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ABSTRACT. The problem on identification of a limit of an ordinary differential equation
with discontinuous drift that perturbed by a zero-noise is considered in multidimensional
case. This problem is a classical subject of stochastic analysis, see, for example, [6, 29,
11, 20]. However the multidimensional case was poorly investigated. We assume that the
drift coefficient has a jump discontinuity along a hyperplane and is Lipschitz continuous
in the upper and lower half-spaces. It appears that the behavior of the limit process
depends on signs of the normal component of the drift at the upper and lower half-spaces
in a neighborhood of the hyperplane, all cases are considered.
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1. INTRODUCTION

Consider the Cauchy problem

Xt = x+

∫ t

0

b(Xs)ds, t ≥ 0 (1.1)

for x ∈ Rd, where b : Rd −→ Rd is a Borel measurable vector field.
If b satisfies a Lipschitz and linear growth condition, it is well-known that there exists

a global unique solution X· ∈ C([0,∞);Rd) to (1.1).
However, if b is not Lipschitzian, the situation may change dramatically and well-

posedness of (1.1) in the sense of uniqueness or even existence of solutions may fail.
An example of such a function is given by

b(x) = 2sgn(x)
√
|x| (1.2)

for X0 = 0 and dimension d = 1, where the extremal trajectories Xt = +t2,−t2 and the
zero curve Xt = 0, t ≥ 0 are solutions to (1.1) among infinitely other ones.

Another example in the case of a discontinuous vector field is

b(x) = sgn(x) (1.3)

for X0 = 0 with infinitely many solutions, where Xt = +t,−t, t ≥ 0 are extremal
solutions.

If we merely require that the vector field b is continuous, satisfying a growth condition
of the form 〈b(x), x〉 ≤ K(|x|2 +1) then it follows from Peano’s theorem and the theorem
of Arzelà-Ascoli that the set C(x) of solutions X· ∈ C([0,∞);Rd) of (1.1) is non-empty
and compact in C([0,∞);Rd). Moreover, C(x) is connected. See [28].

Here the problem of uniqueness of solutions of (1.1) for an initial distribution µ0 on
Rd , which corresponds to the case, when C(x) is a singleton for x µ0−a.e., can be
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characterized by unique solutions of narrowly mesurable families of probability measures
(µt)t≥0 on C([0,∞);Rd) satisfying the continuity equation

µt(f) = µ0(f) +

∫ t

0

µs(b · Of)ds, t ≥ 0 (1.4)

for all f ∈ C∞c (Rd) (space of smooth functions with compact support). It turns out that
such solutions have the representation µt = πtµ, t ≥ 0 for projections πt and a probability
measure µ on C([0,∞);Rd) called a superposition of solutions of the ODE (1.1). See
[13], [1] and [15] for more information on the concept of superposition of solutions.

Using the concept of renormalized solutions, we mention that for b ∈ W 1,1(Rd) with
div(b) = 0 and initial distributions µ0 with ∂µ0

∂x
∈ L∞(Rd) it can be shown that the

continuity equation has a unique solution (µt)t≥0 in the subclass of solutions for which
∂µt
∂x
∈ L∞(Rd) for all t ≥ 0. See [13], [1] and [2].

On the other hand, the case, when C(x) is not a singleton, gives rise to the natural
question of how an "appropriate" or "meaningful" solution to (1.1) can be selected.

One important method in connection with this selection problem is due to Krylov [21],
who constructed Markov selections, that is families of superposition solutions (µx)x∈Rd
such that

µxt+s =

∫
Rd
µysµ

x
t (dy), t, s ≥ 0, x ∈ Rd

holds for µxt = πtµ
x.

Another crucial approach which we want to employ in this paper is that of zero-noise
selection, that is the selection of a solution X· to (1.1) as a limiting value of solutions
Xε
· of the ODE (1.1) perturbed by a small noise εw(·) given by the stochastic differential

equation (SDE)

Xε
t = x+

∫ t

0

b(Xs)ds+ εw(t) (1.5)

for ε ↘ 0 in the sense of convergence in law, where w(·) is a d-dimensional Wiener
process. The motivation for this selection principle comes from the desire to construct
solutions to (1.1), which are stable under random perturbations.

The first results in this direction, that is when C(x) is not a singleton ("Peano phenom-
enon"), was obtained in the foundational papers of Bafico [5] and Bafico, Baldi [6] in
the case of one-dimensional time-homogeneous vector fields b, where the authors prove
under certain conditions the existence of a unique limiting law on a small time interval
which is concentrated on at most two trajectories. The proof of the latter results relies
on estimates of mean exit times of Xε

· with respect to (small) neighbourhoods of iso-
lated singular points of b by means of solutions of an associated boundary value problem.
We also mention the papers [17], [18], where the authors use large deviation techniques
to study the convergence rate of the laws of Xε

· for a concrete class of one-dimensional
time-homogeneous functions b related to (1.2). In this context it is also worth mentioning
the work of [9], which among other things deals with the study of the small noise problem
(1.5) based on viscosity solutions of (perturbed) backward Kolmogorov equations in the
scalar case. See also the Malliavin calculus approach in [25] and the article [29] based on
local time techniques.
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We also remark that extensions of the paper [6] to the case of zero-noise limits of linear
transport equations associated with the one-dimensional ODE

dXt = 2sgn(Xt) |Xt|γ , γ ∈ (0, 1)

were analyzed in [3], [4]. See also [14], [24] in the case of zero-noise limits of non-linear
PDE’s.

Let us now have a look at the small noise problem (1.5) in the multidimensional case.
In fact the muldimensional problem is scarcely treated in the literature. Here we shall
distinguish between the continuous and discontinuous vector fields:

In the case of bounded and continuous functions b Zhang [31] gives a characteriza-
tion of the limiting values Xε

· of (1.5) by using viscosity solutions of Hamilton-Jacobi-
Bellman equations in connection with so-called exit time functions, which partially ex-
tends results in [6] to the multidimensional setting.

To the best of our knowledge, the case of discontinuous multidimensional vector fields
b has been only examined in the papers of Delarue, Flandoli, Vincenzi [12] and [8]. In the
remarkable work [12] the authors study small noise perturbations of the Vlasov-Poisson
equation by means of estimates of probabilities for exit times in connection with a zero-
noise limit for ODE’s in four dimensions. The paper [8] deals with ODE’s (1.1) for merely
measurable b. However, the concept of solutions to (1.1) in the latter work is in the sense
of Filippov, which we don’t want to consider in this article.

The objective of our paper is the analysis of zero-noise limits in the case of discontin-
uous time-inhomogeneous vector fields b in Rd. More precisely, we aim at considering
vector fields b, whose discontinuity points are located in a hyperplane. Our method for
the construction of zero-noise limits, which is different from the techniques of the above
mentioned authors, is based on estimates of probabilities for exit times of Xε

· at discon-
tinuity points in a hyperplane. We comment that our approach extends the one in [6] to
the multidimensional case. In contrast to [6] our technique does not require knowledge of
the explicit distribution of Xε

· . We in fact show that the behavior of the limiting process
depends on the normal component of the drift at the upper and lower half-spaces in a
neighbourhood of the hyperplane.

2. FRAMEWORK AND FORMULATION OF THE PROBLEM

Consider an ODE
dX(t)

dt
= b(t,X(t)), t ≥ 0, (2.1)

or its integral version

X(t) = x0 +

∫ t

0

b(s,X(s))ds, t ≥ 0, (2.2)

where x0 ∈ Rd.
Assume that

b(t, x) =

{
b+(t, x), xd ≥ 0

b−(t, x), xd < 0
= b+(t, x)1Ixd≥0+b−(t, x)1Ixd<0 = b+(t, x)1Ix∈Rd++b−(t, x)1Ix∈Rd− ,
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where x = (x1, . . . , xd) = (x̄, xd), Rd
+ = Rd−1 × [0,∞), Rd

− = Rd−1 × (−∞, 0], b± are
continuous functions that satisfy a Lipschitz condition in x on Rd.

Denote by H the hyper-plane Rd−1 × {0}.
Since b is Lipschitz continuous in x outside of H, equation (2.2) has a unique solution

up to the moment τH of hitting H ,

τH := inf{t ≥ 0 : X(t) ∈ H}.
However, uniqueness and existence of a solution may fail after the moment τH . It is not
difficult to find examples with no solution to (2.2) or examples with multiple solutions for
t ≥ τH .

Consider an SDE in Rd with a small noise parameter

Xε(t) = xε +

∫ t

0

b(s,Xε(s))ds+ εw(t), t ≥ 0, (2.3)

where {w(t), t ≥ 0, } is a Wiener process, limε→0 x
ε = x0.

In contrast to the case of ODE (2.2), by Veretennikov’s theorem [30] there exists a
unique strong solution to SDE (2.3) even if the function b is just measurable and satisfies
the linear growth condition in x:

∀T > 0 ∃C = C(T ) ∀t ∈ [0, T ] ∀x ∈ Rd |b(t, x)| ≤ C(1 + |x|).
Moreover, the solution is a strong Markov process. Therefore, if the limit limε→0X

ε

exists (in distributions or in any other sense), then it is natural to call this limit a natural
solution to (2.2).

Note that Xε spends zero time at the hyper-plane H := {x ∈ Rd : xd = 0}, so it does
not matter how to define the drift coefficient if xd = 0.

The following observation is useful for further considerations. For any initial condition
x0 ∈ Rd the sequence of distributions of {Xε, ε ∈ (0, 1)} is weakly relatively compact in
C([0,∞);Rd).

For any limit point X of {Xε} as ε → 0+ and for any t0 ≥ 0 the following equality
holds a.s.

X(t) = X(t0) +

∫ t

t0

b(s,X(s))ds, t ∈ [t0, τt0,H ],

where τt0,H = inf{t ≥ t0 : X(t) ∈ H}. Proof see in Appendix. To prove that the
sequence {Xε, ε ∈ (0, 1)} converges in distribution to a process X0 as ε→ 0+, it is suf-
ficient to show that for any sequence {εk}, limk→0 εk = 0 there exists a subsequence {εkl}
such that Xεkl ⇒ X0, l → ∞. Since the family {Xε, ε ∈ (0, 1)} is weakly relatively
compact, without loss of generality we may initially assume that {Xεk} is already con-
vergent. The problem is only to prove convergence to X0 described in the corresponding
theorems.

Equations (2.3) and (2.2) use values of b−(t, x) and b+(t, x), where x lies in the lower
half-space and the upper half-space, respectively. It will be convenient to assume some-
times that b± are defined on the whole Rd.

Denote by {X±(t), t ∈ [0, T ]} and {X±,ε(t), t ∈ [0, T ]} solutions of the integral equa-
tions

X±(t) = x0 +

∫ t

0

b±(s,X(s))ds, t ≥ 0, (2.4)
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X±,ε(t) = xε +

∫ t

0

b+(s,X±,ε(s))ds+ εw(t), t ≥ 0.

Obviously we have the equality X(· ∧ τH) = X+(· ∧ τH) if x0 ∈ Rd
+ and X(· ∧ τH) =

X−(· ∧ τH) if x0 ∈ Rd
−.

Set

τ̄H :=

{
inf{t ≥ 0 : X+

d (t) < 0}, if x0 ∈ Rd
+ \H,

inf{t ≥ 0 : X−d (t) > 0}, if x0 ∈ Rd
− \H,

τ
(ε)
H := inf{t ≥ 0 : Xε(t) ∈ H}.

The following lemma yields that if x0 /∈ H , then we have even the locally uniform con-
vergence Xε → X until the process X hits the hyperplane. Let x0 /∈ H. Then we have
the following convergence with probability 1

Xε(· ∧ τH)→ X(· ∧ τH), ε→ 0,

where Xε, X are considered as random elements with values in the space of continuous
functions C([0,∞),Rd) with the topology of uniform convergence on compact sets.

Moreover, if
τH = τ̄H , (2.5)

then limε→0 τ
(ε)
H = τH , limε→0X

ε(τ
(ε)
H ) = X(τH) and we have convergence

Xε(· ∧ τ (ε)
H )→ X(· ∧ τH), ε→ 0, a.s.

The proof is standard, we postpone it to the appendix and make some comments here.
If τ εH < ∞, then the process X̃ε(t) := Xε(τ εH + t) satisfies an analogue of equation

(2.3)

X̃ε(t) = x̃ε +

∫ t

0

b(s, X̃ε(s))ds+ εw̃(t),

with a new initial data x̃ε := Xε(τ εH) and a new Wiener process w̃(t) := w(τ εH +t), t ≥ 0.
So, in case of (2.5), without loss of generality we may assume from the very beginning
that x0 and xε belong to H. Note that equality (2.5) holds, for example, if

• x0 ∈ Rd
+, τH <∞, and b+

d (τH , X(τH)) < 0
or
• x0 ∈ Rd

−, τH <∞, and b−d (τH , X(τH)) > 0,

If x0 ∈ Rd
+ \H and

∀t ≥ 0 ∀x ∈ H : b+
d (t, x) ≥ 0 (2.6)

then τH = τ̄H = +∞ and therefore Xε → X, ε → 0 a.s. in C([0,∞),Rd). Indeed, by
the Lipschitz condition we have the inequality

∀t ≥ 0 ∀x ∈ Rd : |bd(t, x)| ≥ −L|xd|.
So, |Xd(t)| ≥ |Xd(0)|e−Lt = |x0

d|e−Lt > 0, t ≥ 0, and τH = +∞. Actually, similarly to
the reasoning above it can be proved that if x0 ∈ Rd \H , then X(τH) /∈ D× {0} for any
open set D ⊂ Rd−1 such that for some δ > 0

∀t ∈ [τH − δ, τH ] ∀x̄ ∈ D : b+
d (t, (x̄, 0)) ≥ 0

The problem whether τH = limε→0 τ
ε
H and what is the limit of {Xε} if τH 6= τ̄H is not

trivial. It follows from the above reasoning that τH 6= τ̄H for x0 ∈ Rd
+ may happen only if
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b+
d (τH , X(τH)) = 0 and in any neighborhood of the point (τH , X(τH)) ∈ [0,∞)×H there

is a point (t, x) ∈ [0,∞)×H such that b+
d (t, x) < 0. In some sense the function b+

d should
be degenerate in (τH , X(τH)). Theoretically, there may be a case when x0 ∈ Rd

+ \ H ,
the function X+ only touches H at the instant τH , then goes up and never hits H again.
If ω is such that wd(τH) > 0 then the process Xε will be most likely above H for a
long may be infinite time, limε→0 τ

ε
H = ∞, and Xε → X+ in C([0,∞),Rd) for this ω.

(This is only non-rigorous suggestion!) However, if ω is such that wd(τH) < 0 and the
function b−d is negative in Rd

−, then Xε(τH) may lie in the lower half space and may be
pulled down by the drift b− to the negative half-space. So, the limit for this ω should be
1It≤τHX

+(t) + 1It>τHX
−
τH ,X+(τH)(t), where X−τH ,X+(τH)(t) is a solution to the equation

X−τH ,X+(τH)(t) = X+(τH) +

∫ t

τH

b−(s,X−τH ,X+(τH)(s))ds, t ≥ τH .

A particular example of such situation was considered in [12]. The general theory in
degenerate cases is unstudied yet and is not in the scope of this paper.

Let us briefly describe cases considered in this paper and the corresponding limit pro-
cesses. We assume that starting points x0 and xε lie in H. As it was mentioned above (see
Lemma 2), this does not reduce the generality in the most of situations.

We consider the following four types of behavior of vertical components b±d of the drift
at the hyperplane in a neighborhood of the starting point x0.

Case 1 (repulsion from the hyperplane). Assume that

b+
d (0, x0) > 0 and b−d (0, x0) < 0. (2.7)

Since,the drift is continuous, condition (2.7) means that the drift b points outwardsH in
a neighborhood of (0, x0); so solutions X+ and X−, defined in (2.4), immediately leave
H to the upper and the lower half-space, respectively.

In this case, see Theorem 3 in §3, the limit process with certain probabilities moves as
X± until the moment when the corresponding process (X+ or X−) reaches H again (this
moment is strictly positive). This situation is similar to the one-dimensional case.

Case 2 (attraction to the hyperplane). Assume that

b+
d (0, x0) < 0 and b−d (0, x0) > 0. (2.8)

In this case, the drift b points towards H in a neighborhood of (0, x0). So, if the ODE
(2.1) starts close to the hyperplane H , then it reaches H fast. This observation hints us
that the limit process cannot leave H. Theorem 5 in §5 states that the limit process slides
alongH (in a neighborhood of (0, x0)) according to a certain ODE. This case differs from
the one-dimensional one. In one-dimensional case, the only possibility for the limit is the
process that do not move at all.

We also can treat weaker assumption than (2.8)

b+
d (0, x0) < 0 and ∃T > 0 ∃δ > 0 ∀t ∈ [0, T ], x ∈ H, |x−x0| < δ : b−d (t, x) ≥ 0 (2.9)

or

b−d (0, x0) > 0 and ∃T > 0 ∃δ > 0 ∀t ∈ [0, T ], x ∈ H, |x− x0| < δ : b+
d (t, x) ≤ 0,

(2.10)
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i.e., we allow that one strict inequality in (2.8) at the point (0, x0) is replaced by the
non-strict inequality in a neighborhood of (0, x0).

Case 3 (attraction/repulsion). Assume that either

b+
d (0, x0) > 0 and b−d (0, x0) ≥ 0 (2.11)

or
b+
d (0, x0) ≤ 0 and b−d (0, x0) < 0. (2.12)

In this case, see Theorem 4 in §4, the limit process behaves as X+ or X−, respectively,
until the moment when the corresponding process reaches H again.

Note, that in (2.11) the function b−d may be even negative everywhere except of (0, x0).
Case 4 (critical). Assume that vertical coordinates of the drift equal zero in H in some

neighborhood of (0, x0), i.e., there is T > 0 and δ > 0 such that

b+
d (t, x) = b−d (t, x) = 0 (2.13)

for any t ∈ [0, T ], x ∈ H, |x− x0| < δ.
This case is the most interesting one. The limit process may be random and not Markov.

It satisfies certain SDE (in the neighborhood of (0, x0)), see §6, that may depend on the
vertical component {wd(t), t ≥ 0} of the Wiener process. That is, the limit may depend
on a nontrivial noise, despite the random perturbation εw(t) from (2.3) converges to 0 as
ε→ 0.

All cases 1-4 consider assumptions on the drift at the point (0, x0) or at some neigh-
borhood of (0, x0). That’s why, all results will be formulated as results on convergence
of processes stopped at the instant of exit from this neighborhood. The following state-
ment on localization states that the behavior of the drift outsides a neighborhood of x0

does not have impact on the limit before the exit time from this neighborhood. Let
b̃ : [0,∞)× Rd → Rd be a measurable function that satisfies the linear growth condition
in x:

∀T > 0 ∃C = C(T ) ∀x ∈ Rd |b(t, x)| ≤ C(1 + |x|).
Assume that b(t, x) = b̃(t, x) for all t ∈ [0, T ] and x ∈ D, where D is an open set. Let
{X̃(t), t ≥ 0} be a solution to the SDE

X̃ε(t) = xε +

∫ t

0

b̃(s, X̃ε(s))ds+ εw(t), t ≥ 0,

where xε ∈ D. Define the exit moments

σεD := inf{t ≥ 0 : Xε(t) /∈ D}, σ̃εD := inf{t ≥ 0 : X̃ε(t) /∈ D}.

Then the limits (in any sense) limε→0X
ε(· ∧ σεD ∧ T ) and limε→0 X̃

ε(· ∧ σ̃εD ∧ T ) are
equal if at least one of them exists (in the corresponding sense). The proof follows
from uniqueness of the solution and the fact that if coefficients of equations coincide in a
domain, then solutions coincide until the exit from this domain (if coefficients are locally
Lipschitz, then this is classical result on localization; if coefficients are measurable, then
the result follows from reasoning of Veretennikov’s paper [30]).

When we study the global analogues of cases 1-4, then usually we will have con-
vergence in distribution in C([0,∞),Rd). The following standard result states that un-
der some natural assumptions, convergence in distribution in C([0,∞),Rd) of processes
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yields convergence of processes stopped at exit times from open sets. Let {Yn, n ≥ 0} be
a sequence of continuous Rd-valued stochastic processes, Y n ⇒ Y 0, n→∞ in distribu-
tion (considered as random elements in C([0,∞),Rd)).

Define exit moments

σnD := inf{t ≥ 0 : Y n(t) /∈ D}.

If D ⊂ Rd is an open set such that P (σ0
D = σ0

D
) = 1, where D is the closure of D,

then for any T ∈ [0,∞] we have convergence in distribution of triples

(Y n(σnD∧T ), σnD∧T, Y n(·∧σnD∧T ))⇒ (Y 0(σ0
D∧T ), σ0

D∧T, Y 0(·∧σ0
D∧T )), n→∞.

The proof see in Appendix.
Next statement shows that assumption P (σ0

D = σ0
D

) = 1 is not restrictive, in general.
Let Y be a continuous Rd-valued stochastic process, Y (0) = x0. Then for almost all
r > 0 w.r.t. the Lebesgue measure we have P (σBr(x0) = σB̄r(x0)) = 1, where

Br(x
0) = {x ∈ Rd : |x− x0| < r}, B̄r(x

0) = {x ∈ Rd : |x− x0| ≤ r}.
The proof see in Appendix.

We will apply localization results of Lemmas 2, 2, and reduce all considerations to the
case when the global analogues of cases 1-4 are satisfied.

Indeed, consider, for example, case 1. It follows from (2.7) and continuity of b± that
there is c > 0, δ > 0, and T > 0 such that

b+
d (t, x) ≥ c and b−d (t, x) < −c (2.14)

for any t ∈ [0, T ], |x− x0| < δ.

Let b̃± be any extensions of b± outside of the setD := [0, T ]×{x ∈ Rd : |x−x0| ≥ δ}
such that b̃± are continuous, satisfy Lipschitz condition in x, and

b̃+
d (t, x) ≥ c and b̃−d (t, x) < −c for all t ≥ 0 and x ∈ H.

If we identify the limit limε→0 X̃
ε(·∧ σ̃εD∧T ), then the limit limε→0X

ε(·∧σεD∧T ) will
be the same (we do this in Theorem 3). Moreover, if X̃ε ⇒ X0 and P (σ0

D = σ0
D

)) = 1,
then

Xε(· ∧ σεD ∧ T ) = X̃ε(· ∧ σ̃εD ∧ T )⇒ X0(· ∧ σ0
D ∧ T ).

So, in order to prove convergenceXε(·∧σεD∧T )⇒ X0(·∧σ0
D∧T ), without loss of gener-

ality, we may initially assume that assumption (2.14) is satisfied for all t ∈ [0, T ], x ∈ Rd,
instead of (2.7).

Moreover, it can be shown in case 1 that the limit process X will be not in H at the exit
moment from D with probability 1 if δ is small. The prelimit equation for the solution
after the exit moment has the form similar to (2.3), see the equation in Remark 2. Further
we apply Lemma 2 and obtain the behavior of the limit process until it hits H again, etc.

We don’t know how to identify the limit of {Xε} if the starting point x0 ∈ H is
“critical-repulsive-attractive”, i.e., if, for example, b+

d (0, x0) ≤ 0, b−d (0, x0) = 0 and
any neighborhood of x0 contains x, y ∈ H such that b−d (0, x) > 0 and b−d (0, y) < 0.
However, using Lemmas 2, 2, 2, 2 and Theorems 3, 4, 5, and 6 below, the limit of {Xε}
can be identified until the instant when the limit process reaches such “critical-repulsive-
attractive” point.



ON A SELECTION PROBLEM FOR SMALL NOISE PERTURBATION IN THE MULTIDIMENSIONAL CASE9

3. REPULSIVE CASE

Consider the repulsive case (2.7). Let functions X± be defined in (2.4). They leave H
to the positive half-space or negative half-space, respectively, and

τ±H = inf{t > 0 : X±(t) ∈ H} (3.1)

are strictly greater that 0.
Assume that (2.7) is satisfied. The distribution of Xε(· ∧ τ+

H ∧ τ
−
H ) converges weakly

as ε→ 0 to the measure

p−δX−(·∧τ+H∧τ
−
H ) + p+δX+(·∧τ+H∧τ

−
H ),

where

p± =
±b±d (0, x0)

b+
d (0, x0)− b−d (0, x0)

.

Convergence in Theorem 3 could not be a.s. or be convergence in probability. Indeed,
assume that a sequence {Xε} converges a.s. to a process X−(t)1IΩ− + X+(t)1IΩ+ , where
Ω± are disjoint measurable sets, P (Ω±) = p±. It can be shown that Ω± ∈ F0+, so their
probabilities are either 0 or 1.

Proof. Without loss of generality, see Remark 2, we will assume that

∃c > 0 ∀t ≥ 0 ∀x ∈ Rd \H : sgn(xd)bd(t, x) ≥ c. (3.2)

Let us estimate the time spent by Xε in the neighborhood of H. By Ito-Tanaka formula,
see [27], we have

|Xε
d(t)| =

∫ t

0

sgn(Xε
d(s))bd(s,X

ε(s))ds+ ε

∫ t

0

sgn(Xε
d(s))dwd(s) + Lεd(t) =

=

∫ t

0

sgn(Xε
d(s))bd(s,X

ε(s))ds+ εBε(t) + Lεd(t),

whereBε is a new one-dimensional Brownian motion, Lεd is a non-decreasing, continuous
process, Lεd(0) = 0.

Therefore, the pair (|Xε
d|, Lεd) is a solution of Skorokhod’s reflecting problem for the

driving process ξε(t) =
∫ t

0
sgn(Xε

d(s))bd(s,X
ε(s))ds + εBε(t). Hence, see for example

[26],
|Xε

d(t)| = ξε(t)− min
s∈[0,t]

ξε(s).

Let f, g ∈ C([0,∞)). Assume that the function t → g(t) − f(t) is non-negative and
non-decreasing. Then

g(t)− min
s∈[0,t]

g(s) ≥ f(t)− min
s∈[0,t]

f(s), t ≥ 0. (3.3)

Proof. Let t > 0 be fixed. Assume that the minimum mins∈[0,t] f(s) is attained at a point
s∗ ∈ [0, t]. Then

min
s∈[0,t]

g(s)− min
s∈[0,t]

f(s) = min
s∈[0,t]

g(s)− f(s∗) ≤ g(s∗)− f(s∗) ≤ g(t)− f(t).

This implies (3.3). �
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It follows from Lemma 3 and (3.2) that

|Xε
d(t)| ≥ (ct+ εBε(t))− min

s∈[0,t]
(cs+ εBε(s)).

Denote σεHδ := inf{t ≥ 0 : |Xε
d(t)| ≥ δ}.

Therefore
P (|Xε

d(t)| ≥ δ, t ≥ 2δ/c)→ 1, ε→ 0+, (3.4)

P (σεHδ > 2δ/c)→ 0, ε→ 0 + . (3.5)

Moreover if δ < 1 ∧ c/2M , where M = maxt∈[0,1], |x−x0|≤1 |b̄(t, x)|, then

P (|X̄(σεHδ)− x̄
0| > 2δM/c)→ 0, ε→ 0 + . (3.6)

It follows from (3.4), Lemma 2, and assumption (3.2) that for any limit point X we
have with probability 1:

X(t) = x0 + 1IΩ+

∫ t

0

b+(s,X(s))ds+ 1IΩ−

∫ t

0

b−(s,X(s))ds,

where Ω+ = {ω : X(t) > 0 for all t > 0}, Ω− = {ω : X(t) < 0 for all t > 0}.
Moreover

P (Ω+ ∪ Ω−) = 1, P (Ω−∆{Xd(σHδ) = −δ}) = 0, and P (Ω+∆{Xd(σHδ) = δ}) = 0
(3.7)

for any δ > 0.
Let δ > 0, β > 0 be sufficiently small fixed numbers and α be such that for all t ∈ [0, δ]

and x ∈ Rd, |x− x0| < β :

0 < b+
d (t, x)− α < b+

d (0, x0) < b+
d (t, x) + α,

0 < −b−d (t, x)− α < −b−d (0, x0) < −b−d (t, x) + α.

Define the processes

Xε,±α(t) =

∫ t

0

(
b+
d (0, x0)1IXε,+α(s)≥0 + b−d (0, x0)1IXε,+α(s)<0 ± α

)
ds+ εw(t), t ≥ 0.

By comparison theorem, see [19], we have a.s.

Xε,−α(t) ≤ Xd(t) ≤ Xε,+α(t)

for all t ∈ [0, σεHδ ∧ inf{s : |X̄(s)− x̄0| > β}].
The processes Xε,±α are one-dimensional homogeneous diffusions. So, see [16, 19],

P (Xε,±α
d (σ±αHδ ) = δ) =

(±α− b−d (0, x0))−1(1− e2δε−2(b−d (0,x0)±α))

(±α− b−d (0, x0))−1(1− e2δε−2(b+d (0,x0)±α)) + (±α + b+
d (0, x0))−1(1− e2δε−2(b−d (0,x0)±α))

,

where σ±αHδ := inf{t ≥ 0 : |Xε,±α(t)| ≥ δ}.
This and (3.7) conclude the proof. �
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4. REPULSIVE/ATTRACTIVE CASE

Let x0 ∈ H and (2.11) or (2.12) be satisfied. Then

Xε(· ∧ τ±H )→ X±(· ∧ τ±H ), ε→ 0, a.s.,

where “+” is selected for the case (2.11) and “−” is selected for (2.12), correspondingly;
τ±H is defined in (3.1). If condition (2.12) or (2.11) is satisfied at the point X±(τ±H ) , then
we may define a moment τ 2

± similarly to τ 1
± := τ±H and obtain the similar convergence of

processes {Xε} on [τ 1
±, τ

2
∓], and so on. Note that if (2.11) is satisfied in x0, then (2.11)

cannot be true in X+(τ 1
+).

Proof. Assume that (2.11) is satisfied.
Then for any ᾱ > 0 there are T1 > 0, δ1 > 0 such that

∀t ∈ [0, T1] ∀x, |x− x0| ≤ δ1 : b−d (t, x) ≥ −ᾱ
and there are c > 0, T2 > 0, δ2 > 0 such that

∃c > 0 ∀t ∈ [0, T2] ∀x, |x− x0| ≤ δ2 : b+
d (t, x) ≥ c.

It follows from Lemmas 2, 2, 2, and 2 (see also Remarks 2 and 2) that without loss of
generality we may assume that

∀t ≥ 0 ∀x ∈ Rd : b+
d (t, x) ≥ c

and
∀t ≥ 0 ∀x ∈ Rd : b−d (t, x) ≥ −ᾱ.

Lemma 2 and Remark 2 yield that to prove the Theorem it suffices to verify that any
limit point X of {Xε} as ε→ 0 is such that∫ T

0

1I{Xd(s)≤0}ds = 0 a.s. (4.1)

For any α > 0 set

X̃ε,α
d (t) =

∫ t

0

(
−α1I{X̃ε,α

d (s)<0} + c1I{X̃ε,α
d (s)≥0}

)
ds+ εwd(t).

By comparison theorem, Xε
d(t) ≥ X̃ε,α

d (t), t ≥ 0 a.s. if α > ᾱ.

Let X̃α
d be a limit of {X̃ε,α

d } as ε→ 0. Then by Theorem 3

P (X̃α
d (t) > 0, t > 0) =

c

c+ α
.

Therefore, any limit point X of {Xε} is such that for any α > ᾱ and any δ > 0

P (Xd(t) ≥ δ, t ≥ 2c/δ) ≥ lim sup
ε→0

P (Xε
d(t) ≥ δ, t ≥ 2c/δ)

≥ lim sup
ε→0

P (X̃ε,α
d (t) ≥ δ, t ≥ 2c/δ) ≥

P (X̃α
d (t) ≥ δ, t ≥ 3c/2δ) = P (X̃α

d (t) > 0, t > 0) =
c

c+ α
.

Since ᾱ > 0 and α > ᾱ were arbitrary, we have (4.1). �
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5. ATTRACTIVE CASE

Assume that x0 ∈ H , and one of conditions (2.8), (2.9), (2.10), or (2.13) is satisfied.
Let X0 be any (weak) limit point for {Xε}.

Denote
σδ = σδ(X

0) := inf{t ≥ 0 : |X0(t)− x0| ≥ δ}. (5.1)
Let δ > 0 and T > 0 be such that

b+
d (t, x) ≤ 0, b−d (t, x) ≥ 0

for any t ∈ [0, T ], x ∈ H, |x− x0| < δ.
Then with probability 1 the process X0 cannot leave the hyperplane H before the

moment σδ ∧ T :
P (X0(t) ∈ H, t ∈ [0, σδ ∧ T ]) = 1.

Proof. We prove the lemma if the corresponding global condition (2.8), (2.9), (2.10), or
(2.13) is satisfied. For example, in this case (2.13) is of the form

∀t ≥ 0 ∀x ∈ H : b±d (t, x) = 0.

Assume that Xεk ⇒ X0, k → ∞. By Skorokhod’s theorem on a single probability
space, we may assume that the convergence is a.s.:

∀T > 0 : sup
t∈[0,T ]

|Xεk(t)−X0(t)| → 0, k →∞. (5.2)

Assume that for some ω and t1 we have X0
d(t1) > 0. Denote by t0 ∈ [0, t1] the instant of

the last visit of H by X0, i.e.,

t0 = sup{s ∈ [0, t1] : X0
d(s) = 0}.

Due to (5.2) and the Lebesgue dominated convergence theorem we have

X0
d(t) =

∫ t

t0

b+
d (s,X0(s))ds, t ∈ [t0, t1].

Since X0
d(t0) = 0, X0

d(t) ≥ 0, t ∈ [t0, t1], the Lipschitz condition implies

b+
d (s,X0(s)) ≤ b+

d (s, (X̄0(s), 0)) + LX0
d(s) ≤ LX0

d(s).

Thus

X0
d(t) ≤ L

∫ t

t0

X0
d(s)ds, t ∈ [t0, t1].

The application of Gronwall’s lemma completes the proof. �

Assume that x0 = (x̄0, 0) ∈ H and (2.8) (or (2.9), or (2.10)) is satisfied, functions b±

are continuous in (t, x). Denote

p±(s, x̄) =
±b∓d (s, (x̄, 0))

b−d (s, (x̄, 0))− b+
d (s, (x̄, 0))

.

Let X̄(t) be a solution of the ordinary differential equation in Rd−1
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X̄0(t) = x̄0 +
∫ t

0

(
b̄+(s, (X̄0(s), 0))p+(s, X̄0(s))+

+b̄−(s, (X̄0(s), 0))p−(s, X̄0(s))
)
ds, t ∈ [0, σδ(X

0) ∧ T ]. (5.3)

Then
Xε(· ∧ σδ(X0) ∧ T )

P−→(X̄0(· ∧ σδ(X0) ∧ T ), 0), ε→ 0,

Coefficients of the equation (5.3) are locally bounded and Lipschitz continuous in x̄ in
any neighborhood of (0, x0). Thus there exists a unique solution to (5.3).

Proof. We will only consider the case

∃c > 0 ∀t ≥ 0 ∀x ∈ Rd \H : sgn(xd)bd(t, x) ≤ −c.

Since X0 is non-random, the convergence in distribution is equivalent to the convergence
in probability. Therefore we may prove the convergence in distribution only. Observe that
equation (2.3) can be represented in the form

Xε(t) = x0 +

∫ t

0

b+(s,Xε(s))dlε+(s) +

∫ t

0

b−(s,Xε(s))dlε−(s) + εw(t), (5.4)

where lε±(t) =
∫ t

0
1I±Xε

d(s)>0ds, t ≥ 0, is the time spent by Xε in upper and lower half-
spaces, respectively. Observe that a sequence of processes {lε±}ε>0 is weakly relatively
compact. Let {εk} be any subsequence such that limk→∞ εk = 0 and {(Xεk , lεk± )} is
weakly convergent (see Lemma 2). By Skorokhod’s theorem on a single probability
space, we may assume that for almost all ω convergence (5.2) holds and also for any
T > 0 (see Lemma 5)

sup
t∈[0,T ]

|
∫ t

0

b+
d (s,Xεk(s))dlεk+ (s) +

∫ t

0

b−d (s,Xεk(s))dlεk− (s)| = (5.5)

sup
t∈[0,T ]

|
∫ t

0

bd(s,X
εk(s))ds| = sup

t∈[0,T ]

|Xεk
d (t)| = sup

t∈[0,T ]

|Xεk
d (t)−X0

d(t)| → 0, k →∞.

sup
t∈[0,T ]

|lεk± (t)− l0±(t)| → 0, k →∞, (5.6)

Since lε+(t) + lε−(t) = t, convergence (5.5) implies that

lim
k→∞

sup
t∈[0,T ]

|
∫ t

0

(
b+
d (s,Xεk(s))− b−d (s,Xεk(s))

)
dlεk+ (s) +

∫ t

0

b−d (s,Xεk(s))ds| = 0.

(5.7)
The following result is well known. Assume that {fn}, {gn} ⊂ C([0, T ]) are uniformly
convergent sequences of continuous functions

fn → f0 and gn → g0, n→∞,

and each function gn is non-decreasing.
Then we have the uniform convergence of the integrals

sup
t∈[0,T ]

∣∣∣∣∫ t

0

fn(s)dgn(s)−
∫ t

0

f0(s)dg0(s)

∣∣∣∣→ 0, n→∞.
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It follows from this Lemma, (5.6) and (5.7) that∫ t

0

(
b−d (s,X0(s))− b+

d (s,X0(s))
)
dl0+(s) =

∫ t

0

b−d (s,X0(s))ds

Hence

l0±(t) =

∫ t

0

±b∓d (s, (X̄0(s), 0))

b−d (s, (X̄0(s), 0))− b+
d (s, (X̄0(s), 0))

ds, t ≥ 0.

The application of Lemma 5 to (5.4) completes the proof. �

6. CRITICAL CASE

Consider the critical case (2.13).
Assume that the limits exist

c±(t, x̄) := lim
xd→0±

b±d (t, x)

xd
, t ∈ [0, T ], |x̄− x̄0| < δ.

They equal partial derivatives ∂b±d (t,(x̄,0))

∂xd
if they exist. Since b±d (t, x) = 0, t ∈ [0, T ], |x−

x0| < δ, and Lipschitz in x, functions c± are bounded for t ∈ [0, T ], |x̄ − x̄0| < δ. We
assume that functions c± are extended for all t, x, and c± are measurable and are globally
bounded.

Consider the system{
X̄(t) = x̄0 +

∫ t
0

(
b̄+(s, (X̄(s), 0))1IY (s)≥0 + b̄−(s, (X̄(s), 0))1IY (s)<0

)
ds,

Y (t) =
∫ t

0

(
c+(s, X̄(s))1IY (s)≥0 + c−(s, X̄(s))1IY (s)<0

)
Y (s)ds+ wd(t).

(6.1)

1) There exists a unique weak solution to (6.1) defined up to the moment σδ(X̄) ∧ T,
where σδ(X̄) := inf{t ≥ 0 : |X̄(t)− x̄0| ≥ δ}.

2) (a) There exists a unique strong solution to (6.1) defined up to the moment σδ(X)∧T ,
if the functions c±(s, x) = c±(s) are independent of x.
b) The system (6.1) has a unique maximal solution, if e.g. the functions b

±
(s, (x, 0)), c±(s, x)

belong to C3,3([0, T ]× Rd−1).

Proof. Observe that the function C([0, T ]) 3 F : y → x̄ ∈ C([0, T ]) that is defined by
equation

x̄(t) = x̄0 +

∫ t

0

(
b̄+(s, (x̄(s), 0))1Iy(s)≥0 + b̄−(s, (x̄(s), 0))1Iy(s)<0

)
ds, t ∈ [0, T ],

is a measurable non-anticipative mapping.
Hence, the second equation in (6.1) can be written as

Y (t) =

∫ t

0

a(Y, s)ds+ wd(t),

where

a(y, s) =
(
c+(s, F (y)(s))1Iy(s)≥0 + c−(s, F (y)(s))1Iy(s)<0

)
y(s), s ∈ [0, T ].

This equation has a unique weak solution by the Girsanov theorem, see Chapter VII, §2 in
[23]. The process X̄ is also defined uniquely by the formula X̄(t) = F (Y )(t), t ∈ [0, T ].
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Proof in the case 2a) is obvious because all coefficients are Lipschitz continuous in the
spatial variable.

As for the proof of case 2b), see Theorem 3.2 in [22]. �

Assume that x0 ∈ H , functions c± are continuous in (t, x), and assumption (2.13) is
satisfied.

Then for almost all δ ∈ (0, δ) we have the weak convergence(
X̄ε(· ∧ σδ1(X̄ε) ∧ T ), ε−1Xε

d(· ∧ σδ1(X̄ε) ∧ T )
)
⇒

⇒
(
X̄(· ∧ σδ1(X̄) ∧ T ), Y (· ∧ σδ1(X̄) ∧ T )

)
, ε→ 0,

where (X̄, Y ) is a solution of (6.1).
In particular,

Xε(·∧σδ1(X̄ε)∧T ) =
(
X̄ε(· ∧ σδ1(X̄ε) ∧ T ), Xε

d(· ∧ σδ(X̄ε) ∧ T )
)
⇒
(
X̄(· ∧ σδ1(X̄) ∧ T ), 0

)
.

Moreover, if there exists a strong solution to (6.1), then not only weak convergence
holds but also convergence in probability. Weak uniqueness and strong existence yield
uniqueness of the strong solution, see reasoning of [10].

Proof. Without loss of generality (see Lemmas 2 and 2) we may assume that

∀t ≥ 0 ∀x ∈ H : b±d (t, x) = 0. (6.2)

Set Y ε(t) := Xε
d(t)/ε. Then{

X̄ε(t) = x̄0 +
∫ t

0

(
b̄+(s, (X̄ε(s), εY ε(s)))1IY ε(s)≥0 + b̄−(s, (X̄ε(s), εY ε(s)))1IY ε(s)<0

)
ds+ εw̄(t),

Y ε(t) =
∫ t

0

(
b+d (s,(X̄ε(s),εY ε(s)))

εY ε(s)
1IY ε(s)≥0 +

b−d (s,(X̄ε(s),εY ε(s)))

εY ε(s)
1IY ε(s)<0

)
Y ε(s)ds+ wd(t).∫∞

0
1IY ε(s)=0ds = 0 a.s. It can be readily shown that a family {(X̄ε, Y ε), ε ∈ (0, 1)}

is weakly relatively compact in C([0,∞);Rd). Let {(X̄εn , Y εn)} be a convergent subse-
quence, where limn→∞ εn = 0. By Skorokhod’s theorem on a single probability space,
there is a sequence of copies ( ˜̄Xεn , Ỹ εn , w̃εn)

d
= (X̄εn , Y εn , w) such that

˜̄Xεn(t) = x̄0 +
∫ t

0

(
b̄+(s, ( ˜̄Xεn(s), εnỸ

εn(s)))1IỸ εn (s)≥0+

b̄−(s, ( ˜̄Xεn(s), εnỸ
εn(s)))1IỸ εn (s)<0

)
ds+ εn ˜̄wεn(t),

Ỹ εn(t) =
∫ t

0

(
b+(s,( ˜̄Xεn (s),εnỸ εn (s)))

εnỸ εn (s)
1IỸ εn (s)≥0+

b−(s,( ˜̄Xεn (s),εnỸ εn (s)))

εnỸ εn (s)
1IỸ εn (s)<0

)
Ỹ εn(s)ds+ w̃εnd (t).

and
( ˜̄Xεn , Ỹ εn , w̃εn)→ ( ˜̄X, Ỹ , w̃), n→∞

almost surely.
It follows from (6.2), the Lipschitz condition and the uniform convergence of {Ỹ εn}

that

lim
n→∞

∫ t

0

(b+
d (s, ( ˜̄Xεn(s), εnỸ

εn(s)))

εnỸ εn(s)
1IỸ εn (s)≥0+

b−d (s, ( ˜̄Xεn(s), εnỸ
εn(s)))

εnỸ εn(s)
1IỸ εn (s)<0

)
Ỹ εn(s)ds
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is locally Lipschitz function. Therefore Ỹ is of the form

Ỹ (t) =

∫ t

0

ξ(s)ds+ w̃d(t),

where ξ is locally bounded and ξ(t) is independent of σ-algebra generated by {(w̃d(s)−
w̃d(t)), s ≥ t}. So, P (Ỹ (s) = 0) = 0, for any s > 0, and

1IỸ εn (s)≥0 → 1IỸ (s)≥0 and 1IỸ εn (s)<0 → 1IỸ (s)<0 as n→∞,

almost surely.
It follows from the Lebesgue dominated convergence theorem that the limit process

( ˜̄X, Ỹ ) is a solution of (6.1) with w̃d in place of wd. Since {(X̄εn , Y εn)} was arbitrary
convergent subsequence, the proof of the Theorem follows from the weak uniqueness of
the solution to (6.1).

If there exists a unique strong solution to (6.1), consider then a.s. convergent sequence
of copies of (X̄εn , Y εn , w, X̄, Y ):

( ˜̄Xεn , Ỹ εn , w̃εn , ˆ̄Xεn , Ŷ εn)→ ( ˜̄X, Ỹ , w̃, ˆ̄X, Ŷ ).

It can be seen that the limit processes ( ˜̄X, Ỹ ) and ( ˆ̄X, Ŷ ) satisfy the same equation
with the same Wiener process w̃. It follows from uniqueness of the strong solution that
( ˜̄X, Ỹ ) = ( ˆ̄X, Ŷ ) a.s. So ( ˜̄Xεn , Ỹ εn) − ( ˆ̄Xεn , Ŷ εn) → 0 a.s. Therefore (X̄εn , Y εn) −
(X̄, Y )→ 0 in probability.

�

A limit of Xε may be a non-Markov process in case (2.13). Indeed, assume that
b̄±(t, x) = b̄± = const, b̄+ 6= b̄−, b±d (t, x) = 0, and x0 ∈ H.

It follows from Theorem 6 that

Xε(·)→ (X̄0(·), 0), ε→ 0,

where
X̄0(t) := x0 + b̄+l+(t) + b̄−l−(t),

l±(t) =
∫ t

0
1I±wd(s)>0ds is the time spent by wd(s), s ∈ [0, t], in the positive half-line or

negative half-line, respectively.
The process X̄0(t), t ≥ 0, is not a Markov process.

APPENDIX A.

Proof of Lemma 2. The proof of weak relative compactness follows easily from Theo-
rem 7.3 in [7] because our assumptions yield that the drift b satisfies the linear growth
condition in x:

∀T > 0 ∃C > 0 ∀t ∈ [0, T ] ∀x ∈ Rd : |b(t, x)| ≤ C(1 + |x|).

Let {εk} be such that limk→∞ εk = 0 and {Xεk} converges in distribution to a process X.
Then by Skorokhod’s theorem on a single probability space, there are copies

X̃εk d
= Xεk , X̃

d
= X,
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and Wiener processes {w̃k} such that

X̃εk(t) = X̃εk(0) +

∫ t

0

b+(s, X̃εk(s))ds+ εkw̃
εk(t), t ≥ 0,

∀T > 0 sup
t∈[0,T ]

|X̃εk(t)− X̃(t)| → 0, k →∞, a.s., (A.1)

∀T > 0 sup
t∈[0,T ]

εk|w̃εk(t)| → 0, k →∞, a.s. (A.2)

Let ω be such that (A.1) holds and t0 < t1 be any fixed numbers such that X̃(z) /∈
H, z ∈ [t0, t1]. Let for clarity X̃(z) ∈ Rd

+ \H, z ∈ [t0, t1]. Then X̃εk(z) ∈ Rd
+ \H, z ∈

[t0, t1] for sufficiently large k, and

X̃εk(t) = X̃εk(t0) +

∫ t

t0

b+(s, X̃εk(s))ds+ εkw̃
εk(t), t ∈ [t0, t1].

It follows from (A.1), (A.2) that

X̃(t) = X̃(t0) +

∫ t

t0

b+(s, X̃(s))ds, t ∈ [t0, t1].

This yields

X̃(t) = X̃(t0) +

∫ t

t0

b(s, X̃(s))ds,

for t ∈ [t0, τt0,H) and therefore the equality for all t ∈ [t0, τt0,H ] because all processes in
the equality are continuous.

Lemma 2 is proved. �

Proof of Lemma 2. Assume for clarity that x0 belongs to the upper half-space.
Since b+ is locally bounded and Lipschitz in x, we have the following uniform conver-

gence for any ω and T > 0 :

lim
ε→0

max
t∈[0,T ]

|X+(t)−Xε
+(t)| = 0.

Observe that X(t) = X+(t), t ≤ τH and Xε(t) = Xε
+(t), t ≤ τ

(ε)
H .

For any T < τH the processX(t) = X+(t), t ∈ [0, T ] is separated from the hyperplane.
Thus for sufficiently small ε > 0 the process Xε

+(t), t ∈ [0, T ] is also separated from the
hyperplane. So Xε(t) = Xε

+(t), t ∈ [0, T ] and τ (ε)
H > T for small ε. Hence we have

lim inf
ε→0

τ
(ε)
H ≥ τH , lim

ε→0
(τ

(ε)
H − τH)+ = 0,

and the uniform convergence

lim
ε→0

max
t∈[0,T ]

|X(t)−Xε(t)| = 0.

for any T < τH .
Let now t0 be arbitrary. Then

lim sup
ε→0

max
t∈[0,t0]

|X(t ∧ τH)−Xε(t ∧ τH)| ≤

lim sup
ε→0

1I
τH≤τ

(ε)
H

max
t∈[0,t0∧τH ]

|X(t)−Xε(t)|+ lim sup
ε→0

1I
τH>τ

(ε)
H

max
t∈[0,t0∧τ (ε)H ]

|X(t)−Xε(t)|+
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+ lim sup
ε→0

1I
τH>τ

(ε)
H

∫ τH

τ
(ε)
H

(|b(s,X(s))|+ |b(s,Xε(s))|)ds+ lim sup
ε→0

ε sup
s∈[0,t0]

|w(s)| ≤

2 lim sup
ε→0

max
t∈[0,t0]

|X+(t)−Xε
+(t)|+lim sup

ε→0
1I
τH>τ

(ε)
H

∫ τH

τ
(ε)
H

(|b(s,X(s))|+ |b(s,Xε(s))|)ds =

lim sup
ε→0

1I
τH>τ

(ε)
H

∫ τH

τ
(ε)
H

(|b(s,X(s))|+ |b(s,Xε(s))|)ds ≤

sup
s∈[0,τH ]

(
|b(s,X(s))|+ sup

ε∈(0,1]

|b(s,Xε(s))|

)
lim sup
ε→0

(τ
(ε)
H − τH)+. (A.3)

Since b satisfies the linear growth condition, we have

sup
s∈[0,τH ]

(
|b(s,X(s))|+ sup

ε∈(0,1]

|b(s,Xε(s))|

)
<∞.

So the right hand side of (A.3) equals 0. �

Proof of Lemma 2. By Skorokhod’s theorem on a single probability space, there are copies

Ỹ n d
= Y n, n ≥ 0,

defined on the joint probability space and such that

∀T > 0 sup
t∈[0,T ]

|Ỹ n(t)− Ỹ 0(t)| → 0, n→∞, a.s. (A.4)

Define σ̃0
D, σ̃

0
D

analogously to σ0
D, σ

0
D

but using the process Ỹ 0.
It is easy to see that if ω is such that (A.4) holds and σ̃0

D = σ̃0
D

, then σ̃nD → σ̃0
D. Thus

for any T > 0 and that ω

lim
n→∞

(Ỹ n(σ̃nD ∧ T ), σ̃nD ∧ T, Ỹ n(· ∧ σ̃nD ∧ T )) = (Ỹ 0(σ̃0
D ∧ T ), σ̃0

D ∧ T, Ỹ 0(· ∧ σ̃0
D ∧ T )).

This yields the proof because

(Ỹ n(σ̃nD ∧ T ), σ̃nD ∧ T, Ỹ n(· ∧ σ̃nD ∧ T ))
d
= (Y n(σnD ∧ T ), σnD ∧ T, Y n(· ∧ σnD ∧ T )).

�

Proof of Lemma 2. The inequality σBr(x0) 6= σB̄r(x0) may be true only if |Y (σBr(x0)) −
x0| = r and there exists δ > 0 such that |Y (t)− x0| ≤ r, t ∈ [σBr(x0), σBr(x0) + δ].

For each ω the set of such r is at most countable set. So, by Fubini’s theorem for almost
all r > 0 w.r.t. the Lebesgue measure we have P (σBr(x0) = σB̄r(x0)) = 1. �
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