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by Åsmund Bakketun

Soil moisture plays an essential role in the land surface energy balance, ap-
portioning the available energy into latent and sensible heat. As an impor-
tant boundary for the atmosphere, accurate initialization of the land surface
can help numerical weather prediction (NWP)-models increase their skill.
The aim of this study is to identify the potential of integrating satellite de-
rived soil moisture products in a land surface model over Norway. Offline
simulations with the SURFace EXternalisée (SURFEX) land surface model
are performed, forced by output from an operational NWP-model. Exper-
iments cover the three summer months June, July, August (JJA) 2016, for a
domain in south-eastern Norway. Level 3 data from the Soil Moisture and
Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites
are, separately, integrated in soil moisture analyses using a simplified ex-
tended Kalman filter (SEKF). In order to explicitly represent the retrieved
soil moisture variable, the multilayer diffusion version of Interaction Sol-
Biosphère-Atmosphère (ISBA) is used. Analysis is performed in the upper
seven model soil layers to cover the root zone.

The satellite data are found to be of questionable quality for the area of
interest, with poor spatial coverage and noisy signal. Investigation of the
linearized observation operator reveals that more weight is given to sur-
face layers in dry conditions, and deep layers in wet conditions. Over all
water is added to the surface layers, and removed below 10 cm. Layers
below 40 cm have limited communication with the observed layer during
a 6 hour assimilation window, and are suggested to be removed from the
control vector. In comparison with observations of 2 meter temperature,
simulations with data assimilation (DA) of soil moisture show limited im-
provement over the control. However, the change in surface fluxes is more
pronounced, mainly adjusting the Bowen ratio. Since the simulations are
performed offline, the full potential of soil moisture increments are not be-
lieved to be reached.
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Chapter 1

Introduction

Early day weather forecasts were purely based on observations. In the
twentieth century, Vilhelm Bjerkens postulated that the weather could be
predicted if: the state of the system is known with sufficient accuracy at
a given time, and the laws describing the development from one state to
another are known with sufficient accuracy (Bjerknes, 1904). A weather
forecast is thus an initial value problem, known as prediction of the first
kind. Edward N. Lorenz later found that the equations describing fluid
motion, hence the weather, were chaotic, and that prediction of the weather
is limited to a certain lead time (Lorenz, 1963). The predictability limit is
scale and situation dependent. Large scale systems are limited to a couple
of weeks and afternoon showers to a couple of hours. With increasing lead
time, climatic time scales, the boundary conditions play a bigger role, where
e.g. distance to the sun and green house gas concentrations influence the
outcome. These are predictions of the second kind. In decadal prediction,
both initial and boundary conditions are important (Hawkins and Sutton,
2009).

Over the years, descriptions of the system processes have become in-
creasingly detailed and super computers allow the governing equations to
be solved1 with fine resolution. Since the system is chaotic, hence of limited
predictability, frequent initializations of the model state are required to not
diverge from the true state of the system. The initial state should be as close
to the real state as possible to maximize the predictability limit.

This thesis will center around the first kind of prediction, namely the
initial value problem. Short and medium range weather predictions, half to
two days and ten to fifteen days respectively, will be the focus area.

Observations of the earth system, including temperature, pressure, ra-
diation, precipitation, and wind velocity, have the goal to represent the cur-
rent state as accurate as possible. Ranging from local in situ stations to satel-
lites covering the entire globe, numerous quantities are measured. These
observations are integrated in NWP systems, through DA. Improvement
of the European Centre for Medium-Range Weather Forecasts (ECMWF)-
model system is shown in Fig. 1.1, where the impact of satellite observa-
tions is pronounced in the beginning of the twenty-first century.

1The Navier-Stokes equations are yet to be solved analytically, but numerical schemes
can approximate a solution given initial and boundary conditions.
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FIGURE 1.1: Improvement in forecast skill of ECMWF
(Fig. 1 in Bauer, Thorpe, and Brunet (2015)). Thick line indi-
cates the northern hemisphere, thin line is southern hemi-
sphere. Differences between the hemispheres are caused by
the uneven distribution of in situ stations. The revolution
of satellite observations after 1999, closes the gap between

southern and northern hemispheres.

Soil moisture, plays an important role in the hydrological cycle, influenc-
ing the surface energy balance, and is thus an important boundary condi-
tion for the atmosphere (Mueller and Seneviratne, 2012; Entekhabi et al.,
1999). Soil moisture has received a lot of attention by earth system scien-
tists the last decades, and it is recognized as an essential climate variable.
Soil moisture deficit contributes to positive feedback mechanisms for sur-
face temperature extremes on climatic time scales (Seneviratne et al., 2010),
and affect surface temperature, and convective cloud formation in short to
medium range weather forecasts (Beljaars et al., 1996; Chen and Avissar,
1994). Land surface models have gone from simple conceptual models to
complex schemes, representing soil texture heterogeneity, evolution of veg-
etation, and soil moisture profiles (Balsamo et al., 2009; Rosnay et al., 2002).

Along with better models, initialization of surface parameters have shown
to improve forecast skill in both short and medium range weather fore-
casts (De Rosnay et al., 2014; Hurk, Ettema, and Viterbo, 2008; Drusch and
Viterbo, 2007; Douville et al., 2000) and at seasonal scale (Weisheimer et al.,
2011; Koster et al., 2011; Koster et al., 2004). In recent years, soil moisture
research satellites have been launched, and they provide daily soil moisture
maps covering most of the globe.

The main motivation for this work is to improve the land surface bound-
ary conditions used in an NWP-model. By combining model and satellite
soil moisture, a more accurate description of the surface state is achieved,
which in theory will improve the forecast skill. However, an improved soil
moisture estimation can also be valuable for flood warning, agricultural
purposes, and for power companies.

Meteorological Co-operation on Operational NWP (MetCoOp) produces
operational short-range weather forecasts four times daily, covering north-
ern Europe with the NWP-model Applications of Research to Operations at
MEsoscale (AROME)-MetCoOp (Müller et al., 2017). The surface boundary
is governed by the externalized surface model SURFEX (Le Moigne, 2012).
In the land surface DA, soil moisture and temperature are updated based
on observations of screen level variables, temperature and humidity.
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In this study, soil moisture retrievals from the SMOS and SMAP satellites
are assimilated into decoupled SURFEX simulations, during the 2016 sum-
mer months in south-east Norway. The quality of satellite products over
high latitudes is investigated, the SURFEX Offline Data Assimilation (SODA)
system is tested in conjunction with the ISBA-DIFfusion (DIF) model, and
initialization of the surface model is analyzed with respect to model im-
provement of screen level variables, 2 meter temperature and humidity.

The DA is performed using an Extended Kalman Filter (EKF) (Gelb,
1974) implemented in the SODA environment, updating soil moisture in
surface soil and root zone.

This thesis consists of three parts. In part 1, the theoretical basis for
modeling, observing, and DA of land surface parameters is presented. This
include land surface energy balance and surface hydrology, L-band radiom-
etry of soil moisture, and variations of the sequential Kalman filter (KF).

Part 2 provides description of methodology used in the work. A pre-
sentation of the SURFEX model is given, followed by an introduction of
satellite products and how they are processed prior to the DA. The SODA
environment is presented and modifications to it are described.

In Part 3, results are presented and discussed. Model performance is
validated, the quality of satellite retrievals and normalization process are
evaluated, soil moisture analysis with ISBA-DIF is verified, followed by
evaluation of model improvements due to soil moisture increments with
respect to screen level variables.
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Part I

Theory
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Chapter 2

Land Surface Processes

2.1 Land Surface Energy Balance

The land surface interacts with the atmosphere, and is crucial for the evo-
lution of the planetary boundary layer. In NWP the surface is particularly
important, since most of its users are located on the surface and are inter-
ested in quantities located at screen level, 2 meters above the surface. These
parameters are to a large degree affected by the surface conditions. The
surface state is shown to be important for convective cloud formation and
precipitation (Beljaars et al., 1996; Chen and Avissar, 1994). Surface condi-
tions have also shown to be important for large scale circulation (Miyakoda,
Hembree, and Strickler, 1979) and extreme heat waves (Jaeger and Senevi-
ratne, 2011).

In this chapter, the theory of the land surface energy balance is covered,
formulations and notation are adopted from John M. Wallace (2006).

The land surface receives long-wave radiation from the atmosphere,
FL ↓, and shortwave solar radiation, Fs ↓. The latter only during the day.
Long-wave radiation is emitted from the ground, FL ↑, following Stefan
Boltzman law 1, and some of the incoming solar radiation is reflected back,
Fs ↑, depending on the surface type and condition. The net radiation is the
sum of all these formulated in Eq. (2.1), and illustrated in figure 2.1.

Fnet = Fs ↓ −Fs ↑ +FL ↓ −FL ↑ (2.1)

In clear sky weather, the net radiation is dominated by solar radiation and
is thus positive. The upward shortwave radiation is proportional to the
downward shortwave radiation, and the fraction is known as the surface
albedo with values between 0 and 1. The net long-wave radiation is down-
ward for cooler surface than air and upward for the opposite.

If we consider the land surface as very thin, we can assume a heat ca-
pacity of zero. The net radiation is then balanced by sensible, FHs, latent,
FEs, heat flux and conductive ground flux, FGs.

Fnet = FHs + FEs + FGs (2.2)

When two bodies are in contact and have different temperatures, heat is
conducted from the warmer body to the cooler. This process is formulated
by Fourier 2, and is a diffusive process. If e.g. the land surface is warmer,
the air will be heated and increase temperature while the surface undergoes
cooling. If the air does not move, it will continue to warm until equilibrium

1black body radiation: B = σT 4, σ is Boltzmans constant, and T is the temperature.
2Fourier’s law: q = −k∇T , k is a constant, and T the temperature.
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is reached. However, air is moving and turbulent eddies, vertical circula-
tions, are constantly mixing the air within the boundary layer, sustaining
the temperature gradient between surface and air, and thus the sensible
heat flux. In fair weather conditions, blue skies, the sensible heat flux is
usually positive, upwards, during day, where solar radiation heats the sur-
face more rapid than air. During night, outgoing long-wave radiation is
emitted more efficiently by the ground than air, and the resulting heat flux
is downward.

If liquid water is available, a portion of the available energy will cause
evaporation rather than heating. The energy used to evaporate liquid wa-
ter is contained in the water vapor and is not released until the vapor con-
denses in a cloud or as dew on vegetation and ground. This is known as
latent heat, and the energy flux as latent heat flux. The necessary conditions
for evaporation/condensation are slightly more complex than sensible heat
flux. The amount of water in the ground/vegetation, and the relative hu-
midity of the air, also have to be included in the process, together with
temperature and radiative forcing. The specific heat capacities of dry air
Cair, water Cwat and the specific latent heat of vaporization Lv is given in
table 2.1. Notice that the amount of energy needed to increase the temper-
ature of one kilo water by one Kelvin degree, is four times what is required
for dry air. Further, vaporizing one kilogram of water requires as much
as two thousand times the energy required to raise the temperature of one
kilo dry air by one Kelvin degree. Different regimes are identified with the
Bowen ratio,B = FHs/FEs, e.g. being large over desert and low over ocean.

The last term of Eq. (2.2) is the ground flux, which is heat conducted
to/from deeper soils, positive value is downward. Table 2.1 also includes a
selection of heat capacities for soil related materials.

FS FL

FHs
FEs

FGs

FIGURE 2.1: Schematics of land surface energy balance. FS

and FL are shortwave and long wave radiation, FHs is sen-
sible heat flux, FEs is latent heat of evaporation, and FGs is

ground heat flux.
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Cair 1.004× 103 J K−1 kg−1 specific heat capacity of dry air
Cwat 4.218× 103 J K−1 kg−1 specific heat capacity of liquid water at 0 ◦C

Lv 2.50× 106 J kg−1 specific latent heat of vaporization 0 ◦C

Lf 3.34× 105 J kg−1 specific latent heat of fusion, water
Crock 0.75× 103 J K−1 kg−1 specific heat capacity of rock
Cclay 0.89× 103 J K−1 kg−1 specific heat capacity of clay soil
Csand 0.80× 103 J K−1 kg−1 specific heat capacity of sandy soil
Cpeat 1.92× 103 J K−1 kg−1 specific heat capacity of peat soil

TABLE 2.1: Specific heat capacities. First four values from
John M. Wallace (2006), ground related values from Arya

(2001)

2.2 Surface Hydrology

As seen in Sect. 2.1, the presence of water dramatically influences the en-
ergy budget for the land surface. Soil water also influence the surface
albedo (table 4.2 in Hartmann (1994)). A wet surface absorbs a larger por-
tion of incoming solar radiation. Vegetation transpiration and growth are
also constrained by the water available at the roots. Soil moisture is thus a
key component in the energy budget. The most important elements of the
hydrological cycle over land, during summer where there is no ice or snow
present, are illustrated in Fig. 2.2.

Precipitation propagate the chaotic nature of the atmosphere into the
soil, causing temporal variability. On short time scale, erroneous precipi-
tation can thus introduce large error in soil water content. The other pro-
cesses are much slower and easier to model, but their evolution is strongly
dependent on static parameters such as soil texture and vegetation cover
(Korres, Reichenau, and Schneider, 2013). Incorrect specification of these
parameters will introduce a bias in soil moisture.

In the following, basic hydrological concepts are discussed in order to
understand model performance and limitations. Notation and formalism
are adopted from John M. Wallace (2006) and Dingman (2008)
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Precipitation

Run-off

Infiltration

Evaporation

Transpiration

Ground water
Root-zone

Surface

Drainage

Uptake

FIGURE 2.2: Elements of the hydrological cycle over land

2.2.1 Available Water

Soil porosity, the volume of air per total volume of soil is a key parameter
when studying soil moisture together with field capacity and wilting point.
Porosity is equal to the volumetric water content at saturation. When soil is
saturated with liquid water after a heavy rainfall, the water content decays
due to runoff and drainage. After some time the runoff and drainage rate
decrease, and the water content stabilizes. At this point the water content
is said to be at field capacity. If soil water is removed through evapora-
tion from surface and transpiration from roots through vegetation, at some
point the capillary force of the roots is no longer strong enough to absorb
water from the soil, and the plants start to wilt. The wilting point is the
soil water content at this point. The range between field capacity and wilt-
ing point is called available water. Water contents below wilting point are
unavailable with respect to evapotranspiration, but can still decrease to hy-
groscopic water content that is the minimum water content in natural soil.

2.2.2 Water Transport in Soil

The main source of water in the soil is precipitation. However, to account
for the soil moisture we also need to know other sources and sinks, and
their respective magnitudes. One important component is the water flow,
which is over all a sink for the surface water content. To obtain an equation
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for the soil water content and its temporal evolution, Darcy’s law is com-
bined with conservation of mass within a volume. For simplicity, only the
vertical component is considered.

Darcy’s Law

Flow rate in unsaturated porous media can be described with Eq. (2.3)

qz = −Kh(θ)

[
1 +

dψ(θ)

dz

]
(2.3)

qz is the vertical volumetric flow rate per cross-section m s−1, Kh is the hy-
draulic conductivity m s−1, θ the volumetric water content m3 m−3, ψ = p

γw
is the pressure head where p is the water pressure and γw the weight den-
sity of water, and z is the height above, which point the flow is evaluated.
The hydraulic conductivity is a measure of how efficient water flows in the
media, and as the notation suggests it is dependent on the water content.
Kh depends, together with soil moisture, on the porosity or the grain size
of the soil. Soil with large grains like sand, allows larger space between the
particles, and thus more space for the water to move freely, compared to
fine grained soils like clay. The capillary force of clay soil is larger, and thus
holds more water than large grained soil.

Richards Equation

Using mass conservation for a volume δxδyδz and assuming constant den-
sity of water ρw, we can describe the change of water content in time as the
flow rate into the volume minus the flow rate out of it. We introduce z′,
increasing with depth, opposite of z.

ρwδxδyδtδz
∂θ

∂t
= ρwδxδyδtqz′︸ ︷︷ ︸

flux in

− ρwδxδyδt(qz′ +
∂qz′

∂z′
δz)︸ ︷︷ ︸

flux out

∂θ

∂t
= −∂qz

′

∂z′

then differentiating Eq. (2.3) with respect to z′,

∂θ

∂t
= −∂Kh(θ)

∂z′
+

∂

∂z′

(
Kh(θ)

∂ψ(θ)

∂z′

)
(2.4)

We can define a hydraulic diffusivity Dh(θ) ≡ Kh(θ)∂ψ(θ)∂θ , and rewrite
Eq. (2.3) and (2.4),

qz = −Kh(θ)−Dh(θ)
dθ

dz
(2.5)

∂θ

∂t
= −∂Kh(θ)

∂z′
+

∂

∂z′

(
Dh(θ)

∂θ

∂z′

)
(2.6)

The hydraulic conductivity and diffusivity are dependent of soil moisture
and soil texture. A prediction of soil water content thus requires a soil mois-
ture profile, and information about the soil properties and how they vary
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with depth. Richards equation has no analytic solution and has to be ap-
proximated. In modern surface models this is usually done using finite
differences method (Dingman, 2008, Chapter 6).

2.2.3 Evapotranspiration

Evapotranspiration is a term for liquid water ending up as atmospheric va-
por, including evaporation from the surface, transpiration from plants, Wet
and dry soil moisture events are extracted from the simulation output to
identify differences. and sublimation from ice and snow. About 62 % of the
global precipitated water over land is evapotranspired back to the atmo-
sphere (Dingman, 2008, p. 272). Evapotranspiration is not only an impor-
tant sink for soil moisture, but also a key component in the energy balance
discussed in Sect. 2.1.

Evaporation of soil water can be separated into two difference regimes:
energy limited and soil moisture limited. In an energy limited regime, the
soil contains a sufficient amount of water, so that the evaporation rate is
driven by the amount of energy available. If the soil water content is be-
low a critical limit, the soil moisture provides a first order constraint on the
evaporation rate (Seneviratne et al., 2010). In soil moisture limited regimes
a positive feedback mechanism is possible. If the soil moisture is decreased,
it causes decreased evaporation, hence increased heating. Increased tem-
perature reduces the relative humidity, and thus induce stronger evapora-
tion despite the low soil moisture content. This mechanism can cause warm
extremes over continental areas, soil moisture is thus important for predict-
ing such events (Weisheimer et al., 2011).

FIGURE 2.3: Schematics of energy limited and soil moisture
limited evaporation regimes. Fig. 5 from Seneviratne et al.

(2010)
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Chapter 3

Observations

3.1 The Role of Observations in Numerical Weather
Prediction

In the 17th century, thermometers were developed and the first meteoro-
logical measurements recorded. In 1860 Admiral Robert FitzRoy collected
meteorological observations through the telegraph, made synoptic charts,
and provided forecasts for England (BBC, 2015). Into the 20th century Vil-
helm Bjerknes stated that the weather could be predicted by using a set
of mathematical equations (Bjerknes, 1904). The equations were shown to
be chaotic in nature by Lorenz (1963). When the equations are integrated
in time, an initialization, a point in phase space, is required. The chaotic
nature implies that an arbitrary small error in the initial condition, will
blow up when integrated forward in time. Eventually, the imprecise ini-
tialization will cause the trajectory to have a total different solution than
the true state. This behavior limits the predictability of the weather to a
couple of hours for small scale systems such as convective clouds, and up
to one to two weeks for synoptic scale systems. In operational NWP the
model is initialized regularly when fresh observations are available. The
amount of observations used in the initialization increase continually. To
begin with, only observation stations on land were used, then reports from
ships, and with time, radiosondes, buoys and a variety of satellites have
been launched and utilized in the process. Earth observations are also of
great benefit for researchers when studying processes, since they output
the real system processes rather than limited model estimations.

3.2 In Situ Observations

We distinguish between direct and indirect measurements. A direct mea-
surement or in situ measurement is a measurement, in direct contact, where
the observed quantity is the quantity under study, e.g. temperature mea-
sured with a thermometer. In Norway hundreds of stations, manual and
automatic, provide temperature, pressure, wind speed and precipitation
amounts around the clock, that are used to initialize the forecasting model.
Regarding soil moisture the situation is different. In situ measurements of
soil moisture does exist in Norway, but quite few and they are not easily
available. The International Soil Moisture Network (ISMN) (Dorigo et al.,
2011) has managed to gather soil moisture observations from many coun-
tries and networks, unfortunately no stations in Norway are included at
this point.
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The true direct way to measure soil moisture is to weigh a soil sample be-
fore and after it has dried, then calculating the mass of water. However,
this method is cumbersome, and soil moisture is usually deduced from
measurements of other quantities. One method is to measure the electri-
cal resistance between two electrodes placed in the soil. Because water has
a different electrical conductivity than dry soil, the soil moisture content
can be calculated. Other kinds of measurements use the close link between
soil moisture and the dielectric constant, which is also utilized in remote
methods.

3.3 Satellite Remote Sensing

In situ measurements are usually very accurate, but the major weakness is
the spatial coverage. For how large area could a single point soil moisture
measurement represent? For a large flat homogeneous area e.g. a desert,
this area could be large. However, in areas with rough topography, mixed
forest, and patches of wetland, the spatial variability can be large in few
meters.

For a grid cell in a NWP model ranging from 2.5 km to 20 km, one single
soil moisture measurement would be of very limited value, but there is an
alternative. Satellites observe the earth from space, giving them a wider
view. Satellites have been crucial for improving weather forecast (Bauer,
Thorpe, and Brunet, 2015), and a large number of sensors are included in
assimilation systems at the operational centers.

Satellites can orbit the earth in different ways. Geostationary satellites
are always located over the same spot at the equator. These satellites have
an altitude of 35 786 km above earth and can cover a large portion of the
hemisphere below. Satellites can also be in low orbits including polar orbit
with altitudes around 700 km and an orbit period of about 100 min, where
they cover the high latitudes as well.

Satellites cannot observe the studied variable directly, but measure elec-
tromagnetic radiation by counting photons, called data level 0, which is
then translated to randiances (level 1). Different sensors that operate in dif-
ferent bands are used to observe different quantities. A band is a frequency
interval on the electromagnetic spectrum. Different frequencies require dif-
ferent sensors and techniques. We distinguish between passive and active
sensors. A passive sensor, or radiometer, observes radiation emitted from
the earth or from molecules in the atmosphere. The atmosphere is more
transparent to radiation in certain bands, these are utilized when monitor-
ing the surface. The surface is not a perfect black body, but it absorbs and
emits according to its emissivity. The radiation temperature observed from
a sensor is thus lower than the real kinetic temperature and is known as the
brightness temperature. Alternatively the satellite emit radiation itself and
then observe the radiation reflected back, back scatter, known as a radar.
Lasers are also used, e.g. with the ability to measure terrain in very high
detail. When the level 1 data is observed, a retrieval algorithm is used to
obtain the variable of interest, termed level 2 data. Level 3 is level 2 data
interpolated onto a grid or field. Level 4 data is a model derived state by
assimilation of level 1 or 2 data (Lahoz and De Lannoy, 2014).
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3.4 Soil Moisture Retrievals with L-band Radiometry

Table 1 in Lahoz and De Lannoy (2014) gives an overview of satellites that
observe quantities related to the hydrological cycle, including surface soil
moisture. The two most recent soil moisture dedicated satellites, SMOS and
SMAP both operate as passive sensors in the L-band (long wave), which
corresponds to frequencies in the range 1-2 GHz. The atmosphere is almost
transparent for these frequencies and surface brightness temperature can be
observed from space almost unaffected by the atmospheric conditions in-
cluding clouds (Schmugge, 1998) and (Jones and Vaughan, 2010, Chapter 2).
At long wavelengths where the Raylgeigh-jeans approximation holds, the
brightness temperature, TB , is related to the real kinetic temperature Tk as
TB = εTk, where ε is the emissivity.
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FIGURE 3.1: Emissivity as function of the
dielectric constant based on Eq.(1.7) in

Behari (2006)

The emissivity is closely re-
lated to the dielectric constant of
the material, shown in Fig. 3.1.
The dielectric constant of water
is ∼ 80 compared to ∼ 3.5 for
dry soils. The emissivity is thus
highly dependent on the water con-
tent of the material/soil, which
makes it suitable for remote sens-
ing of soil moisture. The step
from observed brightness temper-
ature to soil moisture requires ad-
ditional information about temper-
ature, surface roughness and veg-
etation types etc., these may come
from databases, models or parallel
observations (Jones and Vaughan
(2010) their Sect.(5.5.1)).

The penetration depth into the
soil is dependent of wavelength, where longer waves penetrate, and thus
are emitted from, deeper than shorter waves. In the L-band the bright-
ness temperature retrieved is valid for about 5 cm below the surface. These
wavelengths are also transmitted through vegetation less affected than
shorter waves. In sum these properties have made L-band radiometry the
choice for the two most recent satellites dedicated to soil moisture (Kerr,
2007).
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Chapter 4

Data Assimilation

Physical processes described in Ch. 2, make a basis for modeling of the land
surface. Observations and satellite products are explained in Ch. 3. Obser-
vations are valuable because they provide the best information about the
true state of a system, but have the limitations in their spatial and tempo-
ral coverage. Models on the other hand, have good spatial and temporal
coverage only limited by computer power, but incomplete knowledge of
the processes imply limited parameterizations, which are also resolution
dependent (Lahoz and De Lannoy, 2014). Models and observations are cru-
cial for our understanding of the system under study. We can learn about
our model by comparing it with observations, or we can verify measure-
ments by using models. How we use observations and models together
can vary. Most of the time, comparison is done in plots, figures, and sta-
tistical measures. If we want to improve a model by using observations or
interpolate observations using a model, we need objective tools to combine
them properly. Data assimilation (DA) is the field of combining informa-
tion, optimally, based on their respective uncertainties.

4.1 Model and Observation Uncertainty

Models and observations have errors, and it is important to know them in
a DA system. In principle we are combining two values with associated
uncertainties, regardless of where they come from, model or observation.
However, the nature of the errors is not identical, and the approach we use
to estimate them differ.

We usually distinguish between model error and background error, where
the model error comes from to finite resolution, parameterizations, and lack
of knowledge about the processes. The background error is related to the
error of the previous analysis and the predictability of the system.

The error of a measurement, observation error, can be separated into
components, instrument error and error of representativeness. The instru-
ment error is, as the name suggests, the uncertainty of the measuring de-
vice, and should be given by the manufacturer. The error of representative-
ness arises when we use a measurement, of one scale, to represent another
scale, e.g. when we compare 2 meter temperatures from a synop station
with a model grid cell of several kilometers, or using a 30 by 30 km res-
olution soil moisture product together with a 2.5 by 2.5 km model. In re-
mote sensing, or indirect measurements, a retrieval algorithm is used to
obtain the variable of interest, which is often based on approximations and
models. These errors are often estimated and provided along the retrieval
product as described later in Ch. 10.

It is common to distinguish between random and systematic errors. A
signal has some degree of random noise. Averaging a signal will remove
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this noise, meaning it has zero mean. The precision of an observation is
related to this kind of noise. Systematic error, or bias, in a signal cannot
be removed by averaging, but if the systematic error is known it can be
subtracted from the signal.

4.2 Optimal Combination of Data

As stated above, we need an objective tool to combine two observations,
the model can be treated as an observation, that takes care of the respective
uncertainties of each observation. A simple 1D case is presented in Lahoz,
Khattatov, and Ménard (2010). Assume we have two observations, x1 and
x2 with the corresponding standard deviations σ1 and σ2. The optimal com-
bination of these two is given by Eq. (4.1).

x =

x1
σ2
1

+ x2
σ2
2

1
σ2
1

+ 1
σ2
2

(4.1)

where the denominator is the inverse of the variance of the new value x. If
we let σ2 become very large, x2 contributes very little, and the variance of
the analysis approaches the variance of x1, σ22 ≤ min(σ21, σ

2
2). The analysis

is thus more certain than the most certain observation. This is true if the
observation errors are bias free, uncorrelated, and normally distributed.

We can generalize this into a multidimensional case, assuming a perfect
model, and obtain the Best Linear Unbiased Estimate (BLUE) (Sect. 2.4 in
Lahoz, Khattatov, and Ménard (2010)). Let xk ∈ Rn be the true state in
model space at time tk, andMk,k+1 : Rn → Rn be the non-linear operator
propagating the model state from tk to tk+1 so that,

xk+1 =Mk,k+1(xk), k = 0, . . . , N − 1. (4.2)

xb0 is a prior estimate of the state xk, also known as the background state,
with errors εb0 = x0−xb0. The observation yk ∈ Rpk is the observation vector,
with the following relation to model state,

yk = Hk(xk) + εok, (4.3)

whereHk is a non-linear operator transforming model space to observation
space, including grid interpolations and conversions. εok is the observation
error in observation space.

A linear estimate of the analysis xa can be found using M0,k and Hk as
the linearized versions ofM0,k and Hk. Assuming that the errors εb0 and εok
are randomly distributed, have zero means, and are uncorrelated, with cor-
responding covariance matrices B0 ∈ Rn×n and Rk = Rpk×pk respectively.
The following equations can then be derived using either minimum variance
estimate or maximum a posteriori Bayesian estimate.

xa0 = xb0 + Kd (4.4)

K = B0H
T (HB0H

T + R)−1 (4.5)

K ∈ Rn×p is called the gain matrix, and d is the innovation vector

d = yk −Hk(xb0) (4.6)
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4.3 Sequential Data Assimilation

Operational weather forecasts are produced with intervals in time, e.g. the
Scandinavian AROME-MetCoOp model is initiated four times daily at 00,
06, 12, and 18 (Müller et al., 2017). Observations are available at different
times, depending on the type, e.g. automatic station measurements every
hour/minute or satellites once/twice a day. It is thus a question, which
observations that should be used for the next analysis. In sequential DA,
observations within a certain time window around the analysis time are
used, as observations for that time. The model is then propagated to the
next analysis time, where a new estimate is made when observations be-
come available. In contrast to sequential DA schemes, the 4D variational
approach uses observations when they are available during the width of
the assimilation window. The two types are illustrated in Fig. 4.1.

Forecast

Obs

Analysis

tk

tk
kth Assimilation window (k+1)th Assimilation window

Analysis

Obs

Forecast

Sequential DA

4DVar

FIGURE 4.1: Model trajectories for sequential and varia-
tional DA. Red lines are model trajectories, blue lines or
point indicate the resulting analysis after DA, black dots are

observations.

4.4 Kalman Filter

The KF is a sequential DA scheme formulated by Kalman (1960).
At a time tk a prior estimate, background, of the current state is known,

xb
k, and observations, yk, are available. The analysis is on the form,

xak = xbk + Kk(yk −Hkx
b
k) (4.7)

with the following analysis error covariance matrix,

Ak = (I−KkHk)Bk. (4.8)
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Kk is known as the Kalman gain matrix and gives the weight to the obser-
vations.

Kk = BkH
T
k (HkBkH

T
k + Rk)−1 (4.9)

Hk is the observation operator, transforming model space to observation
space.

The analysis state is then propagated forward to the next analysis time,

xbk+1 = Mxak, (4.10)

where M is a linear model. The new background error covariance matrix
Bk+1, used in the next analysis, is

Bk+1 = MAkM
T + Q (4.11)

given a model error covariance matrix Q.

4.5 Extended Kalman Filter

For non-linear systems, the propagation of a state is given by a non-linear
operatorM,

xk+1 =M(xk). (4.12)

The observation operator is also non-linearH. The innovation is thus on the
form yk−H(xk). However, we can approximate the model and observation
operators with linearizations within the assimilation window tk to tk+1.

H =
∂H
∂x

(4.13)

M =
∂M
∂x

(4.14)

Calculating the linear model and observation operator, and to propagate
the error covariance matrix is computationally expensive. For atmospheric
application this method is rarely used due to its large number of calcula-
tions. Other methods are developed to suite a practical implementation.
However, for land DA, where the length of the state vector is significantly
smaller, the technique is well used. A popular version is the SEKF where the
background error covariance matrix, B, is constant in time. Draper, Mah-
fouf, and Walker (2009) found that the SEKF and EKF produced similar soil
moisture increments, but recommended to use the EKF for future work.
However the SEKF has been preferred in later studies including Mahfouf
et al. (2009), Draper, Mahfouf, and Walker (2011), De Rosnay et al. (2013),
Barbu et al. (2014), Fairbairn et al. (2015), and Albergel et al. (2017). In this
study the SEKF is used, because of its simplicity and that there are some
challenges in the implementation described in Sect. 7.1.2
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4.6 Ensemble Kalman Filter

Another version of the KF is the Ensemble Kalman Filter (EnKF) described
in Evensen (2003). Rather than evolving the background error covariance
matrix as in Eq. (4.11), an ensemble forecast is made for the background
state, then the background error is approximated with the ensemble spread.
xb denotes the ensemble mean.

B ' Be = (xb − xb)(xb − xb)T (4.15)

The computation of the background error covariance matrix is free, but the
cost of running a large ensemble has to be taken into account.

One of the main challenges of the EnKF is to perturb the ensemble. The
goal is to perturb each ensemble member at the beginning of the assimila-
tion window to produce a realistic spread, hence uncertainty, in the back-
ground field. The simplest way is to give the members random perturba-
tions with a certain distribution. For soil moisture, which is limited to the
dynamic range of the available water, certain thresholds have to constrain
the perturbations. Another problem is that the ensemble collapses during
the assimilation window. This can happen when the forcing is dominating
the state relative to the initial perturbations, e.g. during heavy rainfall. Be-
cause the atmosphere is the most uncertain and in some cases dominating
driver of the system, perturbation could be added to the forcing, instead or
together with perturbations in the soil parameters (Fairbairn et al., 2015).
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Part II

Methods and Implementation
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Chapter 5

The Surface Model SURFEX

FIGURE 5.1: Schematics of the SURFEX model. http://
www.umr-cnrm.fr/surfex/

SURFEX is a full surface-atmosphere interaction model, developed by Centre
National de Recherches Météorologiques (CNRM). SURFEX is designed to
run coupled with an atmospheric model, inline, but can also run decou-
pled, an offline run. There is no interaction between grid cells, hence single
point simulations are possible. For these reasons SURFEX is computation-
ally affordable to run. The model offers a variety of options for carbon cycle,
aerosol, snow, and vegetation to mention a few (Le Moigne, 2012).

The SURFEX model serves as the surface scheme in the operational
NWP model AROME in the HIgh Resolution Limited Area Model (HIRLAM)
Aire Limitée Adaptation Dynamique Développement International (ALADIN)
Research on Mesoscale Operational NWP in Europe (HARMONIE) fore-
casting system (Bengtsson et al., 2017), making it an obvious choice in this
study. SURFEX also has the option to use advanced soil physics with the
ISBA-DIF scheme. ISBA-DIF represents the ground with multiple, 14 by
default, layers. Energy transport between layers is described with the dif-
fusion equation, and water transport by Richards equation. This is a more
physical approach than the older force restore method.

5.1 Model Structure and Equations

A SURFEX grid cell is split into four tiles: nature, town, lake, and ocean.
Separate schemes handle these tiles individually, and a weighted mean of
the energy fluxes etc., is calculated at the end of the simulation time step.
We will be focusing on the nature tile, solved with the ISBA model. A grid

http://www.umr-cnrm.fr/surfex/
http://www.umr-cnrm.fr/surfex/
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cell, 2.5×2.5 km, is most likely to contain multiple vegetation types, land us-
age, and soil properties. Rather than averaging the properties of the differ-
ent cover types and then calculating the energy balance for the nature tile, it
is possible to calculate the energy transports for each cover type (patch) in-
dividually and then averaging the fluxes at the end. Because each patch has
its own energy budget, the number of offline simulations is multiplied with
the number of patches, plus the assimilation has to be done for each patch.
Using multiple patches will thus dramatically increase the computational
load. Another problem is how to apportion one soil moisture observation
from the satellite to multiple patches. Only one patch is thus used in this
work.

A detailed description of the model is found in Le Moigne (2012). An
option to the diffusive approach is the force restore (FR), a simpler scheme
than ISBA-DIF. The surface and soil are represented with three layers, sur-
face, root zone, and deep soil. It is thus cheaper to run than the diffusion
version with 14 layers. Currently the FR is implemented in the operational
forecasting system in Scandinavia. The ISBA-DIF is used in this work, be-
cause of the better agreement between soil moisture variables and satellite
product, model soil water content 1-4 cm and 0-5 cm respectively.

The prognostic variables of interest in this study, soil temperature and
soil moisture are described with equations (5.1) and (5.2).

ch
∂Tg
∂t

= λ
∂2Tg
∂z2

+ Φ (5.1)

∂wl
∂t

= −∂F
∂z
− Φ

Lfρw
− Sl
ρw

(5.2)

here ch is the total heat capacity, Tg is the soil temperature, λ is the thermal
conductivity, Φ is a latent heat source/sink resulting from phase transfor-
mation of soil water.

wl is the volumetric liquid soil water content.F is the vertical flow rate,
Lf is the latent heat of fusion, ρw is the density of liquid water, Sl is a
source/sink of evapotranspiration and lateral inflow.

The soil temperature, Eq.(5.1), is solved with a backward differences
implicit time scheme, and the water content, Eq.(5.2), is solved with the
Crank-Nicolson scheme (Le Moigne, 2012).
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Chapter 6

Observations

6.1 SMOS and SMAP

Soil moisture has crucial role in the earth system and has gained interest
in many fields of earth science over the years (Seneviratne et al., 2013;
Jaeger and Seneviratne, 2011; Koster et al., 2011; Weisheimer et al., 2011;
Seneviratne et al., 2010; Koster et al., 2004; Koster, 2004; Beljaars et al.,
1996). Recently two satellite missions dedicated to soil moisture have been
launched. The SMOS (2009), and SMAP (2015), both operating in the L-
band (1-2 GHz), aim to provide global soil moisture retrieval for the top
∼5 cm of the soil, with a resolution of about 30 km, an uncertainty below
0.04 m3 m−3, and a revisit time of 3 days.

SMOS and SMAP are in sun-synchronous polar orbits. They both pass
the equator 6am and 6pm local time, but in opposite modes. SMOS is
ascending at the 6am pass, where SMAP is descending. In the retrieval
of soil moisture, it is preferred to assume that soil surface and vegetation
have the same temperature, and that the soil temperature profile is uni-
form. These conditions usually occur in the morning around 6 am, hence
sun-synchronous orbit is suitable. A phenomenon called Faraday rotation,
which is rotation of the polarization plane of electromagnetic waves due
to a magnetic field, can disturb the signal and impair the soil moisture re-
trieval. The effect of Faraday rotation is minimized in the morning (ONeill
et al., 2015). The sun-synchronous orbit also has the benefit that the satellite
always receives solar radiation, which can supply the unit with power.

The level 3 products used in this study, SMOS form Centre Aval de
Traitement des Données SMOS (CATDS) (Jacquette et al., 2010) and SMAP
from National Snow and Ice Data Center (NSIDC) (ONeill, 2016), are re-
trieved with a physical approach. A forward radiative transfer (RT) model,
like the Community Microwave Emission Modeling Platform (CMEM) (De
Rosnay et al., 2009) or the Land Parameter Retrieval Model (LPRM) (Schalie
et al., 2016). translates the state, atmosphere, vegetation and soil moisture
etc. into radiation equivalent to what the sensor receives at the top of the
atmosphere. By an iterative process, these parameters are tuned to min-
imize a cost function, the distance to the observed signal, and thus find
the best value for the soil moisture. The forward model requires static and
dynamic input data. Static fields, constant in time, include soil texture, veg-
etation cover and topography. These data sets come from ancillary sources
including Food and Agricultural Organization (United nations) (FAO) soil
sand and clay database (Batjes, 1997) and ECOCLIMAP (Le Moigne, 2012)
for vegetation types and land use data. Meteorological, dynamic, data are
obtained from the global NWP models ECMWF and Global Modeling and
Assimilation Office (GMAO) for SMOS and SMAP respectively.
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The fully detailed retrieval algorithm of SMOS is described in Kerr et al.
(2012).

In addition to the passive sensor, SMAP is equipped with an active unit,
a radar. The radar measurements should have provided soil moisture re-
trievals at much finer resolution than the radiometer, 3 by 3 km and 30 by
30 km respectively. A composite product with a resolution of 9 by 9 km
was also planned. Unfortunately the radar stopped working already a few
months after launch, (Cole and Buis, 2015), but the passive instrument still
provides retrievals to days date. The retrieval algorithm for SMAP is de-
scribed in the algorithm theoretical basis document (ATBD) (ONeill et al.,
2015).

6.2 Scaling Observations

L-band soil moisture products represent the first few cm of the soil, 5 cm
is often used as a measure. However, the penetration depth is dependent
on the texture of the soil, the vegetation cover, and the soil moisture itself.
Using the satellite product directly to represent a certain variable in a model
is thus not appropriate. The level 2 and 3 soil moisture products are, as
described above, calculated with the use of some surface model, different
from the model being used in this study. Bias is expected and the data need
preprocessing.

In this study, a linear re-scaling method, Eq. (6.1), is applied to the satel-
lite data prior to the simulation. The goal is to have a set of observations
w′obs with the same climatology as the model. SURFEX is run, with no as-
similation, for the extent of the experiment period, and model mean wmod
and standard deviation σmod are used to normalize the original satellite data
wobs.

w′obs = (wobs − wobs)
σmod
σobs

+ wmod (6.1)

Where wobs and σobs are the satellite mean and standard deviation respec-
tively. This corresponds the first modes of the cumulative density func-
tion (CDF). If a sufficient amount of data is available, multiple years (Re-
ichle, 2004), a full CDF matching can be an alternative to the linear version.
The time span of the experiments in this thesis is to short and the linear
approach is most suitable.

The seasonal variation is assumed to be negligible during the summer
months (JJA), and a constant mean is used for the entire period. Alter-
natively one can use a moving average to account for the seasonal varia-
tions. The mean and standard deviation are calculated individually for each
model grid cell. Only time points where satellite observations are available,
for the specific location, are used. A minimum of 15 data points during the
three month period is required for each grid cell, cells with fewer are re-
moved.

Since the resolution of the satellites is much coarser than in the model,
the nearest neighboring satellite observation is used. No smoothing is per-
formed, and neighboring model grid cells are assigned the same satellite
observation. After the scaling, variations of soil properties will lead to dif-
ferent climatology and thus different soil moisture values in neighboring
cells.
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Chapter 7

SURFEX Offline Data
Assimilation

SURFEX has the option for DA, also for offline simulations. This system is
called SODA. The methods currently implemented are Optimal interpola-
tion (OI), EKF, and EnKF in different versions. In SURFEX v8.0 used in this
work, the following variables can be used as observations: 2 meter temper-
ature (T2M), 2 meter relative humidity (HU2M), superficial soil moisture
(WG1) and leaf area index (LAI). The possible control variables are: super-
ficial soil temperature (TG1), Root zone temperature (TG2), WG1 (as above)
and root zone soil moisture (WG2).

The observable variables 2 meter temperature and relative humidity are
diagnostic variables in SURFEX.

7.1 The Extended Kalman Filter

The implementation of the EKF in SODA is described in Le Moigne (2012),
and covered briefly below.

7.1.1 The Linearized Observation Operator

Assuming linear behavior during the assimilation window, a finite differ-
ence approximation provides the linearized version, H, of the observation
operatorH.

Hij =
∂yi

∂xj
(7.1)

ISBA is propagated from time t0 to t1, n + 1 times where n is the length of
the control vector. Each simulation is given a small perturbation to one of
the control variables, except the control. ∂xj corresponds to the initial jth
perturbation and ∂yi corresponds to the ith control variable after a model
run. The sensitivity of the observed variable to a small perturbation of an-
other variable is calculated, and is used when giving weight to each of the
control variables.

7.1.2 The Background Error Covariance Matrix

Except for the initial run, where B is prescribed, the background error co-
variance matrix B is propagated from the previous analysis according to
Eq. (4.11). The state is propagated xt1

b = M(xt0
a ) where M is the ISBA
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model, and B is updated by

Bt1 = MAt0MT + Q, (7.2)

where M is the Jacobian to M, At0 = (I − KH)Bt0 is the analysis error
covariance matrix, and Q is a model error covariance matrix.

Draper, Mahfouf, and Walker (2009) have found that using a SEKF,
where the B matrix is constant in time and purely diagonal will produce
similar useful increments as with an evolving background error covariance
matrix. Due to its simpler implementation and lighter computational load,
it has become popular in land DA, (Mahfouf et al., 2009; Barbu et al., 2011;
De Rosnay et al., 2013; Barbu et al., 2014; Fairbairn et al., 2015; Albergel
et al., 2017) and will also be the practice in this study. There are also some
issues in the implementation of the evolving B matrix, where singular ma-
trices cause the program to crash. To avoid singular matrices, a constraint
is currently set on the Jacobian to not exceed the range −0.1-1 . As this
constraint was implemented to avoid program failure, the latest version of
SURFEX (v8.1) the limitation of Jacobian values are removed, and new con-
straint is set on analysis increments (Albergel and Munier, 2017).

7.1.3 Modifications

The valid observation and control variables listed above are outdated with
regard to the ISBA-DIF model. The ISBA force restore scheme only has two
soil layers with water content, whereas the diffusion version has up to 14.
In the diffusion version, the first and second soil layer cover the first 4 cm of
the soil, where in the force restore version they cover the entire root zone.
The control vector thus has to be increased in order to include root zone soil
layers in the ISBA-DIF version.

SURFEX v.8.0 has in this study been modified to use soil water content
in all seven first upper soil layers (WG1-7) as possible control variables,
reaching to a depth of 80 cm below the surface. To have the best correspon-
dence with L-band satellite products, observation of water content in the
second soil layer, 1-4 cm (WG2), is also included as an option.

In the latest version of SURFEX, v8.1 released during this work, similar
changes are included to make DA with ISBA-DIF possible.

7.2 Background Errors

The result of a DA is directly dependent on the prescribed observation and
background/forecast errors. These values usually have to be tuned to the
specific system and set up (Desroziers and Ivanov, 2001), and they cannot
be tuned separately. In studies, with SEKF, Balsamo et al. (2007), Mahfouf
et al. (2009) and Draper, Mahfouf, and Walker (2011), the background error
is set to 0.1-0.2 times the dynamic range (wsat − wwilt). However, all the
above studies used the force restore version of ISBA with only 2 soil lay-
ers, whereas in this study the ISBA-DIF scheme, with 7 control variables, is
used. Albergel et al. (2017) used the ISBA-DIF model in a similar DA study
and prescribed a background standard deviation of 0.04 for the second layer
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soil moisture WG2 and 0.02 for deeper layers. Despite that the experimen-
tal setup is different, these values for background error are adopted in this
study.

7.3 Error Diagnostics and Observation Errors

A method to diagnose the consistency of the DA system is described in
in Desroziers et al. (2005), making use of innovations, observation minus
forecast (O-F), dob , and residuals observation minus analysis (O-A), doa. By
manipulating Eq. (4.6) the following relations are obtained. The innovation,

dob ' εo −Hεb (7.3)

and the associated covariance below. Note that the errors are assumed to
be uncorrelated,

E[dob(d
o
b)
T ] = R + HBHT (7.4)

where E denotes the expected value. The residual (O-A) can be written,

doa = R(HBHT + R)−1dob , (7.5)

and its covariance to the innovation,

E[doa(d
o
b)
T ] = R(HBHT + R)−1E[dob(d

o
b)
T ] = R (7.6)

Innovations do
b and residuals do

a are available after the simulation and we
can diagnose the consistency of our system.

(σ̃o)2 =

N∑
i

(yoi − yai )(yoi − ybi )
N

(7.7)

This method is also applied to tune the observation error. After a simu-
lation is performed, Eq. (7.7) is evaluated, then (σ̃o)2 is divided with the
prescribed observation error. The result is called the chi-squared parame-
ter, χ2, and has value of unity for a consistent DA system. If χ2 > 1 after the
first simulation, we choose a larger observation error, and vice versa. When
a second simulation is performed, a new χ2 is obtained, and a method of
choice for finding roots can be used to approximate a new observation er-
ror. The system is non-linear and multiple iterations might be necessary to
obtain the acquired consistency, χ2 ≈ 1.
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Experimental Setup

8.1 Location
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FIGURE 8.1: Left panel shows the domain of AROME-
MetCoOp (red) and local SURFEX experiment (blue). Right
panel shows the experiment domain with topography. The
experiment domain size is 111x111 grid cells, each cell is
2.5km by 2.5km. The axes show the fractional grid num-
ber where 0 corresponds to the first grid cell, starting in the
south west corner (7.73E 58.49N), and 1 corresponds to the
last (111th) grid cell in each direction, that is 111× 2.5 km =
277.5 km in each direction toward the north east corner

(12.65E 60.96N)

Norway has a high coast to land area ratio and the weather is heavily influ-
enced by the ocean and systems approaching from the west. However, high
mountain areas stretching from south to north separate the country with
respect to the weather. The eastern side of the mountains has relatively
flat topography and large agricultural areas. These are favorable condi-
tions for L-band radiometry for soil moisture retrievals covered in Sect. 3.4.
The domain selected for this study is thus on the east side of the mountain
ridge, covering south-east Norway shown in Fig. 8.1. The domain is on a
Lambert conformal projection with the reference longitude and latitude at
10.1 deg and 59.75 deg respectively, to best match the forcing from AROME-
MetCoOp. The domain has a south-west corner at (7.73E 58.49N) and a
north-east corner at (12.65E 60.96N), each grid cell has size 2.5km by 2.5km
as the forcing data.
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8.2 Time Period

The quality of soil moisture retrievals from L-band radiometry is reduced
when the soil is frozen or snow is present on the ground (Kerr et al., 2012).
These weaknesses make Norway a difficult area to fully utilize soil mois-
ture satellites. To minimize frozen soil and snow cover, the three summer
months JJA are selected for this study. Further, since data from both SMOS
and SMAP were available from 2016 and this study started that year, simu-
lations were thus done with data from 2016.

Figure 8.2 shows difference between monthly averages from 2016 and
the monthly normal (upper panels) and the anomalies plotted against each
other in lower panel. In the lower panel, the first quadrant is wet and warm,
second is dry and warm, third is cold and dry, and fourth is cold and wet.
Precipitation is shown in percentage and temperature in degrees. 2016 was
close to a normal year especially in June, July was wetter, and August was
warmer and drier than the normal for the selected stations. Only Kise, Flisa,
Kongsberg, and Aurskog have rain gauges.
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FIGURE 8.2: A) Precipitation anomalies for a selection of
stations, B) Temperature anomalies C) temperature vs. pre-

cipitation anomalies for June, July, and August.
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8.3 Physiography Data

SURFEX requires physiography data (PGD), used to initialize and run the
model. In this study, the database used for land cover types is ECOCLIMAP-
II (Le Moigne, 2012), which has a spatial resolution of 1km with a global
coverage. Different soil texture databases provide the required fields for
SURFEX, including Harmonized World Soil Database (HWSD) and FAO.
In the operational forecasting model AROME-MetCoOp and in the SMOS
retrieval model, clay and sand fields are taken from the FAO database.
HWSD is a newer and more detailed data set. However, it has some un-
wanted features, note the contrast along the border between Sweden and
Norway indicated in Fig. 8.3. The FAO data set is chosen in this study, to
be as consistent as possible with the forcing data.
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FIGURE 8.3: Clay fractions from FAO data set (left) and
HWSD (right) indicate different patterns in detail between

fields.

8.4 Initialization

In this study, SURFEX is allowed to spin up for one month ahead of the
experiment start to allow the model states to adapt to the forcing. The
model is initialized with default SURFEX initialization values for tempera-
tures and soil moisture. Snow cover and amount are set by default to zero.
Ideally the model should be run from late summer the previous year to ac-
cumulate snow during the winter, and then melt it in the spring. To save
simulation time, the spin up starts 1st of May where most of the snow is
gone. Fig.8.4 show the domain average and standard deviation of soil tem-
perature and moisture for the experiment period including the spin up in
front. The experiment begins around 750 hours (one month). The figure
indicates that the top 5 to 6 layers have lost most of their memory of the
initial conditions with regard to the soil moisture. However, since the deep
layers (8-10) have increasing soil moisture content throughout the period,
water continually flows downwards, and the model has not really found its
steady state. The spin up is assumed to be sufficient for this study.
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FIGURE 8.4: Time series of domain mean (left) and stan-
dard deviation (right) soil moisture (top) and soil tempera-
ture (bottom) in all model layers from 1st of May to 1st of
September 2016. WG1 (blue) corresponds to the superficial
soil layer, and WG14 (red) to the bottom soil layer at 12 me-
ter. Note that soil moisture is only calculated down to the
tenth layer, which signals the bottom of the root zone. The

experiment start after one month, about 750 hours.

8.5 Forcing

The ground is affected by the atmosphere in multiple ways, such as precip-
itation, downward radiation, both long and short wave, and other energy
fluxes described in Ch. 2. When SURFEX is decoupled from an atmospheric
model, it needs input from the atmosphere, forcing. In this work, atmo-
spheric input is obtained from AROME MetCoOp. The forcing consist of
variables at lowest model level, which are needed by SURFEX as boundary
conditions. Input variables required by SURFEX are: atmospheric temper-
ature, pressure and specific humidity, rain and snow fall, wind speed and
direction, long-wave, direct and diffuse shortwave radiation and flux of
CO2.
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8.6 Experiments

The offline simulation used to spin up the model state throughout May,
continued to September 1st. No DA is performed and the simulation is
used as a control in this study. Two simulations with DA are performed, one
with observations from SMOS and one with observations from the SMAP
satellite. All three runs use the same forcing. The assimilation window of
the two DA experiments is 6 hours.

name DA obs. obs. error
open loop - - -
sekf_smos SEKF SMOS 0.042
sekf_smap SEKF SMAP 0.032

TABLE 8.1: List of experiments
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Part III

Results and Discussion
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Chapter 9

Model Performance

9.1 Validation of Open Loop

The control simulation, open loop, is driven purely by forcing from oper-
ational AROME-MetCoOp data. Comparing variables from these two will
reveal differences introduced by the different surface schemes, ISBA-DIF
and force restore, and different initialization.

Fig. 9.1 shows an over all good correlation for both soil temperature and
superficial soil moisture except in some mountain areas. Total root mean
square difference (RMSD) is 2.7 K for soil temperature, and 0.04 m3 m−3 for
soil moisture. The most probable cause for the larger RMSD of temperature
in the western mountain regions, is the poor initialization of snow in the
open loop. Nevertheless, we observe that the same area has relatively low
RMSD in soil moisture. The mountain areas in west, where the operational
model is likely to have snow cover in parts of the experiment period, a
warm bias exist for the open loop. Snow reflects more of the incoming
solar radiation, and increases the heating of ground and air. A wet bias is
observed over the whole domain reaching as high as 10-20 % of the dynamic
range.

Similar characteristics are found in Fig. 9.2 for diagnostic variables. Open
loop 2 meter temperature (T2M) and specific humidity (Q2M) are in very
good agreement with the operational model. Improper initialization of
snow is also shown in the screen level variables with warm temperature
and moist humidity bias.
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FIGURE 9.1: Comparison of prognostic variables. Open
loop simulation with ISBA-DIF and operational AROME-
MetCoOp with force restore. superficial soil temperature
TG1 (left) and superficial soil moisture WG1 (right). Up-
per panels show correlation coefficient, middle panels show
RMSD, and lower panels show mean open loop minus

mean AROME. map axes as Fig. 8.1.
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FIGURE 9.2: Comparison of diagnostic variables. Open
loop simulation with ISBA-DIF and operational AROME-
MetCoOp with. 2 meter temperature T2M (left) and specific

humidity (right)

Taylor diagrams presented in Fig. 9.3, show that the operational forecast
and the open loop perform very close compared to in situ stations. The
operational model has more variability, for both air temperature and rela-
tive humidity, and slightly better root mean square error (RMSE). Over all,
AROME-MetCoOp has better performance than the open loop. Since the
open loop is forced with atmospheric input from the operational model, the
full potential of the more advanced surface scheme will be suppressed and
it is prevented from evolving naturally. The reduced variability of the open
loop could be evidence of this. In episodes of possible feedback processes
between surface and atmosphere, it is clear that a coupled model system
will have an advantage.
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FIGURE 9.3: Taylor diagram: Reference observation (2 me-
ter temperature (left) and 2 meter relative humidity (right))
is located on the x-axis (1,0). Distance from origin indicates
the normalized standard deviation of the signal, azimuthal
angle is related to the correlation coefficient, and distance

from the observation represents the RMSE of the model.

9.2 Spatial and Temporal Structures of Soil Moisture

Soil moisture and soil parameters in general, have a large spatial variabil-
ity (Crow et al., 2012). This heterogeneity has many scales and vary with
location. The heterogeneity is dependent on precipitation patterns, vegeta-
tion, soil texture, and topography. The spatial resolution of soil parameters
are limited in numerical models. Data sets used in this work have spatial
resolution of 1 kilometer, and an average over multiple cells are used in the
model with 2.5 kilometer resolution. The averaged values could provide
sufficient detail to calculate a energy balance for a grid cell of the same size.
Nevertheless, the true variation within a grid cell could be large. Satellite
products, with about an order of magnitude larger pixels, will not capture
every feature in the model.

Following Korres, Reichenau, and Schneider (2013), scaling analysis is
performed to reveal how the spatial soil moisture pattern in the model
changes through up-scaling. The spatial auto-correlation is calculated first
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for the original grid, then a new grid is created by averaging 2 by 2 cells
into a new cell reducing the resolution. This process is continued several
times to investigate who information is gradually lost. The spatial auto-
correlation coefficient used is the Moran’s I, formulated in Eq. (9.1), where
only neighboring cells are used. The index provides information about how
the values are distributed in relation to other values. A value of 1 indicates
that all high values are grouped together and low values are grouped to-
gether, zero indicates random horizontal distribution and -1 indicates that
the values are evenly distributed, or dispersed. This method should deter-
mine to what degree satellite products with coarse resolution can capture
patterns we also find on finer NWP scales.

I =
N

W

∑
i

∑
j wij(xi − x)(xj − x)∑

i(xi − x)2
(9.1)

N is the number of points counted by i and j, W is the sum of wij , where
w is a weight matrix, which is 0 for all values except neighboring cells with
the weight 1 in this study. x is the average of all values x.

Passive satellite soil moisture L-band retrieval products have, as de-
scribed in Ch. 3, a horizontal resolution of about 30 km. NWP models have
typical spatial resolutions of 10-20 km for global models, and below 3 km
for local area models. The fine resolution of local models is crucial to re-
solve small scale processes with potentially large impact on society, like
convective precipitation. Chen and Avissar (1994) found that horizontal
heterogeneity in soil moisture caused circulations that lead to convective
cloud formation. In Fig. 9.4, the soil moisture anomaly at August 23rd dur-
ing the experiment is shown together with the same field upscaled mul-
tiple times. The lower right panel has a grid resolution of approximately
36 km, which corresponds to the resolution of the SMAP satellite product.
The wet anomaly south-west and dry anomalies south-east and north-west
are traceable, but significantly weakened. The soil moisture heterogene-
ity in Chen and Avissar (1994) was 75 km wide, at this scale the anomalies
shown in the middle row in Fig. 9.4 are still pronounced, but some areas
have deviating values, e.g. at (0.4, 0.3), close to Larvik a dry anomaly is
no longer traceable. The corresponding satellite anomalies are shown in
Fig. 9.5, where some of the features are recognizable.
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FIGURE 9.4: Aggregated grid, soil moisture anomaly at Au-
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FIGURE 9.5: Observation anomalies for the same time as
Fig. 9.4, SMOS (left) and SMAP (right).
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9.3 Computational Cost

SURFEX is a relatively cheap model to run, specifically in offline mode.
Testing of model setup early in this study, point simulations were per-
formed locally on a laptop. However a post processing cluster at the Nor-
wegian meteorological institute was used for simulations over a domain.
Both EKF and EnKF require multiple offline simulations to perform an
analysis. The EKF needs one run for each control variable plus a control
and the EnKF needs an ensemble. Such a computing problem is called
embarrassingly parallel 1, which mean that no extra development is needed
to run the simulation in parallel. Table 9.1 shows computation time in
three different computation setups, for the left and mid column, the en-
semble/perturbations are run in a sequence. The right column run the en-
semble parallel, making the simulation several times faster.

single processor 16 proc sequential ens. 4 proc per sim. parallelized ens.
15min 3min 1min

TABLE 9.1: Example of time usage for 6 hour forecast with
analysis SEKF with seven control variables (8 offline runs)

for 12321 data points

1https://en.wikipedia.org/wiki/Embarrassingly_parallel
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Observations

10.1 Quality of Satellite Data

10.1.1 Comparison Against an In Situ Network

In validation of soil moisture satellite retrievals, comparison with direct
measurements of the quantity under study is a natural first approach. The
main problem with this method is that a remote observation cover a large
area, whereas an in situ measurement is only representative for a small
area around it, see Sect. 3.3. If multiple observation stations are spread
out in an area, local variations can be canceled out by taking a mean value
over these stations. The station mean should be closer to what the satel-
lite observes. No multistation soil moisture network exist in Norway. The
closest multistation network with data for the experiment period is located
in Sodankylä, in northern Finland. Sixteen stations with multiple sensors
measure soil moisture at different depths. Measurements from these sta-
tions at 5 cm depth are plotted together with soil moisture retrievals from
SMOS and SMAP in Fig. 10.1. Morning retrieval (am) and evening (pm)
are plotted separately to reveal differences. SMOS data are almost absent
and the correlation coefficients, shown in Fig. 10.2 are not statistical signifi-
cant. SMAP data has, with only one retrieval missing, values every day and
agrees well with the in situ measurements. On average over all stations, am
and pm SMAP retrievals have a correlation coefficient of 0.42, and 0.47 re-
spectively, and above 0.8 for certain stations, shown in Fig. 10.2. Note that
the satellite data used in this comparison are not screened in any way, all
provided data are used. The satellite data are not normalized to fit the in
situ observations, and a bias of about 0.1 m3 m−3 is found.
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FIGURE 10.1: FMI Sodankylä soil moisture network JJA
2016: Time series showing bias between stations and satel-
lite soil moisture values. 6 am values are used from in situ
stations in the upper panels, and values at 6 pm are used in

the lower panels.
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FIGURE 10.2: FMI Sodankylä soil moisture network JJA
2016: Correlation coefficients between satellite retrieval
from SMOS, and SMAP and In situ soil moisture at 5 cm,
in situ measurements at 6 am and 6 pm are used for corre-
sponding satellite retrievals. 6 am retrievals (light colors)

and 6 pm (darker colors).

10.1.2 Quality Flags and Screening Procedures

Level 3 soil moisture products from SMOS and SMAP come with informa-
tion about the retrieval. In the SMOS data output, a retrieval data quality
index (DQX) is included, this is the product of the standard deviations of
the retrieval uncertainty, and a measure of the amount of radio frequency
interference (RFI). SMAP has a similar value, which is Estimated ’1-sigma’
error of the soil moisture output parameter. Both of these values have the unit
m3 m−3. Unfortunately, the SMAP soil moisture error variable was missing
from the data used in this study.

In addition, retrieval flags are included that provide information about
surface conditions, weather, and landscape, during the retrieval time that
could reduce the quality of the retrieval. If a pixel has frozen soil, is covered
with snow, contain high fraction of open water or strong topography, the
retrieval is usually skipped (Kerr et al., 2012). However, the data sets could
still contain data of varying quality, and a screening procedure to remove
unreliable values has to be performed.

When evaluating the satellite data, the distribution of soil moisture can
provide a good overview of the data quality. The soil moisture retrievals
are provided in m3 m−3, hence the values should lie within the dynamic
range described in Sect. 2.2.1. The dynamic range used as reference in the
following, is taken from SURFEX and may vary from the model used in the
retrieval.

The histogram of retrieved values during the experiment period, JJA
2016, shown in Fig. 10.3, reveals a high frequency of a few soil moisture
values. For SMAP, 90% of these observations were flagged with The retrieval
for this algorithm was attempted but failed. These soil moisture values are also
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above the maximum porosity of the SURFEX domain, and are considered
unreliable.
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FIGURE 10.3: Distribution soil moisture values before (top)
and after (bottom) modification (clean-up) SMOS (left)

SMAP (right)

For the SMOS data, a clustering toward zero is found, and a large amount
of values equal to zero. Figure 10.4 shows the provided soil moisture DQX
(low values are better) plotted versus soil moisture. We notice a dozen val-
ues with low quality close to zero, and a general decrease in quality with
increasing soil moisture. Good quality values are also found close to zero,
but since the spread of the quality is so large compared to values within
the dynamic range (blue lines), and the fact that these values are almost
zero, below hygroscopic water content thus unphysical, these are consid-
ered unreliable. Regarding the values above the higher limit, water content
at saturation, despite low reliability, they are few in number and will not
influence the distribution when normalizing to model climate.
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FIGURE 10.4: SMOS DQX vs soil moisture, horizontal
(red) line indicates the mission goal of 0.04 m3 m−3, vertical
(blue) lines indicates the mean dynamic range of SURFEX

(wsat-wwilt) in the domain

In De Lannoy and Reichle (2016) a number of requirements are set to the
quality of SMOS data to be used. For the domain of the experiments in this
thesis, in the certain time period, setting these requirements will leave no
values left for the assimilation in most parts of the domain. Figure 10.5
shows a histogram of the observations after each step of the screening,
and a heat map of observations that are left after the screening is shown
in Fig. 10.6a.

Wrona et al. (2017) conclude that the SMAP soil moisture product should
be used with extreme caution over high latitudes, and that the Equal Area
Scalable Earth-2 (EASE-2) grid interpolation of the product is responsible
for faulty values. The SMAP and SMOS soil moisture products are interpo-
lated on the global EASE-2 grid, which has a cylindrical projection. A cylin-
drical projection is not very suitable for high latitudes as it distort shapes
significantly.

Jeu et al. (2012) found that SMOS provide low soil moisture values over
northern regions compared to retrievals from the active sensors Advanced
Microwave Scanning Radiometer for EOS (AMSR-E) and Advanced SCAT-
terometer (ASCAT). No explanation was concluded, and they encourage
further investigation. However, the results presented in Fig. 10.1a and
Fig. 10.3a, coincides with their findings of a dry bias.
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FIGURE 10.5: Histogram of SMOS data after each step in
the screening process proposed by De Lannoy and Reichle

(2016).

The SMAP data output has a quality parameter, that contains a flag for rec-
ommended quality. Figure 10.6b shows number of retrievals with recom-
mended quality during JJA 2016. Only 2.3 % of the SMAP retrievals have
the flag for recommended quality. All recommended values are located
within a few pixels in high mountain areas.
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FIGURE 10.6: Number of observations during JJA 2016:
heatmap of SMOS soil moisture retrievals after screening
following De Lannoy and Reichle (2016)(A), heatmap of

SMAP pixels with recommended quality(B).

In this study, for both satellites, values that appear a relatively large amount
of times, 450 and 1000 times for SMOS and SMAP respectively, are removed
from the data set prior to the normalization process described in Sect. 6.2.
This approach ensures that the distribution of observations after the nor-
malization is of similar shape to the SURFEX control. The number of obser-
vations after the screening procedure is shown in Fig. 10.7. Large parts of
the domain, have no observation throughout the experiment period.
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FIGURE 10.7: Number of observations from each satellite,
SMOS(left) and SMAP (right) during JJA 2016 used in ex-

periments.

The second row of Fig. 10.3, shows the distribution of satellite soil moisture
values after the quality control. The soil moisture values outside the dy-
namical range of available water are intentionally not removed, because of
the sparse data coverage.

Fig. 10.8 shows the consequence of removing the data with respect to
the mean retrieval, where the SMAP data is modified significantly. SMOS
is over all less affected. Fig. 10.8 also indicate a large bias between the two
satellites.

Taking the average of the DQX values of all soil moisture retrievals from
SMOS, after the screening, later used in the experiment, results in a value
of 0.055 m3 m−3, higher than the mission goal of 0.04 m3 m−3.
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FIGURE 10.8: Mean raw SMOS and SMAP soil moisture
(top) and mean modified SMOS and SMAP soil moisture

(bottom).
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10.2 Comparison with Open Loop

A similar evaluation of data done in Ch. 9, is done for satellite products after
the modifications described in Sect. 10.1.2. Satellite soil moisture data are
compared with the open loop simulation, and results are shown in Fig. 10.9.
The upper panel, showing correlation coefficients, indicates that SMOS data
are over all weakly negative correlated. SMAP data are more spread, but
have some areas with positive correlation. Pixels with high negative or pos-
itive correlations, have a low number of observations and have no signifi-
cant result, indicated in Fig. 10.7. SMAP has a relatively large wet bias for
the whole domain. SMOS has both positive and negative bias depending
on the location. Since areas with no data cover also are white, use Fig. 10.7
as a reference to identify these.
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FIGURE 10.9: Comparison of satellite soil moisture prod-
ucts, SMOS (left) and SMAP (right), with open loop. Up-
per panels show correlation coefficient, middle panels show
RMSD, and lower panels show bias. The modified data sets

are used in this figure
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Figure 10.10 shows satellite data plotted against the model control for all
grid cells during JJA. Satellite retrievals and the open loop model simula-
tion show no sign of correlation.

(A) (B)

FIGURE 10.10: Satellite vs. model soil moisture, SMOS left
and SMAP right.

10.3 Scaling Observations

After quality control is performed, the normalization method described in
Sect. 6.2 is applied to the data. The resulting soil moisture distributions
are shown in Fig. 10.11 where the model climate is included together with
the results. We notice that the width of the distribution is reduced from
0.6 m3 m−3 and 0.4 m3 m−3 to about 0.2 m3 m−3 for SMOS and SMAP re-
spectively. Rather than removing unphysical values from the data, they are
assumed to be representative for their respective extreme and normaliza-
tion will redistribute them within the dynamical range. Normalizing the
data in this manner, will reduce the variance and thus the amplitude of
random errors.

The blue line in Fig. 10.11a indicates that the model values used in
the normalization of SMOS are representative for the total model climate.
The normalized satellite data are skewed slightly to the dry side of the
model, this is caused by the skewed distribution of the raw satellite re-
trievals shown in Fig. 10.3c. The model soil moisture values used to scale
SMAP retrievals (blue line in Fig. 10.11b) differ from the total model distri-
bution, shifting to wetter values. Even though the satellite data are evenly
distributed (Fig. 10.3d), the slightly wetter model values cause the normal-
ized satellite data to also be shifted.

The number of possible observations is the number of grid cells times
the number of satellite overpasses, 111×111×184 = 2.3×106. The number
of observations after cleaning and normalization is 6.3 × 105 and 6.9 × 105

for SMOS and SMAP respectively, which is about 30 % of the total possible
amount.
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FIGURE 10.11: Distributions of soil moisture from SMOS
(left) and SMAP (right) after normalization to model cli-
mate. Black line shows the SURFEX (SFX) distribution for
the entire domain for every time step, blue lines indicate
model values with a corresponding observation from the
satellite used in the normalization, and red line is the scaled

observations later used in the assimilation.

The wet shift in model values of SMAP retrievals, suggests that the retrieval
algorithm fail to provide soil moisture values in dry conditions. The num-
ber of observations for each overpass is plotted in Fig. 10.12, which show
that SMAP is relatively consistent compared to SMOS, which varies to a
larger degree. During the beginning of August, SMOS has a minimum of
retrievals per overpass. Figure 8.4 shows that this was a relatively wet pe-
riod. If SMOS fail to retrieve soil moisture in wet soil conditions, this could
explain the dry shift in Fig. 10.3c.
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FIGURE 10.12: Number of observations from SMOS (solid
red line) and SMAP (dashed blue line) within the domain
at each overpass, 7 day moving average. Every grid cell
in the model domain with an observation is counted, one
satellite pixel can thus contribute to multiple observations

in the domain.
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Chapter 11

SURFEX offline data
assimilation

11.1 Residuals and Innovations

A simple method to verify that the DA system is working, is to compare the
residuals to the innovations (Barbu et al., 2011; Albergel et al., 2017). The
residual is defined as the difference between observation and analysis (O-
A). Innovation is the observation minus the forecast (O-F). The reason for
doing DA is to reduce the distance between model and observation, thus
should the residuals be closer to zero than the innovations.

Histograms of residuals, and innovations are shown in Fig. 11.1. The
residuals have a sharper distribution than the innovations, the analyses are
thus closer to the observations than the forecasts. This indicates a working
DA system. For both SMOS and SMAP the distributions are close to sym-
metric around zero, which is expected due to the normalized satellite data.
However, the efficiency of the analysis is related to the difference between
the innovation and the residual, which is slightly larger on the positive side,
that is when the satellite observation is wetter than the model.

In Kalman theory the errors are assumed to be normally distributed, the
distribution of innovations should thus also be normal. Following Fairbairn
et al. (2015), we compare the the distribution of innovations with a Gaus-
sian curve with same standard deviation, shown with blue line in Fig. 11.1.
The innovations are in fairly good agreement with the normal distribution,
except that they are slightly sharper, especially SMOS.
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FIGURE 11.1: Distribution of residuals (O-A) and innova-
tions (O-F) from DA with observations from SMOS(left) and
SMAP respectively, blue line indicates the normal distribu-

tion with standard deviation equal to innovations.

11.2 Observation Errors

The χ2-test presented in Sect. 7.3, resulted in consistent DA systems with
observation errors of 0.042 m3 m−3 and 0.032 m3 m−3 for SMOS and SMAP
respectively. Both satellite missions aim at an uncertainty below 0.04 m3 m−3,
the obtained observation errors are thus in the right area. In Ch. 10, the
satellite data are found to be of questionable quality. However, through nor-
malization, compressing the range including the noise, these values could
represent larger errors of the original data.

11.3 The Linearized Observation Operator

The diagnostics described above, only cover the observation and the model
equivalent, soil moisture at 1-4 cm depth, and not the analysis of the other
control variables. In a SEKF the Jacobian H, is what provides weight to the
control variables. This needs to be investigated in detail. Water transport
in the soil is a slow process compared to the fast changes in weather and
atmospheric conditions. During a 6 hour time window, the atmospheric
forcing will only reach to a certain depth of the ground. Further, the 1-4 cm
depth, will have limited communication with deeper layers.

In the light of DA it is thus a maximum depth, of which it is appropriate
to make an analysis based on an observation in the top layer. Figure 11.2
shows the Jacobians for each control variable, soil moisture from 0-80 cm.

Since clay and sand fractions are important parameters for the transport
of soil moisture as described in Sect. 2.2.2, pixels of high clay fraction (left)
and high sand fraction (right) are thus included in the figure to clarify the
differences. The values on the y-axis are the change of soil moisture con-
tent in layer 2 with respect to a perturbation in the ith control variable. A
perturbation in layer 6 or 7, 40-60 cm and 60-80 cm, does not introduce a sig-
nificant change in the observed layer, 1-4 cm, during a 6 hour assimilation
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window. The sensitivity due to a perturbation in layer 5, 20-40 cm, is de-
pendent on the soil texture, but in both cases it is relatively small compared
to layer 2-4.

As layer 3, 4-10 cm, is quite similar in both soil texture regimes, layer 4,
10-20 cm, and the observed layer have the largest differences. The top sur-
face layer, 0-1 cm, has low sensibility in both cases, this is because the layer
is more affected by the atmospheric forcing than a small perturbation dur-
ing a 6 hour assimilation window. Using a 24 hour assimilation window,
Albergel et al. (2017) did not include the surface layer in the DA.

Being familiar with the physical processes of water transport in the soil,
and expecting that there is a maximum depth, of which a perturbation will
affect the observed layer during the assimilation window, Fig. 11.2 indicates
that the Jacobian of the observation operator is calculated correctly, and
that the implementation of additional control variables is done properly.
Furthermore, the figure suggest that layer 6, 7, and most likely 1, can be
removed from the control vector. This means that the number of perturbed
simulations can be halved, and computational cost reduced.
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FIGURE 11.2: Jacobian H for a grid cell rich in clay (left) and
sand (sand) respectively. The distribution of Jacobians are
similar for both simulations regardless of satellite product.

The SEKF assimilation scheme adjust the weights according to the physical
conditions in the specific case when the analysis is made, the spread of the
Jacobians, for each control variable, in Fig. 11.2 is an evidence of this. Fig-
ure 11.3 shows the Jacobians for wet and dry events. In Fig. 11.4 the sensi-
tivity, Jacobian, is plotted against soil moisture. The figures reveal that each
soil layer have different dependencies to the observed layer with respect to
soil moisture. The observed layer is most sensitive to perturbations in the
same layer when the soil is dry. Perturbations in deeper layers influence
the observed layer most in wet conditions.
In wet conditions, that is when the model is wet, satellite observations are
more likely to be drier than the model. Claiming this is justified with the
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uncorrelated, random behavior of satellite data shown in Fig. 10.10. Incre-
ments in layers below 10 cm are thus likely to be negative, and water is
removed. For dry soil conditions observations are likely to be wetter and
since the upper layers now have large Jacobians, water is added to these
layers.
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FIGURE 11.3: Jacobian H for wet (mean=0.278) (left) and
dry (mean=0.129) (right) conditions (in the observed layer)

In Fig. 11.4 the components (control variables WG2, WG3, WG4) of the lin-
earized observation operator are plotted against soil moisture content in the
observed layer. Each control variable have a different soil moisture value,
in which gives a maximum change in the observed layer. The maximum is
shifted toward wetter values with increasing depth of the control variable.
The differences due to soil texture are better illustrated in Fig. 11.2.
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FIGURE 11.4: Jacobian vs WG2 (soil moisture in observed
layer) for grid cells with high clay (left) and sand (right)
fraction, for soil layers 2 (top), 3 (middle), and 4 (bottom)

11.4 Mean Increments

Mean increments relative to the mean absolute value of the increments for
each control variable are shown in Fig. 11.5 and 11.6. The figures confirms
the claim from the previous section. The three upper layers (0-10 cm) have
a positive (wet) mean increment, and the lower 4 layers (10-80 cm) have
a negative (dry) mean increment. Mean absolute increments are plotted
in Fig. 11.7 on a logarithmic y-scale. Strong colors in Fig. 11.5 and 11.6
indicate an over represented sign of the increments. Most pronounced are
increments in layer 1, 2, and 5.
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FIGURE 11.5: Mean increments relative to the mean abso-
lute value of increments for sekf_smos (left) and sekf_smap

(right), layer 1, 2, and 3
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FIGURE 11.6: Same as Fig. 11.6, for layer 4, 5, 6, and 7



66 Chapter 11. SURFEX offline data assimilation

●

●

●
●

●

●

●

1 3 5 7
1e

−
06

1e
−

04
1e

−
02 Mean abs increment

soil layer

m
ea

n 
ab

s 
in

c

● SMAP
SMOS

FIGURE 11.7: Mean absolute value of increments for each
control variable, log y-axis

In total, for all points, throughout the three months, the means of all in-
crements are 0.36× 10−3 m3 m−3 for sekf_smos and 0.34× 10−3 m3 m−3 for
sekf_smap. The mean of all innovations has opposite sign in the two exper-
iments, with−0.46× 10−3 m3 m−3 in sekf_smos and 0.20× 10−3 m3 m−3 for
sekf_smap. In the sekf_smos experiment, the satellite is over all drier than
the model, however, in total more water is added.

The results in Fig. 11.2, Fig. 11.5, and 11.6 are similar to what Albergel
et al. (2017) presented in their Table 2, and Figure 5 respectively, regardless
of different observations, domain, and time period. Model set up is rela-
tively similar in this and their study, and the tendency to add water in up-
per layers and remove water in deeper layers, is caused by the same model
physics. If the satellite data had good correlation with the model, and the
amplitude was larger, so that innovations changed signs in extreme condi-
tions, the result would be different. Otherwise, satellite observations seem
to pull the model toward the mean value, reducing extremes.
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Chapter 12

Forecast Improvements

The reason for doing DA is to obtain the best estimate of the state under
study. In NWP this means bringing the model closer to the true state of
the system, which again should improve the forecast skill. As discussed in
Ch. 11, the assimilation works in the sense that it brings the model closer
to the normalized satellite observations. Is this closer to the true state, and
does the increments of this magnitude improve the forecast? These are dif-
ficult questions to answer, since no detailed in situ observation network of
soil moisture exist for the area. To fully evaluate the possible improvements
of the forecast, simulations coupled with an atmospheric model should be
studied for a number of different scenarios. In the following chapter, the
available tools are used to investigate to what extent the DA of satellite soil
moisture, can improve the forecast with respect to temperature and humid-
ity.

12.1 Comparison Against Screen Level Observations

No atmospheric model is used in this study, mainly because of limited time.
However, SURFEX calculates screen level variables, 2 meter temperature
and humidity, as diagnostic variables. These variables are standard quanti-
ties measured at in situ stations. Note that these values are not updated in
SODA, and changes in them are caused by soil moisture increments. Model
results are compared with observations from a selection of stations shown
in Fig. 8.1. By comparing model simulations with and without DA of satel-
lite data, we can investigate if the screen level variables are closer or not
to the observations, and thus get an indication of a possible improvement.
Since SURFEX is run offline, an increased water vapor flux from the ground
to the atmosphere will not change the atmospheric conditions in the next
forecast. Differences in screen level variables, are thus solely local effects
due to surface conditions.

In Fig. 12.1 the relative RMSE, RMSErel, of 2 meter temperature, see
Eq. (12.1), is plotted versus the RMSD between the SEKF-run and the open
loop. The relative RMSE is the relative improvement done with DA with
respect to in situ measurements of temperature. For all stations and with
both satellites, the model simulations with DA of soil moisture have a small
improvement in 2 meter temperature, on the order of 0.1-1 percent relative
to the open loop. The number of observation stations used is very small
compared to the large domain, and the result might not be statistically sig-
nificant.
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RMSErel =
RMSEda −RMSEol

RMSEol
(12.1)

RMSEda is the RMSE of the SEKF-run and RMSEol is the RMSE of the
open loop to observations.
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FIGURE 12.1: Upper panels show relative RMSE (be-
tween simulation and observations) vs. RMSD between
SEKF_SMOS (left), SEKF_SMAP (right) and open loop. Dis-
tribution of RMSD between DA-runs and open loop is

shown in lower right panel.

In the operational forecast produced at MetCoOp, screen level observations
of temperature and humidity are used in the land surface DA. A horizontal
interpolation is done to the station data with the Code d’Analyze Néces-
saire à Action de Recherche Petite Echelle Grande Echelle (ARPEGE) pour
ses Rejets et son Initiali-zation (CANARI) tool (Taillefer, 2002). These obser-
vations are then used to update soil moisture and soil temperature (Müller
et al., 2017). OI is the DA method. Compared to EKF, OI does not calculate
the linearized observation operator. Instead a constant relation between the
observed variable and the control variable is used.
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Even though the RMSE of 2 meter temperature is barely improved over the
whole experiment period, the impact of soil moisture increments can be
more pronounced in specific cases.

To identify cases where soil moisture plays an important role for screen
level anomalies, time series are plotted in Fig. 12.2 for the two grid cells
with the maximum, positive and negative, temperature difference between
SEKF-runs and open loop. We observe that both plots have a maximum in
the beginning of the simulation. In the warm case, Fig. 12.2b, no observa-
tion is available before July, hence SEKF_SMAP and open loop are equal
to this point. Both points are located in the mountains and snow could be
an explanation for the large differences. Remember that there is no snow
present in the model, because of the short spin up and inadequate initial-
ization of snow. Nevertheless, the maximum in the warm case, shown in
Fig. 12.2b, coincides with a warm anomaly for the other location, about
54 km away, shown in Fig. 12.2a. The relative difference in soil moisture
for the same locations (Fig. 12.2c and 12.2d) indicates a negative correlation
between soil moisture and temperature, which is expected since a larger
portion of the available energy is used to evaporate water and less to heat
surface and air. The lower panel shows the relative difference in specific
humidity with as much as 60% in the cold case (left).
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FIGURE 12.2: Difference (sekf_smos - open loop) between
SEKF_SMAP and open loop at the grid cells with largest
negative (left), and largest positive (right) difference in the
domain. 2 meter temperature [K] (top) and soil moisture
[%] at 1-4 cm (middle), and relative difference [%] in specific

humidity (bottom)
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12.2 Surface Fluxes

Surface fluxes calculated by the surface scheme, act as boundary conditions
for the atmosphere. Changes in these, induced by soil moisture increments,
are thus important to identify. Figure 12.3 shows changes induced in com-
ponents of the energy balance, due to differences in soil moisture between
sekf_smos and open loop simulations.
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FIGURE 12.3: Change in surface energy balance due to soil
moisture changes: Fnet is net radiation, Hs sensible heat

flux, LE latent heat flux, and Gs is ground heat flux.

Added water leads to less heating of the surface. This leads to increased net
radiation as the outgoing component is reduced, and a decrease of sensible
heat flux. Latent heat flux is then increased, as more water and energy
is available for evaporation. Note that latent and sensible heat fluxes are
negatively correlated, and an order of magnitude larger compared to the
other components. The ground flux has no clear dependency, but shows
a reduction for large positive soil moisture differences. As higher water
contents reduce the heating, thus decrease ground flux, they also increase
the thermal conductivity resulting in an increased ground flux. The two
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opposing effects are indicated in the figure with both positive and negative
correlations. The wet differences with a reduced ground flux coincides with
dry soil moisture content (not shown), this implies that the effect of reduced
heating of the surface dominate in dry conditions. Anyhow, most impact of
soil moisture increments is found in latent and sensible heat fluxes.

RMSD for latent and sensible heat flux between DA and open loop-run
are shown in Fig. 12.4. The RMSD range up to 30 W m−2, which is approx-
imately 30% of the mean latent heat flux. As shown above, soil moisture
increments have highest impact on latent and sensible heat flux. Further-
more, these vary opposite to each other and thus affecting the Bowen ratio.
Decreased Bowen ratio, causes a colder, moister, and shallower planetary
boundary layer, increasing cloud formation and reducing incoming short
wave radiation (Jaeger and Seneviratne, 2011). The adjustment of the en-
ergy and mass fluxes will not affect the state of the atmosphere in offline
simulations, but could change the characteristics of the planetary bound-
ary layer and down stream effects in an coupled experiment.
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(C) SEKF_SMOS - open loop
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(D) SEKF_SMAP - open loop

FIGURE 12.4: Root mean square difference of sensible (top)
and latent (bottom) heat flux [W m−2] between SEKF-run

and open loop
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Summary and Conclusions

Soil moisture is a crucial component of the hydrological cycle, and the land
surface energy balance. As it is important for the partitioning of available
energy into sensible and latent heat flux, it influences temperature and hu-
midity, locally, and potentially downstream. Accurate initialization and
evolution of soil moisture are thus important in NWP on both short and
long time scales (De Rosnay et al., 2014; Balsamo et al., 2014; Hurk et al.,
2012; Weisheimer et al., 2011; Jaeger and Seneviratne, 2011; Koster et al.,
2011; Hurk, Ettema, and Viterbo, 2008; Drusch and Viterbo, 2007; Koster
et al., 2004; Koster, 2004; Douville et al., 2000).

The SURFEX land surface model is set up in an offline environment with
atmospheric input from the operational NWP model AROME-MetCoOp.
The simulations cover south-eastern Norway, during the summer 2016. The
advanced multilayer diffusive scheme ISBA-DIF is used to provide detailed
soil moisture and temperature profiles.

Daily level 3 soil moisture products from the SMOS and SMAP satel-
lites are evaluated and interpolated onto the model grid. The observations
are quality controlled, then normalized to model climate using a linear re
scaling method.

To investigate the impact of soil moisture analyses, experiments include
one control simulation without DA, open loop, and two simulations with
DA using a SEKF and observations from the two satellites SMOS and SMAP.
Tuning is performed to the observation errors, obtaining a consistent DA
system.

In this study, SODA is optimized for DA of satellite soil moisture re-
trievals in conjunction with the ISBA-DIF scheme. An option to use soil
moisture in the 1-4 cm layer as observed variable is added to represent satel-
lite products valid at few centimeters. The control vector is extended to
make analysis for soil moisture in the top seven layers, ranging to 80 cm
below surface, to cover most of the root zone. The DA system is verified by
investigating the linearized observation operator and analysis increments.

The impact of soil moisture increments is validated through comparison
with the open loop, the operational model, and in situ measurements of
screen level variables.

Good agreement is found between the open loop and the operational
forecast in prognostic variables, superficial soil temperature and moisture,
and diagnostic variables at screen level, temperature and humidity. Com-
pared to in situ observations for eight stations, the operational model has
slightly better performance with respect to air temperature and relative hu-
midity.
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The satellite retrievals, do not describe soil moisture content over the do-
main well. The data have poor spatial coverage, noisy signal, and unre-
alistically high and low values. Dry bias in the SMOS data product is a
known problem at high latitudes, (Jeu et al., 2012), the same problem is
found in this study. Screening procedures suggested in De Lannoy and Re-
ichle (2016), flag most of the available retrievals and leave few left for the
DA. In this work, retrievals of poor or questionable quality are, however,
used. The only criterion is that the distribution of the normalized observa-
tions, is similar to that of the model.

Verification of the modifications in SODA is done by investigating the
linearized observation operator and its values for the extended control vec-
tor. Decaying dependency between the observed layer and layers of in-
creasing depth is found, similar to results in Albergel et al. (2017), with
similar modifications to SODA. Further investigation of the linearized ob-
servation operator shows that observations are weighted more in the up-
per layers in dry conditions, and deeper layers in wet conditions. Since the
satellite observations are noisy and uncorrelated with the model, observa-
tions are more likely to be drier when the model is wet, and wetter when
model is dry. This results in over all added water to the top 10 cm, and
removed water in the layers below, during the experiment period.

Mean increments are compared to results in Draper, Mahfouf, and Walker
(2011) and Albergel et al. (2017), and similar results are found as in the lat-
ter. In the former study, the force restore model with two layers is used
instead of the diffusion version, and the sum of increments in the root zone
was dependent on the observations used. Unless observations are corre-
lated and have larger amplitude than the model, the mean increments will
be distributed as in the results of this thesis. This is due to the linearized ob-
servation operator, directly mimicking the model physics of the ISBA-DIF.

Comparison of screen level variables for a selection of stations, shows
small but consistent improvement in 2 meter temperature for the whole pe-
riod. The amount of retrievals, surface parameters, and weather conditions
presents large variations in analysis increments and impact on screen level
variables. It is thus possible that more significant improvements were made
in periods, and locations with no available in situ measurement. Since the
simulations are decoupled from an atmospheric model, down stream ef-
fects of soil moisture increments are not described. However, soil moisture
increments are able to induce large changes in surface fluxes of latent and
sensible heat, primarily affecting the Bowen ratio.
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Outlook

To avoid influence from the surface model used in the satellite soil moisture
retrieval, one can assimilate brightness temperature directly, instead of soil
moisture (De Lannoy and Reichle, 2016). By using a RT-model in combina-
tion with a land model, a more consistent system should be obtained. More
observations should be possible to retrieve, when the state of the surface is
better known with respect to ice, snow and land cover types.

Using an EKF with evolving B-matrix, will be very likely to produce
a different distribution of increments through the soil profile, compared
to the SEKF. Draper, Mahfouf, and Walker (2009) find that the EKF pro-
duces larger maximum and minimum values of increments, compared to
the simplified analysis. Testing the EKF with an evolving background error
covariance matrix, in conjunction with the ISBA-DIF, is a natural way of
continuing the work in this thesis.

Compared to the EKF, ensemble based Kalman filters can account for
errors in the forcing as well the model soil state. Choosing perturbations
is a challenge and requires attention. However, ensemble forecasting sys-
tems, such as MetCoOp Ensemble Prediction System (MEPS), already pro-
duces ten members operationally, which can be used as forcing for offline
experiments. The EnKF is in thus a candidate for future development of
operational land DA.

Running SURFEX offline, constrain the full potential of soil moisture
analyses, with respect to improving weather forecasts, as energy fluxes do
not change the atmospheric state. Effects down stream of a soil moisture in-
crement, must thus be investigated through a coupled surface atmosphere
model system, which require much more computational power than what
is used in this study. Investigation of soil moisture perturbations in an at-
mospheric model, can reveal the impact of increments of different magni-
tudes. Coupled experiments are encouraged in future studies.

Static surface and soil parameters, like clay and sand fractions, have
significant effect on the soil moisture transport and dynamic range. The
static fields used for soil texture in this study and in the operational sur-
face scheme, lack the desired level of detail, and have room for improve-
ment. Gathering better data could significantly improve the soil state in
the model. A Short time Augmented EKF (STAEKF), used to add correc-
tions to surface model parameters along with state increments has shown
promising results (Carrassi et al., 2012). This method can in principle pro-
duce more realistic fields of static parameters, if the parameterizations are
good, and further remove bias of e.g. soil moisture in the model.
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List of Abbreviations

ALADIN Aire Limitée Adaptation Dynamique Développement Interna-
tional

AMSR-E Advanced Microwave Scanning Radiometer for EOS

AROME Applications of Research to Operations at MEsoscale

ARPEGE Action de Recherche Petite Echelle Grande Echelle

ASCAT Advanced SCATterometer

ATBD algorithm theoretical basis document

BLUE Best Linear Unbiased Estimate

CANARI Code d’Analyze Nécessaire à ARPEGE pour ses Rejets et son
Initiali-zation

CATDS Centre Aval de Traitement des Données SMOS

CDF cumulative density function

CMEM Community Microwave Emission Modeling Platform

CNRM Centre National de Recherches Météorologiques

DA data assimilation

DIF DIFfusion

DQX data quality index

EASE-2 Equal Area Scalable Earth-2

ECMWF European Centre for Medium-Range Weather Forecasts

EnKF Ensemble Kalman Filter

EKF Extended Kalman Filter

FAO Food and Agricultural Organization (United nations)

FR force restore

GMAO Global Modeling and Assimilation Office

HARMONIE HIRLAM ALADIN Research on Mesoscale Operational NWP
in Europe

HIRLAM HIgh Resolution Limited Area Model

HWSD Harmonized World Soil Database
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ISBA Interaction Sol-Biosphère-Atmosphère

ISMN International Soil Moisture Network

JJA June, July, August

KF Kalman filter

LPRM Land Parameter Retrieval Model

MetCoOp Meteorological Co-operation on Operational NWP

MEPS MetCoOp Ensemble Prediction System

NSIDC National Snow and Ice Data Center

NWP numerical weather prediction

OI Optimal interpolation

PGD physiography data

RFI radio frequency interference

RMSD root mean square difference

RMSE root mean square error

RT radiative transfer

SEKF simplified extended Kalman filter

SMAP Soil Moisture Active Passive

SMOS Soil Moisture and Ocean Salinity

SODA SURFEX Offline Data Assimilation

STAEKF Short time Augmented EKF

SURFEX SURFace EXternalisée
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