazon Elastic Beanstalk, Google App Engine.

• IaaS delivers infrastructure on demand and is the type of cloud service that concerns

this thesis. Clients get access to hardware and have similar access rights as if the

hardware was hosted locally. The most common way that the infrastructure is

delivered is in the form of VMs. IaaS provides OS level access to the clients. By

using IaaS one could serve PaaS and SaaS applications, or do any other kind of

computations that an ordinary computer would do.

Example IaaS services: Amazon EC2, Google Compute Engine.

2.2.1 Infrastructure as a Service and Resource Consolidation

Cloud platforms become possible by the combination of numerous underlying technologies.

Arguably, virtualization is the core technology that drives IaaS cloud platforms and provides

many of the desired cloud features [2]. Some well known characteristics of cloud platforms



18 Background

that would not be possible without virtualization are the elasticity and consolidation. The

ability of a cloud to scale up or down its resources when needed is called elasticity. Efficient

elasticity can provide better resource utilization and improve service performance while

reducing energy consumption and costs both for the cloud tenants and the cloud providers.

Consider a case where the tax authorities in a country have a few servers to host the

government’s online tax portal. The tax portal is mostly underutilized throughout the year

since most people do not connect to the web site very frequently. Nonetheless, the costs are

running as the servers consume energy resources and fixed floor space. There is a single day

every year when the tax return due date is announced and people rush to file their tax

return forms. This specific day the otherwise underutilized servers are not enough to meet

the service demand and the portal crashes. So the tax office suffers from the downsides of

both worlds : Overpaying for resources it doesn’t need for most of the year, and when the

critical time comes that the site must be up and running, the tax portal crashes. It turns

out that this story is not fictional, but this is what repeatedly happens with the Norwegian

online tax portal [75, 76]. If such a service was hosted in an elastic cloud service it would

be possible to use less resources throughout the year (reduce the major costs), scale up the

service a few hours before the tax return due is announced to be ready for the high demand,

and scale down as needed when the demand decreases. Typically, the scaling is automated

by specifying performance metric triggers [77].

The clouds are very dynamic in nature and the workload can be very unpredictable for the

cloud providers. The cloud tenants are given the freedom to start and stop VMs at their own

convenience so there are no guarantees about the expected next-minute utilization. Features

such as the elasticity contribute to even greater unpredictability, as unexpected events may

cause existing services to occupy more or less resources. This dynamicity leads to resource

fragmentation [78], thus, cloud providers need to reconfigure their infrastructure in order to

optimize resources and reduce costs and energy consumption. The most common way to

achieve resource optimization is by using VM live migrations to consolidate fragmented

resources. However, consolidation, especially when resources are overcommitted [79], needs

to respect the Service Level Agreements (SLAs) between the cloud tenants and the provider.

RQ 5 can be directly related to this issue: how could cloud providers increase infrastructure

consolidation without violating the SLA? We provide a consolidation metric, the delay of

workloads, as an answer to RQ 5 in Paper VI, and we perform bin packing of VMs based on

the delay. The delay can be used as a directly observable metric in cloud environments

where time-constrained applications are running.

Lots of research has revolved around mapping the problem of VM consolidation to the bin

packing problem where Physical Machines (PMs) are assimilated to bins and VMs are

assimilated to items. Generally, the aim is to reduce the number of PMs needed to pack

different VMs across various resources such as CPU, memory, network I/O etc. Bin packing

is known to be an NP hard problem, therefore, several heuristics have been applied when it

comes to VM consolidation, including the well established First Fit Decreasing (FFD),

Best Fit Decreasing (BFD) or variants of these algorithms [61, 80, 81, 82, 83, 84]. Other

researchers have resorted to novel bio-inspired solutions, and perform the bin packing with

algorithms such as the Ant Colony Optimization [85, 86].



2.2 Cloud Computing 19

The complexity of the consolidation increases exponentially as more dimensions are taken

into account, hence, some studies reduce the problem to one dimensional bin packing by

only considering the bottleneck resource. Similarly, Wood et al. [80] devised Sandpiper, a

consolidation system that uses a simple formula to combine dimensions associated to

different resources (CPU, memory and network) in one metric, called volume, in order to

quantify the load of VMs and PMs and deploy a classic one dimensional FFD bin packing

algorithm. The higher the utilization of a resource, the greater the volume. Sandpiper

aspires to eliminate hotspots via pro-active VM migrations, where profiling is used to

anticipate the occurrence of the overload. The consolidation is dynamic, i.e. whenever

a hotspot is detected, VMs are migrating from the most overloaded PMs to the least

loaded.

An example of another dynamic consolidation approach is presented in [87] where Beloglazov

et al. propose to detect host overload using Markov chain modeling. The authors show

that a necessary condition to improve the quality of VM consolidation is to maximize the

mean time between migrations, and provide heuristics that trigger VM migrations while

respecting this condition. They define the quality of VM consolidation to be inversely

proportional to the mean number of active hosts over n time steps.

In [88], the authors present iPOEM, a consolidation system that tries to reduce energy

consumption without violating SLA constraints. iPOEM tries to optimize two key

parameters in a data center, the max CPU usage (CPUhigh) a PM should tolerate before

triggering a VM migration and the min CPU usage (CPUlow) for turning off a machine.

The authors provide two theoretical results that are the core of the iPOEM algorithm:

SLA violations can be reduced by reducing CPUhigh, while the energy consumption can

be decreased if CPUlow is increased. Based on these two intuitive observations, iPOEM

performs a guided binary search to achieve two conflicting objectives, namely, reducing

power consumption while operating within the SLA constraints.

Although most of the consolidation approaches use variants of deterministic bin packing

algorithms, others use its stochastic counter part [89]. In the stochastic bin packing problem

a list of items is given, where each item is a random variable. Moreover, an overflow

probability p is provided. The goal is to pack the items into a minimum number of unit-bins

of a given capacity such that the probability that the total size of the items in each bin

exceeding 1 is at most p.

In order to take into account the dynamic nature of the resource consumption while still

benefiting from the power of bin packing heuristics, some attempts in the literature have

devised consolidation approaches that combine both ideas. For example, in [61], the authors

used time series prediction techniques to predict the load, and then provided a probabilistic

guarantee of satisfying the SLA constraints. Based on the forecast, the first-fit bin packing

heuristic is used with a modified version where capacity is not a criteria, but the probability

of exceeding the physical machine’s capacity is.

Other interesting consolidation techniques are based on deep inspection of different workload

characteristics. For example, in [90, 91], the authors attempt to characterize the workload

and consolidate VMs with complementary resource usage over time. In [92], Wood et al.



20 Background

inspect memory pages and collocate VMs with high memory sharing potential in order to

take advantage of the memory page sharing features of hypervisors and increase memory

density [93]. In [84], the authors include the network communication in their decision

making process, and consolidate VMs to minimize inter-host traffic.

2.3 Lossless Interconnection Networks

A network can be lossy or lossless with regards to the delivery guarantees offered by the

communication medium in the data link layer. In a lossy network there is no guarantee that

an injected packet will arrive at its destination. Packets are forwarded even if switch

buffers have been filled up due to congestion. In a case where a forwarded packet reaches a

switch without available buffer space, the packet is simply dropped. The dropped packets

have to be retransmitted. Conventional Ethernet is lossy2. In order to establish reliable

communication streams over Ethernet the well known transport layer Transmission Control

Protocol (TCP) is widely used. When TCP packets get dropped and no acknowledgments

are received back to the sender after a specified timeout, the protocol interprets the packet

loss as an indicator that congestion occurs and throttles down the packet injection rate [95].

In high performance systems this behavior is considered very costly. Packet retransmissions

contribute both to increased communication latency, and unnecessary added overhead in

the network as the retransmitted packets have to traverse the communication medium more

than once. Typically, HPC environments employ lossless network technologies that prevent

packets from being dropped, unless bit errors occur, by implementing link level flow control.

When a network uses link level flow control, packets are not forwarded unless the sender

knows that there is available buffer space in the receiver to store the packet in case of

congestion. Inherently, all upper layer protocols run on top of a reliable link.

2.3.1 Deadlocks

The fact that packets are stored in a sender node and are not dropped or forwarded until

there is available buffer space in the receiver node, introduces the potential for deadlocks if

routing cycles (loops) exist [36], due to the First-In-First-Out (FIFO) nature of the buffers,

as already pointed out in section 1.2. Deadlock is a state in which each member of a group

of transactions is waiting for some other member to release a lock as defined by Coulouris

et al. [96]. From a network point of view the lock that needs to be released is the equivalent

to making buffer space available in the switches if there is none. A deadlock prevents

packets from progressing towards their destination in the network, as all the switch buffers

along the way have been filled and buffer space cannot be freed because some packets are

mutually waiting for each other to proceed first.

As illustrated with an example in Fig. 2.2, four nodes, 1 , 2 , 3 and 4 , that are connected

2The recently approved IEEE 802.1Qbb standard [94] defines lossless Priority-based Flow Control (PFC)
for Ethernet on data center environments.



2.3 Lossless Interconnection Networks 21

1

3

4

I

II III

IV

Pin1

Pin1

Pin1

Pin1

Pin2

Pin2

Pin2

Pin2Po

Po

Po

Po

Switch (SW)

FIFO input SW buffers

Node injecting packets towards

the diagonally opposite node

Traffic flow that has filled the

input buffers of the next SW

Traffic flow that cannot proceed

Legend

2

Fig. 2.2: A deadlocked network where the traffic is halted (no packet can proceed) as a result
of a routing loop that led to all of the input FIFO switch buffers being filled.

to the switches I, II, III and IV respectively, simultaneously inject packets in the network

destined towards the node that is located diagonally from each corresponding node in the

figure: 1 → 3 , 2 → 4 , 3 → 1 , 4 → 2 . The switches are equipped with FIFO buffers

in the input ports (marked as PinX) and when a packet arrives it is stored in a buffer and

is only allowed to be forwarded through the output port (marked as Po) when there is

available buffer space in the next switch along the path that the packet has to follow3. In

the case demonstrated by Fig. 2.2 all the switch buffers have been filled by packets that

were sent by the node with the corresponding color, and the traffic is halted because no

buffer can be freed to allow packets to progress towards their destination as indicated by

the arrows. The routing algorithm is responsible to guarantee the deadlock freedom in a

network. We discuss routing in section 2.3.3.

2.3.2 Network Topologies

The network topology defines how the network components, such as the switches and nodes,

are arranged in the network. In general, the network topologies can be categorized into

direct or indirect and regular or irregular. In direct topologies, end nodes are connected

directly to each other, and depending on the topology the end nodes may be acting as

forwarders of the traffic for other end nodes. In indirect topologies, switches are used to

connect end nodes. A regular topology has a well defined structure for node and switch

connections, while an irregular topology does not. Typically, the topologies are regular but

note that a regular topology may become irregular if a node, switch, or link fails, or if

different regular topologies get combined in a non-defined way. The network topology can

affect the cost and performance of the network significantly.

In an ideal world, one would probably want to have a fully connected mesh topology where

3The path is determined by the routing function as we will see in section 2.3.3.



22 Background

(a) Fully Con-
nected Mesh - 3
Nodes, 3 Links

(b) Fully Connected Mesh
- 9 Nodes, 36 Links

(c) Ring Topology

Switch

(d) Star Topology

Fig. 2.3: Fully Connected Mesh, Ring and Star topologies

each end node is directly connected to each other with a dedicated point-to-point link. No

switches are involved. The diameter4 of a fully connected mesh is 1. With such a network,

the system is able to achieve maximum performance as there is no switching that adds extra

latency, nor traffic contention as each node has dedicated resources to communicate with

the others. This topology is known as a fully connected mesh. Nonetheless, as illustrated in

Fig. 2.3(a) and Fig. 2.3(b), as the number of nodes scale up, the cost and complexity of the

topology increases polynomially. When three nodes are fully connected only three links5 are

needed, while for nine nodes 36 links are needed. To generalize, the number of links needed

in a fully connected mesh topology is num links = num nodes · (num nodes− 1)/2. For

a 40,000 nodes system, which is not uncommon to spot in the top 500 supercomputers

list [33], one would need 799,980,000 links and twice as many network ports6. On the

other hand, the ring and star topologies that are shown in Fig. 2.3(c) and Fig. 2.3(d)

respectively, can be very cost effective, but again not scalable for different reasons. In the

ring topology, where each node is connected only with two other nodes in a circular way

that forms a ring, the nodes act as traffic forwarders for other nodes and the traffic flows in

one direction. That gives a network diameter of num nodes− 1 to the ring topology and

as the number of nodes increases, the network become slow. The star topology has a fixed

network diameter of 2, but it is not feasible to build large port-count non-blocking switches7

in order to scale to a high number of nodes, due to switch cost, size, and engineering

complexity. Both the ring and star topologies also have a single point of failure; if any one

node in the rings fails, the network will be disconnected, while if the switch in the star

topology fails, the network will be disconnected as well.

The topologies in Fig. 2.3 are the simplest topologies that can be used to convey the

potential issues and trade-offs, such as cost, performance and engineering or deployment

complexity, that one has to take into account when designing or choosing to use a network

4The diameter of a network reveals the longest shortest-path between any two nodes in the network. Thus,
when the diameter is short, the packets have to traverse fewer links and intermediate switches/nodes on
average, before reaching to the destination.

5Assuming we talk about wired networks, each link translates into a wire in the physical world.
6Each link will always connect to two ports.
7A non-blocking switch is a switch that allows any input port to be connected to any free output port
without affecting any of the existing connections [97].



2.3 Lossless Interconnection Networks 23

Level 1

Level 0

Level 2

Level 3

(Nodes)

(Switches)

(Switches)

(Switches)

Fig. 2.4: An XGFT(3; 4,4,4; 1,4 4) Fat-Tree topology with 20 8-port switches and 32 nodes.

topology. In real life, more sophisticated topologies that balance the cost and performance

while meeting the desired level of scalability are used. Some well known network topologies

that are used in HPC clusters are the Fat-Tree [98], Dragonfly [99], X−Dimension Mesh

and X−Dimension Torus [100] topologies.

The Fat-Tree Topology

In this thesis, and specifically in Paper III, Paper IV and Paper V, we have devised methods

and algorithms that target particularly the Fat-Tree topology. The Fat-Tree is a scalable

hierarchical network topology [98, 101], that is easy to build using commodity switches

placed on different levels of the hierarchy [102]. The main idea behind the Fat-Trees is to

employ fatter links between nodes, with more available bandwidth, towards the roots of

the topology. The fatter links help to avoid congestion in the upper-level switches of the

topology, and the bisection bandwidth is maintained8. Different variations of Fat-Trees are

presented in the literature, including k -ary-n-trees [101], Extended Generalized Fat-Trees

(XGFTs) [98], Parallel Ports Generalized Fat-Trees (PGFTs) and Real Life Fat-Trees

(RLFTs) [104].

A k -ary-n-tree [101] is an n level Fat-Tree with kn end nodes and n · kn−1 switches, each

with 2 · k ports. Each switch has an equal number of up and down connections in the

tree, except for the root switches that have only down connections. The XGFT Fat-Tree

extends the k -ary-n-trees by allowing both different number of up and down connections

for the switches, and different number of connections at each level in the tree. The

PGFT definition further broadens the XGFT topologies and permits multiple connections

between switches. A large variety of topologies can be defined using XGFTs and PGFTs.

However, for practical purposes, RLFTs, a restricted version of PGFTs, are introduced to

define Fat-Trees commonly found in today’s HPC clusters [105]. An RLFT uses the same

port-count switches at all levels in the Fat-Tree.

8The bisection bandwidth of a network topology indicates the worst-case maximum bandwidth that can be
achieved when the network is bisected (divided into two equally sized sets of nodes), and each node from
the first set communicates only with one other node from the second set [103].



24 Background

An XGFT that offers a theoretical full bisection bandwidth is illustrated in Fig. 2.4. A

theoretical full bisection bandwidth indicates that there are enough links in the topology so

that if the network is divided into two any equal sets of nodes, and each node from the

first set communicates only with one other node from the second set, there should be no

bandwidth degradation, i.e. there is no link sharing between all different flows. However,

the effective bisection bandwidth will usually be less due to the effects of static routing as

shown by Hoefler et. al in [103].

2.3.3 Routing

A routing algorithm defines the paths that packets have to follow to reach from any source

to any destination in the network. Routing algorithms can be classified into deterministic,

oblivious and adaptive. A deterministic algorithm will always choose the same path through

the network for a packet with a given source and destination address without considering

any other information such as the current network traffic. A deterministic routing algorithm

guarantees ordered packet delivery in lossless networks. An oblivious routing algorithm

may choose different paths for a given source and destination address, but similar to the

deterministic routing, the chosen path is not dependent on the current status of the network.

A decision can be made based on a scheme such as random or round-robin port selection.

Note that deterministic routing is oblivious, but the opposite does not hold true. The

adaptive algorithms take into account the current network status, and choose different

paths for a given source and destination with the intention to avoid congested routes or

faults. Note, however, that an adaptive routing algorithm may end up worsening congestion

if there are no possible routes around a hot spot [106]. Adaptive and non-deterministic

oblivious routing may introduce out-of-order packet delivery that might not be acceptable

by some applications.

Furthermore, depending on where the routing decision is taking place, routing can be

classified into source routing and distributed routing [97]. In source routing, the source

node chooses the path that a packet will follow through the network and embeds the

routing information in the packet header. In distributed (or destination-based) routing the

packet header only carries the source and destination addresses. Each intermediate node

(switch/router) decides where to forward each packet by looking up the destination address

of the packet from a lookup table that is distributed to all of the switches/routers.

No matter if it is deterministic, oblivious, or adaptive, source or distributed, the routing

algorithm is responsible to ensure the deadlock freedom in a network as briefly mentioned

in section 2.3.1. Routing algorithms can be topology-aware [104, 105], that are optimized

and target a specific network topology; or topology-agnostic [41, 107], that can route traffic

even in irregular topologies or regular topologies that have been impacted by faults. A

topology-aware routing algorithm will ordinarily be able to calculate the routing tables

faster, and deliver higher performance for the given network topology, but on the contrary,

the topology-agnostic routing algorithms can be fully fault tolerant and work for any given

topology.



2.3 Lossless Interconnection Networks 25

0

1

2

3

0

0

0 1

1

1

0 1 0 1 0 1

0 1

3.0.0.0 2.1.0.1

0.0.0.0 0.1.1.01.0.1.1

Sw1_3

Fig. 2.5: k-ary-n-tree switch tuples assignment, where k = 2, n = 4. The nodes that are
located at level 4 are omitted from this figure.

Fat-Tree Routing

The Fat-Tree routing algorithm (FTree) is a topology-aware routing algorithm for Fat-Tree

topologies [104, 105, 108]. We have modified the Fat-Tree routing algorithm for the needs

of Paper III, Paper IV and Paper V. In this section we are going to explain how the

basic routing algorithm has been implemented in OpenSM9; FTree first discovers the

network topology and each switch is marked with a tuple that identifies its location in the

topology. Each tuple is a vector of values in the form of (l, ah, ..., a1), where l represents the

level where the switch is located. The ah represents the switch index within the top-most

sub-tree, and recursively the digits ah−1 until a1 represent the index of the sub-tree within

that first sub-tree and so on. For a Fat-Tree with n levels, the root-level (topmost or core)

switches are located in level l = 0, whereas the leaf switches (where nodes are connected

to), are located in level l = n − 1. The tuple assignment for an example 2 -ary-4 -tree

is shown in Fig. 2.5. Note that the implementation differs slightly from the theoretical

definitions of different types of Fat-Trees where the root-level switches are located in level

l = n, whereas the leaf switches are located in level l = 1 as illustrated in Fig. 2.4.

Once the tuples have been assigned, FTree iterates through each leaf-switch in an ascending

tuple order, and for each downward switch port where nodes are connected in an ascending

port-order the algorithm routes the selected nodes based on their LID. In Fig. 2.6 we show

different phases of how routes towards node a are found. Switches in Fig. 2.6 are marked

with numbers from 1− 12. FTree keeps port-usage counters for balancing the routes and

starts by traversing the fabric upwards from the least loaded port while choosing the routes

downwards, as shown in Fig. 2.6(a) with the red and green arrows respectively. In the first

iteration all port counters are zero, so the first available upward port is chosen. For each

level up, the newly reached switch (switch 5 in Fig. 2.6(a)) is selected as the switch to route

all the traffic downwards towards the selected node (node a), from the incoming port which

9OpenSM is the SM software that is distributed with the OFED™ suite [52]. More information about
subnet management is provided in section 2.4.2.



26 Background

b c d ge f h

a

a

a

1 2 3 4

5 6 7 8

9 10 11 12

(a) Route down by going up

b c d ge f h

a

a a

a

1 2 3 4

5 6 7 8

9 10 11 12

(b) Route up by going down

b c d ge f h

a

a a

a

a

1 2 3 4

5 6 7 8

9 10 11 12

(c) Route down by going up

b c d ge f h

a

a

a

a

a

a a

a

1 2 3 4

5 6 7 8

9 10 11 12

(d) Route up by going down

c d ge f h

a

a

a

a

a

a a

ab

b b b b

b b

b

1 2 3 4

5 6 7 8

9 10 11 12

(e) a and b nodes routed

Fig. 2.6: Fat-Tree (FTree) Routing Phases

through the switch was reached. Then the algorithm traverses the fabric downwards and

assigns routes upwards towards that switch in a similar way as shown in Fig. 2.6(b). The

same recursive operation continues until route entries for the selected node have been added

to all of the necessary switches in the fabric, as depicted in Fig. 2.6(c) and 2.6(d). Next

the algorithm will continue with the second node, node b in our case, as shown in 2.6(e),

and so on until all nodes have been routed.

With the resulting routing in Fig. 2.6(e), if node f sends a packet towards a, path P1

through switches 3 → 7 → 9 → 5 → 1 → a will be used, while path P2 through switches

3 → 8 → 10 → 6 → 1 → b will be used if f sends a packet to b. Note that in Fig. 2.6(d)

the routing towards node a has been completed, but there are some blank switches without

routes towards node a; the switches 6, 8, 10, 11, 12. In reality, FTree add routes in these

blank switches as well. If a packet towards a arrives for example in switch 12, this switch

knows that it has to forward the received packet down towards switch 6, while switch

6 knows that the received packet from 12 has to be forwarded to switch 1 to reach its

destination a. However, the switches in the lower levels will never forward traffic towards

node a to switch 12 because the routes upward will always push the packets towards switch

9. Note that the use of a single root switch per destination node counters the growth of

wide congestion trees [106].

2.3.4 Network Reconfiguration

When faults occur in lossless networks the network has to be reconfigured to reroute the

traffic that is affected by the fault. Another valid reason to trigger a network reconfiguration



2.3 Lossless Interconnection Networks 27

is in the case where a routing algorithm is traffic-aware, i.e. the routing algorithm is taking

into account the current traffic characteristics to improve performance [109]. If the traffic

pattern changes, it is desired to reconfigure the network. Essentially, the outcome of a

network reconfiguration is rerouting of the traffic in the network. Nevertheless, rerouting in

lossless networks is not a trivial task due to the potential of introducing deadlocks. Traffic

cannot be just redirected through another link because redirected traffic may introduce

routing loops even if the initial routing was deadlock-free. To make things harder, even the

coexistence of two deadlock-free routing functions, Rold and Rnew, during the transition

phase from the old to the new one, might not be deadlock free [110].

The types of reconfiguration can be categorized in static and dynamic. In static reconfigura-

tion the traffic is halted and packets are drained from the network. Then the network is

reconfigured with a new routing function Rnew, before the traffic is resumed. Naturally, a

static reconfiguration imposes system downtime, as during the reconfiguration process

no traffic is flowing. However, static reconfiguration ensures deadlock freedom as there

is no moment that two different routing functions, the Rold and Rnew, coexist. As the

time it takes to reconfigure the network can range in the order of minutes, especially in

large subnets as we and others show in Paper V and [40, 41], dynamic reconfiguration is

generally preferred over the static. In dynamic reconfiguration the traffic keeps flowing

while the network gets reconfigured, but the reconfiguration must be done carefully in order

to ensure the deadlock freedom of the network during the transition from Rold to Rnew

when the new routes are distributed to all switches.

Plenty of research exists in the domain of dynamic reconfiguration of lossless networks.

Zafar et al. [111] discuss the tools and applicable methods on the IB architecture, that

would allow the implementation of the Double Scheme [112] reconfiguration method.

Double Scheme is using Virtual Layers (VLs)10 to separate the new and the old routing

functions. Lysne et al. [113] use a token that is propagated through the network to mark a

reconfiguration event. Before the token arrives at a switch, traffic is routed with the old

routing algorithm. After the token has arrived and been forwarded through the output

ports of the switch, the traffic is flowing with the new routing algorithm. The Skyline

by Lysne et al. [114], speeds up the reconfiguration process by providing a method for

identifying the minimum part of the network that needs to be reconfigured. Sem-Jacobsen

et al. [115] use the channel dependency graph to create a channel list that is rearranged

when traffic needs to be rerouted. The rearranging is happening in such a way, that no

deadlocks can occur. Robles-Gómez et al. [116] use close up*/down* graphs to compute a

new routing algorithm which is close to the old one, and guarantees that the combination of

old and new routing during transition does not allow deadlocks to be introduced. Bermúdez

et al. [117] are concerned with the long time it takes to compute optimal routing tables in

10VLs provide the means to support independent data streams on the same physical link by using
independent buffers in the switches. VLs are typically used for QoS, as well as by routing algorithms to
resolve routing loops, that may lead to deadlocks, and improve performance, by reducing the Head-of-Line
Blocking (HoLB) [41, 107]. HoLB is a common phenomenon that appears when the network is congested,
and packets that could otherwise proceed towards their destination have to wait in the switch buffer
queues behind packets that cannot proceed due to their contribution in the congestion. For more
information regarding HoLB one can consult Gran’s doctoral dissertation on congestion management [106].



28 Background

large networks and the corresponding delay in the subnet becoming operational. They use

some quickly calculated, but not optimal, provisional routes, and calculate the optimal

routes offline. Since the provisional and the optimal routes are calculated based on the

same acyclic graph, deadlock freedom is guaranteed. Guay, in his doctoral dissertation,

provided insight into different aspects where dynamic reconfigurations are necessary [118];

First he looked into reconfiguration in then context of fault-tolerant environments, then into

dynamic reconfiguration in the context of improving performance by reducing HoLB, and

last, in the context of virtualization and VM live migration.

Part of this thesis is concerned with dynamic reconfiguration in the context of dynamic cloud

environments. In cloud environments VMs can live migrate, thus a network reconfiguration

is necessary. Moreover, the network traffic patterns continuously change as a result of

either VMs migrating, or cloud tenants starting and stopping workloads that the cloud

provider has no prior indication about. Hence performance-driven reconfigurations are

desirable.

2.4 InfiniBand

IB is an industry standard, switched point-to-point lossless interconnect architecture

developed by the InfiniBand™ Trade Association (IBTA). As of June 2017, IB is one of

the most popular interconnects of choice in the list of top 500 supercomputers and has

been used in 35.4% of the installations. IB is the interconnection network technology

that has been used throughout this thesis to demonstrate our devised algorithms and

prototypes that answer the research questions we asked in section 1.2. The primary issues

we target in the work we present in Papers I, II, III, IV and V are centered on lossless

networks in dynamic environments and in this section we provide background for core

lossless network design characteristics, such as the addressing schemes, subnet management,

high performance IOV, and how these components are related.

2.4.1 InfiniBand Addressing Schemes

IB is using three different types of addresses [1]. First is the LID which is a 16 bits long,

layer two address. At least one unique LID is assigned to each end port or switch by the

SM. As end ports, we refer to the terminal ports of the network, usually located on a

network adapter. In IB a network adapter is called an HCA. The Local Identifiers (LIDs)

are used to route traffic only within one subnet and are the base addresses that are used by

the routing algorithm to calculate deadlock-free routes. Since the LID is 16 bits long, 65536

unique address combinations can be made, of which only 49151 (0x0001-0xBFFF) can be

used as unicast addresses assigned to end ports or switches, while the remaining LIDs

are reserved for multicast addresses. Consequently, the number of the available unicast

addresses defines the maximum size of an IB subnet.

Second is the Global Unique Identifier (GUID) which is a 64 bits identifier assigned by the



2.4 InfiniBand 29

manufacturer to each device (HCAs, switches, routers etc) and each end port. The SM may

assign additional GUID addresses to an end port or a router port, which is particularly

useful when SR-IOV VFs are enabled. Similar to the LID, the GUID must be unique in a

subnet.

Third is the Global Identifier (GID). The GID is a 128 bits valid IPv6 unicast layer three

address, and at least one is assigned to the end ports or multicast groups. The first GID is

formed by combining a globally unique 64 bits subnet prefix that is assigned by the SM,

and the GUID address of each end port. The GID provides a globally unique address for

inter-subnet routing.

2.4.2 Subnet Management

An SM entity is running in one of the nodes in an IB fabric, and is responsible for the

discovery and administration of the subnet [1]. The SM assigns LID addresses to the HCA

ports and switches, calculates deadlock-free routes between all possible communicating

pairs, and distributes the corresponding Linear Forwarding Tables (LFTs) to each switch in

the fabric. IB employs destination-based routing, so the information distributed in the

LFTs is a mapping of destination LIDs to corresponding output ports used for forwarding

at the switches. Once the LFTs have been distributed the network is operational, while the

SM periodically sweeps the fabric for faults/changes and serves as a path-characteristics

resolution service (e.g. to resolve the supported MTU and speed that two communicating

peers can use). A reconfiguration can be triggered when a fault or change is detected by a

sweep. OpenFabrics’ OpenSM is the most popular SM used on IB subnets, and the one

that has been used throughout this work.

When the size of the fabric grows, the number of possible communication pairs increase

polynomially. Consequently, the path computation in the SM increases polynomially as well,

and depending on the topology and routing algorithm, the path computation can be in the

order of several minutes. This is one of the scalability issues that becomes exceptionally

important in dynamic cloud environments where reconfigurations may need to be triggered

often. This issue is in particular addressed in Paper III for the Fat-Tree topology.

Note that even lossless network technologies that compete with IB still operate on the

same principles and much of the terminology is similar or identical to what we present in

this thesis. As an example, in Intel Omni-Path Architecture, a direct IB competitor, the

equivalent of an IB HCA is called Host Fabric Interface (HFI) and the SM is called Fabric

Manager (FM). However, the different layer-two/layer-three addresses, such as the LID,

GUID, GID and other terms, are identically named [1, 37].

2.4.3 InfiniBand, SR-IOV, and Live Migrations in the Cloud

Performance is the major factor on HPC clusters. Providing elastic HPC on demand

to customers over a cloud service is a challenging task due to the added overhead of



30 Background

virtualization. When it comes to the interconnect network, none of the software emulation

approaches discussed in section 2.1.3 are suitable for a virtual HPC environment. High

performance interconnect network solutions delegate much of the workload into the hardware.

In order to efficiently reduce latency and increase performance, the protocol stacks and

the kernel of an OS are bypassed [119]. With the kernel bypassing in mind, the only

suitable options to provide high performance networking in VMs are the direct device

assignment techniques. For the aforementioned reasons, we, and other works related to IB

and virtualization [30, 29, 38] chose to use SR-IOV for our experiments.

However, direct device assignment techniques pose a barrier for cloud providers if they want

to use transparent live migrations that are notably useful for data center optimization.

The essence of live migration is that the memory contents of the virtual machine are

copied over to the remote hypervisor. Then the virtual machine is paused at the source

hypervisor, and its operation is resumed at the destination as explained more thoroughly in

section 2.1.1. When using software emulated IOV methods, the network interfaces are

virtual so their internal state is stored into the memory and gets copied as well, thus, the

downtime is in the order of a few milliseconds [60]. In the case of direct device assignment

and SR-IOV VFs, the internal state of the network interface cannot be copied because it is

stored into the hardware that is not able to move [31, 120]. The SR-IOV Virtual Function

(VF) assigned to the VM will first need to be detached, the live migration will run, and a

new VF will be attached at the destination. The described process will introduce some

inescapable downtime which is in the order of several seconds.

In the case of a virtualized environment that is using SR-IOV InfiniBand VFs, the downtime

of Live migrations will be even greater as we show in Paper I. When a VM that is using an

SR-IOV IB VF is live migrated, the downtime will last from the moment that the VF is

detached from the VM at the source hypervisor, until the moment a new VF is reattached

at the destination. Moreover, some additional downtime and a measurable impact on the

underlying network fabric and the SM will be introduced. The additional downtime and

added overhead to the SM is due to the change of all three addresses of the IB SR-IOV

VF [38]. The LID will change because the VM will be moved to a different physical host

that is using a different LID and in current generation HCAs the LID of VMs is shared with

the host LID [39]. The virtual GUID (vGUID) that is assigned by the SM to the source VF

will change as well, because a different VF will be attached at the destination. Subsequently,

since the vGUID is used to form the primary GID and the vGUID has changed, the GID

will change too. The running applications and OS in the VM will suddenly be exposed to a

new set of addresses at the destination, and all of the peer VMs will start sending path

record queries to the SM while trying to reestablish the lost connectivity. These queries are

causing supplementary downtime, and more significantly, extra overhead to the SM. If many

migrations take place within a rather short time frame in a large data center, or if migrated

nodes are communicating with many other nodes in the network, the SM can become a

bottleneck since it will not be able to respond in a timely manner.

Other works in the context of virtualized HPC clouds with lossless interconnects are

mostly limited to pointing out existing issues and demonstrating that the technology



2.5 Simulators Used in this Thesis 31

has matured enough and virtualization overheads have sufficiently been reduced to make

such clouds feasible [29, 30, 31, 32]. Others have focused on cloud tenant isolation at the

link level [121, 122] while Ranadive, in his doctoral dissertation dedicated his efforts on

virtualized resource management with lossless networks [123]. In particular, because the

hypervisor is usually bypassed with high performance network technologies and SR-IOV as

we explained in the first paragraph of this section, it is not as simple to monitor the resource

usage and performance of the VMs. Moreover, HPC applications are latency sensitive.

Ranadive considered those aspects, and developed tools and methods for monitoring

and latency-aware scheduling of the VMs. Nonetheless, the closest related work to ours,

that focuses in scalability and reconfiguration of lossless networks while live migrations

are part of a cloud data center, is that of Guay [38, 120]. In [38], Guay et al. present a

signaling mechanism that takes into account that all three IB addresses change when a

VM is migrating, and notify the peers of the migrated VM to update their cached path

information. In our work, and specifically in Paper I, we first show that alternatively if one

has the possibility to migrate all three IB addresses, no signaling is needed. Then, in

Paper II and Paper V we propose the IB SR-IOV vSwitch architecture that allows a VM to

be migrated while carrying to the destination all of its associated addresses. In [120], Guay

et al. also present a prototype that would allow VMs with IB SR-IOV VFs to migrate

transparently11. This work is concentrating to IB internals, and the presented prototype

migrates together with the VM the necessary hardware state of an IB VF so that the

migration can happen in an application transparent way.

2.5 Simulators Used in this Thesis

In this section we clarify the scope of the three different simulators that have been used in

this work. Ibsim, ORCS and vSwitchMigrationSim.

2.5.1 Infiniband Fabric Simulator

The Infiniband Fabric Simulator, or ibsim, is distributed as part of the OFED™ [52] software

and could be best described as being an emulator. As specified in the readme file that is

deployed with the tool, ibsim emulates the fabric behavior by using MAD12 communication

with the SM/SA13 and the PerfMgr. This simple tool is ideally suitable for various research,

11Currently, because an SR-IOV VF has to be detached from the VM at the source hypervisor and
reattached at the destination, all communications will be interrupted. Unless the application can handle
such an interruption or an upper level protocol is used to ensure smooth communication resuming, like
the Reliable Datagram Socket (RDS) protocol [124] that we also use in Paper I, the application will be
disturbed.

12The Management Datagram (MAD) is a type of packet that IB uses, as the name implies, for managing
the network.

13The Subnet Administration (SA) is a database that is built by the SM to store and serve different
information that is needed for the operation of the subnet. As an example, when a host asks the SM for
the path characteristics before communicating with another host, this information is served by the SM
after an “SA Path Record” query has been received.



32 Background

development, debug and testing tasks where IB subnet management is involved.

Ibsim works by reading a valid IB topology file, that can either be extracted from a real IB

topology with the ibnetdiscover [125] command or generated in the same format, and

emulates the behavior of the loaded subnet. Ibsim is an invaluable tool for testing new

routing algorithms and study the behavior of the SM with different topologies easily,

without one having to get access to a real system. An important detail to note is that by

using ibsim, the performance of the SM will reflect reality if one is testing only internal

elements of the SM. That is due to the fact that once the SM discovers the network (which

can either be real or emulated by ibsim) and builds the SA database, many SM tasks are

taking place internally and do not need any more network interaction. For example, once

the subnet has been discovered, the routing algorithm runs locally. This means that the

time it takes to route the network with a given routing algorithm is only affected by the

local hardware that the SM is running on, even if the subnet is emulated by ibsim.

2.5.2 Oblivious Routing Congestion Simulator

The Oblivious Routing Congestion Simulator (ORCS) [51] is capable of simulating a variety

of communication patterns on statically routed networks with the intent to study the effect

of congestion. The simulator loads a network topology and the routing tables for all switches

in the topology, and for each simulation the simulator runs a communication pattern in

turns that in the simulator’s language are called levels. Each level defines which nodes

communicate with each other, and the results for each level are isolated from each other, i.e.

one level has to finish before the next level is executed. In the end of the simulation, ORCS

provides different metrics. For example, the hist max cong metric examines every single

route used by any sender/receiver pair in a pattern and saves the maximal congestion

along every route in a histogram, regardless of the level where the maximal congestion for

each flow occurred in. Another example is the hist acc band metric. The hist acc band

metric treats all connections in all levels equally, determines the congestion factor (a

number between zero and one) for each flow and computes the fraction of peak bandwidth

experienced by all the connections in one simulation run. Every simulation run results in

one number, the fraction of peak bandwidth for this particular run. These results are stored

in a histogram when multiple simulations are executed, and reported at the end.

If we have a network topology as shown in Fig. 2.7 with a pattern where node 1 sends

traffic to node 3 and node 2 sends traffic to node 4 , then the hist max cong metric would

report 0 for the case depicted in Fig. 2.7(a) while the hist acc band metric would report 1.0

since there is no link sharing for the two flows. If the same network was routed differently

as illustrated in Fig. 2.7(b), hist max cong would report 2 while the hist acc band would

report 0.5 since the two flows share at least one link (in this case all switch to switch links

are shared, but one shared link would be enough to provide these results).

In this thesis we used the ORCS simulator in Paper III, Paper IV and Paper V to evaluate

our devised routing algorithms and reconfiguration methods. In all of these works we first

used ibsim and OpenSM to generate and extract the routing tables from large emulated



2.5 Simulators Used in this Thesis 33

1 2 3 4

(a) No congestion. Each flow is using dedicated
links all the way for the communication. 100% of
peak performance per flow.

1 2 3 4

(b) The two flows share at least one link. The
first link where the flows meet from the source to
the destination is the link that is highlighted with
the oval shape. 50% of peak performance per flow.

Fig. 2.7: Two flows (1 → 3 and 2 → 4) that are routed differently in the same topology.

topologies, and then we fed this information in ORCS to execute the simulations. As part

of Paper III we also made significant contributions back to the ORCS project. In particular,

we fixed several bugs that led to crashes or limited the generation of more complex traffic

patterns, improved the support for parallel Message Passing Interface (MPI) execution of

the simulator, and most significantly we overhauled the framework that is provided by

the simulator to allow users to create new dynamic complex traffic patterns that can be

tuned with command line arguments. All the git commits in the ORCS repository between

456e4b9c and d8b01f77 have been contributed by the author of this thesis14.

2.5.3 Virtual Switch Migration Simulator

The Virtual Switch Migration Simulator (vSwitchMigrationSim) is a simulator that we

created for the needs of the evaluation in Paper V. The purpose of vSwitchMigrationSim

is to simulate an IB subnet with the SR-IOV vSwitch architecture that we proposed

in Paper II, where VMs live migrate and their LID addresses are changing positions in

the subnet. The ultimate goal for us was to use vSwitchMigrationSim to perform VM

migrations and study the performance impact, to the routing quality, of our vSwitch

reconfiguration methods that we presented in Paper II and Paper V. Then compare the

results with the performance of an optimally routed subnet that has been routed with the

vSwitchFatTree routing algorithm that we presented in Paper V as well. In the context of

the vSwitch architecture, a quick, but not necessarily optimal, network reconfiguration that

will result in minimal network disturbance must be triggered each time a VM migrates, to

reroute the traffic heading to the migrated VM towards the destination hypervisor.

The vSwitchMigrationSim initially loads a network topology file and the corresponding

14https://github.com/cyberang3l/ORCS/compare/456e4b9c...d8b01f77
https://github.com/tim0s/ORCS/compare/456e4b9c...d8b01f77

https://github.com/cyberang3l/ORCS/compare/456e4b9c...d8b01f77
https://github.com/tim0s/ORCS/compare/456e4b9c...d8b01f77


34 Background

routing tables that are extracted from the SM. Ibsim is used for the first step. vSwitch-

MigrationSim then performs LID migrations (that imitate a live migration in a real life

scenario where vSwitches would have been deployed) based on a chosen migration pattern,

reconfigures the network as necessary based on our reconfiguration algorithms, and extracts

the updated topology, routing tables as well as additional information such as how many

switches were reconfigured after each migration. The extracted topology and routing

tables are then loaded in the ORCS simulator to study the impact of the reconfiguration

algorithms on the routing quality.

Four migration patterns have been implemented: random, consolidate, grouping, and

to-uniform. In the random migration pattern, the user chooses how many random migrations

must be performed. In a random migration a VM is selected randomly in the topology,

and is migrated to a different randomly chosen hypervisor with available SR-IOV VFs.

The consolidate migration pattern will initiate as many migrations as needed to pack all

the VMs to the leftmost side of the Fat-Tree with the intent to use the least number of

hypervisors possible that can accommodate the number of booted VMs. The VMs are

migrated in a decreasing order, starting from the VM that is connected to the rightmost

part of the Fat-Tree topology. Each VM is migrated to the leftmost part of the Fat-Tree

where there is an available SR-IOV VF for the VM to connect to. In the grouping pattern,

the user chooses a number of groups (a group can be seen as a cloud tenant) that the

VMs will be grouped to. The VMs are chosen randomly to be equally distributed in the

groups, and the pattern consolidates and isolates from other groups the VMs that belong to

the same group, i.e. a hypervisor is not allowed to host VMs that belong to different

groups. Last, the to-uniform migration pattern achieves a uniform VM distribution on the

vSwitches in the network i.e. spreads out the VMs equally to all hypervisors. Note that the

migration patterns in vSwitchMigrationSim are only trying to reflect potential scenarios

that a cloud provider would be interested in. The implemented patterns are not designed to

be optimal (do not intend to minimize the number of migrations), as what we care to study

with this simulator is not the bin packing methods for different scenarios, but the resulting

routing after a set of migrations have taken place.



Chapter 3

Summary of Research Papers

In this chapter we present an extended abstract for each of the papers that have been

produced as part of this thesis, and we bind each paper to the research questions that have

been presented in section 1.2. For a quick visual overview of the “RQ ↔ Paper” mapping,

the reader can consult Fig. 1.3. A short section also discusses the patents that have been

produced as part of this work.

3.1 Papers

Paper I: A Novel Query Caching Scheme for Dynamic InfiniBand Subnets

Paper I addresses RQ 1. In large IB subnets the centralized SM is a potential bottleneck.

When an IB subnet grows in size, the number of paths between hosts increases polynomially

and the SM may not be able to serve the network in a timely manner when many concurrent

path resolution requests are received. This scalability challenge is further amplified in

dynamic virtualized cloud environments. When a VM with IB interconnect live migrates,

the VM addresses change with the current shared port SR-IOV implementation [39]. These

address changes result in additional load to the SM, as communicating peers send SA path

record queries to the SM to resolve new path characteristics.

In this paper we first benchmark OpenSM to empirically demonstrate the SM scalability

problems. Although the SM scalability is a known issue to the HPC community and

the primary reason behind the work presented in this paper as well as the community’s

initiative to start a Scalable SA project [126], to the best of our knowledge there is no prior

work that points out the issue with evidence. Then, after the benchmarking, we show that it

is possible to significantly reduce the load towards the SM by introducing a novel SA Path

Record Query caching scheme. In particular, we show that only a single initial SA path

query is needed per communicating peer, independent of any subsequent (re)connection

attempts. For the distinct case of VM migration, a prerequisite to make the cache work is

that the migrated VMs should be able to carry their associated addresses to the destination

hypervisor. Since live migration of VMs with IB SR-IOV VFs is not a production-ready

35



36 Summary of Research Papers

feature yet and a migration will break the communication of upper level applications1, we

used the RDS protocol to implement our prototype in this paper. The RDS protocol has

built-in reconnection functionality in the case when the communication is interrupted, thus,

the reconnection is transparent to the upper level application that is using RDS.

Paper II: Towards the InfiniBand SR-IOV Architecture

Paper II addresses RQ 2 and RQ 3 and builds on top of the results and observations of

Paper I. In Paper I we showed that if a VM migrates with its associated IB addresses, the

scalability of the SM can be greatly increased. Yet, when designing an SR-IOV architecture

that would allow VMs to migrate together with their associated addresses, the network

should be reconfigured after each migration. Network reconfiguration is another costly and

complex task for the SM, and a new SR-IOV architecture that is designed to solve one

scalability issue should take into account to not introduce a new one. Moreover, due to each

VM having a dedicated layer-two address (recall that the LID is limited to 16 bits in IB)

scalability issues in the space-domain of the subnet should be considered.

In this paper, we propose and analyze an SR-IOV virtual switch (vSwitch) architecture for

IB, that takes into consideration the different scalability aspects we pointed out in the

previous paragraph. Furthermore, as network reconfiguration time is critical to make

live-migration a practical option, we accompany our proposed architecture with a scalable

and topology agnostic dynamic reconfiguration method. A prototype for the reconfiguration

method has been implemented and tested using OpenSM. Our results show that we are

able to significantly reduce the reconfiguration time as route recalculations are no longer

needed2, and even in large IB subnets, for certain scenarios, the number of reconfiguration

Subnet Management Packets (SMPs) sent by the SM to update the LFTs of the switches

can be reduced from several hundred thousand that would be needed by a traditional full

reconfiguration, down to a single one.

Paper III: Fast Hybrid Network Reconfiguration for Large-Scale Lossless In-

terconnection Networks

RQ 4 is mainly addressed by Paper III. Reconfiguration of high performance lossless

interconnection networks is a cumbersome and time-consuming task. For that reason

reconfiguration in large networks are typically limited to situations where it is absolutely

necessary, for instance when severe faults occur. On the other hand, due to the shared and

dynamic nature of modern cloud infrastructures, performance-driven reconfigurations are

necessary to ensure efficient utilization and reduced fragmentation of resources.

In this work we present a scheme that allows for fast reconfigurations, by limiting the task

to sub-parts of the network that can benefit from a local reconfiguration. Moreover, the

1To the best of our knowledge, live migration of VMs with IB SR-IOV VFs has only been demonstrated by
Guay et al. in [120] so far.

2The recalculation of routes is the most costly task in a reconfiguration scenario.



3.1 Papers 37

presented scheme is able to use different routing algorithms for different sub-parts within

the same subnet. Hardware experiments and large scale simulation results show that we are

able to significantly reduce reconfiguration time from 50% to as much as 98.7% for very

large topologies, while improving performance. The proposed scheme can take advantage of

the fact that large HPC systems and clouds are shared by multiple tenants running isolated

tasks. In such scenarios tenant inter-communication is not allowed, thus the workload

deployment and placement scheduler should try to avoid fragmentation to ensure efficient

resource utilization. That is, the majority of the traffic per tenant can be contained within

consolidated subparts of the network, subparts we can reconfigure in order to improve

the overall performance. We also present a Fat-Tree routing algorithm that reconfigures

a network given a user-provided node ordering. Having the ability to route a network

with a given node order can be very effective, and one strategy we use to obtain better

performance is to route nodes in the order of the amount of traffic each node receives. A

simple way to determine the receiving traffic per node is to read the network port counters.

In such a way the administrator doesn’t even have to know details about the jobs executed

by tenants (applications are treated as black-boxes), making this type of routing attractive

for dynamic environments.

Paper IV: Compact Network Reconfiguration in Fat-Trees

In general, current routing algorithms do not consider the existing routes in a network when

calculating new ones. Such configuration-oblivious routing might result in substantial

modifications to the existing paths, and the reconfiguration becomes costly as it potentially

involves a large number of source-destination pairs.

In this paper, we propose a novel routing algorithm for fat-tree topologies, SlimUpdate.

SlimUpdate employs path preservation techniques to achieve a decrease of up to 80% in

the number of total path modifications, as compared to the OpenSM’s fat-tree routing

algorithm. However, SlimUpdate can be slow due to its recursive programming nature, and

it is impractical to use it as often as needed by cloud infrastructures. Thus, in Paper IV we

also present a faster metabase-aided rerouting method for Fat-Trees, based on destination

leaf-switch multipathing that addresses RQ 4 differently than the method we presented in

Paper III. The metabase routing scheme will first calculate the different possible spanning

trees for each destination leaf-switch, and store that information in an in-memory database.

Then the compute nodes are routed based on the pre-calculated paths. Naturally, the

initial routing calculation will be slower than usual as these two phases are involved.

Nonetheless, when a subsequent reconfiguration is needed alternative paths that already

exist in the database will be selected, instead of being calculated again, resulting in a

quicker reconfiguration. Note that the logic of allocating calculated paths to the actual

compute node destinations is up to the routing algorithm, and not a part of our proposed

metabase-aided routing mechanism. As our results show, the metabase-aided routing saves

up to 85% of the total routing time over a traditional rerouting scheme where routing paths

have to be calculated when the reconfiguration is triggered.



38 Summary of Research Papers

Paper V: Efficient Routing and Reconfiguration in Virtualized HPC Environ-

ments with vSwitch-enabled Lossless Networks

In this paper, we build on our already proposed vSwitch SR-IOV architecture for IB.

We first discuss in detail the space-domain scalability issues related to the layer-two

LID addresses, and suggest potential solutions based on the IB specification. Then we

discuss routing strategies for virtualized environments using vSwitches, and present an

efficient routing algorithm for Fat-Trees, followed by a dynamic reconfiguration method

that is designed to minimize imposed overhead on Fat-Tree topologies. Our results show

significant reduction in the reconfiguration time when compared to a traditional full

reconfiguration, as route recalculations can be eliminated, and for certain scenarios, the

number of reconfiguration SMPs sent to switches is reduced from several hundred thousand

down to a single one without degrading the routing quality. Moreover, the Fat-Tree

topology-aware reconfiguration method presented in this paper reduces significantly the

number of reconfiguration SMPs that need to be sent to switches when compared with the

topology-agnostic method that we introduced together with the vSwitch architecture in

Paper II. We perform an extensive performance evaluation of our reconfiguration method,

and draw conclusions by deducing from empirical observations of real hardware behavior as

well as large-scale simulations.

The first part of Paper V that discusses vSwitch space-domain scalability issues is IB

specific. Other competing interconnects may suffer from similar issues if a vSwitch

architecture for lossless networks is implemented3, while others currently may not4.

Nonetheless, the rest of the challenges presented in this paper, although demonstrated on

IB, are issues related to the nature of vSwitch-powered lossless networks in the context of

dynamic cloud environments that are using VM live migrations, or are in need for frequent

performance-driven reconfigurations, and provide answers to RQ 3.

Paper VI: The Concept of Workload Delay as a Quality-of-Service Metric for

Consolidated Cloud Environments with Deadline Requirements

Paper VI provides one approach to answer RQ 5. VM consolidation in the cloud has

received significant research interest. A large body of approaches for VM consolidation in

data centers resort to variants of the bin packing problem which tries to minimize the

number of deployed physical machines while meeting the SLA constraints. The most

common strategy to bin-pack VMs is to satisfy a level of utilization of the physical machines.

However, it is not clear how the level of utilization is related to the performance of the VMs

and the user experience for users that use the VMs. After all, the way that the degraded

performance of long-running jobs (that are typical in cluster and Big Data deployments) is

3The Bull eXascale Interconnect (BXI), which is another direct competitor technology to IB, scales up
to 64k nodes [35]. Although the architectural specifications of BXI are not publicly available, this is
an indication that the layer two addresses in BXI are 16 bits long as is in IB, thus, our space-domain
scalability suggestions may not be applied directly to other technologies, but are still relevant.

4Intel Omni-Path Architecture utilizes 24 bits long LIDs [34], thus, one can have larger subnets than IB.



3.2 Patents 39

manifested to the user, is in the form of a workload that took longer than expected to be

completed, i.e. the workload is delayed.

In this paper we introduce the concept of workload delay as a QoS metric that captures

directly the resulting degradation that a cloud user would experience in the case where

the SLA is violated. We show that the delay can be accumulated in a complex way,

and although different workloads may look identical in the long run, the delay can be

manifested and impact each workload very differently when there exist minor differences in

the short term. Our results, that are based on real-life trace-based simulations, show that

when VMs are consolidated based on the level of utilization there is little control over the

resulting delay. This is a particularly significant drawback when running jobs with deadline

requirements. On the other hand, we are able to control the delay much better if we take

into account our suggested metric of the delay.

Paper VI provides an initial approach to formulate and demonstrate the potential of

the concept of delay with an example based on a real-life performance dataset. The

consolidation results are not yet intended to demonstrate a competitive consolidation

solution. That is, we provide directions for future work, and point out different aspects that

should be considered in order to apply the concept of delay in real-life scenarios.

3.2 Patents

Five patent applications have been submitted directly from the results of this thesis.

Four have already been published (not granted yet) [127, 128, 129, 130], whereas one is

pending publication. The patents have been filed by Oracle Corporation, which was one of

the industrial partners of the Efficient and Robust Architecture for the big data Cloud

(ERAC) project [131], and the partner that we had the closest collaboration with. The

ERAC project was the umbrella project that mainly funded the work for this doctoral

dissertation.





Chapter 4

Closing Remarks

This thesis was mainly funded by the ERAC project, and the goal of the ERAC project was

to provide, as the name of the project implies, an efficient and robust architecture for the

emerging Big Data clouds. As such, we chose to address challenges in the context of high

performance virtualized clouds, that are needed to process efficiently, demanding Big Data

workloads. In the beginning of the project we started from the higher cloud levels, in the

cloud orchestration, with the intention to follow a top-down approach, and tried to deploy

an OpenStack1 cloud with the XEN2 hypervisor and IB. Soon we realized that none of the

open source enterprise cloud platforms are ready to accommodate high performance lossless

interconnects, and many of the features that are working out-of-the-box with Ethernet

technology, are not necessarily working with high performance lossless network technologies.

So instead, we followed a bottom-up approach as explained in the introductory chapter 1.

Our initial efforts did not have a direct scientific outcome in the cloud orchestration layer,

but still, we made community contributions back to the utilized projects by filing bug

reports and fixing bugs whenever encountered3. Even a security vulnerability that got

assigned a Common Vulnerabilities and Exposures (CVE) number was discovered and

reported during this learning and experimentation period4. Additional contributions that

are part of this doctoral dissertation include a presented poster [132] and two contributed

talks in well established HPC community venues [133, 134].

Future Work

In this thesis we explored technologies and techniques that would allow cloud providers to

enable efficient high performance cloud environments. As we presented in Fig. 1.1, cloud

1http://web.archive.org/web/20170516144646/https://en.wikipedia.org/wiki/OpenStack
2http://web.archive.org/web/20170516144751/https://en.wikipedia.org/wiki/Xen
3http://web.archive.org/web/20170516144015/https://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=721345
http://web.archive.org/web/20170516144109/https://bugs.launchpad.net/nova/+bug/1201795

4http://web.archive.org/web/20170516144204/https://bugs.launchpad.net/nova/+bug/1202266
http://web.archive.org/web/20161228085607/http://lists.openstack.org/pipermail/openstack-
announce/2013-November/000161.html

41

http://web.archive.org/web/20170516144646/https://en.wikipedia.org/wiki/OpenStack
http://web.archive.org/web/20170516144751/https://en.wikipedia.org/wiki/Xen
http://web.archive.org/web/20170516144015/https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=721345
http://web.archive.org/web/20170516144015/https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=721345
http://web.archive.org/web/20170516144109/https://bugs.launchpad.net/nova/+bug/1201795
http://web.archive.org/web/20170516144204/https://bugs.launchpad.net/nova/+bug/1202266
http://web.archive.org/web/20161228085607/http://lists.openstack.org/pipermail/openstack-announce/2013-November/000161.html
http://web.archive.org/web/20161228085607/http://lists.openstack.org/pipermail/openstack-announce/2013-November/000161.html


42 Closing Remarks

1 2 3 4

Migrating VM to node with

available slot for live migration

Legend

FDR InfiniBand Link (56 Gbps)

EDR InfiniBand Link (100 Gbps)

Node with VM slot available for

live migration

Fig. 4.1: An non-homogeneous IB topology that mixes FDR and EDR generation IB.

platforms are very complex and composed of several components and corresponding research

objectives in different areas. In this work we spent most of our resources on improving

the cloud infrastructure from the perspective of the network, by using lossless network

technologies. The work was concerned with the dynamic nature of virtualized clouds

and the cases where VMs need to be live migrated in order to improve performance and

consolidation in the cloud. In this section we identify and present some future work.

In Paper I we presented an SA Path Record caching mechanism that would work in a

vSwitch powered lossless network, but currently, for the caching method to work, the

network must be homogeneous. Otherwise some migrations may break connectivity between

hosts and the hosts that lost connectivity will start requesting the new path characteristics

from the SM again. This behavior revives the problem we tried to solve in the first place by

introducing the cache. Consider the simple case presented in Fig. 4.1 where an organization

had a small cluster based on the FDR generation of IB. Recently they extended the cluster

to accommodate new nodes but the newly acquired equipment is based on EDR IB which is

newer and faster than FDR IB. In this scenario the network is not homogeneous anymore

since different network speeds and features are supported in parts of the network. As

such, if VM 1 migrates to the available slot pointed by the dashed arrow, the cache

will work as expected for all hosts. If on the other hand VM 3 migrates to the slot

pointed by the corresponding dashed arrow, then VM 4 will not be able to communicate

with VM 3 anymore. How would it be possible to allow location-oblivious migrations of

vSwitch-powered VMs in a non homogeneous network without introducing new scalability

issues in the SM?

For vSwitch migrations we did not study the deadlock possibilities when VMs are

migrated and switches are reconfigured. For the moment, we suggested a partially static

reconfiguration scheme to ensure deadlock freedom, a scheme that drops traffic only towards

the migrated VM until the reconfiguration is completed, but not the rest of the network.

Since at a certain point the VM is suspended and exhibits some downtime during the

migration, a partially static reconfiguration is enough if completed in less time than the



43

downtime exhibited by the VM5. As we show in Paper V based on empirical measurements,

the reconfiguration methods we presented are quicker than the migration downtime of

VMs that is typically reported in real-life scenarios. But as the networks grow in size and

live migration improvements lead to less VM downtime, in the future a partially static

reconfiguration may not be enough and might lead to unnecessary packet drop that could

be avoided if the reconfiguration was dynamic. A feasibility study of if, and how a dynamic

reconfiguration can ensure deadlock freedom in the context of VM migration, is a possible

future research direction for our proposed vSwitch architecture. Note that in existing work

that has studied the reconfiguration of lossless networks, for example in the case when

new nodes appear or faulty nodes disappear, nodes access the network with a unique

identifier (LID) always from the same network location. In the case where we have dynamic

subnets, the same node identifier may disappear from one part of the network, and reappear

somewhere else as a result of a VM migration.

In Paper III we provided a topology-aware hybrid reconfiguration scheme. As a future

direction our proposal would be to investigate how could one segment a topology agnostic

network in a similar way as the Fat-Tree network is naturally segmented with sub-trees?

How should a topology-agnostic routing algorithm route a segmented network to allow the

re-routing of different network segments, with different routing algorithms, without affecting

the performance or introducing deadlocks to the global routing? A next step would be to

study the possibility of having hierarchical distributed subnet management with different

SM workers being responsible for different network segments, and all workers reporting to a

master SM in the subnet.

As for the concept of the delay that we introduced in Paper VI, a more advanced

consolidation algorithm should be tested based on workload characterization and not just a

simple best fit decreasing bin packing. So far we only demonstrated the concept of delay

on time-shared CPU consumption data. The delay could also be used to capture the

performance of different metrics such as latency, and bandwidth, and can even be affected

by metrics that are not time-shared such as memory. For instance, if there is not enough

memory in a system and the swap memory is used, this can have serious implications on

the measured delay. Thus, additional performance parameters should be included in the

calculation of the delay as future work.

5In any case, when the VM experiences downtime due to a migration, packets towards this VM will be
discarded. So it does not matter if the packets will be discarded because of a static reconfiguration or
because they reached the destination but the VM hasn’t yet resumed its operations.





Papers

Paper I A Novel Query Caching Scheme for Dynamic

InfiniBand Subnets [135]

Authors Evangelos Tasoulas, Ernst Gunnar Gran, Bjørn Dag Johnsen,

Tor Skeie

Published at IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid) 2015

Paper II Towards the InfiniBand SR-IOV Architecture [136]

Authors Evangelos Tasoulas, Ernst Gunnar Gran, Bjørn Dag Johnsen,

Kyrre Begnum, Tor Skeie

Published at IEEE International Conference on Cluster Computing

(IEEECluster) 2015

Paper III Fast Hybrid Network Reconfiguration for

Large-Scale Lossless Interconnection Networks [137]

Authors Evangelos Tasoulas, Ernst Gunnar Gran, Tor Skeie,

Bjørn Dag Johnsen

Published at IEEE International Symposium on Network Computing and

Applications (NCA) 2016

Paper IV Compact Network Reconfiguration in Fat-Trees [138]

Authors Feroz Zahid, Ernst Gunnar Gran, Bartosz Bogdański,

Bjørn Dag Johnsen, Tor Skeie, Evangelos Tasoulas

Published at Springer Journal of Supercomputing in 2016

Paper V Efficient Routing and Reconfiguration in Virtualized

HPC Environments with vSwitch-enabled Lossless

Networks

Authors Evangelos Tasoulas, Feroz Zahid, Ernst Gunnar Gran,

Kyrre Begnum, Bjørn Dag Johnsen, Tor Skeie

Submitted to Wiley Journal of Concurrency and Computation: Practice and

Experience

Paper VI The Concept of Workload Delay as a Quality-of-Service

Metric for Consolidated Cloud Environments with

Deadline Requirements

Authors Evangelos Tasoulas, Hugo Lewi Hammer, H̊arek Haugerud,

Anis Yazidi, Alfred Bratterud, Boning Feng

Published at IEEE International Symposium on Network Computing and

Applications (NCA) 2017

45





155





List of Acronyms

AWS Amazon Web Services.

BFD Best Fit Decreasing.

BXI Bull eXascale Interconnect.

CA Conceptual Analysis.

CA/M Conceptual Analysis/Mathematical.

CPU Central Processing Unit.

CS Computer Science.

CVE Common Vulnerabilities and Exposures.

ERAC Efficient and Robust Architecture for the big data Cloud.

FFD First Fit Decreasing.

FIFO First-In-First-Out.

FM Fabric Manager.

GID Global Identifier.

GUID Global Unique Identifier.

HCA Host Channel Adapter.

HCAs Host Channel Adapters.

HFI Host Fabric Interface.

HoLB Head-of-Line Blocking.

HPC High Performance Computing.

IaaS Infrastructure as a Service.

IB InfiniBand.

ibsim Infiniband Fabric Simulator.

IBTA InfiniBand™ Trade Association.

IDC International Data Corporation.

IoT Internet of Things.

IOV Input/Output Virtualization.

IT Information Technology.

LFTs Linear Forwarding Tables.

LID Local Identifier.

LIDs Local Identifiers.

157



158 List of Acronyms

MAD Management Datagram.

MAPE Monitor-Analyze-Plan-Execute.

MPI Message Passing Interface.

MTU Maximum Transmission Unit.

OFED™ OpenFabrics Enterprise Distribution.

ORCS Oblivious Routing Congestion Simulator.

OS Operating System.

OSs Operating Systems.

PaaS Platform as a Service.

PCI Peripheral Component Interconnect.

PF Physical Function.

PFC Priority-based Flow Control.

PMs Physical Machines.

QoS Quality of Service.

RDS Reliable Datagram Socket.

RQ Research Question.

SA Subnet Administration.

SaaS Software as a Service.

SAN Storage Area Network.

SLA Service Level Agreement.

SLAs Service Level Agreements.

SM Subnet Manager.

SMPs Subnet Management Packets.

SR-IOV Single-Root IOV.

TCP Transmission Control Protocol.

VF Virtual Function.

VFs Virtual Functions.

VLs Virtual Layers.

VM Virtual Machine.

VMM Virtual Machine Monitor.

VMs Virtual Machines.



Bibliography

[1] InfiniBand Trade Association. InfiniBand Architecture General Specifications 1.3,

2015.

[2] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente. IaaS Cloud Architecture:

From Virtualized Datacenters to Federated Cloud Infrastructures. Computer,

45(12):65–72, 2012.

[3] International Data Corporation. 2016 IoT Mid-Year Review: A Report Card for

Everyone, August 2016. Doc # WC20160804.

[4] Facebook Inc. Facebook’s Top Open Data Problems. https://web.archive.org/web/

20170510123250/https://research.fb.com/facebook-s-top-open-data-problems/. [On-

line; accessed 17-May-2017].

[5] Facebook Inc. Facebook statistics as of December 31, 2016. https://web.archive.org/

web/20170306004707/http://newsroom.fb.com/company-info/. [Online; accessed

17-May-2017].

[6] Google Inc. YouTube Engineering and Developers Blog: Machine learning for

video transcoding. https://web.archive.org/web/20170106201643/https://youtube-

eng.googleblog.com/2016/05/machine-learning-for-video-transcoding.html. [Online;

accessed 17-May-2017].

[7] International Data Corporation. The Digital Universe in 2020: Big Data, Bigger

Digital Shadows, and Biggest Growth the in the Far East, December 2012.

[8] M. Chen, S. Mao, and Y. Liu. Big Data: A Survey. Mobile Networks and Applications,

19(2):171–209, 2014.

[9] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan. Computational

Solutions to Large-scale Data Management and Analysis. Nature Reviews Genetics,

11(9):647–657, 2010.

[10] S. Matsuoka, H. Sato, O. Tatebe, M. Koibuchi, I. Fujiwara, S. Suzuki, M. Kakuta,

T. Ishida, Y. Akiyama, T. Suzumura, K. Ueno, H. Kanezashi, and T. Miyoshi.

Extreme Big Data (EBD): Next Generation Big Data Infrastructure Technologies

Towards Yottabyte/Year. Supercomputing frontiers and innovations, 1(2), 2014.

159

https://web.archive.org/web/20170510123250/https://research.fb.com/facebook-s-top-open-data-problems/
https://web.archive.org/web/20170510123250/https://research.fb.com/facebook-s-top-open-data-problems/
https://web.archive.org/web/20170306004707/http://newsroom.fb.com/company-info/
https://web.archive.org/web/20170306004707/http://newsroom.fb.com/company-info/
https://web.archive.org/web/20170106201643/https://youtube-eng.googleblog.com/2016/05/machine-learning-for-video-transcoding.html
https://web.archive.org/web/20170106201643/https://youtube-eng.googleblog.com/2016/05/machine-learning-for-video-transcoding.html


160 Bibliography

[11] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita. Big Data Analytics in the Cloud: Spark

on Hadoop vs MPI/OpenMP on Beowulf. Procedia Computer Science, 53:121 – 130,

2015.

[12] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual Infrastructure

Management in Private and Hybrid Clouds. IEEE Internet Computing, 13(5):14–22,

September 2009.

[13] Amazon.com Inc. Amazon Web Services. https://aws.amazon.com. [Online; accessed

17-May-2017].

[14] Dropbox Inc. Scaling to Exabytes and Beyond. https://web.archive.org/web/

20170128210506/https://blogs.dropbox.com/tech/2016/03/magic-pocket-

infrastructure/. [Online; accessed 17-May-2017].

[15] Cisco Systems Inc. Cisco Global Cloud Index: Forecast and Methodology, 2015-2020,

2016.

[16] R. Jain and S. Paul. Network Virtualization and Software Defined Networking

for Cloud Computing: A Survey. IEEE Communications Magazine, 51(11):24–31,

November 2013.

[17] J. Michelsen and J. English. What Is Service Virtualization? In Service Virtualization:

Reality is Overrated, pages 27–35. Apress, Berkeley, CA, 2012.

[18] W. Vogels. Beyond Server Consolidation. Queue, 6(1):20–26, January 2008.

[19] K. Hamdi and M. Kefi. Network-Aware Virtual Machine Placement in Cloud Data

Centers: An Overview. In International Conference on Industrial Informatics and

Computer Systems (CIICS), pages 1–6, March 2016.

[20] A. Beloglazov and R. Buyya. Energy Efficient Allocation of Virtual Machines in

Cloud Data Centers. In 10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing, pages 577–578, May 2010.

[21] W. L. Guay, S. Reinemo, B. Johnsen, C. Yen, T. Skeie, O. Lysne, and O. Tørudbakken.

Early Experiences with Live Migration of SR-IOV Enabled InfiniBand. Journal of

Parallel and Distributed Computing, 78:39 – 52, 2015.

[22] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini, and

R. Biswas. Performance Evaluation of Amazon EC2 for NASA HPC Applications. In

Proceedings of the 3rd Workshop on Scientific Cloud Computing Date, ScienceCloud

’12, pages 41–50, New York, NY, USA, 2012. ACM.

[23] J. Vienne, J. Chen, M. Wasi-Ur-Rahman, N. S. Islam, H. Subramoni, and D. K.

Panda. Performance Analysis and Evaluation of InfiniBand FDR and 40GigE RoCE

on HPC and Cloud Computing Systems. In IEEE 20th Annual Symposium on

High-Performance Interconnects, pages 48–55, August 2012.

[24] IBM Corporation. An Architectural Blueprint for Autonomic Computing (Fourth

Edition), 2006.

https://aws.amazon.com
https://web.archive.org/web/20170128210506/https://blogs.dropbox.com/tech/2016/03/magic-pocket-infrastructure/
https://web.archive.org/web/20170128210506/https://blogs.dropbox.com/tech/2016/03/magic-pocket-infrastructure/
https://web.archive.org/web/20170128210506/https://blogs.dropbox.com/tech/2016/03/magic-pocket-infrastructure/


Bibliography 161

[25] S. Singh and I. Chana. QoS-Aware Autonomic Resource Management in Cloud

Computing: A Systematic Review. ACM Comput. Surv., 48(3):42:1–42:46, December

2015.

[26] A. R. Hummaida, N. W. Paton, and R. Sakellariou. Adaptation in Cloud Resource

Configuration: A Survey. Journal of Cloud Computing, 5(1):7, 2016.

[27] S. Singh and I. Chana. A Survey on Resource Scheduling in Cloud Computing: Issues

and Challenges. Journal of Grid Computing, 14(2):217–264, 2016.

[28] G. Aceto, A. Botta, W. Donato, and A. Pescapè. Cloud Monitoring: A Survey.

Computer Networks, 57(9):2093 – 2115, 2013.

[29] M. Hillenbrand, V. Mauch, J. Stoess, K. Miller, and F. Bellosa. Virtual InfiniBand

Clusters for HPC Clouds. In Proceedings of the 2nd International Workshop on Cloud

Computing Platforms, CloudCP ’12, pages 9:1–9:6, New York, NY, USA, 2012. ACM.

[30] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K. Panda. SR-IOV

Support for Virtualization on InfiniBand Clusters: Early Experience. In 13th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pages

385–392, May 2013.

[31] V. Mauch, M. Kunze, and M. Hillenbrand. High Performance Cloud Computing.

Future Generation Computer Systems, 29(6):1408–1416, 2013.

[32] P. Rad, R. V. Boppana, P. Lama, G. Berman, and M. Jamshidi. Low-latency

Software Defined Network for High Performance Clouds. In 10th System of Systems

Engineering Conference (SoSE), pages 486–491, May 2015.

[33] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. Top 500 The List.

http://www.top500.org, 2017. [Online; accessed 17-May-2017].

[34] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D.

Underwood, and R. C. Zak. Intel® Omni-path Architecture: Enabling Scalable,

High Performance Fabrics. In IEEE 23rd Annual Symposium on High-Performance

Interconnects, pages 1–9, August 2015.

[35] S. Derradji, T. Palfer-Sollier, J. P. Panziera, A. Poudes, and F. W. Atos. The BXI

Interconnect Architecture. In IEEE 23rd Annual Symposium on High-Performance

Interconnects, pages 18–25, August 2015.

[36] M. Karol, S. J. Golestani, and D. Lee. Prevention of Deadlocks and Livelocks in

Lossless Backpressured Packet Networks. IEEE/ACM Transactions on Networking,

11(6):923–934, December 2003.

[37] A. Russell. The Intel® Omni-Path Architecture: Game-Changing Performance,

Scalability, and Economics. In Cray User Group (CUG) 2016, May 2016. [Online;

accessed 17-May-2017].

[38] W. L. Guay, S. A. Reinemo, B. D. Johnsen, T. Skeie, and O. Torudbakken. A Scalable

Signalling Mechanism for VM Migration with SR-IOV over Infiniband. In IEEE

http://www.top500.org


162 Bibliography

18th International Conference on Parallel and Distributed Systems, pages 384–391,

December 2012.

[39] J. Morgenstein. Add SRIOV support for IB interfaces. https://web.archive.org/web/

20170329185211/http://www.mail-archive.com/linux-rdma@vger.kernel.org/

msg11956.html. [Online; accessed 17-May-2017].

[40] P. Vignéras and J. Quintin. The BXI Routing Architecture for Exascale Supercomputer.

The Journal of Supercomputing, 72(12):4418–4437, 2016.

[41] J. Domke, T. Hoefler, and W. E. Nagel. Deadlock-Free Oblivious Routing for

Arbitrary Topologies. In 2011 IEEE International Parallel Distributed Processing

Symposium, pages 616–627, May 2011.

[42] A. Iosup, N. Yigitbasi, and D. Epema. On the Performance Variability of Production

Cloud Services. In 11th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, pages 104–113, May 2011.

[43] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar. Exploring the Performance

Fluctuations of HPC Workloads on Clouds. In IEEE Second International Conference

on Cloud Computing Technology and Science, pages 383–387, November 2010.

[44] O. Khalid, I. Maljevic, R. Anthony, M. Petridis, K. Parrott, and M. Schulz. Dynamic

Scheduling of Virtual Machines Running HPC Workloads in Scientific Grids. In 3rd

International Conference on New Technologies, Mobility and Security, pages 1–5,

December 2009.

[45] G. Dodig-Crnkovic. Scientific Methods in Computer Science. In Conference for

the Promotion of Research in IT at New Universities and at University Colleges in

Sweden, April 2002.

[46] V. Ramesh, R. L. Glass, and I. Vessey. Research in Computer Science: An Empirical

Study. Journal of Systems and Software, 70(1–2):165 – 176, 2004.

[47] J. Wainer, C. G. N. Barsottini, D. Lacerda, and L. R. Magalhães de Marco. Empirical

evaluation in Computer Science research published by ACM. Information and

Software Technology, 51(6):1081 – 1085, 2009.

[48] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future

Directions. ACM Comput. Surv., 28(4):626–643, December 1996.

[49] M. V. Zelkowitz and D. R. Wallace. Experimental Models for Validating Technology.

Computer, 31(5):23–31, May 1998.

[50] W. F. Tichy. Should computer scientists experiment more? Computer, 31(5):32–40,

May 1998.

[51] T. Schneider, T. Hoefler, and A. Lumsdaine. ORCS: An Oblivious Routing Congestion

Simulator. Indiana University Technical Report, TR-675, February 2009.

https://web.archive.org/web/20170329185211/http://www.mail-archive.com/linux-rdma@vger.kernel.org/msg11956.html
https://web.archive.org/web/20170329185211/http://www.mail-archive.com/linux-rdma@vger.kernel.org/msg11956.html
https://web.archive.org/web/20170329185211/http://www.mail-archive.com/linux-rdma@vger.kernel.org/msg11956.html


Bibliography 163

[52] OpenFabrics Alliance. OFED Overview. https://web.archive.org/web/20170405094006

/https://www.openfabrics.org/index.php/openfabrics-software.html. [Online; accessed

17-May-2017].

[53] I. McGregor. The Relationship Between Simulation and Emulation. In Proceedings of

the Winter Simulation Conference, volume 2, pages 1683–1688 vol.2, December 2002.

[54] N. Bunnin and J. Yu. P. In The Blackwell Dictionary of Western Philosophy, pages

500–579. Blackwell Publishing, 2007.

[55] J. Elliott. 45 Years of Mainframe Virtualization: CP/67 and VM/370 to z/VM. In

Share Conference in Anaheim, August 2012.

[56] P. H. Gum. System/370 Extended Architecture: Facilities for Virtual Machines. IBM

Journal of Research and Development, 27(6):530–544, November 1983.

[57] M. Rosenblum. Vmware’s Virtual Platform. In Proceedings of Hot Chips, volume

1999, pages 185–196, 1999.

[58] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier, R. Sankaran,

I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert. Intel® Virtualization Technology

for Directed I/O. Intel® Technology Journal, 10(3):179—192, 2006.

[59] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating Server Idle

Power. In Proceedings of the 14th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS XIV, pages 205–216,

New York, NY, USA, 2009. ACM.

[60] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield. Live Migration of Virtual Machines. In Proceedings of the 2nd Conference

on Symposium on Networked Systems Design & Implementation - Volume 2, NSDI’05,

pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.

[61] N. Bobroff, A. Kochut, and K. Beaty. Dynamic Placement of Virtual Machines

for Managing SLA Violations. In 10th IFIP/IEEE International Symposium on

Integrated Network Management, pages 119–128, May 2007.

[62] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus:

High Availability via Asynchronous Virtual Machine Replication. In Proceedings of

the 5th USENIX Symposium on Networked Systems Design and Implementation,

pages 161–174. San Francisco, 2008.

[63] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and F. Xia. A

Survey on Virtual Machine Migration and Server Consolidation Frameworks for Cloud

Data Centers. Journal of Network and Computer Applications, 52:11 – 25, 2015.

[64] J. Shuja, A. Gani, S. Shamshirband, R. W. Ahmad, and K. Bilal. Sustainable Cloud

Data Centers: A Survey of Enabling Techniques and Technologies. Renewable and

Sustainable Energy Reviews, 62:195 – 214, 2016.

https://web.archive.org/web/20170405094006/https://www.openfabrics.org/index.php/openfabrics-software.html
https://web.archive.org/web/20170405094006/https://www.openfabrics.org/index.php/openfabrics-software.html


164 Bibliography

[65] A. Shribman and B. Hudzia. Pre-Copy and Post-Copy VM Live Migration for

Memory Intensive Applications. In Euro-Par 2012: Parallel Processing Workshops.

Lecture Notes in Computer Science, pages 539–547. Springer Berlin Heidelberg, 2013.

[66] B. Zhang, X. Wang, R. Lai, L. Yang, Z. Wang, Y. Luo, and X. Li. Evaluating and

Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM). In IFIP

International Conference on Network and Parallel Computing (NPC 2010). Lecture

Notes in Computer Science., pages 220–231. Springer Berlin Heidelberg, 2010.

[67] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Performance Evaluation of

Virtualization Technologies for Server Consolidation. HP Labs Technical Report, 2007.

[68] S. Crosby and D. Brown. The Virtualization Reality. Queue, 4(10):34–41, December

2006.

[69] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel Virtualization

Technology: Hardware Support for Efficient Processor Virtualization. Intel Technology

Journal, 10(3), 2006.

[70] P. Kutch. PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Technology.

Application note, 2011.

[71] C. Waldspurger and M. Rosenblum. I/O Virtualization. Communications of the

ACM, 55(1):66–73, January 2012.

[72] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan. High Performance

Network Virtualization with SR-IOV. Journal of Parallel and Distributed Computing,

72(11):1471 – 1480, 2012. Communication Architectures for Scalable Systems.

[73] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud Computing.

Communications of the ACM, 53(4):50–58, April 2010.

[74] T. Dillon, C. Wu, and E. Chang. Cloud Computing: Issues and Challenges. In

24th IEEE International Conference on Advanced Information Networking and

Applications, pages 27–33, April 2010.

[75] NRK. Derfor fikk du ikke sjekket selvangivelsen. http://web.archive.org/web/

20170517200058/https://www.nrk.no/nordland/altinn-nede-for-telling-1.7560709,

2011. [Online; accessed 17-May-2017].

[76] The Verge. Oslo man’s financial records briefly accessible to all after Norwegian tax web-

site crashes. https://web.archive.org/web/20150926083008/http://www.theverge.com/

2012/3/22/2892471/norway-altinn-kenneth-tax-leak, 2012. [Online; accessed 17-May-

2017].

[77] M. Mao, J. Li, and M. Humphrey. Cloud Auto-scaling with Deadline and Budget

Constraints. In 11th IEEE/ACM International Conference on Grid Computing, pages

41–48, October 2010.

http://web.archive.org/web/20170517200058/https://www.nrk.no/nordland/altinn-nede-for-telling-1.7560709
http://web.archive.org/web/20170517200058/https://www.nrk.no/nordland/altinn-nede-for-telling-1.7560709
https://web.archive.org/web/20150926083008/http://www.theverge.com/2012/3/22/2892471/norway-altinn-kenneth-tax-leak
https://web.archive.org/web/20150926083008/http://www.theverge.com/2012/3/22/2892471/norway-altinn-kenneth-tax-leak


Bibliography 165

[78] K. S. Rao and P. S. Thilagam. Heuristics Based Server Consolidation with Residual

Resource Defragmentation in Cloud Data Centers. Future Generation Computer

Systems, 50:87 – 98, 2015. Quality of Service in Grid and Cloud 2015.

[79] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes. Toward Energy-Efficient

Cloud Computing: Prediction, Consolidation, and Overcommitment. IEEE Network,

29(2):56–61, March 2015.

[80] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Sandpiper: Black-box

and Gray-box Resource Management for Virtual Machines. Computer Networks,

53(17):2923 – 2938, 2009. Virtualized Data Centers.

[81] A. Beloglazov and R. Buyya. Optimal Online Deterministic Algorithms and Adaptive

Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual

Machines in Cloud Data Centers. Concurrency and Computation: Practice and

Experience, 24(13):1397–1420, 2012.

[82] M. Mishra and A. Sahoo. On Theory of VM Placement: Anomalies in Existing

Methodologies and Their Mitigation Using a Novel Vector Based Approach. In IEEE

4th International Conference on Cloud Computing, pages 275–282, July 2011.

[83] A. Corradi, M. Fanelli, and L. Foschini. VM Consolidation: A Real Case Based

on OpenStack Cloud. Future Generation Computer Systems, 32:118 – 127, 2014.

Special Section: The Management of Cloud Systems, Special Section: Cyber-Physical

Society and Special Section: Special Issue on Exploiting Semantic Technologies with

Particularization on Linked Data over Grid and Cloud Architectures.

[84] B. Cao, X. Gao, G. Chen, and Y. Jin. NICE: Network-aware VM Consolidation

scheme for Energy Conservation in Data Centers. In 20th IEEE International

Conference on Parallel and Distributed Systems (ICPADS), pages 166–173, December

2014.

[85] E. Feller, L. Rilling, and C. Morin. Energy-Aware Ant Colony Based Workload

Placement in Clouds. In Proceedings of the 2011 IEEE/ACM 12th International

Conference on Grid Computing, GRID ’11, pages 26–33, Washington, DC, USA, 2011.

IEEE Computer Society.

[86] H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya. Virtual Machine Consolida-

tion in Cloud Data Centers Using ACO Metaheuristic. In Euro-Par 2014 Parallel

Processing: 20th International Conference Proceedings, pages 306–317. Springer

International Publishing, Cham, 2014.

[87] A. Beloglazov and R. Buyya. Managing Overloaded Hosts for Dynamic Consolidation

of Virtual Machines in Cloud Data Centers under Quality of Service Constraints.

IEEE Transactions on Parallel and Distributed Systems, 24(7):1366–1379, July 2013.

[88] H. Zhang, K. Yoshihira, Y. Su, G. Jiang, M. Chen, and X. Wang. iPOEM: A GPS

Tool for Integrated Management in Virtualized Data Centers. In Proceedings of the



166 Bibliography

8th ACM International Conference on Autonomic Computing, ICAC ’11, pages 41–50,

New York, NY, USA, 2011. ACM.

[89] D. Breitgand and A. Epstein. Improving Consolidation of Virtual Machines with

Risk-aware Bandwidth Oversubscription in Compute Clouds. In 2012 Proceedings

IEEE INFOCOM, pages 2861–2865, March 2012.

[90] L. Chen and H. Shen. Consolidating Complementary VMs with Spatial/Temporal-

Awareness in Cloud Datacenters. In IEEE INFOCOM 2014 - IEEE Conference on

Computer Communications, pages 1033–1041, April 2014.

[91] B. Viswanathan, A. Verma, and S. Dutta. CloudMap: Workload-Aware Placement in

Private Heterogeneous Clouds. In 2012 IEEE Network Operations and Management

Symposium, pages 9–16, April 2012.

[92] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and M. D. Corner.

Memory Buddies: Exploiting Page Sharing for Smart Colocation in Virtualized

Data Centers. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, VEE ’09, pages 31–40, New York,

NY, USA, 2009. ACM.

[93] A. Arcangeli, I. Eidus, and C. Wright. Increasing Memory Density by Using KSM. In

Proceedings of the Linux Symposium, pages 19–28. Citeseer, 2009.

[94] IEEE. IEEE Standard for Local and metropolitan area networks–Media Access

Control (MAC) Bridges and Virtual Bridged Local Area Networks–Amendment 17:

Priority-based Flow Control. IEEE Std 802.1Qbb-2011 (Amendment to IEEE Std

802.1Q-2011 as amended by IEEE Std 802.1Qbe-2011 and IEEE Std 802.1Qbc-2011),

pages 1–40, September 2011.

[95] V. Jacobson. Congestion Avoidance and Control. ACM SIGCOMM Computer

Communication Review, 18(4):314–329, August 1988.

[96] G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and

Design. pearson education, 2005.

[97] J. Duato, S. Yalamanchili, and L. M. Ni. Interconnection Networks: An Engineering

Approach. Morgan Kaufmann, 2003.

[98] S. R. Öhring, M. Ibel, S. K. Das, and M. J. Kumar. On Generalized Fat Trees. In

Proceedings of the 9th International Symposium on Parallel Processing, IPPS ’95,

pages 37–, Washington, DC, USA, 1995. IEEE Computer Society.

[99] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-Driven, Highly-Scalable

Dragonfly Topology. In Proceedings of the 35th Annual International Symposium on

Computer Architecture, ISCA ’08, pages 77–88, Washington, DC, USA, 2008. IEEE

Computer Society.

[100] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6D Mesh/Torus Interconnect for

Exascale Computers. Computer, 42(11):36–40, November 2009.



Bibliography 167

[101] F. Petrini and M. Vanneschi. k-ary n-trees: High Performance Networks for

Massively Parallel Architectures. In Proceedings 11th International Parallel Processing

Symposium, pages 87–93, April 1997.

[102] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center

Network Architecture. In Proceedings of the ACM SIGCOMM 2008 Conference on

Data Communication, SIGCOMM ’08, pages 63–74, New York, NY, USA, 2008. ACM.

[103] T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage Switches are not Crossbars:

Effects of Static Routing in High-Performance Networks. In IEEE International

Conference on Cluster Computing, pages 116–125, September 2008.

[104] E. Zahavi. D-Mod-K Routing Providing Non-Blocking Traffic for Shift Permutations

on Real Life Fat Trees. CCIT Report 776, Technion, 2010.

[105] E. Zahavi. Fat-Tree Routing and Node Ordering Providing Contention Free Traffic for

MPI Global Collectives. Journal of Parallel and Distributed Computing, 72(11):1423 –

1432, 2012. Communication Architectures for Scalable Systems.

[106] E. G. Gran. Congestion Management in Lossless Interconnection Networks. phd,

Faculty of Mathematics and Natural Sciences, University of Oslo, March 2014.

[107] T. Skeie, O. Lysne, and I. Theiss. Layered Shortest Path (LASH) Routing in Irregular

System Area Networks. In Proceedings 16th International Parallel and Distributed

Processing Symposium, pages 8 pp–, April 2002.

[108] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang. Optimized InfiniBand Fat-Tree

Routing for Shift All-to-All Communication Patterns. Concurrency and Computation:

Practice and Experience, 22(2):217–231, 2010.

[109] F. Zahid, E. G. Gran, B. Bogdanski, B. D. Johnsen, and T. Skeie. A Weighted

Fat-Tree Routing Algorithm for Efficient Load-Balancing in InfiniBand Enterprise

Clusters. In 23rd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, pages 35–42, March 2015.

[110] J. Duato. A Necessary and Sufficient Condition for Deadlock-free Routing in

Cut-through and Store-and-forward Networks. IEEE Transactions on Parallel and

Distributed Systems, 7(8):841–854, August 1996.

[111] B. Zafar, T. M. Pinkston, A. Bermúdez, and J. Duato. Deadlock-Free Dynamic

Reconfiguration Over InfiniBand™ Networks. Parallel Algorithms and Applications,

19(2-3):127–143, 2004.

[112] R. Pang, T. M. Pinkston, and J. Duato. The Double Scheme: Deadlock-free Dynamic

Reconfiguration of Cut-Through Networks. In Proceedings 2000 International

Conference on Parallel Processing, pages 439–448, 2000.

[113] O. Lysne, J. M. Montañana, T. M. Pinkston, J. Duato, T. Skeie, and J. Flich. Simple

Deadlock-Free Dynamic Network Reconfiguration. In High Performance Computing -



168 Bibliography

HiPC 2004: 11th International Conference, pages 504–515. Springer Berlin Heidelberg,

2005.

[114] O. Lysne and J. Duato. Fast Dynamic Reconfiguration in Irregular Networks. In

Proceedings 2000 International Conference on Parallel Processing, pages 449–458,

2000.

[115] F. O. Sem-Jacobsen and O. Lysne. Topology Agnostic Dynamic Quick Reconfiguration

for Large-Scale Interconnection Networks. In 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012), pages 228–235,

May 2012.

[116] A. Robles-Gómez, A. Bermúdez, R. Casado, and Å. G. Solheim. Deadlock-Free

Dynamic Network Reconfiguration Based on Close Up*/Down* Graphs. In Euro-Par

2008 – Parallel Processing: 14th International Euro-Par Conference, pages 940–949.

Springer Berlin Heidelberg, 2008.

[117] A. Bermúdez, R. Casado, F. J. Quiles, and J. Duato. Use of Provisional Routes to

Speed-up Change Assimilation in InfiniBand Networks. In 18th International Parallel

and Distributed Processing Symposium, 2004. Proceedings., pages 186–193, April 2004.

[118] W. L. Guay. Dynamic Reconfiguration in Interconnection Networks. PhD thesis,

Faculty of Mathematics and Natural Sciences, University of Oslo, 2014.

[119] J. Liu, W. Huang, B. Abali, and D. K. Panda. High Performance VMM-Bypass I/O

in Virtual Machines. In Proceedings of the USENIX Annual Technical Conference,

pages 29–42, Berkeley, CA, USA, 2006. USENIX Association.

[120] W. L. Guay, S. Reinemo, B. D. Johnsen, C. Yen, T. Skeie, O. Lysne, and O. Tørud-

bakken. Early experiences with live migration of SR-IOV enabled InfiniBand. Journal

of Parallel and Distributed Computing, 78:39–52, 2015.

[121] F. Zahid, E. G. Gran, B. Bogdański, B. D. Johnsen, and T. Skeie. Partition-Aware

Routing to Improve Network Isolation in InfiniBand Based Multi-tenant Clusters. In

15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

pages 189–198, May 2015.

[122] E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy. Links As a

Service (LaaS): Guaranteed Tenant Isolation in the Shared Cloud. In Proceedings of

the 2016 Symposium on Architectures for Networking and Communications Systems,

ANCS ’16, pages 87–98, New York, NY, USA, 2016. ACM.

[123] A. U. Ranadive. Virtualized Resource Management in High Performance Fabric

Clusters. PhD thesis, Georgia Institute of Technology, 2015.

[124] Reliable Datagram Socket. http://web.archive.org/web/20170515123339/https://www.

kernel.org/doc/Documentation/networking/rds.txt. [Online; accessed 17-May-2017].

http://web.archive.org/web/20170515123339/https://www.kernel.org/doc/Documentation/networking/rds.txt
http://web.archive.org/web/20170515123339/https://www.kernel.org/doc/Documentation/networking/rds.txt


Bibliography 169

[125] OpenFabrics Alliance. Ibnetdiscover Linux Man Page. https://web.archive.org/web/

20160702193939/https://linux.die.net/man/8/ibnetdiscover. [Online; accessed 17-

May-2017].

[126] H. Rosenstock. Scalable Subnet Administration. In 10th Annual OpenFabrics

International Developer Workshop, 2014.

[127] E. Tasoulas, B. D. Johnsen, and E. G. Gran. System and Method for Providing a

Dynamic Cloud with Subnet Administration (SA) Query Caching, October 27, 2015.

US Patent Application 14/924,281.

[128] E. Tasoulas, B. D. Johnsen, and E. G. Gran. System and Method for Providing an

InfiniBand SR-IOV vSwitch Architecture for a High Performance Cloud Computing

Environment, February 23, 2016. US Patent Application 15/050,901.

[129] E. Tasoulas, F. Zahid, B. D. Johnsen, and E. G. Gran. System and Method for

Efficient Virtualization In Lossless Interconnection Networks, May 25 2017. US

Patent App. 15/210,595.

[130] E. Tasoulas, F. Zahid, B. D. Johnsen, and E. G. Gran. System and Method for

Efficient Virtualization In Lossless Interconnection Networks, May 25 2017. US

Patent App. 15/210,599.

[131] Efficient and Robust Architecture for the Big Data Cloud (ERAC) Project.

https://web.archive.org/web/20170510153854/https://www.simula.no/research/

projects/erac-efficient-and-robust-architecture-big-data-cloud. [Online; accessed

17-May-2017].

[132] E. Tasoulas and F. Zahid. ERAC: Efficient and Robust Architecture for the Big Data

Cloud. In K. De Bosschere, editor, ACACES 2014: Poster Abstracts, pages 209–212.

HIPEAC, 2014.

[133] E. Tasoulas, W. L. Guay, S. Reinemo, B. D. Johnsen, C. Yen, T. Skeie, O. Lysne, and

O. Torudbakken. Prototyping Live Migration With SR-IOV Supported InfiniBand

HCAs. HPC Advisory Council Spain Conference, September 2013.

[134] E. Tasoulas. Using High Performance Network Interconnects in Dynamic Environments.

OpenFabrics Alliance (OFA) Workshop, April 2016.

[135] E. Tasoulas, E. G. Gran, B. D. Johnsen, and T. Skeie. A Novel Query Caching Scheme

for Dynamic InfiniBand Subnets. In 15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), pages 199–210, May 2015.

[136] E. Tasoulas, E. G. Gran, B. D. Johnsen, K. Begnum, and T. Skeie. Towards the

InfiniBand SR-IOV vSwitch Architecture. In IEEE International Conference on

Cluster Computing (CLUSTER), 2015, pages 371–380, September 2015.

[137] E. Tasoulas, E. G. Gran, T. Skeie, and B. D. Johnsen. Fast Hybrid Network

Reconfiguration for Large-Scale Lossless Interconnection Networks. In IEEE 15th

https://web.archive.org/web/20160702193939/https://linux.die.net/man/8/ibnetdiscover
https://web.archive.org/web/20160702193939/https://linux.die.net/man/8/ibnetdiscover
https://web.archive.org/web/20170510153854/https://www.simula.no/research/projects/erac-efficient-and-robust-architecture-big-data-cloud
https://web.archive.org/web/20170510153854/https://www.simula.no/research/projects/erac-efficient-and-robust-architecture-big-data-cloud


170 Bibliography

International Symposium on Network Computing and Applications (NCA), pages

101–108, October 2016.

[138] F. Zahid, E. G. Gran, B. Bogdański, B. D. Johnsen, T. Skeie, and E. Tasoulas.

Compact Network Reconfiguration in Fat-trees. The Journal of Supercomputing,

72(12):4438–4467, 2016.


	Introduction
	Motivation
	Research Challenges Addressed in this Thesis
	Research Methods
	Thesis Outline

	Background
	Virtualization
	Live Migration
	Virtualization Overhead
	Input/Output Virtualization

	Cloud Computing
	Infrastructure as a Service and Resource Consolidation

	Lossless Interconnection Networks
	Deadlocks
	Network Topologies
	Routing
	Network Reconfiguration

	InfiniBand
	InfiniBand Addressing Schemes
	Subnet Management
	InfiniBand, SR-IOV, and Live Migrations in the Cloud

	Simulators Used in this Thesis
	Infiniband Fabric Simulator
	Oblivious Routing Congestion Simulator
	Virtual Switch Migration Simulator


	Summary of Research Papers
	Papers
	Patents

	Closing Remarks
	List of Papers
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	List of Acronyms
	Bibliography

