- 1 Colonisation and diversification in the African 'sky islands': insights from fossil-
- 2 calibrated molecular dating of *Lychnis* L. (Caryophyllaceae)

3

- 4 Abel Gizaw^{1,2,*}, Christian Brochmann¹, Sileshi Nemomissa², Tigist Wondimu^{1,2}, Catherine
- 5 Aloyce Masao^{1,3,4}, Felly Mugizi Tusiime^{1,5}, Ahmed Abdikadir Abdi^{1,6}, Bengt Oxelman⁷,
- 6 Magnus Popp^{1,†}, Dimitar Dimitrov^{1,†}

7

- ¹Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo,
- 9 Norway; ²Department of Plant Biology and Biodiversity Management, College of Natural
- Science, Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethiopia; ³Department of
- Forest Biology, Sokoine University of Agriculture, P.O. Box 3010, Morogoro, Tanzania;
- ⁴Institute of Resource Assessment, University of Dar es Salaam, Box 35097, Dar es Salaam
- ⁵School of Forestry Geographical and Environmental Sciences, Department of Forestry
- 14 Biodiversity and Tourism, Makerere University P.O. Box 7062 Kampala, Uganda; ⁶Botany
- department, National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya;
- ⁷Department of Biology and Environmental Sciences, University of Gothenburg, P.O. Box
- 17 461, 405 30 Gothenburg, Sweden

- 19 Author for correspondence: Abel Gizaw, Tel: +47 48667183
- 20 Email: <u>abegiz3@yahoo.com</u> or <u>s.a.gizaw@nhm.uio.no</u>
- † Shared senior authorship

Total word count (excluding summary, reference and legends):	4913
Summary:	200
Introduction:	1429
Materials and Methods:	1491
Results:	400
Discussion:	1528
Acknowledgements:	65
No. of figures:	3 in black & white
No. of Tables:	5
No. of Supporting Information files:	4 (Fig. 1Sa-Fig. 1Sb;
	all in black & white)

Summary:

- The flora on the isolated high African mountains or 'sky islands' is remarkable for its peculiar adaptations, local endemism and striking biogeographical connections to remote parts of the world. Ages of the afro-alpine lineages and the timing of their radiations have frequently been debated, but remain contentious as there are no available estimates based on explicit models and fossil-calibrated molecular clocks.
- We used the plastid region *mat*K and a *Caryophylloflora paleogenica* fossil to infer the age of the genus *Lychnis*, and constructed a dataset of three plastid (*mat*K, *rps16*, *psbE-petL*) and two nuclear (ITS, *RPB2*) loci for joint estimation of the species tree and divergence time of the afro-alpine representatives.
- The time of divergence of the afro-alpine lineage was placed in the late Miocene-early Pliocene. Only a single speciation event was inferred in the early Pliocene; subsequent speciation took place sporadically from the late Pliocene to the middle Pleistocene.
- We provide further support for a Eurasian origin of afro-alpine flora elements, which have been recruited via dispersals at different time periods: some old as in *Lychnis* and others very recent. We also show that dispersal and diversification within Africa plays an important role in shaping the present afro-alpine plant communities.

Keywords: African mountains, Afro-alpine, diversification, Lychnis, molecular dating

Introduction

46

73

74

75

76

47 Understanding patterns of species diversity, distributions and the processes that govern 48 evolution of distinct regional biota has been a central theme for evolutionary biologists since 49 the times of Darwin and Wallace. Tropical mountain biotas have been recognized as 50 exceptionally diverse (e.g. Mittermeier et al., 2005; Orme et al., 2005; Merckx et al., 2015) 51 and have attracted much attention. Yet the diversity of species assemblies that tropical 52 mountains harbour has been notoriously difficult to explain on the basis of contemporary 53 factors such as climate (e.g. Rahbek & Graves, 2001), indicating the importance of historical 54 processes like lineage diversification and dispersal (e.g. Wiens & Donoghue, 2004; Cadena et 55 56 al., 2011; Dauby et al., 2014; Merckx et al., 2015). The mountains of eastern Africa (i.e. East Africa and Ethiopia) provide an excellent 57 example of a system where the interplay between historical and contemporary processes has 58 produced diverse floras and faunas rich in local endemics (Hedberg, 1969; Mittermeier et al., 59 2005). Based on their geological age and the processes that led to their formation, the eastern 60 61 African mountains can be divided into two remarkably different groups: the young and volcanic East African Rift System (EARS) and the much older and mostly uplifted mountain 62 blocks of the eastern Afromontane Biodiversity Region (also known as the Eastern Arc or the 63 Eastern Arc Mountains; Mittermeier et al., 2005). In the latter, the basal blocks of the 64 mountains are at least 30 Ma old, but likely much older – perhaps more than 100 Ma 65 (Griffiths, 1993). 66 A recent surge of biogeographical and phylogeographical studies have focused on the 67 origins and evolution of the afro-montane flora and fauna (e.g. Kebede et al., 2007; Couvreur 68 et al., 2008; Tolley et al., 2011; Dimitrov et al., 2012; Ceccarelli et al., 2014; Loader et al., 69 2014) and have underlined the importance of long-term climatic stability for the generation 70 and maintenance of species diversity (Lovett et al., 1988; Fjeldså & Lovett, 1997). As a 71 72

result, clades that have diversified in this region are often old and have their closest relatives in the African lowland tropical forests (e.g. Couvreur et al., 2008). In sharp contrast, the higher elevations of the EARS mountains are home to a much younger afro-alpine habitat and it has been suggested that several of its local plant lineages have immigrated from Eurasia via the Arabian Peninsula (Koch et al., 2006; Assefa et al., 2007; Ehrich et al., 2007; Popp et al.,

2008; Gehrke & Linder, 2009). The actual time of colonisation of these mountains is however poorly understood and remains contentious.

77

78

107

108

109

79 The EARS is a prominent geological feature, extending from Syria in the north through East Africa to Mozambique in the south. Its formation began around 45 Ma and 80 divided the region into the western and eastern Rift branches (Fig. 1; Ebinger et al., 2000; 81 Trauth et al., 2005). Associated volcanism resulted in the formation of extensive mountain 82 systems in the Ethiopian highlands and scattered high mountains in East Africa, whose origins 83 range from the Miocene to the late Pliocene (Griffiths, 1993). The mountains are famous for 84 85 their unique ecosystem with distinct altitudinal zonation of the vegetation: the uppermost afro-alpine zone proper, the ericaceous transition zone, and the subalpine montane forest zone 86 87 (Hedberg, 1951). Some 77% of the vascular plant species of the afro-alpine zone are recognized as local or regional endemics (Hedberg, 1961; Hedberg, 1969; Gehrke & Linder, 88 89 2014), with a large proportion having their closest relatives in other temperate areas rather 90 than in the adjacent tropical lowlands (Hedberg, 1965; Hedberg, 1970). This led Hedberg 91 (1961) to state that "[the afro-alpine flora] seems to have existed in tropical East Africa before 92 the formation of the mountains [Miocene – late Pleistocene] now harbouring it, and to have been strongly isolated from other high-mountain (or temperate) floras for a long time". On the 93 contrary, others have suggested that at least parts of the flora are rather young (Koch et al., 94 2006; Assefa et al., 2007; Ehrich et al., 2007; Gehrke & Linder, 2014; Linder, 2014) and that 95 the colonisation and current distribution of the mountain flora were mainly shaped by the 96 climatic oscillations of the Plio-Pleistocene period (e.g. Livingstone, 1962; Hamilton, 1982; 97 Mohammed & Bonnefille, 1998; Trauth et al., 2005). This view was also adopted in a recent 98 study of the evolution of African plant diversity, where the afro-alpine flora was suggested to 99 represent the youngest of all the African floras (Linder, 2014). However, only one study has 100 so far addressed the time of colonisation of the alpine zones of the EARS by plants. Koch et 101 102 al. (2006) used synonymous mutation rates and sequence distances calculated from the chloroplast gene matK and the nuclear adh and chs genes to infer a Pleistocene origin of the 103 104 afro-alpine populations of the arctic-alpine plant Arabis alpina (Brassicaceae). The use of fixed rates and sequence distances is, however, not optimal for molecular dating as it assumes 105 106 a strict clock with no rate heterogeneity.

Here we provide the first results based on explicit fossil-calibrated molecular clocks to estimate the time of the origin and colonisation of the afro-alpine habitat by plants. We selected the afro-alpine representatives of *Lychnis* L. (Caryophyllaceae), which are distributed

Tanzania, Uganda, Rwanda, Burundi, the Democratic Republic of Congo) and West Africa 111 (Cameroon, Nigeria). The genus Lychnis comprises some 30 species occurring mostly in 112 temperate areas of the northern hemisphere (Oxelman et al., 2000). In previous works the six 113 afro-alpine species of the genus (= *Uebelinia* Hochst.) have been referred to as afro-montane 114 rather than afro-alpine (e.g. Popp et al., 2008) because they are sometimes found at lower 115 altitudes (occasionally down to 1500 m; Ousted, 1985). Traditionally, the afro-montane 116 concept has been used as a loose framework applied to most African mountains south of 117 118 Sahara (Carbutt & Edwards, 2015). Occurrence restricted to areas above the tree line or above 119 specific elevations provides an objective criterion to classify plants into montane or alpine 120 species (e.g. Linder, 2014; Carbutt & Edwards, 2015). However, its strict application may lead to biased assessments as, for variety of reasons, tropical alpine plants commonly occur at 121 122 lower elevations (Hedberg, 1957; Rundel et al., 1994; Leuschner, 1996 and references therein). Here we apply a less restrictive definition of afro-alpine plants to include species that 123 124 may occasionally occur at lower elevations (and thus, often referred to as afro-montane) but have their main occurrences at elevations above 2700 m and are adapted to night frost. In 125 Lychnis, all afro-alpine species occur above 2700 m and only few are also found at lower 126 altitudes (Table 1). These lower-altitude plants are typically found as weeds in fields, along 127 roads, and in other disturbed habitats. With the exception of the Moroccan endemic L. 128 lagrangei, we therefore consider the rest of African Lychnis to fit best in the afro-alpine 129 130 category. In our recent biogeographical study, we found support for a single Eurasian origin of 131 the afro-alpine Lychnis, which formed a monophyletic group and inferred to be sister to the 132 Eurasian L. flos-cuculi (Popp et al., 2008). The only other African representative of the genus, 133 134 the Moroccan L. lagrangei, thus seems to have immigrated independently to Africa. The afroalpine Lychnis comprised two distinct lineages: one diploid lineage consisting of L. 135 rotundifolia, L. scottii, L. abyssinica and L. kigesiensis, and one tetraploid lineage consisting 136 137 of L. crassifolia and L. kiwuensis (Popp et al., 2008). Because of its single origin and wide distribution in the East African mountains, the afro-alpine Lychnis is an excellent system to 138 139 study the tempo and mode of afro-alpine habitat colonisation. In addition, the occurrence of Lychnis in Eurasia and Africa provides a broader context that allows us to investigate afro-140 alpine links to other regional floras. In the current study, we first used a fossil-calibrated 141 relaxed molecular clock for the plastid matK gene to infer the age of the genus Lychnis. Then 142

in the Ethiopian highlands and in the high mountains of East/Central Africa (Kenya,

we used this estimated age for joint estimation of the species tree and divergence time of the afro-alpine *Lychnis* based on sequences from three plastid (*mat*K, *rps16*, and *psbE-petL*) and two nuclear (ITS and *RPB2*) DNA regions. We used our dated phylogeny to address the following questions: (1) When did *Lychnis* colonise the afro-alpine habitat? (2) When did subsequent speciation events within the afro-alpine region occur? (3) Which factors may have contributed to speciation and diversification within afro-alpine *Lychnis*? (4) Can the colonisation and diversification events be correlated to past climatic and/or geological events? Answering these questions is central to our quest for better understanding of the origins and evolution of afro-alpine diversity in general and of *Lychnis* in particular.

153

Materials and Methods

	_	_
1	ь	ц
1	J	_

156

154

Plant materials and DNA extraction

157	Leaf tissue of afro-alpine Lychnis was collected in Ethiopia, Kenya, Uganda, Tanzania, and
158	Cameroon in 2004-2009 (Table 1) and dried in silica gel. Voucher specimens were deposited
159	in the National Herbarium of Ethiopia, Addis Ababa University, Ethiopia (ETH); with
160	duplicate sets in the Natural History Museum, University of Oslo, Norway (O; full duplicate
161	set of the 2007-2009 collections); the East African Herbarium, National Museum of Kenya,
162	Kenya (EA; Kenyan collections); Sokoine University of Agriculture, Tanzania (SUA;
163	Tanzanian collections); and Makerere University Herbarium, Uganda (MU; Ugandan
164	collections). In addition, herbarium material of the Moroccan L. lagrangei and the Eurasian L
165	subintegra and silica-dried leaf samples of the Eurasian L. flos-cuculi were used. Lychnis
166	abyssinica consists of two morphologically indistinguishable lineages with significantly
167	different genome sizes (Popp et al., 2008). We sampled large genome size (LGS) L.
168	abyssinica, which is a putative hybrid (Popp et al., 2008), from its currently known
169	geographical range in the Ethiopian highlands (Fig.1b) and small genome size (SGS) L .
170	abyssinica from across its Ethiopian range as well as from its strikingly disjunct area in West
171	Africa (Bamenda, North-west Cameroon). Although we included samples of L. abyssinica for
172	both genome size variants from most of its range, we were not able to obtain collections from
173	its small East African range (Fig. 1). Samples of the narrow East African endemics were
174	collected in Mt Kilimanjaro (L. rotundifolia), Mt. Aberdare/Cherangani Hills (L. crassifolia),
175	and the Echuya Forest, Kanaba Swamp in Uganda (L. kigesiensis subsp. kigesiensis). We also
176	obtained representative samples of the narrow Ethiopian endemics L. kiwuensis subsp.
177	erlangeriana, L. kigesiensis subsp. ragazziana, and L. scottii. The widespread L. kiwuensis
178	subsp. kiwuensis was sampled from its disjunct areas in the Ethiopian highlands and from Mts
179	Muhavura and Mgahinga in Uganda (Fig. 1).
180	Total genomic DNA was extracted from leaf material using an automated GeneMole®
181	robot (Qiagen Nordic, Oslo, Norway) or DNeasy TM Plant Mini Kit (Qiagen, Valencia, CA).
182	Leaf tissue was ground with two tungsten carbide beads for 2 min at 15 Hz in a mixer mill
183	(MM301, Retsch GmbH & Co., Haan, Germany).

1	8	1
-		•

Polymerase Ch	ain Reaction	(PCR)	and DNA	sequencing

Amplification and DNA sequencing protocols as described in Popp *et al.* (2008) were used to generate sequences for two non-coding plastid DNA regions, the *rps16* intron and the *psbE-petL* interspacer. Approximately 1.5 kb of the plastid *mat*K region was amplified and sequenced in three overlapping fragments using primer pairs matK-F2b/matK-547.rc, matK-526/matK-R2, and matK-1066/matK-1463.rc (Mower *et al.*, 2007; Sloan *et al.*, 2009) using Ready-To-GoTM PCR Beads (Amersham Pharmacia Biotech, UK), 0.5 μL of each 10 μM forward and reverse primers, and 1 μL genomic DNA of 100 ng/μL concentration. The PCR products were purified using 2 μL Exosap-IT (USB Corp., Cleveland, OH, USA), diluted 1:10 for 5 μL PCR products, and incubated for 45 min at 37 °C and for 15 min at 80 °C.

Sequencing was performed using the PCR primers and BigDye Terminator v 1.1 Cycle Sequencing Kit (Applied BiosystemsTM, Foster City, CA, USA) according to the manufacturer's manual (except for using 10 μL reaction volumes) and visualized with an ABI 3100 capillary sequencer (Applied Biosystems). The sequencing program consisted of denaturing at 96°C for 1 min followed by 25-35 cycles of 96°C 10 sec, 50°C 5 sec, and 60°C 4 min, ending with extension at 60°C for 10 min.

The sequences were edited using CodonCode aligner v3.5.7 (CodonCode Corporation, Dedham, MA, USA), translated into amino acids for visual inspection, and manually aligned using MEGA v. 4 (Tamura *et al.*, 2007). Substitution model selection was done in MrAIC v. 1.4.4 (Nylander, 2004) in conjunction with PhyML v. 3.0 (Guindon & Gascuel, 2003) using the Akaike Information Criterion. The phylogenetic analyses and dating were performed in two steps. The first analysis was carried out to obtain an estimate of the age for the entire genus *Lychnis* using *mat*K DNA sequences representing the subfamilies Alsinoideae and Caryophylloideae and a single fossil to calibrate the inferred phylogeny. The inferred age of the genus *Lychnis* from the *mat*K phylogeny was then used as a secondary calibration point in a subsequent analysis including all available afro-alpine *Lychnis* sequences.

Phylogenetic analyses and dating of the *mat*K phylogeny

A total of 33 *mat*K sequences representing Alsinoideae and Caryophylloideae as well as one sequence of *Polycarpon tetraphyllum* from the subfamily Paronychioideae (for outgroup rooting) were downloaded from GenBank (Table 2). The resulting dataset consisted of 46

sequences, including 13 additional *mat*K sequences of afro-alpine *Lychnis*, the Moroccan *L. lagrangei*, and the Eurasian *L. flos-cuculi* and *L. subintegra* generated in this study. The input files for Bayesian Evolutionary Analysis Sampling Trees (BEAST) were prepared using BEAUti v. 1.6.1 (Drummond & Rambaut, 2007; Heled & Drummond, 2010).

Monophyly was enforced for the Caryophylloideae and Alsinoideae sequences to ensure the tree was rooted with *Polycarpon tetraphyllum* from the subfamily Paronychioideae (Bittrich, 1993; Fior *et al.*, 2006). A fossil inflorescence of *Caryophylloflora paleogenica* (Caryophyllaceae), inferred as sister to either one or both of the subfamilies Alsinoideae and Caryophylloideae (Jordan & Macphail, 2003), was used to calibrate the tree. The inferred fossil age is Middle to Late Eocene, which corresponds to an age of 48.6-33.9 Ma (http://www.paleodb.org). A lognormal prior distribution with log mean = 0.0, standard deviation = 1.37 and offset of 33.9 Myr was assigned to the Alsinoideae/Caryophylloideae crown node (Fig. 2). This approximates a 95% probability distribution spanning the inferred minimum and maximum age of the fossil with a fixed minimum age as suggested by (Ho & Phillips, 2009).

Initial analyses using a relaxed molecular clock in BEAST v. 1.6.1 with uncorrelated lognormal distributed substitution rates for each branch showed that the posterior distribution of the standard deviation of the clock rate variation did not include 0, and thus a strict molecular clock could be rejected (Drummond *et al.*, 2007). All subsequent *matK* analyses were consequently modelled using a relaxed molecular clock. All other prior distributions used the defaults in BEAUti v. 1.6.1. The final analysis included four independent Markov Chains Monte Carlo (MCMC) simulations run for 10 million generations with tree and parameter values sampled every 1000 generations. To test the influence of the priors on the posterior estimates, one additional chain was run for 10 million generations without data, sampling only the priors. Chain convergence was confirmed by inspection of the MCMC samples from each run using Tracer v.1.5, and joint estimates were produced using LogCombiner v. 1.6.1 (Drummond & Rambaut, 2007).

Phylogenetic dating and inference of the species tree

A species tree and divergence times for the afro-alpine *Lychnis* and the closely related *L. lagrangei*, *L. flos-cuculi*, *L. flos-jovis* and *L. coronaria* were co-estimated using the *mat*K, *rps16*, and *psbE-petL* sequences from this study and the nuclear ITS and *RPB2*sequences

generated using the same samples by Popp *et al.* (2008) in *BEAST (Heled & Drummond, 2010). A total of 224 sequences were analysed (Table 3). Substitution models, clock models and tree models were unlinked among datasets, except for the *rps16* and *psbE-petL* tree models, which were linked as these regions are inherited as a single linkage block. Although this is also true for *mat*K, the tree model for this region was unlinked from the *rps16* and *psbE-petL* models, because we were unable to produce *mat*K sequences for all taxa (Tables 1, 2).

The posterior age estimate for the *Lychnis* crown group obtained from the fossil-calibrated *mat*K BEAST analysis was used as prior age in the *BEAST species tree analysis. The XML input file was manually edited to include a prior for the species tree root age following a normal distribution approximating the posterior estimate of the age of *Lychnis* from the *mat*K analysis. Preliminary *BEAST analyses were run to test how well the datasets fit a strict molecular clock as described for the *mat*K analysis above. Strict clocks could not be rejected for ITS and *rps16*; the remaining datasets were analysed using uncorrelated lognormal clocks.

The final *BEAST analysis was performed using constant population size coalescent models for each species with an autosomal nuclear ploidy type set for ITS and *RPB2* and a mitochondrial type for the linked *rps16* and *psbE-petL* as well as for *mat*K. The species were linked with a Yule tree prior. Seven independent analyses were run for 150 million generations and trees and parameter values were sampled every 15,000th generations. To test the influences of the prior on the posterior estimate, two additional chains were run for 300 million generations without data, sampling only the prior. Convergence of the chain to stationary distributions was confirmed by inspection of the MCMC samples in each analysis using the program Tracer 1.5 (Rambaut & Drummond, 2007) and joint estimates were produced using LogCombiner v. 1.6.1 (Rambaut & Drummond, 2007). To avoid violating the assumption of non-reticulate evolution in *BEAST, we included plastid data only for the LGS *L. abyssinica*, which together with *L. scottii* was inferred as a sister group to *L. kigesiensis* and the SGS *L. abyssinica* (cf. Fig. 3).

277 Results

Detailed information on each DNA region including the number of characters and terminals is presented in Table 3.

Dating and phylogenetic inference based on matK

GTR+G was selected as the best-fitting model for the *mat*K dataset including the additional Alsinoideae, Caryophylloideae and Paronychioideae representatives. Inspection of the MCMCs upon completion of the BEAST analyses showed that all individual runs had converged and the effective sample size (ESS) was >200 for all parameters (>>1000 in most cases). The maximum clade credibility tree with estimated node ages based on the combined result from all runs is presented in Figure 2. The time to the most common ancestor (tMRCA) of the genus *Lychnis* was estimated to 8.0 Ma (95% HPD 5.5-10.7; node B in Fig. 2). The model analysed without data returned the prior distributions and we therefore conclude that the model is dominated by the data.

Multigene Lychnis species tree and molecular dating

GTR+G was again the best fitting model for *mat*K (including only *Lychnis* taxa), aK3Puf+G for *rps16*, aK3Puf+I for *psbE-petL*, SYM+G for ITS, and HKY+G for *RPB2*. The results from preliminary *BEAST analyses suggested strict clock models for the ITS, *rps16* and *mat*K regions. Uncorrelated relaxed lognormal clocks were used for the *RPB2* and *psbE-petL* regions. Inspection of the *BEAST MCMCs showed convergence of model parameters in all individual analyses with ESS's >200 for all parameters (>>1000 for most of them). Likewise, the model analysed without data resulted the prior distributions indicating the model being dominated by the data.

The species tree supported the monophyly of the afro-alpine *Lychnis* including two well-supported clades: one diploid (*L. abyssinica*, *L. kigesiensis*, *L. scottii*, and *L. rotundifolia*) and one polyploid (*L. crassifolia* and *L. kiwuensis*) as in Popp *et al.* (2008). The analysis recovered two distantly related plastid lineages in *L. abyssinica* (Fig. 3, Suppl. Fig. 1a-d). The Moroccan *L. lagrangei* and the Eurasian *L. flos-cuculi* formed a sister group to the afro-alpine clade. The tMRCA of the afro-alpine *Lychnis* and its sister lineage was estimated to 5.1 Ma (95% HPD 3.0–7.4; node A in Fig. 3 and Table 4). The tMRCA for the afro-alpine

Lychnis was estimated to 4.1 Ma (95% HPD 2.3–5.9; node B in Fig. 3 and Table 4). The tMRCAs for the diploid and polyploid afro-alpine lineages were estimated to 2.5 Ma (95% HPD 1.5-3.7; node C) and 1.4 Ma (95% HPD 0.6–2.2; node D), respectively.

Discussion

Origin and diversification of the afro-alpine *Lychnis*

The multilocus species tree presented here (Fig. 3) largely corroborates the single and concatenated gene tree analyses of Popp et al. (2008), including the rejection of a direct sistergroup relationship between the afro-alpine Lychnis and the only other African species of Lychnis, the Moroccan endemic L. lagrangei. We have thus corroborated the hypothesis of two independent colonisations of Africa by Lychnis (Popp et al., 2008). However, the inferred position of L. lagrangei differs between the present study and that of Popp et al. (2008). The concatenated analysis of Popp et al. (2008) resolved the Eurasian L. flos-cuculi as immediate sister to the afro-alpine Lychnis, with L. lagrangei as sister to this group, while in our results L. lagrangei and L. flos-cuculi form a clade that is the sister to the afro-alpine lineage. We consider the latter result to be more reliable because it is based on a larger dataset, both in number of specimens and loci. In the current study, we increased the sample size with the inclusion of two additional samples of L. lagrangei from herbarium specimens collected in Morocco (Table 1). In addition, phylogenetic analysis of concatenated sequence data may be misleading, in particular if the internal branches are short (Kubatko & Degnan, 2007). Popp et al. (2008) used maximum parsimony to analyse a concatenated dataset of both plastid and nuclear DNA regions, whereas the present study uses a coalescent-based approach that may be more robust to incomplete lineage sorting. Both hypotheses, however, reject a single colonisation of Africa.

Our molecular dating analysis resulted in an estimated mean age for the stem of the afro-alpine *Lychnis* of 5.1 Ma (95% HPD 3.05-7.41 Ma; node A/B, Fig. 3 and Table 4), suggesting a late Miocene – early Pliocene origin, coinciding with a period of increased aridity in East Africa 6-7 Myr (Cerling *et al.*, 1993; Cerling *et al.*, 1997). Aridification happened again in the late Pliocene around 3 Ma (Bobe, 2006). With minor variations, warm climate has been predominant during the last 5 Myr (Wara, 2005) and several studies have shown that trees and shrubs dominated East African plant communities during this period (e.g. Corlett, 2014). These climatic conditions also had an effect on the EARS, where warm and humid climate towards the end of the Miocene has been inferred based on the paucity of

grass pollen in the Northwestern Ethiopian highlands, Gonder (Yemane et al., 1985). Evidence from the Turkana Basin of Kenya indicates that there was a humid closed rainforest environment at about 4 Ma (Bonnefille, 1995; Bobe, 2006). The rainforest expanded in eastern Africa (Williamson, 1985; Pickford et al., 2004) and lasted until the late Pliocene (about 3.4 Ma) in the Ethiopian highlands (Woldegabriel et al., 1994; Bonnefille, 1995). Such a warm and moist climate might have promoted the expansion of forest in the region and provided more favourable conditions for dispersal over the north and central African plains by reducing the extent of deserts acting as biogeographical barriers for many plants. During this period, most of the eastern African mountains that today are high enough to sustain alpine habitats started to rise (Wichura et al., 2010). Most of the 95% HPD of the estimated time of origin and initial diversification of the afro-alpine Lychnis corresponds to this warm and moist period. It is, therefore, possible that the ancestor of the afro-alpine Lychnis dispersed from Eurasia to eastern Africa and diversified into two lineages at the time when the first high mountains started to rise. The capability of some Lychnis species (Table 1) to establish at lower elevation (as low as 1500 m under current conditions) shows that they can tolerate a wide range of climatic conditions. Such environmental flexibility may have also played an important role for the early establishment of these plants in the EARS mountains.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

Interspecific divergence within each of the two main afro-alpine lineages of Lychnis commenced around 2.5 Ma (95% HPD 1.5-3.7 Ma, diploids) and 1.4 Ma (95% HPD 0.6-2.2 Ma, polyploids). These time estimates roughly fit with renowned periods of aridification in East Africa peaking at 2.8, 1.7, and 1.0 Ma (Cane & Molnar, 2001; deMenocal, 2004; Bobe, 2006; Sepulchre et al., 2006). Thus, habitat fragmentation triggered by aridification and subsequent allopatric speciation in widely distributed ancestors may explain the diversification pattern in both diploids and tetraploids. However, the 95% HPD divergence time estimates of both lineages span beyond these arid intervals and overlaps with periods known to have been more humid. Such more humid interglacial periods in Africa occurred about 2.7-2.5, 1.9-1.7 and 1.1-0.9 Ma (Trauth et al., 2005). The uncertainty in time estimates does not allow us to distinguish between the two alternatives hypotheses of diversification during arid periods or diversification under humid periods. The distributions of divergence times inferred from our analyses indicate that early Pliocene diversification may be as likely as middle Pleistocene diversification and suggest that speciation within the afro-alpine Lychnis may not be triggered solely by the climatic oscillations of the Plio-Pleistocene. The rise of high mountains that provide suitable alpine habitats and conditions promoting dispersal may have been one of the main drivers of diversification and range dynamics in African *Lychnis*. Our previous results (Popp *et al.*, 2008) also favoured multiple dispersal hypotheses including long-distance dispersal to West Africa.

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

377

378

379

Origins and evolution of the afro-alpine flora - the Lychnis perspective

The results presented here are consistent with Mercks's et al., (2015) findings that underline the importance of dispersal of lineages pre-adapted to alpine conditions and local speciation in the process of generation of alpine species communities on isolated tropical mountains. Our findings also corroborate at large Linder's (2014) suggestion that the afro-alpine flora is among the youngest in Africa and contains a large number of taxa with Eurasian ancestry. However, we found strong support for late Miocene-early Pliocene arrival and diversification of Lychnis, challenging the idea that, as a whole, the afro-alpine flora is a product of recent colonisation events and the climatic oscillations of the Plio-Pleistocene period (Livingstone, 1962; Hamilton, 1982; Mohammed & Bonnefille, 1998; Gottelli et al., 2004; Koch et al., 2006). We show that at least some alpine plants, such as Lychnis, may have colonised eastern Africa as soon as the first alpine habitats were formed, or even some time before that. Widespread species that are capable of surviving under a wide range of conditions, such as present-day L. kiwuensis (found from 3100 to 1800 m), may have established in EARS first and then diversified in the region as soon as the alpine habitat expanded with the formation of higher mountains. The age inferred for the stem of the clade including L. kiwuensis in our phylogeny is consistent with such a hypothesis (see also Popp et al., 2008). Patterns similar to those reported here have recently been described for the endemic eastern African species of Canarina (Mairal et al., 2015). Although Canarina belongs to the montane forest zone, not the alpine zone, it has been hypothesized that it has migrated into eastern Africa along routes similar to those suggested for *Lychnis*. This finding provides further evidence for pre-Pleistocene colonisations of eastern Africa from Eurasia. Pre-Pleistocene origins have also been suggested for several East African plant genera such as Isolona and Monodora (Couvreur et al., 2008) and Saintpaulia (Dimitrov et al., 2012). However, the latter have their origins in Africa and much of the afro-montane area that they currently occupy (e.g., the Eastern Arc Mountains) has been under direct climatic influence from the Indian Ocean and has remained stable despite the climatic oscillations of Pleistocene (Fjeldså & Lovett, 1997; Hewitt, 2000). Because the distribution of the afro-alpine Lychnis in

eastern Africa has some overlap with these stable areas, their importance in the process of speciation in *Lychnis* cannot be ruled out and needs to be further investigated.

Our results provide further support for a Eurasian origin of at least parts of the afroalpine flora and suggest that such elements were recruited at different times. Arabis alpina seems to have dispersed twice to eastern Africa during the Pleistocene, the second time very recently (Koch et al., 2006), although this has so far not been corroborated using fossilcalibrated molecular data. Here we show that dispersals to eastern African mountains from Eurasia have also happened during the time periods preceding the Pleistocene. Our results also corroborate the importance of dispersals and diversification within Africa in shaping the present afro-alpine plant communities, where local diversification in several genera has resulted in high numbers of afro-alpine endemics (e.g. Gehrke & Linder, 2009). As a result, although less diverse than the afro-montane flora of the Eastern Afromontane Biodiversity Region, the contemporary afro-alpine flora is unique in its origins and species composition. In addition, afro-alpine plants are adapted to cope with harsh environmental conditions and often have specialised life forms. Some features of these life forms (e.g. giant rosettes, large tussocks, densely pubescent leaves) apparently evolved multiple times in plants established at high altitudes on different tropical mountains (Hedberg, 1964). The combination of unique life form traits, unique evolutionary history and high degree of endemism underlines the importance of the afro-alpine habitat as a reservoir of unique yet fragile diversity.

428 429

430

431

432

433

434

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

Acknowledgments

The study was funded by The Norwegian Programme for Development, Research and Higher Education (NUFU; project 2007/1058 to S. Nemomissa and C. Brochmann, entitled 'AFROALP-II - Afro-alpine 'sky islands': genetic versus taxonomic biodiversity, climate change, and conservation'). Birgit Frosch, Universität Freiburg, Germany, is gratefully thanked for providing material of *Lychnis lagrangei* and Peter Linder for his valuable comments on an earlier version of the manuscript.

435 436

438	References
439	
440	Assefa A, Ehrich D, Taberlet P, Nemomissa S, Brochmann C. 2007. Pleistocene
441	colonization of afro-alpine 'sky islands' by the arctic-alpine Arabis alpina. Heredity
442	99 : 133-142.
443	Bittrich V. 1993. Caryophyllaceae. In: Kubitzki K, Rohwer I, Bittrich V eds. The Families
444	and Genera of Vascular Plants. Berlin (Germany): Springer Verlag, 206-236.
445	Bobe R. 2006. The evolution of arid ecosystems in eastern Africa. Journal of Arid
446	Environments 66 : 564-584.
447	Bonnefille R. 1995. A reassessment of the Plio-Pleistocene pollen record of East Africa. In:
448	Vrba ES, Denton GH, Partridge TC, Burckle LH eds. Paleoclimate and Evolution with
449	Emphasis on Human Origins. New Haven: Yale University Press, 299-310.
450	Cadena CD, Kozak KH, Gómez JP, Parra JL, McCain CM, Bowie RCK, Carnaval AC,
451	Moritz C, Rahbek C, Roberts TE, et al. 2011. Latitude, elevational climatic
452	zonation and speciation in New World vertebrates. Proceedings of the Royal Society of
453	London, Series B: Biological Sciences 279: 194-201.
454	Cane MA, Molnar P. 2001. Closing of the Indonesian seaway as a precursor to east African
455	aridification around 3-4 million years ago. Nature 411: 157-162.
456	Carbutt C, Edwards TJ. 2015. Reconciling ecological and phytogeographical spatial
457	boundaries to clarify the limits of the montane and alpine regions of sub-Sahelian
458	Africa. South African Journal of Botany 98: 64-75.
459	Ceccarelli FS, Menegon M, Tolley KA, Tilbury CR, Gower DJ, Laserna MT, Kasahun
460	R, Rodriguez-Prieto A, Hagman R, Loader SP. 2014. Evolutionary relationships,
461	species delimitation and biogeography of Eastern Afromontane horned chameleons
462	(Chamaeleonidae: Trioceros). Molecular Phylogenetics and Evolution 80: 125-136.
463	Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Erleringer
464	JR. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature
465	389 : 153-158.
466	Cerling TE, Wang Y, Quade J. 1993. Expansion of C4 ecosystems as an indicator of global
467	ecological change in the Late Miocene. Nature 361: 344-345.
168	Corlett RT 2014 The Ecology of Tropical East Asia UK: Oxford University Press

469	Couvreur TLP, Chatrou LW, Sosef MSM, Richardson JE. 2008. Molecular phylogenetics
470	reveal multiple tertiary vicariance origins of the African rain forest trees. BMC
471	Evolutionary Biology 6 : 54.
472	Dauby G, Hardy OJ, Leal M, Breteler F, Stévart T. 2014. Drivers of tree diversity in
473	tropical rain forests: new insights from a comparison between littoral and hilly
474	landscapes of Central Africa. Journal of Biogeography 41: 574-586.
475	deMenocal PB. 2004. African Climate Change and Faunal Evolution during the Pliocene-
476	Pleistocene. Earth and Planetary Science Letters 220: 3-24.
477	Dimitrov D, Nogués-Bravo D, Scharff N. 2012. Why do tropical mountains support
478	exceptionally high biodiversity? The Eastern Arc mountains and the drivers of
479	Saintpaulia diversity. PLoS ONE 7: e48908.
480	Drummond AJ, Ho SYW, Rawlence N, Rambaut A. 2007. A Rough Guide to BEAST 1.4.
481	New Zealand: University of Auckland.
482	Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling
483	trees. BMC Evolutionary Biology 7: 214.
484	Ebinger C, Yemane T, Harding D, Tesfaye S, Kelley S, Rex D. 2000. Rift deflection,
485	migration, and propagation: Linkage of the Ethiopian and Eastern rifts, Africa.
486	Geological Society of America Bulletin 112: 163-176.
487	Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S, Brochmann
488	C. 2007. Genetic consequences of Pleistocene range shifts: contrast between the
489	Arctic, the Alps and the East African mountains. Molecular Ecology 16: 2542-2559.
490	Fior S, Karis PO, Casazza G, Minuto L, Sala F. 2006. Molecular phylogeny of the
491	Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA
492	its sequences. American Journal of Botany 93: 399-411.
493	Fjeldså J, Lovett JC. 1997. Geographical patterns of old and young species in African forest
494	biota: The significance of specific montane areas as evolutionary centres. Biodiversity
495	and Conservation 6: 325-346.
496	Gehrke B, Linder HP. 2009. The scramble for Africa: pan-temperate elements on the
497	African high mountains. Proceedings of the Royal Society of London, Series B:
498	Biological Sciences 276: 2657-2665.
499	Gehrke B, Linder HP. 2014. Species richness, endemism and species composition in the
500	tropical Afroalpine flora. Alpine Botany 124: 165-177.

501	Gottelli D, Marino J, Sillero-Zubiri C, Funk SM. 2004. The effect of the last glacial age on
502	speciation and population genetic structure of the endangered Ethiopian wolf (Canis
503	simensis). Molecular Ecology 13: 2275-2286.
504	Griffiths CJ. 1993. The geological evolution of East Africa. In: Lovett JC, Wasser SK eds.
505	Biogeography and Ecology of the Rain Forests of Eastern Africa. Cambridge (UK):
506	Cambridge University Press, 19-23.
507	Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large
508	phylogenies by maximum likelihood. Systematic Biology 52: 696-704.
509	Hamilton AC. 1982. Environmental History of East Africa: A Study of the Quaternary.
510	London: Academic Press.
511	Hedberg O. 1951. Vegetation belts of the East African mountains. Svensk Botanisk Tidskrift
512	45 : 140-202.
513	Hedberg O. 1957. Afroalpine vascular plants. A taxonomic revision. Symbolae Botanicae
514	<i>Upsalienses</i> 15 : 1-411.
515	Hedberg O. 1961. The phytogeographical position of the afroalpine flora. Recent Advances in
516	Botany 1: 914-919.
517	Hedberg O. 1964. Features of Afroalpine plant ecology; avec un résumé en française.
518	Uppsala,: Almqvist & Wiksells.
519	Hedberg O. 1965. Afroalpine flora elements. Webbia 19: 519-529.
520	Hedberg O. 1969. Evolution and speciation in a tropical high mountain flora. Botanical
521	Journal of the Linnean Society 1: 135-148.
522	Hedberg O. 1970. Evolution of the afroalpine flora. Biotropica 2: 16-23.
523	Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data.
524	Molecular Biology and Evolution 27: 570-580.
525	Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913.
526	Ho SY, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation
527	of evolutionary divergence times. Systematic Biology 58: 367-380.
528	Jordan GJ, Macphail MK. 2003. A Middle-Late Eocene inflorescence of Caryophyllaceae
529	from Tasmania, Australia. American Journal of Botany 90: 761-768.
530	Kebede M, Ehrich D, Taberlet P, Nemomissa S, Brochmann C. 2007. Phylogeography
531	and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and
532	Tropical East African mountains. <i>Molecular Ecology</i> 16 : 1233-1243.

533	Koch MA, Kiefer C, Ehrich D, Vogel J, Brochmann C, Mummenhoff K. 2006. Three
534	times out of Asia Minor: the phylogeography of Arabis alpina L. (Brassicaceae).
535	Molecular Ecology 15: 825-839.
536	Kubatko LA, Degnan JH. 2007. Inconsistency of phylogenetic estimates from concatenated
537	data under coalescence. Systematic Biology 56: 17-24.
538	Leuschner C. 1996. Timberline and alpine vegetation on the tropical and warm-temperate
539	oceanic islands of the world: elevation structure and floristics. Vegetation 123: 193-
540	206.
541	Linder HP. 2014. The evolution of African plant diversity. Frontiers in Ecology and
542	Evolution 2: 1-14.
543	Livingstone DA. 1962. Age of deglaciation in the Ruwenzori range, Uganda. Nature 194:
544	859-860.
545	Loader SP, Sara Ceccarelli F, Menegon M, Howell KM, Kassahun R, Mengistu AA,
546	Saber SA, Gebresenbet F, de Sá R, Davenport TRB, et al. 2014. Persistence and
547	stability of Eastern Afromontane forests: evidence from brevicipitid frogs. Journal of
548	Biogeography 41 : 1781-1792.
549	Lovett JC, Bridson DM, Thomas DW. 1988. A preliminary list of the moist forest
550	angiosperm flora of the Mwanihana Forest Reserve, Tanzania. Annals of the Missouri
551	Botanical Garden 75: 874-888.
552	Mairal M, Pokorny L, Aldasoro JJ, Alarcón M, Sanmartín I. 2015. Ancient vicariance
553	and climate-driven extinction continental-wide disjunctions in Africa: the case of the
554	Rand Flora genus Canarina (Campanulaceae). Molecular Ecology 24: 1335-1354.
555	Merckx VSFT, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg
556	KTCA, Afendy A, Arumugam N, de Boer H, Biun A, et al. 2015. Evolution of
557	endemism on a young tropical mountain. Nature 524: 347-350
558	Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux
559	J, Da Fonseca GAB. 2005. Hotspots revisited: earth's biologically richest and most
560	endangered terrestrial ecoregions. Washington, DC.: Conservation International.
561	Mohammed MU, Bonnefille R. 1998. A late Holocene pollen record from a highland peak at
562	Tamsaa, Bale Mountains, South Ethiopia. Global and Planetary Change 16-17: 121-
563	129.

564	Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD. 2007. Extensive variation in
565	synonymous substitution rates in mitochondrial genes of seed plants. BMC
566	Evolutionary Biology 7: 135.
567	Nylander JAA 2004. MrModeltest version 2. Program distributed by the author. Uppsala:
568	Evolutionary Biology Centre, Uppsala University.
569	Orme CD, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding
570	T, Rasmussen PC, Ridgely RS, et al. 2005. Global hotspots of species richness are
571	not congruent with endemism or threat. Nature 436: 1016-1019.
572	Ousted S. 1985. A Taxonomic Revision of the Genus Uebelinia Hochst. (Caryophyllaceae).
573	Bulletin du Jardin botanique national de Belgique / Bulletin van de National
574	Plantentuin van België 55 : 421-459.
575	Oxelman B, Liden M, Rabeler RK, Popp M. 2000. A revised generic classification of the
576	tribe Sileneae (Caryophyllaceae). Nordic Journal of Botany 20: 743-748.
577	Pickford M, Senut B, Mourer-Chauvire C. 2004. Early Pliocene Tragulidae and peafowls
578	in the Rift Valley, Kenya: evidence for rainforest in East Africa. Comptes Rendus
579	Palevol 3 : 179–189.
580	Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C. 2008. Colonization and
581	diversification in the African 'sky islands' by Eurasian Lychnis L. (Caryophyllaceae).
582	Journal of Biogeography 35: 1016-1029.
583	Rahbek C, Graves GR. 2001. Multiscale assessment of patterns of avian species richness.
584	Proceedings of the National Academy of Sciences USA 98: 4534-4539.
585	Rambaut A, Drummond AJ. 2007. Tracer, version 1.5. http://beast.bio.ed.ac.uk/Tracer.
586	Rundel PW, Smith AP, Meinzer FC. 1994. Tropical alpine environments: plant form and
587	function. Cambridge: Cambridge University Press.
588	Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin JJ, Brunet M. 2006. Tectonic
589	uplift and eastern Africa aridification. Science 313: 1419-1423.
590	Sloan DB, Oxelman B, Rautenberg A, Taylor DR. 2009. Phylogenetic analysis of
591	mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC
592	Evolutionary Biology 9: 1-16.
593	Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics
594	Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-
595	1599.

596	Tolley KA, Tilbury CR, Measey GJ, Menegon M, Branch WR, Matthee CA. 2011.
597	Ancient forest fragmentation or recent radiation? Testing refugial speciation models in
598	chameleons within an African biodiversity hotspot. Journal of Biogeography 38: 1-13.
599	Trauth MH, Maslin MA, Deino A, Strecker MR. 2005. Late cenozoic moisture history of
600	East Africa. Science 309: 2051-2053.
601	Wara MW. 2005. Permanent El Nino-like conditions during the Pliocene warm period.
602	Science 313 : 1739-1739.
603	Wichura H, Bousquet R, Oberhänsli R, Strecker MR, Trauth MH. 2010. Evidence for
604	middle Miocene uplift of the East African plateau. Geology 38: 543-546.
605	Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness.
606	Trends in Ecology and Evolution 19: 639-644.
607	Williamson P. 1985. Evidence for an early Plio-Pleistocene rainforest expansion in East
608	Africa. Nature 315 : 487-489.
609	Woldegabriel G, White TD, Suwa G, Renne P, Heinzelin JD, Hart WK, Heiken G. 1994.
610	Ecological and temporal placement of early Pliocene hominids at Aramis, Ethiopia.
611	Nature 371 : 330-333.
612	Yemane K, Bonnefille R, Faure H. 1985. Paleoclimatic and tectonic implications of
613	Neogene microflora from the Northwestern Ethiopian highlands. Nature 318: 653-
614	656.
615	
013	

Table 1 Geographical information of the study material

Database number	Population/individual number	Taxon	Country	Locality	Altitude (m)	Latitude	Longitude
O-DP-13583	AFR522-4 [‡]	L. abyssinica LGS	Ethiopia	Arsi: Mt Chilalo	3000	7.9269	39.1795
O-DP-13592	AFR528-5 [‡]	L. abyssinica LGS	Ethiopia	Arsi: Mt Kaka	3400	7.3663	39.2020
O-DP-13596	AFR533-1 [‡]	L. abyssinica SGS	Ethiopia	Arsi: Betw. Kofele and Asassa, 15 km from Kofele	2700	7.1735	38.8746
O-DP-13600	AFR536-4 [‡]	L. abyssinica SGS	Ethiopia	Bale Mts	3200	6.9328	39.9460
O-DP-13604	AFR540-1 [‡]	L. abyssinica SGS	Ethiopia	Bale Mts: Betw. Park Head Quarter and Goba, 2 km from Head Quarter	3100	7.1056	39.8015
O-DP-13608	AFR545-1 [‡]	L. abyssinica SGS	Ethiopia	Shoa, Entoto	3000	9.0895	38.7648
O-DP-13616	AFR548-4 [‡]	L. abyssinica SGS	Ethiopia	Arsi: Betw. Shashemene and Kofele, 12.5 km from Shashemene	2300	7.1492	38.6990
O-DP-13619	AFR560-2 [‡]	L. abyssinica SGS	Ethiopia	Betw. Agere Maryam and Dilla, 23 km from Agere Maryam, Sidamo	2300	5.8181	38.2650
O-DP-13621	AFR570-1 [‡]	L. abyssinica SGS	Ethiopia	Keffa, Masha	2200	7.7693	35.4745
O-DP-29620	ET098-2	L. abyssinica LGS	Ethiopia	Simen Mts: Close to Gich Camp Site	3570	13.2666	38.1078
O-DP-30300	ET271-2	L. abyssinica LGS	Ethiopia	Simen Mts: Gich Camp Site	3650	13.2697	38.1059
O-DP-30734	ET391-2	L. abyssinica LGS	Ethiopia	Simen Mts: Silki	3760	13.3333	38.2333
O-DP-31231	ET509-2	L. abyssinica LGS	Ethiopia	Simen Mts: Silki	3600	13.3203	38.2351
O-DP-33637	ET1336-2	L. abyssinica LGS	Ethiopia	Mt Choke	3960	10.6420	37.8357
O-DP-33712	ET1351-2	L. abyssinica LGS	Ethiopia	Mt Choke	3940	10.6560	37.8257
O-DP-33907	ET1391-2	L. abyssinica LGS	Ethiopia	Mt Choke	3920	10.6575	37.8220
O-DP-34660	ET1526-1	L. abyssinica SGS	Ethiopia	Gara Muleta	3140	9.2195	41.7867
O-DP-34661	ET1526-2	L. abyssinica SGS	Ethiopia	Gara Muleta	3140	9.2195	41.7867
O-DP-34662	ET1526-3	L. abyssinica SGS	Ethiopia	Gara Muleta	3140	9.2195	41.7867

					**/ *		37/4	37/1
	AFR582-1	L. abyssinica SGS	Cameroon	Bamenda High lands	N/A		N/A	N/A
	AFR582-2	L. abyssinica SGS	Cameroon	Bamenda High lands	N/A		N/A	N/A
	AFR611-1	L. abyssinica SGS	Cameroon	Bamenda High lands	N/A		N/A	N/A
	AFR611-2	L. abyssinica SGS	Cameroon	Bamenda High lands	N/A		N/A	N/A
O-DP-27285	KN0443-2	L. crassifolia	Kenya	Cherangani Hills: Tululuwa		3180	1.1770	35.5184
O-DP-27499	KN0493-2	L. crassifolia	Kenya	Aberdare Mts: Mt Kinangop area		3090	-0.5425	36.7175
O-DP-27812	KN0563-2	L. crassifolia	Kenya	Aberdare Mts: Mutumbio Gate		3090	-0.5425	36.7175
	180610-1	L. flos-cuculi	Sweden	Roadside, Håby, Munkedal, Västra Götaland	N/A		58.4890	11.5890
O-DP-41977	UG2599-2	L. kigesiensis subsp. kigesiensis	Uganda	Echuya Forest: Kanaba Swamp		2300	-1.2553	29.8093
O-DP-41982	UG2600-2	L. kigesiensis subsp. kigesiensis	Uganda	Echuya Forest: Kanaba Swamp		2300	-1.2553	29.8093
O-DP-13628	AFR542-4 [‡]	L. kigesiensis subsp. ragazziana	Ethiopia	Bale Mts: Betw. Park Head Quarter and Goba, 2 km from Head Quarter		3100	7.1055	39.8015
O-DP-13629	AFR546-1 [‡]	L. kigesiensis subsp. ragazziana	Ethiopia	Shoa, Entoto		3000	9.0950	38.7662
O-DP-13637	AFR534-3 [‡]	L. kiwuensis subsp. erlangeriana	Ethiopia	Arsi: Betw. Kofele and Asassa, 15 km from Kofele		2700	7.1735	38.8746
O-DP-13648	AFR550-4 [‡]	L. kiwuensis subsp. erlangeriana	Ethiopia	Arsi: Betw. Shashemene and Goba, 26 km from Shashemene		2600	7.0985	38.7579
O-DP-13654	AFR555-1 [‡]	L. kiwuensis subsp. erlangeriana	Ethiopia	Betw. Agereselam and Aleta Wondo, 17 km from Agereselam, Sidamo		2500	6.5749	38.4891
O-DP-13657	AFR527-4 [‡]	L. kiwuensis subsp. kiwuensis	Ethiopia	Arsi: Mt Chilalo		3100	7.9206	39.1840
O-DP-13662	AFR538-4 [‡]	L. kiwuensis subsp. kiwuensis	Ethiopia	Bale Mts: Rira Village		2800	6.7531	39.7204
O-DP-13664	AFR551-3 [‡]	L. kiwuensis subsp. kiwuensis	Ethiopia	Gamu-Gofa, Chencha		2600	6.2296	37.5678
O-DP-13671	AFR561-2 [‡]	L. kiwuensis subsp. kiwuensis	Ethiopia	Between Teppi and Gore,		1800	7.3153	35.3692

				Illubabor				
O-DP-13674	AFR566-1 [‡]	L. kiwuensis subsp. kiwuensis	Ethiopia	Keffa, Masha		2200	7.7633	35.4745
O-DP-39472	UG2001-2	L. kiwuensis subsp. kiwuensis	Uganda	Virunga Mts: Mt Mgahinga		2690	-1.3600	29.6348
O-DP-39477	UG2002-2	L. kiwuensis subsp. kiwuensis	Uganda	Virunga Mts: Mt Mgahinga		2350	-1.3528	29.6201
O-DP-40181	UG2167-2	L. kiwuensis subsp. kiwuensis	Uganda	Virunga Mts: Mt Muhavura, Kabaragnuma Swamp		3060	-1.3675	29.6713
O-DP-40186	UG2168-2	L. kiwuensis subsp. kiwuensis	Uganda	Virunga Mts: Mt Muhavura, Kabaragnuma Swamp		3060	-1.3675	29.6713
	UP16925*	L. lagrangei	Morocco	Friedhof in Oulad-el- Arbi, südlich Asilah, auf Küstenland	N/A		35.4626	-6.0317
	UP16926*	L. lagrangei	Morocco	Habib, near the road from Arba-Ayacha (Soko Arbaa) to Dar Chaoui	N/A		35.4700	-5.8000
O-DP-27519	KN0497-2	L. rotundifolia	Kenya	Aberdare Mts: Mt Satima area		3690	-0.3218	36.6407
O-DP-36976	TZ0016-2	L. rotundifolia	Tanzania	Mt Kilimanjaro: Shira Plateau near Mt Simba		3640	-3.0343	37.2430
O-DP-37105	TZ0043-2	L. rotundifolia	Tanzania	Mt Kilimanjaro: Shira Plateau		3540	-3.0056	37.2416
O-DP-13679	AFR554-4 [‡]	L. scottii	Ethiopia	Gamu-Gofa, Mt Guge		3000	6.1992	37.3333
O-DP-13680	AFR554-5 [‡]	L. scottii	Ethiopia	Gamu-Gofa, Mt Guge		3000	6.1992	37.3333
O-DP-13682	AFR554-1 [‡]	L. scottii	Ethiopia	Gamu-Gofa, Mt Guge		3000	6.1992	37.3333
T. C 1.C.	UP16917*	L. subintegra	Greece	Ioanninon, above Metsovo, N of the road to the Katara pass	N/A		39.7760	21.1750

Leaf material for *Lychnis* was collected in the field and dried in silica gel for most accessions; herbarium material was used in a few cases (indicated with *). The assignment of two genome size variants (LGS - Large genome size, SGS - small genome size) to *L. abyssinica* samples were determined based on flow cytometry analyses (for samples from Popp *et al.* (2008) study marked with [‡]) and based on their phylogenetic position (for samples collected and analysed in this study). N/A indicates lack of detailed geographical information.

Table 2 DNA sequence information of the study material

Taxon	Population number			GenBank	accession number	
		matK	rps16	psbE-petL	ITS	RPB2
L. abyssinica	21568		EF602350†	EF602323†	EF602379†	EF602406†
	21571		EF602351†	EF602324†	EF602380†	EF602407†
	21591		EF602352†	EF602325†	EF602381†	EF602408†
	AFR522-4		EF602353†	EF602326†	-	EF602409†
	AFR528-5		EF602354†	EF602327†	-	EF602410†
	AFR533-1		EF602355†	EF602328†	EF602382†	EF602411†
	AFR536-4		EF602356†	EF602329†	EF602383†	EF602412†
	AFR540-1		EF602357†	EF602330†	EF602384†	EF602413†
	AFR545-1		EF602358†	EF602331†	EF602385†	EF602414†
	AFR548-4			-	EF602386†	EF602415†
	AFR560-2	KT581604 [‡]	EF602360†	EF602333†	EF602387†	EF602416†
	AFR570-1		EF602361†	EF602334†	EF602388†	EF602417†
	ET0098-2	KT581605 [‡]				
L. chalcedonica			-	-	X86894	AJ634068
L. coronaria			EF674193	FJ376841	X86891	AJ634069
			-	-	AY857966	-
			-	-	SCU30953	-
			-	-	SCU30979	-
L. crassifolia	21567		EF602362†	EF602335†	EF602389	EF602418†
	KN0493-2	KT581609 [‡]				
L. flos-cuculi			Z83163	EF602320 [†]	X86893	AJ634070
			_	-		AJ634071
			_	-	_	FJ376910
			-	-	SFU30957	-

	180610-1	KT581613 [‡]				
L. flos-jovis			Z83166	EF602321 [†]	X86892	-
			-	-	AY936261	-
			-	-	EF407940	-
L. kigesiensis subsp. kigesiensis	21595		EF602366†	EF602339†	EF602393†	EF602422†
	UG2599-2	KT581606 [‡]				
L. kigesiensis subsp. ragazziana	AFR542-4	KT581607 [‡]	EF602367†	EF602340†	EF602394†	EF602423†
	AFR546-1		EF602368†	EF602341†	EF602395†	EF602424†
L. kiwuensis subsp. erlangeriana	AFR534-3		EF602363†	EF602336†	EF602390†	EF602419†
	AFR550-4	KT581611 [‡]	EF602364†	EF602337†	EF602391†	EF602420†
	AFR555-1		EF602365†	EF602338†	EF602392†	EF602421†
L. kiwuensis subsp. kiwuensis	21598		-	-	EF602396†	-
	AFR527-4		EF602370†	EF602342†	EF602397†	EF602425†
	AFR538-4		EF602371†	EF602343†	EF602398†	-
	AFR551-3		EF602372†	EF602344†	EF602399†	EF602426†
	AFR561-2		EF602373†	EF602345†	EF602400†	EF602427†
	AFR566-1		EF602374†	EF602346†	EF602401†	EF602428†
	UG2168-2	KT581612 [‡]				
L. lagrangei	LAG01		-	-	EF602377†	EF602404†
	LAG02		EF602349†	EF602322†	EF602378†	EF602405†
	UP16925	KT581615 [‡]				
L. rotundifolia	21573		EF602375†	EF602347†	EF602402†	EF602429†
	TZ0043-2	KT581610 [‡]				
L. scottii	AFR554-1		EF602376†	EF602348†	EF602403†	EF602430†
	AFR554-4	KT581608 [‡]				
L. subintegra	UP16917	KT581614 [‡]				
L. coronaria		FJ589507	-	-	-	-

L. flos-jovis	AY936313	-	-	-	-
Polycarpon tetraphyllum	AY936287	-	-	-	-
Scleranthus perennis	AY514847	-	-	-	-
Arenaria serpylloides	FJ404826	-	-	-	-
Moehringia macrophylla	FJ404852	-	-	-	-
Stellaria media	FJ404877	-	-	-	-
Lepyrodiclis holosteoides	FJ404840	-	-	-	-
Minuartia nuttallii	FJ404847	-	-	-	-
Bufonia paniculata	FJ404827	-	-	-	-
Schiedea globosa	DQ907818	-	-	-	-
Geocarpon minimum	FJ404836	-	-	-	-
Gypsophila paniculata	FJ404838	-	-	-	-
Petrorhagia saxifraga	FJ404857	-	-	-	-
Dianthus armeria	FJ404832	-	-	-	-
Arenaria bryophylla	FJ404815	-	-	-	-
Arenaria gypsophiloides	FJ404818	-	-	-	-
Agrostemma githago	FJ589503	-	-	-	-
Petrocoptis pyrenaica	FJ589508	-	-	-	-
Silene hawaiiensis	SHB0001*	-	-	-	-
Silene uniflora	FJ589565	-	-	-	-
Silene douglasii	EF547238	-	-	-	-
Silene noctiflora	EF547240	-	-	-	-
Silene repens	FJ589552	-	-	-	-
Silene schafta	FJ404873	-	-	-	-
Silene ciliata	FJ589519	-	-	-	-
Silene muscipula	FJ589543	-	-	-	-
Silene antirrhina	FJ589512	-	-	-	-
Silene armena	FJ589514	-	-	-	-
Silene acaulis	EF547235	-	-	-	-

Silene campanula	AY936311 -	-	-	-	
Silene yemensis	FJ589567 -	-	-	-	
Silene sordida	FJ589559 -	-	-	-	
Silene odontopetala	FJ589546 -	-	-	-	

DNA sequences retrieved from GenBank mainly from Popp *et al.* (2008) study (†), and sequences generated in the present study (GenBank accession number[‡])

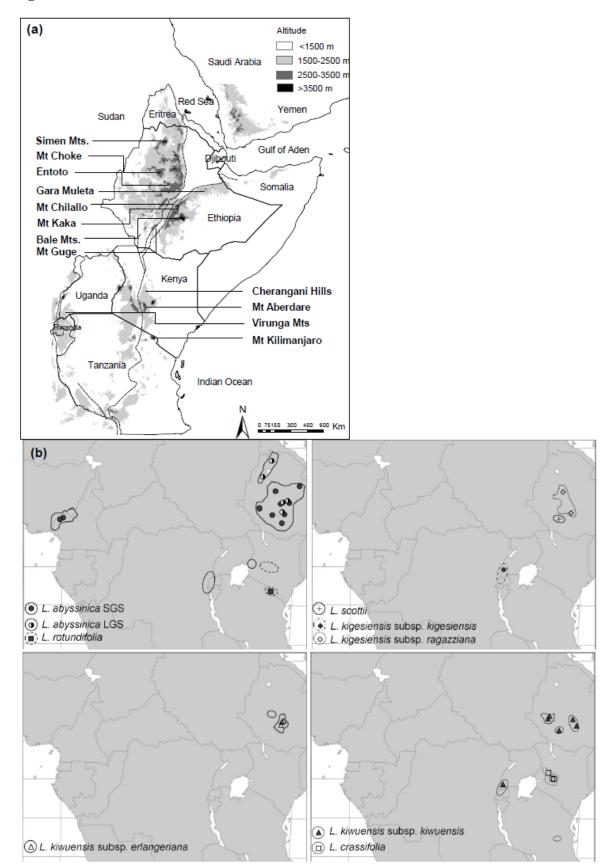
Table 3 Specific information of the five DNA regions (total number of characters) used in the present study

	matK (1566bp)			rp	s16 (666l	op)	<i>psbE-petL</i> (1253bp)			
	Total dataset Lychnis Afro-alpine Lychnis		Total dataset Lychnis Afro-alpine Lychnis		Total dataset <i>Lychnis</i> Afro-alpi <i>Lychnis</i>		Afro-alpine <i>Lychnis</i>			
Number of terminals	46	14	9	57	57	52	57	57	52	
Conserved sites	778	1211	1254	616	616	632	1160	1160	1189	
Variable sites	741	85	41	41	41	25	90	90	56	
Parsimony informative sites	429	44	26	28	28	22	69	69	53	

	IT	'S (602bp))	RPB2 (1842bp)			
	Total dataset Lychnis Afro-alpine Lychnis		Total dataset	Afro- alpine <i>Lychnis</i>			
Number of terminals	35	35	26	29	29	24	
Conserved sites	500	500	539	1567	1567	1686	
Variable sites	100	100	58	231	231	117	
Parsimony informative sites	63	63	37	134	134	83	

Table 4 Mean, median, 95% highest posterior density (HPD) interval in million years, and effective sample sizes (ESS) for nodes A-G in the species tree (Fig. 3)

Node	Mean	Median	95% HPD	ESS
A	5.13	5.07	3.05 - 7.41	3019
В	4.09	4.03	2.30 - 5.92	2848
C	2.54	2.51	1.46 - 3.74	2914
D	1.37	1.33	0.60 - 2.18	5884
E	0.51	0.49	0.17 - 0.89	5322
F	1.83	1.79	0.92 - 2.80	3497
G	4.46	4.41	2.51 - 6.60	4036


Table 5 Mean, median, and 95% highest posterior density (HPD) interval in million years for the tMRCA of each species inferred from ITS, *RPB2*, *mat*K, and the combined *psbE-petL/rps16* co-estimated in the multilocus species tree.

	ITS				RPB2 m			mat	atK psbE-petL/rps16			rps16
Species	Mean	Median	95% HPD	Mean	Median	95% HPD	Mean	Median	95% HPD	Mean	Median	95% HPD
L. abyssinica SGS	0.28	0.25	0.07 - 0.54	0.43	0.40	0.13 - 0.80	NA	NA	NA	0.13	0.11	0.02 - 0.30
L. kigesiensis	0.24	0.21	0.01 - 0.53	0.15	0.13	0.01 - 0.37	0.09	0.07	0.00 - 0.23	0.08	0.06	0.00 - 0.19
L. scottii	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.28	0.24	0.03 - 0.64
L. abyssinica LGS	NA	NA	NA	NA	NA	NA	0.10	0.06	0.00 - 0.29	0.35	0.32	0.10 - 0.65
L. rotundifolia	NA	NA	NA	NA	NA	NA	0.08	0.05	0.00 - 0.26	0.16	0.13	0.01 - 0.39
L. kiwuensis	0.84	0.79	0.30 - 1.44	0.73	0.68	0.23 - 1.33	0.33	0.29	0.03 - 0.71	0.24	0.21	0.05 - 0.48
L. crassifolia	NA	NA	NA	NA	NA	NA	0.09	0.06	0.00 - 0.30	0.21	0.18	0.03 - 0.46

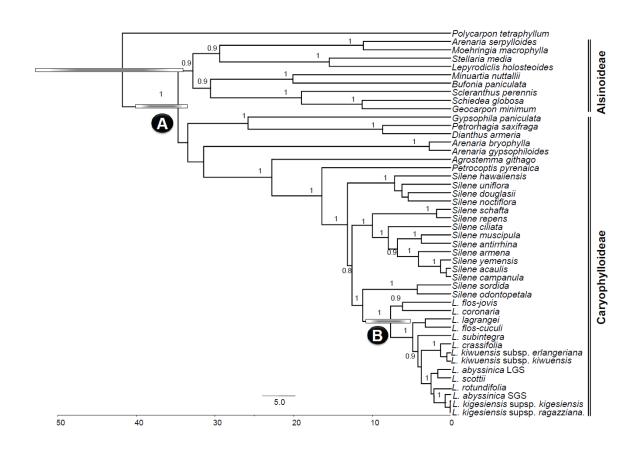

"NA" indicates that a species was represented by less than two sequences for a specific DNA region and no tMRCA was inferred. The inferred gene trees are presented in Supplementary Information (Fig. 1a-d Suppl.). *Lychnis abyssinica* LGS and *L. abyssinica* SGS denote the large-genome-size and small-genome-size variants of *L. abyssinica*, respectively.

Figure Legends 638 639 Fig. 1 Geographical distribution and sampling localities for the afro-alpine representatives of 640 Lychnis. a) Sampling areas in Eastern Africa, b) Total range of each species and subspecies 641 (solid or dashed lines) and sampling localities (symbols), modified from Popp et al. (2008) 642 and Ousted (1985). 643 644 Fig. 2 Maximum clade credibility tree and 95% HPD age interval estimates of nodes inferred 645 646 from 45 matK sequences representing the Caryophyllaceae subfamilies Alsinoideae and Caryophylloideae, using *Polycarpon tetraphyllum* from subfamily Paronychioideae as an 647 outgroup. Internal node bars represent the 95% HPD age interval estimates for one fossil-648 calibrated node (Node A) and the tMRCA for the genus Lychnis (Node B). Numbers 649 650 associated with nodes are posterior probabilities. Scale in million years. 651 Fig. 3 Multilocus species tree for the genus Lychnis inferred from five DNA regions (matK, 652 rps16, psbE-petL, ITS and RPB2). Grey internal node bars represent the 95% HPD age 653 intervals, co-estimated with the multilocus species tree. Nodes A-G and their estimated ages 654 655 (see Table 4 for details) are discussed in the text. Numbers associated with nodes are posterior probabilities. Scale in million years. White bars on terminal branches for the afro-montane 656 657 species represent the 95% HPD age interval ranges (boxes) and the species mean age coestimated for each DNA region (vertical bars in the boxes) in the multilocus species tree (see 658 659 Table 5 for details). Lychnis abyssinica LGS and L. abyssinica SGS denote the large-genomesize and small-genome-size variants of *L. abyssinica*, respectively. 660 661 Supplementary Fig. 1S Single-locus trees for the genus Lychnis, with 95% HPD age interval 662 663 estimates for nodes inferred from sequences of rps16/psbE-petL (a), matK (b), ITS (c), and RPB2 (d). Node bars represent 95% HPD age intervals. Nodes A-G and their estimated ages 664 (see Table 5 for details) are discussed in the text. Numbers associated with nodes are posterior 665 probabilities. Scale bar indicates million years. Lychnis abyssinica LGS and L. abyssinica 666 SGS denote the large-genome-size and small-genome-size variants of L. abyssinica, 667 respectively. Sample of L. abyssinica LGS without accession number indicates missing data. 668

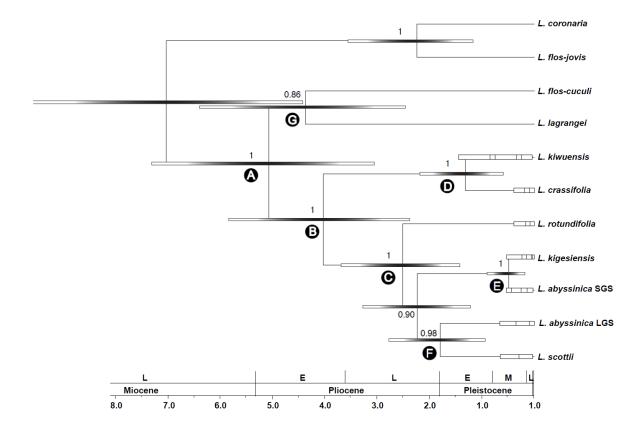

Fig 1

Fig 2

Fig 3

