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Abstract

LiNiPO4 belongs to a group of materials that show interesting magnetoelectric prop-
erties, among others a commensurate-incommensurate (C-I) magnetic phase transition.
To investigate this, we perform Monte Carlo simulations on suggested models of LiNiPO4.
In order to identify the phase, the ordering wave vector q is studied. We do not find
the C-I phase transition from the models, but instead observe an antiferromagnetic-
paramagnetic (AF-PM) one for two of the models and an incommensurate-paramagnetic
one for the other. The critical temperature for the AF-PM phase transition is found us-
ing the finite size scaling of Binder cumulant crossings and the location of the peak of
the magnetic susceptibility. The critical exponents ν, γ and α will be found through the
finite size scaling analysis for one of the models. Through an analytical approach, we
find a condition for the incommensurate state to be the ground state. Analyzing our nu-
merical output, we find that models that deviate slightly from the given ones exhibit an
incommensurate phase, but none of these possess the commensurate-incommensurate
phase transition.
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Chapter 1

Introduction

In recent years, there has been a growing interest in a group of crystals called litium
orthophosphates or just lithium phosphates. These crystals have the chemical compo-
sition of LiMPO4, where M denotes the transition metals, i.e. Co, Ni, Mn, Fe, Cu. The
lithium phosphates belong to a group of materials showing some exceptional magnetic
properties. LiNiPO4 and LiFePO4 has gotten particular interest since they have been
suggested as cathodes for lithium batteries [12].

The magnetic ions of LiNiPO4 are Ni2+, which have spin one. A reasonable ap-
proximation is considering the Ni+2-ions as classical spins of unit length on a particular
three-dimensional lattice. At low temperatures, neighbouring spins are shown to be
antiparallel, which is a commensurate ordering. As the temperature is increased, how-
ever, the system enter the incommensurate phase. The spins are still ordered, but in a
rotated pattern. Roughly speaking, there is a general, fixed angle θ 6= πn between each
pair of spin neighbours. In a work by Toft-Petersen et. al. [26] LiFePO4 was found not
exhibit an incommensurate phase, which is the reason for our sole focus on LiNiPO4.

Figure (1.1) shows the results of a scattering experiment performed by Vaknin et.
al.[7]. We will focus on the left-hand side of the figure. The measured intensity is plot-
ted against (0,K,0), where K is connected to the ordering angle θ in the y-direction of
the crystal. At low temperature, T= 9.81 K, there is only one peak present, situated
at (0, 1, 0) and corresponding to the antiparallel ordering. At higher temperature, two
other peaks occur, and these are associated with the incommensurate phase. They ap-
pear at T= 20.805 at (0, 1± δ, 0) and die away in the paramagnetic phase due to thermal
fluctuations. The plot informs us that the incommensurate phase only occurs in a small
temperature interval. In fact, it is only present for a temperature range of about 1 K[12].

In this thesis, we simulate LiNiPO4 in order to determine its magnetic properties. To
do that, we use proposed models of LiNiPO4 from a set of papers[13],[15],[25] and use
them in Monte Carlo simulations. From these, we obtain macroscopic variables such as
the energy and the magnetization. We will make extended use of the spin correlation
function and the Binder cumulant, which will be introduced in Chapter 2. Using the
Bootstrap method, described in Appendix A.3, we obtain critical exponents and error
estimates for the model of [13] and compare to 3D Ising and Heisenberg models.
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Figure 1.1: A figure from [7], showing the result of their scattering experi-
ment. The intensity is plotted against (0,K,0), where K signifies the order in
the y-direction of the crystal. The plot to the left shows a peak at (0,1,0) for
temperatures up to 20.805 K. At 20.805 K, two additional peaks appear. They
move further and further away from (0,1,0) before they die away at about
22.7 K. The intensity of the scans are shifted for clarity.
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1.1 Outline

Chapter 2 provides the essential background information to understand this thesis. It
starts off by introducing phase transitions, order parameters and finite size scaling in
general. Later on, it states the order parameters specific to our thesis. Useful quantities
such as the Binder cumulant will also be introduced. Chapter 3 will give the couplings
of the models by [13], [15] and [25].

Chapter 4 provides a neccessary background to the rest of the thesis, that is based
more heavily on calculations than the theory in Chapter 2. It briefly states the effect
of the different terms, as derived by use of the spiralization condition on a chain in
Appendix C. Moving on, it gives the ordering wave vector signaling antiferromagnetic
ordering for the chain and the fcc.

Chapter 5 shows the plots of the spin correlation function. This chapter provides
useful information on the phases present in the system. Plots of a few modified versions
of [13] are also included.

In chapter 6, we find the ground state of the face-centered cubic lattice with ordering
in the y-direction. Thus, we find a condition for the system to be in the incommensurate
phase, though only strictly valid at zero temperature. We test the models against this
condition.

Chapter 7 gives the result of the finite size scaling method. The finite size scaling
of crossing points is derived in Appendix F, but left out of the main part of the thesis
for readability. Through the finite size scaling, we find critical exponents, the critical
temperatures and the critical Binder cumulant. We compare with known results and try
to pinpoint the universality class of [13].

Chapter 8 presents a modification of the model of Jensen et. al. that should have an
incommensurate-paramagnetic phase transition at 21.8 K. The detailed derivation is left
to Appendix G.

In Chapter 9, we discuss the models. Chapter 10 contains the conclusion and out-
look.





Chapter 2

General theoretical background

2.1 Classical spins

We mentioned in the introduction that the Ni2+-ions have spin one. Spins of length
one are obviously quantized, and one could wonder if such a small spin shouldn’t
be modeled as such. Quantum Monte Carlo algorithms have been developed, but
these are pretty specialized and not applicable to all problems of quantum statistical
mechanics[14], such as ours. Working with classical spins simplifies our calculations
considerably, and though there are quantum fluctuations at play, we expect them to be
small.

2.2 Concepts from statistical mechanics

2.2.1 Thermodynamic potentials and ensembles

We remind that the first law of thermodynamics for a fixed particle number reads

dU = TdS− PdV (2.1)

where U is the internal energy of the system and is called a thermodynamic poten-
tial. It is constant at fixed entropy S and volume V. When S, V and the particle number
N are fixed, our system is in the microcanonical ensemble.

We do not keep the entropy fixed, however, but rather the temperature. We can
perform a Legendre transformation to obtain another thermodynamic potential, namely
the Helmholtz free energy F = U − TS

dF = −SdT − PdV (2.2)

From Eq. (2.2) we see that F is constant for fixed T and V. When we keep T, V and
N fixed, as we do in our simulations, our system is in the canonical ensemble.

5



6 General theoretical background Chapter 2

2.2.2 The partition function

The discrete canonical partition function is defined as

Z(β) = ∑
i

e−βEi (2.3)

Where Ei is the energy of state i. The partition function is a measure of the number
of possible configurations of the system, with each possible state being weighted by its
Boltzmann factor, exp(−βEi), which is proportional to its probability pi[20]

pi =
1
Z

e−βEi (2.4)

which is also called the Boltzmann probability. A set of states obeying Eq. (2.4) are
said to obey the Boltzmann distribution. In a way, the partition function is a normaliza-
tion constant of the states. The partition function is useful when deriving macroscopic
observables. Since we are considering a system of continuous spins, we must use the
continuous version

Z =
∫

dS0 · · · dS f e−βH(S0,···S f ) (2.5)

which is set up to a normalization constant. The partition function is related to the
free energy by Z = eβF. In this thesis, the partition function will mainly be used to
verify the code, like in Appendix B.

Any average of A may be expressed as

〈A〉 = 1
Z ∑

i
Aie−βEi (2.6)

with discrete variables or

〈A〉 = 1
Z

∫
dS0 · · · dS f A(S0, · · · S f )e

−βH(S0,···S f ) (2.7)

with our continuous ones. Actually using Eq. (2.7) to find 〈A〉would be ridiculously
time-consuming, which is why we apply the Metropolis algorithm instead. Monte Carlo
methods and the Metropolis algorithm are discussed in Appendix A.1.

From either version of 〈A〉, it follows that the average energy of the system is related
to the partition function by

〈E〉 = − 1
Z

∂Z
∂β

or 〈E〉 = − ∂

∂β
ln(Z) (2.8)

The heat capacity at constant volume is in turn related to the energy by

CV = −kβ2 ∂

∂β
〈E〉 (2.9)
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which can also be expressed as

CV = kBβ2
(
〈E2〉 − 〈E〉2

)
(2.10)

We often look at the heat capacity per particle, cV = CV/N, which is also called the
specific heat capacity or just the specific heat. The heat capacity is related to F by [6]

CV = −T
(

∂F

∂T

)
V

(2.11)

Of course, there are quantities of interest other than those derived from the energy.
The uniform magnetization per spin in a given direction α = x, y, z is

mα =
1
N ∑

i
Sα

i (2.12)

So it measures the average spin component in direction α. It is related to the Helmholtz
free energy by

mα =

(
∂F
∂Bα

)
(2.13)

From the magnetization we find the magnetic susceptibility per spin by [17]

χα = βN
(
〈m2

α〉 − 〈mα〉2
)

(2.14)

which is related to the Helmholtz free energy by

χα = βN
(

∂Mα

∂Bα

)
T
= −N

(
∂2F
∂B2

α

)
T

(2.15)

as can easily be shown.

2.2.3 Para-, ferro- and antiferromagnetism

Ferro- and antiferromagnetic phases are characterized by long-range order of the mag-
netic moments. In the ground state of a ferromagnet, spin neighbours are parallel, and
the uniform magnetization per spin will be maximal. In the antiferromagnetic ground
state, all spin neighbours are antiparallel. Therefore, the spin components cancel and
lead to zero macroscopic magnetization. Of course, as soon as the temperature is non-
zero, thermal fluctuations will appear, and the spin neighbours will no longer be purely
parallel or antiparallel. At sufficiently high temperature, the preferred order is lost, and
the magnetization will be zero. The system is then said to be in the paramagnetic phase.
Like the ferro- and antiferromagnetic phases, the paramagnetic phase has a positive
susceptibility. This can be used to distinguish it from the diamagnetic phase, which has
negative susceptibility [18].
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2.2.4 Hamiltonians for ferro- and antiferromagnetism

The Ising Hamiltonian reads
HIsing = J ∑

〈ij〉
SiSj (2.16)

Where Si = ±1 and 〈ij〉 denotes pairs of nearest neighbours i and j. The continuous,
anisotropic Heisenberg model takes a similar form

HHeisenberg = ∑
〈ij〉

JijSi · Sj (2.17)

J, Jij > 0 describes an antiferromagnetic system while J, Jij < 0 describes a ferromag-
netic one. If the Hamiltonians were to be defined with a minus sign, the opposite would
be the case.

2.2.5 Phase transitions and finite size scaling

Phase transitions

A quantity A of a system may vary with the temperature in different ways. For a lot of
systems, there is an A that is zero above some temperature Tc and non-zero below it.
The system is then said to exhibit a phase transition. When A behaves the way we just
described, it is called an order parameter of the system[6]. A phase might have several
order parameters, and we are fairly free to choose one. Apart from the change in the
order parameter, there might be diverging quantities at the phase transition. For a lot of
magnetic phase transitions, such as the ferromagnetic-paramagnetic one, the magnetic
susceptibility and specific heat diverge [17].

A phase transition can be further separated into continuous phase transitions and
discontinuous or first order phase transitions. The order parameter A changes discon-
tinuously at Tc for discontinuous phase transitions, while it changes continuously at
Tc for a continuous phase transition [27]. For discontinuous phase transitions, the first
derivatives of the free energy, such as m, are discontinuous at Tc , hence the term[6].
For continuous phase transitions, the first derivatives of the free energy are continu-
ous, while second derivatives such as χ and cV diverge at Tc [27]. The ferromagnetic-
paramagnetic phase transition is continuous [17], while the C-I phase transition is dis-
continuous for LiNiPO4 [15].

The critical exponents of a system dictates how quantities such as cV and χ behave
as we approach the continuous transition[6]. It turns out that the critical exponents are
not sensitive to details such as the lattice structure and the magnitudes of the couplings,
but they do depend on the dimensionality of the lattice and the symmetry of the order
parameter. We say that models that share the same critical exponents belong to the same
universality class [17].
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Finite size scaling

When we do simulations, our system will always have a limited size. This will dampen
the effects described in the previous subchapter, such as the abrupt change in the order
parameter or the diverging magnetic susceptibility and specific heat at continuous tran-
sitions. Instead, χ and cV will have peaks of finite size near the critical value[17]. Of
course, the larger the system, the closer we should get to the behaviour in the thermo-
dynamic limit. For that reason, we would expect the diverging quantities to scale with
the system size L, and that is indeed the case. This scaling is usually through a power
law, i.e. Γ ∝ L−p, where Γ is the diverging quantity and p is an exponent unique to Γ [6].

Finite size scaling is not limited to diverging quantities, however. There are quantites
that do not have a peak when plotted against temperature, but still change shape as we
increase the system size L. For some of them, we can obtain an estimate of the critical
temperature by finding the crossing-points of graphs of different L’s.

2.3 Frustration

Frustration occurs when the bonds of a system favour different orderings. This can
happen due to competing interactions, periodic boundary conditions or the structure of
the lattice.

2.4 Commensurate and incommensurate phases

Commensurate and incommensurate phases are both ordered phases. To take a chain
of continuous spins as an example, moving from site to site, the spins rotate with a
fixed angle θ for both phases. In the commensurate phase, θ/π is a rational num-
ber, so that it takes a sites for the spins to have rotated b whole periods. For the
incommensurate phase, θ/π is an irrational number, so that there is no number of sites
a for which the spins have rotated a whole number of periods. The magnetic ordering
wave vector is related to the angle θ, so we can tell whether or not the system is in the
incommensurate phase by looking at the magnetic ordering vector and the order pa-
rameter, like we did with figure (1.1). The concept of commensurability and incomen-
surability generalize to multidimensional systems and quantities other than the spin,
such as charge density or electric polarization [21].

In experiments, it might be difficult to distinguish between incommensurate phases
and commensurate phases with long periods due to limited resolution of the measure-
ments [21]. Simulations being a sort of experiment, this is something we ourselves must
take into account. We have limited resolution on our q-vectors and thus cannot say with
certainty that the phase we have detected is truly incommensurate. We can, however,
determine if the angle of rotation is somewhere in between ferromagnetic (θ = 0) and
antiferromagnetic (θ = π). If θ/π is a fraction, we will say that the system is in the
incommensurate phase, even though that may not be strictly true.
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Incommensurate phases typically arise in models with competing interactions [3]. If
these interactions favour different commensurate orderings, an incommensurate order-
ing might be energetically preferable, depending on the couplings. We might consider
a chain of rotating spins with a nearest neighbour Heisenberg coupling J1 and a next-
nearest Heisenberg coupling J2. With periodic boundary conditions, its energy is

E = J1 ∑
i

Si · Si+1 + J2 ∑
i

Si · Si+2 = N [J1 cos θ + J2 cos (2θ)] (2.18)

which is minimized for the incommensurate ordering

θ = arccos
(
− J1

4J2

)
when 4 |J1| < J2, J2 > 0 (2.19)

We prove that this is indeed the minima in Appendix E. Evidently, we can model
incommensurate phases for LiNiPO4 by generalizing this simple model to the face-
centered cubic lattice, which we will discuss in section 2.9. All our proposed models
[13], [15] and [25] actually include competing nearest- and next-nearest neigbour inter-
actions.

2.5 Microscopic origin of the interactions

This section is meant as a motivation for the different terms in the Hamiltonians of [13],
[15], [25]. The microscopic interactions that cause the different terms are briefly stated,
and then the Hamiltonian for that interaction is given.

2.5.1 Heisenberg interactions

There are two mechanisms that may to Heisenberg terms: direct exchange and superexchange[12].
In LiNiPO4, the direct exchange can be found by considering the potential energy be-
tween two magnetic Ni2+-ions. Massaging the expression for the potential energy, one
ends up with an ordinary Coulomb term and a term that accounts for Pauli’s exclusion
principle, the latter of which leads to a ferromagnetic interaction for this material[12].

The mechanism of superexchange occurs when an electron is transferred from one
magnetic ion, A, to another, B, through a non-magnetic ion situated somewhere in be-
tween them. After the transfer, an electron moves from B to A[12]. Using perturbation
theory, one can show that the superexchange accounts for both ferromagnetic and anti-
ferromagnetic interactions.

For these two kinds of exchange interaction, we end up with terms on the form

Hnn = ∑
〈ij〉

J〈ij〉Si · Sj (2.20)

where 〈ij〉 denotes nearest neighbours i, j and the sign of J〈ij〉 determines whether
the system is ferromagnetic or antiferromagnetic. This is exactly the Hamiltonian we
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listed in section 2.2.3. Jensen states that the Heisenberg terms for LiNiPO4 are due to
superexchange[12].

2.5.2 Single-ion anisotropy

The single-ion anisotropy arises from the spin-orbit coupling

HSO = λL · S (2.21)

where λ is a constant, L is the angular momentum and S is the spin[12]. The first-
order term in perturbation theory vanishes, while the second-order term couples a spin
to itself. For LiNiPO4, we obtain the single-ion anisotropy [12]

Hs.i.an. = ∑
i

[
Dx

an (S
x
i )

2 + Dy
an
(
Sy

i
)2

+ Dz
an (S

z
i )

2
]

(2.22)

2.5.3 The Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya interaction is sometimes referred to as antisymmetric ex-
change. Microscopically, it originates from an interplay between the spin-orbit cou-
pling and the exchange interaction[12]. As with the single-ion anisotropy, it arises from
second-order perturbation theory. It takes the form of

HDM = ∑
〈ij〉

DDM · (Si × Sj) (2.23)

The Dzyaloshinskii-Moriya interaction is associated with spin canting, which is the
rotation of spins with an angle θ away from the parallel or antiparallel ordering[25].
Spin canting has been observed in LiNiPO4, which motivates the inclusion of the Dzyaloshinskii-
Moriya term in the Hamiltonian[25].

2.5.4 The Hamiltonian

Including the next-nearest neighbour Heisenberg interaction proposed in [Ref to last
chapter]

Hnnn = ∑
〈〈ij〉〉

J〈〈ij〉〉Si · Sj (2.24)

The total Hamiltonian becomes

H = ∑
〈ij〉

J〈ij〉Si · Sj + ∑
〈〈ij〉〉

J〈〈ij〉〉Si · Sj

+ ∑
〈ij〉

DDM · (Si × Sj) + ∑
i

[
Dx

an (S
x
i )

2 + Dy
an
(
Sy

i
)2

+ Dz
an (S

z
i )

2
]

(2.25)
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2.6 Bravais lattices

Bravais lattices are grid structures where all points are equivalent, i.e. if we move from
one point to another on the lattice, the surroundings will look the same. Any site on
the Bravais lattice can be found by a linear combination of what is called the primitive
unit vectors ai of the lattice. These are neither parallel nor residing in the same plane.
In three dimensions, the position of a site is given by [11]

R = n1a1 + n2a2 + n3a3 (2.26)

where the indices n1, n2 and n3 are integers. The exact form of the ai’s depends on
the lattice. There are several types of Bravais lattices. They can be sorted according to
their primitive unit cell, i.e. the cell which only have sites at its corners. For instance,
the primitive cubic unit cell is exactly that, a cube. The primitive orthorhombic unit cell
also have corners of 90◦, but the length of the sides are all different [11].

There are three kinds of cubic Bravais lattices: The primitive, the body-centered and
the face-centered cubic lattice. The body-centered lattice has a site in the middle of
the unit cell, while the face-centered unit cell has one site at the middle of each face.
Orthorhombic systems can also have body-centered and phase-centered unit cells. The
magnetic unit cell of LiNiPO4 is in fact face-centered orthorhombic, but we chose to
consider the face-centered cubic lattice and adjust the couplings instead.

2.6.1 The reciprocal lattice

Each Bravais lattice has a reciprocal lattice, which resides in momentum space rather
than in real space. The sites of the reciprocal lattice can also be given by a vector, which
we will denote by q. The q’s are the wave vectors of a planar wave eiq·r with the same
periodicity as the lattice. We can use this to find the primitive unit vectors bi of the
reciprocal lattice [11]. Enforcing said periodicity yields a constraint

eiq·(R+r) = eiq·r ∀ r, R → eiq·R = 1 (2.27)

where R is given by Eq. (2.26). Consequently, q must be orthogonal to R. This offers
a way to find the bi’s of the reciprocal lattice: We take the cross product between the
primitive unit vectors ai to get orthogonal vectors, and multiply with the appropriate
factor. The bi’s are as follows[11]

b1 = 2π
vE
(a2 × a3)

b2 = 2π
vE
(a3 × a1)

b3 = 2π
vE
(a1 × a2)

(2.28)



Section 2.6 Bravais lattices 13

with vE = a1 · (a2 × a3). This is in fact the volume of the unit cell of the Bravais
lattice [11]. It is straightforward to show that

ai · bj = 2πδij (2.29)

Using a similar notation to that of R, we can express any site on the reciprocal lattice
as

q = k1b1 + k2b2 + k3b3; ki ∈ Z (2.30)

Inserting into eiq·R proves that the ki’s are indeed integers, just as the ni’s were for
the Bravais lattice. It turns out that the reciprocal lattice of the reciprocal lattice is the
Bravais lattice we started out with. In other words, the reciprocal lattice and the Bravais
lattice take each other as their reciprocal lattice. This can be shown by insertion into
another condition on the form of Eq. (2.27). Alternatively, we can say that the lattices
are Fourier transforms of one another.

It is worthwhile to note that though the reciprocal lattice in most cases is of the
same type as the original lattice, that is not the case for body-centered and face-centered
lattices with an underlying cubic or orthorombic structure [11]. Instead, they take each
other as reciprocal lattices, i.e. the face-centered cubic lattice has a reciprocal lattice
which is body-centered cubic and vice versa. The same applies to orthorombic face-
centered and body-centered lattices.

Further constraints on the momentum space indices

As we operate with a system of finite size, we can further constrain the momentum
space indices in Eq. (2.30): Instead of only requiring the planar wave to be periodic
with respect to translation from site to site in the lattice, we require it to be periodic with
translations the size of the system length. This will change the coefficients in Eq. (2.30)
We reserve ki for integers and rename the coefficients of bi to ci. We define Lj = Ljaj,
where Lj is the size of the lattice in the direction of aj. Enforcing periodic boundary
conditions on the reciprocal lattice, we have for any R

eiq·(R+Lj) = eiq·R → eiq·Lj = 1

Combined with Eq. (2.29), each j yields the relation

e2πicjLj = 1 → cos(2πcjLj) = 1 → 2πcjLj = 2πk j → cj =
k j

Lj
(2.31)

with k j being an integer. Applying this procedure in all directions, i.e. for j = 1, 2, 3
and inserting into (2.30) leads to

q =
k1

L1
b1 +

k2

L2
b2 +

k3

L3
b3 (2.32)



14 General theoretical background Chapter 2

Figure 2.1: The unit cell of the simple cubic lattice. a1, a2 and a3 are the
primitive unit vectors and a is the length of the sides. The coordinates (x,y,z)
and indices [i,j,k] of some of the sites are given.

2.6.2 The primitive cubic lattice

The primitive or simple cubic lattice is a three-dimensional lattice with only right angles
and each side of the unit cell being of equal length. Imagining a cube, there is one site at
each corner, as seen in fig (2.1). The primitive vectors coincide with the Carthesian unit
vectors, i.e. a1, a2, a3 = ax̂, aŷ, aẑ, where a is the grid length.

2.6.3 The face-centered cubic lattice

The face-centered cubic lattice (fcc) has a cubic structure with one site at each corner,
just as the primitive cubic lattice, but the fcc has an additional site at the middle of each
face. An illustration is given in figure (2.2). These sites have half-integer coordinates,
so the primitive unit vectors of the fcc are slightly more complicated than those of the
simple cubic lattice. The unit vectors are

a1 =
a
2
(1, 1, 0); a2 =

a
2
(0, 1, 1); a3 =

a
2
(1, 0, 1) (2.33)

where a is once again the length of the sides of the unit cell. Any site on the face-
centered cubic lattice can be expressed by Eq. (2.26) with these primitive unit vectors.

Consequently, the coordinates of a site are:

x =
a
2
(i + k); y =

a
2
(i + j); z =

a
2
(j + k) (2.34)

where i, j, k are the indices of the site. The unit cell of the face-centered cubic cell is
shown in Fig. (2.2). Each site of the lattice has twelve nearest neighbours.
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Figure 2.2: The unit cell of the face-centered cubic lattice. a1, a2 and a3 are the
primitive unit vectors and a is the length of the sides. The coordinates (x,y,z)
and indices [i,j,k] of some of the sites are given.

The reciprocal lattice

Doing the cross-products of Eq. (2.28) for the face-centered cubic lattice, we obtain:

b1 = 2π
a (1, 1,−1)

b2 = 2π
a (−1, 1, 1)

b3 = 2π
a (1,−1, 1)

(2.35)

It is straightforward to show that these vectors indeed satisfy the relation bi · aj =
2πδij. The components of q are given by

qx =
2π

a

(
k1

L1
− k2

L2
+

k3

L3

)
(2.36)

qy =
2π

a

(
k1

L1
+

k2

L2
− k3

L3

)
(2.37)

qz =
2π

a

(
− k1

L1
+

k2

L2
+

k3

L3

)
(2.38)
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2.7 Fourier transforms and the spin correlation function

2.7.1 Fourier transform

As the Bravais lattice and the reciprocal lattice are Fourier transforms of each other, we
will make plenty of use of the Fourier transformed spins. The Fourier transform of a
spin component is

Sα
q =

1
N ∑

r
Sα

r e−iq·r (2.39)

where α = x, y, z.

2.7.2 The spin correlation function

The spin-spin correlation function in momentum space, or spin correlation function for
short, is denoted by 〈Sα

−qSα
q〉, where Sα

q is given by Eq. (2.39). Writing it out in full

〈Sα
−qSα

q〉 =
1

N2 〈∑
r

∑
r′

Sα
r′S

α
r eiq·(r′−r)〉 (2.40)

This is just the Fourier transform of Eq. (3.5.7) in Chaikin & Lubensky [6], or the
disconnected version of (3.5.1) i Newman & Barkema [17]. The spin correlation function
is a useful property as we are interested in the periodicity q of our spins, which informs
us whether the system is commensurate or incommensurate. If we plot the value of the
spin correlation function as a function of q, its maximum will be the most significant
periodicity in our system.

Working with three-dimensional continuous spins, we will make frequent use of its
vectorial counterpart

〈S−q · Sq〉 =
1

N2 〈∑
r

∑
r′

Sr′ · Sreiq·(r′−r)〉 (2.41)

which is in fact just

〈S−q · Sq〉 = ∑
α=x,y,z

〈Sα
−qSα

q〉 = 〈Sx
−qSx

q〉+ 〈S
y
−qSy

q〉+ 〈Sz
−qSz

q〉

Finding 〈Sα
−qSα

q〉 can be optimized by utilizing one of the many excellent Fast Fourier
transforms out there. For this thesis, we have chosen FFTW, or ”The Fastest Fourier
Transform in the West” [9]. We let FFTW function compute (2.39), then find 〈Sα

−qSα
q〉 by

multiplying the result with its own complex conjugate since

Sα
−q =

1
N ∑

r
Sα

r eiq·r =

(
1
N ∑

r
Sα

r e−iq·r
)∗

=
(

Sα
q

)∗
(2.42)
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Clearly, the elements of 〈Sα
−qSα

q〉 are all real

S̃α
−qS̃α

q = S̃α
q(S̃

α
q)
∗ = |S̃α

q|2 (2.43)

2.8 The ordering wave vector and the order parameter

The ordering wave vector q = Q reflects the magnetic ordering of the system, and
gives the periodicity of the spin rotation. So far, we have only defined the uniform
magnetization of the system. It can easily be generalized to

mα (q) =
1
N ∑

r
Sα

r eir·q (2.44)

where q is a wave vector. We see that the uniform magnetization is just a special
case of Eq. (2.44), namely q = 0. If q = Q is the ordering wave vector, Eq. (2.44)
gives the order parameter of the system, described in section 2.2. However, we take the
average over a representable collection of states. To avoid a cancellation of the different
contributions, we operate with 〈m2

α (Q)〉.
〈m2

α (q)〉 is in fact equal to the spin correlation function for q, so the peak of the spin
correlation function will be the value of the order parameter, and its position will be the
ordering wave vector Q. This is the reason why we involve 〈S−q · Sq〉, since it provides
a good visual aid in determining the phase.

We mentioned in section 2.2 that the order parameter will be affected by finite size
effects whenever we do a simulation. It will not be strictly zero above the phase transi-
tion, but decrease more slowly [6]. This will make it harder to locate the phase transition
directly from the order parameter. Instead, we will use a quantity that takes mα(q) as
input.

2.9 The Binder cumulant

The Binder cumulant thoroughly simplifies the task of detecting the phase transition.
It is sometimes referred to as the fourth-order cumulant and is defined as [5]

UL = 1− 〈m
4〉L

3 〈m2〉2L
(2.45)

If we plot the Binder cumulant for different L as a function of temperature, we will
get graphs UL(T) that cross at different temperatures T∗, as seen in figure (2.3). The
locations of these crossings will in fact converge to the critical temperature Tc as L→ ∞.
This can be shown by the convergence of UL above and below the critical temperature.
For T > Tc, UL tends to zero as UL ∝ L−d, where d is the dimensionality of the lattice.
For temperatures smaller than the critical value, T < Tc, it will converge to 2/3 with in-
creasing L[5]. Therefore, the graphs must cross, and do so near the critical temperature.
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Figure 2.3: Typical behaviour of the Binder cumulants. This figure was made
by using the Bootstrap method on the model of Jensen et. al., and is repeated
in section 7.1. The magnetization is defined in terms of Eq. (2.44).

The scaling of the T∗’s with the system size L will be given in Chapter 7, and derived in
Appendix F.

The value of UL at the crossing, usually denoted by U∗, also converges to a specific
value Uc as L → ∞. This value is the same for large groups of systems. It is for in-
stance independent of the details of the lattice structure, but depends on the shape and
dimensionality of the system and the symmetry of the interactions[2]. Uc does not de-
pend solely on the universality class, however, but is also sensitive to among others the
boundary conditions and the shape of the system[4]. Studies on two-dimensional Ising
systems with competing nearest- and next-nearest neighbour interactions has shown
Uc varying with the ratio of the coupling strengths [22],[23],[1], though not by much for
the ratios we consider[23]. For these reasons, we have not compared our result for Uc
to other works.



Chapter 3

The models: An introduction

We will base our thesis on the models of three papers that suggest couplings for LiNiPO4:
one by Jensen et. al. [13], one by Li et. al. [15] and one by Toft-Petersen et. al. [25].
Jensen’s partitipation in [13] was in connection with his PhD work, which we refer to
for more information on the model. It is there, for instance, that he estimates the critical
temperatures for the model, which we will ourselves set out to find.

3.1 Jensen et. al.

Table (3.1) shows the couplings for LiNiPO4 suggested by Jensen et. al. [13] and Jensen
in his PhD thesis[12]. The couplings are identical in both publications, except for being
given with higher accuracy in the thesis. The suggested models contain both nearest and
next-nearest neighbour couplings, which gives rise to the frustration often associated
with incommensurability. The single-ion anisotropy, the paper states, will cause the
spins to favour the z-direction. We will show that this is indeed the case later on. When
one direction is energetically preferable in such a way, we say that the Hamiltonian
has an easy axis. There are no Dzyaloshinskii-Moriya couplings in the model. Jensen
justifies this by arguing that the canting is small and claims that the DM interaction is
small compared to the other interactions[12].

The parameters of the model were found using a best fit to the spin wave exita-
tion spectrum (which is called the spin wave dispersion). In order to obtain a good fit,
the single-ion anisotropies were allowed to change with temperature according to table

Table 3.1: The couplings and single-ion anisotropies found by Jensen et. al
(denoted by ’Article’) [13] and Jensen in his dissertation (denoted by ’Thesis’)
[12].

Jyz Jy Jz Jxy Jxz Dx
an Dy

an Dz
an

Article 1.04(6) 0.670(9) -0.05(6) 0.30(6) -0.11(3) 0.339(2) 1.82(3) 0
Thesis 1.036 0.6701 -0.04969 0.2977 -0.1121 0.339 1.82 0

19
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Table 3.2: How the single-ion anisotropy of Jensen et. al. varies with the
temperature. The table is taken from [12].

T [K] Dx
an Dy

an Dz
an

1.5 0.3392 0.9097 0
18.2 0.2046 0.9204 0
19.2 0.1812 0.7034 0
20.2 0.1350 0.6 0

(3.2). Table (3.1) is actually the couplings at 1.5 K. However, involving changing cou-
plings will muddle our understanding of the different terms in the Hamiltonian, so we
find it better to stick with the couplings of table (3.1).

In addition to listing the couplings, Jensen also gives the temperatures for the phase
transitions. The commensurate-incommensurate phase transition occurs at about T=
20.8 K, while the incommensurate-paramagnetic one takes place at approximately T=
21.8 K.

3.2 Li et. al.

Table (3.3) shows the couplings for LiNiPO4 suggested by Li et. al. [15]. The couplings
were found using a best fit to the spin wave dispersion. The model has a few similarities
with that of Jensen et. al.: the couplings all have the same signs and comparable sizes,
and both disregard the antisymmetric exchange (DM). However, the ratios of nearest
and next-nearest neighbour couplings will be different. It turns out that this ratio gov-
erns the incommensurability not just for the chain, but also for the face centered cubic
lattice.

Table 3.3: The couplings and single-ion anisotropies found by Li et. al
(2009)[15].

Jyz Jy Jz Jxy Jxz Dx Dy Dz
0.94(08) 0.59(05) -0.11(05) 0.26(02) -0.16(02) 0.34(06) 1.92(01) 0
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3.3 Toft-Petersen et. al.

Out of our three reference papers, Toft-Petersen et. al. is the only one that suggests a
model containing Dzyaloshinskii-Moriya terms. The couplings are given in table (3.4).
Note that except for the inclusion of the DM terms, the couplings are quite close to those
of Jensen et. al.

Referring to Eq. (2.23), the DM-vector is DDM = D14ŷ, and the interaction is only
present between neighbours in the yz-plane. Spins that are neighbours in the other
planes have no antisymmetric coupling.

Toft-Petersen et. al. found the Heisenberg couplings and the single-ion anisotropy
through low temperature spin waves. The Dzyaloshinskii-Moriya coupling was found
through measuring the angle of the spin canting[25].

Table 3.4: The couplings and single-ion anisotropies found by Toft-Petersen
et. al (2011)[25]. Dx, Dy, Dz are the single-ion anisotropies in the x, y and
z-direction, respectively, and D14 is the DM coupling between the x- and z-
components of some of the spin neighbours (see text).

Jyz Jy Jz Jxy Jxz Jxz Dx Dy Dz D14
1.002 0.67 -0.06 0.321 -0.112 -0.23 0.413 1.423 0 ±0.32





Chapter 4

Further background

This chapter will be two-fold: First, we use the spiralization parametrization for a chain
to find the effect of the different terms in the Hamiltonian. Then, we find the form of
the antiferromagnetic ordering wave vector for the chain and the face-centered cubic
lattice. This section is not included in the general theoretical background as it is based
on calculations specific to this thesis.

4.1 The spiralization parametrization for a chain

Since we shall discuss different models, we should have a better intuition of how the dif-
ferent terms in the Hamiltonian affect the state of the system. Assuming the spins rotate
with a fixed angle about some set axis of rotation, we can make use of the parametriza-
tion

S(r) = u cos (Q · r) + v sin (Q · r) (4.1)

Where u, v are normalized, orthogonal vectors in the plane of rotation. We have
done this for each term in the Hamiltonian. The details are listed in Appendix C, but
we summarize our results.

• The nearest neighbour Heisenberg favours Q = 0 (FM) or Q = π (AFM).

• Competing nearest- and next-nearest Heisenberg terms favours the incommensu-
rate ordering given by θ in Eq. (2.19).

• The Dzyaloshinskii-Moriya interaction favours Q = π/2, i.e. orthogonal spin
neighbours.

• The Dzyaloshinskii-Moriya interaction together with nearest neighbour Heisen-
berg terms favour an intermediate angle Q = arctan (±DDM/J).

• The Dzyaloshinskii-Moriya interaction together with nearest- and next-nearest
neighbour Heisenberg terms favours an intermediate angle for the couplings of
Toft-Petersen et. al. (table (3.4)).

23
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• For positive strengths Dx
an, Dy

an, Dz
an, the following applies for the single ion anisotropy

terms

1. If Dα
an > 0, the spins will favour the βγ-plane.

2. If Dα
an, Dβ

an > 0, the spins will favour the ±γ̂-direction.

3. If all Dα
an > 0, the energy will be shifted. The difference in the Dα

an’s will affect
the spin orientations.

4.2 The ordering wave vector of an antiferromagnetic sys-
tem

From Chapter 2, we know that the ordering wave vector q maximizes m(q) Eq. (2.44).
This should be the case if the ordering wave vector matches the rotation of the spins,
i.e. q = Q. We have verified this in Appendix B. For the antiferromagnetic chain, the
ordering wave vector is then q = π

a x̂.
For the fcc lattice, on the other hand, the sites take half-integer coordinates. Say

that we want to find the periodicity in the y-direction. Then the difference in the y-
coordinate between neighbours is ∆ry = a/2. If there is an antiferromagnetic ordering
between nearest neighbours in the y-direction, we need an additional factor of 2 in qy
to compensate for the reduced lattice spacing. This is explained in greater detail in
Appendix D.1. So for the fcc lattice, components of qw = 2π

a ŵ in w signifies an antifer-
romagnetic ordering in direction ŵ = x̂, ŷ, ẑ.



Chapter 5

Spin correlation functions of the models

This chapter shows plots of the spin correlation functions of the different models. The
maxima of the spin correlation function is the order parameter, so these plots are helpful
in determining the state of the system. The spin correlation function will be plotted
against K, given by q = 2π

a (0, K, 0).

5.1 Jensen et. al.

Figure (5.1) shows the spin correlation function for several temperatures T for the model
of Jensen et. al.. It shows an antiferromagnetic peak that decreases with increasing
temperature, but no sign of the incommensurate peaks. In other words, the model of
Jensen et. al. fails to account for the commensurate-incommensurate phase transition.

Since we are interested in the ordering in the y-direction, it should be sufficient to
look at the couplings Jxy, Jyz and Jy. Figure (5.2) shows a very simplified model, with
Jyz = 1.3337 and Jy = 0.6701. These couplings are derived from the second row of table
(3.1). Even with this simplified approach, the incommensurate phase does not appear.

However, if we set Jxy = 0, i.e. lower the nearest neighbour coupling to Jnn = Jyz =
1.04, the spin correlation function was found to exhibit two incommensurate peaks. A
few plots are given in figure (5.3), with and without single-ion anisotropy. Evidently,
the model of Jensen et. al. only needs a slight modification to yield an incommensurate
phase. Such modifications are further addressed in section 6.2, Chapter 8 and Appendix
G. The commensurate phase was however not found, so this is not a viable candidate
for the commensurate-incommensurate phase transition either.

In Appendix B, figure (C.11) shows two plots of another model similar to Jensen. It
shows two incommensurate peaks whose location varies very slightly with the strength
of the single-ion anisotropy. Note that the difference in single-ion anisotropy is very
large.

25
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Figure 5.1: The spin correlation function for the model of Jensen et. al. for
several temperatures.

Figure 5.2: The spin correlation function for Jyz = 1.3337 and Jy = 0.6701, a
simplified version of the Jensen et. al. model. We have included the plots of
T= 5 K and T= 10 K. There is no incommensurate phase.
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Figure 5.3: The spin correlation function for Jyz = 1.04 and Jy = 0.67, a
simplified version of the Jensen et. al. model. We have included the function
at T= 1.5 K and T= 10 K. For the upper two plots there is no single-ion
anisotropy, while the lower two plots have Dx

an = 0.34 and Dy
an = 1.82.
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5.2 Li et. al.

Figure (5.4) shows the spin correlation function for the model of Li et. al. for a set of
different temperatures. Only the antiferromagnetic peak is present, so this model fails
to account for the commensurate-incommensurate phase transition.
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Figure 5.4: The spin correlation function for the model of Li et. al. for several
different temperatures. No incommensurate peaks were found.

5.3 Toft-Petersen et. al.

Figure (5.5) shows the spin correlation function for a set of different temperatures for
the model of Toft-Petersen et. al. We identify the incommensurate peaks, but see no
antiferromagnetic peak for any temperature. Though the model captures the incom-
mensurate phase, it therefore fails to account for the commensurate-incommensurate
phase transition.
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Figure 5.5: The spin correlation function for the model of Jensen et. al. for
several temperatures.



Chapter 6

Ordering in the y-direction of the
face-centered cubic lattice

The Hamiltonian with nearest and next-nearest neighbour Heisenberg couplings in all
directions reads

H = Jxz ∑
〈ij〉xz

Si · Sj + Jx ∑
〈〈ij〉〉x

Si · Sj + Jz ∑
〈〈ij〉〉z

Si · Sj

+ Jxy ∑
〈ij〉xy

Si · Sj + Jyz ∑
〈ij〉yz

Si · Sj + Jy ∑
〈〈ij〉〉y

Si · Sj (6.1)

where we have ordered the terms according to how they couple spins in the y-
direction. 〈ij〉 denotes neighbours ij in the given direction, while 〈〈ij〉〉 denotes next-
nearest neighbours in the given direction. The first line of the equation only contains
couplings between spins in the same y-layer of the crystal, while the two next terms
contains all couplings between adjacent y-layers and the last term couples spins two
y-layers apart.

Applying the condition of spiralization, Eq. (4.1) yields a formidable Hamiltonian.

H =
1
2

Nxz Jxz

[
cos

(
Qxa

2
+

Qza
2

)
+ cos

(
Qxa

2
− Qza

2

)]
+Nx Jx cos(Qxa) + Nz Jz cos(Qza)

+
1
2

Nxy Jxy

[
cos

(
Qxa

2
+

Qya
2

)
+ cos

(
Qxa

2
−

Qya
2

)]
+

1
2

Nyz Jyz

[
cos

(
Qya

2
+

Qza
2

)
+ cos

(
Qya

2
− Qza

2

)]
(6.2)

+JyNy cos(Qya)

Nα being the number of bonds in the α-direction. However, we will primarily be
interested in a system with ordering wave vector q = 2π

a (0, K, 0). The ordering wave
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vector matches the spiralization of the spins, i.e. Q = q, just as we verified in Appendix
B. Therefore, we will enforce Qx = Qz = 0.

Now, the Hamiltonian (6.2) simplifies to

H = A + (JxyNxy + JyzNyz) cos
(

Qya
2

)
+ JyNy cos(Qya)

where the terms without a Qy-dependence have been merged to form a constant A.
We take the derivative to find the extremal points

∂E
∂Qy

= − a
2
(JxyNxy + JyzNyz) sin

(
Qya

2

)
− 2aJyNy sin

(
Qya

2

)
cos

(
Qya

2

)
= 0

[
(JxyNxy + JyzNyz) + 4JyNy cos

(
Qya

2

)]
sin
(

Qya
2

)
= 0

This is equivalent to what Nagamyia found in 1967 by Fourier transforming the
couplings[16]. One solution of the equation is

sin
(

Qya
2

)
= 0 → Qy =

2πn
a

where n is an integer. If n is odd, we have an antiferromagnetic ordering, and if n is
even, we have a ferromagnetic ordering.

To find the other solution, we equate the terms in the bracket to zero. Rearranging,
we obtain

cos
(

Qya
2

)
= −

JxyNxy + JyzNyz

4JyNy
(6.3)

or

Qya =
2
a

arccos
(
−

JxyNxy + JyzNyz

4JyNy

)
When the right-hand side of Eq. (6.3) is ±1, the ordering is ferromagnetic or an-

tiferromagnetic. If the right hand side is somewhere in between -1 and 1, however,
incommensurate ordering is favoured.

The number of bonds depends on the boundary conditions of the systems. For pe-
riodic boundary conditions, Nxy = Nyz = Nxz = 2N and Nx = Ny = Nz = N, where
N is the number of spins in our systems. Table (6.1) lists the number of bonds for the
face-centered cubic lattice with open boundary conditions in the y-direction. The ratio
between the number of next-nearest and nearest neighbour bonds tends to two as the
system size increases.

The solution (6.3) favours an incommensurate ordering in the y-direction. The solu-
tion is only available for JxyNxy + JyzNyz ≤ 4JyNy, however. In the limit of Nxy = Nyz =
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Table 6.1: The number of bonds for the face-centered cubic lattice with open
boundary conditions in the y-direction for an L× L× L lattice.

4 6 8 10 12 14 16 18 20 22
Nxy 112 408 992 1960 3408 5432 8128 11592 15920 21208
Nyz 112 408 992 1960 3408 5432 8128 11592 15920 21208
Nxz 128 432 1024 2000 3456 5488 8192 11664 16000 21296
Ny 60 210 504 990 1716 2730 4080 5814 7980 10626
Nz 64 216 512 1000 1728 2744 4096 5832 8000 10648
Nxy/Ny 1.867 1.943 1.968 1.980 1.986 1.990 1.992 1.994 1.995 1.996

Nxz = 2N and Ny = N, this simplifies to Jxy + Jyz ≤ 2Jy. Discarding the ferro- and
antiferromagnetic solutions, incommensurate phases in the y-direction might be found
for

1
4
(

JxyNxy + JyzNyz
)
< JyNy for general N (6.4)

and

1
2
(

Jxy + Jyz
)
< Jy in the limit of Ny = N, Nxy = Nyz = 2N (6.5)

The incommensurate state has the lowest energy when the inequality (6.4) holds,
which we have shown in Appendix E.

6.1 Discussion

By inspecting table (6.2), we can easily compare the sides of the inequality (6.5) in order
to determine if the system is in the incommensurate regime. The model of Li et. al. fails
the condition for incommensurability, meaning that we should not expect to observe
such a phase at all. Our inspection of the spin correlation function in Chapter 5 agrees
with this analysis.

The condition does however hold for the model of Jensen et. al. presented in [13].
Consequently, we would expect to observe an incommensurate phase for Jyz + Jxy =

Table 6.2: The couplings of the models, together with the right hand side of
the condition (6.5). If the number in the second to last row is smaller than the
number in the last row, the incommensurate phase has the lowest energy.

Jxy Jyz
1
2

(
Jxy + Jyz

)
Jxy

Jensen, paper 0.3 1.04 0.67 0.67
Jensen, thesis 0.2977 1.036 0.66685 0.6701

Li 0.26 0.94 0.6 0.59
Toft-Petersen 0.321 1.002 0.6615 0.67
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Table 6.3: A comparison of the energy for couplings in Jensen’s regime. There
is a very little energy difference between the incommensurate and the antifer-
romagnetic ordering of spins in the y-direction. The energies are per particle,
and are given by Eq. (E.2) and (E.5) in Appendix E.

N regime Jyz Jy I.C. A.F. Total diff. Rel. diff.
Nyz = 2Ny 1.3337 0.6701 -1.99733 -1.9973 3.2 · 10−5 1.6 · 10−5

Nyz = 2Ny 1.34 0.67 -2.01 -2.01 0 0
L = 8 1.3337 0.6701 -1.9552 -1.9546 5.8 · 10−4 3.0 · 10−4

L = 8 1.34 0.67 -1.96746 -1.96712 3.4 · 10−4 1.7 · 10−4

1.3337 and Jy = 0.6701. Nevertheless, we see no such ordering in our plots of the spin
correlation function.

We note that the inequality does not hold for Jyz = 1.04, Jxy = 0.30, Jy = 0.67
as the two sides are identical. If we take the open boundary conditions into account,
though, incommensurability is permitted. We see this as inequality (6.4) does hold for
the system sizes we run. However, we do not find such a phase for these couplings
either.

We might consider the energy for the different extremal points. The ferromagnetic
ordering maximizes the energy and is of no interest to us. The energy per spin for the
systems with incommensurate and antiferromagnetic ordering in the y-direction are
listed in table (6.3) for the couplings of Jensen and Jensen et. al. as presented in [12] and
[13]. The phases are revealed to be close in energy, with an energy difference per particle
of less than 10−3 meV for L = 8. This energy difference corresponds to a temperature of
0.012 K, so the system should not be sensitive to it at the temperatures we consider.

Of course, we have made an approximation in assuming spiraling spins. This is ex-
cellent for finding the ground state, but at non-zero temperatures, thermal excitations
will appear and make the system less ordered. Spins might deviate from the spiraliza-
tion, possibly by a lot. States like these are not covered by our approximation, so we do
not know what their energies will be. The antiferromagnetic and the incommensurate
ordering of Jensen et. al. are very close in energy, so there is the possibility that slightly
unordered states close to the perfect AF ordering are more energetically favourable or
more easily accessible than those close to the perfect incommensurate (IC) ordering. If
that is the case, we will only see the antiferromagnetic phase. If we are further within
the incommensurate regime defined by inequality (6.4), the difference between the en-
ergy of the AF ground state and the IC ground state will be larger, and we will observe
the incommensurate state. Tweaking the couplings of Jensen et. al. somewhat, we can
find where we first spot the incommensurate peaks.
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Figure 6.1: The spin correlation for T = 11K using Jensen’s model with Jxy
replaced by 0.10. The system shows two incommensurate peaks.

6.2 The incommensurate phase

The system is not incommensurate for Jensen’s set of parameters, but can we find a set
of couplings for which it is true? As we found in the previous subchapter, Jensen’s next-
nearest neighbour couplings are just small enough compared to Jy for Eq. (6.5) to hold.
Since we cannot find the incommensurate phase for these couplings, we should try to
lower Jxy + Jyz so that we are further within this regime. We choose to change Jxy while
keeping all the other parameters of the model as they are.

Figures (6.1) to (6.3) show the spin correlation functions for Jxy = 0.10, Jxy = 0.11 and
Jxy = 0.12 for the 20× 20× 10 fcc. For these values, Jxy + Jyz corresponds to 1.14, 1.15
and 1.16, respectively. By Eq.s (2.36) to (2.38), the spacing between our k’s is ∆k = 0.1,
so the incommensurate peaks should be visible in all plots. We see that the system is
in the incommensurate state at Jxy = 0.10 and the antiferromagnetic state at Jxy = 0.12.
At Jxy = 0.11, we identify a single peak of the spin correlation function, but the peak
is broader than for Jxy = 0.12. This could imply that the system is on the verge of
incommensurability. Keeping this in mind, we conclude that the incommensurate phase
disappears somewhere between Jxy + Jyz = 1.14 and Jxy + Jyz = 1.16. This is equivalent

to a ratio of nearest- and next-nearest neigbour couplings Jxy+Jyz
Jy

between 1.70 and 1.73.
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Figure 6.2: The spin correlation for T = 11K using Jensen’s model with Jxy
replaced by 0.11. The system no longer exhibits two incommensurate peaks,
but the spin correlation function is a bit broader at the bottom.

Figure 6.3: The spin correlation for T = 11K using Jensen’s model with Jxy
replaced by 0.12. The system no longer shows any trace of the two incom-
mensurate peaks.



Chapter 7

Results from the finite size scaling
analysis

The finite size scaling of crossing points is derived in Appendix F. Using the results
(F.4), (F.6) and (F.7) together with δ = t = T−Tc

Tc
, we wind up with a couple of scaling

relations that we can use to find ν and the first irrelevant exponent ω. From the value
of the temperature at the crossing, we got

T∗ = Tc + xL−1/ν−ω (7.1)

or

log(T∗ − Tc) = −
(

1
ν
−ω

)
log L + log x (7.2)

where x is some constant that does not depend on L. We get a similar relation for the
value of the Binder cumulant at the crossing

U∗ = Uc + bL−ω (7.3)

or

log(U∗ −Uc) = −ω log L + log b (7.4)

In Appendix F, we also found that the derivative s of the Binder cumulant can be
used to find an estimate 1/ν∗ of 1/ν, where

1
ν∗(L)

=
1

ln
(

1 + ∆L
L

) ln
(

s (t∗, L + ∆L)
s (t∗, L)

)
(7.5)
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Figure 7.1: The Binder cumulants for the model of Jensen et. al. The magne-
tization is defined in terms of Eq. (2.44) with the antiferromagnetic ordering
wave vector.

Figure 7.2: The heat capacity per particle for the model of Jensen et. al.
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Figure 7.3: The magnetic susceptibility per particle for the model of Jensen
et. al. The susceptibility is in terms of the z-component of the spin.

7.1 Jensen et. al.

Figures (7.1) to (7.3) show plots of several quantities that are of interest when doing
finite size scaling: The Binder cumulant, the magnetic susceptibility and the specific
heat capacity. L gives the size of the system, as we have studied an L× L× L lattice. We
have employed open boundary conditions in the y-direction. The simulations used to
generate these overview plots were done with 10 000 equilibration sweeps and 10 000
lattice sweeps per bin in 100 bins. We merged output from three different sets of random
number seeds. We see that the Binder cumulants takes the form described in section 2.9,
and that the peaks of the susceptibility and heat capacity move towards lower β with
increasing system size. Other than the drift in the temperature, the peaks of the latter
quantities increase in magnitude with increasing L. We will find a few critical exponents
from the drift in a while. First, we will extract information from the Binder cumulant
crossings, to which end 106 latttice sweeps were used.

Making plots of Eq.s (7.2) and (7.4), we expect the data points to give a straight line.
We could make the plots and read the critical exponents off the slopes. However, that
would require us to know Tc and Uc in advance, which we do not. Instead, we will plot
graphs of T∗ and U∗ against L−p for different p and observe when the points appear to
reside on a line. Those values of p will be our estimate of the critical exponents. We used
figures such as (7.4) and (7.5) to evaluate the suitabillity of the exponent p. Numpy’s
polyfit function is plotted as a dashed line to help guide the eye.

For small system sizes, correction terms to Eq.s (7.1) and (7.3) will have a larger
effect. For that reason, we will try to weight figure (7.5) more than figure (7.4) in our
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Table 7.1: A comparison of the critical exponents of different systems. The
3D Ising and Heisenberg models are taken from [6]. The results from our
simulations are listed under the second horizontal line.

Type α γ ν
Ising, theory 0.11 1.24 0.63
Ising, experiments 0.11+0.01

−0.03 1.24+0.16
−0.04 0.63± 0.04

Heisenberg, theory -0.12 1.39 0.71
Heisenberg, experiment 0.1+0.05

−0.04 1.4± 0.07 0.7± 0.03
Jensen, χ and cV 0.22±0.06 1.2±0.3 0.50±0.13
Jensen, Binder, visual – – 1.0±1.4
Jensen, Binder, curve_fit – – 0.7±0.4

Figure 7.4: An example of the plots used to find a range for the exponent
1
ν + ω. All points are included.
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Figure 7.5: An example of the plots used to find a range for the exponent
1
ν + ω. The smallest system size is left out.

evaluation of the different p’s. Still, we might weight the small system sizes too much.
In order to find Tc and Uc, we will use polyfit to find the straight line using L−p for

the p’s we found from the visual inspection. The slope and the intersection with the
y-axis will then correspond to the weight and the critical value, respectively. Since these
are found by a fit to a set of points, they are related quantities, and we cannot use Eq.
(A.9) of Appendix A.2 to estimate the uncertainty. Instead, we will take the somewhat
crude approach of finding the critical value for p + ∆p, p and p − ∆p and giving the
uncertainty from these.

We have chosen to consider the crossings between L and L + 4. Strictly speaking,
this means increasing ∆L

L by a factor of two compared to L, L + 2. The derivation of the
finite size scaling was done assuming ∆L

L to be small, which holds better for ∆L = 2
than it does for ∆L = 4.

However, the standard deviation of the crossings is lower for ∆L = 4 than for
∆L = 2, as seen from table (7.2). This is because the slopes of the graphs differ more for
∆L = 4, as we can see by figure (7.6). When two graphs have almost the same slope,
small variations in the U∗(T)’s will affect the location of the crossing quite a bit. The
Bootstrap method is based on random sampling, so such variations will definitely ap-
pear. The only way to decrease this effect is to increase the length of our simulations.
As mentioned in Appendix A.2, the standard deviation of the mean scales as roughly
1/
√

Nsim, where Nsim is the number of measurements. Obtaining significantly better
results clearly costs a lot of computation time.

The values of T∗ are plotted against L−1 for both ∆L in figures (7.7) and (7.8). Both
plots show T∗ decreasing monotonously as a function of the inverse length, except for
the points L = 14 and L = 16 for ∆L = 2. However, these T∗ do decrease monotonously
within the error bars, just as for ∆L = 4. Due to the seemingly non-monotonous behav-
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Figure 7.6: The results of one Bootstrap run for large L. To the left is the
Binder cumulant crossings for ∆L = 2, and the right is for ∆L = 4. The
slopes clearly differ more for ∆L = 4 than for ∆L = 2.

Table 7.2: Standard deviations for T∗ and U∗ from the crossings of L, L + 2
and L,L + 4. Since we consider several different L, we look at the average
standard deviations.

T, ∆L = 2 T, ∆L = 4 U, ∆L = 2 U, ∆L = 4
Average error 0.0014 0.0010 0.0010 0.00069

ior, we found it easiest to inspect L, L + 4.
The first column of table (7.3) shows the results of the visual inspection. All simula-

tions were done with 106 lattice sweeps. As the results were found by visual inspection,
the error bars on the critical exponents are quite large. Even though we found Tc and
Uc through the critical exponents, they have a much lower uncertainty.

In an effort to decrease the error bars on the critical exponents, we have tried another
approach. We can apply scipy’s optimize.curve_fit-function to obtain a least-squares fit
of Eq.s (7.1) and (7.3) to find the values. We will use the best-fit parameters to plot Eq.s
(7.2) and (7.4) as a visualization. Obviously, a three-parameter fit of only a few values
is a bit shaky. Furthermore, the fit will weight the crossing points of the small system

Table 7.3: An estimate of the critical exponents ω and 1
ν from the finite-size

scaling analysis. The critical temperature Tc and Uc is also included. The data
were found by analysis of the crossings between L and L + 4.

Analysis ω 1
ν + ω 1

ν ν Tc Uc
Visual 3±1 4±1 1.0±1.4 1.0±1.4 14.736±0.007 0.411±0.003
Curve fit 3.6±0.7 5.1±0.3 1.5±0.8 0.7±0.4 14.7436±0.0017 0.414±0.004
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Figure 7.7: The crossing temperatures T∗ plotted against L−1 for different L,
L + 2. 106 lattice sweeps were used in the Monte Carlo procedure.

Figure 7.8: The crossing temperatures T∗ plotted against L−1 for different L,
L + 4. 106 lattice sweeps were used in the Monte Carlo procedure.
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Table 7.4: The critical temperature and critical exponents from the finite-size
scaling analysis of the Binder crossings. The first column denotes what kind
of crossing points we have fed into curve_fit. ”av” is simply the average
from our Bootstrap procedure. To generate ”av+stdv”, the standard deviation
has been added to the average at each point. For ”av-stdv”, the standard
deviation has been subtracted.

Crossing between Tc x 1
ν + ω

L, L+2, av 14.7429±0.0015 736±379 4.9±0.3
L, L+2, av+stdv 14.7446±0.0016 777±435 4.9±0.3
L, L+2, av-stdv 14.7412±0.0014 698±329 4.9±0.3
L, L+4, av 14.7438±0.0017 608±529 5.1±0.5
L, L+4, av+stdv 14.7451±0.0017 680±620 5.2±0.5
L, L+4, av-stdv 14.7424±0.0017 545±453 5.0±0.5

Table 7.5: The value of the Binder cumulant at the critical temperature, Uc,
and critical exponent ω from the finite-size scaling analysis of the Binder
crossings. The first column denotes what kind of crossing points we have
fed into curve_fit. ”av” is simply the average from our Bootstrap procedure.
To generate ”av+stdv”, the standard deviation has been added to the average
at each point. For ”av-stdv”, the standard deviation has been subtracted.

Crossing between Uc b ω
L, L+2, av 0.4117±0.0018 -40.0±30.9 3.7±0.4
L, L+2, av+stdv 0.4139±0.0016 -29.6±17.8 3.5±0.3
L, L+2, av-stdv 0.4096±0.0020 -55.1±53.8 3.9±0.6
L, L+4, av 0.4116±0.0016 -44.3±35.5 3.9±0.5
L, L+4, av+stdv 0.4132±0.0016 -33.7±23.3 3.7±0.4
L, L+4, av-stdv 0.4102±0.0017 -59.5±55.2 4.1±0.5

sizes just as much as the crossing points of the larger ones. This is unfortunate since the
smaller system sizes are more vulnerable to correction terms.

Tables (7.4) and (7.5) show the result of applying curve_fit to the data. We have
included the results from the crossing between L and L + 2 and crossings between L
and L + 4. Additionally, we have added and subtracted the standard deviation at each
point to see how the uncertainty in our crossings affects the results. A plot of Eq. (7.2)
for ∆L = 2 and ∆L = 4 is given in figure (7.9). We clearly see that ∆L = 4 gives the
best approximation to a straight line, which is what we want. In plotting U∗ for the two
values of ∆L, we get a plot similar to figure (7.9). In using curve_fit, we will therefore
consider the Binder crossings of ∆L = 4, just as we did for the visual inspection.

Tables (7.6) and (7.7) take the uncertainty in both the weight and the crossings into
account. The data were fit to Eq.s (7.1) and (7.3), but this time with the weight fixed, so
that there were only two parameters to find. This was done for a series of weights in the
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Figure 7.9: A plot of Eq. (7.2) using the averages from table (7.4) from the
crossing between system L and L+2 (left) and L and L+4 (right). We expect a
straight line in this log-log plot, which is best accomplished by L and L+4.

Table 7.6: The ranges of Tc and 1
ν + ω found from varying the weight in Eq.

(7.1).

System sizes Smallest Tc Largest Tc Smallest 1
ν + ω Largest 1

ν + ω
L, L+2 14.7397441803 14.7445175992 4.44296833505 5.09350410004
L, L+4 14.7418466153 14.745259632 4.72679379627 5.38412071062

Table 7.7: The ranges of Uc and ω found from varying the weight in Eq. (7.3).

System sizes Smallest Uc Largest Uc Smallest ω Largest ω
L, L+2 0.410021054892 0.417156448785 2.84284497249 4.0128773809
L, L+4 0.410037480382 0.417420188693 2.88781767779 4.2782802545
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Figure 7.10: How our estimate of the exponent 1
ν + ω varies with the weight

in (7.1), denoted by x. The fitting was done by curve_fit. The middle graph,
”mid”, was found by feeding the average from the Bootstrap procedure to
curve_fit. To generate ”mid+stdv”, the standard deviation has been added
to the average at each point before feeding the data. For ”mid-stdv”, the
standard deviation was subtracted. The data set was generated by studying
the crossings of the graphs with dimensionality L and L + 2.
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Figure 7.11: An estimate of the exponent 1/ν from the slope of the Binder
cumulants, as found by Eq. (7.5). The data set was generated by studying the
crossings of the graphs with dimensionality L and L + 2.

range given in table (7.4) and (7.5), yielding a lot of different fits. The standard devia-
tions were added or subtracted to the data set to yield even more fits. The smallest and
the largest parameters from these fits are given in tables (7.6) and (7.7). The dependence
of the weight is visualized in figure (7.10).

We have also attempted to find the exponent 1/ν by the slope of the derivative at
the crossing, by applying Eq. (7.5) at every Bootstrap step after the crossing T∗ has
been found. Unfortunately, the uncertainty in the approximation was too large to yield
anything useful, with the standard deviation often surpassing the average itself. The
uncertainty actually increases with L. For small L, s(t∗, L) is significantly smaller than
s(t∗, L + 2), as seen from figure (7.6). The argument of ln is then quite large, and ln(x)
changes slower for large x . For large L, the Binder cumulants of L and L + 2 have
almost the same slope, so that T∗ and hence the s(t∗, L)’s vary more. In this regime, the
logarithm changes faster, so there should be a larger spread in 1/ν∗. So the standard
deviation increases with L. This is unfortunate since 1/ν∗(L) should converge to 1/ν as
L→ ∞.

The magnetic susceptibility

The peak of the magnetic susceptibility scales as

χmax(L) = Lγ/νχ̃
(

L1/νt
)

(7.6)
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Table 7.8: The critical temperature and the critical exponent found from
finite-size scaling of the magnetic susceptibility and the heat capacity per par-
ticle.

α/ν γ/ν 1/ν ν α γ Tc
0.432± 0.003 2.33± 0.09 2.0± 0.5 0.50± 0.13 0.22± 0.06 1.2± 0.3 14.72± 0.03

in the vicinity of the phase transition. χ̃
(

L1/νt
)

is called the scaling function for the
susceptibility, and it does not depend on the system size[17]. t is the reduced tempera-
ture, t = T−Tc

Tc
. As opposed to Eq. (7.1) and (7.3), χmax is directly proportional to Lγ/ν,

so the critical exponent can easily be found by taking the logarithms on both sides

log (χmax) =
γ

ν
log(L) + log

(
χ̃
(

L1/νt
))

(7.7)

The data from our simulations were run through the Bootstrap procedure, locating
the maxima at every step. The data for this section and the next were generated using
105 equilibration sweeps, 100 bins and 105 lattice sweeps per bin. Numpy’s polyfit
function was used to make a least squares line fit of the logarithm of the data points.
The results of the simulation are listed in table (7.8).

The peak of the magnetic susceptibility also moves with temperature for different
system sizes. The scaling goes as [17]

Tχmax(L) = Tc + xmaxL−1/ν (7.8)

where xmax is constant with respect to L. Again, we perform a visual inspection of
the data points vs L−p. The results are listed in table (7.8) together with those from Eq.
(7.7).

The specific heat

The specific heat scales as

cV,max(L) = Lα/ν c̃
(

L1/νt
)

(7.9)

where c̃ is the scaling function for the specific heat. Just as χ̃, c̃ does not depend on
L [17]. We can read the exponent α/ν off of the slope of the log-log plot

log (cV,max) =
α

ν
log(L) + log

(
c̃
(

L1/νt
))

(7.10)

The results are listed in table (7.8). The critical exponents found from cV and χ,
namely α, γ and ν, are also listed in table (7.1).

The uncertainty in ν found by Eq. (7.8) is much smaller than the ones we found from
the treatment of the Binder cumulant. Even though ν found from curve_fit had quite
a small uncertainty as well, that approach weighted all system sizes the same. In our
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Table 7.9: The critical temperature found using finite-size scaling of the dif-
ferent quantities.

Binder, visual Binder, curve_fit From Tχmax(L)
Tc 14.736±0.007 14.736±0.0017 14.72±0.03

visual analysis of Tχmax , we were able to ascribe the data points of large L with more
significance. That will help compensate for the effect of correction terms, which might
not be negligible for small systems.

We also have multiple estimates of the critical temperature, gathered in table (7.9).
Yet again, we don’t put too much emphasis on the results of curve_fit: the error estimate
on Tc is probably too small to compensate for possible correction terms in Eq. (7.1). For
the other two quantities, we had the possibility of reducing that bias. Tc from Tχmax(L)
seems to depend more strongly on ν than Tc from T∗ does, since it had the smallest error
in ν and the largest uncertainty in Tc. The first row of table (7.9) therefore seems like the
more reliable option.

We can compare our critical exponents with those of 3D Ising and Heisenberg mod-
els listed in table (7.1). Our exponent ν agrees with the one of 3D Ising within the
uncertainty, as do γ. α, however, is a bit too large to fit with either of the models, but
it is closer to exponent of the 3D Ising model than to the 3D Heisenberg. Since the
Hamiltonian have an easy axis, our system is practically the same as the Ising system.

7.2 Li et. al.

Figures (7.12) to (7.14) show the Binder cumulant, the heat capacity per spin and the
magnetic susceptibility for the model of Li et. al. for different L’s. The simulations were
run with 10 000 equilibration sweeps, 100 bins and 10 000 lattice sweeps per bin. The
Binder cumulant was studied closer to estimate the values of Tc and Uc. We performed
the visual inspection we did in the previous chapter to arrive at the results of table
(7.10). The results were generated using 106 lattice sweeps per bin. We note that the
critical temperature is Tc = 14.978± 0.006 a bit higher than that of Jensen et. al.

Table (7.11) shows that the value of Uc is the same for the models of Jensen et. al.
and Li et. al. within the uncertainty. The models differ by the strengths of the cou-
plings, which should not affect the universality class. We know that the critical value
of the Binder cumulant is not unique within a given universality class, but depends on

Table 7.10: The results from analyzing the Binder cumulant of Li et. al. Visual
inspection of the plots were used to determine the exponents, and Tc and Uc
found from there.

1
ν + ω ω 1

ν ν Tc Uc
5± 1 4± 1 1.0± 1.4 1± 1.4 14.978± 0.006 0.411± 0.003
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Figure 7.12: The Binder cumulants for the system of Li et. al. The Binder
cumulant was found in terms of the z-component of the magnetization in Eq.
(2.44) for the antiferromagnetic ordering wave vector.

Figure 7.13: The heat capacity per particle for the system of Li et. al.

Table 7.11: The critical value of the Binder cumulant, Uc, for the models of
Jensen et. al. and Li et. al. The values are the same within the uncertainty.

Jensen, visual Jensen, curve_fit Li, visual
Uc 0.411±0.003 0.414±0.004 0.411± 0.003
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Figure 7.14: Magnetic susceptibility in the z-direction per particle for the sys-
tem of Li et. al.

the boundary conditions and the shape of the system. These are however fixed in our
simulations, so we do expect to get the same value of Uc for the two systems.

In section 2.9, we also mentioned reports of Uc depending on the relative strengths
of the couplings in the frustrated 2D Ising model. Fig. 4 of [23] shows that for a large
interval of ratios, Uc hardly changes. The couplings of Li et. al. and Jensen et. al. actu-
ally belongs to this interval. Since such an interval exists, our findings do not contradict
those of [22], [23] and [1].

7.3 Toft-Petersen et. al.

Figure (7.15) shows the Binder cumulant for three different system sizes. The Binder
cumulant remains small for all system sizes, so there clearly is no antiferromagnetic-
paramagnetic phase transition for this model. The results of Appendix C, which focuses
on the spin chain, suggests that this model should exhibit an incommensurate phase.
This is confirmed by our observations in section 5.3.
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Figure 7.15: The Binder cumulants for the system of Toft-Petersen et. al. The
Binder cumulant was found in terms of the z-component of the magnetization
in Eq. (2.44) for the antiferromagnetic ordering wave vector.



Chapter 8

Modifying the Jensen et. al. model

8.1 Varying Jy in the Jensen et. al. model

Figure (8.1) shows that the crossing temperature T∗ for the Binder cumulants L = 12
and L = 14 decreases with increasing Jy. The other couplings are given in the first row
of table (3.1), and the simulations were run with 100 bins, 10 000 equilibration sweeps
and 105 Monte Carlo sweeps per bin. As we have seen from Chapter 7, this T∗ is close to
the critical temperature Tc of the system, so figure (8.1) is quite close to a phase diagram
of the temperature T versus the next-nearest neighbour coupling Jy. The part of the plot
below the line is the antiferromagnetic phase, and the part above is the paramagnetic
phase.

We see that T∗ decreases with increasing Jy. This seems fair: Jy is in competition
with the nearest neighbour coupling in the y-direction, J1 = 2(Jxy + Jyz), so increasing
Jy should decrease the effective antiferromagnetic coupling J1 − Jy and thereby T∗. A
close-up of figure (8.1) near Jy = 0.67 is given in figure (8.2)

Since the nearest-neighbour couplings J1 in the y-direction are kept constant, we
can use these data to find how Tc varies with J1 − Jy. Looking at root mean squares of
power-law fits, we find that Tc ∼ (J1− Jy)1.2 is a fairly good approximation. The details,
together with a plot, are left in Appendix G for the interested reader. Of course, we keep
in mind that our data are actually T∗ and not Tc, so our treatment is somewhat rough.

We have studied the spin correlation function when increasing Jy. We see from figure
(8.3) that the incommensurate phase appears at Jy = 0.74. The ratio between nearest-
and next-nearest neighbour couplings is then

Jxy + Jyz

Jy
= 1.81

which is not too different from what we found in section 6.2, but a bit larger. This
means that the couplings are a bit closer to the border between incommensurability and
commensurability given by Eq. (6.5).

53



54 Modifying the Jensen et. al. model Chapter 8

Figure 8.1: How the crossing temperature T∗ for the Binder cumulants of
L = 12 and L = 14 varies when we alter Jy in the model of Jensen et. al.

Figure 8.2: How the crossing temperature T∗ for the Binder cumulants of
L = 12 and L = 14 varies when we alter Jy in the model of Jensen et. al., near
Jy = 0.67.
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Figure 8.3: The spin correlation function using Jensen’s model, but with Jy =
0.73 (left) and Jy = 0.74 (right). We see that the incommensurate peaks appear
at Jy = 0.74.

8.2 A new set of couplings

The incommensurate phase was found by replacing Jy = 0.67 in Jensen’s model with
Jy = 0.74. Motivated by the relation Tc ∼ 2(Jxy + Jyz)− Jy found in the last subchapter,
we insert for the couplings and use the critical temperature found in Chapter 7 to find a
more exact relation. To see the incommensurate phase in a modified version of Jensen’s
model, we might set

Jxy = 0.46 meV, Jyz = 1.59 meV, Jy = 1.03 meV

Dx
an = 0.34 meV, Dy

an = 1.82 meV, Dz
an = 0 meV

in order to find the incommensurate-paramagnetic phase transition at roughly 21.8 K.
These proposed couplings are derived in Appendix G. This modified model should be
taken with a grain of salt: It was derived from Binder cumulant crossings T∗ between
L= 12 and L= 14 instead of Tc, the fit was not perfect, and more data points would
have been useful. Furthermore, we have not verfied this model by any simulations, so
it could be that the critical temperature actually is a bit different from 21.8 K.





Chapter 9

An evaluation of the models

9.1 Jensen and Jensen et. al.

The model of Jensen’s thesis does fullfil the condition for incommensurability, Eq. (6.5),
but it is just on the verge of doing so. In fact, rounding the couplings to two significant
digits, the commensurate phase is lost to the antiferromagnetic one. Jensen argues that
since the system just barely meets the condition, it is sensitive to small changes in the
interactions that occur as the temperature changes[12]. However, he changes the single-
ion anisotropy with temperature, but not the Heisenberg couplings (see table (3.2)). Our
findings in table (C.9) of Appendix C suggests that the single-ion anisotropy should not
be strong enough to force the system out of the incommensurate phase, so Jensen’s
approach in this regard is somewhat questionable.

A change in the couplings would have been a more convincing argument for the
appearance of the commensurate-incommensurate phase. In figure (1.1), we see that
the location of the incommensurate peaks in LiNiPO4 move with temperature. Since a
fixed relation between the nearest and next-nearest neighbour couplings leads to a fixed
angle of rotation θ, changing the Heisenberg couplings would explain the movement of
the peaks. The single-ion anisotropy, as we have shown in table (C.9) of Appendix B,
would have to be much larger than Jensen states to explain that movement.

Moreover, we found the critical temperature to be about 14.7 K. Jensen has located
two phase transitions in his thesis, found using scattering experiments: one for the
commensurate-incommensurate phase transition at 20.8 K and one for the incommensurate-
paramagnetic phase transition at 21.8 K[12]. Our critical temperature does not agree
with any of these temperatures.

Doing simulations on the models of [12] and [13], we did not find the incommen-
surate phase, even though the former model obeys condition (6.5). Strictly speaking,
that condition is for the incommensurate phase to be the ground state. Since we do not
study zero temperature, we expect some thermal exitations in our system, forcing it out
of the ground state. We have seen that the energies of the incommensurate and com-
mensurate phases are almost the same, so the system might easily prefer a state closer
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to the AF ordering. Had Jensen’s couplings been further within the incommensurate
regime given by (6.5), the IC ordering would have appeared, as we see from section 6.2.

9.2 Li et. al.

As we found in Chapter 6, the condition for incommensurability is not met in the model
of Li et. al., so we are not surprised that the system exhibits no incommensurate phase.
This is verified by figure (5.4) in section 7.2. The model therefore fails to exhibit a C-I
phase transition.

9.3 Toft-Petersen et. al.

As seen in section 7.3, the model of Toft-Petersen et. al. did exhibit an incommensurate
phase, but no antiferromagnetic phase. Hence, it has no commensurate-incommensurate
phase transition.



Chapter 10

Conclusion and outlook

10.1 Conclusion

We did not find the commensurate-incommensurate phase transition for any of the sug-
gested models. The models of Jensen et. al. and Li et. al. showed no incommensurate
phase, just an antiferromagnetic one. The model of Toft-Petersen et. al., on the other
hand, did exhibit an incommensurate phase, but not a commensurate one.

We found the ordering of the spins to depend on the ratio of nearest- and next-
nearest neighbour couplings. Letting this ratio vary with temperature seems like the
best way to model a commensurate-incommensurate phase transition. Figure (1.1) sup-
ports this notion as it shows moving incommensurate peaks. There is however the ques-
tion of whether such a change of the couplings can be justified by thermal expansion.
Jensen suggested that changing single-ion anisotropies could account for the phase
transition[12]. Preliminary simulations of a spin chain did show the ordering wave
vector depending on the size of the single-ion anisotropies, but not strongly enough to
account for the drift of the peaks.

Jensen’s model exhibited an antiferromagnetic-paramagnetic phase transition at 14.736±0.007
K. This is lower than any of the phase transitions that Jensen suggested in his thesis,
which were at about 20.8 K and 21.8 K[12]. We found the critical exponents of said
model to be α = 0.22± 0.06, γ = 1.2± 0.3 and ν = 0.50± 0.13. These are quite close
to those of the three-dimensional Heisenberg and Ising systems, more so for Ising than
Heisenberg. Since the Hamiltonian have an easy axis, this is not surprising.

The model of Jensen et. al. can be modified to exhibit an incommensurate phase
by a relatively small change in the Heisenberg couplings. Rescaling the couplings, we
can get an incommensurate-paramagnetic phase transition at about 21.8 K. A rough
estimate is

Jxy = 0.46 meV, Jyz = 1.59 meV, Jy = 1.03 meV

Dx
an = 0.34 meV, Dy

an = 1.82 meV, Dz
an = 0 meV

but this model has not yet been verified by simulations. Furthermore, this modified
model does not account for the commensurate-incommensurate phase transition in
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LiNiPO4, just like the model of Toft-Petersen et. al. From what we have seen, simu-
lating the C-I phase transition is not possible with fixed Heisenberg couplings.

10.2 Outlook

We presented a modification to the Jensen et. al. model, one that should have an
incommensurate-paramagnetic phase transition at roughly 21.8 K. The derivation of
the couplings was somewhat rough, and we left the single-ion anisotropies as they were.
Simulations should be done to determine the exact location of the phase transition, after
which the model can be optimized.

We also mentioned that simulating a commensurate-incommensurate phase transi-
tion could be done by letting the nearest- and next-nearest couplings vary with temper-
ature in a way that does not preserve their ratio. Thought has to be put into just how
they vary with temperature, and such a project would probably involve delving deeper
into the microscopic properties of the material.



Appendix A

Numerical methods

A.1 Monte Carlo and the Metropolis algorithm

A Monte Carlo algorithms

For systems of some size, the number of states is so huge that direct application of Eq.
(2.3) is not tractable for most Hamiltonians. Instead, we must generate some smaller,
yet representable collection of states to recreate the physics. In doing so, the probability
distribution of the states must equal the Boltzmann distribution, which is closely related
to Eq. (2.3). This is achieved by Monte Carlo simulations. Keep in mind that as long as
we select some states randomly, there will be statistical errors, however small they may
be [17].

To find a suitable way of drawing states for our system, we utilize two concepts of
statistical dynamics [18]

1. A system is ergodic if it can reach any state of the system from any other state in a
finite time interval.

2. The ergodic hypothesis states that for an ergodic system, the average over all
possible states (the ensemble average) is equal to the time average. Beware that
the time average must be taken over a sufficiently long time.

The ergodic hypothesis allows us to extract the information we want from the time-
evolution of the system. We start off with one state and modify it time step by step
according to the Boltzmann distribution. Ergodicity may be ensured by only updating
the system by one spin flip at a time [17], which is the approach we will take in this
thesis.

The updates in Monte Carlo simulations are based on Markov processes. In the
context of Monte Carlo simulations, a Markov process will select a state ν at random,
with a probability that depends only on ν and the current state µ of the system. This is
called the transition probability P(µ→ ν). As the system must be in some state after the
transition, these transition probabilities must obey [17]
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∑
ν

P(µ→ ν) = 1 (A.1)

where the system remaining in the same state, µ→ µ, is also a possibility. The Monte
Carlo procedure makes use of several consecutive Markov processes, each starting with
the result of the former. This is called a Markov chain [17].

To obtain a set of states obeying the Boltzmann distribution, we need to put further
restrictions on the transition probabilities. We wish to study a system at equilibrium,
the definition of which being that the system exits and enters a state µ at equal rate

∑
ν

pµP(µ→ ν) = ∑
ν

pνP(ν→ µ) (A.2)

where pµ is the probability of the system being in state µ and P(µ → ν) is still the
transition probability. To ensure the right distribution, we must employ a similar, but
stricter condition, namely the condition of detailed balance [17]

pµP(µ→ ν) = pνP(ν→ µ) (A.3)

Combining Eq.s (2.4) and (A.3) gives the following ratio for transition probabilities

P(µ→ ν)

P(ν→ µ)
=

pν

pµ
= e−β(Eν−Eµ) (A.4)

which together with Eq. (A.1) is the foundation of all Monte Carlo algorithms [17].
Since we have explicitly inserted the Boltzmann probabilities, the states of the simula-
tions belong to the correct distribution.

There is still a lot of freedom in choosing the transition probabilities, and some
choices are more clever than others. In order to make our options more transparent,
the transition probability can be separated into two factors, the selection probability
g(µ→ ν) (i.e. the probability to pick a specific state) and the acceptance ratio A(µ→ ν)
(the probability of accepting it): P(µ → ν) = g(µ → ν)A(µ → ν). An efficient algo-
rithm is to be preferred, meaning we want the acceptance ratio to be as close to unity as
possible while still obeying the conditions mentioned above.

The ratios must obey Eq. (A.4), meaning that

P(µ→ ν)

P(ν→ µ)
=

g(µ→ ν)A(µ→ ν)

g(ν→ µ)A(ν→ µ)
= e−β(Eν−Eµ) (A.5)

is fixed. We have a certain freedom in choosing A(µ→ ν) and A(ν→ µ), so we can
set the largest to one and set the other so that the condition (A.5) holds. This is indeed
what the Metropolis algorithm does.
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B The Metropolis algorithm

Say our system is in a state µ, and it can make a transition to one of Ns available states ν.
One way to construct the selection probabilities is to set them equal for all ν, i.e. g(µ→
ν) = 1

Ns
, and zero otherwise. This is the choice done by the Metropolis algorithm. As

a consequence, the gs in Eq. (A.5) cancel, leaving a constraint on the acceptance ratio
only. Additionally, we must have A(µ → ν) ≤ 1, as the acceptance rate is in fact a
probability. The optimal way of fulfilling these conditions is to set [17]

A(µ→ ν) =

{
e−β(Eν−Eµ) if Eν − Eµ > 0

1 otherwise
(A.6)

Outline of the implementation of the Metropolis algorithm

The steps in implementing the Metropolis algorithm is as follows [17]

1. Start with one state of the system.

2. Suggest another state by randomly flipping a spin in the system. Find the energy
of the new state or the energy difference of the proposed update.

3. Accept or reject the new state according to Eq. (A.6).

4. Repeat a number of times to equilibrate the system.

5. Repeat a number of times while doing the relevant measurements on the system.

6. Optional: Repeat step 5. several times to divide the results into groups of data,
hereby referred to as bins.

The spins to be flipped may be chosen at random, or the lattice may be traversed.
We will adopt the former. Repeating step 2 and 3 N times, the spins have on average
been subject to one suggested update. This is called a sweep [17]. In order to retain
the accuracy for systems of different sizes, it is useful to measure the simulations in the
number of Monte Carlo sweeps. Step 6 is not required in Monte Carlo simulations, but
show that it is useful later on. Furthermore, it offers one way to find error estimates
of quantities such as the heat capacity and magnetic susceptibility, which depend on
averages of the energy and magnetization.

Correlations in the Metropolis algorithm

Obviously, two states separated by one possible spin flip will be strongly correlated,
which is another reason to divide our measurements into lattice sweeps. Still, we will
have correlations between subsequent states in the simulations. One way to remedy
this is to only gather information every nth lattice sweep, but that would increase the
computation time considerably [17]. Using bins, we average out this correlation to some
extent.
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Disadvantages with the Monte Carlo algoritms

Monte Carlo algorithms are inefficient at low temperatures since the acceptance ratio
decrases with temperature, so a lot of simulation time will be spent on rejecting sug-
gested transitions. Of course, a physical system at low temperatures will spend a lot
of time in the ground state, but reproducing this in a simulation is hardly time-efficient
[17]. For single-flip algorithms, there will be little difference between subsequent states.

Another issue at low temperatures is the chance to get stuck in metastable states. At
low temperatures, we expect the system to be close to the ground state. In the equili-
bration process, the system might however reach a local minima of the energy on its
path to the ground state. In that case, the system must cross an energy barrier in order
to approach the ground state. In single-flip algorithms, the suggested new state will be
closely related to the current one. Each proposed move will then require an energy cost.
With a low acceptance rate, very few moves will be accepted, and we will stay in the
vicinity of the metastable state for a very long time.

A.2 General error estimation

Since the Monte Carlo procedure draws random states, there will always be some sta-
tistical error in the result [17]. We will use the spread of the data to estimate the un-
certainty. For quantities such as the energy, we retrieve the measurement at every step
and find the average over each bin. When the Monte Carlo procedure is done, we use
the bin averages to find the total average and the standard deviation. This kind of error
estimate is called the standard deviation in the mean. Mathematically, it is given by[24]

σm =

(
1

Nbins(Nbins − 1)

Nbins

∑
i=1

(x̄(i)− x̄tot)
2

)1/2

(A.7)

where x̄(i) is the average of the measurements done in bin i, x̄tot is the average over
all measurements and Nbins is the number of bins [24]. In contrast, the standard devia-
tion of single measurements reads

σs =

(
1

N − 1

N

∑
i=1

(x(i)− x̄)2

)1/2

(A.8)

where x(i) is measurement i, N is the number of measurements and x̄ is the average
of the measurements. This equation applies when we don’t bin our data. σs will not
decrease when we perform more measurements: Our precision is the same, so our x(i)’s
will have the same spread and add up to compensate for the larger N in the exponent.
Eq. (A.7) obviously gives the better error estimate: The bin averages will be closer
to the total average than x(i), so the sum will be smaller. In fact the two are related by
σm = σs/

√
Nb[24], where Nb is the number of values in each bin. The standard deviation

in the mean can thus be made smaller by increasing the bin size.
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Sometimes, a quantity cannot be measured directly, but must be inferred from some
other quantities. Imagine we want to give an error estimate of the quantity Z = Z(A, B, · · · , M),
where A, B, · · ·M are independent of each other. In that case, the standard deviation in
Z can be found from the standard deviation of A, B, · · ·M by[24]

σZ =

((
∂Z
∂A

σA

)2

+

(
∂Z
∂B

σB

)2

+ · · ·+
(

∂Z
∂M

σM

)2
)1/2

(A.9)

A.3 The Bootstrap method

The Bootstrap method is what is called a resampling method. In short, it uses data
from the simulations to randomly generate other data sets, and use these to obtain a
good estimate of the averages and errors. It is widely regarded to be a good method for
generating error estimates[17].

The procedure can be implemented as follows [17]

1. Organize the original data into a list of Nd estimates of the relevant variable.

2. Draw, with replacement, Nd elements of the list at random.

3. Use these to find the desired quantity.

4. Repeat step 2. and 3. NB number of times.

5. Derive an error estimate from the NB different values of step 3.

As we draw with replacement, some elements will appear multiple times in the new
data set, while others do not appear at all. We will find the error estimate from the
standard deviation of the NB data points according to Eq. (A.8). The Bootstrap method
is particularly useful when we consider quantities like the magnetic susceptibility [17].
These are functions of two variables that are related, so we cannot find the error estimate
from Eq. (A.9). We could of course find the magnetic susceptibility once for every
bin, but the Bootstrap method proves much more effective. When doing complicated
procedures like extracting the crossings of the Binder cumulant, the error estimations
simplifies considerably if we use the Bootstrap method to generate a set of crossings.
This is in fact what we will do in the finite-size scaling analysis.





Appendix B

Verification of the code

B.1 The two-particle pure Heisenberg chain with periodic
boundary conditions

To help verify our program, we consider the classical Heisenberg Hamiltonian for a spin
chain:

H = J ∑
〈ij〉

Si · Sj (B.1)

where 〈ij〉 indicates that the sum are over nearest neighbours. The spins have unit
length.

With two spins and periodic boundary conditions, the Hamiltonian becomes

H = 2J(S1 · S2) (B.2)

We can decompose the vectors according to Eq. (H.1). Combining with Eq. (B.2), we
obtain an energy

E = 2J (sin θ1 cos φ1 sin θ2 cos φ2 + sin θ1 sin φ1 sin θ2 sin φ2 + cos θ1 cos θ2) (B.3)

Since our spins are classical, the partition function can be determined by insertion in
Eq. (2.5)

Z =
∫

dθ1dφ1dθ2dφ2 sin θ1 sin θ2e−βE(θ1,φ1,θ2,φ2)

Where θ1, θ2 ∈ [0, π] and φ1, φ2 ∈ [0, 2π]. The sines enter from the Jacobi determi-
nants as usual. We simplify the exponent by express the energy in terms of the relative
angle θrel = S1 · S2. The angles θ1, φ1 and φ2 fixes the other angles of rotation in our
problem. The integral now takes a much more pleasant form

Z =
∫

dθ1dφ1dθ2dφ2 sin θ1 sin θ2e−2βJ cos θ2

67
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Where we have renamed θrel to θ2. We perform the integration:

Z =
∫ 1

−1
d cos θ1

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 1

−1
d cos θ2e−2βJ cos θ2

=
8π2

βJ
1
2

(
e−2βJ − e−2βJ

)
= 8π2 sinh(2βJ)

βJ

The energy

The energy can be found from Eq. (2.8)

〈E〉 = − ∂

∂β
ln(Z) = − ∂

∂β
ln
(

8π2

βJ
sinh(2βJ)

)
=

1
β
− 2J

cosh(2βJ)
sinh(2βJ)

(B.4)

The heat capacity

The heat capacity can be found from the energy by Eq. (2.9):

CV = − 1
kT2

∂ 〈E〉
∂β

= −kβ2 ∂

∂β

[
1
β
− 2

cosh(2βJ)
sinh(2βJ)

]
= k− kβ2 (2J)2

sinh2(2βJ)
(B.5)

The N-particle chain with periodic boundary conditions

The bonds set the spins’ orientation relative to each other. However, once the relative
orientations are set, we still have a freedom of rotating them in the plane. In the antifer-
romagnetic ground state, for instance, the neighbours are antiparallel. However, they
might be oriented along any axis: the x-, y- or z-axis, or any linear combination thereof.
Clearly, we need one θ setting the entire configuration. In other words, if we want to
simplify Z through the relative angle, we can only have N− 1 bonds. The periodic chain
has N bonds, meaning that we have to use open boundary conditions if we want a neat
expression for the energy and the heat capacity.

Results vs theory

In figures (B.1) to (B.3), we have plotted the theoretical predictions together with the
data from our simulations. We see that there is a good agreement between theory and
simulations. All results were generated using 10000 equilibration sweeps, 1000 sweeps
per bin and 100 bins.

The paramagnetic phase which occurs at high temperatures (low β) is characterized
by random spins and thus no net magnetization. Due to the randomness, however,
we don’t expect the squared magnetization 〈m2

x〉 to be exactly zero, especially not for
a small system. This explains the low, non-zero value of 〈m2

x〉 at low β in figure (B.4).
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Figure B.1: The energy of a two-particle periodic antiferromagnetic Heisen-
berg chain as a function of inverse temperature, β, found analytically (green
line, Eq. (B.4)) and by simulations (error bars). The agreement is good.

Figure B.2: The plot shows the relative deviation between the calculated en-
ergy (Eq. (B.3)) and the results from simulations for a two-particle periodic
antiferromagnetic chain as a function of inverse temperature, β. The error
bars are centered at the relative energy difference. They are the same as in
Fig. (B.1), but divided by the calculated energy. The agreement is good.
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Figure B.3: The heat capacity of a two-particle periodic antiferromagnetic
Heisenberg chain as a function of inverse temperature, β, found analytically
(green line, Eq. (B.5)) and by simulations (error bars). The agreement is good.

Figure B.4: The squared magnetization in the x-direction of a two-particle
periodic antiferromagnetic Heisenberg chain versus inverse temperature, β.
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Figure B.5: The acceptance rate of a two-particle periodic antiferromagnetic
Heisenberg chain versus inverse temperature, β.

The antiferromagnetic phase also exhibits zero net magnetization. However, the anti-
ferromagnetic phase favours antiparallel spins, so we expect 〈m2

x〉 to be exactly zero at
zero temperature. This explains why 〈m2

x〉 falls off to zero in figure (B.4). There is no
anisotropy in the system, so the situation will be no different for 〈m2

y〉 and 〈m2
z〉. As

expected, the plots were just about identical to figure (B.4), so they were not included in
this thesis.

As a supplement, figure (B.5) shows how the acceptance rate decreases with temper-
ature.

A The N-particle pure Heisenberg chain with open boundary condi-
tions

The partition function

The partition function of a N spin chain with open boundary conditions becomes

Z =
∫ 1

−1
d cos θ1

(∫ 2π

0
dφ

)N (∫ 1

−1
d cos θe−βJ cos θ

)N−1

=
2(2π)N

(−βJ)N−1

(
e−βJ − eβJ

)N−1
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=
(4π)N

(βJ)N−1 sinhN−1(βJ)

The energy

We differentiate

〈E〉 = − ∂

∂β
ln(Z) = − ∂

∂β

[
ln
(
(4π)N

JN−1

)
− ln(βN−1) + ln(sinhN−1(βJ))

]

= (N − 1)J
[

1
βJ
− cosh(βJ)

sinh(βJ)

]
(B.6)

The heat capacity

Again, we utilize:

CV = −kβ2 ∂

∂β
〈E〉

= −(N − 1)Jkβ2

[
− 1

β2 J
+ J

cosh2(βJ)− sinh2(βJ)
sinh2(βJ)

]

= (N − 1)k

[
1− (βJ)2

sinh2(βJ)

]
(B.7)

where we have used that cosh2 x− sinh2 x = 1.
Figures (B.6) to (B.9) compares analytical and numerical values of the energy and

heat capacity for a four spin chain and the energy for a 50 spin chain. Theory and
results agree well. The graph of the squared magnetization 〈m2

x〉 in figure (B.10) behaves
as expected, and so does the acceptance rate in figure (B.11). The simulations were run
using 10000 equilibration sweeps and 1000 lattice sweeps per bin with 100 bins for the
four-particle case, and 10000 sweeps for the 50-particle case.

B The modified Bessel functions of the first kind

In our treatment of the two-particle partition function, the modified Bessel functions of
the first kind will appear. Recognizing them simplifies our computations significantly,
as they are readily handled by MATLAB. We will mainly make use of the zeroth order
modified Bessel functions, but the second one will appear as well. Some useful identities
are listed below.

The n-th order modified Bessel function of the first kind is[28]∫ 2π

0
e−z cos x cos(nθ)dx = 2π In(z) (B.8)
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Figure B.6: The energy of a four-particle open antiferromagnetic Heisenberg
chain as a function of inverse temperature, β, found analytically (green line)
and by simulations (error bars). The agreement is good.

Figure B.7: The energy of a 50-particle open antiferromagnetic Heisenberg
chain as a function of inverse temperature, β, found analytically (green line)
and by simulations (error bars). The agreement is good.
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Figure B.8: The plot shows the relative deviation between the calculated en-
ergy and the results from simulations for a four-particle open AF chain as a
function of β. The error bars are centered at relative energy difference. They
are the same as in Fig. (B.6), but divided by the calculated energy. The agree-
ment is good.

Figure B.9: The heat capacity of a four-particle open antiferromagnetic
Heisenberg chain as a function of inverse temperature, β, found analytically
(green line) and by simulations (error bars). The agreement is good.
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Figure B.10: The squared magnetization in the x-direction of a four-particle
open antiferromagnetic Heisenberg chain as a function of inverse tempera-
ture, β. The simulations were run using 10000 equilibration sweeps and 1000
lattice sweeps per bin with 100 bins.

The zeroth order function thus simplifies to

∫ 2π

0
e−z cos xdx = 2π I0(z) (B.9)

The derivative of I0 is related to I1 by[19]

∂I0(z)
∂z

= zI1(z) (B.10)

C The integral of a periodic integrand

Given a periodic function f (x) = f (x+ a), we want to show that the integral is invariant
under a shift of the integration limits. We denote the indefinite integral as F(x) =∫

f (x)dx for brevity.

∫ b+a

b
f (x)dx =

∫ a

0
f (x)dx ∀ b (B.11)

A =
∫ b+a

b
f (x)dx−

∫ a

0
f (x)dx = (F(b + a)− F(b))− (F(a)− F(0))
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Figure B.11: The acceptance rate of a four-particle open antiferromagnetic
Heisenberg chain as a function of inverse temperature, β. The simulations
were run using 10000 equilibration sweeps and 1000 lattice sweeps per bin
with 100 bins.

= F(b + a)− F(a)− (F(b)− F(0)) =
∫ b+a

a
f (x)dx−

∫ b

0
f (x)dx

We introduce a change of variable for the first integral, t = x− a or x = t + a.

A =
∫ b

0
f (t + a)dt−

∫ b

0
f (x)dx =

∫ b

0
( f (x + a)− f (x))dx =

∫ b

0
0dx = 0

So Eq. (B.11) holds.

B.2 The two-particle Heisenberg chain with single-ion anisotropy

In order to test our code, we find the energy of a two-particle Heisenberg chain with
single-ion anisotropy in the z-direction. This chapter is based on calculations done by
Ellen Fogh in a personal note[8]. Our Hamiltonian is as follows:

H = JS1 · S2 + D
(
(Sz

1)
2 + (Sz

2)
2
)

(B.12)

= J cos θ + D
(

cos2 θ1 + cos2 θ2

)
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Where D is the single-ion anisotropy in the z-direction. The relative angle θ is related
to the other quantities by

cos θ = sin θ1 cos φ1 sin θ2 cos φ2 + sin θ1 sin φ1 sin θ2 sin φ2 + cos θ1 cos θ2

= sin θ1 sin θ2(cos φ1 cos φ2 + sin φ1 sin φ2) + cos θ1 cos θ2

Using

sin φ1 sin φ2 =
1
2
(cos(φ1 − φ2)− cos(φ1 + φ2))

cos φ1 cos φ2 =
1
2
(cos(φ1 + φ2) + cos(φ1 − φ2))

The expression in the paranthesis simplifies

JS1 · S2 = J sin θ1 sin θ2 cos(φ1 − φ2) + J cos θ1 cos θ2

Which yields a simpler Hamiltonian

H = J [sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2] + D
(

cos2 θ1 + cos2 θ2

)
Giving rise to the partition function

Z =
∫ π

0
dθ1 sin θ1

∫ 2π

0
dφ1

∫ π

0
dθ2 sin θ2

∫ 2π

0
dφ2

× exp
[
−β

(
J [sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2] + D

(
cos2 θ1 + cos2 θ2

))]
As the integral only depends on the difference between the φ’s, Fogh performs a

change of integration variable:

x = φ1 − φ2 x(φ2 = 0) = φ1
dx = −dφ2 x(φ2 = 2π) = φ1 − 2π

(B.13)

Z =
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2 exp

[
−β

(
J cos θ2 cos θ2 + D

(
cos2 θ1 + cos2 θ2

))]
×
∫ 2π

0
dφ1

∫ φ1−2π

φ1

(−dx) exp [−βJ sin θ1 sin θ2 cos x]

But the integrand is a periodic function of 2π, so the integral is invariant under any
shift of the integration limit. This is evident from Eq. (B.11) with a = x and b = φ1.
Since the limits of the last integral does not depend on φ1, and we can perform the
penultimate integral right away:
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Table B.1: A comparison between simulations and theoretical output from a
MATLAB script for the two-particle Heisenberg chain with J = 1 and Dz

an =
2. Periodic boundary conditions were enforced.

β Etheory Eshort sim Elong sim Within ∆Eshort sim Within ∆Elong sim
0.5 0.3577 0.3581±0.0020 0.3583±0.0006 Yes Yes
1.0 -0.4216 -0.4233±0.0025 -0.4213±0.0008 Yes Yes
2.0 -1.2015 -1.1988±0.0021 -1.2021±0.0007 No Yes

10.0 -1.8487 -1.8488±0.0009 -1.8492±0.0003 Yes No
50.0 -1.9699 -1.9699±0.0005 -1.9699±0.0001 Yes Yes

Z = 2π
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2 exp

[
−β

(
J cos θ2 cos θ2 + D

(
cos2 θ1 + cos2 θ2

))]
×
∫ 0

−2π
dx exp [−βJ sin θ1 sin θ2 cos x]

The last expression can be expressed as the zeroth order modified Bessel function,
given by Eq. (B.9), simplifying our expression somewhat:

Z = 4π2
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2 exp

[
−β

(
J cos θ2 cos θ2 + D

(
cos2 θ1 + cos2 θ2

))]
× I0(J sin θ1 sin θ2) (B.14)

As E = − 1
Z

∂Z
∂β , we need to find ∂Z

∂β . Utilizing Eq. (B.10) yields

dZ
∂β

= 4π2
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2 exp

[
−β

(
J cos θ2 cos θ2 + D

(
cos2 θ1 + cos2 θ2

))]
×
(
−
[

J cos θ1 cos θ2 + D(cos2 θ1 + cos2 θ2)
]

I0(J sin θ1 sin θ2)

+ J sin θ1 sin θ2 I1 (Jβ sin θ1 sin θ2)
)

(B.15)

The expression for the energy is clearly complicated, and writing it in full is not
neccessary. Feeding Eq.s (B.14) and (B.15) into MATLAB and combining the results
according to Eq. (2.8), we have an exact expression for the energy. Note that this can be
done with both periodic and open boundary conditions. Periodic boundary conditions
will produce an additional factor of four to be multiplied with J, which may easily be
handled by our program.

The energy for some values of β are listed in tables (B.1) through (B.4) together with
the results from simulations. The numerical output were found to agree with the cal-
culated result within the standard deviation for roughly two thirds of the cases, as is
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Table B.2: A comparison between simulations and theoretical output from
MATLAB for the two-particle Heisenberg chain with J = 1 and Dz

an = 5.
Periodic boundary conditions were enforced.

β Etheory Esim Within ∆Esim
0.5 0.9602 0.9597±0.0114 Yes
1.0 -0.3397 -0.3397±0.0012 Yes
2.0 -1.2136 -1.2140±0.0008 Yes

10.0 -1.8490 -1.8489±0.0004 Yes
50.0 -1.9700 -1.9698±0.0002 Yes

Table B.3: A comparison between simulations and theoretical output from
MATLAB for the two-particle Heisenberg chain with J = 1 and Dz

an = 7.
Open boundary conditions were enforced.

β Etheory Esim Within ∆Esim
0.5 1.6638 1.6626±0.0011 No
1.0 0.5768 -0.3397±0.0012 Yes
2.0 -0.1861 -1.2140±0.0008 Yes

10.0 -0.8483 -1.8489±0.0004 Yes
50.0 -0.9699 -1.9698±0.0002 Yes

Table B.4: A comparison between simulations and theoretical output from
MATLAB for the two-particle Heisenberg chain with J = 1 and Dz

an = 0.1.
Open boundary conditions were enforced.

β Etheory Esim Within ∆Esim
0.5 -0.0982 -0.0984±0.0002 Yes
1.0 -0.2483 -0.2484±0.0002 Yes
2.0 -0.4753 -0.4751±0.0002 Yes

10.0 -0.8597 -0.8596±0.0002 Yes
50.0 -0.9699 -0.9696±0.0001 No
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expected. All simulations were run with 10000 equilibration sweeps and 10000 Monte
Carlo sweeps per bin. With the exception of the short simulations in table (B.1), which
contained 100 bins, all simulations contained 1000 bins.
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B.3 The two-particle Heisenberg chain with DM interac-
tion in the z-direction

We want to study the two-particle classical Heisenberg chain with Dzyaloshinskii-Moriya
(DM) interaction in the z-direction, i.e. Dx

DM = Dy
DM = 0, Dz

DM = D. Because of the
cross product in the DM interaction, periodic boundary conditions will lead to cancel-
lation in the two-particle case. Consequently, we will only consider open boundary
conditions. The Hamiltonian in question is therefore:

H = JS1 · S2 + DDM · (S1 × S2) (B.16)

We calculate the cross product:

S1 × S2 =

∣∣∣∣∣∣
î ĵ k̂

Sx
1 Sy

1 Sz
1

Sx
2 Sy

2 Sz
2

∣∣∣∣∣∣ = î(Sy
1Sz

2 − Sz
1Sy

2)− ĵ(Sz
1Sx

2 − Sx
1Sz

2) + k̂(Sx
1Sy

2 − Sy
1Sx

2)

So:

DDM · (S1 × S2) = Dx
DM(Sy

1Sz
2 − Sz

1Sy
2) + Dy

DM(Sx
1Sz

2 − Sz
1Sx

2) + Dz
DM(Sx

1Sy
2 − Sy

1Sx
2)

When we express the spin components by the polar angles by Eq. (H.1), the Dzyaloshinskii-
Moriya term becomes:

DDM · (S1 · S2) = Dx
DM(sin θ1 cos θ2 sin φ1 − sin θ2 cos θ1 sin φ2)

+Dy
DM(sin θ2 cos θ1 cos φ2 − sin θ1 cos θ2 cos φ1)

+Dz
DM(sin θ1 sin θ2 cos φ1 sin φ2 − sin θ1 sin θ2 cos φ2 sin φ1)

Now, our motivation for only studying the Dz
DM-term becomes clear: It is the only

term where we can factor out sin θ1 sin θ2, i.e. separating the θ’s and φ’s:

A = Dz
DM(sin θ1 sin θ2 cos φ1 sin φ2 − sin θ1 sin θ2 cos φ2 sin φ1)

= Dz
DM(sin θ1 sin θ2(cos φ1 sin φ2 − cos φ2 sin φ1))

Where A is used for convenience. We use the well-known trigonometric identities
together with Dz

DM = D to rewrite

A = −D sin θ1 sin θ2 sin(φ1 − φ2)

The Heisenberg term was found in the previous chapter. Our Hamiltonian, in turn,
becomes

H = sin θ1 sin θ2 [J cos(φ1 − φ2)− D sin(φ1 − φ2)] + J cos θ1 cos θ2 (B.17)
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The partition function is

Z =
∫ π

0
dθ1 sin θ1

∫ 2π

0
dφ1

∫ π

0
dθ2 sin θ2

∫ 2π

0
dφ2

× exp
[
− β

(
sin θ1 sin θ2 [J cos(φ1 − φ2)− D sin(φ1 − φ2)] + J cos θ1 cos θ2

)]
Retracing the steps of the previous chapter, we obtain

Z = 2π
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2 exp [−Jβ cos θ2 cos θ2]

×
∫ 0

−2π
dx exp [−β sin θ1 sin θ2(J cos x− D sin x)]

We want to absorb the sine into the cosine in order to get the integral on a known
form. We set α ≡ β sin θ1θ2 J and massage the expression in the exponent

−α
(

cos x− (D/J) sin x
)
= −α

(
cos x− sin ν

cos ν
sin x

)
= − α

cos ν
(cos x cos ν− sin x sin ν) = − α

cos ν
cos(x + ν)

To find the factor in front of the cosine, we must express 1
cos ν in terms of known

quantities

tan2 ν =
sin2 ν

cos2 ν
=

1− cos2 ν

cos2 ν
=

1
cos2 ν

− 1

1
cos ν

=
√

tan2 ν + 1 =
√
(D/J)2 + 1

So the factor becomes

α̃ =
α

cos ν
= β sin θ1 sin θ2 J

√
(D/J)2 + 1 = β sin θ1 sin θ2

√
D2 + J2

In turn

Z = 2π
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2e−Jβ cos θ1 cos θ2

∫ 2π

0
dxe−α̃ cos(x+ν)

We can change variables to u = x + ν, yielding∫ 2π

0
dxe−α̃ cos(x+ν) =

∫ 2π+ν

ν
due−α̃ cos u =

∫ 2π

0
due−α̃ cos u

once again due to the symmetry of the integrand. But this integral is the zeroth order
modified Bessel function of the first kind, Eq. (B.9), as a function of α̃. We simplify our
expression to the point where we have to calculate it numerically
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Table B.5: Theoretical and numerical results for a two-particle chain with
J = 1, Dz

DM = 1.

β Etheory Esim Within ∆E? Within 2∆E? Within 3∆E?
0.5 -0.27070 -0.26967±0.00234 Yes Yes Yes
1.0 -0.50460 -0.50432±0.00227 Yes Yes Yes
2.0 -0.81740 -0.81537±0.00233 Yes Yes Yes

10.0 -1.26527 -1.27065±0.00206 No No Yes
50.0 -1.38418 -1.38490±0.00090 Yes Yes Yes

Table B.6: Theoretical and numerical results for a two-particle chain with
J = 1, Dz

DM = 0.1.

β Etheory Esim Within ∆E? Within 2∆E?
0.5 -0.16503 -0.16484±0.00019 No Yes
1.0 -0.31500 -0.31493±0.00018 Yes Yes
2.0 -0.54026 -0.54032±0.00018 Yes Yes

10.0 -0.90335 -0.90345±0.00011 Yes Yes
50.0 -0.98343 -0.98341±5.10e-05 Yes Yes

Z = 4π2
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2e−Jβ cos θ1 cos θ2 I0(β sin θ1 sin θ2

√
J2 + D2)

The energy can then be calculated by E = − 1
Z

∂Z
∂β

∂Z
∂β

= 4π2
∫ π

0
dθ1

∫ π

0
dθ2 sin θ1 sin θ2e−Jβ cos θ1 cos θ2

×[−J cos θ1 cos θ2 I0(β sin θ1 sin θ2
√

J2 + D2)

+
√

J2 + D2 sin θ1 sin θ2 I1(β sin θ1 sin θ2
√

J2 + D2)]

Where we have used Eq. (B.10) once more. So we calculate Z and ∂Z
∂β numerically

and use them to find the energy.
Tables (B.5) trough (B.8) compares the results generated by MATLAB to the output

from our simulations. In the first table, the simulations were run with 1000 Monte Carlo
sweeps per bin and 100 bins. For the rest of them, the simulations were run with 100000
Monte Carlo sweeps per bin and 100 bins. The answers agree within one standard
deviation in roughly two thirds of the cases.
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Table B.7: Theoretical and numerical results for a two-particle chain with
J = 2, Dz

DM = 5.

β Etheory Esim Within ∆E? Within 2∆E?
0.5 -2.76778 -2.76683±0.00117 Yes Yes
1.0 -3.90343 -3.90508±0.00116 No Yes
2.0 -4.62977 -4.62982±0.00078 Yes Yes

10.0 -5.23493 -5.23418±0.00038 No Yes
50.0 -5.35516 -5.35503±0.00019 Yes Yes

Table B.8: Theoretical and numerical results for a two-particle chain with
J = 1, Dz

DM = 10.

β Etheory Esim Within ∆E? Within 2∆E?
0.5 -7.04189 -7.03885±0.00214 No Yes
1.0 -8.53628 -8.53635±0.00157 Yes Yes
2.0 -9.29660 -9.29654±0.00115 Yes Yes

10.0 -9.89975 -9.89982±0.00057 Yes Yes
50.0 -10.01987 -10.01962±0.00023 No Yes

B.4 Implementation of the next-nearest neighbours

We have mentioned that there is no frustration in the sytem if the nearest neighbour cou-
pling J1 and the next-nearest coupling J2 are both ferromagnetic, because both favour
parallel alignment of the spins. Figure (B.12) shows a nearest neighbour ferromagnetic
chain, while figure (B.13) and (B.14) shows the next-nearest neighbour ferromagnetic
coupling on a chain of and even and an odd number of particles. We note that we
get two decoupled chains for an even number of spins. The spins in each chain must
therefore align, but there is no coupling forcing the two chains to align with each other.
For the odd chain, on the other hand, the periodic boundary condition couples the two
chains so that all spins should ve parallel. This means that we can compare the next-
nearest neighbour ferromagnet with an odd number of spins to the nearest neighbour
ferromagnet to test our implementation.

0 1 2 3 4 5

F F F F F F

Figure B.12: A six-particle periodic chain with nearest neighbour ferromag-
netic interactions. At low-temperatures, the spins will tend to align in order
to minimize the energy.
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0 1 2 3 4 5

F F F

F F F

Figure B.13: A six-particle periodic chain with next-nearest neighbour fer-
romagnetic interactions. We see that not all spins will be coupled: Those
we have denoted with even numbers (0,2,4) are only coupled amongst them-
selves, and the same goes for those denoted by odd numbers (1,3,5). Thus, we
effectively have two decoupled chains. In each chain, the spins are aligned,
but there is no coupling forcing the two chains to align.

0 1 2 3 4

F F F

F F

Figure B.14: A five-particle periodic chain with next nearest neighbour ferro-
magnetic interactions. We see that all spins have to be coupled. In the low-
temperature regime, then, the ferromagnetic coupling will cause all spins to
align.
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Table B.9: Neighbours and next-nearest neighbours of the spins for smaller
N-particle chains. n.n. stands for nearest neighbours and n.n.n. stands for
next nearest neighbours.

N = 3 N = 4 N = 5
Spin n.n. n.n.n. Spin n.n. n.n.n. Spin n.n. n.n.n.

0 2, 1 1, 2 0 3, 1 2, 2 0 4, 1 3, 2
1 0, 2 2, 0 1 0, 2 3, 3 1 0, 2 4, 3
2 1, 0 0, 1 2 1, 3 0, 0 2 1, 3 0, 4

3 2, 0 1, 1 3 2, 4 1, 0
4 3, 0 2, 1

Table B.10: A comparison between the energy for the nearest neighbour fer-
romagnetic chain and the next-nearest neighbour ferromagnetic chain with
different particle numbers N and seeds. N is odd in order for the two systems
to be comparable in the low-temperature regime. n.n. denotes the nearest
neighbour system, while n.n.n. denotes the next-nearest neighbour system.
The numbers have been rounded to a few significant digits after processing
(|En.n. − En.n.n.| is calculated and then rounded).

N, seed En.n. ∆En.n. En.n.n. ∆En.n.n. |En.n. − En.n.n.| Agree within ∆E?
5, s59 -4.5970 3.4 · 10−3 -4.5948 3.6 · 10−3 2.2 · 10−3 Yes
5, s79 -4.5922 3.6 · 10−3 -4.5990 4.0 · 10−3 6.8 · 10−3 Yes
7, s59 -6.3887 5.4 · 10−3 -6.4006 5.3 · 10−3 1.2 · 10−2 No (within 2∆E )
7, s79 -6.3969 4.6 · 10−3 -6.3974 4.6 · 10−3 5.2 · 10−3 Yes
9, s59 -8.1904 6.4 · 10−3 -8.1683 5.6 · 10−3 2.2 · 10−2 No (within 2∆E )
9, s79 -8.1886 6.6 · 10−3 -8.1974 6.1 · 10−3 8.8 · 10−3 Yes

11, s59 -9.9910 7.3 · 10−3 -9.9863 7.4 · 10−3 4.7 · 10−3 Yes
11, s79 -9.9902 7.5 · 10−3 -9.9835 7.6 · 10−3 6.7 · 10−3 Yes

Neighbours

Table (B.9) shows the nearest and next-nearest bonds for chains of three, four and five
particles. For N = 3, the system is so small that the nearest and the next-nearest neigh-
bours are the same. Another weird effect occurs for N = 4, where the next-nearest
neighbour interaction couples each spin to itself. N = 5 is the first non-trivial case of
the next-nearest neighbour coupling: All the spins are connected by it, and the cou-
plings are different from other terms in the Hamiltonian.

The next-nearest neighbours generated by the program were checked using pen and
paper, and everything agreed.
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Numerical results

We have compared the nearest neighbour ferromagnetic chain and the next-nearest
neighbour ferromagnetic chain with an odd number of particles for N = 5, 7, 9, 11.
N = 3 yielded identical results since the couplings are the same, as seen in table (B.9).
The result of the other simulations we performed is listed in table (B.10). The table
shows a good agreement between the two models.

B.5 Fourier transformed spins and the spin correlation func-
tion

In order to test if the spin correlation function is implemented correctly, calculations on
simple systems were performed. The spin correlation function have been computed nu-
merically and analytically for a N-particle chain, assuming periodicity in the reciprocal
lattice. The output of FFTW have been scaled by N to in order to agree with Eq. (2.39).
Analytic calculations have been performed on chains of up to 5 spins. We will make
plenty of use of list (3).

The one dimensional version of (H.4) is

S̃z
k =

1
N ∑

j
Sz

j e−
2πikj

N (B.18)

The chain with parallel spins

To verify our implementation, write out Eq. (B.18) for chains of different length with
parallel spins, i.e. Si = 1, and compare to the output of our code. The Fourier trans-
formed spins are listed in (B.11). For further comparison, we utilize Eq. (2.43) to obtain
〈S̃z

j S̃z
−j〉, listed in table (B.12). The numerical and analytical results agree in both cases.

Table B.11: Table of the Fourier transforms of the spins, S̃z
i N, when the

spin configuration is set to Sz
i = 1. This is the output from the function

fftw_plan_dft_r2c from FFTW. Note that it is scaled by N for readability. The
output is given as complex numbers on the form of (a, b) = a + ib. The right
table lists the difference between the numerical and analytical results. The
agreement between theory and numerics is superb.

Output S̃z
0N S̃z

1N S̃z
2N Diff S̃z

0N S̃z
1N S̃z

2N
N = 2 (1,0) (0,0) − N = 2 (0,0) (0,0) −
N = 3 (1,0) (0,0) − N = 3 (0,0) (0,0) −
N = 4 (1,0) (0,0) (0,0) N = 4 (0,0) (0,0) (0,0)
N = 5 (1,0) (0, 0) (0, 0) N = 5 (0,0) (0,0) (0,0)
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Table B.12: The numerical results of the spin correlation function 〈S̃z
−iS̃

z
i 〉 for

different spins i and system sizes N. The spin configuration is again set to
Sz

i = 1.

Output 〈S̃z
0S̃z

0〉 〈S̃z
−1S̃z

1〉 〈S̃z
−2S̃z

2〉 Diff 〈S̃z
0S̃z

0〉 〈S̃z
−1S̃z

1〉 〈S̃z
−2S̃z

2〉
N = 2 1 0 − N = 2 0 0 −
N = 3 1 0 − N = 3 0 0 −
N = 4 1 0 0 N = 4 0 0 0
N = 5 1 0 0 N = 5 0 0 0

Table B.13: Exact values of cos(2πn/5) and sin(2πn/5). θ is the angle.

θ 0 2π/5 4π/5 6π/5 8π/5 2π

cos(θ) 1 1
4

(
−1 +

√
5
)
−1

4

(
1 +
√

5
)
−1

4

(
1 +
√

5
)

1
4

(
−1 +

√
5
)

1

sin(θ) 0 1
4

√
10 + 2

√
5 1

4

√
10− 2

√
5 −1

4

√
10− 2

√
5 −1

4

√
10 + 2

√
5 0

The chain with alternating spins

Due to the rather boring results for Sz
i = 1, we have calulated the spin correlation func-

tion with Sz
i = (−1)i, i.e. alternating spins. The output of the transformed spins agrees

with the theory as listed in table (B.14). The same holds for the spin correlation func-
tion, listed in table (B.15). The results were calculated exactly, and the difference was
found by subtracting the exact answer from the numerical one in the test code. Note
that all the Fourier transformed spins can indeed be found exactly. To fit the table, the

Table B.14: Table of the Fourier transforms of the spins, S̃z
i N, when we have

alternating spins. This is the output from the function fftw_plan_dft_r2c from
FFTW. Note that it is scaled by N for readability. The output is given as com-
plex numbers on the form of (a, b) = a+ ib. The right table lists the difference
between the numerical and analytical results. The agreement between theory
and numerics is superb.

Output S̃z
0N S̃z

1N S̃z
2N Diff S̃z

0N S̃z
1N S̃z

2N
N = 2 (0,0) (2,0) − N = 2 (0,0) (0,0) −
N = 3 (1,0) (1,1.73) − N = 3 (0,0) (0,0) −
N = 4 (0,0) (0,0) (4,0) N = 4 (0,0) (0,0) (0,0)
N = 5 (1,0) (1, 0.73) (1, 3.08) N = 5 (0,0) (0, 0) (0, 0)
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Table B.15: The numerical results of the spin correlation function 〈S̃z
−iS̃

z
i 〉 for

different spins i and system sizes N. The spin configuration is again set to
Sz

i = (−1)i.

Output 〈S̃z
0S̃z

0〉 〈S̃z
−1S̃z

1〉 〈S̃z
−2S̃z

2〉 Diff 〈S̃z
0S̃z

0〉 〈S̃z
−1S̃z

1〉 〈S̃z
−2S̃z

2〉
N = 2 0 1 − N = 2 0 0 −
N = 3 1/9 4/9 − N = 3 0 0 −
N = 4 0 0 1 N = 4 0 0 0
N = 5 0.04 0.0611 0.4189 N = 5 0 0 0

following round-offs have been performed

√
3 ≈ 1.73

1
2

(√
10 + 2

√
5−

√
10− 2

√
5
)
≈ 0.73

1
2

(√
10 + 2

√
5 +

√
10− 2

√
5
)
≈ 3.08

All of which entered by non-canceling sinusoidal terms in Eq. (B.18). The exact
expressions for sin(2πn

5 ) are listed in table (B.13), found by the help of [29] and basic
trigonometric identities.

A The correlation function for the NxN lattice: Theory vs. results

For a general two-dimensional lattice, the Fourier transforms of the spins becomes:

S̃z
k1,k2

=
1

L1L2

L1−1

∑
n1=0

L2−1

∑
n2=0

Sz
n1,n2

e−2πi
(

k1n1
L1

+
k2n2

L2

)
(B.19)

The 2x2 lattice

As we are working with a lattice of more than one dimension, we want to test our imple-
mentation of two- and three-dimensional lattices as well. We start with the simplest case
first and study the 2× 2-lattice. Due to the small system size, all Fourier transformed
spins will be purely real, as seen from list (3). The analytical results for a few cases are
listed in table (B.16), together with a comparison with the computational results. Once
again, the exact answers were subtracted from the numerical answers in the test code.
We see that there is no disagreement except a round-off error in one instance.
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Table B.16: Table of different spin configurations for the 2× 2 lattice and the
resulting Fourier transforms. To improve the readability, the Fourier trans-
forms are multiplied by the number of particles (namely 4). The first eight
columns indicates the input and the analytical results, while the last column
gives the largest difference between the analytical and numerical results.

Sz
0,0 Sz

0,1 Sz
1,0 Sz

1,1 NS̃z
0,0 NS̃z

0,1 NS̃z
1,0 NS̃z

1,1 Largest error
1 1 1 1 4 0 0 0 0
1 −1 −1 −1 −2 2 2 2 0
−1 1 1 1 2 −2 −2 −2 0

1 −1 1 1 2 2 −2 2 0
1 −1 −1 1 0 0 0 4 0
1 1 −1 −1 0 0 4 0 0

0.1 0.2 0.3 0.4 1 -0.2 -0.4 0 3 · 10−17

Table B.17: Table of the Fourier transforms of the spins of a 3 × 3 lattice.
The spins are increasing in magnitude, with Sz

i,j = 0.1(3i + j + 1) and i, j ∈
[0, 2]. To improve the readability, the Fourier transforms are multiplied by
the number of particles (namely 9). Complex numbers are given as (a, b) =
a + ib.

NS̃z
0,0 NS̃z

0,1 NS̃z
1,0

Theory (4.5, 0) (-0.45,0.259808) (-1.35, 0.779423)
Numerical (4.5,0) (-0.45,0.259808) (-1.35,0.779423)

NS̃z
1,1 NS̃z

1,2 NS̃z
2,0

Theory (0,0) (0,0) (-1.35,-0.779423)
Numerical (−1.1 · 10−16,−4.1 · 10−17) (5.6 · 10−17, 5.5 · 10−17) (-1.35, -0.779423)
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Table B.18: Table of the Fourier transforms of the spins of a 2× 2× 2 lattice.
The spins are increasing in magnitude, with Sz

i,j = 0.1(4i + 2j + k + 1) and
i, j, k ∈ [0, 2]. To improve the readability, the Fourier transforms are multi-
plied by the number of particles (namely 8). Very small numbers are given
by order of magnitude only.

NS̃z
0,0,0 NS̃z

0,0,1 NS̃z
0,1,0 NS̃z

0,1,1 NS̃z
1,0,0 NS̃z

1,0,1 NS̃z
1,1,0 NS̃z

1,1,1
Theory 3.6 -0.4 -0.8 0 -1.6 0 0 0

Numerical 3.6 -0.4 -0.8 10−16 -1.6 10−16 10−16 10−16

The 3x3 lattice

We know that fftw only stores L1 × L2/2 elements due to symmetry considerations,
reducing the output to a six-element array in our case. By said symmetries, we see that
S̃z

0,1 = S̃z∗
0,2, S̃z

1,1 = S̃z∗
2,2 and S̃z

1,2 = S̃z∗
2,1.

The analytical results for the case of Sz
i,j = 0.1(3i + j + 1) are listed in table (B.17),

together with a comparison with the computational results. The results are fine except
some round-off errors. Round-off errors are dangerous when evolving a quantity. In
finding the spin correlation function in our Monte Carlo procedure, the Fourier trans-
form is done anew for each Monte Carlo step, so we needn’t worry. Some round-off
errors will be negative and other positive, so there should be some cancellation going
on. Since the spin correlation function is averaged, large round-off errors not be accu-
mulated anyway.

B The correlation function for the 2x2x2 lattice: Theory vs. results

The 3-dimensional Fourier transform becomes:

S̃z
k1,k2,k3

=
1

L1L2L3

L1−1

∑
n1=0

L2−1

∑
n2=0

L3−1

∑
n3=0

Sz
n1,n2,n3

e−2π
(

n1k1
L1

+
n2k2

L2
+

n3k3
L3

)
(B.20)

Eq. (B.20) can easily be used to test the implementation of FFTW for the three-
dimensional lattice. Due to the small size of the system we once again know the trans-
formed spins to be real. The analytical results for a few cases are listed in table (B.18),
together with a comparison with the computational results. Again, the results agree up
to roud-off errors.

C The ordering wave vector for a chain

We will investigate the ordering wave vector for an N-particle chain for various cou-
plings. Often, we will resort to studying a 5- or 6-particle cain in order to ease our
understanding. Note that systems of odd and even particle number will in practice ex-
hibit different ordering wave vectors, as we only have a discrete set of ordering wave
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0 1 2 3 4 5

AF AF AF AF AF AF

Figure B.15: An even-particle chain with nearest-neighbour antiferromag-
netic interactions (in the ground state). The first spin is free to point in any
direction, but that would fix the other spins.

vectors to choose from. Referring to Eq. (2.32) and identifying L1 = N and b1 = 2π
a î

from Eq. (2.29), our q-vectors takes the values

q =
2πk
Na

î

where N is the number of particles, a is the grid length and k = 0, · · · , N − 1. We shall
see that q = π

a is a preferred ordering wave vector for many systems, but it only appears
in our discrete set if N is even. For odd N, the different values of q will compete for the
largest contribution.

The ordering wave vector q is the one that maximizes the spin correlation function:

〈SqS−q〉 =
1

N2 ∑
j

∑
k

SjSkeiq∆rjk (B.21)

where ∆rjk is the separation between the spins at site j and site k. To get an intuition
of the ordering wave vector, it is often enough to look at the contribution to (B.21) from
j = 0:

N2 〈SqS−q〉j=0 = S0S0 + S0S1eiqa + S0S2e2iqa + · · · (B.22)

where we have inserted for ∆rjk.
The simulations in this section were run for β = 1000 with 10 000 equilibration

sweeps, 1000 bins and 10 000 lattice sweeps per bin.

The nearest-neighbour antiferromagnet

The even-particle chain

Figure (B.15) shows one possible configuration of the ground state of a nearest-neighbour
antiferromagnetic chain with an even number of particles. The configuration is fixed up
to an overall rotation of the spins. Our spin correlation function becomes:

N2 〈SqS−q〉j=0 = 1− eiqa + e2iqa − e3iqa + · · ·

In order to get as large a contribution as possible, the exponential factor must be
positive for the terms with a plus sign and negative for the terms with a minus sign. We
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0 1 2 3 4

AF AF AF AF AF!

Figure B.16: An even-particle chain with nearest-neighbour antiferromag-
netic interactions. With periodic boundary conditions, the coupling between
the first and last spin causes a frustration, which would lead the spins to be
somewhat rotated with respect to each other (in other words, not completely
antiparallel). If we have open boundary conditions, the system is frustration-
free.

Table B.19: The spin correlation for different q’s for the five spin antiferro-
magnetic chain with open boundary conditions. J1 = 1 and β = 1000.

qa 0 2π/5 4π/5
〈SqS−q〉 0.0400 0.0611 0.419

easily see that q = π
a maximizes our spin correlation function: Spins separated by a are

antiparallel, and their negative dot product will be multiplied by a factor of ei(2n−1)π =
−1, while the spins separated by 2a will be multiplied by a factor of ei2πn = 1. π

a is thus
the ordering wave vector of the system:

N2 〈SqS−q〉j=0 = 1− eiπ + e2iπ − e3iπ + · · · = N

The odd-particle chain

Figure (B.16) shows an odd-particle chain with antiferromagnetic interactions. If peri-
odic boundary conditions are employed, the coupling between the first and last spin
causes a frustration. In the case of open boundary conditions, there is no such bond,
leaving the system frustration-free. In the latter instance, q = π

a would maximize
〈SqS−q〉 just as for the even-particle case, but that value is not included in our discrete
set

q =
2πk
Na

î; q = 0,
2π

Na
,

4πk
Na

, · · · ,
2π(N − 1)

Na
(B.23)

Obviously, as N is odd, it is impossible to retrieve π
a for the antiferromagnetic sys-

tem. Without that option, we will probably get quite a large contribution to the q’s
closest to π

a , namely π
a ±

π
Na . We would also expect small contributions from at least

some of the other q-values. This is consistent with the results of table (B.19). In the case
of the periodic boundary conditions, the system would not be as ordered as in figure
(B.16), and we would expect more evenly distributed contributions to 〈SqS−q〉.
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D The chain with a constant angle θ between spins

Assuming there is a fixed angle θ between each spin, the spin correlation function be-
comes:

N2 〈SqS−q〉 =
N−1

∑
k=0

N−1

∑
j=0

cos ((j− k)θ) eiqa(j−k) (B.24)

= 1 + cos θeiqa + cos 2θei2qa + cos 3θei3qa + · · ·

We differentiate to minimize with respect to q:

∂

∂q
〈SqS−q〉 = ia

N−1

∑
k=0

N−1

∑
j=0

(j− k) cos ((j− k)θ) eiqa(j−k)

= −2a
N−1

∑
x=1

(N − |x|)x cos (xθ) sin (qax) = 0 (B.25)

In trying to determine if our q corresponds to a minima or maxima, we must look at
the sign of the double derivative with respect to q:

N2 ∂2

∂q2 〈SqS−q〉 = −2a2
N−1

∑
x=1

(N − |x|)x2 cos (xθ) cos(qax)

There seems to be no straightforward way to solve this in general, however. Instead,
we study the function for different Ns.

The derivation of Eq. (B.25)

We want to tidy up the expression

∂

∂q
〈SqS−q〉 = ia

N−1

∑
k=0

N−1

∑
j=0

(j− k) cos ((j− k)θ) eiqa(j−k)

As k and j only enter through the combination x = j − k, we want to sum over x
instead. From the ranges of j and k, we see that x can take 2N − 1 possible values, the
integers from −(N − 1) to N − 1. Since we have a limited number of available j and
k-values, each value of x will appear with a specific weight. For a given x-value a:

x = j− k = a → j = k + a

No matter the value of a, j and k must be integers in the range [0, N − 1]. Assuming
that a > 0

a ≤ k + a = j ≤ N − 1 → 0 ≤ k ≤ N − a− 1
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Since k takes integer values starting from 0, it might take on N − a different values.
In other words the x = a-term should be weighted by N − a in the sum, as long as a is
positive.

If a < 0, j and k switch roles

x = j− k = −|a| → k = j + |a|

|a| ≤ j + |a| = k ≤ N − 1 → 0 ≤ j ≤ N − |a| − 1

So any term x = a appears with weight N − |a| in the sum over x.
We are left with:

∂

∂q
〈SqS−q〉 = ia

N−1

∑
x=−N+1

(N − |x|)x cos (xθ) eiqax

= ia
N−1

∑
x=0

(N − |x|)x cos (xθ)
(

eiqax − e−iqax
)

= −2a
N−1

∑
x=1

(N − |x|)x cos (xθ) sin (qax)

Since (N − |x|) and cos (xθ) only depends on the absolute value of x and eikx −
e−ikx = 2i sin(kx).

The 5-particle case

With five particles, q can take the values

q = 0,
2π

5a
,

4π

5a
,

6π

5a
,

8π

5a
The spin correlation function is symmetric about q = π

a , so we only consider the first
few values.

We want to limit ourselves to study the chain with periodic boundary conditions.
Then we have three angles that might minimize the energy and agree with the length of
the chain: θ = 0, θ = 2π/5, θ = 4π/5.

Table (B.20) shows the expected value of the ordering wave vector versus the pro-
gram output for different couplings J1 and J2 which cause θ to match the length of the
chain. We see that there is an agreement for all the listed couplings. When there are
two maxima, the value of 〈SqS−q〉 at each is about half the value of 〈S0S−0〉. This is just
what we expect, since the spin correlation function is normalized.

Note that for all our efforts, qa = θ consistently yields the largest value of 〈SqS−q〉.
This should in no way come as a surprise: In order to maximize the spin correlation
function, the ordering wave vector should match for the rotation of the spins, so that
every spin contributes with +1 N 〈SqS−q〉. That is why the ordering wave vector were
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Table B.20: The expected values of the ordering wave vector q with N = 5,
together with the q’s that yield the largest spin correlation function in the
simulations. We have set a = 1. θ is the angle between neighbouring spins,
which we used in our analysis. We have included the largest value of the spin
correlation from our simulations.

J1 J2 Corresponding θ Expected q q, simulations 〈SqS−q〉
−1 1/4 0 0 0 0.99804
−1 1/(

√
5− 1) 2π/5 2π/5, 8π/5 2π/5, 8π/5 0.49976

1 1/(1 +
√

5) 4π/5 4π/5, 6π/5 4π/5, 6π/5 0.49964

Table B.21: The expected values of the ordering wave vector q with N = 6,
together with the q’s that yield the largest spin correlation function in the
simulations. We have set a = 1. θ is the angle between neighbouring spins,
which we used in our analysis. We have included the largest value of the spin
correlation from our simulations.

J1 J2 Corresponding θ Expected q Largest q’s 〈SqS−q〉
−1 1/4 0 0 0 0.99696
−1 1/2 π/3 π/3, 5π/3 π/3, 5π/3 0.49951

1 1/2 2π/3 2π/3, 4π/3 2π/3, 4π/3 0.49953
1 1/4 π π π 0.99689

found to be q = 0 for the ferromagnetic system and q = −π/a for the antiferromagnetic
system, where the antiparallel neighbours had an angle of θ = π between them. With
these ordering wave vectors, the dot product and the exponential had the same sign for
each term, maximizing the spin correlation function.

The 6-particle case

With six particles, q can take the values

q = 0,
π

3a
,

2π

3a
,

π

a
,

4π

3a
,

5π

3a
The spin correlation function is symmetric about q = π

a , so we only consider the first
four values.

We want to limit ourselves to study the chain with periodic boundary conditions.
Then we have four angles that might minimize the energy and agree with the length of
the chain: θ = 0, π

3 , 2π
3 , π.

Table (B.21) shows the expected value of the ordering wave vector vs the program
output for different couplings J1 and J2 which cause θ to match the length of the chain.
We see that there is an agreement between expectation and output for all couplings.
There is also an agreement between the angle of rotation between neighbours and the
ordering wave vector, as expected.



Appendix C

The spiralization condition for a chain

C.1 The Dzyaloshinskii-Moriya term

Applying eq. (4.1) to Eq. (2.23), Where u, v are normalized, orthogonal vectors in the
plane of rotation. The cross product between two adjacent spins are:

S (ri)× S (ri+1) = [u cos (Q · ri) + v sin (Q · ri)]× [u cos (Q · ri+1) + v sin (Q · ri+1)]

= u× v cos (Q · ri) sin (Q · ri+1) + v× u sin (Q · ri) cos (Q · ri+1)

= u× v [cos (Q · ri) sin (Q · ri+1)− sin (Q · ri) cos (Q · ri+1)]

We recognize the bracketed expression as the sine of a difference

S (ri)×S (ri) = u×v sin (Q · ri+1 −Q · ri) = u×v sin [Q · (ri+1 − ·ri)] = u×v sin (Q · ∆r)

Where ∆r depends on the direction of the bond. In a chain, a quadratic or a simple
cubic lattice, it is on a simple form:

∆r = ax̂ ∨ aŷ ∨ aẑ

where all possibilities are available for the cubic lattice, but only the first two for the
quadratic lattice and only the first for the chain. a is the grid length. Considering only
the chain at the moment, our expression simplifies to:

Si × Si+1 = S (ri)× S (ri+1) = u× v sin (Qxa) (C.1)

where Qx is the x-component of Q (and the only relevant component in the 1D case).
The Hamiltonian simplifies to

HDM = −D ·
Ñ

∑
i=0

u× v sin (Qxa)

97
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We rename D · (u× v) = D cos α, where D = |D| > 0 (taking the dot product of D
with the normalized vector (u× v)).

E = HDM = −ÑD sin (Qxa) cos α (C.2)

With the number of bonds Ñ being N for periodic boundary conditions and N − 1
for open boundary conditions. We minimize E with respect to Qx and set it equal to
zero:

∂E
∂Qx

= −aÑD cos (Qxa) cos α = 0

Assuming that cos α 6= 0, this leaves us with cos(Qxa) = 0, meaning Qxa = π
2 (2n−

1). We consider the sign of the second derivative:

∂2E
∂Q2

x
= a2Ñ sin (Qxa)D · (u× v)

If cos α > 0:

∂2E
∂Q2

x
= a2Ñ sin (Qxa) ;

∂E
∂Qx

is
{

> 0 for Qxa = π
2 : Minima

< 0 for Qxa = 3π
2 : Maxima

If cos α < 0:

∂2E
∂Q2

x
= −a2Ñ sin (Qxa) ;

∂E
∂Qx

is
{

< 0 for Qxa = π
2 : Maxima

> 0 for Qxa = 3π
2 : Minima

So the minima and maxima depends on the sign of cos α. In any case, Qx = π
2a and

Qx = 3π
2a are our extremal points. Note that there is not much difference between these

points: They are both a rotation of π
2 , but in different directions. Additionally, one only

appears as a minima when cos α = D · (u× v) > 0, and the other one when cos α < 0:
the direction of the rotation by π

2 is not even arbitrary, but depends on how the spins
are oriented with respect to each other. We attempt to find the optimal value of α:

∂E
∂α

= ÑD sin (Qxa) sin α = 0

so we have either sin (Qxa) = 0 or sin α = 0. The former yields E = 0 and is
therefore uninteresting. The latter yields α = πn, so cos α = (−1)n. We inspect the
extremal points for n = 0 and n = 1:

∂2E
∂α2 = ÑD sin (Qxa) cos α → ∂2E

∂α

∣∣∣∣
α=πn

= ÑD sin (Qxa) (−1)n

So if sin (Qxa) > 0:

∂2E
∂α2

∣∣∣∣
α=πn

=

{
> 0 for n = 0 : minima
< 0 for n = 1 : maxima
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Table C.1: Different couplings for the 12-particle open Dzyaloshinskii-
Moriya chain at β = 10. The simulations were run with 100 000 equilibration
sweeps, 10 000 lattice sweeps per bin and 100 bins.

Dx
DM Dy

DM Dz
DM S̄x S̄y S̄z θ̄ Expected θ

2 0 0 0.0977 0.5780 0.6847 1.5779 1.5708
1 0 0 0.1356 0.5751 0.6617 1.5035 1.5708
0 1 0 0.6062 0.2054 0.6385 1.5522 1.5708
0 0 1 0.5821 0.6233 0.2418 1.5274 1.5708

and for sin (Qxa) < 0:

∂2E
∂α2

∣∣∣∣
α=πn

=

{
< 0 for n = 0 : maxima
> 0 for n = 1 : minima

So in the ground state configuration, D · (u× v) = D cos α, α = πn. Thus D is
perpendicular to the plane spanned out by u and v, meaning that D is parallel to the
normal vector of said plane. Consequently, D determines the preferred plane of the
spins in the ground state. Inspecting low temperatures, we expect a configuration where
all the spins are very close to residing in the plane.

These predictions were tested against the 12-particle open chain for β = 10, as shown
in table (C.1). The average spin component in the direction of D were significantly
smaller than in the other directions, which is part of what we concluded from our anal-
ysis. The other prediction, that the angle between the spins would be π/2, fits well with
the results.

C.2 Dzyaloshinskii-Moriya with nearest neighbour Heisen-
berg terms

We have the Hamiltonian

H = J ∑
i

Si · Si+1 −D · ∑
i
(Si × Si+1) (C.3)

and apply the rotation parametrization, (4.1) to the spins Si. We already know the
result of the last term, so we calculate the dot product:

Si · Si+1 = S (ri) · S (ri+1) = [u cos (Q · ri) + v sin (Q · ri)]

· [u cos (Q · ri+1) + v sin (Q · ri+1)]

= cos (Q · ri) cos (Q · ri+1) + sin (Q · ri) sin (Q · ri+1)

Using
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cos(x± y) = cos x cos y∓ sin x sin y

with x = Q · ri+1 and y = Q · ri, we obtain:

Si · Si+1 = cos (Q · ri+1 −Q · ri) = cos (Q (ri+1 − ri))

= cos (Q · ∆ri) (C.4)

Considering a chain, the result is

Si · Si+1 = cos (Qxa)

Inserted into our Hamiltonian:

E = H = Ñ [J cos (Qxa)− D sin (Qxa) cos α] (C.5)

In order to obtain the most elegant expressions, we minimize E with respect to α
before we find the extrema in terms of Qx.

∂E
∂α

= ÑD sin (Qxa) sin α = 0

As sin (Qxa) = 0 yields E = 0, sin α = 0, i.e. α = πn.

∂2E
∂α2 = ÑD sin (Qxa) cos α

So

∂2E
∂α2

∣∣∣∣
α=πn

= (−1)n ÑD sin (Qxa)

If sin (Qxa) > 0:

∂2E
∂α2

∣∣∣∣
α=πn

=

{
> 0 for n = 0 : minima
< 0 for n = 1 : maxima

and for sin (Qxa) < 0:

∂2E
∂α2

∣∣∣∣
α=πn

=

{
< 0 for n = 0 : maxima
> 0 for n = 1 : minima

Minimizing with respect to Qx, we take the derivative of (C.5):

∂E
∂Qx

= −Ña [J sin (Qxa) + D cos (Qxa) cos α] = 0

J sin (Qxa) + D cos (Qxa) cos α = 0

J sin (Qxa) = −D cos (Qxa) cos α
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tan (Qxa) = −D cos α

J

Qx =
1
a

arctan
(
−D cos α

J

)
+ πn

Qx =
1
a

arctan
(
±D

J

)
+ πn

Qx = ±1
a

arctan
(

D
J

)
+ πn

Where we have taken into account that the angles may not only reside in the primary
branch of the inverse tangent. So the extremal points depend only on the relative sizes
of the couplings, in addition to the grid length.

We take the second derivative to distinguish between minima and maxima:

∂2E
∂Q2

x
= −Ña2 [J cos (Qxa)− D cos α sin (Qxa)]

We insert for our extremal point, keeping in mind that cos α = ±1 for the maximum
and minimum energies:

sin (Qxa) = −D cos α

J
cos (Qxa)

∂2E
∂Q2

x
= −Ña2

[
J cos (Qxa)− D cos α

(
−D cos α

J
cos (Qxa)

)]
= −Ña2

[
J +

D2 cos2 α

J

]
cos (Qxa)

= − Ña2

J

[
J2 + D2

]
cos (Qxa)

Since Ña2 and the expression in the paranthesis is always positive, only the signs
of J and cos (Qxa) determines whether our point is a minima or a maxima. For sim-
plicity, we study ferromagnetic Heisenberg couplings (J < 0) and antiferromagnetic
Heisenberg couplings (J > 0) separately.

For the ferromagnetic coupling, J < 0:

∂2E
∂Q2

x
= |χ| cos (Qxa)

where χ = − Ña2

J
[

J2 + D2] becomes positive since J is negative. Then:

∂2E
∂Q2

x
=

{
< 0 for cos (Qxa) < 0→ Qx ∈

(
− π

2a , π
2a
)

(gives a maxima)
> 0 for cos (Qxa) > 0→ Qx ∈

(
π
2a , 3π

2a
)

(gives a minima)
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Table C.2: Different couplings for the 20-particle open chain with nearest
neighbour Heisenberg and Dzyaloshinskii-Moriya interactions at β = 10.
J1 = 1 for all the runs. The simulations were run with 100 000 equilibration
sweeps, 10 000 lattice sweeps per bin and 100 bins.

Dx
DM Dy

DM Dz
DM

¯|Sx| ¯∣∣Sy
∣∣ ¯|Sz| θ̄ Expected θ

2 0 0 0.1194 0.6356 0.6364 1.9265 2.0344
2 0 0 0.1135 0.6286 0.6192 1.9585 2.0344
1 0 0 0.1268 0.6318 0.6229 2.1865 2.3562
1 0 0 0.1920 0.5882 0.6527 2.1645 2.3562

0.5 0 0 0.2121 0.6528 0.5757 2.4289 2.6795
0.5 0 0 0.3093 0.5629 0.6115 2.5783 2.6795

0 0 1 0.6922 0.5544 0.1495 2.3563 2.3562
0 0 1 0.6413 0.6217 0.1497 2.3195 2.3562

The situation is obviously reversed for an antiferromagnetic coupling, J > 0:

∂2E
∂Q2

x
= −|χ| cos (Qxa)

∂2E
∂Q2

x
=

{
> 0 for cos (Qxa) < 0→ Qx ∈

(
− π

2a , π
2a
)

(gives a minima)
< 0 for cos (Qxa) > 0→ Qx ∈

(
π
2a , 3π

2a
)

(gives a maxima)

Table (C.2) lists the average absolute value of the spin components and the average
angle between the spins for several systems with a different values of D/J, together
with the predicted angle from our analytical minimalization. The inverse tangent being
multivalued, there were several options for the predicted θ for a given ratio D/J. The
ambiguity of the sign arising from cos α even led to multiple values of θ being possible
in one range of arctan. Since cos α only determines the direction of the rotation (clock-
wise or counter-clockwise), we chose the prediction of θ closest to the angle from the
simulations. In all cases, that angle resided in the n = 1-branch of arctan.

The numerical and analytical θ differs with up to about 10%, but we study the system
at quite a small value of β, so the discrepancy might be due to our distance from zero
temperature. Due to experience, we are hesitant to delve into lower temperatures as
metastable states then emerge. In our analysis, we have encountered metastable states
with β = 100. β = 10 seems like a fair trade-off between accessing low-energy states
and avoiding the metastable configurations. On a happier note, the last rows of the
table shows a good agreement between the numerical and analytical angle.

C.3 Pure Heisenberg couplings

We already know that
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H = J ∑
i

Si · Si+1 = Ñ J cos (Qxa)

So:

∂E
∂Qx

= −Ñ J sin (Qxa) = 0 → sin (Qxa) = 0 → Qx =
πn
a

∂2E
∂Q2

x

∣∣∣∣
πn/a

= −Ñ J cos (Qxa)
∣∣
πn/a = −Ñ Ja2 (−1)n

For J < 0: ferromagnetic coupling:

∂2E
∂Q2

x
=
∣∣∣Ñ Ja2

∣∣∣ (−1)n =

{
> 0 for Qx = 2πn

a → minima
< 0 for Qx = π

a (2n− 1) → maxima

For J > 0: antiferromagnetic coupling:

∂2E
∂Q2

x
= −

∣∣∣Ñ Ja2
∣∣∣ (−1)n =

{
< 0 for Qx = 2πn

a → maxima
> 0 for Qx = π

a (2n− 1) → minima

The results are consistent with what we already know: In the ferromagnetic case,
the ground states will have parallel spins (an angle of 0 or 2π) between each, while the
spins will be antiparallel in the antiferromagnetic case (an angle of π).

C.4 Nearest- and next-nearest neighbour Heisenberg cou-
plings

Looking at nearest- and next-nearest neighbour Heisenberg couplings using the spiral-
ization condition, we obtain

H = J1 ∑
i

Si · Si+1 + J2 ∑
i

Si · Si+2 (C.6)

where J1 is the nearest neighbour coupling and J2 is the next-nearest neighbour cou-
pling. If J1 and J2 are not both ferromagnetic couplings, there will be a competition
between the two terms.

A The extremal points

The Hamiltonian (C.6) simplifies considerably when there is a fixed angle θ between
each pair of neighbouring spins

E = N [J1 cos θ + J2 cos (2θ)] (C.7)
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We insert for the awkward factor of cos(2θ) using standard trigonometric identities

E = N
[

J1 cos θ + J2

(
2 cos2 θ − 1

)]
(C.8)

To find the extremal points of E, we must differentiate with respect to θ, using
4 cos θ sin θ = 2 sin 2θ for convenience

∂E
∂θ

= N [−J1 sin θ − 4J2 cos θ sin θ] = 0

sin θ (−J1 − 4J2 cos θ) = 0

So either

sin θ = 0 → θ = nπ, n ∈ Z

or

J1 + 4J2 cos θ = 0 → cos θ = − J1

4J2
→ θ = ± arccos(− J1

4J2
)(∓∨±)2nπ (C.9)

The latter solution only holds when∣∣∣∣ J1

4J2

∣∣∣∣ ≤ 1 → |J2| ≥
|J1|
4

When the equality holds, the answer coincides with that of sin θ = 0. If |J2| ≤ |J1|
4 ,

the extremal points are determined by sin θ = 0, thus being situated at θ = nπ.

Classifying the extremal points

Now that we have found our extremal points, we want to classify them. We inspect the
double derivative of the energy with respect to θ:

∂2E
∂θ2 = −N

∂

∂θ
[J1 sin θ + 2J2 sin 2θ] = −N [J1 cos θ + 4J2 cos 2θ]

= −N
[

J1 cos θ + 8J2 cos2 θ − 4J2
2

]
(C.10)

Considering θ = arccos
(
− J1

4J2

)
∂2E
∂θ2 = −N

[
−

J2
1

4J2
+ 8J2

J2
1

16J2
2
− 4J2

]
= −N

[
2J2

1 − J2
1

4J2
− 4J2

]

= −4J2N

[(
J1

4J2

)2

− 1

]
= 4J2N

[
1−

(
J1

4J2

)]
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But since
∣∣∣ J1

4J2

∣∣∣ = | cos θ| ≤ 1,
[
1−

(
J1

4J2

)]
≥ 0 . Then, the sign of ∂2E

∂θ2 depends solely
on the sign of J2:

If J2 > 0, ∂2E
∂θ2 > 0 and we have a (local) minima

If J2 < 0, ∂2E
∂θ2 < 0 and we have a (local) maxima

(C.11)

As long as we consider J2 > 0 and J2 < J1, we have found a set of local minimas for
the energy

E = −N

[
J2
1

8J2
+ J2

]
(C.12)

which we found by using eq.s (C.7) and (C.9).
However, we have another set of extremal points that may also be local minima. In

order to determine if Eq. (C.12) is the actual ground state energy, we have to consider
the other extremal points θ = πn as well. We only want to evaluate them in the reign
where θ = arccos

(
− J1

4J2

)
might be a minima, i.e. J2 > 0, |J1| < 4 |J2|. Inserting for

θ = πn in Eq. (C.10) yields

∂2E
∂θ2 = −N [J1(−1)n + 4J2(2− J2)]

The aim of this thesis is to inspect physical models of LiNiPO4, and in all our sources
[13], [15], [25] 0 < J2 < 1. In that instance

4J2 (2− J2) > 4 |J2| > |J1|

Clearly, θ = πn are local maximas of the energy. But then Eq. (C.12) is indeed the
ground state of the system.

B Minimizing the energy with periodic boundary conditions

We have seen that the ground state will favour an angle θ = arccos
(
− J1

4J2

)
between

adjacent spins as a compromise between the nearest and next-nearest neighbour bonds.
Considering a chain of N, the angles will add up such that the angle between the first
spin S0 and the last, SN−1, will be (N − 1)θ. The endpoint bond will want to rotate
SN = S0 by θ from SN−1. In other words, the bonds between the endpoint spins will
want to rotate S0 with an angle Nθ relative to itself. If Nθ 6= 2πn, the orientations of S0
are conflicting, and the system is said to be frustrated.

We might avoid this conflict altogether by studying systems with θ = 2πn
N . The angle

θ is determined by our couplings, we must consider J1 and J2 such that

arccos
(
−J1

4J2

)
=

2πn
N
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Table C.3: The expected angle of rotation between neighbouring spins for
different ’simplifying’ couplings J1 and J2 near the ground state for N = 5.
The expected angle of rotation θ between each spin is given by (C.9). Adding
or subtracting 2πn to that column would still yield the ground state. θ̄ is the
average angle between neighbouring spins in the simulation. E stands for the
energy and ∆E is the standard deviation in the energy. The simulations were
for β = 1000 run with 10000 equilibration sweeps and 1000 bins with 10000
lattice sweeps in each.

J1 J2 Expected θ θ̄, sim. E, an. E, sim. ∆E
−1 1/4 0 0.073 -3.75 -3.74594 3.5 · 10−5

−1 1−
√

5 ±1.2566 1.2568 -4.81763 -4.81411 3.0 · 10−5

1 1 +
√

5 ±2.5133 2.5102 -3.56763 -3.56412 2.7 · 10−5

J1

J2
= −4 cos

(
2πn

N

)
(C.13)

or

J2 = − J1

4 cos
(2πn

N
)

We could of course avoid the problem altogether by considering open boundary
conditions. That would however modify θ somewhat. With open boundary conditions,
we have N − 1 nearest neighbour bonds and N − 2 next-nearest neighbour bonds. The
preferred angle is then

θ = arccos
(
− J1(N − 1)

4J2(N − 2)

)
(C.14)

which approaches (C.9) when N → ∞. We will focus on periodic boundary condi-
tions for the time being, but will revisit Eq. (C.14) later on.

C Results with relevant couplings

With N = 5

Table (C.3) shows the expected angles θ between neighbouring spins along with the
average θ̄ for the simulations. The analytical and numerical energies are quite similar for
all couplings, although they do not agree within the standard deviation. One possible
explanation for the discrepancy could be that our temperature is not sufficiently low for
the system to have reached the ground state. Additionally, the Metropolis algorithm is
not ideal for finding the ground state energy as very few moves will be accepted at low
temperatures. We could also be stuck in a metastable state close to the ground state.
Whatever the exact reason, the values are close enough to the ground state energies to
not discredit our code.
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Table C.4: The expected angle of rotation between neighbouring spins for
different ’simplifying’ couplings J1 and J2 near the ground state for N = 6.
The expected angle of rotation θ between each spin is given by (C.9). Adding
or subtracting 2πn to that column would still yield the ground state. θ̄ is the
average angle between neighbouring spins in the simulation. E stands for the
energy and ∆E is the standard deviation in the energy. The expected energy
was calculated by (C.12). The simulations were for β = 1000 run with 10000
equilibration sweeps and 1000 bins with 10000 lattice sweeps in each.

J1 J2 Expected θ θ̄, sim. E, an. E, sim ∆E
−1 1/4 0 0.0644 -4.5 -4.4950 4.1 · 10−5

−1 1/2 ±1.0472 1.0476 -4.5 -4.4954 3.3 · 10−5

1 1/2 ±2.0944 2.0940 -4.5 -4.5000 3.3 · 10−5

1 1/4 ±3.14159 3.0936 -4.5 -4.4950 5.3 · 10−5

With N = 6

Table (C.4) shows the expected angles θ between neighbouring spins along with the
average θ̄ for the simulations. There is quite a large discrepancy between theory and
simulations for θ in the last row, but the two results are not vastly different. Overall, the
energies do however agree quite well with the theoretical result, though not within the
standard deviation. Possible reasons for the discrepancies is discussed for the five spin
case.

C.5 Heisenberg and Dzyaloshinskii-Moriya terms

We have yet to examine the Hamiltonian with both Dzyaloshinskii-Moriya terms and
nearest- and next-nearest neighbour Heisenberg terms. Applying the spiralization con-
dition to the chain, we obtain

E = Nnn J1 cos(Qxa) + Nnnn J2 cos(Qxa)− α sin(Qxa) (C.15)

Table C.5: The angles that minimize Eq. (C.15) by using the couplings in
table (3.4). The nearest neighbour couplings are set to Jnn = 2(Jxy + Jyz) and
α = 2Dy

DM to mimick the fcc lattice. N is the number of particles in the chain
and Qmina is the angle that minimizes the energy. Qmina for N = ∞ was found
using periodic boundary conditions. The uncertainty stems from the limited
resolution. The last line shows the average angle θ̄ from simulations at 2.5 K.

N 6 20 100 ∞
Theory Qmina 2.522±0.003 2.424±0.003 2.397±0.003 2.389118±5 · 10−6

Experiments θ̄ 2.177 2.150 2.1879 −−
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Figure C.1: The spin correlation function for the 100 spin chain with J1 =
2.64, J2 = 0.67 and Dy

DM = 0.64 and open boundary conditions. We see two
incommensurate peaks.

where α = 2Dy
DM. We minimize Eq. (C.15) numerically using Toft-Petersen’s cou-

plings Jxy, Jyz and D14 (see table (3.4)), with the nearest neighbour couplings multiplied
by two to compensate for the increased number of neighbours in the face-centered cu-
bic lattice, which we want to mimick. We obtain the results of table (C.5), which shows
incommensurate angles. The simulations were run at 2.5 K with 100 bins and 105 equi-
libration sweeps and lattice sweeps per bin. The agreement is not perfect, but T=2.5 K
is high enough that the state of the system would deviate a bit from the ground state.

The spin correlation function is plotted in figure (C.1), and shows two incommensu-
rate peaks.

C.6 The effect of single-ion anisotropy

The single-ion anisotropy differs from the other terms of our Hamiltonian as it is an on-
site effect, and consequently does not couple spins. That is the reason behind excluding
it from Chapter 5. We will start this section by minimizing a one-spin Hamiltonian to
get an intuition of the effect, and then move on to inspect how it affects the frustrated
system by use of the spiralization condition. As we shall see, the condition must be
applied with some caution when describing a system with single-ion anisotropy.

A General

First, we consider a Hamiltonian of only single-ion anisotropy terms. No bonds being
present, the spins will be randomly oriented with respect to each other, while minimiz-
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ing the energy at T = 0.
But how do you obtain the minimal energy for a pure single-ion anisotropy Hamil-

tonian? The Hamiltonian itself is simple enough

H = ∑
i

[
Dx

an (S
x
i )

2 + Dy
an
(
Sy

i
)2

+ Dz
an (S

z
i )

2
]

(C.16)

As seen from Eq. (C.16), the sign of the spin components does not affect the energy.
However, the sign of Dα

an is crucial in determining the configuration. Now, since there
are no bonds, all spins are independent and equal, so we restrict ourselves to looking at
one spin only.

E = Dx
an (S

x)2 + Dy
an (Sy)2 + Dz

an (S
z)2

We check what happens if only one of the coefficients Dα
an is non-zero

E = Dα
an (S

α)2

We minimize with respect to Sα:

∂E
∂Sα

= 2Dα
an |Sα| = 0; → Sα = 0 (C.17)

∂2E
∂2Sα

= 2Dα
an

If Dα
an > 0, ∂2E

∂2Sα > 0, and Sα = 0 is a minima of the energy. The ground state is then
highly degenerate, including all spins of the form S = Sβ β̂ + Sγγ̂, where α 6= β 6= γ.

If Dα
an < 0, ∂2E

∂2Sα < 0, and Sα = 0 is a maxima of the energy. This leaves us with no
information of the ground state, until we remember that the spins are normalized. Due
to the minus sign, the smallest possible value of E is

E = − |Dα
an| (|Sα|)2 = − |Dα

an|
i.e. the spin pointing purely in the α̂-direction.
There are no cross-terms with the components of Dan in the Hamiltonian, so we

will retrieve Eq. (C.17) for every index. The interpretation will be the same for every
direction: If Dα

an is negative, that direction is preferred, and if it is positive, the spins
will disfavour it at low temperatures. However, we inspect the Hamiltonian with two
non-zero components of Dan to see if we can obtain further insights

E = Dα
an (S

α)2 + Dβ
an

(
Sβ
)2

The equations ∂E
∂Sα = 0 and ∂E

∂Sβ = 0 are equivalent, and we obtain Sα = 0 and Sβ = 0

as the extremal point. For Dα
an > 0, Dβ

an > 0, the ground state is doubly degenerate, i.e.
S = ±γ̂.
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If Dα
an > 0 and Dβ

an < 0, the ground state is S = ±α̂, and similarly for β.
If Dα

an < 0 and Dβ
an < 0, the ground state spin will orient itself in the direction of the

component of Dan largest in absolute value. If they are the same, the spin will orient
itself in any of the directions in the αβ-plane, as seen from

E = −D (Sα)2 − D
(

Sβ
)2

= −D
[
(Sα)2 +

(
Sβ
)2
]

which takes it largest negative value if the normalized spin S has no γ-component.
If all components of Dan are non-zero, the spin will avoid pointing in the directions

of positive Dα
an, and orient itself along directions of negative Dα

an. Note that if Dan are
either all positive or all negative, they will only shift the energy of the system and not
affect the configuration of the spins.

The single-ion anisotropy does not conflict with ferro- or antiferromagnetic order-
ing. Even Dα

an, Dβ
an > 0 allows parallel or antiparallel ordering, albeit only in the γ̂-

direction. In other words, what the anisotropy does in this case is lowering the ground
state degeneracy. Consequently, it will limit the feasibly available configurations at low
temperature.

In summary:
For low temperatures:

1. If a single-ion anisotropy strength Dα
an < 0, the spin will favour that direction.

2. If a single-ion anisotropy strength Dα
an > 0, the spin will disfavour that direction.

When all Dα
an > 0:

1. If only Dα
an > 0, the spins will favour the βγ-plane.

2. If Dα
an, Dβ

an > 0, the spins will favour the ±γ̂-direction.

3. If all Dα
an>0, the energy will be shifted.

B Single-ion anisotropy and competing Heisenberg terms

We study a chain with competing nearest and next-nearest interactions with single-ion
anisotropy terms. Applying the condition of spiralization yields

H = N1 J1 cos(Qa) + N2 J1 cos(Qa)

+

(
N + 1

2
+

cos (NQa) sin ((N − 1) Qa)
2 sin (Qa)

)(
Dxu2

x + Dyu2
y + Dzu2

z

)
+

(
N − 1

2
− cos (NQa) sin ((N − 1) Qa)

2 sin (Qa)

)(
Dxv2

x + Dyv2
y + Dzv2

z

)
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+
sin ((N − 1) Qa) + sin (NQa)

sin (Qa)
(

Dxuxvx + Dyuyvy + Dzuzvz
)

Where N1 is the number of nearest-neighbour bonds and N2 is the number of next-
nearest neighbour bonds, both of which depend on our boundary conditions. Since the
expression is quite complicated, we will want to simplify it. Minimizing with respect to
all the components of u and v is, for instance, a daunting task. We have already seen/the
sources state that the interesting physics happens in the y-direction of the crystal, which
is why we should be able to capture much of the information by inspecting the chain.
All three of the sources states a large y-component of the single-ion anisotropy, so the
configuration will disfavour spin components in that direction. Consequently, the spins
will practically reside in the xz-plane. We approximate and set uy = vy = 0. Now, u
and v must be orthonormal, so we choose u = ẑ and v = x̂. Furthermore, Dz = 0 in all
the papers. We are left with

H = N1 J1 cos(Qa) + N2 J1 cos(Qa)

+

(
N − 1

2
− cos (NQa) sin ((N − 1) Qa)

2 sin (Qa)

)
Dx (C.18)

which we will treat numerically.
At first sight, the last term looks a bit troublesome due to the sine in the denominator.

We inspect the limit Qa→ πn using L’Hôpital’s rule:

lim
Qa→π

cos (NQa) sin ((N − 1) Qa)
2 sin (Qa)

= lim
Qa→π

−N sin (NQa) sin ((N − 1) Qa)
2 cos (Qa)

+ lim
Qa→π

(N − 1) cos (NQa) cos ((N − 1) Qa)
2 cos (Qa)

=
(N − 1)(−1)n(N−1)(−1)nN

2(−1)n =
N − 1

2

So the entire single-ion anisotropy contribution will vanish in these limits

lim
Qa→π

(
N − 1

2
− cos (NQa) sin ((N − 1) Qa)

2 sin (Qa)

)
=

N − 1
2
− N − 1

2
= 0

Our single-ion anisotropy picks out the spin components in the x-direction. Since
we have chosen to parametrize the spiralization as

S = cos(Qa)ẑ + sin(Qa)x̂

the spins will be oriented along the z-axis for Qa = πn. Hence, we neither expect nor
get a contribution from the single-ion anisotropy in this case.

The spiralization condition allows us to absorb the single-ion anisotropy into a few
terms, which is useful for a lot of cases. However, we mentioned that u and v have to
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Figure C.2: Antiferromagnetic ordering of the one-dimensional spins.

Figure C.3: Two by two ordering of the one-dimensional spins.

be orthogonal. If they are not, the whole condition falls apart. In the cases where we
have a strong single-ion anisotropy in two directions, the spins will be effectively be
one-dimensional. Then u and v cannot be orthogonal. In fact, they have to be paral-
lel and consequently fails to properly describe spiralization. The only one-dimensional
ordering we can get from the spiralization condition is parallel and antiparallel align-
ment, which appear when Qa = πn. There are other options for ordering 1D spins, like
two spins pointing up, three pointing down and so on, but those cannot be described by
our condition. Therefore, we must be cautious when applying the condition to systems
with a large single-ion anisotropy in two directions. Arguably, those are the systems we
are interested in.

Possible configurations of the one-dimensional spins

The simplest configuration of one-dimensional, normalized spins is a parallel or an-
tiparallel alignment. Since we have competing interactions, however, we cannot imme-
diately rule out other possibilities, like the spins being ordered in clusters of size two,
size three and so on. The clusters of spins pointing up might not even be the same size
as the clusters of spins pointing down.

We work with positive couplings, so we can rule out the ferromagnetic configuration
as a candidate for the ground state. In deducing the energy for the more complicated
configurations, we are going to ignore the contributions from the edges, as those are an
effect of the choice of N, and does not scale with the system size anyway.

The antiferromagnetic system is however simple to analyse, as apparent from fig-
ure (C.2). All nearest neighbours are antiparallel, and all next-nearest neighbours are
parallel. The total energy for the antiferromagnetic system is then

E = −(N − 1)J1 + (N − 2)J2

Figure (C.3) shows a chain with spins grouped in twos. Every other nearest neigh-
bour bond is positive, and every other negative. Thus, the contribution from the nearest
neighbour interaction disappears. All the next-nearest neighbour bonds are negative,
so we are left with

E = −(N − 2)J2
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Figure C.4: Three by three ordering of the one-dimensional spins.

Figure C.5: Two by three ordering of the one-dimensional spins.

Figure (C.4) shows a chain with spins grouped in threes. One third of the nearest
neigbour bonds are negative, and one third of the next-nearest bonds are positive. We
are left with

E =
N − 1

3
J1 −

N − 2
3

J2

We can also have a mix of different domain sizes , for instance two spins down
followed by two spins up and so on. An example is illustrated in figure (C.5). Boundary
effects clearly kicks in for this kind of configuration, but roughly speaking, the energy
goes as

E =
N
5
(J1 − 3J2)

for large N.
We might do this for as many configurations we like, but we appear to see a trend:

For positive couplings J1, J2, large domains seems to be disfavoured. A set of con-
figurations is listed in table (C.6), together with their energy in the limit of large N.
Comparing, we see that the antiferromagnetic ordering has the lowest energy of these
configurations as long as 2J2 < J1.

Table C.6: The energy for different configurations of one-dimensional spins,
when both nearest neighbour couplings J1 and next-nearest neighbour cou-
plings J2 are present. a-b denotes a spin(s) pointing in one direction followed
by b spin(s) in the other and so on.

Ordering E/N Ordering E/N
AF J2 − J1 1-3 0
2-2 −J2 1-4 1/5(J1 + J2)
3-3 1/3(J1 − J2) 2-3 1/5(J1 − 3J2)
4-4 1/2J1 2-4 1/3(J1 − J2)
1-2 −1/3(J1 + J2) 3-4 1/7(3J1 − J2)
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Figure C.6: The energy E versus the angle Q from Eq. (C.18) for Dx = 0,
i.e. the competing chain without single-ion anisotropy in the x-direction. We
have set a = 1. The dashed line gives the location of Q = π, and the dot is at
E(π). There are two minima of the function. N = 1000000.

The energy for J1 = 2.08 and J2 = 0.67

For our present choice of coupling strengths, the antiparallel ordering is the ground
state when the spins become one-dimensional. As discussed, the spins lose a dimension
when the single-ion anisotropy in that direction becomes too large.

Figures (C.6) to (C.8) shows how the energy E of (C.18) varies with the angle of
rotation Q for different values of the single-ion anisotropy Dx. Increasing Dx increases
the overall energy, except at Q = π where the single-ion anisotropy does not contribute
to the energy. For a large enough Dx, the antiferromagnetic ordering at Q = π becomes
the minima of E. This is seen in figure (C.8).

Figure (C.9) shows that from about Dx = 0.13 onwards, the energy will be mini-
mized for an angle of rotation Q = Qmin = π. The exact value of Dx is given with
greater accuracy in table (C.7). For now, we concern ourselves with the larger details.
The abrupt change in the graph occurs when the single-ion anisotropy is large enough
for the spins to favour the antiparallel ordering. The spins have now become one-
dimensional and point in the positive or negative z-direction. There will consequently
be no contribution from the single-ion anisotropy. That is why the minimal energy does
not change as we increase Dx above Dx ≈ 0.13.

We could wonder why the angle Qmin does not change with increasing Dx before the
abrupt change at Dx ≈ 0.13. There could perhaps be some angle Q that offers a com-
promise between the rotation brought on by J1 and J2 and the single-ion anisotropy’s
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Figure C.7: The energy E versus the angle Q from Eq. (C.18) with Dx = 0.1.
We have set a = 1. The dashed line gives the location of Q = π, and the dot
is at E(π). N = 1000000.

Figure C.8: The energy E versus the angle Q from Eq. (C.18) with Dx = 0.2.
We have set a = 1. The dashed line gives the location of Q = π, and the dot
is at E(π). There are two minima of the function. N = 1000000.
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Figure C.9: The value Q = Qmin that minimizes the energy E of (C.18) plotted
against Dx. For Dx ' 0.13, Qmin = π. N = 1000000.

Figure C.10: The lowest energy E = Emin of (C.18) as a funciton of Dx. For
Dx ' 0.13, the energy becomes constant. N = 1000000.
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Table C.7: The value of Dx for which the spins first become one-dimensional
for different system sizes N. We denote this single-ion anisotropy by Dx

ch.
The values were found by locating where Qmin = π first appeared, and then
extracting the corresponding Dy. The resolution is 5 · 10−5 for all system sizes.

N 10 50 102 103 104 106 108

Dx
ch 0.0382 0.11365 0.1237 0.1331 0.1342 0.1343 0.1343

pull to remove the x-component of the spins. One could imagine setting an angle close
to π would be more energetically favourable than forcing the spins to be strictly one-
dimensional. However, we study such a large chain that even those angles will eventu-
ally add up to yield large x-components in portions of the chain, thereby increasing the
energy considerably. This also account for the discontinuity at Q = π in figures (C.7)
and (C.8). The same goes for any other middle ground angle we could concoct.

In fact, figure (C.7) provides insight into how the system can get stuck in a metastable
state. Here, Q = π is a metastable state, since it is lower in energy than those surround-
ing it. Due to the high energy cost of going from Q = a to a nearby state, a system that
passes Q = π on its way to equilibrium is likely to stay there for a very long time. Of
course, this graph only takes states on the form of Eq. (4.1), but it nevertheless provides
a valuable visualization of the issue.

Figure (C.10) shows how the minimal energy varies with increasing Dx. The energy
increases linearly until it is equal to that of the antiferromagnetic ordering, and after that
it remains unchanged for increasing Dx. This agrees with what we found for the angle
Qmin that minimizes the energy: After Dx ≈ 0.13, Qmin is constant, so Emin = E(Qmin)
should be too.

Table (C.7) shows how the emergence of the one-dimensional spins varies with the
number of spins N in the chain. The value of Dy where the spins become one-dimensional
seems to converge to 0.1343 as N → ∞. Boundary effects obviously play a larger role
for smaller system as the spins are few. For larger systems, the boundary effects drowns
in the huge contribution from the spins in the middle of the chain. This is evident
from Eq. (C.18) too: The couplings are multiplied by factors of (N − 1) and (N − 2),
where the negative terms stems from our open boundary conditions. When N becomes
large, these terms will be multiplied by approximately the same factor. This becomes
clearer when we consider the average energy E/N: For large N, (N − 1)/N ≈ 1 and
(N − 2)/N ≈ 1.

The spins lose their second component already at Dx = 0.1343. To arrive at (C.18),
we disregarded the spin components in the y-direction as Dy was large. Technically,
what we did was setting Dy = ∞ so that no y-component could be permissible at all,
due to an infinite energy cost. Obviously, the single-ion anisotropy constant in the y-
direction is not infinite, but just below two in all of our sources [Ref.]. However, if the
second spin component is lost at Dx = 0.14, Dy ≈ 2 should be large enough for the
y-component to practically be excluded and our condition to apply well.
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Table C.8: The average dot product and absolute value of the spin compo-
nents for the J1 = 2.08 and J2 = 0.67 for different single-ion anisotropies
Dx

an = 0.34α, Dy = 1.82α. The system was a chain of 4000 spins and the
temperature set to 12 K.

α 0 1 2 5 10 25 50 75 100
Av(Si · Sj) -0.5611 -0.6094 -0.6571 -0.7593 -0.8444 -0.9211 -0.9401 -0.9542 -0.9575
Av
∣∣Sx

i

∣∣ 0.4965 0.5182 0.4767 0.3496 0.2664 0.1776 0.1279 0.1053 0.0923
Av
∣∣Sy

i

∣∣ 0.5002 0.3337 0.2597 0.1750 0.1244 0.0805 0.0576 0.0464 0.0404
Av
∣∣Sz

i

∣∣ 0.5046 0.6320 0.7134 0.8576 0.9252 0.9691 0.9842 0.9894 0.9920

Figure C.11: The spin correlation functions for the 100 spin open chain for
varying anisotropy. The couplings are J1 = 2.28 (nearest neighbours) and
J2 = 0.67. The single-ion anisotropy is set to Dx

an = 0.34α and Dy
an = 1.82α.

Increasing the single-ion anisotropy

The single-ion anisotropy should have limited effect on the system at temperatures
above T≈3.9K, since the thermal energy Eth = kBT is then larger than the energy of
the coupling, Dx

an = 0.34meV. For Dy
an, this temperature is 21.1K. Instead of studying

how the anisotropy affects the system at low temperatures, which have low acceptance
rates, we crank the single-ion anisotropies up and study the system at 12K.

Table (C.8) shows how the average dot product and absolute value of Sz
i varies with

the strength of the single-ion anisotropy. The anisotropies given are multiples of those
suggested by Jensen et. al.[13]. The simulations were run with 100 000 equilibration
sweeps, 100 bins and 100 000 sweeps per bin. The system is slightly affected by the
single-ion anisotropy for the smaller couplings, but not enough to cause antiferromag-
netic ordering at this temperature. For that to happen, the couplings must be signifi-
cantly larger than they are. For α = 25 onwards, the ordering is pretty close to being
antiferromagnetic.

Figure (C.11) shows the spin correlation function for α = 0 and α = 5. The max-
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Table C.9: The peak K of the spin correlation function for different strengths
of the single-ion anisotropies Dx

an = 0.34α and Dy = 1.82α. An open chain
of 100 spins was used. K is defined at Q = 2π/a(0, K, 0), where Q is the
magnetic ordering wave vector for the system.

α 0 0.1 0.5 1 2 5 7
K 0.35 0.35 0.35 0.36 0.36 0.37 0.38

ima has shifted slightly from one plot to the next. Table (C.9), which lists the order-
ing wave vectors for different α, confirms this. However, Q does not depend strongly
on the single-ion anisotropy: The difference in K between a system without single-ion
anisotropy and a system with seven times the anisotropy of table (3.1) is 0.03. Q is dou-
bled for the face-centered cubic lattice, so this leaves us with a difference of 0.06. This
variation in K is roughly what we observe in figure (1.1), but the change in the single-ion
anisotropy is much larger than the change Jensen proposes in table (3.2).





Appendix D

Frustration and ordering wave vectors in
the face-centered cubic lattice

Frustration occurs when the couplings of a system favours different configurations,
forcing the system to find some middle ground between the options. The frustration can
be due to for instance competing couplings, boundary conditions or the lattice structure.
An example of the latter is illustrated in figure (D.1), where antiferromagnetic bonds in
a triangular structure conflicts. The nearest neighbours in the face-centered cubic lattice
make such structures, so we should be alert.

Indeed, triangular structures will often cause frustration, and they will appear in
our simulations through the nearest-neighbour bonds in the face-centered cubic lattice.
Frustration will not occur in a purely ferromagnetic system, but may still appear with a
mix of ferro- and antiferromagnetic bonds in the fcc. This will be demonstrated in the
following section. If we have antiferromagnetic bonds in every direction in the face-
centered cubic lattice, the system will obviously be frustrated.

Having three nearest neighbour couplings Jxy, Jxz and Jyz, there are three ways to
obtain a frustration-free system

1. We set all of the interaction strengths Jxy, Jxz, Jyz to be negative.

2. We set only two of the interaction strengths Jxy, Jxz, Jyz to be positive.

3. We set only one of the interaction strengths Jxy, Jxz, Jyz to be positive.

Figure (D.2) shows the two possible configurations of two half planes for Jxy when
the bottom left spin points upward. Setting one of the other couplings to be non-zero
would determine the configurations uniquely. Turning on a third coupling, however,
introduces triangular structures, and frustration might occur. Table (D.1) lists all com-
binations of couplings and states whether they are frustrated or not. We note that the
nearest neighbour couplings of our reference models do not cause frustration on their
own.

121
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!

Figure D.1: An illustration of frustration: If we have three spins in a trian-
gular structure, each interacting with each other antiferromagnetically, the
antiparallel ordering of spin neighbours is no longer possible. The system
must find some other configuration to minimize the energy and is then said
to be frustrated. If we remove one of the bonds, however, the frustration
would disappear.

Table D.1: An overview of when the system is frustated. ’Yes’ informs us
that the system is frustrated, while ’No’ means that it is frustration free. Since
the specific assignment of directions do not matter (if Jxy = 1,Jxz = −1 and
Jxy = 1 is frustration-free, so is if Jxy = 1,Jxz = 1 and Jxy = −1), we have
only indicated the type. ’AF’ stands for antiferromagnetic, J > 0, ’F’ stands
for ferromagnetic, J < 0, and ’NO’ stands for no interaction, J = 0.

Interactions Frustration
AF AF AF Yes
AF AF F No
AF AF NO No
AF F F Yes
AF F NO No
AF NO NO No

Figure D.2: The interactions between spins in different half planes when
Jxy = 1, Jyz = Jxz = 0. The purple bonds are the antiferromagnetic cou-
plings. There is no frustration in this case. The planes are decoupled, so if
one spin in the lower plane is given, there is two possible configurations of
these two half-planes.
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D.1 The ordering wave vector in the face-centered cubic
lattice

We want to find the ordering wave vector for the face-centered cubic lattice with antifer-
romagnetic couplings. As the pure fcc antiferromagnet is frustrated, we cannot expect
an easy analytic expression in that case. Rather, we will study the case of coupled and
uncoupled antiferromagnetic layers.

We obtain decoupled antiferromagnetic layers by setting J = 1 in one direction and
keep the others zero. For an unfrustrated coupling of the layers, we set one of the other
J’s to be one as well, and keep the last one zero. In this chapter, we have neglected
single-ion anisotropy and DM terms.

A Decoupled antiferromagnetic layers

For simplicity, we study Jxy = 1, Jxz = Jyz = 0. The other cases are analogous as they
are related by rotations in an isotropic system.

Figure (D.3) shows two uncoupled antiferromagnetic planes. As mentioned, the or-
dering wave vector is the vector q that maximizes m2(q) or the spin correlation function

〈Sz
−qSz

q〉 =
1

N2 ∑
r

∑
r′

Sz
r′S

z
r eiq·(r′−r) (D.1)

where N is the number of particles. We can split this expression into three terms:

〈Sz
−qSz

q〉 = 〈Sz
−qSz

q〉Plane 1
+ 〈Sz

−qSz
q〉Plane 2

+ 〈Sz
−qSz

q〉Between planes

Looking at a few terms in 〈Sz
−qSz

q〉Plane 1
should be sufficient to find q. Inserting for

the dot products of the spins

〈Sz
−qSz

q〉Plane 1
= 1+ e−aiq·(1,0,0)+ e−aiq·(2,0,0)− e−aiq·(1/2,1/2,0)− e−aiq·(1/2,3/2,0)+ e−aiq·(0,1,0)

+e−aiq·(1,1,0) + e−aiq·(2,1,0) − e−aiq·(1/2,3/2,0) − e−aiq·(3/2,3/2,0)

+e−aiq·(0,2,0) + e−aiq·(1,2,0) + e−aiq·(2,2,0) + · · ·

〈Sz
−qSz

q〉 is maximized if every term is one. This is achieved if the exponents are
2πn for spins pointing in the same direction and πn with n = odd for spins pointing in
opposite direction. Two vectors fullfil this

−iq · a(1, 0, 0) = −i
2π

a
(1, 0, 0) · a(1, 0, 0) = −2πi

−iq · a(1, 0, 0) = −i
2π

a
(0, 1, 0) · a(1, 0, 0) = 0
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Figure D.3: Antiferromagnetic half planes in the fcc. As the planes are un-
coupled, all the spins in one plane could just as well be flipped and result
in a valid configuration. Two planes and Ising spins are shown for a better
intuitive understanding.

Both of these yield a positive sign in total, as do applying them to one of the terms
with negative sign:

−iq · a(1/2, 3/2, 0) = −i
2π

a
(1, 0, 0) · a(1/2, 3/2, 0) = −πi

−iq · a(1/2, 3/2, 0) = −i
2π

a
(0, 1, 0) · a(1/2, 3/2, 0) = −3πi

All antiparallel spins in a layer are separated by half-integer coordinates and all
parallel spins are separated by integer coordinates, so this generalizes to all half planes.

So for an antiferromagnetic plane, the two order vectors are 2π
a (1, 0, 0) and 2π

a (0, 1, 0).
However, as the spins are decoupled and randomness from layer to layer ensues, the
magnitude will not be quite as large as one could expect. Due to this randomness, a
component in the last direction will not affect the result that much. We can thus expect
order vectors on the form:

2π

a
(1, 0, q̃z)

2π

a
(0, 1, q̃z)

Similar results will hold for Jxy = 0, Jyz = 1, Jxz = 0, and Jxy = Jyz = 0, Jxz = 1. The
results of this section are tested in Appendix D.

B Coupled antiferromagnetic layers
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Figure D.4: Antiferromagnetic half planes diagonal to the xy-plane in the fcc,
coupled by Jxz = 1 (left) and Jyz = 1 (right).

Table D.2: The positions of the spins in the two half planes. a is the grid
length.

Index (x,y,z) Index (x,y,z) Index (x,y,z)
0 (0,0,0) 3 a(0,1,0) 6 a(0, 1

2 , 1
2)

1 a(1,0,0) 4 a(1,1,0) 7 a(1, 1
2 , 1

2)
2 a(1

2 , 1
2 , 0) 5 a(1

2 , 0, 1
2) 8 a(1

2 , 1, 1
2)
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Due to the system’s isotropy, we consider two cases, Jxy = 1, Jyz = 1, Jxz = 0,
and Jxy = 1, Jyz = 0, Jxz = 1. As we have already found the order vectors for the
separate layers, we only need to consider terms containing spins from both planes, i.e.
S0S5eiq·(r0−r5). Referring to table (D.2) and inserting:

〈Sz
−qSz

q〉Between planes
= S0S5e−aiq·( 1

2 ,0, 1
2) + S0S6e−aiq·(0, 1

2 , 1
2)

+S0S7e−aiq·(1, 1
2 , 1

2) + S0S8eiq·( 1
2 ,1, 1

2)

Again, we want the exponent to be ±2πni if the spins point in the same direction,
and±(2n− 1)πi if they are oppositely directed. In the case of Jxy = 1 = Jxz = 1, Jyz = 0,
S0 · S5 = −1 and S0 · S6 = 1.

S0S5 exp
[
−iq · a

(
1
2

, 0,
1
2

)]
= − exp

[
−i

2π

a
(1, 0, 0) · a

(
1
2

, 0,
1
2

)]
= − exp [−iπ] = +1

S0S6e−iq·a(0, 1
2 , 1

2) = exp
[
−i

2π

a
(1, 0, 0) · a

(
0,

1
2

,
1
2

)]
= +1

Luckily, this vector agrees with one of those for the antiferromagnetic decoupled xy-
planes. So Jxy = Jxz = 1, Jyz = 0 has the order vector 2π

a (1, 0, 0). With no freedom in the
spin orientation from plane to plane, this is the only q-vector for which we expect to see
a significant value of the spin correlation function.

For Jxy = 1, Jxz = 0, Jyz = 1, the signs are opposite:

S0S5 exp
[
−iq · a

(
1
2

, 0,
1
2

)]
= exp

[
−i

2π

a
(0, 1, 0) · a

(
1
2

, 0,
1
2

)]
= +1

S0S6e−iq·a(0, 1
2 , 1

2) = − exp
[
−i

2π

a
(0, 1, 0) · a

(
0,

1
2

,
1
2

)]
= − exp [−iπ] = +1

So the order vector for Jxy = 1, Jxz = 0, Jyz = 1 is q = 2π
a (0, 1, 0).

Due to the symmetry of the system, we realize that the order vector for Jxy = 0,
Jxz = 1, Jyz = 1 is q = 2π

a (0, 0, 1). This should be easy to show following the procedure
above.

D.2 Numerical results, fcc, configuration and ordering wave
vector

The systems tested are 6x6x6 fcc. The simulations were run for β = 10, a very low tem-
perature, with 10000 equilibration sweeps and 100 bins with 1000 Monte Carlo sweeps
in each.
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Table D.3: The number of spins not antiparallel for different planes using
two different seeds, which are referenced by ’59’ and ’79’ in the second row.
We have antiferromagnetic couplings in one plane, and no coupling in the
others. The AF coupling is given in the upper left corner of each subtable
(separated by double lines). By ’not antiparallel’ we refer to neighbouring
spins with with dot product > 0. There are 2592 pairs of neighbours in total.

Jxy = 1 Jxz = 1 Jyz = 1
59 79 59 79 59 79

yz 716 372 yz 370 224 yz 0 0
xz 24 372 xz 0 0 xz 238 302
xy 0 0 xy 372 534 xy 500 460

A One antiferromagnetic coupling

A test of the configuration

Looking at the spin configuration after a simulation at low temperature, we are inter-
ested in finding out whether neighbouring spins are antiparallel, as they should be if
our system is antiferromagnetic. In this chapter, we have used simulations with β = 50.

We define the xy-planes as those in which zi = zj for any two points i, j in the plane.
If their dot product is larger than zero, we say that they are ’not antiparallel’. We do
the same for xz- and yz-planes as well. Since the test is crude and we are interested in
ratios and rough estimates, we have not bothered compensating for double counting in
the procedure.

Table (D.3) contains the number of not antiparallel spins in all the Carthesian planes
for an antiferromagnetic coupling in different planes. It is evident that if we have an an-
tiferromagnetic coupling in one plane, then there are no ’not antiparallel’ spins in that
plane. This is exactly what we expected, since a system with antiferromagnetic cou-
plings should consist of antiparallel spins at very low temperatures. The other planes
have some spins that are ’not antiparallel’, which is to be expected as there is no inter-
action between their pairs, and thus no favoured configurations.

Furthermore, it is of interest to look at the magnitude of the dot product in each
plane in our three cases. Expecting antiferromagnetism, we hope that the dot products
are all close to -1, and indeed they are, the least negative ones being:

1. Jxy = Jxz = 0, Jyz = 1: yz-planes: max(Si · Sj)< −0.95

2. Jxy = Jyz = 0, Jxz = 1: xz-planes: max(Si · Sj)< −0.93

3. Jxz = Jyz = 0, Jxy = 1: xy-planes: max(Si · Sj)< −0.93

with i, j being neighbours in the plane. The ordering in the plane of the coupling is
indeed antiferromagnetic.
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Table D.4: The order vectors for Jxy = 1, Jxz = Jyz = 0. The simulation was
run for β = 10, 10000 equilibration sweeps and 100 bins with 1000 Monte
Carlo sweeps in each.

n qx qy qz 〈SqS−q〉
126 0 2π 0 0.23007
111 2π 0 0 0.15662
118 2π 0 2π/3 0.15662
140 0 2π 4π/3 0.13469
125 2π 0 4π/3 0.12734
133 0 2π 2π/3 0.12734

Table D.5: The order vectors for Jxz = 1, Jxy = Jyz = 0. The simulation was
run for β = 10, 10000 equilibration sweeps and 100 bins with 1000 lattice
sweeps in each.

n qx qy qz 〈SqS−q〉
63 0 2π/3 2π 0.18141

195 2π 4π/3 0 0.18141
111 2π 0 0 0.173135
21 0 0 2π 0.14068

105 0 4π/3 2π 0.14068
153 2π 2π/3 0 0.11730

The order vector

Due to the decoupling of the plane in this instance, we expect our order vector to be
somewhat muddy. Indeed, the spin correlation function takes a somewhat large value
for several q’s, as seen in tables (D.4), (D.5) and (D.6). The six vectors listed in each
table are the ones corresponding to the largest values of the spin correlation function,
the next in line being approximately 0.001 in all three cases. The results are consistent
with those outlined in the theory section.

B Two antiferromagnetic couplings
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Table D.6: The order vectors for Jyz = 1, Jxy = Jxz = 0 . The simulation was
run for β = 10, 10000 equilibration sweeps and 100 bins with 1000 Monte
Carlo sweeps in each.

n qx qy qz 〈SqS−q〉
126 0 2π 0 0.22010
58 2π/3 0 2π 0.17781

200 4π/3 2π 0 0.17781
21 0 0 2π 0.12012
95 4π/3 0 2π 0.11853

163 2π/3 2π 0 0.11853

Table D.7: The order vectors with antiferromagnetic couplings in two direc-
tions, and no interaction in the last direction. Note that the spin correlation
function is large in all cases, more so for the cases where the antiferromag-
netism is equally strong in both directions.

Jxy Jxz Jyz n qx qy qz 〈SqS−q〉
1 1 0 111 2π 0 0 0.96974
1 0.1 0 111 2π 0 0 0.93049
0 1 1 21 0 0 2π 0.96983
1 0 1 126 0 2π 0 0.96977

Table (D.7) shows that with two antiferromagnetic couplings, the order vector points
along one of the q-axes. The spin correlation function is large in all cases. The second
largest value of the spin correlation function was about 5 · 10−4 for both J’s being one
and 0.004 for Jxy = 1, Jxz = 0.1, Jyz = 0, i.e. the second line in the table. We see that the
order vector for Jxy = Jxz = 1, Jyz = 0 is that common to both Jxy = 1, Jxz = Jyz = 0
and Jxz = 1, Jxy = Jyz = 0, and similarly for the other choices of J’s. The results are
consistent with those outlined in the theory section.





Appendix E

Fcc: The incommensurate ordering is the
minima

We want to confirm that Eq. (6.3) indeed gives the minima:

∂2E
∂Q2

y
= −a2

(
1
4
(

JxyNxy + JyzNyz
)

cos
(

Qya
2

)
+ JyNy

(
2 cos2

(
Qya

2

)
− 1
))

Inserted for Qya = 2πn

∂2E
∂Q2

y

∣∣∣∣∣
Qy=

2πn
N

= −a2
(

1
4
(

JxyNxy + JyzNyz
)
(−1)n + JyNy

)

= −a2N
(

1
2
(

Jxy + Jyz
)
(−1)n + Jy

)
(E.1)

where the last equality holds for periodic boundary conditions or in the limit of
Nxy = Nyz = 2N, Ny = N. We restrict ourselves to Jxy, Jyz, Jy > 0, in accordance
with our reference models. For even n, Eq. (E.1) is always negative, so ferromagnetic
ordering in the y-direction yields a maxima of the energy. Antiferromagnetic ordering,
on the other hand

∂2E
∂Q2

y

∣∣∣∣∣
Qy=

2πn
N , n odd

= −a2N
(

Jy −
1
2
(Jxy + Jyz)

)
(E.2)

yields a minima if

Jy <
1
2
(

Jxy + Jyz
)

(E.3)

For which the incommensurate solution is no longer available. The value of the
energy for this extremal point is
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E = A + JyNy −
(

JxyNxy + JyzNyz
)

(E.4)

Inserting for the incommensurate angle (Eq. (6.3)) into the double derivative gives

∂2E
∂Q2

y
= a2 JyNy

[
1−

(
JxyNxy + JyzNyz

4JyNy

)2
]
=

{
> 0 if Jy > 0 : Minima
< 0 if Jy < 0 : Maxima

So just as for the chain, (6.3) yields a minima if Jy > 0. The energy is

E = A−
(JxyNxy + JyzNyz)2

8JyNy
− JyNy (E.5)



Appendix F

Finite size scaling of crossing points

For large system sizes L, the value of a quantity A, depending on the size of the system
and the distance δ from the critical point scales as [10]

A(δ, L) = L−κ/ν f
(

δL1/ν, L−ω
)

(F.1)

where κ determines the behaviour of A by A ∝ |δ|κ in the thermodynamic limit. This
expression can be Taylor expanded to [10]

A(δ, L) = L−κ/ν
(

a0 + a1δL1/ν + b1L−ω + · · ·
)

(F.2)

The crossing of the Binder cumulants approach the critical temperature as the system
sizes tends to infinity. In order to extrapolate our data it is advantageous to know how
the crossing depends on L. To achieve this, we need to equate Eq. (F.2) for two different
system sizes. In the spirit of our analysis, we investigate the crossing points between
L1 = L and L2 = L + ∆L, keeping in mind that L is large, so ∆L

L should be a small
quantity. We assume L is sufficiently large to neglect the higher-order terms in A. The
two sides of the equation becomes

A(δ, L1) = a0L−κ/ν + a1δL(1−κ)/ν + b1L−ω−κ/ν

A(δ, L2) = (L + ∆L)−κ/ν
(

a0 + a1δ (L + ∆L)1/ν + b1 (L + ∆L)−ω
)

= L−κ/ν

(
1 +

∆L
L

)−κ/ν
(

a0 + a1δL1/ν

(
1 +

∆L
L

)1/ν

+ b1L−ω

(
1 +

∆L
L

)−ω
)

We find the general Taylor expansion(
1 +

∆L
L

)α

= 1 + α
∆L
L

+ · · · (F.3)

for which we keep only the first two terms. Using Eq. (F.3) to simplify A(δ, L2) and
denoting the location of the crossing by δ∗, we find where the two graphs intersect.
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A(δ∗, L1)− A(δ∗, L2) = −a1δ∗
1
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Rearranging

δ∗ =
a0

a1

κ/ν

(1− κ)/ν
L−1/ν +

b1

a1

ω + κ/ν

(1− κ)/ν
L−ω−1/ν

From section 2.9, we know that κ = 0 for the Binder cumulant, so the first term
vanishes

δ∗ =
b1

a1
ωνL−ω−1/ν ∝ L−ω−1/ν (F.4)

F.1 Keeping second order terms in A

The previous results were found by Taylor-expanding Eq. (F.1) to first order, yielding
Eq. (F.2) as a starting point for our calculations. Assuming L is large enough to render
∆L
L a small quantity, but small enough to merit a second-order Taylor expansion of Eq.

(F.1), we obtain

A(δ, L) = L−κ/ν
(

a0 + a1δL1/ν + a2δ2L2/ν + b1L−ω + b2L−2ω + c1δL1/ν−ω + · · ·
)

(F.5)

Since L−ω is a small quantity, we neglect the b2-term as it contains L−ω. Our terms
become:

A(δ, L1) = a0L−κ/ν + a1δL(1−κ)/ν + a2δ2L(2−κ)/ν + b1L−κ/ν−ω + c1δL(1−κ)/ν−ω
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(
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[
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]

Keeping only terms up to first order
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A(δ, L2) = a0L−κ/ν + a1δL(1−κ)/ν + a2δ2L(2−κ)/ν + b1L−κ/ν−ω + c1δL(1−κ)/ν−ω
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The difference then becomes
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Solving the second order equation
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We can extract a factor L2/ν
(

∆L
L

)2
from the expression under the square root. This

allows us to separate a factor of L1/ν ∆L
L from the square bracket, which in turn will

cancel some of the factors in the denominator. The expression simplifies to
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Setting κ = 0, as is the case for the Binder cumulant
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This expression is not easy to analyse due to the square root. We might however
assume that a2 and c1 are small and Taylor-expand.
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As a2 and c1 enter as a factor in each term of the square bracket, we assume that
quantity to be small. Applying Eq. (F.3) to the root, the expression simplifies to
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Gathering the terms
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Where 2L−1/ν−2ω is so small that the last term can be omitted. While we in the
previous section approximated the Binder cumulants by lines, this δ∗ was found by
solving a quadratic equation and consequently offers two solutions. Since the aim is to
obtain a better approximation of the same crossing, we want to study the answer that
is closest to Eq. (F.4), the intersection between the lines. Whether we find that answer
by choosing the plus sign or the minus sign depends on the sign of a1, which we do not
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know. In any case, the solution where the L−1/ν-term vanishes is obviously closer to Eq.
(F.4) than the solution where it does not. If it a1 < 0, our expression for δ∗ is
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So even when taking into account the small second-order corrections to A, the Binder
cumulant crossings still depend on the system size L as

δ∗ ∝ L−1/ν−ω (F.6)

The only difference brought by the extra terms being a change in the prefactor, which
is of no interest to us.

F.2 The value of A(δ, L) at δ∗

For both cases, δ∗ ∝ L−1/ν−ω. We insert into A, remembering that κ = 0. For the
first-order expansion in δ

A(δ∗, L) = a0 + ā1L−ω + b1L−ω + · · · = a + bL−ω + · · ·

where we have renamed prefactors like there were no tomorrow.
Insertion into the second-order expansion yields the same result

A(δ∗, L) = a0 + ã1L−ω + b1L−ω + c̃1L−2ω + ã2L−2ω + · · · = a + bL−ω + · · · (F.7)

as we neglect terms of L−2ω.

F.3 The derivative of A

For further analysis, we may take the derivative of A.

s (δ, L) =
dA(δ, L)

dδ
= a1L(1−κ)/ν + c1L(1−κ)/ν−ω + a2δL(2−κ)/ν + · · · (F.8)

We have renamed 2a2 → a2 since a2 is an unknown constant anyway. We are inter-
ested in the crossing, which we found to scale with L as δ∗ ∝ L−1/ν−ω. Inserting into
Eq. (F.8)
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s (δ∗, L) = a1L(1−κ)/ν + c1L(1−κ)−ω + ã2L(1−κ)/ν−ω + · · ·

= a1L(1−κ)/ν
(
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)
Which is what [10] also found. We compare systems of size L1 = L and L2 = L+∆L.

Enforcing κ = 0, the derivatives take the form
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Taking the logarithm
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Working with large L, both b̃1L−ω and b̃1L−ω
(
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are small quantities, as

well as ∆L
L . If we Taylor expand the logarithms to the first order, we find that f (x) =

ln(1 + x) ' x.
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where we used Eq. (F.3) in the first step. Rearranging, we can obtain an estimate of
the critical exponent ν ' ν∗ by neglecting the last term

1
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=
1
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) ln
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)
(F.9)



Appendix G

The modification of the model of Jensen
et. al.

We want to modify the model of Jensen et. al. a bit to get an incommensurate-paramagnetic
phase at 21.8 K. This process is two-fold. First, we must find how Tc scales with the cou-
plings. Second, we must find a model who exhibits an incommensurate phase. Rescal-
ing the couplings of this model would yield the desired modification of Jensen et. al.

G.1 The fit of Tc

The critical temperature should depend on the size of the couplings. Since the single-
ion anisotropy is an on-site interaction, it should not affect the relative orientation of the
spins too much (it just sets constraints on the direction of each spin separately). It is the
couplings that order the system overall, so the phase transition should depend on Jxy, Jyz
and Jy. The other couplings do not couple spins in the y-direction, which is the direction
of the ordering. Since the nearest- and next-nearest neighbours are in competition, we
set a minus sign between them, just as we argued in Chapter 8.1. Of course, if there are
no couplings, there will be no ordering, and hence no phase transition. We therefore
propose that

Tc = α
(
2
(

Jxy + Jyz
)
− Jy

)p (G.1)

where p is some real number. The factor of two in front of the nearest neigbour
couplings reflects the fact that there are twice as many nearest neighbour bonds as
next-nearest neighbour bonds in the fcc. Strictly speaking, this only applies to periodic
boundary conditions, but this treatment is sort of rough anyway.

Figure (G.1) shows a few fits to the data of Chapter 8. Since it can be kind of hard
to pick the best fit from a plot, we have included root mean squares for different p’s in
table (G.1). Out of the exponents we have tested, p = 1.2 yields the best fit. This agrees
well with the visualization of figure (G.1).
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Table G.1: The root mean squares of different fits to the data set. p is the
exponent in the power law.

p 1.0 1.1 1.15 1.2 1.25 1.3 1.4
R.M.S. 0.393 0.237 0.178 0.155 0.183 0.245 0.406

Figure G.1: Different fits T∗ =
(
2
(

Jxy + Jyz
)
− Jy

)p to the points found by
the Binder cumulant crossings from L = 12 and L = 14. Jensen’s model was
used, but Jy was varied.



Section G.2 Modifying the couplings 141

We argued that the crossing temperature T∗ of L= 12 and L= 14 is close to the
critical temperature Tc. The curve fit approach of table (7.3) gives Tc = 14.7436± 0.0017,
while T∗ = 14.7457± 0.0014 for T∗. These results are the same within their standard
deviations, so T∗ ≈ Tc. We cannot textitguarantee that this holds for general Jy, but it
was the best option we had with our limited time, and there is no obvious reason why
it should not hold.

G.2 Modifying the couplings

So the critical temperature should depend on the couplings as roughly

Tc = α
(
2
(

Jxy + Jyz
)
− Jy

)1.2

We know that for the couplings of Jensen et. al., Tc = 14.7 K, and use this together
with the couplings to find that α ≈ 0.34 K−0.2.

Considering the new couplings, Jxy = 1.04 meV,Jyz = 0.3 meV, Jy = 0.74 meV,
we obtain a critical temperature of 14.3 K. To have the incommensurate-paramagnetic
phase transition at 21.8 K, we need to multiply all the couplings with a factor η such
that

Tc = ηα
(
2(Jxy + Jyz)− Jy

)1.2
= 21.8 K

which is realized when η ≈ 1.53. The couplings for our modification to the Jensen
et. al. model are then

Jxy = 0.46 meV, Jyz = 1.59 meV, Jy = 1.03 meV

We will let the single-ion anisotropies remain as they are.





Appendix H

Technical details

H.1 Spherical coordinates and the spherical uniform dis-
tribution

We can express our spin components by spherical coordinates by

Sx
i = sin θi cos φi; Sy

i = sin θi sin φi; Sz
i = cos θi (H.1)

Since the spins are normalized, we only need two variables to set the three-component
spins.

We want every spin orientation to be equally likely, meaning that we want to draw
our random spins from a spherical uniform distribution. We should not be more likely
to draw spins from some specific area of the unit sphere; all areas of equal size should
be equally likely. Naively, we might think picking two angles θ ∈ [0, π] and φ ∈ [0, 2π]
from a random uniform distribution would realize that. However, the area element of
the unit sphere, or the solid angle, is a function of θ: dΩ = sin θdθdφ. This will skew the
distribution if θ is drawn uniformly. Obviously, we must pick some other variables and
relate them to the angles somehow. We rewrite the solid angle and obtain

dΩ = −d cos θdφ; cos θ ∈ [−1, 1], φ ∈ [0, 2π]

So it is the variables cos θ and φ that should be drawn uniformly. Our random num-
ber generator of choice gives floating point numbers in the interval [0, 1], so if we draw
two numbers u and v, the angles can be found by

θ = arccos(1− 2u); φ = 2πv

The former follows as 1− 2u is uniform on the interval [−1, 1], just as we require cos θ
to be.

The spin components are found by insertion of these angles into Eq. (H.1).
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H.2 Finding the (0,K,0) line

The interesting properties of LiNiPO4 occur in the y-direction, so we want a way to
extract q = 2π

a (0, K, 0).
Finding the q-vectors is straightforward using Eq.s (2.36) to (2.38). Extracting the

(0,K,0)-line is then readily achieved by applying an if-test on the x- and z-components
of the qs. Though not the most elegant solution to our problem, this approach is fast
and simple.

A The FFTW (The Fastest Fourier Transform in the West)

FFTW, or ”The Fastest Fourier Transform in the West” (FFTW) was created by Mat-
teo Frigo and Steven G. Johnson. To obtain the results needed for the spin correla-
tion function, a multi-dimensional transform were computed by FFTW for the two- and
three-dimensional lattices. In such cases, FFTW computes the one-dimensional trans-
form along each dimension of the array, and takes the separable product. The one-
dimensional product takes input array X and computes the forward transform Y in the
following manner[9]:

Yk =
N−1

∑
j=0

Xje−2π jki/N (H.2)

where i =
√
−1 as usual. Y is periodic, meaning that YN = Y0. Furthermore, the

symmetry Yk = Y∗N−k leaves half the output redundant. The output array is therefore
shortened to the first n/2+ 1 elements of Y, i.e. elements 0, · · · n/2. n/2 is here rounded
down. To compensate for the short length of the output array, the returned data will
have to be patched together. To recap, what we expect the following from the forward
Fourier transform executed by FFTW:

1. S̃z
0 is purely real

2. If N is even, S̃z
N/2 is purely real as well

3. S̃z
k=(S̃z

N−k)
∗

One thing to be aware of is that the transforms are unnormalized. If we use FFTW
to do the transforms X → Y → X, the final result will be multiplied by N, the number
of elements in the input array[9].

The Fourier transform as used by FFTW

The three-dimensional version of Eq. (H.2) is

Fn =
1
N

L1−1

∑
k=0

L2−1

∑
l=0

L3−1

∑
m=0

fke−
2πink

L1
− 2πinl

L2
− 2πinm

L3 (H.3)
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where Fn is the Fourier transform, N is the number of discrete data points and fk is the
real space values, which will be the spins in our implementation. The above expression
is optimal when feeding to a FFTW.

To see that Eq. (2.39) fits with Eq. (H.3), we recall Eq. (2.32)

q =
k1

L1
b1 +

k2

L2
b2 +

k3

L3
b3

We can now write q · r = 2π
(

k1n1
L1

+ k2n2
L2

+ k3n3
L3

)
using Eq. (2.29), getting (2.39) on

the multidimensional form of (H.3):

Sα
q = ∑

r
Sα

r e−2πi
(

k1n1
L1

+
k2n2

L2
+

k3n3
L3

)

Sα
q =

L1−1

∑
n1

L2−1

∑
n2

L3−1

∑
n3

Sα
n1,n2,n3

e−2πi
(

k1n1
L1

+
k2n2

L2
+

k3n3
L3

)
(H.4)

with nj, ij ∈ [0, Lj − 1].

H.3 Indices

When doing simulations on multidimensional systems we often have d indices, with
d being the dimensionality of the lattice. A three-dimensional system will then have
three indices, usually denoted by i, j, k. An alternative to this is having one index that
traverses the lattice. To take an easy example, the simple cubic lattice will then be tra-
versed row by row for each layer of the system. Computationally, this is more effective
than using d indices [17]. However, peculiarities concerning the periodic boundary
conditions forced us to convert back to three indices i, j, k to find the neighbours, but
hopefully, some computation time is saved nonetheless. Regardless, the code is more
readable as we only need one loop over indices and not three.

The lattice is traversed in row-major ordering to match the output of FFTW.

A The modulo operator

The modulo operator % gives the remainder of an integer division. Mathematically,
with the backslash \ denoting integer division, it can be formulated as

x%y = x− (x\y) · y (H.5)

B Two dimensions

In the two-dimensional case and for a L1× L2 lattice, the indices n and i, j will be related
by:

i = n\L2; j = n%L2 (H.6)
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Table H.1: The change in indices from b to each neighbour.

∆i ∆j ∆k
±a1 ±1 0 0
±a2 0 ±1 0
±a3 0 0 ±1
±a4 ±1 ∓1 0
±a5 0 ±1 ∓1
±a6 ±1 0 ∓1

this can easily be verified by drawing and comparing.

C Three dimensions

Using the same notation as above, the standard indices i, j, k of a L1× L2× L3 lattice can
be found by:

i = n\(L2 · L3); j = n\L3 − n\(L2 · L3) · L2; k = n%L3 (H.7)

For a primitive cubic lattice, these indices will be in the x, y, z-directions, respectively,
while for the face-centered cubic lattice, they will be in the direction of the primitive
vectors a1, a2, a3 given by Eq. (2.33). The position can then be found by Eq. (2.26).

For the three-dimensional lattices, we have the relation

n = iL2L3 + jL3 + k (H.8)

converting from standard indices i, j, k to the one running index n.

D How to find the neighbours of a site

If we operate with one running index, we need to use (H.7) to find the i, j, k-indices of
our site. When that is done, we consider the neighbours b± a1, b± a2, b± a3, b± a4,
b± a5, b± a6, where

a4 = a1 − a2

a5 = a2 − a3

a6 = a3 − a1

and a1, a2 and a3 are defined by Eq. (2.33). Using this notation, it is easy to see how
the indices i, j, k changes from b to each neighbour, as listed in table (H.1).

To convert back to the running index, we use Eq. (H.8). Referring back to table (H.1)
and enforcing periodic boundary conditions in a1, a2 and a3, we obtain the formula for
the neighbour nnb of n

nnb =
(
(L1 + i + ∆i)%L1

)
L2L3 +

(
(L2 + j + ∆j)%L2

)
L3 + (L3 + k + ∆k)%L3 (H.9)
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Patching the spin correlation function

Due to the symmetry of the problem, FFTW returns an array of half the size of the input
array when doing the real to complex Fourier transform, as seen in list (3). As a conse-
quence, the last index will be of size LD\2+ 1, where LD is the size of the last dimension
in the input data. Thus, sites with iD > LD − (LD\2 + 1) will be omitted. Considering
the symmetries in list (3), we can still access the value by finding the location of its
complex conjugate. For the 3D case, compensating from the omitted terms by replacing
LD → LD\2 + 1, we find it at index

n = L2(L3\2 + 1)(L1 − n1)%L1 + (L3\2 + 1)(L2 − n2)%L2 + (L3 − n3)%L3 (H.10)

where n1, n2 and n3 are the indices in the b1, b2 and b3-directions, respectively. Since
we are only interested in the absolute value of S̃n, there is no need to take the complex
conjugate.

The 2D case is even simpler

n = (L2\2 + 1) ∗ ((L1− n1)%L1) + (L2− n2)%L2 (H.11)





Appendix I

Code listings

This sections lists important parts of the code. The entire code is available at
https://github.com/KineOdegardHanssen/Master
Repetitive commands, like declaring or resetting a lot of different variables, are not

written out in full.

I.1 One lattice sweep

vo i d MonteCar lo : : mcs t ep f_met ropo l i s ( doub l e beta )
{

doub l e changes = 0 ;
f o r ( i n t n=0; n<N; n++)
{

i n t k = d i s t r i b u t i o n_n ( generator_n ) ; // Draw a random s i t e

doub l e sx = my l a t t i c e . s i t e s [ k ] . s p i n x ;
doub l e sy = my l a t t i c e . s i t e s [ k ] . s p i n y ;
doub l e s z = my l a t t i c e . s i t e s [ k ] . s p i n z ;

// Drawing random s p i n s
doub l e u = ran2(&seed1 ) ;
doub l e v = ran2(&seed1 ) ;

doub l e t h e t a = acos ( 1 . 0 � 2 .0∗ u ) ;
doub l e ph i = 2 .0∗M_PI∗v ;

doub l e s i n t h e t a = s i n ( t h e t a ) ;
doub l e sx_t = s i n t h e t a ∗ cos ( ph i ) ;
doub l e sy_t = s i n t h e t a ∗ s i n ( ph i ) ;
doub l e sz_t = cos ( t h e t a ) ;

// Energy c o n t r i b u t i o n a f t e r s p i n change
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doub l e e n e r g y_d i f f = 0 ; // Re s e t t i n g the ene rgy d i f f e r e n c e
f o r e v e r y n

i f ( s i a n i s o t r o p y )
{

doub l e Dix = my l a t t i c e . Dix ;
doub l e Diy = my l a t t i c e . Diy ;
doub l e Diz = my l a t t i c e . Diz ;
e n e r g y_d i f f += ( Dix ∗( sx_t∗ sx_t � sx ∗ sx ) +

Diy ∗( sy_t∗ sy_t� sy ∗ sy )+ Diz ∗( sz_t∗ sz_t � sz ∗ s z ) ) ;
}
i f ( mag f i e l d )
{

doub l e hx = my l a t t i c e . hx ;
doub l e hy = my l a t t i c e . hy ;
doub l e hz = my l a t t i c e . hz ;
e n e r g y_d i f f += hx ∗( sx � sx_t ) + hy ∗( sy � sy_t ) + hz ∗( s z � sz_t ) ;

}
i f ( i s o t r o p i c )
{

doub l e p a r t n e r s p i n x = 0 ;
doub l e p a r t n e r s p i n y = 0 ;
doub l e p a r t n e r s p i n z = 0 ;

// Dete rmin ing the number o f n e i ghbou r s
i n t nne i ghbou r s ;
i f ( n o t p e r i o d i c ) nne i ghbou r s =

my l a t t i c e . s i t e s [ k ] . no_of_ne ighbours_s i te ;
e l s e nne i ghbou r s = no_of_neighbours ;

f o r ( i n t j =0; j<nne i ghbou r s ; j++) // nne i ghbou r s
f o r s k j e l l i g f r a E t i l Y

{
// P i c k i n g out the ne i ghbou r
i n t l = my l a t t i c e . s i t e s [ k ] . bonds [ j ] . s i t e i n d e x 2 ;

// P i c k i n g out the J each t ime (may va r y depend ing on
bond type )

doub l e J = my l a t t i c e . s i t e s [ k ] . bonds [ j ] . J ;

i f ( J !=0)
{

doub l e sxk = my l a t t i c e . s i t e s [ l ] . s p i n x ; // The
ne i ghbou r s do not change

doub l e syk = my l a t t i c e . s i t e s [ l ] . s p i n y ;
doub l e szk = my l a t t i c e . s i t e s [ l ] . s p i n z ;
p a r t n e r s p i n x += J∗ sxk ;
p a r t n e r s p i n y += J∗ syk ;
p a r t n e r s p i n z += J∗ s zk ;

}
}
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e n e r g y_d i f f += pa r t n e r s p i n x ∗( sx_t� sx ) +
p a r t n e r s p i n y ∗( sy_t� sy ) + p a r t n e r s p i n z ∗( sz_t� sz ) ;

}
i f (dm)
{

// Dete rmin ing the number o f n e i ghbou r s
doub l e d e t s i g n ;
i n t nne i ghbou r s ;
i f ( n o t p e r i o d i c ) nne i ghbou r s =

my l a t t i c e . s i t e s [ k ] . no_of_ne ighbours_s i te ;
e l s e nne i ghbou r s = no_of_neighbours ;
f o r ( i n t j =0; j<nne i ghbou r s ; j++)
{

i n t l = my l a t t i c e . s i t e s [ k ] . bonds [ j ] . s i t e i n d e x 2 ;
boo l i n c r e a s i n g =

my l a t t i c e . s i t e s [ k ] . bonds [ j ] . i n c r e a s i n g ;
i f ( i n c r e a s i n g ) d e t s i g n = 1 . 0 ;
e l s e d e t s i g n = � 1 . 0 ;

doub l e Dx = my l a t t i c e . Dx ;
doub l e Dy = my l a t t i c e . Dy ;
doub l e Dz = my l a t t i c e . Dz ;

i f ( dmd i f f d i r s )
{

i f ( m y l a t t i c e . s i t e s [ k ] . bonds [ j ] . d i r e c t i o n !=" yz " )
{

Dx = 0 ; Dy = 0 ; Dz = 0 ;
}

}

doub l e sxk = my l a t t i c e . s i t e s [ l ] . s p i n x ;
doub l e syk = my l a t t i c e . s i t e s [ l ] . s p i n y ;
doub l e szk = my l a t t i c e . s i t e s [ l ] . s p i n z ;

e n e r g y_d i f f +=
de t s i g n ∗(Dx∗ ( ( sy_t� sy ) ∗ s zk � syk ∗( sz_t� sz ) )

+Dy∗ ( ( sz_t� sz ) ∗ sxk � szk ∗( sx_t� sx ) )
+Dz∗ ( ( sx_t� sx ) ∗ syk � ( sy_t� sy ) ∗ sxk ) ) ;

}
}
i f ( n e x t n e a r e s t )
{

doub l e p a r t n e r s p i n x = 0 ;
doub l e p a r t n e r s p i n y = 0 ;
doub l e p a r t n e r s p i n z = 0 ;

// D i f f e r e n t f o r d i f e r e n t l a t t i c e s , but we i n c l u d e one
he r e

i f ( t y p e_ l a t t i c e=='Y ' )
{
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doub l e Jy = my l a t t i c e . s i t e s [ k ] . n e x t n e a r e s t y [ 0 ] . J ;
doub l e Jz = my l a t t i c e . s i t e s [ k ] . n e x t n e a r e s t z [ 0 ] . J ;

doub l e nnysp inx , nnysp iny , nny sp i n z ;
doub l e nnzsp inx , nnzsp iny , nn z sp i n z ;
i n t nne i ghbou r s =

my l a t t i c e . s i t e s [ k ] . no_of_nne ighbours_s i te ;
f o r ( i n t i =0; i<nne i ghbou r s ; i++) // Having

c o n t r i b u t i o n s i n the + and � d i r e c t i o n s , open BC
{

i n t yne i gh =
my l a t t i c e . s i t e s [ k ] . n e x t n e a r e s t y [ i ] . s i t e i n d e x 2 ;

// Sp in components o f nex t n e a r e s t n e i ghbou r s i n
the y� d i r e c t i o n

nny sp i nx = my l a t t i c e . s i t e s [ yne i gh ] . s p i n x ;
nny sp i ny = my l a t t i c e . s i t e s [ yne i gh ] . s p i n y ;
nny sp i n z = my l a t t i c e . s i t e s [ yne i gh ] . s p i n z ;

p a r t n e r s p i n x += Jy∗ nny sp i nx ;
p a r t n e r s p i n y += Jy∗ nny sp i ny ;
p a r t n e r s p i n z += Jy∗ nny sp i n z ;

}
f o r ( i n t i =0; i <2; i++) // Having c o n t r i b u t i o n s i n the

+ and � d i r e c t i o n s
{

i n t zne i gh =
my l a t t i c e . s i t e s [ k ] . n e x t n e a r e s t z [ i ] . s i t e i n d e x 2 ;

// Sp in components o f nex t n e a r e s t n e i ghbou r s i n
the z� d i r e c t i o n

nnz sp i n x = my l a t t i c e . s i t e s [ zn e i gh ] . s p i n x ;
nnz sp i n y = my l a t t i c e . s i t e s [ zn e i gh ] . s p i n y ;
nn z sp i n z = my l a t t i c e . s i t e s [ zn e i gh ] . s p i n z ;

p a r t n e r s p i n x += Jz∗ nnz sp i n x ;
p a r t n e r s p i n y += Jz∗ nnz sp i n y ;
p a r t n e r s p i n z += Jz∗ nnz sp i n z ;

}
e n e r g y_d i f f += ( sx_t� sx ) ∗ p a r t n e r s p i n x +

( sy_t� sy ) ∗ p a r t n e r s p i n y + ( sz_t� sz ) ∗ p a r t n e r s p i n z ;
}

}

doub l e energy_new = energy_old + en e r g y_d i f f ;

// Updat ing the ene rgy and the s t a t e a c co r d i n g to Me t r o po l i s
i f ( energy_new <= energy_old )
{

// Updat ing the s p i n
my l a t t i c e . s i t e s [ k ] . s p i n x = sx_t ;



Section I.2 Retrieving the variables 153

my l a t t i c e . s i t e s [ k ] . s p i n y = sy_t ;
my l a t t i c e . s i t e s [ k ] . s p i n z = sz_t ;

// Updat ing the ene rgy
energy_old = energy_new ;

// Updat ing changes to ge t the accep tance r a t e
changes+=1;

}
e l s e
{

doub l e prob = exp ( � beta ∗( e n e r g y_d i f f ) ) ;
doub l e drawn = d i s t r i b u t i o n_p r o b ( genera to r_prob ) ;
i f ( drawn<prob )
{

// Updat ing the s p i n
my l a t t i c e . s i t e s [ k ] . s p i n x = sx_t ;
my l a t t i c e . s i t e s [ k ] . s p i n y = sy_t ;
my l a t t i c e . s i t e s [ k ] . s p i n z = sz_t ;

// Updat ing the ene rgy
energy_old = energy_new ;

// Updat ing changes to get the accep tance r a t e
changes+=1;

}
}

} // End loop ove r n . L a t t i c e sweep done
a c c e p t a n c e r a t e = changes /N;

}

I.2 Retrieving the variables

vo i d MonteCar lo : : r u nme t r o p o l i s ( doub l e beta )
{

// I n i t i a l i z i n g the ene rgy
i n i t i a l i z e _ e n e r g y ( ) ;

// E q u i l i b r a t i o n s t e p s
// Added op t i on o f c o o l i n g the system g r a d u a l l y
doub l e eqbeta = beta ;
boo l s l owcoo l = t r u e ;
i f ( beta <0.01) s l owcoo l = f a l s e ; // Should not i n c r e a s e the

t empe ra tu r e
doub l e d e l t a b e t a = ( beta � 0 . 01 ) /( i n t ( e q s t e p s /2) � 1) ;
doub l e s t a r t t im e = c l o c k ( ) ;
f o r ( i n t i =0; i<eq s t e p s ; i++)
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{
i f ( s l owcoo l )
{

i f ( i<i n t ( e q s t e p s /2) ) eqbeta = 0.01+ d e l t a b e t a ∗ i ;
e l s e eqbeta = beta ; // As a s a f e gua r d

}
mcs t ep f_met ropo l i s ( eqbeta ) ;

}

// S e t t i n g a r r a y s f o r measu rab l e q u a n t i t i e s
s t d : : v e c to r<double> a c c e p t a n c e r a t e s =

s td : : v e c to r<double >(no_of_bins ) ;
s t d : : v e c to r<double> e n e r g i e s = s td : : v e c to r<double >(no_of_bins ) ;
// Etc .

// For the c o r r e l a t i o n f u n c t i o n
// The s p i n s
s td : : v e c to r<double> spins_in_x = s td : : v e c to r<double >(N) ;
s t d : : v e c to r<double> spins_in_y = s td : : v e c to r<double >(N) ;
s t d : : v e c to r<double> spins_in_z = s td : : v e c to r<double >(N) ;
// Dec l a r e qconf and s e t the p l an
vec to r< complex<double> > qconfx (N) ; // Output a r r a y
vec to r< complex<double> > qconfy (N) ; // Output a r r a y
vec to r< complex<double> > qcon fz (N) ; // Output a r r a y
g i v e xp l an f o rFFT ( spins_in_x , qcon fx ) ;
g i v e yp l an f o rFFT ( spins_in_y , qcon fy ) ;
g i v e zp l an f o rFFT ( spins_in_z , qcon f z ) ;

// Array f o r the r e s u l t s
// Dete rmin ing the l e n g t h o f the a r r a y
i n t dim = my l a t t i c e . dim ;
i n t q l i m i t = 1 ; // To be mu l t i p l i e d ;
f o r ( i n t l =0; l <(dim�1) ; l++)
{ // Looping ove r a l l d imens i on s but the l a s t

q l i m i t ∗= my l a t t i c e . d im l eng th s [ l ] ;
}
q l i m i t ∗= my l a t t i c e . d im l eng th s [ dim� 1]/2+1;

// d e c l a r i n g a r r a y s f o r f f tw

// Re s e t t i n g q u a n t i t i e s
doub l e ar_av = 0 ;
doub l e energy_av = 0 ;
doub l e energy_sq_av = 0 ;
// e t c .

f o r ( i n t i =0; i<no_of_bins ; i++) // Loop ove r the b i n s
{ // For e v e r y b i n

// Reset q u a n t i t i e s
e n e r g i e s [ i ] = 0 ;
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ene rg i e s_sq [ i ] = 0 ;
// e t c

// Re s e t t i n g the c o r r e l a t i o n f u n c t i o n b in ave rage f o r e v e r y
b i n

f o r ( i n t k=0; k<N; k++) co r r e l a t i on_func t i onx_av_b in [ k ] = 0 ;
// e t c

f o r ( i n t j =0; j<mcsteps_inb in ; j++) // Loop ove r number o f
sweeps i n b i n

{ // For each sweep i n b i n

mcs t ep f_met ropo l i s ( beta ) ;

// a c c e p t a n c e r a t e
a c c e p t a n c e r a t e s [ i ] += ac c ep t a n c e r a t e ;
ar_av += ac c e p t a n c e r a t e ;
// ene rgy
e n e r g i e s [ i ] += energy_old ; // S t o r i n g to ge t the

s t anda rd d e v i a t i o n
ene rg i e s_sq [ i ] += energy_old ∗ energy_old ;

// d e c l a r e
doub l e mx = 0 ;
doub l e my = 0 ;
// e t c .

f o r ( i n t k=0; k<N; k++)
{

mx+= my l a t t i c e . s i t e s [ k ] . s p i n x ;
my+= my l a t t i c e . s i t e s [ k ] . s p i n y ;
mz+= my l a t t i c e . s i t e s [ k ] . s p i n z ;
// For the c o r r e l a t i o n f u n c t i o n
i f ( c a l c u l a t e s p i n c o r r e l a t i o n f u n c t i o n )
{

sp ins_in_x [ k ] = my l a t t i c e . s i t e s [ k ] . s p i n x ;
sp ins_in_y [ k ] = my l a t t i c e . s i t e s [ k ] . s p i n y ;
sp ins_in_z [ k ] = my l a t t i c e . s i t e s [ k ] . s p i n z ;

}
}
// Gathe r i ng
mx = mx/N;
mx_abs = abs (mx) ;
mxsq = mx∗mx ;
mxquad = mxsq∗mxsq ;
// e t c .

// Add to ave rage
mx_av += mx ;
// e t c
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// Sto r e f o r each b in to f i n d s td . dev .
mxs [ i ] += mx ;
// e t c .

// P o s s i b l y f i n d m(q ) . C a l l ano the r f u n c t i o n to do tha t

// FFT s t e p s
i f ( c a l c u l a t e s p i n c o r r e l a t i o n f u n c t i o n )
{

f f tw_execute ( px ) ;
// Do t h i s f o r py and pz t o o l

// Looping ove r p a r t i c l e s
// f o r ( . . . ) {

// Get r i g h t i nd ex . Depends on dim
cx =

( qcon fx [ i nd ex ]∗ con j ( qcon fx [ i nd ex ] ) ) . r e a l ( ) /(N∗N) ;
// and cy and cz
co r r e l a t i on_func t i onx_av_b in [ n ] += cx ;
// and cy and cz

//}
}

} // Done
// Find ave rage
mxs [ i ] = mxs [ i ] / mcsteps_inb in ;
// e t c .

}
energy_av = 0 ; // May choose to s e t t h i s he r e . Then I need to

p r e f i x w i th doub l e

// Average ene rgy // Don ' t want o v e r f l ow
f o r ( i n t l =0; l<no_of_bins ; l++) energy_av += e n e r g i e s [ l ] ;
energy_av = energy_av/no_of_bins ;
// e t c
// Std . dev . i n the ene rgy //
doub l e E_stdv = 0 ;
f o r ( i n t l =0; l<no_of_bins ; l++) E_stdv +=

( e n e r g i e s [ l ] � energy_av ) ∗( e n e r g i e s [ l ] � energy_av ) ;
E_stdv = s q r t ( E_stdv /( no_of_bins ∗( no_of_bins� 1) ) ) ;
// e t c .
// P r i n t to f i l e

}

I.3 The Bootstrap procedure

This analysis was done in python. This is the code segment that applies the Bootstrap
method to find the peak of the magnetic susceptibility. The procedure will be a bit
different when applied to finding the crossing-points of the Binder cumulant graphs
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de f max_temp(LA , f i l enameA , q u a d r a t i c n o t c u b i c f i t , t o p l o t o r n o t ,
u s egau s s i an , c u t i t , cu t l owe r , cu tuppe r ) : # Ex t r a c t the beta
v a l u e o f the c r o s s i n g between two graphs

N = LA∗LA∗LA
i n f i l e A = open ( f i l enameA , " r " )
# Ge t t i n g l i s t s r eady to s t o r e the data

# So r t i n g a r r a y s
betasA = [ ] # L i s t o f beta v a l u e s
b i n o f b e t a_ f i r s t i n d e xA = [ ] #
b i n o f b e t a_ l a s t i n d e xA = [ ] #

# Other q u a n t i t i e s
mzssqc_bavsA = [ ] # Index 14
mzsquadc_bavsA = [ ] # Index 15
# Etc .

# Read the r e s t o f the l i n e s
l i n e s = i n f i l e A . r e a d l i n e s ( )

i = 0 # Counter to ge t the i n d i c e s r i g h t
b e t a b e f o r e = 0 # Test the be t a s so we can ga the r the b i n s .
b i n o f b e t a_ f i r s t i n d e xA . append (0 )

# Ge t t i n g data from the f i l e
f o r l i n e i n l i n e s :

words = l i n e . s p l i t ( )
i f l e n ( words ) != 0 :

# Betas
beta = f l o a t ( words [ 0 ] )
i f be ta != b e t a b e f o r e :

betasA . append ( beta )
b e t a b e f o r e = beta
i f i != 0 :

b i n o f b e t a_ f i r s t i n d e xA . append ( i )
b i n o f b e t a_ l a s t i n d e xA . append ( i � 1)

en = f l o a t ( words [ 1 4 ] )
mzssqc_bavsA . append ( en ) # Index 14
# <m^4_z(q )>
en = f l o a t ( words [ 1 5 ] )
mzsquadc_bavsA . append ( en ) # Index 15
# et c .

i += 1 # I n c r e a s i n g the coun t e r

b i n o f b e t a_ l a s t i n d e xA . append ( i � 1) # The i ndex has been updated
one t ime too many

# Remember to c l o s e the f i l e
i n f i l e A . c l o s e ( )
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nbinsA = z e r o s ( l e n ( betasA ) )
f o r i i n range (0 , l e n ( betasA ) ) :

nb insA [ i ] = b i n o f b e t a_ l a s t i n d e xA [ i ] � b i n o f b e t a_ f i r s t i n d e xA [ i ]+1

no_of_bins_each_betaA = b i n o f b e t a_ l a s t i n d e xA [0]+1
no_of_betasA = l e n ( betasA ) # The number o f

d i f f e r e n t t empe r a tu r e s
no_of_BootstraprunsA = 300

betasA = a r r a y ( betasA )

i f c u t i t ==1: # I f we have s im u l a t i o n s f o r a l a r g e r t empe ra tu r e
i n t e r v a l than we wish
# . . . d e t a i l s

i f t o p l o t o r n o t==0: # May want to l ook at the g raphs underway
p l o t t e r = 1

e l s e :
p l o t t e r = 0

warn ing = 0
betaatmax_av = 0
betas_at_max = z e r o s ( no_of_BootstraprunsA )
maxtemp_av = 0
maxtemps = z e r o s ( no_of_BootstraprunsA )
tempatmax_K_av = 0
temp_at_max = z e r o s ( no_of_BootstraprunsA )
f o r k i n range (0 , no_of_BootstraprunsA ) : # Want to r e p e a t the

random s e l e c t i o n o f b i n s a number o f t imes
magnsuscsx = [ ] ; magnsuscsy = [ ] ; magnsuscsz = [ ]
hea t cap s = [ ]
f o r i i n range (0 , no_of_betasA ) : # For do ing i t f o r e v e r y

t empe ra tu r e
nb i n s = i n t ( nb insA [ i ] )
### Reset a l l q u a n t i t i e s I want to f i n d by boo t s t r a p
mx = 0 ; mxabs = 0 ; mx2 = 0 ; mx4 = 0 ; my = 0 ; myabs = 0 ;

my2 = 0 ; my4 = 0 ; mz = 0 ; mzabs = 0 ; mz2 = 0 ; mz4 = 0 ;
eav = 0 ; esqav = 0 ; hcav = 0 ;
f o r j i n range (0 , nb i n s ) : # For f i n d i n g the a v e r ag e s

###Draw a random i n t e g e r i n
[ b i n o f b e t a_ f i r s t i n d e xA [ i ] ,
b i n o f b e t a_ l a s t i n d e xA [ i ] ] .

n = r a n d i n t ( b i n o f b e t a_ f i r s t i n d e xA [ i ] ,
b i n o f b e t a_ l a s t i n d e xA [ i ] ) # Draw a random number n
t imes

###Ex t r a c t O(n ) , add to ave rage f u n c t i o n
mz += mzsc_bavsA [ n ] ; mzabs += mzsc_abs_bavsA [ n ] ; mz2

+= mzssqc_bavsA [ n ] ; mz4 += mzsquadc_bavsA [ n ] ;
# e t c .

### Div i d e the ave rage o f O(n ) by no_of_bins_each_beta to
ACTUALLY make the ave rage

mz = mz/ nb i n s ; mzabs = mzabs/ nb i n s ; mz2 = mz2/ nb i n s ; mz4
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= mz4/ nb i n s ;
# e t c .
### Magnet ic s u s c e p t i b i l i t y pe r s p i n
magnsuscz_th is = betasA [ i ] ∗ (mz2� (mzabs∗mzabs ) ) ∗N
### Tota l heat c a p a c i t y
hea t cap_th i s = betasA [ i ]∗∗2∗ ( esqav � ( eav ∗ eav ) ) /N
### Feed i n t o l i s t s
magnsuscsz . append ( magnsuscz_th is )
hea t cap s . append ( hea tcap_th i s )

### Do a f i t t i n g o f the r e s u l t s .
i f q u a d r a t i c n o t c u b i c f i t ==0:

magnsuscsz = a r r a y ( magnsuscsz )
f i t v e c t o r z compA = p o l y f i t ( betasA , magnsuscsz , 1) # F i t s

the f u n c t i o n p o i n t s to a qu ad r a t i c po l ynom i a l
azA = f i t v e c t o r z compA [ 0 ] ; bzA = f i t v e c t o r z compA [ 1 ] ;

n f b e t a s = 1000
f b e t a s = l i n s p a c e ( betasA [ 0 ] , betasA [ l e n ( betasA ) � 1 ] ,

n f b e t a s )

fA = g i v e l i n e ( azA , bzA , f b e t a s )
# e t c .

betaatmax , maxtemp = findmaxima ( f b e t a s , fA , warn ing )
betaatmax_av += betaatmax
betas_at_max [ k ] = betaatmax
maxtemp_av += maxtemp
maxtemps [ k ] = maxtemp
tmK = conver t temp ( betaatmax )
tempatmax_K_av += tmK
temp_at_max [ k ] = tmK
i f warning <3:

warn ing += 1

i f p l o t t e r ==0:
# P lo t a few t imes i f I want to .

betaatmax_av = betaatmax_av/no_of_BootstraprunsA
betaatmax_stddev = 0
f o r i i n range (0 , no_of_BootstraprunsA ) :

betaatmax_stddev +=
( betaatmax_av�betas_at_max [ i ] ) ∗( betaatmax_av�betas_at_max [ i ] )

betaatmax_stddev = s q r t ( betaatmax_stddev /( no_of_BootstraprunsA� 1) )
# Etc .

r e t u r n betaatmax_av , betaatmax_stddev , maxtemp_av ,
maxtemp_stddev , tempatmax_K_av , tempatmax_K_stddev
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