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Abstract

The thesis quantifies the peak ground acceleration (PGA) required to cause large

rock avalanches in the western rangefront of the Southern Alps in New Zealand,

which will improve understanding of the hazard posed by co-seismic landslides

in the West Coast region.

During an earthquake, ground motion can destabilize both man-made and

natural structures. The Alpine Fault, which runs along the western edge of the

Southern Alps and forms part of the boundary between the Australian and Pacific

Plates, is a seismically active fault which appears to be in the late phase of its

earthquake cycle, and a major earthquake (Mw≥ 8) is expected in the near future.

Seismic events are known to cause landslides in many regions of the world and

are thought to be responsible for a series of large rock avalanches in New Zealand.

Since large earthquake-triggered landslides often have anomalously long runouts

and can induce tertiary hazards through dam breaking and subsequent flooding,

they have substantial hazard potential.

The thesis quantifies the strength of PGA required to trigger large rock

avalanches in the western rangefront of the Southern Alps, using published

data on two particular potentially co-seismic landslides: The Round Top rock

avalanche, and the Cascade rock avalanche.

Newmark’s sliding block model, a permanent-displacement analysis which

models a landslide as a rigid block sliding down an inclined plane, is, with

some modifications introduced in this work, used to estimate the strength of

PGA required to initiate these landslides. 2D static slope stability analyses are

conducted using 9m and 15m resolution DEMs of the landslides, providing

estimates of the Factor of Safety (the ratio between resisting and driving forces),

which is then used to estimate the required strength of PGA.
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The results show a median estimated lower-boundary PGA for the Cascade

rock avalanche of 0.85g, with a margin of error of -0.14/+0.15 (0.71g-1g). The

corresponding result for the Round Top rock avalanche is 0.92g, with a margin

of error of ±0.25 (0.67-1.17g). The predicted PGAs derived from these landslides

will be potentially useful for constraining scenario ground motions for future

Alpine Fault earthquakes.
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1 Background

1.1 Introduction

New Zealand straddles an active plate boundary; the convergence of the Pacific

and Australian Plates along the full length of the country has created a diverse

landscape that is geologically quite young and constantly changing.This rather

precarious position is also the source of one of the greatest hazards facing modern

New Zealand society. Earthquakes, and potentially earthquake-triggered geo-

hazards such as landsliding and tsunamis, regularly cause widespread damage

to life, infrastructure, and nature. Two examples of this are the 2011 MW 6.3

Christchurch and 2016 MW 7.8 Kaikoura earthquakes. The former caused severe

damage to Christchurch’s Central Business District (CBD) and surrounding ar-

eas, not least due to extensive liquefaction, leading to the deaths of 185 people.

The Kaikoura earthquake occurred in a more sparsely populated area, but caused

damage to houses and farmland, as well as to many structures in Wellington,

about 200 km from the epicentre. The shaking also wreaked havoc on the South

Island’s transport system. At the time of writing, the main highway and most of

the railway between Christchurch and Picton, where ferries connect to the North

Island, is still closed due to the massive amount of landslide material inundating

the road; it is scheduled for reopening in December 2017, a little over a year after

the earthquake.

Another place where New Zealand’s active tectonic environment is particu-

larly evident is in the Southern Alps in the South Island, where the Alpine Fault,

one of the major sections of the plate boundary, has uplifted the mountain range

by several thousand metres. The boundary is characterized by the sharp transi-

tion from the low-lying river plains of the Australian Plate, the footwall, to the
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1. Background 1.1. Introduction

high-relief mountains of the Pacific Plate, which forms the hanging wall. Since

its formation, possibly in the early Miocene (e.g. Rupert Sutherland, Davey, and

Beavan 2000), this 650 km-long, dextral strike-slip fault has accumulated a hor-

izontal offset of about 500 km. The fault accommodates 2-3 cm of slip per year

on average, but it is currently locked at shallow depths (R. Sutherland, Eberhart-

Phillips, et al. 2007). The recurrence interval is 291 ± 23 years, and the last rup-

ture occurred in 1717. That means that the fault is late in its earthquake cycle;

the estimated probability of rupture, expected to reach magnitudes of MW 7-8, is

29% within the next 50 years (Berryman, U. Cochran, et al. 2012; U.A. Cochran

et al. 2017; R. Sutherland, Eberhart-Phillips, et al. 2007). An earthquake of this

magnitude will have serious consequences for the areas affected, and many com-

munities on the West Coast are likely to become devastated and/or isolated. One

major hazard is the fault rupture itself, as horizontal movements of past earth-

quake have been shown to reach 8-9 metres (Berryman, Beanland, et al. 1992;

Cooper and J. Norris 1995), another is the expected widespread landsliding due

to the sharp-relief topography and tectonic weakening of the hanging wall.

However, the hazard posed by co-seismic landslides may be underappreci-

ated; for instance, the high rates of erosion, due to the large amounts of rain-

fall, may quickly erase markers of landslide occurrence.A typical feature of

earthquake-induced landslides is that they have long runouts (e.g. Barth 2014),

which increases their area of impact. Other properties include spatial density

increasing with increasing proximity to the rupture; and high, linear correlation

with peak ground acceleration (PGA; Meunier, Hovius, and Haines 2007).

There is much previous and ongoing research related to the Alpine Fault to

examine the properties and history of the fault, and the potential consequences

of a major rupture. Examples include the AF8 project, which is a multi-

disciplinary research group exploring the effects a great earthquake will have on

the community; the Deep Fault Drilling Project (DFDP), which involves drilling

into the fault to examine its properties (e.g. Townend 2009); and paleoseismic

investigations at Hokuri Creek near the south end of the fault, which has yielded

a record of Alpine Fault events going back 8000 years (Berryman, U. Cochran,

et al. 2012).
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1. Background 1.2. Landslide case studies

The strength of shaking produced by an Alpine Fault earthquake, which is

of major importance when it comes to the stability both of anthropogenic and

natural structures, is not well constrained, due to the lack of ruptures in modern

times. Computer simulations have been carried out by the National Seismic

Hazard Model (M. Stirling et al. 2012), and Bradley et al. (2017). However,

there are currently no geological constraints for these simulations. The aim of

this work is to estimate the minimum seismic accelerations required to cause

the catastrophic failure of two pre-historic landslides, the Cascade and Round

Top rock avalanches, both located in the immediate hanging wall on the western

rangefront of the Southern Alps. The study utilizes a modified version of the

Newmark model, a permanent-displacement analysis which models a landslide

as a block sliding on an inclined plane (Newmark 1965). Slope geometry and

the basal coefficient of friction control the critical acceleration, the threshold the

seismic acceleration must exceed in order to promote failure. This threshold

will serve as a lower-boundary estimate of Alpine Fault ground motion for the

studied areas.

1.2 Landslide case studies

Co-seismic landslide hazard has historically been underestimated on the West

Coast – erosion rates are high due to the large amount of rainfall, which quickly

removes traces of landslide activity, and some of the deposits that have not

disappeared (yet), including the two landslides used in this study, have been

misinterpreted as glacial deposits (e.g. Bell and Fraser 1906; R. Sutherland,

Nathan, and Turnbull 1995; Turner 1930; Warren 1967). The high erosion rates, as

well as the inaccessibility of many areas due to topography and thick vegetation,

means that it can be challenging to find features that may serve as records of past

earthquakes.

The two landslides used in this work, discussed in detail in Sections 1.2.1 and

1.2.2, were chosen because they are reasonably well preserved, dated to within

Alpine Fault events, exhibit properties indicative of an earthquake trigger, and

are located in near-field (<10 km from fault trace/rupture) areas at opposite ends
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1. Background 1.2. Landslide case studies

of the fault. Figure 1.1 shows the location of the landslides in the context of New

Zealand tectonics.

Figure 1.1: Map of New Zealand, showing plate boundary-related faults, onshore in black and

offshore in red. South of New Zealand, the Australian Plate subducts under the Pacific Plate.

To the north, the Pacific Plate dives underneath the Australian Plate. Locations of landslides are

shown as blue markers, Cascade to the south and Round Top to the north.

These landslides are also well-studied, thanks to the efforts of Nic Barth (2014)

and Craig Wright (1998), whose papers on the two landslides form the basis for

the next two sections.

1.2.1 The Cascade rock avalanche

The following paragraphs are based on work done by Barth (2014), unless

otherwise noted. The approx. 0.75 km3 Cascade rock avalanche, shown in Figure

1.2, is located in the Cascade Valley, near the south end of the Alpine Fault. The

source scarp is situated on the westward side of Martyr Spur, in the hanging wall

directly above the trace of the Alpine Fault. The deposit covers approx. 9.1 km2 of

the gently sloping (<1°) valley floor towards the northwest, with a runout length
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1. Background 1.2. Landslide case studies

of 5 km and drop height of 620 m (distance from top of scarp to distal edge of

deposit, and from top of scarp to lowest part of deposit, respectively). The fall

line – a line connecting the centres of gravity of the scarp and the deposit – is, at

315°, nearly perpendicular to the local strike of the fault trace at 055°.

Figure 1.2: Satellite image of the Cascade rock avalanche, with annotations, after Barth (2014). The

green line outlines the intersection between the sackung and remaining section; above this line,

scree outlines the dip direction of the sackung. Ridge rents are seen as dark, strike-parallel lines

along the top of the ridge. The yellow cross shows where the log used for dating the landslide

was found. Google Earth image.

The deposit contains three different lithologies, the most prominent being the

partly serpentinized peridotites of the Dun Mountain Ophiolite Belt, with oc-

currences of Brook Street Volcanic Group-derived mylonites from the immediate

12



1. Background 1.2. Landslide case studies

hanging wall damage zone, and Greenland Group metasediments from the foot-

wall. The deposit is fairly well preserved, apart from fluvial erosion by the Cas-

cade River at the north end, which may have decreased the observable volume

and runout to some degree, as well as at the base of the slope, where the river has

cut a steep gorge through the deposit. The morphology of the deposit, character-

ized by longitudinal ridges radiating at a spreading angle of 75° and decreasing

in height out from the base of the scarp, strongly suggests a single event, i.e. the

entire mass was deposited in a single landslide. The best date estimate for the

landslide is c. 660 (+104/–118) CE, based on the C-14 dating by Lee et al. (1983)

of a log entrained in the deposit. This estimate overlaps with the 642–727 CE Hk2

earthquake event recorded at Hokuri Creek. (Berryman, U. Cochran, et al. 2012).

The landslide appears to have, at least partially, failed along existing structural

weaknesses; the lower part of the slope lies within the damage zone of the

Alpine Fault, and the deep-seated scarp coincides with the most prominent of

several normal-sense scarps, in New Zealand termed ridge rents, lining the top

of Martyr Spur. This suggests that this deep-seated gravitational slope collapse

occurred along a sackung, an uphill-facing scarp often inferred to be generated

and reactivated by earthquakes. Sackungen (plural; single: sackung) are a

common feature throughout high-relief areas worldwide, including the Cascade

Valley and the rest of the Southern Alps, where they often occur as 60°-70°

dipping, ridge-parallel, uphill-facing scarps that can reach a length of more than

a kilometre (Barth 2014). The Cascade sackung is shown in Figure 1.3.

They form in various ways, but are often inferred to be the result of seismic

activity (e.g. Pasuto and Soldati 1996). They are also possible precursors of slope

failure (e.g. Korup 2005), seen on the surface as strike-parallel scarps occurring

near the top of mountain ridges.

The Cascade rock avalanche appears to have originally been part of a larger

slope section with a total volume of c. 3 km3; the remaining c. 2 km3 section,

which is adjacent to the scarp and could potentially fail in the future, has

slipped more than 100 m vertically along a sackung that in total is about 5

km long, from the northern end of the landslide scarp to the south end of the

remaining section. Figure 1.4 displays a modelled profile of Martyr Spur, based
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1. Background 1.2. Landslide case studies

Figure 1.3: Oblique view of the Cascade rock avalanche, after (2014). The Sackung and Intersection

arrows outline the visible part of the sackung above the remaining section. Google Earth image.

on field observations and aerial photos by Barth (2014), showing the internal

structure of the ridge. Barth (2014) suggests that the asymmetrical distribution

of the sackungen is due to topographic effects, as opposed to, for instance rock

anisotropy, as gravitational collapse is more likely to face the lower elevation

valley.

Sackungen have been associated with many other landslides, both elsewhere

in the Southern Alps (e.g. Korup 2005) and worldwide, for instance in connection

with slope failure caused by the 2008 MW7.9 Wenchuan earthquake (Chigira, Wu,

et al. 2010) and the 1999 MW7.6 Chi-Chi earthquake (Chigira, Wang, et al. 2003).
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1. Background 1.2. Landslide case studies

Figure 1.4: Modelled profile of Martyr Spur, after Barth (2014), showing how sackungen may

propagate through the ridge. Note elevation difference of the valleys on either side.

Fieldwork

One of the main parameters of the Newmark model is the coefficient of friction.

The peridotites in the Cascade area have been partly serpentinized, which poses

the question of which rock type to base the coefficient of friction on – dunite or

serpentinite. In the deposit, Barth (2014) observed abundant serpentinization,

with antigorite serpentine coating shears and other curviplanar features. In

order to estimate the degree of serpentinization of the source area, this author

undertook fieldwork on Martyr Spur. The fieldwork took place near the end of

January 2017, and had a duration of one day, excluding travel time to and from

Dunedin, Otago.

Even at the highest visited points of the ridge, at an elevation of c. 800 m,

rock outcrops were not observed; the rock is covered in scree in steep areas, and

scrub in gentler dipping areas. However, serpentinite was found to be abundant

in scree and creek beds, and as partly serpentinized, weathered dunite boulders.

As serpentinite starts controlling frictional and rheological properties at as little

as 10%-15% content (Escartín, Hirth, and Evans 2001), this work assumes that a

serpentinite (antigorite) coefficient of friction is appropriate.
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1. Background 1.2. Landslide case studies

1.2.2 The Round Top rock avalanche

This section is built on the study of Wright (1998), as well as Barth’s (2014)

comparison of this landslide with the Cascade rock avalanche. The approx. 0.045

km3 Round Top rock avalanche is situated 20 km south-southeast of Hokitika,

near the north end of the Alpine Fault. The deposit covers an area of about

5.6 km2, large parts of which have been reworked to be used as farmland. The

source is a 550 m high asymmetric scarp in the hillside of Round Top, a ridge

on the rangefront of the Southern Alps. Part the deposit has been alluvially

reworked post-failure, forming a fan covering the base of the scarp. The surface

of the talus fan is not crossed by any fault traces, suggesting that its reactivation

occurred after the last rupture. The landslide consists of schist-derived mylonite

and protomylonite. There is a smaller deposit immediately to the south-west;

Wright termed this the southern deposit, but it is unknown if it failed at the same

time as the main landslide. Figure 1.5 shows a Digital Elevation Model (DEM;

acquired from Westland District Council 2017) of the landslide and surrounding

areas, while Figure 1.2 shows a satellite image of the landslide.

The Round Top rock avalanche has many characteristics that are comparable

with those of its southern counterpart. The trace of the Alpine Fault runs directly

below the scarp; the runout and height-to-length ratio are similar, at 4800 m

and 0.119 respectively; the deposit morphology is characterized by longitudinal

ridges radiating out from the base of the scarp, with an estimated fall line of

334° (close to perpendicular to Alpine Fault trace at approx. 40°) and spreading

angle of 90°. This landslide has also spread out over a gently sloping (1-2°) river

plain without any major obstacles. Round Top is situated above a compressional

segment of the Alpine Fault, which is likely causing intense shearing within the

rock mass.

Yetton (1998) used C-14 dating on a log entrained in the deposit to produce

an estimate of 930 ± 50 CE for the failure of the Round Top rock avalanche.

Recalibration by Barth (2014) provided an estimate of 860 (+119/–95) CE, which

overlaps with Yetton’s estimate. Both estimates overlap with the Hk1 earthquake

event (714-934 CE) recorded at Hokuri Creek (Berryman, U. Cochran, et al. 2012).

Given Round Top’s asymmetry (the westward valley floor, where the
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1. Background 1.2. Landslide case studies

Figure 1.5: Digital Elevation Model of the Round Top rock avalanche.

landslide is located, has a lower elevation than the eastward one), close proximity

to the Alpine Fault, and the strike-parallel scarps running along the top of the

ridge adjacent to the major landslide scarp, Barth (2014) suggests that the failure

mechanism attributed to the Cascade rock avalanche is also applicable here

(Figure 1.4).
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1. Background 1.2. Landslide case studies

Figure 1.6: Satellite image of the Round Top Avalanche, oblique viewing angle. Google Earth

image.

18



2 Method

This chapter is divided into three sections. The first section introduces the

geomechanical landslide model underpinning the thesis, namely the Newmark

model, as well as a modified version created for this study to constrain the

threshold, near-field ground motions for great Alpine Fault earthquakes. The

second section details spatial analysis of the Cascade and Round Top rock

avalanches in ArcGIS, MATLAB and Leapfrog, a 3D-modelling software package

produced by ARANZ Geo. The third section deals with application of results

from the spatial analysis to estimation of the Factor of Safety (FoS, the ratio of

resisting to driving forces) and the critical acceleration.

2.1 The Newmark and Modified Newmark models

2.1.1 The Newmark model

The Newmark model is a permanent-displacement analysis which models a

landslide as a rigid block sliding down an inclined plane (Figure 2.1). It was

conceptualized by Nathan Newmark during his 1965 Rankine lecture (Newmark

1965). In order for the block to start moving as a result of earthquake ground

motion, the strength of shaking, expressed as peak ground acceleration (Jibson

2011), must exceed a critical value which depends on the Factor of Safety.

The simplest way to calculate the FoS, taking only gravity and resulting forces

into account, is

FoS =
µ~W cos(α)
~W sin(α)

(2.1)

where FoS is the Factor of Safety, ~W is the weight of the landslide in N, µ is the

19



2. Method 2.1. The Newmark and Modified Newmark models

Figure 2.1: Conceptual sketch of the Newmark model, where ac is the critical acceleration, a is

the seismic acceleration, and α is the slope angle. The double-headed arrow indicates that the

shaking is cyclic.

coefficient of friction, and α is the angle of the inclined plane. A simple equation

used to calculate the critical acceleration is

ac = (FoS− 1)g sin(α) (2.2)

where ac is the critical acceleration in m/s2 and g is the gravitational

acceleration in m/s2. A strong-motion record of the user’s choice is analysed

using the critical acceleration obtained from Equation 2.2. First, the part of the

record which falls above the acceleration threshold is integrated, resulting in

a record of velocity-time history. The duration of the latter will be different

from that of the former, because inertial forces keep the block moving after

the acceleration has decreased below the threshold. The velocity-time history

is integrated to obtain the displacement-time history. The significance of the

cumulative displacement, termed the Newmark displacement, must then be

determined by the user.

The Newmark model makes several assumptions to preserve its simplicity,
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2. Method 2.1. The Newmark and Modified Newmark models

the most important one being that the rheology of the block is presumed to be

rigid-plastic – the block does not move if the seismic acceleration is below the

critical threshold. When the threshold is exceeded, the block acts as a perfectly

plastic material, deforming at a constant stress level along a defined basal surface

with no internal deformation. The model also does not take vertical motion into

account; only the horizontal components are included in the analysis. Four other

assumptions are commonly imposed:

1. The critical acceleration is independent of strain (i.e. it is constant

throughout the entire analysis).

2. Upslope resistance to sliding is infinitely large; hence, movement in this

direction is prohibited.

3. The static and dynamic shear resistance are the same. Consequently, strain

hardening/softening (requiring increase or decrease of stress, respectively,

to keep accumulating strain during plastic deformation) is neglected.

4. The influence of dynamic pore fluid pressure is ignored.

The last assumption is a particularly important limitation on the Newmark

method, as dynamic pore fluid pressure can have a significant influence on the

cohesion and basal resistance of a potential landslide due to its ability to lower

effective stresses (total stress minus pore fluid pressure). The local permeability

will have strong influence on the pore fluid pressure, as low permeability will

limit the ability of fluids to percolate through the rock, while high permeability

will do the opposite. The model also does not take into account vertical ground

motion and frequency distribution. The limitations will be addressed in detail in

the Discussion chapter.

Both laboratory model tests (Goodman and H. Seed 1966; Wartman, Bray,

and R. Seed 2003; Wartman, R. Seed, and Bray 2005) and analyses of earthquake-

induced landslides (e.g. Wilson and Keefer 1983) show that the Newmark

model can yield accurate predictions of slope displacement, as long as soil/rock

properties, slope geometry and earthquake ground motions are well constrained.

The threshold for the critical displacement must, as stated at the beginning

of this section, be set by the user. The California Geological Survey (2008)
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2. Method 2.1. The Newmark and Modified Newmark models

has produced guidelines, valid for deep landslides (shallow landslides require

lower thresholds), which estimate that displacements of 0-15 cm carry low

probability of significant landslide events, 15-100 cm could potentially lead to

strength loss and resulting failure, and 100 cm and above corresponds to a

high probability of significant landslide movement. Serpentinite exhibits ductile

behaviour at low temperatures (Hirth and Guillot 2013), and may therefore be

able to accommodate more displacement than rocks which deform in a brittle

manner at the same temperature (Jibson 2011).

This part of the model will not be considered in this work due to time

limitations and difficulty finding earthquake records that would accurately

represent an Alpine Fault earthquake (similar magnitude, focal mechanism, PGA

levels, and with strong-motion records from near field areas). However, it

represents an opportunity for future work.

2.1.2 The Modified Newmark model

The simplicity of the Newmark model is both a strength and a weakness; it is

easy to apply, but may not accurately reflect real-world conditions and properties.

An important example of potential mismatch between reality and model is

slope geometry. Defining a single, pre-existing plane of failure for these large,

complex landslides produces a rather simplified version of reality; additionally,

post-failure erosion will have further complicated their geometry. While both

landslides appear to have failed along sackungen, these features are unlikely

to have propagated all the way to the bottom of their respective slopes, since

unstable slope sections remain post-failure. If the sackung had penetrated the

entire slope prior to failure, it is likely that the entire slope would have failed,

instead of only a part of it (Prof T Davies, personal communication, 19-20 October

2016). It is therefore likely that the seismic shaking caused the creation of a new

plane of failure extending from the tip of the sackung down to the base of the

slope, allowing catastrophic slope failure to occur.

Figure 2.2 shows the fall line profile of the Cascade rock avalanche with slope

angles.

The slope angle of the fall line profile decreases approximately midway down
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2. Method 2.1. The Newmark and Modified Newmark models

Figure 2.2: Fall line profile from the Cascade rock avalanche with slope angles. Profile height is

read along the left-hand y axis, slope angles along the right-hand y axis.

the scarp, and on satellite images of the remaining section the sackung can only

be traced partway down the slope (although it may be hidden by vegetation from

this point downwards; see Figure 1.3). This supports the notion that the landslide

dislodged itself from the sackung, and slid along a new lower-angle plane of

failure.

In conclusion, simply extending the modelled plane of failure all the way

to the bottom of the slope would result in underestimation of the critical

acceleration, as the seismic acceleration would have had to not only initiate

failure along the existing sackung, but it would most likely also have had to

extend the plane of failure to the bottom of the slope. For the present scarp

topography with its significant variations in slope angle, a single plane of failure

is a poor approximation of the landslide geometry.

To address this issue, some modification has been introduced to the Newmark

model for this study. Instead of a single plane of failure, I define two planes

(Davies 2016), as illustrated in Figure 2.3.

The sackung is represented by β, while α represents the lower plane of failure

connecting the sackung with the base of the slope. The dip of α is constrained

by the dip of the landslide fall line profile, illustrated in Figures 2.6 and 2.7 (Nic

Barth, personal communication, 21 March 2017). The addition of this lower-angle

plane results in a higher critical acceleration threshold than would be acquired

using the original, simple Newmark model with a single plane of failure defined
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2. Method 2.2. Spatial analysis

Figure 2.3: Concept illustration of the Modified Newmark model. α and β define the planes of

failure. The dotted surface of the block signifies that the model does not make assumptions about

the pre-failure surface geometry.

by a sackung. The new equation for the FoS is

FoS =
µW cos(α) + µW cos(β− α)

W sin(α)
(2.3)

where β is the upper slope (sackung), α is the lower slope, µ is the basal friction

coefficient, and W is the weight of the landslide in N. The equation for the critical

acceleration is the same as for the original Newmark model (Equation 2.2 in the

previous section).

2.2 Spatial analysis

In this section, I explain how the slope geometry of the Modified Newmark

model was estimated. Digital Elevation Models (DEMs) were acquired for both

landslides; for the Cascade rock avalanche, the University of Otago School of

Surveying’s 15m national DEM was used (Columbus, Sirguey, and Tenzer 2011),
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2. Method 2.2. Spatial analysis

while the smaller size and more complex geometry of the Round Top avalanche

warranted the use of a higher resolution DEM. A 9m DEM for the Kokatahi area

was acquired from the Westland District Council (2017). The landslides were

visualized in Leapfrog Geo (ARANZ Geo 2017) and ArcGIS. Profiles along of the

fall lines of both landslides were extracted in ArcGIS, and exported to MATLAB,

where the slope angle parameters and their margins of error were set based on

plots of the profiles (Figures 2.6 and 2.7; the source code for the MATLAB scripts

can be viewed in Appendices A and B). The results are shown in Table 2.1.

The Round Top avalanche has a more complex geometry compared to its

Cascade counterpart (Figures 2.4, 2.5, 2.6, and 2.7), as the base of the scarp is

covered by an alluvial fan, which made it difficult to determine the starting

point for the basal failure surface, represented by α. Some additional profiles

were extracted for this purpose, one immediately northeast of the scarp and two

further to the southwest, and the surface of the substrate was extrapolated from

outside the deposit, the idea being that the base of the slope is where the substrate

and slope profiles intersect (Figure 2.6).

The dip of the surface of the alluvial fan changes slightly (from 16° to 9°)

approximately halfway down (see fall line profile in Figure 2.6), suggesting a

change in the dip of the underlying slope. This feature, as well as examination

of the additional profiles, allowed a reasonable starting point of α to be chosen.

The additional profiles also served as approximations of the pre-failure slope for

estimation of the slope angle of α.

For the Cascade rock avalanche (Figures 2.5 and 2.7), the slope of α was set

parallel to the existing lower slope of the fall line profile. The margins of error

for both landslides were constrained by their geometry, which resulted in the

Cascade rock avalanche having a smaller margin of error because its H/L (the

centre of gravity height-to-length ratio; see Section 1.2.1) is only about 60% of

that of the Round Top avalanche. In essence this means that the Cascade rock

avalanche’s longer runout compared to scarp height provide the angles of the

margin of error with more space to spread out (for visualization, compare the x

axis lengths of Figures 2.7 and 2.6).

The friction parameter, µ, was taken from existing literature, with serpentinite
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2. Method 2.2. Spatial analysis

Figure 2.4: Profiles of the Round Top rock avalanche in map view, screenshot from ArcGIS. FL-

FL’ marks the fall line profile, NE-NE’ is the northeast profile, and SW1-SW1’ and SW2-SW2’ are

the southwest profiles. The markers A-A’ on the fall line profile show the length of the profile in

Figure 2.6. I’ll make the profile white if I have time.
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2. Method 2.2. Spatial analysis

Figure 2.5: Profile of the Cascade rock avalanche in map view, screenshot from ArcGIS. FL-FL’

marks the fall line profile.
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2. Method 2.2. Spatial analysis

Figure 2.6: Profiles of the Round Top rock avalanche, showing the topographic profiles from

Figure 2.4, and α and β with margins of error of ±5. A-A’ correspond to markers in Figure 2.4. α

is constrained by slope geometry. Sackungen (β) generally dip 60°-70° (??).
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2. Method 2.2. Spatial analysis

Figure 2.7: Profile of the Cascade rock avalanche, showing the fall line and α and β with margins

of error (±2.5 and±5 respectively). Note that α’s margin of error is half that of Round Top (Figure

2.6).
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2. Method 2.3. Calculating the Factor of Safety and the critical acceleration

(antigorite) values from Ikari, Marone, and Saffer (2011) used for the Cascade rock

avalanche due to the extensive alteration of peridotite in the area (Section 1.2.1).

Typical crustal values (Byerlee 1968) were used for the schist-derived mylonite of

Round Top.

Table 2.1: Variables with margins of error estimated during the spatial analysis.

Cascade rock avalanche Round Top rock avalanche

Variable α (in °) β (in °) µ α (in °) β (in °) µ

Minimum 6 60 0.6 5 60 0.6

Median 8.5 65 0.65 10 65 0.7

Maximum 11 70 0.7 15 70 0.8

2.3 Calculating the Factor of Safety and the critical

acceleration

The data obtained from the spatial analysis (Table 2.1) were used as inputs in

MATLAB in order to calculate the Factor of Safety and the critical acceleration ac,

utilizing equations 2.3 and 2.2 respectively. The source code for these scripts, one

for each landslide, can be found in Appendices C and D.

The independent variables, α, β, and µ, were varied one at a time according

to their respective margins of error (with the others set to their respective median

values) to examine each variable’s influence on the results. All variables were

then varied at the same time to estimate the margin of error of the Factor of

Safety and the critical acceleration. The outcome of the analysis is presented and

discussed in Chapters 3 and 4 respectively.
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3 Results

This chapter presents the results obtained from the modified Newmark analysis

– the Factor of Safety and critical acceleration estimates. Results for the Cascade

rock avalanche are shown in Figure 3.2 and Table 3.2, and corresponding results

for the Round Top rock avalanche are shown in Figure 3.1 and Table 3.1.

Direct and inverse proportionality, where discussed, is considered within the

limits (margins of error) of each variable. These terms are used for ease of

understanding rather than mathematical accuracy, as most of the equations used

here are not linear, but trigonometric functions with, mathematically speaking,

narrow limits which in most cases allow them to approximate linearity.

3.1 The Round Top rock avalanche

Figure 3.1a shows the model sensitivity for the Factor of Safety. Exact values

for the minimum, median and maximum are shown in the α, β, and µ columns

of Table 3.1. α has the largest influence on the result, displaying a non-linear,

inverse relationship with the FoS and producing both the largest and the smallest

estimate for this figure. β exhibits inverse proportionality and has limited

influence, with a total FoS range of only ± 0.25, while µ shows a slightly stronger

(relative to β), directly proportional relation, producing a range of nearly ± 1.

Figure 3.1b shows the model sensitivity for the critical acceleration. Exact

values for the minimum, median and maximum are shown in the α, β, and

µ columns of Table 3.1. α and β display a very similar, inverse relation, with

the steepest angles producing 0.87g in both cases, and the lowest 0.96g-0.97g.

Compared to the other variables, µ exhibits a stronger, direct proportionality,

with the highest value producing a critical acceleration estimate of >1g.
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3. Results 3.1. The Round Top rock avalanche

Figure 3.1c shows the estimated range of the Factor of Safety, calculated using

Equation 2.3 and combining the margins of error of all independent variables.

The first Total column in Table 3.1 contains minimum, median, and maximum

values. The result is strongly non-linear due to the influence of α, and the range

suggests that the slope was stable prior to the triggering event, as all values are

well above the FoS = 1 stable/unstable regime boundary.

Figure 3.1d shows the estimated range of the critical acceleration, calculated

using Equation 2.2 and combining the margins of error of the Factor of Safety and

α. The second Total column in Table 3.1 contains exact minimum, median, and

maximum values. The estimated range is approximately linear and generally

fairly high, with the lowest estimate at nearly 0.7g, a median of 0.92g, and the

highest estimates exceeding 1g. The range is equal to 0.92g ± 25g.

Table 3.1: Factor of Safety and critical acceleration estimates for the Round Top rock avalanche.

The α, β, and µ columns show minimum, median, and maximum estimates for the model

sensitivity, and the "Total" columns show the same data for the estimated ranges of the Factor

of Safety and the critical acceleration.

Factor of Safety Critical acceleration (g)

From figure 3.1a 3.1c 3.1b 3.1d

Variable α β µ Total α β µ Total

Minimum 12.02 6.56 5.38 3.57 0.96 0.97 0.76 0.66

Median 6.28 6.28 6.28 6.28 0.92 0.92 0.92 0.92

Maximum 4.35 5.99 7.18 14.41 0.87 0.87 1.07 1.17
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3. Results 3.1. The Round Top rock avalanche

(a) (b)

(c) (d)

Figure 3.1: Factor of Safety and critical acceleration estimates for the Round Top rock avalanche.

(a) Model sensitivity for the Factor of Safety. The rows on the x axis are colour coded to illustrate

which graph they represent/belong to. For each function, one variable changes and the other two

variables are constant and set at their median values, which are listed in the legend. The grey line

represents FoS = 1, the boundary between the stable and unstable regimes. (b) Model sensitivity

for the critical acceleration. The figure is read the same way as Figure a. (c) The Factor of Safety.

The colour coded x axis illustrates how the variables relate to the FoS, e.g. that α and β have an

inverse relation with the FoS. The grey line represents FoS = 1. (d) Critical acceleration. The

figure is read the same way as Figure c.
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3. Results 3.2. The Cascade rock avalanche

3.2 The Cascade rock avalanche

Generally, the Cascade results are similar to those estimated for Round Top,

except that the ranges are narrower due to the smaller margins of error for the

basal coefficient of friction, µ, and the lower plane of failure, α. All Factor of

Safety and critical acceleration plots share the same y axis limits, allowing for

direct comparison between the landslides.

Figure 3.2a shows the model sensitivity for the Factor of Safety. Exact values

for the minimum, median and maximum are shown in the α, β, and µ columns

of Table 3.2. While α exhibits the strongest influence on the FoS also for this

landslide, it only produces a range half that of its Round Top counterpart, due to

the smaller margin of error. This is especially apparent at the top of the range,

where the Cascade estimate is 9.39, whereas the Round Top equivalent is 12.02.

The ranges of β and µ are similar, but a little narrower and higher than their

Round Top counterparts.

Figure 3.2b shows the model sensitivity for the critical acceleration. µ exhibits

direct proportionality and the strongest influence, producing a range of 0.15g. α

and β share a similar, inverse influence, though α’s influence is a little weaker

compared to its Round Top equivalent, where α and β’s influences are practically

the same, which suggests that the difference between the Cascade planes is due to

the lower uncertainty of α at 2.5°, as opposed to 5° for all other planes of failure.

Figure 3.2c shows the estimated range of the Factor of Safety, calculated using

Equation 2.3 and combining the margins of error of all independent variables.

The first Total column in Table 3.2 contains minimum, median, and maximum

values. The estimates again suggest that the slope was stable prior to failure,

with a slightly higher minimum (4.71) compared to Round Top (c. 3.57). The

graph is somewhat straighter than that of Round Top due to the smaller margin

of error for α, which also produces a narrower range. The median is 6.78, vs. 6.28

for Round Top. The greatest difference is found at the top of the ranges, with the

Cascade maximum at 10.6 well below its Round Top counterpart at 14.41.

Figure 3.2d shows the estimated range of the critical acceleration, calculated

using Equation 2.2 and combining the margins of error of the Factor of Safety

34



3. Results 3.2. The Cascade rock avalanche

and α. The second Total column in Table 3.2 contains exact minimum, median,

and maximum values. Following from the Factor of Safety, the range is narrower

than its Round Top counterpart; the minimum is similar to that of Round Top at

0.71g and 0.66g respectively, but the difference is larger at the top of range, with

a maximum estimate of 1g for Cascade and 1.17g for Round Top. The medians

are also similar, with Cascade giving the lower estimate of 0.85g, and Round Top

only slightly higher at 0.92g. The Cascade range is equal to 0.85g -0.14/+0.15g.

Table 3.2: Factor of Safety and critical acceleration estimates for the Cascade rock avalanche. The

α, β, and µ columns show minimum, median, and maximum estimates for the model sensitivity,

and the "Total" columns show the same data for the estimated ranges of the Factor of Safety and

the critical acceleration.

Factor of Safety Critical acceleration (g)

From figure 3.2a 3.2c 3.2b 3.2d

Variable α β µ Total α β µ Total

Minimum 9.39 7.09 6.26 4.71 0.88 0.90 0.78 0.71

Median 6.78 6.78 6.78 6.78 0.85 0.85 0.85 0.85

Maximum 5.35 6.45 7.30 10.60 0.83 0.81 0.93 1.00
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(a) (b)

(c) (d)

Figure 3.2: Factor of Safety and critical acceleration estimates for the Cascade rock avalanche. (a)

Model sensitivity for the Factor of Safety. The rows on the x axis are colour coded to illustrate

which graph they represent/belong to. For each function, one variable changes and the other two

variables are constant and set at their median values, which are listed in the legend. The grey line

represents FoS = 1, the boundary between the stable and unstable regimes. (b) Model sensitivity

for the critical acceleration. The figure is read the same way as Figure a. (c) The Factor of Safety.

The colour coded x axis illustrates how the variables relate to the FoS, e.g. that α and β have an

inverse relation with the FoS. The grey line represents FoS = 1. (d) Critical acceleration. The

figure is read the same way as Figure c.
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4 Discussion

This chapter contains three main sections. The first section considers the

performance of the modified Newmark model, including limitations inherited

from the original Newmark model, which were briefly introduced in Section 2.1.1

in the Method chapter. The second section appraises the choice of landslides

made for this study, taking into account dating and other properties. The third

section compares the results presented in the previous chapter with existing

models for prediction of Alpine Fault ground motion.

4.1 Model performance

The Newmark model is a simple analysis, which has its advantages, but also

its drawbacks. Given the proper conditions (material properties, landslide

geometry, etc.), the model can perform well, but can, if used under unsuitable

conditions such as high-porosity rock or strain-softening soil, produce erroneous

estimates. Lab results generally show high correlation with real-life events if used

under the proper conditions (2.1.1). This section discusses the constraints on the

model, which were briefly introduced in the Method chapter, in greater detail.

4.1.1 Pore fluid pressure

Neglecting pore fluid pressure is unwise in situations where significant dynamic

pore pressure can accumulate, such as in loose sediment, permafrost or

submarine slopes. In the cases presented in this thesis, which involve relatively

competent, but locally highly fractured rock in a region with high levels of

precipitation, the main question is whether or not the rock masses can be

considered free-draining. A free-draining rock mass provides fluids with
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4. Discussion 4.1. Model performance

efficient pathways along which to percolate and eventually leave the rock mass,

preventing significant pore fluid pressures from building up at any one place.

The rock types present in the Cascade rock avalanche, mainly partly serpen-

tinized peridotite, generally have low permeability (Kawano, Katayama, and

Okazaki 2011; Sundberg, Hirth, and Kelemen 2010). Serpentinite permeability is

non-isotropic; the rock is more permeable parallel to the fabric orientation relative

to the perpendicular direction. However, at relatively shallow depths (10 MPa,

approx. 400 m depth assuming lithostatic pressure), the difference is only one

order of magnitude (approx. 10−19 m2 vs. 10−20 m2 respectively), and at surface

conditions the difference has negligible effect on fluid flow within the rock mass

(Kawano, Katayama, and Okazaki 2011).

Proximity to the Alpine Fault most likely increases permeability due to

earthquake-induced fracturing in the fault damage zone. Barth (2014) found

mylonite, belonging to the approx. 400 m thick Brook Street Volcanic Group

in the hanging-wall damage zone, with predominantly foliation-perpendicular

fractures both outside and within the Cascade deposit. These fractures may,

depending on dip, also decrease slope stability.

Sutherland (2012) estimated bulk permeability values of >10−14 m2 for

hanging-wall ultramylonite 50 m from the PSZ during DFDP-1B drilling at Gaunt

Creek, about 80 km southwest of Round Top. Cox (2015) inferred a fracture

permeability of 10−15 − 10−12 m2 based on regional observations from Otago (a

region on the eastern side of the Main Divide) and the Southern Alps, concluding

that these values are comparable to those estimated for the ultramylonite. The

bulk permeability is therefore likely to be similar in the Round Top source area

mylonites, which are located <1.5 km from the fault trace.

The sackungen provide another pathway for water into the rock and there

is likely to be an extensive fracture network in the area around the sackungen.

During fieldwork carried out for this work, the Cascade landslide sackung

(Section 1.2.1) was found to host a creek which in some places flows on the surface

and in some places underground, before it eventually reappears on the surface to

join other creeks, and finally the Cascade River. The creeks in the scarp itself run

at the bottom of gullies, which are generally 2-3 m in depth and at most up to
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approx. 5 m deep. This amount of erosion suggests that they have followed their

present course for a substantial period of time. There are also several ridge rents

on the other side of Martyr Spur (relative to the location of the scarp), visible in

satellite photos (1.2).

To summarise, the landslides are thought to host a well-developed fracture

network, consisting of sackungen and related fractures and the Alpine Fault

hanging-wall damage zone. Water follows well-developed paths both on the

surface and through the underground fracture network. Hence, the rock mass

is assumed to be free-draining.

4.1.2 Strain softening and hardening

The Newmark model does not take strain softening or hardening into account;

it considers the landslide block as a perfectly plastic material. Near-surface

conditions generally do not promote strain hardening, but it may occur under

certain conditions.

At low confining pressure, it is generally easier to slide over asperities than to

break through them. Strain hardening, which is caused by particles interlocking

under stress, increasing the strength of the rock mass and thus its resistance to

shear (Byerlee 1968; Fossen 2010), is therefore limited in this stress regime. The

presence of water also limits strain hardening by reducing effective stress and

lubricating surfaces (Morrow, Shi, and Byerlee 1982), making deformation along

existing fractures more likely to occur as brittle (though water may also promote

strain softening). High strain rates like those expected during catastrophic slope

failure tend to promote strain hardening (Romeo 2000), and the creation of a new

plane of failure, α, is likely to involve some plastic deformation, and therefore

possibly strain hardening, before rupture. These strength variations with slip are

poorly defined for the rocks discussed in this thesis; hence, the potential impact

of strain hardening and softening is unknown. However, even if it could be

taken into account, the occurrence of strain hardening would increase the critical

acceleration, as it would increase the amount of stress and therefore shaking

required to produce failure. As such, the lower-boundary ground acceleration

estimate that this work is concerned with is not affected by the omission of the
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effect of strain hardening.

4.1.3 Evolution of the critical acceleration

The Newmark model assumes that the critical acceleration is independent of

strain, and thus constant throughout the analysis. In this work, the controlled

parameters affecting the critical acceleration are plane of failure orientations and

the basal coefficient of friction. As considered in the following paragraphs,

the coefficient of friction may change as the velocity changes during landslide

initiation, which will in turn affect the critical acceleration.

Handwerger (2016) employs a rate-and-state model, typically used for fault

modelling, to explain the frictional behaviour of both catastrophically failing

and slow-moving landslides. The rate-and-state model, described in detail

elsewhere (e.g. Scholz), explains how the coefficient of friction, µ, responds

to a change in sliding velocity (V1 to V2, where V2 > V1 and V1, V2 6=

0). µ initially holds some steady-state value, until the instant the velocity

changes, when it increases rapidly (the rate effect), before it slowly evolves

to a new steady-state value (the state effect). Rate-weakening behaviour

implies that the new steady-state value is lower than the initial steady-state

value; the opposite is the case for rate-strengthening behaviour. Faults that

display rate-weakening behaviour accommodate displacement via earthquakes,

whereas rate-strengthening properties are associated with creep. Analogously,

catastrophically failing landslides exhibit rate-weakening friction, whereas slow-

moving landslides exhibit rate-strengthening friction. As the Cascade and Round

Top rock avalanches are landslides that have failed catastrophically, it can be

surmised that their materials exhibited rate weakening behaviour at the time

of failure. Generally, serpentinite exhibits rate strengthening behaviour below

a shear rate of c. 0.1 m/s; above this value, the mineral rapidly loses strength

(Kohli et al. 2011). At the initiation of a rock avalanche, high acceleration causes a

rapid increase in velocity, meaning that this shear rate threshold will be exceeded

quickly. As velocity has a direct impact on strain, it can be concluded that the

critical acceleration is dependent on strain due to its relation with velocity and

the coefficient of friction.
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To summarize, the coefficient of friction was most likely not constant through-

out initiation of failure, causing the friction-dependent critical acceleration (Equa-

tions 2.1 and 2.2) to change as a result. However, in order to initiate failure, the

seismic acceleration must still have exceeded the constant critical accelerations

calculated in this work, so ground motions are still likely to have exceeded this

level for some amount of time. This limitation does mean that Newmark dis-

placements may be underestimated, as the decreasing critical acceleration results

in progressively larger parts of the seismic record exceeding the threshold.

4.1.4 Frequency distribution

The highest PGAs in an earthquake strong-motion record are generally on the

higher end of the frequency spectrum; long-period motion is thus often under-

represented by the Newmark model, depending on the value of the critical

acceleration. An Alpine Fault earthquake with an estimated magnitude of

Mw7 − 8 and probable duration of 1-2 minutes will produce a wide range of

frequencies, which will have varying impacts on slope stability.

High- and low-frequency motion may impact (slope) stability in different

ways not always foreseen by PGA-based hazard and risk analyses, as seen to

devastating effect during the February 2011 Christchurch earthquake. During

rupture, ground motion rich in frequencies close to the fundamental frequency

of the thick surface soil deposits caused resonance, which led to more severe

liquefaction than predicted by PGA levels alone (Tsaparli et al. 2016). In general,

PGA is considered a controlling parameter for landslide initiation, but long-

duration shaking may have an even greater impact on slope stability (Hancox,

Perrin, and G.D. 2002). However, taking frequency content into account is

beyond the scope of this work.

4.1.5 Sackung propagation and slope geometry

Unlike the previous sections in this chapter, which concern both the original

and modified Newmark models, this section is solely a consideration of aspects

related to the modified Newmark model; the two planes of failure defined in the

modified Newmark model are a result of the progress of sackung propagation
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at the time of failure. Sections 1.2.1 and 2.1.2 introduce and discuss this concept

using the Cascade rock avalanche as an example, before the concept is applied to

Round Top. In short, it is surmised that the sackung had only partially penetrated

the slope prior to failure, which probably led to only a smaller section of the

slope actually failing, as penetration all the way to the base of the slope would

likely have resulted in failure of the entire volume. According to the model,

the resulting landslide would have dislodged from the sackung, β, while a new,

lower-angle plane of failure, α, ruptured to link the bottom of the sackung to the

base of the slope, allowing the rock mass to slide along this new plane (Figure

2.3).

Sackung formation is common throughout the Southern Alps, and there is

clear evidence of sackung formation in the Cascade Valley (Section 1.2.1), where

vertical displacements of more than 100 m can be observed adjacent to the

Cascade rock avalanche along the approx. 5 km long sackung that extends along

Martyr Spur and coincides with the long axis of the scarp. Barth also made

observations of sackung formation for the Round Top scarp (Section 1.2.2).

If the sackung had penetrated the full height of the slope, it would have

formed a strong pre-existing structure along which failure could have occurred

for the entire slope, as initiation would likely have required less severe shaking

compared to the most likely state with only partial propagation, which requires

the rupture of a new plane of failure. The modified Newmark model itself does

not distinguish between these two scenarios beyond the shape of the failure

surface; the geometry of the model would therefore also constitute a rough

approximation of a rotational slide.

The upper part of the scarp, where the sackung is used as the plane of failure,

dips at approx. 30°, as opposed to the 60°-70° dip used in the calculations (Section

2.1.2). The cause of this discrepancy is likely mass movement; the sackung scarp

above the remaining slope section (the section that has not failed, but has slid

along the sackung), adjacent to the now-vegetated Cascade scarp, is covered in

scree and there are many large boulders lying where the slope flattens out at

the top of the remaining section. This suggests a high degree of erosion as a

result of mass movement, with the result being a decrease in slope angle. This
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may have occurred during and/or after the main landsliding event. It is also

probable that some deposits remain on the scarp, thereby obscuring the scarp

itself and decreasing the slope angle. Barth (2014) found that sackungen scarps at

Martyr Spurgenerally dip around 60°. This is an area that, with its westward

orientation (towards the primary wind direction), high elevation, and lack of

vegetation, is very exposed to wind and precipitation, which tends to hasten

erosional processes; this is also the case for Round Top, where Barth (2014)

observed ridge-parallel sackungen similar to those in the Cascade Valley.

The lower part of the scarps is less exposed to erosion due to its lower slope

angle, lower elevation, and thick vegetation. At the age of the landslides (1000-

1500 years), and the scale apparent in the slope profiles (100s of metres; see

Figures 2.6 and 2.7), it would take a high rate of erosion to significantly alter

this part of the scarp post-failure. A large amount of landslide material was

likely deposited here (Barth 2014); this could potentially decrease the slope angle,

and hence impact the topography-constrained upper margin of error for α. The

median of α is set parallel to the existing slope, while the margin of error is

constrained by the slope angle (i.e. the plane cannot be situated above the current

topography; see Figure 4.1).

4.2 Choice of landslides

This section considers aspects related to the landslides themselves, including

possible triggers, structural priming, and local ground motion effects.

4.2.1 Trigger

The Cascade and Round Top rock avalanche are both presumed to have been

co-seismically triggered, based on prior work by Barth (2014) and Wright (1998).

The best date estimate for the Cascade rock avalanche is c. 660 (+104/-118)

CE, based on the C-14 dating by Lee et al. (1983), of a log entrained in the

deposit. This estimate overlaps with the 642–727 CE Hk2 earthquake event

recorded at Hokuri Creek. (Berryman, U. Cochran, et al. 2012), and also with

c. 630 megaturbidite event recorded in Lake Mapourika sediments 160 km NE of
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the Cascade Valley (Howarth et al. 2012).

Barth (2014) makes the case for a co-seismic trigger based on e.g. these dating

properties, and the proximity to the fault.However, Barth (2014) notes that a

rainfall trigger cannot be excluded, which is also the case for Round Top.

Yetton (1998) used C-14 dating on a log entrained in the Round Top deposit

to produce an estimate of 930 ± 50 CE for the failure of the Round Top rock

avalanche. Recalibration by Barth (2014) provided an estimate of 860 (+119/-95)

CE, which overlaps with Yetton’s estimate. Both estimates overlap with the Hk1

earthquake event (714-934 CE) recorded at Hokuri Creek (Berryman, U. Cochran,

et al. 2012).

Hokuri Creek is almost 300 km southwest of Round Top; however, Alpine

Fault ruptures have seen shown to have propagated to at least such lengths in

the past – the 1717 event is estimated to have ruptured 300-500 km of the Alpine

Fault (e.g. R. Sutherland, Eberhart-Phillips, et al. 2007). The date estimate also

coincides with a 965-887 CE Lake Paringa megaturbidite event (Howarth et al.

2012), 170 km southwest of Round Top.

An inventory of all known historical earthquake-triggered landslides in New

Zealand by Hancox et al. (2002) shows that landslides with a volume greater than

0.1 km3, such as Cascade, occurred only as a result of earthquakes of Mw > 7.6 and

MMI IX or higher, which probably excludes all faults on or near the south part of

the South Island apart from the Alpine Fault and the Puysegur subduction zone

(Barth 2014; Cox, M.W. Stirling, et al. 2012). The latter has produced several MW

7+ earthquakes over the past few decades, but the closest structure related to the

subduction zone is >40 km away, which somewhat diminishes its likelihood of

being the trigger for Cascade.

The Round Top rock avalanche, at 0.045 km3, is below Hancox’s (2002)

threshold. Situated in the region where the Marlborough Fault Zone splays out

from the Alpine Fault, there are other possible seismic sources in the area. The

>200 km-long Hope Fault, which is thought to be the continuation of the plate

boundary and branches off the Alpine Fault c. 30 km northwest of Round Top,

is one possible trigger. So is the Poulter Fault, which was the source of the 1929

MW 7.0 Arthur’s Pass earthquake, and is situated about 50 km to the east. This
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earthquake triggered the 55 million m3 Falling Mountain landslide, the largest

recorded single co-seismic landslide in the South Island (Korup, McSaveney, and

Davies 2004).

In summary, an Alpine Fault trigger for both landslides is considered a fair

assumption, based on properties such as dating overlaps with Alpine Fault

events and other mass movement events, proximity to the fault, and size of the

landslide. However, other triggers, either seismic or weather-related, cannot be

excluded.

4.2.2 Structural priming of the rock mass

Structural priming is an important aspect of landslide hazard assessment.

Whether a slope is stable, or "ready to go", prior to a seismic event, has a large

impact on the intensity of shaking required to bring it down.

There is structural priming associated with both landslides used in this study

– the sackungen in the upper parts of the slope, and the Alpine Fault damage

zone in the lower parts, which create structural weaknesses that appear to have

played a key role in the initiation of these landslides. Both landslides contain at

least some mylonite, but the foliation is in both cases (sub-)parallel to the Alpine

Fault (Cascade: Barth 2014; Round Top: Nathan, Rattenbury, and Suggate 2002),

i.e. perpendicular to slope topography, which means that slope stability is largely

unaffected by the foliation-related strength anisotropy.

The modified Newmark model gives high to very high estimates for the Factor

of Safety, with the lowest values between 3 and 4, suggesting that the landslides

were quite stable before the triggering event. The hyperbole shape of the graphs

in Figures 3.1c and 3.2c, which is caused by the "inversely proportional" influence

of α, suggest that it would require a significant increase of the upper margin of

error of this parameter to decrease the lowest Factor of Safety estimates towards

1, the boundary between the stable and unstable regimes. Such a magnitude of

increase is unlikely, as the angle of α is constrained by slope topography and even

slight changes in the margin of error produce large effects due to the length of the

profile, as shown in Figure 4.1, where a margin of error of +5 puts the deep-seated

plane of failure at a maximum of about 30 m above current slope topography.
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Figure 4.1: Fall line profile of the Cascade rock avalanche, with α displayed with an outer margin

of error of ±5 in addition to ± 2.5, the margin of error used in the modified Newmark model.

Given the age of the landslide (c. 1400 years) and the low slope angle

associated with α, this amount of post-failure erosion is unlikely. Hence, the

upper constraint on α supports the lowest estimates for the Factor of Safety,

suggesting that the slope was stable prior to the triggering event.

4.2.3 Local ground motion effects

Ground motion intensities can vary significantly from site to site during a single

earthquake. Factors which influence ground motion, in this study represented by

PGA, generally include source parameters such as sense of slip and fault length,

path effects such as rock type and travel distance, and site effects such as local

topography and sediment cover. Here, some of these factors are considered in

relation to the areas studied in this work.

The areas in question are both near-field and in the hanging wall, which

means that they are likely to experience some of the highest PGAs caused by an

Alpine Fault earthquake. The travel path will be short, which lessens the amount

of geometric spreading before arrival. The source areas being in the hanging

wall means that they will be subjected to stronger ground motion, relative to the

footwall at the same distance from the fault trace, due to the hanging wall effect,

a phenomenon caused by the smaller rupture distance (the smallest distance

between the fault rupture plane and a point on the surface) observed on the
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hanging wall side of a dipping fault (e.g. Donahue and Abrahamson 2014).

The travel direction of the rupture can have a substantial impact on shaking

intensity at a particular site; locations near the rupture’s path often experience

stronger shaking compared to locations at the same distance from the fault trace,

but outside the direction of travel.Bradley et al.’s (2017) PGV-based (peak ground

velocity) ground motion simulations for an Alpine Fault earthquake defines three

different scenarios based on hypocentre location; the northern and southern

hypocentre scenarios show some difference in estimated shaking intensity for the

Round Top area, with an estimated MMI 8-9 for the northern hypocentre scenario

compared to MMI 9-10 for the southern one, using the PGV-MMI relation of

Worden et al. (2012). The central hypocentre scenario also yields MMI 9-10. For

Cascade, the estimates are all equal at MMI 8-9.

4.3 Evaluation of results

This study provides the first ground motion estimate for an Alpine Fault

earthquake based on geological constraints, rather than computer simulations.

Such simulations include the National Seismic Hazard Model for New Zealand

(NSHM; 2010 update in M. Stirling et al. 2012), which is a probabilistic seismic

hazard model; and Bradley (2017), which is a recently published PGV-based

ground motion simulation. The next paragraphs compare the results of the latter,

as well as findings from Hancox, Perrin, and G.D. 2002’s study of coseismic

landsliding occurrence in New Zealand, with the PGA estimates calculated in

this work. The main areas considered are the areas around the two landslides, at

opposite ends of the Alpine Fault; existing model estimates for the central part of

the fault are included for comparison, but as PGA varies from location to location,

the results from this work cannot be directly applied to this region.

Bradley et al. (2017) defines three rupture scenarios, distinguished by

hypocentre location; one near the south end of the fault, one near the north

end, and one in the centre. The study is PGV-based, but uses the one-to-

one relationship with the Modified Mercalli Index Scale defined by (2012) to

create estimated MMI maps for the South Island. The estimates vary spatially
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depending on hypocentre location, so the study also combined the three scenarios

into one figure, producing a map of maximum MMI estimates. This map shows

MMI 8-9 (approx. 0.4g-0.75g according to the PGA-MMI correlation defined by

Worden et al. 2012) for the Cascade area, MMI 9-10 (approx. 0.75g-1.32g; Worden

et al. 2012) for the Round Top area, and MMI 8-9 for most of the central part of

the fault, with MMI 7-8 (approx. 0.2g-0.4g; Worden et al. 2012) in some locations.

For the Round Top area, these estimates are in good agreement with estimates

from this thesis; using the full range of the critical acceleration outlined in

the Results chapter (0.66g-1.17g; Figure 3.1d) and the PGA-MMI correlation

established by (2012), yields MMI 9-10. The agreement is somewhat poorer for

the Cascade area, however, with an estimated critical acceleration of 0.71g-1g also

corresponding to MMI 9-10 (1g yields approx. MMI 9.5), compared to Bradley’s

MMI 8-9.

The MMI scale for New Zealand used and adapted in Hancox (2002), based on

historical earthquakes and coseismic landslides in New Zealand, suggests to this

author that the case study areas in this thesis most likely experienced MMI9-10,

as the Round Top and Cascade rock avalanche fit in the size brackets (defined by

Hancox, Perrin, and G.D. 2002) very large (1-50 x 106m3) and extremely large

(>50 x 106m3), and have low-angle planes of failure. The relation to PGA is

only approximate for this version of the MMI scale, with MMI 8-9 ranging from

approx. 0.35g to 0.5g, and MMI 9-10 or greater from approx. 0.5g to 1g or greater

(Hancox, Perrin, and G.D. 2002).

In conclusion, this work yields critical acceleration estimates of 0.85g (0.71-

1g; -0.14/+0.15g) and 0.92g (0.66-1.17g: ± 25g) for the Cascade and Round Top

rock avalanches respectively, which is in good agreement with the Bradley et

al. (2017) simulation in Round Top’s case, but somewhat higher for Cascade.

However, actual PGA values will, according to this work, be higher than the

critical acceleration estimates, as the latter is simply the threshold that the PGA

must exceed, for an extended amount of time, in order to produce slope failure.

Near-field areas, like the case study areas used in this work, will most likely

experience intensities of at least MMI 8, and quite possibly as high as MMI 10.

Bradley et al. (2017) predict lower PGA values for the central part of Alpine
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Fault; as PGAs can vary greatly from site to site, the results obtained in the

present study cannot be extrapolated to this area. Hancox, Perrin, and G.D.

2002 notes that while PGA generally is considered a controlling parameter for co-

seismic landslide initiation, long-duration shaking may have greater influence

in producing very large landslides and higher MMIs. The highest PGAs in an

earthquake strong-motion record are generally on the higher end of the frequency

spectrum; long-period motion is thus under-represented in the Newmark model.

This is an important limitation for the present study, as shaking produced by

an Alpine Fault earthquake may last for longer than three minutes (Holden

2014).Nevertheless, this work represents a useful geological constraint for future

ground motion simulations.

49



5 Conclusions and future work

• The Alpine Fault is a major plate boundary fault late in its earthquake cycle.

It has a 29% chance of producing a MW 7-8 earthquake in the next 50 years.

• Such an earthquake will cause extensive and widespread damage, espe-

cially on the West Coast, where abundant landsliding is one of the hazards

expected.

• This work provides first-time geological constraints for an Alpine Fault

earthquake, by using a modified version of the Newmark model, intro-

duced in this study, on two pre-historic landslides, the Cascade and Round

Top rock avalanches.

• The model yields a critical acceleration estimate of 0.85g (-0.14/+0.15g) for

Cascade, and 0.92g (± 25g) for Round Top.

• Possibilities for future work include using synthetic seismograms from

Alpine Fault simulations, or real seismograms from suitable earthquakes,

to produce Newmark displacements for the two landslides.

• Another opportunity for future work is using the remaining sections at

each landslide site to estimate the maximum PGA for an Alpine Fault

earthquake; these sections still being intact, but having slipped along their

respective sackungen (at least in the case of Cascade), suggests that the

shaking has been strong, but not strong enough to produce the catastrophic

failure of these sections.
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Appendix A Source code: Spatial

analysis for the Cascade

rock avalanche

1 % Cascade profile analysis

2

3 % Along fall line at 315 degrees, extracted from ArcGIS

4

5 % Import xlsx file - first profile length then height

6 filename = ’Cascade accurate profile data.xlsx’;

7 sheet = 1;

8 xlRange = ’A2:A160’;

9

10 alongprofile = xlsread(filename,sheet,xlRange);

11

12 xlRange = ’B2:B160’;

13

14 profileheight = xlsread(filename,sheet,xlRange);

15

16 %% Calculate beta

17

18 % Beta starting point (estimated from profile graph): (85.47, 599)

19

20 beta = 65; % in degrees, +- margin of error

21 slopeb = -tand(beta);
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Appendix A. Source code: Spatial analysis for the Cascade rock avalanche

22

23 % Input starting point for line

24 Bx = 85.47;

25 By = 599;

26 yintb = Bx*tand(beta)+By;

27 xb = 85.47:300;

28 betafunc = slopeb*xb+yintb;

29

30 % Margin of error

31

32 betap5 = beta+5;

33 betam5 = beta-5;

34

35 slopebp5 = -tand(betap5);

36 yintbp5 = Bx*tand(betap5)+By;

37 xbp5 = Bx:250;

38 betap5func = slopebp5*xbp5+yintbp5;

39

40 slopebm5 = -tand(betam5);

41 yintbm5 = Bx*tand(betam5)+By;

42 xbm5 = Bx:350;

43 betam5func = slopebm5*xbm5+yintbm5;

44

45 % % Plot % (want to see beta only? Uncomment and run section)

46 % plot(xb,betafunc,’g’)

47 % axis equal

48 % hold on

49 % plot(Bx,By,’*’)

50 % plot(xbp5,betap5func,’k:’)

51 % plot(xbm5,betam5func,’k:’)

52 % legend(’beta’,’beta point’,’beta + 5’,’beta - 5’)

53
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Appendix A. Source code: Spatial analysis for the Cascade rock avalanche

54 %% Calculate alpha

55

56 % Alpha at 8.5 degrees, parallel to slope above

57 alpha = 8.5; %8.5;

58 slopea = -tand(alpha);

59 % Input starting point for line

60 Ax = 1913; % from profile

61 Ay = 38.8; % from profile

62 yinta = Ax*tand(alpha)+Ay;

63 xa = 100:1913;

64 alphafunc = slopea*xa+yinta;

65

66 % Margin of error

67

68 alphap25 = alpha+2.5;

69 alpham25 = alpha-2.5;

70

71 slopeap25 = -tand(alphap25);

72 yintap25 = Ax*tand(alphap25)+Ay;

73 xap25 = 100:Ax;

74 alphap25func = slopeap25*xap25+yintap25;

75

76 slopeam25 = -tand(alpham25);

77 yintam25 = Ax*tand(alpham25)+Ay;

78 xam25 = 100:Ax;

79 alpham25func = slopeam25*xam25+yintam25;

80

81 % % Plot (uncomment and run section to only plot alpha)

82 % plot(xa,alphafunc,’r’)

83 % axis equal

84 % hold on

85 % plot(Ax,Ay,’*’)
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Appendix A. Source code: Spatial analysis for the Cascade rock avalanche

86 % plot(xap25,alphap25func,’k--’)

87 % plot(xam25,alpham25func,’k--’)

88 % legend(’alpha’,’alpha point’,’alpha + 2.5’,’alpha - 2.5’)

89

90

91 %% Plot

92

93 f0 = figure;

94

95 plot(alongprofile,profileheight,’k’,’LineWidth’,2) % Color was c

96 hold on

97

98 % Alpha and 2.5 margin of error

99 plot(xa,alphafunc,’r’,’LineWidth’,1.5)

100 plot(xap25,alphap25func,’--k’)

101

102 % Beta and margin of error

103 plot(xb,betafunc,’g’,’LineWidth’,1.5)

104 plot(xbp5,betap5func,’k:’,’LineWidth’,1)

105

106 plot(xbm5,betam5func,’k:’,’LineWidth’,1)

107

108 % Alpha’s lower margin of error (placed here for legend order purposes)

109 plot(xam25,alpham25func,’--k’)

110

111 axis equal

112 axis([0,2400,0,1000])

113 title(’Profile of the Cascade rock avalanche’)

114 xlabel(’Along profile (m)’)

115 ylabel(’Height (m)’)

116 legend(’Fall line profile’,’alpha (8.5)’,’Margin of error ( pm 2.5)’,’ beta (65)’,’Margin of error ( pm 5)’)

117 hold off
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Appendix B Source code: Spatial

analysis for the Round

Top rock avalanche

1 % Round Top profile analysis

2

3 % Import profile data

4

5 % Set range

6

7 R1 = 3;

8 C1 = 0;

9 C2 = 1;

10

11 R2 = 522;

12 R3 = 592;

13 R4 = 534;

14 R5 = 568;

15 R6 = 164;

16

17 FLm = dlmread(’9m DEM fall line profile.txt’,’�’,[R1 C1 R2 C1]);

18 FLh = dlmread(’9m DEM fall line profile.txt’,’�’,[R1 C2 R2 C2]);

19

20 NEm = dlmread(’9m DEM NE profile.txt’,’�’,[R1 C1 R3 C1]);

21 NEh = dlmread(’9m DEM NE profile.txt’,’�’,[R1 C2 R3 C2]);
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22

23 SWm = dlmread(’9m DEM SW profile.txt’,’�’,[R1 C1 R4 C1]);

24 SWh = dlmread(’9m DEM SW profile.txt’,’�’,[R1 C2 R4 C2]);

25

26 SW2m = dlmread(’9m DEM SW profile 2.txt’,’�’,[R1 C1 R5 C1]);

27 SW2h = dlmread(’9m DEM SW profile 2.txt’,’�’,[R1 C2 R5 C2]);

28

29

30 %% Base line

31

32 % Points

33 % BP1 = (3705, 52.01);

34 % BP2 = (5400, 38.31);

35 BP1x = 3705;

36 BP1y = 52.01;

37 BP2x = 5400;

38 BP2y = 38.31;

39

40 slope = (BP2y-BP1y)/(BP2x-BP1x);

41 yint = BP1x*(-slope)+BP1y;

42 xbl = 0:4000;

43 Baselinefunc = slope*xbl+yint;

44

45 % Trigonometry for NE profile and base line intersect

46 trig1x = 762.3; %lower 1075;

47 trig1y = 331.7; %lower 192;

48 trig2x = 946; %1010; %lower 1148;

49 trig2y = 243.9; %219.9; %lower 132.8;

50

51 slopetrig = (trig2y-trig1y)/(trig2x-trig1x);

52 yinttrig = trig1x*(-slopetrig)+trig1y;

53 xtrig = 0:1500;
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54 trigfunc = slopetrig*xtrig+yinttrig;

55

56 % Fall line fan profile - find the slope tangents

57 flu1x = 889; flu1y = 284.8; % Where flu = fall line upper

58 flu2x = 1160; flu2y = 206.4;

59

60 slopeflu = (flu2y-flu1y)/(flu2x-flu1x);

61 yintflu = flu1x*(-slopeflu)+flu1y;

62 xflu = 800:0.5:1400;

63 flufunc = slopeflu*xflu+yintflu;

64

65 fll1x = 1440; fll1y = 141.2; % Where fll = fall line lower

66 fll2x = 1643; fll2y = 108.2;

67

68 slopefll = (fll2y-fll1y)/(fll2x-fll1x);

69 yintfll = fll1x*(-slopefll)+fll1y;

70 xfll = 1200:0.5:1800;

71 fllfunc = slopefll*xfll+yintfll;

72

73 plot(xbl,Baselinefunc,BP1x,BP1y,’*’)

74 axis equal

75 hold on

76 plot(FLm,FLh,’c’)

77 plot(NEm,NEh)

78 plot(xtrig,trigfunc)

79 plot(xflu,flufunc)

80 plot(xfll,fllfunc,’k’)

81

82 % Lower NE profile fit gives intersect at (1223, 72)

83 % Upper NE profile fit gives intersect at (1340, 71)

84 % Up 2 NE profile fit gives intersect at (1307, 71.4)

85 % Fall line fan slopes give intersect at (1315, 161.5)
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86

87 %% Calculate beta function

88

89 % Beta point = (86.96, 779.5) --> ca. vendepunkt paa fallineprofil

90 beta = 65; % in degrees, +- margin of error

91 slopeb = -tand(beta); % a in ax + b for 60 degrees

92 % Input starting point for line

93 Bx = 86.96;

94 By = 779.5;

95 yintb = Bx*tand(beta)+By;

96 xb = 86.96:390; % Determined by combined margins of error of alpha and beta for plot prettiness

97 betafunc = slopeb*xb+yintb;

98

99 % Margin of error

100

101 betap5 = beta+5;

102 betam5 = beta-5;

103

104 slopebp5 = -tand(betap5);

105 yintbp5 = Bx*tand(betap5)+By;

106 xbp5 = Bx:323;

107 betap5func = slopebp5*xbp5+yintbp5;

108

109 slopebm5 = -tand(betam5);

110 yintbm5 = Bx*tand(betam5)+By;

111 xbm5 = Bx:465;

112 betam5func = slopebm5*xbm5+yintbm5;

113

114 % % Plot

115 % plot(xb,betafunc,’g’)

116 % axis equal

117 % hold on
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118 % plot(Bx,By,’*’)

119 % plot(xbp5,betap5func,’k:’)

120 % plot(xbm5,betam5func,’k:’)

121 % legend(’beta’,’beta point’,’beta + 5’,’beta - 5’)

122

123 %% Calculate alpha function

124

125 % Alpha, 10 degrees

126 alpha = 10; %8.5;

127 slopea = -tand(alpha);

128 % Input starting point for line

129 Ax = 1315; % from fall line fan slope angle intersect

130 Ay = 71.33; % from base line y value at above intersect

131 yinta = Ax*tand(alpha)+Ay;

132 xa = 200:1315; % For plot prettiness purposes

133 alphafunc = slopea*xa+yinta;

134 plot(xa,alphafunc,Ax,Ay,’*’)

135 axis equal

136

137 % Margin of error

138

139 alphap5 = alpha+5;

140 alpham5 = alpha-5;

141

142 slopeap5 = -tand(alphap5);

143 yintap5 = Ax*tand(alphap5)+Ay;

144 xap5 = 200:Ax;

145 alphap5func = slopeap5*xap5+yintap5;

146

147 slopeam5 = -tand(alpham5);

148 yintam5 = Ax*tand(alpham5)+Ay;

149 xam5 = 200:Ax;
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150 alpham5func = slopeam5*xam5+yintam5;

151

152 % Add p10 just to see what it looks like

153 alphap10 = alpha+10;

154

155 slopeap10 = -tand(alphap10);

156 yintap10 = Ax*tand(alphap10)+Ay;

157 alphap10func = slopeap10*xa+yintap10;

158

159 % % Plot

160 % plot(xa,alphafunc,’r’)

161 % axis equal

162 % hold on

163 % plot(Ax,Ay,’*’)

164 % plot(xap5,alphap5func,’k:’)

165 % plot(xam5,alpham5func,’k:’)

166 % plot(xa,alphap10func,’k--’)

167 % legend(’alpha’,’alpha point’,’alpha + 5’,’alpha - 5’)

168

169 %% Plotting

170

171 f1 = figure;

172 plot(FLm,FLh,’c’,’LineWidth’,2)

173 axis equal

174 axis([0,5410,0,2500])

175 hold on

176 plot(NEm,NEh,’--’,’Color’,[0.91 0.41 0.17],’LineWidth’,0.5)

177 plot(SWm,SWh,’--g’,’Color’,[0.7 0 0.6],’LineWidth’,0.5)

178 plot(SW2m,SW2h,’--’,’Color’,[0.4 0.3 0.7],’LineWidth’,0.5)

179

180 plot(xa,alphafunc,’r’,’LineWidth’,1.5)

181 plot(xb,betafunc,’g’,’LineWidth’,1.5)
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182

183 plot(xbl,Baselinefunc,’Color’,[0.5 0.5 0.5],’LineWidth’,1)

184 % plot(xtrig,trigfunc)

185 % plot(xflu,flufunc)

186 % plot(xfll,fllfunc)

187

188 plot(xap5,alphap5func,’k:’,’LineWidth’,1)

189 plot(xam5,alpham5func,’k:’,’LineWidth’,1)

190 % plot(xa,alphap10func,’k--’)

191

192 plot(xbp5,betap5func,’k:’,’LineWidth’,1)

193 plot(xbm5,betam5func,’k:’,’LineWidth’,1)

194

195 legend(’Fall line profile’,’NE’,’SW1’,’SW2’,’alpha’,’beta’,’Base line’,’Margins of error (pm 5)’)%’alpha+5’,’alpha-5’,’beta+5’,’beta-5’)

196

197 title(’Profiles of the Round Top Avalanche’)

198 xlabel(’Along profile (m)’)

199 ylabel(’Profile height (m)’)

67



Appendix C Source code: Factor of

Safety and critical

acceleration for the

Cascade rock avalanche

% Cascade Newmark Calculations

% Written in MATLAB 2017a on a Windows 10 computer, by Astrid Vetrhus

% % Define and calculate constants

rho=3200; %in kg/m^3

g=9.81; %in m/s^2

n = 101; % No. of elements in vectors - must be an odd number

% for vector to include the median. 101 is a good number.

% Volume and weight

V = 750*10e+6; % in m3 (Barth 2014)

sW = V*rho*g; % weight in N

% (Volume does not really matter, as it cancels out of FoS equation)
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Appendix C. Source code: Factor of Safety and critical acceleration for the
Cascade rock avalanche

% Define variables

% Lower slope (alpha)

% Median at 8.5 degrees (parallel to part of fall line profile), margin of error +- 5

sa = 8.5; % Static alpha

moea = 5; % Vary alpha - for margin of error

moeas = 2.5; % Smaller margin of error, the main MoE used for Cascade

va = transpose(linspace(sa-moeas ,sa+moeas, n));

vabetsoff = transpose(linspace(sa+moea, sa-moea, n));

vabetsoffs = transpose(linspace(sa+moeas, sa-moeas, n));

% Upper slope (sackung; beta)

% About 60-70 degrees (Barth 2014) -> median 65, range +- 5

sb = 65;

moeb = 5;

vb = transpose(linspace(sb-moeb, sb+moeb, n));

vbbetsoff = transpose(linspace(sb+moeb, sb-moeb, n));

% Friction

% Serpentinite coefficient of friction and margin of error from Reinen (?)

su = 0.65;

moeu = 0.05;

vu = transpose(linspace(su-moeu, su+moeu, n));

vubetsoff = transpose(linspace(su-moeu, su+moeu, n));

%FoS = Factor of Safety

FoSa = zeros(n,1);

FoSb = zeros(n,1);

FoSu = zeros(n,1);

FoSW = zeros(n,1);
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Appendix C. Source code: Factor of Safety and critical acceleration for the
Cascade rock avalanche

FoSbetsoff = zeros(n,1);

FoSbetsoffs = zeros(n,1);

% ac = Critical acceleration

aca = zeros(n,1);

acb = zeros(n,1);

acu = zeros(n,1);

acW = zeros(n,1);

acbetsoff = zeros(n,1);

acbetsoffs = zeros(n,1);

% Modified Newmark

% Vary alpha

for i=1:n

FoSa(i) = (su*sW*cosd(va(i)) + su*sW*cosd(sb - va(i)))/...

(sW*sind(va(i)));

end

for j=1:n

aca(j) = (FoSa(j)-1)*g*sind(va(j));

end

% Vary beta

for i=1:n

FoSb(i) = (su*sW*cosd(sa) + su*sW*cosd(vb(i)-sa)) /...

(sW*sind(sa));

end

for j=1:n

acb(j) = (FoSb(j)-1)*g*sind(sa);

end
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% Vary mu

for i=1:n

FoSu(i) = (vu(i)*sW*cosd(sa) + vu(i)*sW*cosd(sb - sa)) /...

(sW*sind(sa));

end

for j=1:n

acu(j) = (FoSu(j)-1)*g*sind(sa);

end

% All bets are off - everything changes!

% FoS

% Alpha +-5 degrees

for i=1:n

FoSbetsoff(i) = (vubetsoff(i)*sW*cosd(vabetsoff(i)) + vubetsoff(i)*sW*cosd(vbbetsoff(i)-vabetsoff(i))) /...

(sW*sind(vabetsoff(i)));

end

% Alpha +-2.5 degrees

for i=1:n

FoSbetsoffs(i) = (vubetsoff(i)*sW*cosd(vabetsoffs(i)) + vubetsoff(i)*sW*cosd(vbbetsoff(i)-vabetsoffs(i))) /...

(sW*sind(vabetsoffs(i)));

end

% Critical acceleration

% Alpha +-5 degrees

for j=1:n

acbetsoff(j) = (FoSbetsoff(j)-1)*g.*sind(vabetsoff(j));

end
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% Alpha +-2.5 degrees

for j=1:n

acbetsoffs(j) = (FoSbetsoffs(j)-1)*g.*sind(vabetsoffs(j));

end

% Convert to units of g

vaacg = aca / g;

vbacg = acb / g;

vuacg = acu / g;

acbetsoffg = acbetsoff / g;

acbetsoffsg = acbetsoffs / g;

% Plot

x=linspace(0,n-1,n);

xtx = 0:10:100;

y = ones(length(x));

f1=figure;

plot(x,FoSa,’r’)

hold on

plot(x,FoSb,’g’)

plot(x,FoSu,’k’)

plot(x,y,’Color’,[0.5 0.5 0.5])

title(’Model sensitivity: Factor of Safety’)

xlabel(’Index’)

ylabel(’Factor of Safety’)

xlim([x(1) x(end)])

ylim([0,16])

% text(median(x)-10,median(FoSa)+1,[’Median = ’,num2str(median(FoSa))])

legend(’alpha varies (8.5 pm 2.5)’,’beta varies (65 pm 5)’,’mu varies (0.65 pm 0.05)’,’Location’,’northwest’)

xticks([])
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Cascade rock avalanche

f1.PaperUnits = ’centimeters’;

f1.PaperPosition = [0 0 7.4 7];

hold off

f2=figure;

plot(x,vaacg,’r’)

hold on

plot(x,vbacg,’g’)

plot(x,vuacg,’k’)

title(’Model sensitivity: Critical acceleration’)

xlabel(’Index’)

ylabel(’Critical acceleration (g)’)

xlim([x(1) x(end)])

ylim([0.6 1.2])

legend(’alpha varies (8.5 pm 2.5)’,’beta varies (65 pm 5)’,’mu varies (0.65 pm 0.05)’,’Location’,’northwest’)

xticks([])

f2.PaperUnits = ’centimeters’;

f2.PaperPosition = [0 0 7.4 7];

hold off

f3=figure;

% plot(x,FoSbetsoff,’Color’,[0.5 0.5 0.5])

plot(x,FoSbetsoffs,’b’)

hold on

plot(x,y,’Color’,[0.5 0.5 0.5])

title({’Factor of Safety with margin of error,’; ’as a function of alpha, beta, and mu with margins of error’})

xlabel(’Index’)

ylabel(’Factor of Safety’)

xlim([x(1) x(end)])

ylim([0,16])

% xticks([x(1) median(x) x(end)])

%xticklabels(xt)

73



Appendix C. Source code: Factor of Safety and critical acceleration for the
Cascade rock avalanche

% legend(’Margin of error of alpha is (pm5)’,’Margin of error of alpha is (pm 2.5)’,’Location’,’northwest’)

legend([’Total range of ’, newline, ’the Factor of Safety’],’Location’,’northwest’)

xticks([])

f3.PaperUnits = ’centimeters’;

f3.PaperPosition = [0 0 7.4 7];

hold off

f4=figure;

% plot(x,acbetsoffg,’Color’,[0.5 0.5 0.5])

plot(x,acbetsoffsg,’b’)

hold on

title({’Critical acceleration with margin of error,’; ’as a function of the FoS and alpha with margins of error’})

xlabel(’Index’)

ylabel(’Critical acceleration (g)’)

xlim([x(1) x(end)])

ylim([0.6 1.2])

legend([’Total range of ’, newline, ’the critical acceleration’],’Location’,’northwest’)

xticks([])

f4.PaperUnits = ’centimeters’;

f4.PaperPosition = [0 0 7.4 7];

hold off
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Appendix D Source code: Factor of

Safety and critical

acceleration for the

Round Top rock

avalanche

% % Round Top Newmark Calculations

% Written in MATLAB 2017a on a Windows 10 computer, by Astrid Vetrhus

% % Define and calculate constants and the volume variable

rho=2757; %in kg/m^3 - mylonite mean from digital rock density map NZ paper

g=9.81; %in m/s^2

n = 101; % No. of elements in vectors - must be an odd number

% for vector to include the median

% % Volume and weight

% W cancels out of FoS equation
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Appendix D. Source code: Factor of Safety and critical acceleration for the
Round Top rock avalanche

% Mean 45*10^6 m^3, margin of error +- 28 (Wright 1998)

V = 45*10e+6; % in m^3

sW = V*rho*g; % weight in N

% Define variables

% Lower slope (alpha)

% Median at 10 degrees, margin of error +- 5

sa = 10; % Static alpha

moea = 5; % Margin of error

moeas = 2.5; % Smaller margin of error, used for Cascade

% Model sensitivity

va = transpose(linspace(sa-moea ,sa+moea, n));

% Total range

vabetsoff = transpose(linspace(sa+moea, sa-moea, n));

vabetsoffs = transpose(linspace(sa+moeas, sa-moeas, n));

% Upper slope (sackung; beta)

% Dips 60-70 degrees; median 65 and range +- 5

sb = 65;

moeb = 5;

vb = transpose(linspace(sb-moeb, sb+moeb, n));

vbbetsoff = transpose(linspace(sb+moeb, sb-moeb, n));

% Coefficient of friction

% Standard crustal rock at 0.7
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su = 0.7;

moeu = 0.1; % was 0.05, but that’s prob too narrow

vu = transpose(linspace(su-moeu, su+moeu, n));

vubetsoff = transpose(linspace(su-moeu, su+moeu, n));

%FoS = Factor of Safety

FoSa = zeros(n,1);

FoSb = zeros(n,1);

FoSu = zeros(n,1);

FoSW = zeros(n,1);

FoSbetsoff = zeros(n,1);

FoSbetsoffs = zeros(n,1);

% ac = Critical acceleration

aca = zeros(n,1);

acb = zeros(n,1);

acu = zeros(n,1);

acW = zeros(n,1);

acbetsoff = zeros(n,1);

acbetsoffs = zeros(n,1);

% Modified Newmark

% Vary alpha - adding -alpha

for i=1:n

FoSa(i) = (su*sW*cosd(va(i)) + su*sW*cosd(sb - va(i)))/...

(sW*sind(va(i)));

end

for j=1:n

aca(j) = (FoSa(j)-1)*g*sind(va(j));

end
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% Vary beta

for i=1:n

FoSb(i) = (su*sW*cosd(sa) + su*sW*cosd(vb(i)-sa)) /...

(sW*sind(sa));

end

for j=1:n

acb(j) = (FoSb(j)-1)*g*sind(sa);

end

% Vary mu

for i=1:n

FoSu(i) = (vu(i)*sW*cosd(sa) + vu(i)*sW*cosd(sb - sa)) /...

(sW*sind(sa));

end

for j=1:n

acu(j) = (FoSu(j)-1)*g*sind(sa);

end

% All bets are off - everything changes!

% FoS

% Alpha +-5 degrees

for i=1:n

FoSbetsoff(i) = (vubetsoff(i)*sW*cosd(vabetsoff(i)) + vubetsoff(i)*sW*cosd(vbbetsoff(i)-vabetsoff(i))) /...

(sW*sind(vabetsoff(i)));

end

% Alpha +-2.5 degrees

for i=1:n
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FoSbetsoffs(i) = (vubetsoff(i)*sW*cosd(vabetsoffs(i)) + vubetsoff(i)*sW*cosd(vbbetsoff(i)-vabetsoffs(i))) /...

(sW*sind(vabetsoffs(i)));

end

% Critical acceleration

% Alpha +-5 degrees

for j=1:n

acbetsoff(j) = (FoSbetsoff(j)-1)*g.*sind(vabetsoff(j));

end

% Alpha +-2.5 degrees

for j=1:n

acbetsoffs(j) = (FoSbetsoffs(j)-1)*g.*sind(vabetsoffs(j));

end

% Convert to units of g

vaacg = aca / g;

vbacg = acb / g;

vuacg = acu / g;

acbetsoffg = acbetsoff / g;

acbetsoffsg = acbetsoffs / g;

% Plot

x=linspace(0,n-1,n);

y = ones(length(x));

f1=figure;

plot(x,FoSa,’r’)

hold on

plot(x,FoSb,’g’)
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plot(x,FoSu,’k’)

plot(x,y,’Color’,[0.5 0.5 0.5]) % FoS = 1

title(’Model sensitivity: Factor of Safety’)

xlabel(’Index’)

ylabel(’Factor of Safety’)

xlim([x(1) x(end)])

ylim([0,16])

legend(’alpha varies (10 pm 5)’,’beta varies (65 pm 5)’,’mu varies (0.7 pm 0.1)’,’Location’,’northwest’)

xticks([])

f1.PaperUnits = ’centimeters’;

f1.PaperPosition = [0 0 7.4 7];

hold off

f2=figure;

plot(x,vaacg,’r’)

hold on

plot(x,vbacg,’g’)

plot(x,vuacg,’k’)

title(’Model sensitivity: Critical acceleration’)

xlabel(’Index’)

ylabel(’Critical acceleration (g)’)

xlim([x(1) x(end)])

ylim([0.6 1.2])

legend(’alpha varies (10 pm 5)’,’beta varies (65 pm 5)’,’mu varies (0.7 pm 0.1)’,’Location’,’northwest’)

xticks([])

f2.PaperUnits = ’centimeters’;

f2.PaperPosition = [0 0 7.4 7];

hold off

f3=figure;

plot(x,FoSbetsoff,’b’)

hold on
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plot(x,y,’Color’,[0.5 0.5 0.5])

title({’Factor of Safety with margin of error,’; ’as a function of alpha, beta, and mu with margins of error’})

xlabel(’Index’)

ylabel(’Factor of Safety’)

xlim([x(1) x(end)])

ylim([0,16])

xticks([])

legend([’Total range of ’, newline, ’the Factor of Safety’],’Location’,’northwest’)

f3.PaperUnits = ’centimeters’;

f3.PaperPosition = [0 0 7.4 7];

hold off

f4=figure;

plot(x,acbetsoffg,’b’)

hold on

title({’Critical acceleration with margin of error,’; ’as a function of the FoS and alpha with margins of error’})

xlabel(’Index’)

ylabel(’Critical acceleration (g)’)

xlim([x(1) x(end)])

ylim([0.6 1.2])

legend([’Total range of ’, newline, ’the critical acceleration’],’Location’,’northwest’)

xticks([])

f4.PaperUnits = ’centimeters’;

f4.PaperPosition = [0 0 7.4 7];

hold off

81


	Background
	Introduction
	Landslide case studies
	The Cascade rock avalanche
	The Round Top rock avalanche


	Method
	The Newmark and Modified Newmark models
	The Newmark model
	The Modified Newmark model

	Spatial analysis
	Calculating the Factor of Safety and the critical acceleration

	Results
	The Round Top rock avalanche
	The Cascade rock avalanche

	Discussion
	Model performance
	Pore fluid pressure
	Strain softening and hardening
	Evolution of the critical acceleration
	Frequency distribution
	Sackung propagation and slope geometry

	Choice of landslides
	Trigger
	Structural priming of the rock mass
	Local ground motion effects

	Evaluation of results

	Conclusions and future work
	Source code: Spatial analysis for the Cascade rock avalanche
	Source code: Spatial analysis for the Round Top rock avalanche
	Source code: Factor of Safety and critical acceleration for the Cascade rock avalanche
	Source code: Factor of Safety and critical acceleration for the Round Top rock avalanche



