
Secure Programming with Intel
SGX and Novel Applications

Kristoffer Severinsen

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2017

Secure Programming with Intel
SGX and Novel Applications

Kristoffer Severinsen

© 2017 Kristoffer Severinsen

Secure Programming with Intel SGX and Novel Applications

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Intel’s Software Guard Extensions (SGX) is a new technology introduced in
recent generations of Intel processors. SGX is supposed to be able to create
a trusted execution environment for user-space software that is protected
from all privileged software running on the same system. The CPU creates
a protected enclave in memory for the software and guards the memory
using strict access control and encryption with keys derived from secrets
embedded inside the CPU.

To be able to start developing confidentiality and privacy protected
applications using Intel SGX, one must first be able to reason about the
security guarantees that it provides, and for this, a better understanding of
the mechanisms behind the technology is needed.

First, this thesis contains a Systematization of Knowledge of the Intel
Software Guard Extensions technology, covering the technical details of the
hardware mechanisms and a practical hands-on tutorial covering the usage
of the basic functionality and features.

Second, the thesis describes the design of the Accountable Decryption
protocol, a novel protocol that can guarantee accountable decryption of
user-data by using the capabilities that SGX can provide. The protocol
depends on a decryption device that can be trusted to only perform
decryption requests if the evidence of the decryption is observable by the
user. The thesis describes the implementation of a prototype decryption
device for the Accountable Decryption protocol, which can provide
confidentiality and integrity guarantees by using the SGX technology. The
implementation is evaluated by discussing different security aspects of the
implementation.

Third, the thesis contains discussions on different solutions on how
SGX can be used to protect legacy software without any modifications, and
discussions on some of the security issues of the proposed solutions.

i

ii

Acknowledgements

First of all, I have to thank my supervisor, Christian Johansen, for guiding
my work and setting ambitious milestones and giving me the opportunity
to go abroad to give a workshop presentation and attending the POST
conference in Uppsala, and thank you for the opportunity to take an
internship at the University of Birmingham over the summer.

I have to thank Professor Mark Ryan for inviting me to collaborate
on the Accountable Decryption protocol and for the help with my
accommodations in Birmingham and at the School of Computer Science.
Thank you for the many good discussions we had throughout the summer.

Thanks to the OffPad project (o�pad.org) for sponsoring the internship;
without the funding, I would have missed the opportunity to go abroad.

Thanks to my dad, Svein, for nurturing my inquisitive mind by
patiently trying to answer my constant stream of questions about life, the
universe, and everything while I was growing up.

At last, I would like to thank Lisa for all her love and support
throughout my studies.

iii

offpad.org

iv

Contents

1 Introduction 1
1.1 Outline . 2
1.2 Background and Motivation 2
1.3 Problem Statement . 4
1.4 Research Methodology . 4
1.5 Related Work . 5
1.6 Main Contributions . 6

2 Technical Background 7
2.1 Security Concepts . 7

2.1.1 Confidentiality . 7
2.1.2 Integrity . 7
2.1.3 Availability . 8
2.1.4 Authentication . 8
2.1.5 Freshness . 8
2.1.6 Trusted Computing Base 8

2.2 Cryptographic Primitives . 9
2.2.1 Symmetric-key Cryptography 9
2.2.2 Hash Functions . 11
2.2.3 Merkle Trees . 12
2.2.4 Asymmetric-key Cryptography 14

2.3 Hardware Security . 20
2.3.1 Software Attestation 20
2.3.2 TPM . 20
2.3.3 ARM TrustZone . 21

3 SGX Tutorial 23
3.1 Background on Intel SGX . 23

3.1.1 SGX Memory Management 24
3.1.2 Life Cycle of an Enclave 26
3.1.3 Enclave Thread Mechanisms 27
3.1.4 Enclave Measurement 28
3.1.5 Enclave Identity . 29
3.1.6 SGX Software Attestation 32

3.2 Hardware environment . 35

v

3.3 Software environment . 35
3.3.1 SGX Platform Software 35
3.3.2 SGX Software Development Kit 36

3.4 Hands-on Tutorial . 36
3.4.1 Enclave Communication 41
3.4.2 Enclave Build Tools . 42

4 Accountable decryption using Intel SGX 43
4.1 Introduction . 43

4.1.1 Motivation . 43
4.1.2 Problem Statement . 43

4.2 Protocol Design . 46
4.2.1 Protocol Description 46
4.2.2 Cryptographic Building Blocks 48
4.2.3 Security Assumptions 49
4.2.4 Proof Structure . 50
4.2.5 Encryption and Decryption protocols 50
4.2.6 Inspection of the Log 53
4.2.7 Currency protocol . 54

4.3 Protocol Implementation . 54
4.3.1 Defining the Enclave 54
4.3.2 Enclave Initialization 56
4.3.3 Verification of Proofs 58
4.3.4 Decryption . 60
4.3.5 Main Application . 60
4.3.6 Prototype and Future Work 61
4.3.7 Configuration and Take in use 63
4.3.8 Protocol Operation . 64

4.4 Discussion . 65
4.4.1 Security Aspects . 65
4.4.2 Other Applications and Configurations 68

4.5 Summary . 69

5 Securing the Signal server using SGX 71
5.1 Introduction . 71
5.2 Motivation . 72
5.3 Technical Details . 73

5.3.1 Intel SGX . 73
5.3.2 Linux Containers . 73
5.3.3 Approach: SCONE secure containers 74
5.3.4 Other approaches: SecureKeeper and Graphene libOS 76
5.3.5 Signal protocol . 76
5.3.6 Signal server . 77

5.4 Summary . 78

vi

6 Conclusion 79
6.1 Critical Reflections . 80
6.2 Further Work . 80

vii

viii

List of Figures

2.1 The hierarchical model of trust in cloud computing architec-
ture. The layers below have full access to the resources of the
layers above. [7] . 8

2.2 Symmetric-key cryptosystem. Alice encrypts the message x
using the shared key k and sends the ciphertext message y
over an insecure channel to Bob. The message y is decrypted
using k to retrieve x. Oscar can only observe y. [45] 10

2.3 Principle of a hash function. Any message used as an input
to the hash function h produces a fixed size message digest.
By changing one character in a message, h will produce a
very different digest. [45] . 11

2.4 A Merkle Tree. The figure shows the authentication of a
value y4 ∈ Y = (y0, . . . , y7). The dotted node is the root
tree hash and is a unique representation of all the leaf nodes
(y0 to y7) in the tree. The drawn edges represent the sub-tree
needed to authenticate y4. The dark nodes are the values
needed to create the sub-tree. 13

2.5 Basic protocol for public-key encryption. Bob shares is
public-key kpub with Alice. Alice encrypts the message x
using kpub. Only Bob can decrypt y using his private key
kpri. [45] . 15

2.6 The Diffie-Hellman Key Exchange protocol. Alice and Bob
can compute the shared secret kAB by raising the public-key
they received from the other party to their own private-key.
[45] . 18

2.7 A basic Digital Signature protocol. Bob shares his public-
key with Alice, who can use it to verify messages from Bob.
Only the person who knows the corresponding secret-key
can create a verifiable signature. The signature can be seen as
a message that is encrypted by the private-key and therefore
can only be decrypted by the public-key. [45] 19

ix

3.1 SGX memory organization. The PRM is a reserved part
of the physical DRAM. The EPC is allocated inside the
protected PRM. The EPC holds the pages containing enclave
code and data. The EPCM contains a metadata entry for each
page in the EPC. [13] . 24

3.2 Attestation flowchart. The Challenger whats a Quote about
the Application Enclave running on the User Platform. The
Applications facilitates the attestation process. The Quoting
Enclave signs the attestation report from the Application
Enclave. The Challenger verifies the Quote before trusting
the Application Enclave. [31] 34

4.1 General view of the protocols involved in the Accountable
Decryption scheme. The figure shows the different actors
in the AD protocols. The User encrypts (E) data records
using the public encryption key ek and sends them to the
App. Provider. The user verifies the currency (C) of the
Decryption Device using the public verification key vk. The
Agent requests decryption (D) of data records from the
App. Provider. The request are added to the Log, and the
evidence/proofs are supplied to the Decryption service with
the requested record. 47

4.2 The proof of extension and proof of presence when adding
the request r7 to the log. 51

5.1 The SCONE architecture (green). The host OS uses a custom
kernel module to execute system-calls on behalf of the
SCONE container. The container runs the SGX enclave (blue)
that contains the application. The enclave also contains the
I/O shields, a thread scheduler, a minimal C library and a
system-call dispatcher. [3] . 75

x

List of Tables

3.1 An Enclave Page Cache Map (EPCM) entry containing
metadata about a single 4kb EPC page. [13] 25

3.2 A subset of the enclave signature structure (SIGSTRUCT).
The SIGSTRUCT contains the enclave authors signed certifi-
cate of the expected enclave measurement, enclave produc-
tion ID, and enclave version number. [13] 30

3.3 The KEYREQUEST structure. The request contains informa-
tion needed to derive the different types of keys. For exam-
ple, a Seal key needs a policy determining what enclave can
unseal the data. State could be saved using the strict MREN-
CLAVE policy, and a enclave update process must use the
MRSIGNER policy, and the version number (SVN) of the up-
dated enclave software. [13] 31

xi

xii

Listings

3.1 Enclave Definition Language (EDL) file. The EDL file defines
partition between the trusted and untrusted parts of the
application. Trusted ECALLs and untrusted OCALLs are
defined with information about the direction and size of the
buffers that are passed by reference. 37

3.2 The seal_secret ECALL. The function will seal a secret
number using the SGX SDK crypto libray. The sealed data
is passed by reference out of the enclave (see buffer direction
in Listing 3.1). 38

3.3 The print_secret ECALL. The function receives a reference
to some sealed data. The data is unsealed inside the enclave,
and then revealed by calling a OCALL that prints the secret
to the terminal. 39

3.4 Main function in the untrusted application. After initial-
izing the enclave from the static library file called "en-
clave.signed.so", the application allocates a buffer to hold the
sealed blob generated by the seal_secret ECALL. When the
ECALL returns, the buffer contains encrypted and integrity
protected ciphertext. The ciphertext is passed to the other
ECALL, which intentionally reveals the secret. 40

3.5 The enclave initialization function. The enclave token and
enclave code is used to create the enclave. The enclave ID
is used as a handle to the created enclave. The function
contains some additional code used to load, update, and
store a launch token. (created by the architectural Launch
Enclave if MRSIGNER is authenticated to launch enclaves,
i.e. the author has an Intel developer License). 41

3.6 The print_int OCALL. The function is defined in the EDL
file, allowing the enclave to call this function, which is
located outside the enclave. 41

xiii

3.7 Enclave configuration file. The enclave configuration de-
scribes the acceptable enclave configuration. It contains the
enclave ID and version numbers, information about the how
much memory to allocate in the EPC, the number of thread
storage structures to allocate and the attribute mask that de-
cides what attributes are acceptable. The configuration file
is covered by the author signature, and the enclave will not
boot if the configurations are changed. 42

4.1 Device state structure. The permanent state held by the
device is the root hash of the Merkle Tree log, and the two
RSA key-pairs used for decryption, signing. The public-keys
can be exported from the RSA type when needed. 55

4.2 SGX device interface definition (EDL file). The enclave
definition defines the interface to the device, and the
additional libraries that should be loaded into the enclave
during enclave creation (OpenSSL and the SDK seal library).
The ECALLs are defined with additional information about
the flow of information (in or out of the enclave). 56

4.3 Device initialization. After creating the device enclave, the
device must be initialized to generate the initial state, or to
restore the last state. 57

4.4 JSON representation of the proof of presence from Figure 4.2.
The natural tree structure of JSON-objects nicely represents
the binary Merkle Tree. The hexadecimal representation of
the hash-values are replaced with the same notation format
as used in Figure 4.2. 59

4.5 Recursive algorithm to traverse the JSON encoded proof tree
(Listing 4.4) and compute the root hash and leaf order. . . . 59

4.6 Device decrypt ECALL. The function receives the proofs and
the ciphertext to decrypt. After verifying the proofs, the root
tree hash is updated before the ciphertext is decrypted and
passed back to the untrusted application. 61

xiv

Chapter 1

Introduction

In recent years there has been a large push to move computing and
services to cloud infrastructures like Google Cloud, Azure, and Amazon
Elastic Compute. Using cloud infrastructure instead of building their own
provides a lot of convenience to service providers. Services can be easily
and cheaply deployed to scalable infrastructure with a lot of extra features
like different analysis and statistics tools.

Cloud infrastructure is very convenient to service providers, however,
a lot of trust has to be put in the cloud provider. Using a cloud provider
for storage should be fine because the data can be encrypted before being
transported to the cloud, but when using the cloud for computation, the
data must often be decrypted first and loaded into the memory of a virtual
server in the cloud.

The virtual machine that runs the server is only protected from other
virtual machines on the same platform and is not protected in any way
from the cloud provider’s Virtual Machine Manager or administrator
management tools. Therefore we have to trust the cloud provider with
access to our confidential data if we chose to use their services, and we
have to trust that their infrastructure protects our virtual machine from
lateral movement from co-hosted virtual machines.

Hardware technologies like the Trusted Platform Module (TPM) and
Intel’s Trusted Execution Technology (TXT) can be used to create a root-
of-trust in the booting process of operating systems or virtual machines
by creating a trusted execution environment (TEE) for the software. These
technologies can to some extent give some integrity guarantees, but cannot
protect the confidentiality of the software running inside the TEE. In the
mobile space, ARM’s TrustZone technology can create a TEE that is able to
protect the confidentiality of privileged software from the untrusted user-
space programs, but not the other way around.

In an effort to give the desired confidentiality and integrity guarantees
to user-space software, Intel has improved on TXT by developing new
hardware security features, an extension to their x64 instruction set called
the Software Guard Extensions (SGX). This technology is supposed to be able
to create TEEs for user-space software that are protected from privileged

1

software.

1.1 Outline

The rest of the thesis is organized as follows:

Chapter 1 . The rest of this chapter describes the background and
motivation for the work presented in this thesis. We then define
our research questions and research methodology and related work,
before summarizing with the main contributions of the thesis.

Chapter 2 describes the technical background of the thesis. We will
describe basic principles from computer security, cryptographic
primitives used throughout the thesis, and other hardware security
technologies.

Chapter 3 contains a detailed description of the Intel Software Guard Ex-
tensions technology. The chapter starts by describing the theoretical
part of the technology, and from Section 3.2 and out we describe the
practical principles of using the technology.

Chapter 4 describes a protocol for accountable decryption of user-data
with help from a trusted hardware device and an append-only
request log. We first describe the motivation and the problem that we
aim to solve. We then detail the protocol and design before describing
the implementation of a prototype system. The chapter concludes
with a discussion on the implementation and security of the proposed
design.

Chapter 5 discusses different approaches for securing the messaging
server used by the Signal Messenger application. At the end of the
chapter, there is a brief discussion on the viability and security of the
proposed solutions.

Chapter 6 concludes and gives some critical reflections on the results of
the tutorial, and the two experiments. We end the thesis by proposing
some further work on the technologies and experiments described in
this thesis.

1.2 Background and Motivation

The goal of this work is to provide a better understanding of the recent
technology introduced in the newer Intel processors (starting with the
Skylake architecture) under the name of Secure Guard Extensions (SGX).
We base our work on the rather few existing resources that describe this
technology, including Intel reports, workshop papers from Intel designers,
and also a few refereed research works. However, the complexity of

2

programming with this new security technology is rather daunting and
begs for more systematic investigations. Even more so in the case of Intel
SGX which was designed with application developers as intended users,
thus not highly skilled in such low-level security programming.

Our goal is to give a comprehensive hands-on tutorial on how one
can start programming using Intel SGX. This includes how to enable and
setup the hardware and firmware aspects, as well as how to prepare a
programming environment, including SDKs and IDEs. It also includes
higher level concepts that SGX uses as well as explaining the various
choices that the SGX designers made and what were their security concerns
and their implications on the programming part. This work tries to
detail various aspects ranging from high-level architectural aspects, and
workflow, to intermediary level of programming API and development
process, to even lower levels like explaining why and how the memory
and communication are protected by the on-chip Intel SGX architecture
features.

In order to make this tutorial fit the actual practical aspects, and not
just extract it from the experience of others (which are currently too few),
we also went into developing two novel applications where the features of
Intel SGX were crucial. One application is called Accountable Decryption
and was developed together with the security team in University of
Birmingham lead by Prof. Mark Ryan (where the ideas and initial
descriptions came from). The second application is to secure the server
side of the novel and popular end-to-end encryption protocol for instant
messaging called Signal. Both these applications are interesting in their
own right, and have specific applications in various fields, e.g., the
accountable decryption can be instantiated in the health domain or in the
police/military domain.

The practical work was done in the Security Lab of Institute for
Informatics of the University of Oslo and required purchasing such new
Intel processors that supported SGX. This work already proved useful as
a quick upstart for works of other students and staff in Birmingham that
wanted to start experimenting with SGX.

Apart from the investigative and developer work done with SGX, the
two applications enabled by SGX proved to be the more exciting parts
of this work. It is very motivating to know that one can develop an
application that removes all trust assumptions from all vendors except the
processor one; i.e., developing with SGX means that one is not relying
even on the operating system, nor on secondary hardware like the TPM,
nor on a specific boot sequence and correct drivers/platforms, nor on
hypervisors in the clouds. Instead, on any platform that provides Intel
SGX, our applications can run with very high-security guarantees.

In particular, the accountable decryption application is a general
framework that could be instantiated in various highly motivating specific
software. This is even more motivating in the current age of mass

3

surveillance and privacy infringements, as this is one of the main goals
of accountable decryption. We detail several such specific possible
implementations of accountable decryption later.

1.3 Problem Statement

The theoretical background and development process of the SGX technol-
ogy is very complex and difficult to get started with. To develop a secure
application using SGX the developer should have a firm understanding of
the technology and what security guarantees that SGX can provide to their
software. We want to create a comprehensive guide to the technology, in-
cluding the theoretical background of SGX and a hands-on tutorial on how
to develop software using the technology. The first research question thus
is:

1. (a) What are the theoretical underpinnings of the SGX technology
and what security guarantees can SGX provide?

(b) What are the hardware and software requirements for develop-
ing and deploying software that uses SGX, and how can we pro-
gram secure software using the technology?

Because the SGX technology is still quite new, there are not that many
applications that make use of it. We want to explore how SGX can be
utilized to create secure applications by developing an SGX application
from the ground up, or by adapting existing applications to use SGX and be
able to provide better security guarantees. These would provide the reader
a walk-through exemplification of the usage of SGX in practice. The second
research question thus is:

2. (a) How to create novel applications that makes use of the SGX tech-
nology in a meaningful way and provides security guarantees
that otherwise would be difficult to achieve?

(b) Can existing applications be adapted to make use of the SGX
technology to achieve better security guarantees?

1.4 Research Methodology

Gordana Dodig-Crnkovic describes in Scientific Methods in Computer Sci-
ence [18] three different scientific methods in computer science:

Theoretical Computer Science adhere to the traditions of Logic and Math-
ematics and follows the very classical methodology of building theo-
ries as logical systems with stringent definitions of objects and oper-
ations for deriving/proving theorems. Theoretical computer science
seeks largely to understand the limits on computations and the power

4

of computational paradigms. Theoreticians also develop general ap-
proaches to solving problems [18].

Experimental Computer Science is most effective at on problems that re-
quire complex software such as the creation of software development
environments, or the construction of tools to solve constrained opti-
mization problems. The approach is largely to identify concepts that
facilitate solutions to a problem and then evaluate solutions through
construction of prototype systems [18].

Computer Simulation makes it possible to investigate regimes that are
beyond current experimental capabilities and to study phenomena
that cannot be replicated in laboratories, such as the evolution of the
universe [18].

The research in this thesis adheres to the methods of experimental
computer science, where we will experiment by proposing a solution
to a real-world problem, and creating a prototype application using
the SGX technology, and then evaluate the security of the solution.
Before proposing solutions and experimenting, we must understand the
underlying technology and the security guarantees that it can provide.
Chapter 3 contains a systematization of knowledge regarding the SGX
technology, and a hands-on tutorial with practical examples. Chapter 4 and
5 contain the experiments and the discussions of their results. Chapter 6
will conclude with the results, give some critical reflections, and hint about
further work.

1.5 Related Work

The Software Guard Extensions (SGX) is a relatively new technology, only
made available with the 6th generation Intel Skylake CPUs in 2015, so there
is a limited amount of available research about the technology. Costan
and Devadas’s Intel SGX Explained is an excellent write up on the low-level
workings of SGX, along with a very comprehensive technical background
about the cryptography, and preceding hardware security technologies. A
lot of the technical details about SGX in this thesis is based on their paper,
however, it does not cover any practical information about how to go about
writing SGX-enabled software.

There have been some notable papers [3, 7, 9, 53] describing applica-
tions of SGX. These papers are mostly concerned with adapting existing
applications for use with SGX and we discuss some of their solutions in
Chapter 5.

Because SGX claims quite strong security guarantees, there has also
been some research [22, 39, 54] aimed at creating attacks against software
using the SGX technology. We do not try to attack the prototype software
given in this thesis, but we do discuss some of the possible security issues
they have revealed.

5

1.6 Main Contributions

• In Chapter 3 we have compiled a Systematization of Knowledge of the
Intel Software Guard Extensions technology along with a practical
example of how to use some of the basic functionality of the
technology to create a simple application. This answers research
question 1

• In Chapter 4 we implemented a prototype of a protocol for account-
able decryption by using the capabilities that SGX can provide. We
also discussed the security considerations of our implementation.
This answers research question 2a.

• In Chapter 5 we proposed solutions to how we could use SGX to
secure the central server used by the Signal Messenger by running
server application inside a secure SGX enclave. We discussed the
viability and security issues with the proposed solution. This answers
research question 2b.

6

Chapter 2

Technical Background

2.1 Security Concepts

This section covers different security principles and concepts used when
describing the security of computer systems and software. The concepts
are used throughout the whole thesis when describing the security of SGX
technology and the proposed applications of said technology. The section
will start by describing basic concepts like confidentiality, integrity, and
availability to cryptographic primitives and concepts of hardware-based
security.

2.1.1 Confidentiality

Confidentiality is the prevention of unauthorized disclosure of information
[21]. Confidentiality can be achieved by enforcing access control to the
sensitive information, or by using cryptography to make the information
unreadable to unauthorized parties.

Information might not only be the content of a message, but also the fact
that a message has been sent from one party to another. Messages, actions
or events are unlinkable if an attacker cannot distinguish whether they are
related or not. Hiding who is sending the messages, or engaging in the
events requires another property such as anonymity.

Confidentiality protection guarantees that information can be transmit-
ted over an insecure medium without an adversary being able to disclose
the information.

2.1.2 Integrity

Integrity is the prevention of unauthorized modification of information
[21]. This often refers to the prevention or detection of unauthorized
alterations of information. Integrity can also be applied to the internal
states of a computation, making sure the correct procedures are followed,
ensuring the integrity of the computed information.

7

Application

Operating System

Hypervisor

Firmware

Management tools

Hardware

Figure 2.1: The hierarchical model of trust in cloud computing architecture.
The layers below have full access to the resources of the layers above. [7]

Integrity protection in the context of communication guarantees that
the receiver of a message will either, receive a message that was sent by the
sender, or detects if a message, in any way has been altered.

2.1.3 Availability

2.1.4 Authentication

2.1.5 Freshness

Integrity does not protect against messages being replayed for the receiver.
This is what is called a replay attack. Freshness protection guarantees that if
multiple messages are sent, the receiver will obtain the latest message, or
detect if a message is being replayed [13].

2.1.6 Trusted Computing Base

Trusted Computing Base was first termed in 1983 by the US Department of
Defense in their "Orange Book" on trusted computing systems.

Definition 1 Trusted Computing Base [33]
The totality of protection mechanisms within a computer system – including
hardware, firmware, and software – the combination of which is responsible
for enforcing a security policy. A TCB consists of one or more components
that together enforce a unified security policy over a product or system.
The ability of the TCB to correctly enforce a security policy depends solely
on the mechanisms within the TCB and on the correct input by system
administrative personnel of parameters (e.g. a user’s clearance) related to the
security policy.

Modern computing systems rely on a hierarchical computing structure,
where every layer trusts the layer below to behave correctly. The TCB of

8

software running in a cloud environment will not only include the security
features of the software itself, but also all privileged software on the host
computer. This might include the operating system, the virtual machine
manager (VMM), also called a hypervisor, and the BIOS firmware. The
hierarchy ensures we must implicitly trust all the levels below because the
lower levels have access to every level above.

Most CPU architectures, including Intel’s x86 implements protection
rings to protect the operating system from user software. The operating
system often runs in the lowest ring (ring 0 in x86), where it has all
privileges over the hardware resources. User programs usually run in the
highest ring (ring 3 in x86), and must request resources using system calls.
Many CPUs also supports special “negative” protection rings used by a
hypervisor; this allows the hypervisor to virtualize hardware resources for
multiple virtual machines, with operating systems, all running in ring 0.

The software must also trust the underlying hardware to behave
correctly. Figure 2.1 show how the hierarchical computing model creates
a large TCB for a small application.

2.2 Cryptographic Primitives

Many of the security concepts presented in section 2.1 can be achieved by
using cryptography; this section will describe some of the cryptographic
primitives referenced throughout this paper.

2.2.1 Symmetric-key Cryptography

Symmetric-key encryption algorithms, sometimes, called secret-key, or
single-key encryption algorithms are encryption schemes that are based on
a shared secret between the communicating parties [45].

The shared secret-key k allows two users, Alice and Bob, to commu-
nicate securely over an insecure channel, like the Internet or a public Wi-
Fi. Alice can use the key k to encrypt message x, yielding the ciphertext
y = ek(x), which is transmitted to Bob. By applying the inverse operation
to y, Bob is able to decrypt the ciphertext, and regain the message x = dk(y).

As seen in figure 2.2, if Alice and Bob agreed on the secret key k over
a secure out-of-band channel, like by meeting in person, they are able to
communicate securely over the insecure channel. An adversary, Oscar,
is only able to read the ciphertext y, and without the key k, it should be
computationally infeasible to recover the message.

By computationally infeasible we mean that the encryption algorithm
should be constructed in a way that the best attack on the ciphertext should
be no better than trying all possible keys in the key-space. This is what
is called an exhaustive key-search attack. A modern symmetric encryption
scheme using 128-bit keys have 2128 possible keys, and it is currently

9

Figure 2.2: Symmetric-key cryptosystem. Alice encrypts the message x
using the shared key k and sends the ciphertext message y over an insecure
channel to Bob. The message y is decrypted using k to retrieve x. Oscar can
only observe y. [45]

considered infeasible to recover the plaintext using exhaustive key-search
attacks [45].

Symmetric-key algorithms can be split into two types, stream ciphers,
and block ciphers. Stream ciphers use a key stream to encrypt every bit
of the plaintext individually, while block ciphers encrypt entire blocks of
plaintext bits at a time using the same key for every block. Because block
ciphers use the same key to encrypt every block of data, identical blocks of
data yield identical blocks of ciphertext.

There are many different modes of operation, giving different security
guarantees. Using a block cipher in the way described above is called the
electronic code book (ECB) mode.

Modes of Operation

To protect the confidentiality of a message with repeating patterns, a
block cipher can be used in cipher block chaining (CBC) mode. By adding
(XOR) each ciphertext block to the next plaintext block before encrypting it,
repeating plaintext will no longer generate repeating blocks of ciphertext.
By adding a random initialization vector (IV) to the first block of plaintext,
each block of ciphertext is dependent on the previous block and the IV.

Encryption is not enough to create a secure channel; if Alice wants
to be certain that (1) the encrypted message was created by Bob, and (2)
nobody has tampered with the ciphertext, she would need the additional
properties, authentication, and integrity for her messages.

The Galois Counter Mode (GCM) is an encryption mode that provides
both these properties. GCM uses a block cipher as a stream cipher by
encrypting the IV and a counter and using the ciphertext block as the
keystream. To create a unique keystream, the counter is incremented for
each block that is generated.

10

Figure 2.3: Principle of a hash function. Any message used as an input to
the hash function h produces a fixed size message digest. By changing one
character in a message, h will produce a very different digest. [45]

For authentication, GCM performs a chained Galois field multiplication
over all ciphertext blocks to create an authentication tag. An additional
authenticated data (AAD) parameter to the encryption can be used to
authenticate some data that cannot be encrypted, like protocol versions
or sequence numbers. The receiver generates the same authentication tag
while decrypting the data, and if it matches the tag associated with the
ciphertext, the decryption is authenticated and integrity protected [45].

2.2.2 Hash Functions

Hash functions are an important cryptographic primitive and are used to
compute a short and fixed size digest or the hash value of an arbitrarily long
message. The hash value can be seen as an unique representation of the
message, like a fingerprint [45]. Figure 2.3 shows the input and output
behavior a hash function, and how changing only one letter in the input,
creates a different and unrelated output.

Hash functions play an important role in digital signatures (see 2.2.4),
where, because the hash is considered a unique representation of the
message, only the hash of the message needs to be signed.

This is necessary, because; (1) the operations used in digital signatures
are very slow to compute compared to the operations used in symmetric-
key system, (2) a digital signature is the encryption of a document when
using the private key instead of the public key, making the signature as
long as the message itself, and (3) it could lead to security issues, because
asymmetric cryptography (see section 2.2.4) operates on blocks the same
size as the key length, the blocks of the message would have to be signed
individually. Without making signature blocks dependent on previous

11

blocks, an attacker could remove or reorder parts of the message [45].
The short hash value computed over the document is unique for the

given document; there is no feasible way to create a different document
with the same hash, making a signed hash cryptographically equivalent to
signing the whole document.

A cryptographic hash function must have the following properties in
order to be secure:

1. preimage resistance

2. second preimage resistance

3. collision resistance

Preimage resistance means the hash function must be a one-way function,
meaning, it must be infeasible, given the hash value, to find the message
given as input to the hash function.

Second preimage resistance means it should be computationally infeasible,
given a message, to find a different message with the same hash value.

Collision resistance means it should be computationally infeasible to find
any two messages with the same hash value. Because of the Birthday
Paradox, this is the most difficult property to achieve and means that a hash
function that generates 160-bit hash values, only provide

√
160 = 80 bits of

security.

2.2.3 Merkle Trees

The Merkle Tree [44] is a binary tree, where the leafs are hashes of a data
item, and parent nodes are hashes of the concatenation of the two child
nodes. The Merkle tree can be used to authenticate an individual or subsets
of data items in a larger set of data items. The main building block in a
Merkle tree is a cryptographic hash function, used to recursively build a
binary tree of hash values over the entire set.

Given a set of data items Y = (y0, y1, . . . , yn), the algorithm can
authenticate an arbitrary yn. To authenticate yi we define the function
H(i, j) as follows:

1. H(i, i) = hash(yi)

2. H(i, j) = hash(H(i + j− 1)/2, j) , H((i + j + 1)/2, j))

H(i, j) is a function of yi, yi + 1, . . . , yj, and can be used to authenticate
yi through yj. The only value needed to authenticate the whole set is the
root node H(0, n), which is a unique representation of the entire set.

If using a normal hash function over the entire set, we would also only
need the one value to authenticate the entire set, but it could not be used to
authenticate a single item in the set.

Figure 2.4 shows how the value y4 can be authenticated. The partial
tree illustrated by the lines between the nodes represents the proof that y4

12

y
0

y
1

y
2

y
3

y
4

y
5

y
6

y
6

H(0,7)

H(0,1) H(2,3) H(4,5) H(6,7)

H(0,3) H(4,7)

H(0,0) H(1,1) H(2,2) H(3,3) H(4,4) H(5,5) H(6,6) H(7,7)

Figure 2.4: A Merkle Tree. The figure shows the authentication of a value
y4 ∈ Y = (y0, . . . , y7). The dotted node is the root tree hash and is a unique
representation of all the leaf nodes (y0 to y7) in the tree. The drawn edges
represent the sub-tree needed to authenticate y4. The dark nodes are the
values needed to create the sub-tree.

is part of H(0, 7). By providing the hash values from the nodes in the partial
tree along with the item y4, the root node can be recomputed, proving the
item is part of the set Y, represented by the root node H. This root node can
be distributed over a secure channel, or signed using a digital signature (see
chapter 2.2.4).

The operations used to authenticate if y4 ∈ Y:

1. H(4, 4) = hash(y4)

2. H(4, 5) = hash(H(4, 4), H(5, 5))

3. H(4, 7) = hash(H(4, 5), H(6, 7))

4. H(0, 7) = hash(H(0, 3), H(4, 7))

Using this method, only log2 n values are needed to create the partial
Merkle tree used to authenticate a data item. About half of these values
are redundant. In figure 2.4 we observe that only the values represented in
the darker nodes are needed to recompute the root node H(0, 7). H(4, 4)
is computed from the data y4, and from this and H(5, 5), H(4, 5) can
be computed. Finally, the computed candidate root node H(0, 7) can be
compared with the known root node H. If H(0, 7) = H, y4 is proven to be
part of the set.

The cryptographic properties provided by cryptographic hash func-
tions (section 2.2.2) guarantees the the authentication tree actually authen-

13

ticates the chosen leaf. We observe that, by changing one bit in any of the
data items; its computed hash value would be different, and this change
would cascade to the top, and produce a different root hash.

2.2.4 Asymmetric-key Cryptography

Asymmetric-key cryptography, also called public-key cryptography is
based on very different principles than symmetric-key cryptography,
where the same secret key is used for encryption and decryption. In
asymmetric-key algorithms, there are different keys for encryption and
decryption; the encryption key, or public-key can only be used for
encryption and does not need to be kept secret. The decryption key or
private-key is used for decryption and must be kept secret.

While symmetric-key encryption has been used for thousands of
years (like the Caesar Cipher), asymmetric-key cryptography is a very
new concept, discovered in the 1970s. While modern symmetric-key
encryption schemes like AES are very secure and very fast, they have some
shortcomings compared to asymmetric-key cryptography:

The key distribution problem arises when Alice and Bob want to estab-
lish a secure channel between each other for the first time. If they use
the insecure channel to exchange the secret key, the key is no longer
secret, and cannot be used to create the secure channel. Alice and
Bob could meet in person for the key exchange, but this would not
be practical in the context of digital communications. Symmetric key
distribution schemes like the Kerberos protocol can be used to establish
a secure channel between two users that do not already share a secret,
but the protocol requires that the parties have a secure channel to a
central service provider.

The number of keys when keeping pair-wise keys between n parties is
n(n−1)

2 . In an organization with n = 2000 employees, each employee
would need to keep n− 1 keys each, and the key distribution service
would need to generate almost 2000000 key pairs, and distribute
almost 4000000 keys.

No non-repudiation because the shared secret gives both parties the same
capabilities. Alice and Bob would be able to authenticate messages
between each other, but Alice would not be able to prove to a third
party a that Bob had sent a given message because she could have
created the message herself.

Figure 2.5 shows the basic principle of public-key encryption. Bob can
generate his key k and can share the public part of the key kpub with Alice.
Alice encrypts her message and sends it to Bob, who is able to decrypt it
using the private part of the key kpr.

14

Figure 2.5: Basic protocol for public-key encryption. Bob shares is public-
key kpub with Alice. Alice encrypts the message x using kpub. Only Bob can
decrypt y using his private key kpri. [45]

Definition 2 One-way function [45]
A function f () is a one-way function if:

1. y = f (x) is computationally easy, and

2. x = f−1(y) is computationally infeasible.

Unlike symmetric-key algorithms, asymmetric-key algorithms are of-
ten based on number-theoretic functions, and specifically one-way functions.
There are two popular one-way functions used in asymmetric cryptogra-
phy schemes. The first is the integer factorization problem, where the problem
is, given two large primes, it is easy to compute the product. However, it
is very difficult to factor the product. The second is the discrete logarithm
problem, where the problem is based in group theory, and depends on the
difficulty of computing discrete logarithms modulo a prime when the pa-
rameters are very large [45].

RSA

The RSA (Rivest-Shamir-Adleman) crypto scheme is based on the integer
factorization problem. By representing the plaintext bitstring as an element
x in the integer ring {0, 1, . . . , n − 1}, the encryption and decryption
algorithms are very simple:

RSA Encryption [45]
Given the public key (n, e) = kpub and the plaintext x, the
encryption function is:

y = ekpub(x) ≡ xe mod n

where x, y ∈ {0, 1, . . . , n− 1}

15

RSA Decryption [45]
Given the private key d = kpr and the ciphertext y, the decryption
function is:

x = dkpr(y) ≡ yd mod n

where x, y ∈ {0, 1, . . . , n− 1}

In practice, x, y, n, and d are very large numbers (over 1024 bits). The
exponent e and d are often called the public- and private exponent and
the prime number n is called the public modulus. These parameters are
carefully generated to achieve the desired properties.

RSA Key Generation [45]
Output: public key: kpub = (n, e) and private key: kpr = (d)

1. Choose two large primes p and q.

2. Compute n = p · q.

3. Compute Φ = (p− 1)(q− 1).

4. Select the public exponent e ∈ {0, 1, . . . , Φ(n)− 1} such that

gcd(e, Φ(n)) = 1

5. Compute the private exponent d such that

d · e ≡ 1 mod Φ(n)

Finding the large primes in step 1 is not trivial, and is usually done
using probabilistic algorithms, where the primes are tested until we are
reasonably sure they are in fact prime. In step 4 and 5, we can use the
Extended Euclidean Algorithm to find a public exponent e with the required
property, and at the same time finding the inverse of e, and thus also finding
the private exponent:

d = e−1 mod Φ(n)

Because RSA encryption and decryption is based on performing
modular exponentiation on very large numbers (above 1024-bit), the
naive approach to calculating the result by straightforward exponentiation
would require around

21024 ≈ 10300

multiplications, and would not be possible to compute. Fast exponenti-
ation makes RSA feasible and can be achieved by the square-and-multiply
algorithm, also called binary exponentiation [45]. The algorithm scans the
bits in the exponent left to right (from most to least significant bit). For
every bit in the exponent, the current result is squared. If the currently

16

scanned bit is a 1, a multiplication of the current result by x is executed
after the squaring. The algorithm dramatically reduces the complexity of
exponentiation to an average of

1.5 · 1024 = 1536

multiplications, but can in some cases pose a security risk to the private
key.

RSA in Practice

There are some security consideration to be able to use RSA in practice [45].

• RSA is deterministic, and thus the same plaintext will always encrypt
to the same ciphertext.

• Plaintext values of 0, 1 or -1 would encrypt to itself.

• RSA is malleable, meaning an attacker can make predictable changes
to the plaintext by manipulating the ciphertext. For example, by
replacing the ciphertext y with (sey), where s is some integer. The
receiver would decrypt:

(sey)d ≡ sedxed ≡ sx mod n

A modern padding scheme like Optimal Asymmetric Encryption Padding
(OAEP) is a specified standard for use with RSA, and solves all the issues
above by adding some randomness to the structure of the plaintext.

Another issue with RSA arises while decrypting the ciphertext; during
the square-and-multiply algorithm, the CPU performs different operations
based on the bits in the private decryption exponent d, and because these
operations take a different amount of time (and power) to compute, the
decryption exponent can be observed through different side-channels, like
the timing behavior or the power-draw of the microprocessor. One possible
countermeasure could be having all operations perform in constant-time
(and power) [45].

RSA can be used for establishing a shared secret key for use with
symmetric-key encryption schemes. Alice can generate a secret key,
encrypt it using Bobs public-key, then transmit it to Bob. This approach
is what is called a hybrid encryption scheme. Using RSA like this works
fine, but it does not provide forward-secrecy, i.e., if Bobs private-key was
compromised at a later time, all of their secret-keys, or session-keys, along
with all of their communications could be compromised.

Diffie-Hellman Key Exchange

The Diffie-Hellman Key-Exchange (DHKE) was the first asymmetric-key
scheme to be published. It is widely used in modern encryption protocols

17

Figure 2.6: The Diffie-Hellman Key Exchange protocol. Alice and Bob can
compute the shared secret kAB by raising the public-key they received from
the other party to their own private-key. [45]

like Transport Layer Security (TLS), Internet Protocol Security (IPSec) and
Secure Shell (SSH) to solve the key-distribution problem.

DHKE is based on the discrete logarithm problem and the basic idea
behind DHKE is that exponentiation in a finite cyclic group of order p,
where p is prime, is a one-way function and that the exponentiation is
commutative.

k = (αx)y ≡ (αy)x mod p

The value k is the shared secret that can be used to derive a session key
between the two parties [45]. The values α and p, also called the domain
parameters, are public parameters that both parties must know before
starting the protocol. First, a large prime p is generated, then choosing
an integer α ∈ {2, 3, . . . , p− 2}, before publishing both p and α. When both
Alice and Bob know the domain parameters, they can perform the DHKE
protocol. In practice there are standardized domain parameters [35] that
are included with common cryptographic libraries.

From figure 2.6, we observe that both Alice and Bob compute the same
session-key kAB, and can use this key to encrypt their communication using
a fast and secure symmetric-key scheme.

DHKE can also be implemented using elliptic-curve cryptography (ECC),
which is also based on the discrete logarithm problem. Using ECC, the
keys can be much shorter, because of how the best attacks on traditional
asymmetric-key (prime factorization) are not applicable to groups of
elliptic-curves. Because elliptic-curve Diffie-Hellman (ECDH) uses shorter
parameters, it is faster and easier to implement on power-constrained
hardware devices like smart cards [45].

Using DHKE like in figure 2.6 is not safe at all, and is what is called
anonymous Diffie-Hellman. Alice and Bob have no way of knowing if
the public-keys kpub,A and kpub,B they received actually came from either
Alice or Bob. If the adversary Oscar is able to intercept the protocol

18

Basic Digital Signature Protocol

Alice Bob
generate kpr,B and kpub,B

kpub,B←−−−−−−−−−− publish public key
sign message:
s = sigkpr,B

(x)
(x,s)←−−−−−−−−−− send message + signature

verify signature:
verkpub,B

(x, s) = true/false

Figure 2.7: A basic Digital Signature protocol. Bob shares his public-key
with Alice, who can use it to verify messages from Bob. Only the person
who knows the corresponding secret-key can create a verifiable signature.
The signature can be seen as a message that is encrypted by the private-key
and therefore can only be decrypted by the public-key. [45]

messages between Alice and Bob, Oscar is able to perform a man-in-the-
middle (MITM) attack on the protocol. Oscar can create is own pair of public
keys, and establish secure channels both with Alice and Bob by posing as
the other party in the protocol. We cannot trust the public-keys kpub,A or
kpub,B if they cannot be securely linked to Alice or Bob. To achieve this link,
we can use a digital signature scheme to sign the public-keys.

Digital Signatures

A digital signature, like its analog counterpart, is used to tie a document
to some entity. The purpose of a digital signature is to provide message
integrity (see section 2.1.2) and message authentication, or data origin
authentication, along with non-repudiation. The last property is the
key principle needed for digital signatures that cannot be provided by
symmetric-key cryptography. If a message has been signed by the sender,
the sender cannot deny creating the message.

The principle behind using asymmetric-key cryptography for digital
signatures is to use the private-key to sign a message, and then the veri-
fying party can use the corresponding public-key to verify the signature.
The signature itself is a large integer that only could have been generated
by the holder of the private-key. A basic digital signature protocol only
needs two operations, Sign and Verify, as seen in figure 2.2.4. The sender
signs the message to generate the signature, then sends the message and
signature to the receiver. The receiver then uses the verify operation on the
message and signature, which returns either valid or invalid.

RSA can be used to create digital signatures; the RSA Signature scheme
works by encrypting the message x using the private exponent d. This

19

creates a "ciphertext", or signature s:

s = xd mod n

The signature s can only be decrypted, or verified by the public exponent
e. The mathematical relationship between the public exponent and the
private exponent (described in section 2.2.4) ensures this property. The
verification operation se turns the signature back into the original message:

se = (xd)e = xde ≡ x mod n

The verifier then compares x′ with the original message x, and if they
match, the signature is verified [45].

2.3 Hardware Security

This section describes some basic concepts and technologies related to
hardware-enabled security. The CPUs in modern architectures have
been extended by many security features; we have already described the
protection rings in section 2.1.6, used to protect the hardware resources.
Other mechanisms, like Write Protect (WP) and No-Execute Enable/Disable
(NXE/XD) bits are used to protect memory pages from being overwritten,
and data pages from being executed [26].

2.3.1 Software Attestation

The security model of Intel SGX depends on running the trusted parts of the
software in isolated containers. This model hinges on software attestation
(see section 3.1.6 about how SGX implements software attestation). The
software inside the container is measured by a trusted hardware module
before the container starts running. The software then has the hardware
module create an attestation signature by signing the measurement with its
private key. The attestation signature could only have been signed by the
tamper-resistant hardware module, and thus the verifier can be convinced
that the software is correctly running inside an isolated container and
protected by the trusted hardware [13].

2.3.2 TPM

The Trusted Platform Module (TPM) introduced the software attestation
model. The TPM design relies on a tamper-resistant chip to hold the
attestation key and to perform software attestation. The TPM relies on
the software running on a system to report its own cryptographic hash
to the TPM, where the TPM extends the measurement of all the reported
software. The TPM expects the software in every stage of the booting
process to report the hash of the software in the next stage, thus creating a
measurement of all software loaded during the booting process.

20

A problem with the TPM’s model is that different computers from
different vendors are running a variety of different OS kernels, drivers
and firmware, and there is no source of the expected measurements of the
different software modules.

The TPM can also be used for other cryptographic operations like
encryption and decryption of data using a key that never leaves the TPM
chip. These operations are called seal and unseal in the TPM documentation.
Combined with the software attestation, the TPM can be used to only
decrypt the keys used for full-disk encryption if the measurements of the
firmware and bootloader software were as expected.

Intel’s Trusted Execution Environment is a set of hardware features in
their CPUs, and is the precursor to the Software Guard Extensions. Intel
TXT depends on the TPM to allow software running on a system to create
a measured launch environment for launching other software. This can
be used for the secure booting process described earlier, but also to start
the measurement chain when launching a software container like a virtual
machine.

2.3.3 ARM TrustZone

ARM TrustZone [2] is a set of hardware modules for the ARM processor
architecture that can be used to partition the system’s resources between a
secure world, which hosts trusted containers, and a normal world which runs
the normal software stack. The two worlds have independent memory
spaces and different privileges. The code running in the normal world
does not have access to the secure world address space, while code
running in the secure world can get access to the normal world address
space. The hardware enforces the partitioning, making sure no secure
world resources can be accessed by normal world code without using
defined API’s to access the resources. Typical use cases for the trusted
execution environment provided by ARM’s TrustZone include; trusted boot,
authentication, payment content protection, crypto and mobile device
management1.

1https://developer.arm.com/technologies/trustzone 13/10-17

21

https://developer.arm.com/technologies/trustzone

22

Chapter 3

SGX Tutorial

3.1 Background on Intel SGX

The Intel Software Guard Extensions (SGX) [42] is a set of extensions for
Intel’s instruction set architecture (ISA) on their newer lines of CPUs (6th
generation, and newer). SGX is meant to provide a trusted execution
environment (TEE) for user-space applications; to achieve this, SGX
allows applications to create a protected memory area inside its address
space called an enclave. This protected environment enforces strict access
control and transparent encryption to provide confidentiality and integrity
protection, even from privileged software such as the BIOS, hypervisor or
the operating system (see figure 2.1 of the trust hierarchy). The software
running inside the protected enclave is cryptographically measured, and
can be reported back to the client; allowing for the trusted execution of
software and secure provisioning of secrets to a remote and untrusted
platform, as is often required in distributed systems.

As with the TPM [4, 15] or TXT [23], the security model in SGX relies
on software attestation. However, Intel SGX reduces the trust requirements
from the CPU & TPM providers to just the CPU provider; and thus reduces
the size of the Trusted Computing Base (TCB) compared to the TPM by
assuming all software outside the enclave to be untrusted.

While the TPM is a discrete hardware module, soldered to the platform
chipset, SGX is contained inside the CPU package. The functionality
provided by SGX is mostly implemented in the CPU’s microcode, but
the protection from physical attacks on main memory is provided by a
hardware unit inside the CPU called the memory encryption engine (MEE).
The MME transparently decrypts and encrypts reads and writes to the
protected parts of memory; this ensures that the data is only kept as
plaintext when residing in the cache, inside the CPU.

This section will describe different technical aspects of the SGX
architecture and programming model in some detail.

23

3.1.1 SGX Memory Management

In figure 3.1 we observe the different layers of abstraction used the the
SGX memory model. This section will describe the memory management,
layout and organization used in SGX to isolate the trusted enclave.

Figure 3.1: SGX memory organization. The PRM is a reserved part of the
physical DRAM. The EPC is allocated inside the protected PRM. The EPC
holds the pages containing enclave code and data. The EPCM contains a
metadata entry for each page in the EPC. [13]

SGX Physical Memory Layout

To protect the enclave’s memory from privileged software, SGX uses a part
of physical memory called the Processor Reserved Memory (PRM), which is
a continuous part of DRAM that cannot be accessed by any software code,
not even by SMM (System Management Mode) code, which is at the lowest
BIOS level, normally used by motherboard manufacturers to control fan
speed or to emulate missing hardware.

SGX reserves a part of the PRM for the Enclave Page Cache (EPC), and
EPC pages are only accessible when the processor is running in Enclave
mode. Software outside an enclave cannot access the EPC, which is a key
aspect of the memory isolation enforced by SGX to ensure its strict security
guarantees.

The EPC hold all of the physical memory pages that backs the virtual
memory of SGX enclaves. The EPC consists of 4 KB memory pages, which
are managed by untrusted system software like the operating system (OS)
or hypervisor by using special instructions from the extended instruction
set to allocate and initialize EPC pages inside the PRM.

To keep track of the identities of running enclaves, SGX will use
one EPC page per enclave to hold the SGX Enclave Control Structure
(SECS). The SECS stores metadata about the enclave, including sensitive
information like the enclave’s cryptographic measurement, and is therefore
only accessible to the CPU’s SGX implementation. If enclave code was able
to modify its own measurement, the software attestation scheme would
provide no security guaranties.

24

Because the EPC pages are managed by the untrusted system software,
SGX checks the correctness of the allocation decisions made by the system
software. SGX keeps track of the allocations, and stores information about
each EPC page in the Enclave Page Cache Map (EPCM), also inside the PRM.

Field Bits Description

VALID 1 0 for un-allocated EPC pages
PT 8 Page type (PT_REG, PT_SECS, PT_TCS..)
ENCLAVESECS Identifies the enclave (enforces isolation between enclaves)
ADDRESS 48 the virtual address used to access the page
R 1 allow reads by enclave code
W 1 allow writes by enclave code
X 1 allow execution of code inside the page

Table 3.1: An Enclave Page Cache Map (EPCM) entry containing
metadata about a single 4kb EPC page. [13]

Table 3.1 shows the fields stored in the EPCM. The VALID, Page Type
(PT) and ENCLAVESECS fields are used to track the ownership of the
pages and the ADDRESS, R,W and X fields store the information about
the intended memory layout of the enclave.

Enclave Memory Layout

An enclave shares the same virtual memory layout as its host process,
and the enclave is loaded like any dynamically loaded library (.dll files
on Windows or .so on Linux) into the host process. The part of the
enclave’s virtual memory that is mapped onto EPC pages is called the
Enclave Linear Address Range (ELRANGE). This range of virtual memory
contains the initial code and data loaded into the enclave, and is not
accessible to the host process since the EPC pages reside in the PRM.
Read or write operations to virtual addresses in the ELRANGE from code
running outside the enclave will result in undefined behavior.

The address translation from the ELRANGE to the EPC pages is
handled by the OS or hypervisor; this means the CPU must protect against
memory mapping attacks [66] against the enclave. When an address
translation results in the physical address of an EPC page, the CPU uses the
information stored in the EPCM when the page was first allocated to ensure
that virtual addresses given to the address translation process matches the
expected virtual address in the page’s EPCM entry. The CPU will also
ensure that the ELRANGE is mapped to EPC pages. This is to stop the
system software from mapping the virtual memory inside the ELRANGE
to regular memory, which would make the ELRANGE accessible to the
system software.

The EPCM also stores access permissions (table 3.1) that override the
permissions in the page table. These permissions must be defined by the
enclave author (Independent Software Vendor (ISV)) when first allocating the

25

EPC page.
To enter the enclave, a hardware thread must switch context, and enter

enclave-mode. The initial enclave context must be set up to transfer the
control to some predefined entry points inside the enclave.

SGX uses the Thread Control Structures (TCS) to store information about
these entry-points. The TCS must be protected from the system software,
else the system could enter the enclave at arbitrary locations. Like the
SECS, the TCS is stored in a dedicated EPC page, and can only be accessed
by the SGX implementation.

SGX supports multiple hardware threads concurrently executing en-
clave code. Each of these threads must be associated to an TCS. It is the en-
clave author’s responsibility to allocate a TCS for all the number of threads
he allows to execute inside the enclave concurrently. If allowing multiple
threads, he must also make sure the enclave code is thread-safe. The TCS
also contains a pointer to the thread-local storage (TLS).

If enclave code is interrupted during execution, or if the enclave code
needs to make calls to code outside the enclave (called a OCALL), the
execution context of the processor is stored in a number of continuous EPC
pages called the State Save Area (SSA).

3.1.2 Life Cycle of an Enclave

Creation

To create an enclave, the system software will call the ECREATE instruction,
which will turn a free EPC page into the SECS for the new enclave. ECREATE
will verify the correctness of the newly created SECS, and make sure to
mark the enclave as uninitialized in the SECS.

While the SECS is uninitialized, the system software is able to use EADD

to load the initial code and data pages into EPC pages. EADD will check
the virtual address that the system provides, and make sure it falls within
the ELRANGE. EADD will not succeed if the system tries to a add page to
an already initialized enclave, or if trying to add an EPC page that has
already been added. After adding a page, the system must call EEXTEND to
measure the content of the newly added EPC page, and update the enclave
measurement (MRENCLAVE).

In practice, the enclave author defines which software libraries should
be loaded into the enclave by including them in a special meta-data file.
The SGX toolchain uses these library definitions when building the enclave
static library, which in turn is loaded into the EPC pages using the EADD

instruction during enclave creation (see section 3.4 for a practical example
of the enclave definition file). The enclave creation and measurement
is wrapped into a high-level function call, provided by the Software
development Kit (SDK) that only needs the path to the enclave static library.

26

Initialization

After loading the initial code and data pages into the enclave, the system
software calls EINIT to initialize the enclave. EINIT requires a INIT token to
initialize the enclave, and this token is created by an Intel provided enclave
called the Launch Enclave. The Launch Enclave will check if the identity of
the enclave author is present in a whitelist that is provided by Intel before
providing an INIT token to the EINIT instruction. After receiving the INIT
token, EINIT will mark the enclave as initialized in the SECS, and no more
pages can be added to the enclave.

The enclave author must enroll in an Intel developer program by
submitting their identity and the public part of their signing key to Intel
to be added to the whitelist, and in turn be able to initiate an SGX enclave.

Teardown

When the enclave is done with its computations, the system software will
deallocate EPC pages used by the enclave with the EREMOVE instruction. To
free an EPC page, EREMOVE will mark the EPC page as invalid in the EPCM.
The enclave teardown is complete when at last, the page containing the
SECS is freed.

3.1.3 Enclave Thread Mechanisms

Any process that has mapped the EPC pages into its virtual address space
is able to execute the enclave code. When a logical processor is executing
enclave code, it is said to be in enclave mode, and can access the regular EPC
pages that reside in the PRM. The enclave author decides how many TCS
are allocated to the enclave, and this then decides how many threads can
enter the enclave code concurrently.

Enclave Entry

To enter the enclave, and execute code inside it, the host process must use
the EENTER instruction, which will perform a controlled jump into enclave
code. Only unprivileged software running in CPU ring 3 can execute the
EENTER instruction. EENTER will not perform a privilege level switch, and
the logical processor will still be running in ring 3, but in enclave mode. The
EENTER instruction is comparable to an SYSCALL, in that an untrusted caller
wants to execute code in a protected environment. And like a SYSCALL,
EENTER will store the context of the caller, so that it can be restored when
the enclave code returns.

EENTER requires the virtual address of the TCS as input, and the
instruction will then proceed to set the instruction pointer to the entry
point offset field stored in the TCS. The entry point is defined by the
enclave author, and any change to this definition would result in a different
measurement when initializing the enclave. This guarantees that the

27

enclave code will only be invoked at well defined points, and these
invocations are referred to as ECALLS.

In practice, the entry points are just function inside the enclave’s
memory range that the enclave author has explicitly defined to be an entry
point into enclave code (see section 3.4 for an example).

Enclave Exit

When the logical processor is running in enclave mode, and is either done
executing enclave code, or needs to access resources outside the enclave,
the processor can perform a Synchronous Enclave Exit, where the EEXIT

instruction will return the processor to user-space (ring 3) outside the
enclave and restore the registers and context that was stored by EENTER.

If a hardware exception or interrupt occurs while a logical processor is
executing enclave code, the system must perform an Asynchronous Enclave
Exit (AEX) before invoking the system’s exception handler. An AEX will
save the enclave’s execution context, and restore the state stored by EENTER.

The AEX will set up the system’s exception handler to return to an
asynchronous exit handler in the enclave’s host process. The AEX handler
will use the ERESUME instruction to resume the enclave that was interrupted.
An AEX will backup and set all registers to a predefined value, so not to
leak any secrets from the execution state.

3.1.4 Enclave Measurement

To measure the enclave, a secure hash (SHA-256) is computed over the
input to the ECREATE, EADD and EEXTEND instructions. EINIT will finalize
all the intermediate measurements, and store the final measurement in the
MRENCLAVE field in the enclave’s SECS. The enclave author must provide
the exact steps used to recreate an enclave with the expected measurement.
In practice this means that the client launching the enclave must use the
same enclave code, the same version of the SGX build tools and drivers,
and use the same enclave configurations to recreate an enclave with the
same measurement.

ECREATE will extend the enclave measurement with the size parameters
given to ECREATE, making sure the enclave size and SSA have the same
values that the enclave author expected. Enclave attributes given during
enclave creation are not part of the enclave measurements, instead they are
included in the information included in the attestation process.

EADD will measure the ENCLAVEOFFSET field given for the given
page, which is the offset of where the page is expected to be mapped
into the enclave’s virtual address space relative to the base address of
the ELRANGE. The EPC page type and access permission fields are also
measured by EADD. The measurement of these values ensures that the
memory layout of the enclave is the same as what the enclave author had
intended. The security guarantees given by SGX relies on all enclave code

28

and TCS pages being measured during the enclave creation. If not, the
enclave code or entry points could be tampered with. The EADD instruction
does not measure the content of the page added, only the aforementioned
properties.

To extend the enclave measurement to include the content of a page,
the EEXTEND instruction must be executed for the given page. EEXTEND

will measure the content of EPC pages in 256-byte increments, along with
the intended offset within the enclave. The design decision to load and
measure pages separately likely comes from some latency constraints for
SGX instructions [13].

At last, EINIT will finalize the measurement stored in the MRENCLAVE
field and set the INIT field to true in the SECS, making it impossible to add
any more pages to the enclave.

3.1.5 Enclave Identity

Software attestation relies on a cryptographic measurement of the trusted
software to establish its identity. A big drawback of using only the
measurement to identify the trusted software is that there is no relation
between the identities of two different versions of the software. SGX
supports two different identity systems for its enclaves, the first is based on
the enclave measurement and the second is based on public-key certificates
issued by the enclave author. The SECS is almost synonymous with
an enclave’s identity, and holds both of the enclave’s identity types;
MRENCLAVE holds the cryptographic measurement of code and data, and
MRSIGNER hold the measurement of the author, or signers public-key.

The enclave cannot initially hold any secrets, because both the code and
initial data are public. After an enclave has been loaded, it can generate
or receive secrets to their confidentiality-protected environment. Enclaves
have the ability to use their identity to derive unique keys that can be used
to encrypt the data and securely store these secrets to a more stable storage
medium, outside the protected environment of the enclave.

Secret Migration Process

Enclaves have the ability to derive a symmetric encryption key based on its
own measurement that it can use to encrypt secrets, which can be securely
stored outside the enclave. The secret is said to be sealed by the enclave.
Because the key is derived from the measurement of the enclave’s code
and initial data, only the same enclave, with the same measurement can
derive the key to decrypt the data.

Sealing a secret with a key derived from the enclave’s measurement
is the strictest from of sealing policy, and would not allow the author to
update the enclave software without again having to provision the secrets
to the enclave. To be able to migrate secrets between different versions
of the same enclave, SGX relies on a one-level certificate hierarchy, where

29

the enclave author is the CA. When initializing the enclave, the EINIT

instruction will use the information in the enclave certificate to populate
the SECS fields that describe the enclave’s certificate-based identity, called
MRSIGNER, and is a measurement of the signers public-key material.

The secret migration process uses the EGETKEY instruction (described
later in section 3.1.5) to derive a symmetric key based on the enclave’s cer-
tificate based identity. The secret is encrypted using an authenticated en-
cryption scheme (AES-GCM) and passed to the untrusted host application.

The host application passes the secret to the target enclave, who is
able to derive the same symmetric key, based on the sending enclave’s
certificate-based identity. The target enclave unseals the secret, concluding
the migration process.

The migration process does not guarantee freshness, making the
process susceptible to replay attacks. To protect the migration process
from replay attacks, SGX provides the enclave with the ability to create a
persistent monotonic counter that is stored in hardware. The counter value
can be incremented and can be sealed along with the secret data, making
the enclave able to detect replay attacks when unsealing the secrets if the
unsealed counter value and the system’s counter value do not match up.

Enclave Certificates

SGX enclaves are required to have a certificate issued by the enclave
author/ISV. The certificate is generated by the SGX toolchain and signed
with the enclave author’s private key. EINIT will verify the signature in the
certificate, and then check if the the author has a licence from Intel to create
enclaves. After verifying that ENCLAVEHASH in the certificate is equal to
the enclave measurement (MRENCLAVE), EINIT will proceed with filling
in the enclave’s SECS with the information contained in the certificate.

Field Bytes Description

ENCLAVEHASH 32 Must be equal to enclave measurement
ISVPRODID 32 Differentiates modules signed by the same public-key
ISVSVN 32 Differentiates versions of the same module
ATTRIBUTES 16 Constrains the enclave’s attributes
MODULUS 384 RSA Key modulus
EXPONENT 4 RSA key public exponent 3
SIGNATURE 384 RSA signature (3072-bit, SHA256, PKCS#1 v1.5)

Table 3.2: A subset of the enclave signature structure
(SIGSTRUCT). The SIGSTRUCT contains the enclave authors
signed certificate of the expected enclave measurement, enclave
production ID, and enclave version number. [13]

The enclave’s certificate-based identity is determined by the MODULUS,
ISVPRODID and ISVSVN fields in the certificate structure.

A SHA-256 hash of the MODULUS field in the certificate represents

30

the authors identity, and is stored in the MRSIGNER field in the enclave’s
SECS. Different enclave modules by the same author are differentiated by
a unique ID (ISVPRODID), and security updates to an enclave module is
represented by incrementing the security version number (ISVSVN) of the
enclave. During a security update of the enclave, the ISVSVN is used by
SGX to enforce that secrets only are migrated to an target enclave with an
equal or higher ISVSVN.

Enclave attributes are not covered by the MRENCLAVE measurement,
and during remote attestation the attestation service can refuse to provision
secrets to an enclave that was build with unacceptable attributes. During
a local secret migration process, this is not practical, and to ensure that
an enclave does not migrate secrets to an enclave build with unacceptable
attributes, the enclave certificate includes fields describing constraints on
enclave attributes.

Enclave Key Derivation

Secrets sealed by an enclave are also tied to the specific CPU that launched
the enclave. The root of trust in the SGX programming model is the CPU
itself, and this is achieved by deriving all cryptographic keys from not only
the enclave’s identity, but also, secrets embedded inside the CPU package.

The CPU has two secrets stored into its e-fuses, the first, called the seal
secret is generated by the CPU itself, and not known to the manufacturer.
The second is called the provisioning secret, and is manually fused into the
CPU by Intel at manufacture time.

The symmetric key derivation service provided by the EGETKEY instruc-
tion uses the identity information from the calling enclave’s SECS and the
two hardware secrets fused into the CPU to derive keys. The EGETKEY caller
must supply the instruction with a pointer to a KEYREQUEST structure,
containing the information needed to derive the right key. Table 3.3 shows
the different fields in the KEYREQUEST structure.

Field Description

KEYNAME The key type, like Seal key
KEYPOLICY The type of identity to use
ISVSVN the enclave SVN used in derivation
CPUSVN SGX implementation used in derivation
ATTRIBUTEMASK Selects enclave attributes
KEYID Random bytes to differentiate keys

Table 3.3: The KEYREQUEST structure. The request contains
information needed to derive the different types of keys. For
example, a Seal key needs a policy determining what enclave
can unseal the data. State could be saved using the strict
MRENCLAVE policy, and a enclave update process must use the
MRSIGNER policy, and the version number (SVN) of the updated
enclave software. [13]

31

The algorithm results in the same key across CPU power cycles, and the
key is impossible to derive without knowledge of the secrets stored in the
CPU’s e-fuses, enabling the enclave to securely seal and unseal data stored
on the untrusted storage.

There are two possible key derivation policies to choose from when
building the enclave. The keys will be derived from the enclave content
(MRENCLAVE), or from the author’s public key (MRSIGNER). Using
MRENCLAVE to derive keys will result in a key that is only readable by
the same enclave running on the same platform, while using MRSIGNER
is a more relaxed policy that allows for enclaves by the same author to
derive the same key.

There are two types of security version numbers (SVN); the author
defined SVN, called the ISVSVN, and the SVN of the SGX implementation
in the CPU, called CPUSVN. The target enclave’s SVNs are always used in
the request to derive keys, giving SGX the ability to refuse the key request
if either of the the given SVNs are greater than the current enclave’s SVN.
This prevents secrets from being migrated to an outdated enclave version,
or to a platform running an outdated SGX version.

During the secret migration process to a newer version of the enclave
software, the old version must request a Seal key by filling in the
KEYREQUEST structure with the ISVSVN of the new enclave software.
The new enclave need only know the KEYID from the old enclave to derive
the same key, and be able to unseal the secrets.

The enclave author can sign multiple enclave modules using the same
signing key and must use PRODID to differentiate the different modules.
PRODID is always used in the key derivation, else all enclave modules
from the same author would derive the same keys when using the
MRSIGNER key derivation policy.

Last, the enclave’s attributes are included in the key derivation. The
attributes contain some settings that could compromise enclave memory,
like the DEBUG field or the X-Feature Request Mask (XFRM).

The XFRM is used to decide what processor extended states are allowed
in the enclave. Certain processor extended states could compromise the
security of the enclave [12, Section 6.7]. A debug enclave is not encrypted
or access controlled, and gives no security guarantees, so the DEBUG
attribute flag is always included in key derivation, making it impossible
for a production enclave to migrate secrets to an insecure debug enclave.

3.1.6 SGX Software Attestation

Local Attestation

After an enclave has been initialized, it has the ability to create an attestation
report using the EREPORT instruction. The enclave can use this report to
prove its identity to another target enclave running on the same platform.
The report binds a message to the enclave’s identity by using a Message

32

Authentication Code (MAC) with a symmetric key, called the Report key,
that is only shared between the target enclave and the SGX implementation.

EREPORT creates a REPORT structure, and populates it with the identity
and attribute information from the enclave’s SECS, the SGX security
version number (CPUSVN), and an optional user-data field (64 bytes) that
can be used to pass additional data to the target enclave. The structure is
also populated with the MRENCLAVE and attributes of the enclave which
will be able to verify the report.

To create the MAC, EREPORT needs information about the target
enclave’s identity and attributes in order to derive the MAC key that
authenticates the report. The platform secrets are used to derive keys,
allowing different enclaves running on the same platform to derive the
same key and be able to verify the MAC computed over the attestation
report.

The target enclave uses the EGETKEY instruction to derive the same
report key from its own MRENCLAVE, and a key identifier given alongside
the report. It follows that the report can only be verified by the target
enclave, and it can be convinced that the message is from the reporting
enclave.

Enclaves on the same platform can use the security guarantees given by
the attestation reports to create a secure channel, by using the message field
in the report to set up an authenticated Diffie-Hellmann key exchange.

Remote Attestation

A local attestation report can only be verified by the target enclave running
on the same platform. For an enclave to attest itself to a remote party, the
report must be verifiable by the remote party. To achieve this, SGX uses
an architectural platform service enclave (PSE) called the Quoting enclave
to sign the report using Intel Enhanced Privacy ID (EPID) group signature
scheme.

The remote attestation service requires an Attestation key to sign the
report generated by an enclave, and this key can only be provisioned by
Intel. To receive this key, SGX uses another special enclave called the
Provisioning enclave, which uses the provisioning secret from the e-fuses,
which is shared between the CPU and Intel, to authenticate with Intel’s
provisioning service. The provisioning enclave will receive the Attestation
key, seal it and store it on the untrusted system.

The Quoting enclave can derive the same sealing key, unseal the
Attestation Key and proceed to replace the MAC in the local attestation
report with an Attestation Signature. The signed report is called a Quote and
can be used verify the enclave to the remote party. To verify the Quote,
Intel provides an online service called the Intel Attestation Service (IAS).
The service exposes a simple API for developers to send in the Quote, and
then receive a response stating if the signature is valid or not, i.e., it was
signed by a Quoting enclave running on genuine Intel hardware. The EPID

33

group signature scheme used by SGX to sign the Quote is a proprietary
technology, so only Intel is able to verify the EPID signature in the Quote.

Attestation Flow

Figure 3.2: Attestation flowchart. The Challenger whats a Quote about
the Application Enclave running on the User Platform. The Applications
facilitates the attestation process. The Quoting Enclave signs the attestation
report from the Application Enclave. The Challenger verifies the Quote
before trusting the Application Enclave. [31]

After deploying an SGX enabled application to a remote platform, the
author will want the application to demonstrate that it has been properly
instantiated on the platform. She can challenge (with a nonce) the deployed
application to prove that the trusted enclave part of the application code is
using enclave he provided (1).

The application requests an attestation report from its enclave (2). The
enclave generates the report containing the enclave information. The
enclave can add user data like an RSA public key or a nonce to the integrity
protected report, and pass it to the application (3).

The application delivers the report to the Quoting enclave (4), which
will verify the report using local attestation and then create the Quote. The
Quote is signed using the Attestation Key and sent back to the application
(5), which then responds to the challenger with the Quote (6).

The challenger can verify the signature in the Quote using the IAS (7),
and then compare the enclave information in the Quote against the trust-
ed/expected configuration and only provision secrets or render service to
the application of the configuration matches the trusted configuration (8).
The trust policies are up to the challenger; she might only want to render
service to the newest version of the enclave by comparing the SVN, or only
if the enclave was signed using a specific signing by matching the MR-
SIGNER field in the Quote. She must take care to check the attributes in
the Quote because the enclave will not be secure if it is running in with the
DEBUG attribute. [31]

34

3.2 Hardware environment

The security of SGX enclaves are backed by hardware secrets and the
memory encryption engine. Because of this, SGX is only available in 6th
generation (Skylake) or newer Intel CPUs.

Not all platforms using a new Intel processor supports SGX. Because
SGX needs to reserve part of the systems main memory for the enclaves
(see section 3.1.1), there have to be BIOS support to enable SGX. OEM
vendors do not typically list the BIOS features in the product sheets for
their hardware, so determining if there is support for SGX in the BIOS
before purchasing hardware can prove difficult. There are unofficial lists1

of hardware that supports SGX, which could be consulted.
When enabling SGX in the BIOS, a maximum of 128MB can be reserved

for SGX. To achieve this, the BIOS will expand the Processor Reserved
Memory (PRM), making it unavailable to other applications.

3.3 Software environment

Intel provides platform software for both Windows and Linux operating
systems. This section will only describe the platform software (PSW) and
software development kit (SDK) for Linux (Ubuntu 16.04).

The SGX driver/kernel module for Linux is temporarily hosted in its
own project on Intel’s Github page 2. In the future it will be upstreamed
into the mainline kernel, until then, the module must be compiled and
loaded to access SGX. The driver exposes the SGX hardware to the
operating system, and is responsible for initializing and validating new
enclaves, and in turn, tearing them down. The driver will perform all of
the system calls related to the creation (ECREATE, EADD, EEXTEND, EINIT) of
new enclaves, like allocating and adding the EPC pages to the enclave,
measuring the EPC pages and extending the enclave measurement (see
section 3.1.2).

3.3.1 SGX Platform Software

As described in section 3.1.2, to launch an SGX enclave, an Intel signed
enclave must be involved in the launch process. The Launch Enclave,
Quoting Enclave and the other SGX architectural enclaves are provided
with the PSW package. The Linux SGX project [36] contains the source
code for both the PSW and the SDK, and provides the instructions how to
compile and install the packages.

After installing the PSW package, the Architectural Enclave Service
Manager Daemon (AESMD) service must be enabled. The AESMD service
exposes the API for applications to use the services provided by the

1https://github.com/ayeks/SGX-hardware
2github.com/01org/linux-sgx-driver

35

https://github.com/ayeks/SGX-hardware
github.com/01org/linux-sgx-driver

architectural enclaves, like launching enclaves, or creating the Quote
needed from remote attestation (see section 3.1.6).

Some services [28], like a trusted timestamp and a monotonic counter
service makes use of the Intel Management Engine (ME). For enclaves to
make use of these services in Linux, the Intel Capability Licensing Client must
also be installed on the platform. The monotonic counter could be used for
rollback protection of sealed states, but there’s many limitations because
of how the monotonic counter is implemented. The counter values are
stored in non-volatile flash memory inside the Management Engine, and
this memory wears out and stops working if frequently used [39].

Another issue using these services arises since the ME is located on
the chipset and not inside the CPU package, expanding the TCB. There
have been reported multiple security issues with the Intel ME and it cannot
easily be deactivated [46]. These issues could be of concern, but are beyond
the scope of this thesis.

3.3.2 SGX Software Development Kit

With the driver and platform software installed, applications can launch
enclaves. To develop applications that make use of SGX enclaves, Intel
provides a Software Development Kit that wraps the low-level interfaces
to a more friendly high-level API [29].

3.4 Hands-on Tutorial

This section will describe some of the common features of the SGX SDK
using a small practical example.

Enclave definition

Writing an application that makes use of SGX enclaves requires some
special considerations. The enclave is only meant to contain a small and
trusted part of the application code, making the first task of the author
to identify the security-critical parts of the code. This code must then be
partitioned out into a self-contained library. This library is then compiled
to a static library or an enclave image. This image is what is loaded into the
EPC pages in the protected parts of memory.

To protect an untrusted system from executing arbitrary code inside
the enclave, the enclave author explicitly defines the access-points to the
trusted library. These access-points are defined using the enclave definition
language (EDL). Listing 3.1 show the EDL file of a small enclave; first, the
EDL file defines what other libraries are included inside the enclave. The
example enclave uses the seal and unseal functions and these functions are
provided with the SDK and defined in sgx_tseal.h.

36

Listing 3.1: Enclave Definition Language (EDL) file. The EDL file defines
partition between the trusted and untrusted parts of the application.
Trusted ECALLs and untrusted OCALLs are defined with information
about the direction and size of the buffers that are passed by reference.

1 enclave {

2 /* trusted libraries here. */

3 include "sgx_tseal.h"

4
5 trusted { /* define ECALLs here. */

6 public sgx_status_t seal_secret(

7 [out , size=s] sgx_sealed_data_t* sealed_data ,

8 [out , count =1] size_t* s);

9
10 public sgx_status_t print_secret(

11 [in , size=s] sgx_sealed_data_t* sealed_data ,

12 size_t s);

13 };

14
15 untrusted { /* define OCALLs here. */

16 void ocall_print_int ([in] int* i);

17 };

18 };

The two access-points or ECALLs are defined on line 6 and 10. The
definitions look a lot like normal functions definitions, but where the
pointers to the buffers used for passing data in or out of the enclave are
defined, the direction and size of the buffers have to be defined. The first
ECALL, seal_secret defines an outbound buffer of size s to copy some
sealed data out of the enclave to the untrusted caller. The second ECALL,
print_secret defines an inbound buffer containing some sealed data of
size s. The caller provides the sealed data, which is then copied into the
trusted enclave memory and unsealed.

The enclave image must contain all the trusted code, but because there
are some resources, like system-calls, that are not available to enclave
code, the enclave will have to ask the untrusted operating system for these
resources (file I/O, network socket etc.). OCALLs are untrusted functions
outside the enclave that the enclave code is able to call. These are also
defined explicitly in the EDL file. On line 16 in Listing 3.1, an OCALL that
makes use of a syscall to print an integer to the screen is defined.

By observing the enclave definition, we are able to get some idea of the
functionality provided by the enclave. The enclave has two access-points,
where one returns a sealed blob containing some secret, and the other takes
the sealed blob and reveals the secret by printing it using the untrusted
system resources.

37

Listing 3.2: The seal_secret ECALL. The function will seal a secret number
using the SGX SDK crypto libray. The sealed data is passed by reference
out of the enclave (see buffer direction in Listing 3.1).

1 // generate a sealed secret and pass it to caller

2 sgx_status_t seal_secret(

3 sgx_sealed_data_t* sealed_data , int32_t* s) {

4
5 int32_t secret = 42;

6 uint32_t secret_size = sizeof(int32_t);

7 uint32_t sealed_size = sgx_calc_sealed_data_size(

8 0, // length of additional data

9 secret_size); // length of plaintext

10
11 sgx_status_t status = sgx_seal_data(

12 0, // length of additional data (GCM)

13 NULL , // pointer to additional data

14 secret_size , // length of plaintext

15 &secret , // pointer to plaintext

16 sealed_size , // sealed_data_size

17 sealed_data); // pointer to sealed data

18
19 *s = sealed_size; // return sealed_size

20 return status

21 }

Enclave code

Listings 3.2 and 3.3 contain all of the enclave code except for three lines at
the start of the file that include the trusted SGX runtime system library, the
cryptographic library used for sealing and unsealing data and the enclave
header. The enclave code only implements the two ECALLs described in
section 3.4.

seal_secret defines a secret number, one could imagine it generating
a random number or receiving a secret over a secure channel across the
network. SGX seals data using the symmetric AES cipher in Galois Counter
Mode (GCM) (section 2.2.1), and thus sealed data is both confidentiality
and integrity protected, and there is also the option to add additional data
(AD) that is only integrity protected. The secret is sealed and stored in
a buffer provided by the caller (sealed_data) before the function returns.
The seal and unseal functions do not take any key as input because the
underlying implementations use the EGETKEYto derive the key based on the
enclave measurement (see section 3.1.5)

The untrusted application that called seal_secret receives the sealed
data, but is not able to decrypt or tamper with the data because of
the guarantees provided by AES-GCM. In this example, however, the

38

Listing 3.3: The print_secret ECALL. The function receives a reference
to some sealed data. The data is unsealed inside the enclave, and then
revealed by calling a OCALL that prints the secret to the terminal.

1 // unseal secret number and print it using OCALL

2 sgx_status_t print_secret(

3 sgx_sealed_data_t* sealed_data , uint32_t s) {

4
5 int32_t secret;

6 uint32_t secret_len = sizeof(int32_t);

7
8 sgx_status_t status = sgx_unseal_data(

9 sealed_data , // pointer to sealed data

10 NULL , // pointer to ad

11 NULL , // pointer to ad length

12 &secret , // pointer to plaintext

13 &secret_len); // pointer to plaintext length

14
15 ocall_print_int (& secret);

16 return status;

17 }

untrusted application can have the enclave reveal the secret number by
passing the sealed data to the other ECALL, print_secret. The secret is
unsealed if the sealed data is authenticated, and then revealed by calling
an OCALL that will print the secret to the standard output on the platform.

Because it is only the enclave code that can be trusted (if remotely
attested), the enclave code cannot trust OCALLs. In this example, the enclave
code cannot trust that the secret was indeed printed, or if the system
printed the actual secret number. The only guarantee we have in the
example code is that the confidentiality of the secret number has been
compromised; but only because we explicitly allowed it.

Main application

The main application (Listing 3.4) is what bootstraps the enclave code; this
is untrusted code that runs in the normal execution environment on the host
platform.

The main application is not trusted, and cannot handle any sensitive
data; but we have to rely on it to properly initiate the enclave and pass
messages between different enclaves or remote resources. If we want to
perform remote attestation (section 3.1.6), we rely on the main application
to request an attestation report from the enclave, and pass it to the Quoting
Enclave to generate the Quote. The cryptographic guarantees provided by
the Quote is where the trust is grounded; the untrusted system cannot
tamper with the Quote, but it could attack the availability (section 2.1.3)
of the enclave by stopping the messages used in the attestation process.

39

Listing 3.4: Main function in the untrusted application. After initializing
the enclave from the static library file called "enclave.signed.so", the
application allocates a buffer to hold the sealed blob generated by
the seal_secret ECALL. When the ECALL returns, the buffer contains
encrypted and integrity protected ciphertext. The ciphertext is passed to
the other ECALL, which intentionally reveals the secret.

1 int main(void) {

2 uint32_t ret_status;

3
4 initialize_enclave(&global_enclave_id ,

5 "enclave.token",

6 "enclave.signed.so");

7
8 size_t seal_size = sizeof(sgx_sealed_data_t)

9 + sizeof(int);

10
11 uint8_t* sealed_data = malloc(seal_size);

12
13 seal_secret(global_enclave_id ,

14 &ecall_status ,

15 (sgx_sealed_data_t *) sealed_data ,

16 &seal_size); // actual seal_size returned

17
18 print_secret(global_enclave_id ,

19 &ecall_status ,

20 (sgx_sealed_data_t *) sealed_data ,

21 &seal_size);

22 free(sealed_data);

23 return 0;

24 }

Listing 3.4 shows how a basic main application could look like. After
initializing the enclave by providing the path to the signed enclave image
and launch token (see section 3.1.2) the application is able to execute the
ECALLs implemented by the enclave. initialize_enclave is a wrapper
for some boilerplate code for reading the enclave image and enclave token
into memory. Loading the enclave into the protected memory is done by
the sgx_create_enclave function, which is provided by the SGX runtime
library.

The OCALL (listing 3.6) is implemented by the main application, making
the enclave able to output the secret using untrusted system. Because the
main application is outside of the protected enclave, the code inside cannot
trust that OCALLs perform the expected behavior. However, like untrusted
networks, the application can be trusted with passing message from the
enclave to other enclaves or to the network interface. Enclaves running

40

Listing 3.5: The enclave initialization function. The enclave token and
enclave code is used to create the enclave. The enclave ID is used as a
handle to the created enclave. The function contains some additional code
used to load, update, and store a launch token. (created by the architectural
Launch Enclave if MRSIGNER is authenticated to launch enclaves, i.e. the
author has an Intel developer License).

1 int32_t initialize_enclave(sgx_enclave_id_t* eid ,

2 uint8_t* token_path ,

3 uint8_t* enclave_path) {

4
5 // Step 1: try to retrieve the launch token file saved by last

transaction , or create a new token file.

6 // (...)

7
8 // Step 2: initialize an enclave instance

9 sgx_create_enclave(

10 enclave_path , // enclave image file

11 SGX_DEBUG_FLAG , // 0 or 1

12 &token , // token structure

13 &token_updated , // returns 0 or 1

14 eid , // enclave id

15 NULL // misc. attributes (optional)

16);

17
18 // Step 3: save the launch token if it is updated

19 // (...)

20
21 return 0;

22 }

Listing 3.6: The print_int OCALL. The function is defined in the EDL file,
allowing the enclave to call this function, which is located outside the
enclave.

1 void ocall_print_int(int* i) {

2 printf("%d\n", *i);

3 }

on the same system are able to establish an authenticated and encrypted
channel between each other using the shared secret embedded in the CPU.

3.4.1 Enclave Communication

Establishing a secure channel over the network can be achieved by
terminating a Transport Layer Security (TLS) connection inside enclave. Intel
provides a build script for compiling OpenSSL to a static library for use
inside enclaves [30]. The SDK exposes the enclave to a secure way to get
randomness directly from the CPU, and this combined with the OpenSSL
library makes the enclave able to generate asymmetric-key pairs and setup

41

Listing 3.7: Enclave configuration file. The enclave configuration describes
the acceptable enclave configuration. It contains the enclave ID and version
numbers, information about the how much memory to allocate in the
EPC, the number of thread storage structures to allocate and the attribute
mask that decides what attributes are acceptable. The configuration file
is covered by the author signature, and the enclave will not boot if the
configurations are changed.

1 <EnclaveConfiguration >

2 <ProdID >0</ProdID >

3 <ISVSVN >0</ISVSVN >

4 <StackMaxSize >0x40000 </StackMaxSize >

5 <HeapMaxSize >0x100000 </HeapMaxSize >

6 <TCSNum >10</TCSNum >

7 <TCSPolicy >1</TCSPolicy >

8 <DisableDebug >0</DisableDebug >

9 <MiscSelect >0</MiscSelect >

10 <MiscMask >0xFFFFFFFF </MiscMask >

11 </EnclaveConfiguration >

secure channels with remote resources.

3.4.2 Enclave Build Tools

Building the enclave involves linking and compiling all dependencies to
a static library; there is also a tool called the Edger8r Tool) included in
the SDK used to generate the interface between the application and the
enclave by reading the EDL file; the SignTool is used to create the signature
structure (table 3.2) containing the enclave author’s public-key and check if
the enclave image has been constructed correctly before signing the enclave
image. To build the enclave correctly, the SDK includes some sample
enclave projects that contain makefiles that can be used as templates.

The SignTool uses the information in the enclave configuration file
(listing 3.7) to set the Security Version Number (SVN) and Product ID
(PRODID) of the enclave.

42

Chapter 4

Accountable decryption using
Intel SGX

4.1 Introduction

4.1.1 Motivation

Decryption is accountable if the users that create ciphertexts can gain
information about the circumstances of any decryptions made by an
decrypting agent. The information should be meaningful, giving all the
details required by the user. We describe a protocol that forces decrypting
agents to create such information. The information cannot be discarded or
suppressed without detection. The protocol relies on a trusted hardware
device embodied by the Intel SGX technology. Many applications can be
imagined, e.g., give patients control over their electronic health record,
allow verifiable oversight for investigatory powers like police or national
security, more transparency in corporate mail. The introduction section of
this chapter is based on a workshop contribution to the Security Principles
and Trust Hotspot 2017 by Prof. M. Ryan [51].

4.1.2 Problem Statement

To achieve what we mean by accountable decryption protocol, there are some
highlevel requirements that needs to be fulfilled.

• Users can create ciphertexts using a public key encryption scheme, like
RSA.

• Decrypting agents (Decryptors) are capable of decrypting the cipher-
texts without the help of the user.

• When a Decryptor decrypts a ciphertext, it unavoidably creates
evidence that is accessible to the user. The evidence cannot be
suppressed or discarded without detection.

43

• The users should be able to gain whatever information they require
about the nature of the decryptions being performed, by examining
the evidence.

Evidence

Intuitively, if the Decryptor possesses both the ciphertext and the related
decryption key, it is impossible to detect if whether she applies the key
to the ciphertext or not. This implies that the key has to be guarded by
some trusted third party that controls its use and cannot be influenced
by the Decryptor. To be able to trust the third party not to collude
with the Decryptor we want this third party to be implemented by some
trusted hardware device. The device contains the secret decryption key dk
corresponding to ek. The dk must never leave the device.

In order to make the evidence persistent, we assume a log L. The log
can be organized in various ways, e.g., like an append-only distributed
ledger, realized using blockchain technology [5, 10, 59, 67], or simply as an
append-only Merkle tree, like used in certificate transparency [19, 34, 52].1

The log maintainer publishes the root-tree-hash (RTH) H of L, and is capable
of generating two kinds of proofs about the consistency and correctness of
the log:

A proof of presence of some data in the log. More precisely, given some
data record d and an RTH H of the log, the log maintainer can
produce a compact, proof that d is present in the log represented by
H.

A proof of extension that is a proof the log in maintained append-only.
Given a previous RTH H′ and the current one H, the log maintainer
can produce a proof that the log represented by H is an append-only
extension of the log represented by H′.

(Details of such proofs can be found in e.g. [52], and will be further
described in section 4.3) This means that the maintainer of the log is not
required to be trusted to maintain the log correctly. It can give proof about
its behavior.

Decryption

The Decryptor can perform decryptions only by using the device. The
device, in turn, will perform decryptions only if it has a proof that the
decryption request has been entered into the provably append-only log.

The device maintains a variable containing its record of the most recent
root tree hash (RTH) that it has seen of the log. For each decryption the
Decryptor performs the following actions:

1http://www.certi�cate-transparency.org/

44

http://www.certificate-transparency.org/

• Obtain from the device its last-seen RTH H.

• Enter the decryption request R into the log.

• Obtain the current root tree hash H′ of the log.

• Obtain from the log a proof π of presence of R in the log with RTH
H′.

• Obtain from the log a proof ρ that the log with RTH H′ is an append-
only extension of the log with RTH H.

The Decryptor presents (R,H’, π, ρ) to the device. The device verifies
the proofs, and if they are valid, it performs the requested decryption. It
updates its record of the last-seen RTH with H′.

The user can find evidence about decryptions by inspecting the log.
Depending on application and the needs, the evidence stored in the log
could be organized in various ways; in its most simple form, the log only
need store the hash value of the ciphertext that is decrypted, allowing users
to detect if their ciphertexts are being decrypted.

Currency

As described so far, the protocol is insecure because the device could be
tracking a version of the log which is different from the version that the
users track. Although both the device and users verify proofs that the log is
maintained append-only, there is no guarantee that it is the same log. The
log maintainer can fork the log, maintaining each branch independently
but append-only.

To ensure that users track the same version of the log that device tracks,
we introduce an additional protocol for the SGX. In this second protocol,
device accepts as input a verifiably current value v. The value v is could be
provided by the user like a nonce. The device outputs its signature signsk(v,
H) on the value v and its current RTH H. The device holds a signing key sk;
depending on the implementation, it could also be the same key as the one
used for decryption. The corresponding verification key vk is published
along with the encryption key ek. Like the decryption key dk, the signing
key sk can never leave the device, making the device the only entity that can
decrypt create signatures that can be verified using the public verification
key vk.

When the user wants to inspect the log, he asks the device for the signed
Hand can verify that is consistent with their view of the log.

Summary

The protocol cannot protect the user from being denied access to the log,
or the device, nor can the user stop a Decryptor from decrypting the
ciphertexts she has already published. The user is able to detect if she is

45

being denied access, and should then assume the agreement concerning
the accountable decryption has broken down. Depending on what data
she has been sharing, she can choose to stop sharing it, or even re-encrypt
her data, if all she shared was the corresponding encryption keys.

The device and the protocols are designed to guarantee just one thing;
that if decryptions take place, this fact can be detected by the user.

4.2 Protocol Design

4.2.1 Protocol Description

As often in software systems, we distinguish two phases: the configuration
phase (or initialization, when the whole system is being bootstrapped),
which we detail more in Section 4.3; and the operational phase, which we
detail in this section. After the configuration phase, all the cryptographic
material is in place and all actors are running the required pieces
of software. In the operational phase (or runtime) encryptions and
decryptions of pieces of data are constantly being made, as well as
accounting operations (by the user, who the scheme tries to protect).

The accountable decryption (AD) scheme that we propose is composed
of four protocols, their steps being pictured at a high level in Figure 4.1.
The main protocol is the AD-Decryption, which is displayed with normal
arrows. This is also the protocol that has most details and does not change
from application to application. The other protocols are rather application
dependent, but their essential contribution to the whole AD scheme is
required and pictured as such in Figure 4.1. We detail all these further
down.

The participants in the AD protocol and the software components that
are needed are divided into five parts.

The User (also called the encryptor) is the one that provides Data to some
Application Provider (like a “FindMyPhone provider”). The user is
the one producing possibly private data (like location information,
or health data, or purchase records, or browsing information) and
wishes to protect this data against unlawful accesses. In consequence,
the user sends to the Application provider the data encrypted. One
should not confuse this with some form of transport encryption (like
SSL) which would only be meant to protect the messages from a
network attacker.

The Application Provider (AP) is a main entity in the system and is meant
to forward messages, and possibly store some information useful for
more efficient implementations of the AD scheme. Moreover, the AP
also stores all the encrypted data from the user. This actor is not
trusted and may collude with the decryptor and the log service. Even

46

Decryption Device

H, dk, sk

EUser / Encryptor

Log service

Application Provider
ciphertext stream
 enc

ek
(di) = ri

Inspection
● H
● hash(ri)

 {r0 , …, rn }

request(hash(ri))

di

log(hash(ri))
(H’, π, ρ)

(ri, H’, π, ρ) dec
dk

(ri) = di

D2

H

{hash(r0), …, hash(rn)}

nonce v
C1

C2

sign
sk

(v, H) = s

C0

D1

D6

D4

D7

D3I

ENCLAVE

ek, vk

D5 i. verify(ri , H’, π, ρ) ?= true
ii. H = H’H, dk, sk

Figure 4.1: General view of the protocols involved in the Accountable
Decryption scheme. The figure shows the different actors in the AD
protocols. The User encrypts (E) data records using the public encryption
key ek and sends them to the App. Provider. The user verifies the currency
(C) of the Decryption Device using the public verification key vk. The
Agent requests decryption (D) of data records from the App. Provider. The
request are added to the Log, and the evidence/proofs are supplied to the
Decryption service with the requested record.

more, the decryption device could be under the management of this
entity as well.

The Decryption Device (SGX) is the trusted device and is implemented
using the Intel SGX technology. One can possibly think of alternative
implementations, and identify minimal requirements such that the
overall properties of the scheme still hold; however, we do not go into
this study in this chapter. The device keeps secret cryptographic keys
(for decryption and signing) and performs decryption on requests
from the AP.

The Decryption Agent (also called decryptor) is the one that the user
wishes to account for decryptions. Examples can be law enforcement
or intelligence systems that need access to information about the
user, like location during some incident, or could be health access

47

control systems which need access to patients health records during
emergency situations or during normal GP visits, etc. The decryptor
is assumed to be in some form of contract or policy with the user
that specifies how the decryptor is expected to behave with regards
to such decryptions. This contract is used by the user during the
Inspection protocol to monitor how the data is being decrypted by
the Decryption Agent. If this deviates from the contract, such actions
should be visible in the log service and detectable by the user by
inspecting the log.

The Log Service (L) is the component of the system which is trusted to
store all the decryption requests from the decryptor. In consequence,
the log has to be maintained in an append-only fashion, like an
electronic ledger (e.g., implemented using blockchain technology),
meaning that once a decryption request is entered into the log, it
cannot later be deleted or modified. The trust in this component
is, however, obtained through cryptographic proofs, and is thus not
an assumption. As such, this component can be implemented by an
untrusted party like the Application Provider. These cryptographic
proofs need to be verifiable by both the Decryption Device and also
by the user during the Inspection protocol.

4.2.2 Cryptographic Building Blocks

We collect here the various cryptographic primitives and software con-
structions that we use in the AD scheme, along with their notations.

We use an asymmetric encryption scheme having an encryption key ek
and a decryption key dk along with the two operations encek(−) and
decdk(−) for encryption respectively decryption, having the usual property
that for any data d: decdk(encek(d)) = d.

We use a digital signature scheme having a signing key sk and a
verification key vk along with the two operations signsk(−) and vervk(−)
for signing of information respectively verifying signatures.

We use a cryptographic hash function h() to index records. The
encryptor keeps at least the hashes of all his ciphertexts to be able to
recognize what ciphertext was decrypted.

We need the properties provided by cryptographic hash functions
because if two ciphertexts create the same hash, the encryptor could not
know which of the two ciphertexts was decrypted. Another issue could
arise in an application where the decryptor could influence the ciphertext
entries, he would be able to construct an entry with the same hash as the
one he wanted to decrypt. I.e., if every entry in a patients health journal
was one ciphertext record and the doctor was expected to only look up the
patients allergies, he could decrypt the allergies section, then add invisible
characters, or reformat the entry until it got the same hash as for example,
the mental health entry and store the new entry. He would now be able to

48

decrypt the mental health entry, but it could appear like he reopened the
allergies entry.

We use Merkle trees, which are built using a cryptographic hash function
(see section 2.2.3), and denote usually the head of the tree as H (maybe
indexed or primed).

4.2.3 Security Assumptions

SGX Assumptions

Using the Software Guard Extensions we assume it is possible to create a
trusted execution environment for our software; more specifically:

• we assume that the software is integrity protected and that the
software can convince us of this.

• we assume that the computations executed by the integrity protected
software can be kept confidential.

• we assume that the hardware secrets used by the SGX implementa-
tion cannot be extracted without destroying the platform, and thus
an attestation signature generated by the SGX implementation is un-
forgeable.

Cryptographic Assumptions

In section 4.2.2 we describe some cryptographic building blocks used to
realize the accountable decryption protocol. We have some assumptions
on what guarantees these primitives provide.

• Hash functions

– we assume that a cryptographic hash function generates a hash
value that is a unique representation of any given input. By
unique, we mean that we assume it would be unfeasible to find
two different inputs that give the same hash value.

• Merkle tree

– we assume the Merkle tree inherits the guarantees given by
the hash function, and that the root tree hash is a unique
representation of the leaves in the tree, including their value and
order.

– we assume any internal node in the Merkle tree is a unique
representation of all its children, including their value and order.
Any tree that does not contain all the leaf nodes we will refer to
as a subtree.

• Public key cryptography

49

– we assume that it is unfeasible to decrypt a ciphertext created
from a public key without the corresponding private key.

– we assume digital signatures can be verified using a public
key, and the signature could only have been generated by the
corresponding private key.

4.2.4 Proof Structure

The proof of presence π and proof of extension ρ take the from of two trees.
Figure 4.2 shows the proofs π and ρ for the request r7.

The proof ρ can be considered the two minimal sub-trees needed to
recompute the current root hash H and the new root hash H′.

The proof π is the minimal sub-tree containing all the leafs we want to
prove is present in the tree.

In figure 4.2, the request r7 has been added to the log; we observe that
because all the new leafs included in H′ are needed to prove that H′ is an
extension of H, π ∈ ρ when adding one or more requests to the log.

The device only stores the root node H of the log; proving the presence
of an item in the log is achieved by providing a proof tree that includes
the hash of the item as a leaf node. The guarantees provided by the
cryptographic hash function ensures it is computationally infeasible to find
a different tree with the same root hash.

This property is used in the first part of the proof of extension ρ to
recompute the current H. The device can now use the proof π to verify
that after adding the leaf r7 to the tree represented by H, the new root is
H′. In Figure 4.2 the proof of presence π is the same sub-tree as the second
tree in the proof of extension ρ, but this is not always true, like in the case
the extension was from H(0, 6) to H(0, 60). In this case, a lot of leaves would
be represented by their internal parent nodes, and the proof of presence for
the leaf r7 would be different.

The log must be append-only, and this property is provided by storing
the root node inside the device, and that the root hash can only be extended.

4.2.5 Encryption and Decryption protocols

The encryption protocol (denoted in Figure 4.1 by the thick arrow and the
E step) is left rather open as it depends on the precise forms of data and
the kinds of information a decryptor would want to obtain from it, hence
the kind of decryptions. At a minimum, the encryption protocol specifies
that the user is sending data to the application provider encrypted with
some asymmetric encryption scheme, where the decryption key is only
known by the decryption device. The user would, in for example the
"FindMYPhone" application constantly update their location and send such
cyphertexts, i.e., a stream on encrypted data. The AP would store the

50

r
0

r
1

r
2

r
3

r
4

r
5

r
6

H(0,6)

H(0,1) H(2,3) H(4,5)

H(0,3) H(4,6)

H(0,0) H(1,1) H(2,2) H(3,3) H(4,4) H(5,5) H(6,6)

r
0

r
1

r
2

r
3

r
4

r
5

r
6

r
7

H(0,7)

H(0,1) H(2,3) H(4,5) H(6,7)

H(0,3) H(4,7)

H(0,0) H(1,1) H(2,2) H(3,3) H(4,4) H(5,5) H(6,6) H(7,7)

π = presence(r7)

ρ = extension(H(0,6), H(0,7))

H =’

H =

Figure 4.2: The proof of extension and proof of presence when adding the
request r7 to the log.

encrypted data indexed by the hash of it, i.e., each ri can be retrieved
through its hash(ri). Depending on the application (and thus on the
intended kinds of decryptions) this data may be stored with more metadata
around it.

The decryption protocol (denoted in Figure 4.1 by the normal arrows and
the D steps) is the main part of the accountable decryption scheme. We
detail it here.

D1: Decryptor → AP : request(hash(ri)) , with ri the cyphertext of the
required data_i

The decryption protocol is initiated by the decryptor through issuing
a request to the AP including the identifier of the data that is intended
to be decrypted.

How the decryptor obtains this hash is an implementation issue, and
what kind of (meta-)information might be revealed about the data
in this process of obtaining the hash are abstracted away for the

51

decryption protocol.

D2: AP→ L : log(hash(ri))

The AP forwards this request to the log service. We encode this
into a general function log which needs at least the identifier of the
request. However, when introducing this request into the Log more
information might be needed.

D3: L→ AP : (H′, π, ρ) , with H′ = H + hash(ri)

The log service includes this new request into the append-only data-
structure, which we denote by the extension of the head of the Merkle
tree, H by the new request hash(ri). The Log needs to produce two
proofs: the proof of presence ensures that the new request was indeed
included in the new tree; and the proof of extension ensures that the
new tree H′ is indeed an extension of the old tree. These three
elements are returned to the AP.

D4: AP→ SGX : (ri, H′, π, ρ)

The AP then forwards to the Decryption Device the cyphertext ri
along with the proofs that this decryption request have been included
in the Log. The Device needs all these in order to check the
correctness of the logging, including that ri.

D5: SGX : verify(ri, H′, π, ρ) =
{ True→ H = H′

False

The device will check the proofs π and ρ provided with the request ri,
and if they are verified, the root hash H is updated to H′, and protocol
proceeds to step D6, else if the proofs cannot be verified, the protocol
is stopped.

D6: SGX → AP : decdk(ri) = datai

The device performs the decryption using the secret decryption key
that it stores. In order to check the proofs the device stores the latest
head H of the log against which the H′ is compared. The decrypted
data is being sent back to the AP.

Note that both in this step and in all others we assume that the
communication channels are secured somehow from the network
attacker. So the AD scheme should be built on top of a secure
communication protocol (like TLS if this happens over the network).

D7: AP→ Agent : datai

The AP forwards the data to the Agent that requested it.

A few remarks are in order. We already made the observation that the D
protocol assumes another underlying scheme for securing the transmitted
messages while in transit between the four entities involved. Since we do

52

not make assumptions about the communication medium between these
entities we cannot make recommendations on how these messages could
be secured. This is because the communication may not necessarily be over
the network, but maybe very close on the Data Bus of the motherboard, if
the Device is implemented on the same hardware of the AP that runs an
Intel SGX processor.

The D protocol, and indeed the whole AD scheme, are not meant to
protect the data after it is decrypted. Therefore, we do not care about
subsequent decryption requests for the same ciphertext, because these
are futile as the data once released to an untrusted party like the AP is
no longer under the control of the user. One could very well combine
with our scheme other access control schemes like for DRM control that
would control how the data is being handled. Our AD scheme is meant
to provide a reliable mechanism for detecting if and which ciphertexts
are being decrypted. Under special implementations of our scheme, more
information can possibly be counted. This information would be provided
in step D2 besides the hash identifier; this is why we left the function log

unspecified.
For the sake of the presentation, in the one decryption session above,

we assumed to work with only one request, and the implementation of the
Log would include only this single request. However, one would think of
more efficient implementations, especially there where the granularity of
the data is very fine. The session could very well work also in batch mode
where a set of n requests are being handled at once, and included in the
Log. Here would then work with one proof of extension, and n proofs of
presence.

One would also want to investigate how to implement the AP to handle
multiple sessions at once, for multiple users and Agents.

4.2.6 Inspection of the Log

The user should be able to inspect the log to retrieve whatever accounting
information the specific application intended. This protocol is depicted as
the dotted double arrow between the user and the Log service as step I.
Since this is application specific, we leave it at a very abstract level. The
only requirement is that the user can at least retrieve the list of requests,
and is able to calculate the head of the tree, the same structure that the
device is assumed to work against. Moreover, the user should at least be
able to find out if some hash (i.e., request) is in the log.

When we discuss implementations for specific applications we will
provide more interesting details for inspection protocols. For a specific
application, the inspection protocol has to be correlated in some form
with the encryption protocol. Moreover, the minimal output of the
inspection protocol, i.e., the head H is necessary for the currency protocol
in section 4.2.7. This is why we denoted this as step C0 in Figure 4.1.

53

4.2.7 Currency protocol

In this section we describe the currency protocol, denoted by the C steps and
dashed and dotted line in figure 4.1.

C0: Log→ User : H′

The user receives the root hash H′ from the log. The user would keep
all her ciphertext records R = {r0, . . . rn}, or just their hash values
R′ = {hash(r0), . . . hash(rn)}; using R or R′, she can identify what
data di corresponds to hash(ri) in the log. When inspecting the log
she can verify if the root hash H′ = ∑n

i=0 hash(ri), and would then
know what data items di has been disclosed.

C1: User→ SGX : v , where v is a random integer.

The user request the current root hash from the SGX device. The
request includes a challenge to sign the nonce v along with the root
hash to ensure the freshness (section 2.1) of the response.

C2: SGX → User : (H, s) , where s = signsk(v + H)

The user receives the root hash H and the signature s from the SGX
device. The user then checks if:

verifyvk(s) ∧ (H = H′)

and if true, the request log is fresh and contains all the decryption
request that the device has ever performed. The user can be
convinced that the log contains every data item that has been
disclosed because it would be computationally infeasible to construct
a different sequence of requests that gives the same root hash.

4.3 Protocol Implementation

This section describes the implementation of the decryption device de-
scribed in Section 4.2.5 using the Intel Software Guard Extensions to imple-
ment the device in software running in a trusted execution environment.
The goal of the implementation is to use the tools provided by SGX to im-
plement a prototype of a trusted piece of software that could run securely
in a cloud environment and provide the decryption service for the account-
able decryption protocol.

4.3.1 Defining the Enclave

The device enclave should have the following capabilities:

• Generate the two asymmetric key-pairs inside the enclave.

• Export public keys to outside the enclave.

54

Listing 4.1: Device state structure. The permanent state held by the device
is the root hash of the Merkle Tree log, and the two RSA key-pairs used for
decryption, signing. The public-keys can be exported from the RSA type
when needed.

1 struct state_t {

2 // Merkle -tree root

3 uint8_t *root_hash;

4 // RSA key -pairs

5 RSA *decrypt_key;

6 RSA *sign_key;

7 };

• Initialize the root tree hash (RTH).

• Verify proof trees, and update the root hash.

• Decrypt ciphertexts provided along with the proofs.

• Serve decryption requests across the network.

We start the implementation process by identifying the sensitive assets
to be protected inside the enclave, and how to interface with the enclave.
The sensitive assets we need to protect inside the enclave is the root hash,
the private decryption key, and the private signing key. We create a global
structure (Listing 4.1) to hold the assets. These assets should be initialized
when first creating the device enclave.

The interface with the device software is defined in the EDL file
(Listing 4.2). The EDL syntax looks like that of a header file, but to be
able to securely copy data in and out the enclave, the direction and size of
the buffers must be known to the SGX runtime.

To support the decryption protocol we need an ECALL that will decrypt
a provided ciphertext. The ECALL must also receive the proofs as arguments
to be able to verify them before decrypting the ciphertext. The structure of
the proofs are discussed in Section 4.3.3.

The currency protocol is used to receive the latest root hash from the
device. To convince the client that he sees the latest root hash, the ECALL

will receive a nonce as an argument, and return the root hash along with
a signature of the nonce and root hash through the outbound buffers
(values passed by reference, and the SGX runtime copies the data out of
the enclave).

There are also needed some architectural ECALL to provide a means to
bootstrap the device. There should be one ECALL to initialize the enclave to
the initial state, or to a restored state if the enclave software was shut down
(described in Section 4.3.2).

55

Listing 4.2: SGX device interface definition (EDL file). The enclave
definition defines the interface to the device, and the additional libraries
that should be loaded into the enclave during enclave creation (OpenSSL
and the SDK seal library). The ECALLs are defined with additional
information about the flow of information (in or out of the enclave).

1 enclave {

2 include "sgx_tseal.h"

3 from "sgx_tsgxssl.edl" import *;

4
5 #define RSA_SIZE 384 // bytes

6
7 trusted {

8 public sgx_status_t t_initialize_enclave_state(

9 [in , size=sealed_size] sgx_sealed_data_t* sealed_state

,

10 size_t sealed_size);

11
12 public sgx_status_t t_get_public_keys(

13 [out , size=enc_key_len] uint8_t *enc_key ,

14 [out , count =1] size_t *enc_key_len ,

15 [out , size=verif_key_len] uint8_t *verif_key ,

16 [out , count =1] size_t *verif_key_len);

17
18 public sgx_status_t t_decrypt_record(

19 [in , size=proof_len] uint8_t *proof ,

20 size_t proof_len ,

21 [in , size=RSA_SIZE] uint8_t *encrypted_record ,

22 [out , size=RSA_SIZE] uint8_t *decrypted_record ,

23 [out , count =1] size_t *decrypted_len);

24
25 public sgx_status_t t_get_root_tree_hash(

26 [in , size=nonce_len] int8_t *nonce ,

27 size_t nonce_len ,

28 [out , size=rth_len] uint8_t *root_tree_hash ,

29 [out , count =1] size_t *rth_len ,

30 [out , size=sig_len] uint8_t *signature ,

31 [out , count =1] size_t *sig_len);

32 };

33 };

The second architectural ECALL is used to provide the client with the
public keys generated when the enclave was initialized. The client uses
these keys for encryption, and for verifying the signed root hash.

The implementation of the architectural ECALL needs some security
considerations to be trusted; we will discuss these in Section 4.4.1.

4.3.2 Enclave Initialization

The first thing to happen after creating the enclave is to initialize its internal
state (Listing 4.1). The state consists of the two asymmetric key-pairs used

56

Listing 4.3: Device initialization. After creating the device enclave, the
device must be initialized to generate the initial state, or to restore the last
state.

1 sgx_status_t t_initialize_enclave_state(

2 sgx_sealed_data_t* sealed_state ,

3 size_t sealed_size) {

4
5 // Initialize state for the first time

6 if(sealed_state == NULL) {

7 // entropy pool to seed the PRNG used by OpenSSL

8 size_t entropy_size = RSA_KEY_ENTROPY_LEN;

9 uint8_t *entropy = malloc(entropy_size);

10
11 // Initialize RTH (hash of empty str)

12 t_sha256sum("", 0, &state.root_hash);

13
14 // seed PRNG and generate decryption key -pair

15 sgx_read_rand(entropy , entropy_size);

16 state.decrypt_key =

17 t_RSA_generate_key(RSA_KEY_SIZE , entropy);

18
19 // reseed PRNG and generate signature key -pair

20 sgx_read_rand(entropy , entropy_size);

21 state.signing_key =

22 t_RSA_generate_key(RSA_KEY_SIZE , entropy);

23
24 free(entropy);

25 // Unseal and restore the state.

26 } else {

27 // Allocate buffer for unsealed state

28 uint8_t *buf = malloc(STATE_SIZE);

29
30 // Unseal and populate state

31 sgx_unseal_data(sealed_state ,

32 NULL , NULL , buf , sealed_size);

33
34 // reinitialize state

35 t_deserialize_state(buf , &state);

36
37 return SGX_SUCCESS;

38 }

for the decryption and currency protocols, and the Merkle tree root hash of
the request log.

The enclave software is to be deployed to some cloud environment,
and because the enclave software is sent to the cloud in the clear, it cannot
initially contain any secrets, so these must be generated securely with the
first use.

The first time initializing the device enclave, the root hash is set to

57

the hash of some value using a specific hashing function, agreed upon
with the log provider, in this case, the hash of an empty string (line 12,
Listing 4.3). The SGX cryptographic library bundled with the SDK provides
an implementation of the Secure Hash Algorithm 2 (SHA-2) with a 256-bit
long hash value.

The enclave must generate the two asymmetric key-pairs. We want to
use the RSA cryptosystem (Section 2.2.4). To securely generate the large
primes used in RSA, the key generation will require some random entropy.
The SGX runtime provides a secure way to receive random entropy directly
from the CPU using the RDRAND instruction [27].

The SGX cryptographic library does not include a full RSA implemen-
tation. To generate the keys and perform decryption, we use the OpenSSL
cryptographic library to perform the key generation, reseeding the genera-
tor between each key-pair to ensure the keys are independent.

If the platform running the enclave needs to be restarted, or some of
the device software crashes, the enclave must restore the state. The state
is sealed and stored in a stable storage device on the untrusted platform
after the first initialization and every time the root hash is updated. If the
sealed state is provided when the enclave is initialized, the state is instead
restored.

The availability (Section 2.1.3) of the device enclave can be compro-
mised by deleting or otherwise withholding the state from the enclave. By
deleting the state, the same key-pairs can never be restored, making all en-
crypted data records useless.

4.3.3 Verification of Proofs

The proofs are represented using the JavaScript Object Notation (JSON) data
interchange format to simplify the interface between a device server and
the decryptor client. The proofs are transformed to JSON objects following
an agreed upon structure; for example, the proof of presence from
Figure 4.2 can be seen in Listing 4.4. During operation, the "Hash" field
would contain a string of the actual hash value encoded to hexadecimal or
base64. The proof of extension would look very similar to the JSON object
in Listing 4.4 but would contain two of the top-level tree object (line 3), one
that computes to the current root tree hash, and another tree that computes
to the new root tree hash.

To verify the proofs, we recompute the root hash by performing post-
order traversal over the binary tree, where the hash value from the left
child is “added” together with the hash value from the right child before
returning the sum (see Listing 4.5 for python pseudo-code). The traversal
routine will return the calculated root hash of the given tree, along with a
list of all the hash values collected from the leaves.

58

Listing 4.4: JSON representation of the proof of presence from Figure
4.2. The natural tree structure of JSON-objects nicely represents the
binary Merkle Tree. The hexadecimal representation of the hash-values are
replaced with the same notation format as used in Figure 4.2.

1 "ProofOfPresence": {

2 "RootHash" : "H(0,7)",

3 "Tree": {

4 "Hash": null ,

5 "Left": {

6 "Hash": "H(0,3)","Left": null ,"Right": null},

7 "Right": {

8 "Hash": null ,

9 "Left": {

10 "Hash": "H(4,5)","Left": null ,"Right": null},

11 "Right": {

12 "Hash": null ,

13 "Left": {

14 "Hash": "H(6,6)","Left": null ,"Right": null},

15 "Right": {

16 "Hash": "H(7,7)","Left": null ,"Right": null }}}}}

Listing 4.5: Recursive algorithm to traverse the JSON encoded proof tree
(Listing 4.4) and compute the root hash and leaf order.

1 def traverse(node , order):

2 # Get the node hash value

3 h = node["Hash"]

4
5 # If node is a leaf , end recursion

6 if h is not None: # "Hash" is not 'null'

7 order.append(h) # add hash to order list

8 return h.decode("hex") # return binary hash value

9
10 # Recursive calls get left and right hash

11 l = traverse(node.get("Left"), order)

12 r = traverse(node.get("Right"), order)

13
14 # Return hash of left + right hash

15 return hashlib.sha256(l + r).digest ()

The request to the device would also contain the ciphertext r7 to be
decrypted. Before decrypting r7, we need to know if the request has
been added to the Merkle tree log. The implementation represents the
ciphertexts in the log by the 256-bit SHA-2 hash value H(7, 7) = hash(r7)

of the ciphertext to be decrypted.
After traversing the tree represented by the root hash H(0, 7), we check

if H(7, 7) is present in the list of hashes returned by the traversal routine:

orderH(0,7) = {H(0, 3), H(4, 5), H(6, 6), H(7, 7)}

59

If we find H(7, 7) in the list, we know it was used in the computation of
the root hash H(0, 7), and it’s presence in the tree is proved.

To prove that the tree H′ = H(0, 7) is an extension of the tree H(0, 6),
both trees are traversed, and if:

orderH(0,6) = {H(0, 3), H(4, 5), H(6, 6)} ∈ orderH(0,7)

we know that the tree H′ was computed from a tree that also includes
the values in the tree H(0, 6). If H(0, 6) is equal to the current root hash H
stored in the device’s state, the state can safely be incremented to the new
root hash H = H′, and then proceed to decrypt the ciphertext r7.

4.3.4 Decryption

The decryption ECALL (Listing 4.6) will copy the cipertext and proofs into
the enclave’s protected memory area. The provided ciphertext is measured,
and the hash value is used when verifying the proofs. As described in the
previous section, the hash value of the ciphertext must be present in the
extended Merkle tree provided in the proofs. If the ciphertext is proven to
be present in the request log, the new device is ready to advance it’s state
to the new root hash.

Before committing to decrypt the ciphertext, the device must back up
its new state to some stable storage location. When the device gets a
confirmation that the state has been sealed and stored, it can proceed to
decrypt the ciphertext to the buffer that copies the plaintext out of the
enclave.

Like during the RSA key generation, the implementation of the RSA
decryption routines is provided by the OpenSSL libraries included with the
enclave. The prototype uses the OAEP (see Section 2.2.4) padding scheme
for RSA. The OAEP scheme makes the RSA ciphertexts non-deterministic,
which would be necessary for some applications. If the ciphertext is only
a randomly generated symmetric key, it would not matter, but in the
case, the client encrypts his location data directly using RSA, deterministic
encryptions could leak information.

4.3.5 Main Application

A small and untrusted main application is used to set up and create
the device enclave in memory. When the enclave has been set up, the
application will initialize the enclave. If the device enclave is to be resumed,
the application provides a buffer containing the sealed state as a parameter
when initializing the enclave.

During the decryption ECALL the enclave will store its state. This
requires a OCALL out of the enclave with a buffer containing the sealed
state. The feature to store and restore the enclave state has yet to be

60

Listing 4.6: Device decrypt ECALL. The function receives the proofs and
the ciphertext to decrypt. After verifying the proofs, the root tree hash
is updated before the ciphertext is decrypted and passed back to the
untrusted application.

1 sgx_status_t t_decrypt_record(

2 uint8_t *proof ,

3 size_t proof_len ,

4 uint8_t *encrypted ,

5 uint8_t *decrypted ,

6 size_t *decrypted_len) {

7
8 // Measure the hash value of the ciphertext

9 uint8_t ct_hash[SHA256_DIGEST_LENGTH];

10 t_sha256sum(encrypted , RSA_SIZE , &ct_hash);

11
12 // Verify proofs

13 // The new root tree hash is calculated during verification

14 uint8_t *new_rth = t_verify_proof(proof , proof_len , &ct_hash)

;

15 if (new_rth == NULL) // could not verify proof

16 return SGX_ERROR_UNEXPECTED;

17
18 // Update , seal and store the global state

19 // Will succeed if able to store updated state to storage

20 int updated = t_update_root_tree_hash(new_rth);

21 if (! updated) // could not update/store RTH

22 return SGX_ERROR_UNEXPECTED;

23
24 // Decrypt record in the outbound decrypted buffer

25 *decrypted_len = t_rsa_decrypt(state.decrypt_key , encrypted ,

decrypted);

26 if (ret < 0) // decryption error

27 return SGX_ERROR_UNEXPECTED;

28
29 return SGX_SUCCESS;

30 }

implemented but could be implemented as a file stored to a local storage
device. Another option is to let the enclave use a network socket to
establish an authenticated TLS connection to a remote storage device.

The main application exposes an interface to the operational ECALLs
(decrypt, getRootHash, getPublicKeys) to a server application that handles
remote procedure calls (RPC) from the decryptor.

4.3.6 Prototype and Future Work

The implementation consists of a working protocol prototype [55] imple-
mented using the Golang programming language, and an SGX enclave pro-
totype implemented using C and C++. The protocol prototype does not
implement a trusted execution environment using SGX but implements the

61

full functionality, except the missing feature described in Section 4.3.5. The
protocol prototype was implemented as part of the collaboration with Prof.
Mark Ryan, where an M.Sc. student at the University of Birmingham was
implementing the logging service which was responsible for crafting the
proofs and providing a web interface to review the log. The prototype is
able to verify the proofs generated by the logging service and provide the
decryption service described in the design.

The prototype was implemented to inter-operate with the log service
using the gRPC2 remote procedure call framework. The framework lets
us describe the RPC interface (procedures and message formats) using
a specified syntax, and then using code generation, we can generate
the interface code to the various different programming language with
minimal effort. The log service was written in Java, and the generated RPC
interface let it call the protocol functions implemented by the prototype.
Some difficulties were encountered by the different RSA implementations
used by Java and Golang, where ciphertext generated by Java code
threw decryption errors in the Golang RSA library. This was solved
by using the older Public-Key Cryptography Standards #1 v1.5 (PKCS1v15)
encryption/decryption scheme for RSA instead of OAEP.

The SGX enclave implementation [55] uses the C++ and C program-
ming languages. The implementation features a secure enclave that gener-
ates RSA keys and decrypts ciphertexts that were encrypted using the gen-
erated key. The SGX enclave does not verify proofs before decrypting the
ciphertexts. The proofs are represented using the JSON data interchange
format (see Listing 4.4), and due to the SGX enclave programming model,
there were difficulties including a library for handling JSON objects inside
the enclave. A possible solution is to let the untrusted application parse the
JSON proof structures outside the enclave and flatten the trees into arrays.
The flattened proofs can be copied into the enclave and verified before de-
crypting the ciphertext. To interface with remote parties, the RPC interface
can easily be generated for C++ as well.

Another option could be to implement the server application using
a high-level language that could provide memory and type safety, and
directly call the enclave functions using a foreign function interface (FFI).
Memory safety could protect the application from memory corruption attacks
like buffer overflows. Projects like the Rust SGX SDK[17], lets us implement
the enclave itself using the Rust3 programming language, providing the
enclave code memory and type safety.

To implement the software attestation features required to safely deploy
the device, the enclave needs another ECALL that creates the attestation
report. The main application will have to implement a lot of extra
infrastructures because it will be responsible to start up the Quoting
enclave, receive the target information structure from the Quoting enclave,

2https://grpc.io
3https://www.rust-lang.org

62

https://grpc.io
https://www.rust-lang.org

and pass it to the device enclave. The device enclave will create its
attestation report, with the Quoting enclave as the target. This allows
the Quoting enclave authenticate the attestation report that is passed
to it by the untrusted application (see Section 3.1.6 for a more detailed
description of remote attestation flow). The complexity of developing the
attestation feature placed it outside the scope of the project, that was the
implementation of the accountable decryption protocol.

4.3.7 Configuration and Take in use

The protocols that we described assume the existence of some primitive
cryptographic material and properly configured participants, i.e., the SGX,
the service provider and the log. We describe here how this configuration
can be properly obtained, and how it can be protected against crashes of
any part of the system.

We use the configuration of a Find My Phone service as an example
of how the protocol could be used to provide accountability of how the
phone location data is being used by the service provider. In this example
configuration, the location data used to track the phone should only be
decrypted in case the phone is lost. One could also imagine that if the
phone is used by a child, the parents could be authorized to request the
location of the child by proxy of the phone.

The service provider would present a web interface with at least the
three basic views; (1) The Account view, containing account information,
(2) the Service view, where the user can find her phone and, (3) the Log
view, where the user can observe the request log. The Account view
would be where users could set up their account, and who is allowed to
request the location data of the phone. The Service view would present the
user with a map, and a button to request the position of the phone. The
information tied to the request could be the IP-address, user-name, time-
stamp and optionally, a text field to input the reason for the decryption.
The Log view would present the user with a log of all the decryption
requests, along with the information about the request, and the request
ID. The log would not be very long and could be presented as a simple
list. The Merkle tree, represented as JSON could be verified in the browser
by client-side JavaScript, or downloaded by security-conscious users to be
verified manually. By verify, we mean checking if the root hash of the tree
is the same as we observe in the web interface, in the client application,
and if directly querying the device. From a usability standpoint, the hash
could be represented as a hash phrase, where the hash value is mapped into
a space of a sequence of n words. The root hash would then read as a
phrase of words from a dictionary, instead of a 64 character long sequence
of hexadecimal numbers.

The device or enclave would be a per user construct kept by the
service provider. The enclave code must be open-source so that users and
security specialists could audit the code, and be convinced it cannot leak

63

the private-key material, or perform decryptions without creating an entry
in the log. When a user signs up to the service, a new enclave is initialized,
and the public keys are generated and exported to the user’s account.

After creating the account, the user would download the client
application to his phone. The client would retrieve the public keys and is
now ready to start sending encrypted location data to the service provider.
However, first, the client will request a Quote from the enclave, to verify
that the service is backed by a genuine SGX enclave and that the software
running inside the enclave is the same as the open-source code. The enclave
measurement included in the Quote should be reproducible by anyone
with the SGX SDK. The service provider would sign the enclave, and the
measurement of their public key would also be present in the Quote. The
last, but very important information contained in the Quote would be the
report data field; this field would contain a measurement of the two public
keys, generated during the enclave initialization. The client application
could be open-source as well, and then users and specialists could be
convinced that the application did proper verification of the public keys
and Quote before starting to send location data to the service provider.

4.3.8 Protocol Operation

During the operation of the accountable decryption service, the client will
be creating ciphertexts with the public key it received from the device
enclave. The ciphertexts are uploaded and stored with the service provider
and labeled with some relevant metadata. For the Find My Phone service
described in the previous section, the ciphertexts would contain location
data and the metadata could be the corresponding timestamp. The service
provider would keep the ciphertext, and make them indexable through
their web interface.

The decryptor in this scenario would often be the phone owner if
he lost his phone, or parents wanting to look up where the child has
forgotten their phone. Depending on the user agreement with the service
provider, decryption could also be used by law enforcement in criminal
investigations, or during a search-and-rescue type of missions.

When requesting a ciphertext record to be decrypted, the service
provider will construct the request object, containing the ciphertext and
relevant information, and then add it to the log. Their web view would be
updated to show information about the decryption and the updated root
hash. The log would then create the proof object, containing the proof
of extension/presence, which then is passed to the device as part of the
request object. The device would decrypt the location data and display it
in through the web interface.

The log would have to show the decryption request and the current
root hash to the user; because the user is able to use the currency protocol
to request the current root hash directly from the device, she would notice
if the web interface and the device gave her different values for the root

64

hash.

4.4 Discussion

4.4.1 Security Aspects

The goal of SGX is to create a trusted execution environment for a small
and trusted software module. In the SGX model, all software except for
the trusted module running inside the SGX enclave is untrusted and not
a part of the TCB. By reducing the TCB to only include the enclave, the
trusted module inside the enclave must be very carefully constructed to
be resistant to attacks from privileged software like the OS kernel running
outside the enclave. This section will discuss some of the security aspects
that must be considered in order to ensure the confidentiality and integrity
of the trusted module are protected from potentially malicious privileged
code running outside the enclave.

SGX Security Assumptions

In Section 4.2.3 we describe some assumptions we make about the security
guarantees provided by SGX.

The guarantees provided by SGX are all based on the confidentiality
of the CPU specific secrets, and how SGX uses these secrets to create the
signed Quote. Without the Quote, and the ability to create a secure channel
using the additional data field in the Quote, SGX could not convince
us about the integrity of the device software. We have to assume the
confidentiality of the CPU secrets to trust the remote attestation process
(described in Section 3.1.6). A more worrying issue is that only an Intel
service can verify the Quote, and this would mean they could report
a spoofed signature as valid if they were pressured to do so by for
example law enforcement. However, we are already trusting Intel as the
manufacturer of the CPU package itself, but we are expanding the TCB to
encompass the Quote verification service.

SGX makes guarantees about keeping the enclave’s memory confiden-
tial from privileged software, and physical memory probing by enforcing
strict access control to the memory region, and by encrypting the physi-
cal memory. However, SGX cannot guarantee anything about the software
running inside the enclave. In Section 3.4 we showed a practical example
that would disclose the secret inside the enclave if asked to. This could of
course also happen by exploiting a bug in the enclave software as well. One
could imagine a Heartbleed4 like a bug in the enclave software, whereby
not checking the sanity of the parameters on incoming requests, and the
bounds on buffers, the enclave software would read to much from its mem-
ory and possibly disclose confidential information. Some of these security

4http://heartbleed.com/

65

http://heartbleed.com/

issues could be resolved by using a memory safe programming language
to compile the enclave software (discussed in Section 4.3.6).

SGX Attack Model

We assume a powerful adversary with root privileges on the same local
system as the enclave. The adversary can start, stop, and terminate
enclave software whenever he wants; the adversary can even start multiple
identical enclaves at the same time. The adversary can serve multiple
identical enclaves a different version of the sealed state. The adversary
is able to read, modify, block, and delay all messages sent by the enclave.

The adversary cannot read the enclave’s runtime memory. The adver-
sary does not have access to the processor specific seal and provisioning
secret stored inside the CPU’s e-fuses, and therefore cannot derive the se-
cret key used for sealing, and attestation (Section 3.1.5). We also assume
that the adversary cannot break the cryptographic primitives used by the
SGX implementation, nor the primitives used by the trusted enclave mod-
ule.

Roll-back Attacks Against Sealed State

The AD protocol depends on the root hash state of the device and the log
to be consistent, and the client being able to get an authenticated and fresh
root hash from the device. The currency protocol is used to achieve this
property on the protocol level, but the make the implementation practical,
we had to introduce the ability to store and restore the state in case the
system needed to restart. This introduces another vector of attack on the
device enclave; a roll-back attack on the sealed state.

Roll-back attacks are aimed at compromising the integrity of the
enclave’s state. An adversary is able to roll-back the enclave’s state by
stopping the enclave, and then, when resuming the enclave, presenting it
with an older version of the enclave’s state. The enclave will authenticate
the state when unsealing it, so the adversary is not able to create arbitrary
valid states, only reuse old ones.

The attack is possible because the runtime memory of the enclave is
erased when stopping the enclave, and if there is no way to guarantee the
freshness of the sealed state, the resumed enclave will be compromised
by restoring a stale state; specifically, the integrity of the root hash will be
compromised by the attack.

The attack would also allow the adversary to create a "fork" of the
enclave, two identical enclaves are started on the same platform using
the same initial state. The attack would allow the attacker create a
"clean" version of the decryption device that is exposed to the client and
another version of the device that can be used by third parties to perform
decryption using a cloned version of the log. This would make decryption
unaccountable and compromise the security of the AD protocol.

66

To protect against these types of attacks, SGX enclaves have access to
a system-wide monotonic counter. The counter can only be incremented,
and by having the device enclave keeping the counter as part of its
state, incrementing it for every version of the sealed state stored outside
the enclave. When restoring the device enclave, it will unseal the state
presented to it and retrieve the counter value from the system. If the
unsealed state has a different counter than the counter received from the
system the device will detect that the state has been tampered with.

The way Intel’s monotonic counter service stores the counter in non-
volatile flash memory inside the Intel Management Engine (ME) creates
issues with scaling. There are also some security concerns since the ME
is not part of the CPU package, but part of the chipset and mounted to
the motherboard [39]. A more detailed description of the system-wide
monotonic counter can be found in Section 3.3.1.

By implementing roll-back protection using either the local monotonic
counter, or a distributed counter, as proposed in [39], the adversary cannot
create a forked device, or reset the device to an old state.

Side-channel Attacks Against Enclaves

The accountable decryption protocol makes some assumptions about the
trusted execution environment provided by SGX (Section 4.2.3). Specif-
ically, we assume that the secret RSA private key is kept confidentiality
protected inside the enclave and that the secret AES key used when seal-
ing the state is also not disclosed. Both of these cryptographic schemes can
be vulnerable to cache-based timing attacks, where the timing of the different
operations can reveal information about the secret key. [24, 25]

The SGX attacker model is to protect user-level software from privi-
leged software running on the same platform. However, the Intel CPU pro-
vides privileged software, like the OS kernel with powerful profiling tools
and the ability for fine-grained hardware thread pinning, allows privileged
code to run a spy-process on the same hardware thread as the enclave soft-
ware. This means that the spy-process shares the cache with the enclave
software, and can use different types of probing operation to get informa-
tion about the memory access-pattern of the enclave. By probing different
memory locations, and exploiting the property that fetching memory from
the cache is much faster than from main memory, the attacker gets informa-
tion about the enclave’s memory access pattern when accesses to its own
memory produces a cache miss.

Root-level cache-timing attacks against an AES software implementa-
tion running inside an SGX enclave are able to extract the AES secret from
the enclave [22]. The AES implementation that was used was known to be
vulnerable to these timing attacks and showed that SGX could not protect
against cache-timing attacks. However, the AES implementation provided
with the SGX SDK used for sealing was not vulnerable to this exact type of
timing attack.

67

In a cloud environment virtual machines are co-located on the same
physical machine; utilizing this, another side-channel attack on SGX
enclaves uses a malicious co-located enclave to steal the RSA private key
from the enclave using a cache-based timing attack. This attack could also
be very difficult to detect because the malicious code is running inside
its own enclave. The use of random noise during the computations can
be used to hide the secret RSA key from this type of timing attack (see
Section 2.2.4). [54]

It is obvious that Intel SGX does protect against side-channel attacks
against the software running inside the enclave. This means the enclave
authors must take care to protect their software from side-channel attacks.
Intel states that these types of attacks are edge-cases and that SGX cannot
protect against them [47].

Cryptographic Primitives

We assume the cryptographic primitives cannot be broken if implemented
correctly and when using long enough keys to make the key-space large
enough to make brute-force attacks infeasible. As of November 2017, the
SGX SDK includes only a limited cryptographic library. The library only
implements the AES algorithm (Rijndael [14]) using 128-bit keys. This
building block is used to implement AES in Galois Counter Mode (GCM)
and Counter Mode (CTR), and Cipher-based Message Authentication Code
(CMAC). For cryptographic hashes, the library implements SHA-2 with
256-bit long hash values. The only asymmetric cryptographic primitives
included in the SGX SDK are digital signatures, using either 3072-bit RSA
or the elliptic curve digital signature scheme (ECDSA) with 256-bit keys.
NIST recommendations for key management considers all of these secure
to at least the year 20305 [6].

The SGX OpenSSL library [30] used to implement the device is a general
purpose cryptographic library and implements many more primitives and
with longer keys. The API supports the AES algorithm with the full 256-
bit key length, SHA-2 with 512-bit long hash values, and RSA crypto,
and signature scheme with 4096-bit keys. It also supports the MD5 hash
algorithm, which is considered insecure, and the SHA-1 hash algorithm,
which is considered legacy for many use-cases [6]. Hash collisions using
SHA-1 was demonstrated in 2017 by researchers at Google [58], but needed
around 6500 CPU years, or 100 GPU years to find a collision.

4.4.2 Other Applications and Configurations

The "Find My Phone" service described in Sections 4.3.7 and 4.3.8 is just one
specific implementation of the accountable decryption protocol, but we could
imagine it being used for many other applications where we want some

5https://www.keylength.com

68

https://www.keylength.com

entity to have access to our data, but have accountability of its use. Patient
journals could be another application, where we want to know what type
of health information is being inspected, and that it is only our doctor that
is inspecting the journal.

Another possible use for the protocol could be in electronic voting
systems. Instead of returning the plain-text, the device could tally up
the decrypted votes, and at the end return the final results. This log
combined with the root hash in the device would provide the proof that
every encrypted vote was counted, and then no vote was counted twice.

The Currency protocol could be implemented differently than in our
approach; we chose to let the user directly challenge the device with a
nonce in order to get a fresh root hash from the device. Another option
could be for the device to periodically publish the root hash using an
unpredictable value that everyone can verify.

The Tor Project6 has specified a distributed random number generator
to create a global shared random number each day [61]. This random
number could be signed along with the root hash; the user could then
verify freshness by checking the value published by the distributed system
herself. We have already mentioned the ROTE paper [39] for using
a distributed system to protect against roll-back attacks, and we could
imagine the same system could be used to generate the global random
variable or a trusted time-stamp for the Currency protocol.

4.5 Summary

In this chapter, we have described the design and implementation of
Accountable Decryption protocol. The design relies on a trusted hardware
device and using the capabilities that Intel’s Software Guards Extensions
can provide we implemented the device in software that can be deployed
on all newer Intel CPUs.

We have discussed some of the security aspects of the implementation
and found that using SGX is no "silver-bullet" for security in cloud appli-
cations because of cache-based timing attacks against the cryptographic
primitives running inside the enclave.

We also discussed how roll-back attacks could break the security of the
protocol by replaying decryption requests to it, and how to protect the
device against this type of attack.

6https://www.torproject.org/

69

https://www.torproject.org/

70

Chapter 5

Securing the Signal server
using SGX

5.1 Introduction

This chapter presents discussions on how entire applications could be
secured using the hardware security technology provided by Intel Software
Guard Extensions (SGX). We have chosen one specific application, the
Signal messaging protocol. Much of this chapter was first presented in
April 2017 during the 5th Workshop on Hot Issues in Security Principles
and Trust (HotSpot) [56].

Signal is a recent secure messaging protocol, descendant from the
classical off-the-record protocol, which has lately become popular partly
due to the Snowden revelations. Signal, or variants of it, are now
implemented, or under way of being implemented, in various major chat
products, like from Facebook, WhatsApp, Google.

However, when studying communication protocols, usually one fo-
cuses on the protocol itself. In contrast, we are here focusing on securing
the central message distribution and user discovery of such an end-to-end
secure communication protocol, i.e., the centralized server application.

We make use of hardware enabled security features provided by the
recent technology of Intel’s SGX, part of the newer Skylake architectures.
However, working with SGX can be tedious, therefore, we are looking at
simpler ways of programming, using the recent SCONE secure containers.
These are the secure counterparts of the popular Docker containers,
implemented using SGX. Our work of implementing Signal using Intel’s
SGX can also be seen as an exploration and testing of the new features and
performance of this new security technology from Intel.

71

5.2 Motivation

Secure messaging protocols have been around for more than a decade, with
off-the-record (OTR) protocol1 [8, 16] being a prominent example. OTR also
has been implemented in standard instant messaging clients for quite some
time, e.g., in Adium2 (for MacOS), Jitsi3 (cross-platform), or through plug-
ins in the popular Pidgin4 (for Linux). However, these have not seen wide
adoption, partly due to usability difficulties [57, 63, 64], but also partly due
to lack of motivation from the users. The Snowden revelations, however,
triggered more concern, and recently we have seen an explosion in secure
messaging implementations, with prominent example being the Signal
protocol (formerly known as TextSecure). A few recent studies appeared
about secure messaging in general [50, 63], as well as formal analysis of
Signal/TextSecure [11, 20, 32].

The Signal messenger, like many other secure messenger applications5

relies on a centralized infrastructure to achieve asynchronous6 communi-
cations between clients. The content of messages going through the server
are end-to-end encrypted, but information about the sender and receiver is
known to the server in order to route the messages [50]. This, and other,
metadata can be used to obtain sensitive information about the clients [40].
The Signal server also facilitates contact discovery for users, and is per-
formed by users uploading their contact list to the server. Even if phone
numbers are anonymised, the numbers could be deanonymised by con-
structing a social graph from all the contact lists.

Keeping the metadata secure requires trust in a large software and hard-
ware stack. Even more so when the Signal server is set up in a cloud
environment, since the trusted computing base (TCB) will include privi-
leged software like firmware, hypervisor, the providers cloud management
software, and in many cases the operating system as well, since cloud-
providers supplies pre-built images. Not only do you have to trust the
providers hardware and software stack, one also has to trust the cloud-
provider’s personnel, like the system administrators, and other personnel
with physical access to the hardware. New research suggests you even
have to trust other customers of the cloud-provider due to attacks like mem-
ory massaging attacks [49] which can fully compromise co-hosted cloud VMs
[60]. To secure the server and metadata in this threat-model we have to re-
move the privileged software from the TCB, and protect the application’s
memory from lateral attacks.

1https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
2https://www.adium.im
3https://jitsi.org/Main/About
4https://developer.pidgin.im/wiki/ThirdPartyPlugins
5https://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients
6Note that OTR was intended for synchronous communications as with chats, and is

thus not usable for securing SMS like asynchronous communications (a few modifications
are needed, see [20]).

72

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://www.adium.im
https://jitsi.org/Main/About
https://developer.pidgin.im/wiki/ThirdPartyPlugins
https://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients

The threat-model assumes that the central server are secure from
malware and hardware attacks. However, considering the large TCB,
we would like to remove this assumption by using Intel Software Guard
Extension (SGX) [1, 41] to keep the metadata encrypted in memory.
Moreover, we think that the same technology of Intel’s SGX can be used
to similarly secure the desktop Signal clients. However, for mobile clients
(e.g., running inside Android environments) one needs to investigate
alternatives (e.g., ARM’s TrustZone).

Our motivation is similar in spirit to the motivation of the authors of
the recent article [9] where they want to secure the data handled by the
Apache ZooKeeper (used for coordination of distributed systems) against
privileged software, like hypervisors. They compare two approaches,
either implementing the whole application inside an SGX enclave, or
implementing only specific security functionalities inside enclaves, e.g., for
encrypting data before storing or passing it around.

5.3 Technical Details

We first present the technologies that we plan to use, and in the end we
give a short presentation of the Signal instant messaging protocol.

5.3.1 Intel SGX

The SGX model (described in section 3.1) is to create a secure enclave with
integrity and confidentiality protection from privileged code running on
the same system at the secure enclave. However, the enclave is only meant
to hold a small, trusted and security-critical software model.

To secure existing software using SGX without rewriting the software,
there is the option to put the whole application inside the enclave. The en-
clave could provide the application with confidentiality and integrity guar-
antees, and remote attestation would allow us to deploy the application
with a cloud provider with the same security guarantees.

5.3.2 Linux Containers

The concept of software containers tries to solve the problem of managing
software dependencies [43]. Conflicting or missing dependencies can
be a big problem when deploying software to different services. If the
developer does not have the same versions of the software as running
in the production environment, a dependency conflict might break the
functionality of the application. To solve this containers uses an isolated
runtime environment, and pack the dependencies together with the
application inside the container. A popular implementation is the Docker

73

containers,7 which also provide a repository8 of Docker images curated by
both trusted developers and the Docker community, making it very easy to
pull and deploy applications.

Unlike virtual machines, that virtualizes the hardware of a machine,
Linux container software like Docker uses OS-level virtualization to isolate
processes and their runtime environment. This makes containers much
more lightweight than VMs since they do not need to boot up a full
operating system to start the application. A container has all the files
and binaries needed to run the application, but uses the operating system
for services like I/O and resource management. Docker builds on the
technology of Linux Containers (LXC)9 to provide containerization. Using
kernel namespaces the containers get their own view of system resources,
and using control groups these resources can be limited by the host.

5.3.3 Approach: SCONE secure containers

An alternative approach to the SecureKeeper re-implementation using
small enclaves is to run the entire unmodified application inside one
enclave. Previous work on this approach include Haven [7], where a library
operating system [37] and a shield module that handles scheduling threads,
memory management and a file system were included inside the enclave
to be able to run unmodified windows applications inside the enclave. A
drawback of this solution is the large subset of Windows that the library
OS includes, which adds considerable extra code to the TCB.

Recent work [3] in running unmodified applications inside a single
SGX enclave make use of Docker containers instead of a library operating
system. Thus, the objective of SCONE [3] is to make a secure container
mechanism by placing the application and application-specific libraries of
Docker containers inside an enclave.

Running unmodified applications inside enclaves requires a standard
C library (libc) interface and an external interface to execute system calls,
since enclaves do not support system calls. SCONE includes the musl10

libc library and the Linux Kernel Library [48] (LKL) to create a small Linux
library OS.

Exiting and entering enclaves is an expensive operations, since it needs
to do a context switch from the protected stack, and then sanitize the
CPU registers so as to not leak information. To minimize enclave exits
and entries, SCONE uses the hybrid (M:N) threading model, and supports
asynchronous system calls by writing system calls on a queue outside the
enclave. As seen in figure 5.1, the kernel module on the host will execute
the system calls from the call queue, and put responses in the response
queue.

7https://www.docker.com
8https://store.docker.com
9https://linuxcontainers.org/lxc/

10https://www.musl-libc.org

74

https://www.docker.com
https://store.docker.com
https://linuxcontainers.org/lxc/
https://www.musl-libc.org

Host operating system (Linux)

Container

Enclave

Application Code

Application-specific libraries

Network shield

M:N Threading

SGX-aware C library

Asynchronous system call interface

syscall3
syscall2

resp0
resp1

File-system shield

SCONE kernel module Intel SGX driver

Figure 5.1: The SCONE architecture (green). The host OS uses a custom
kernel module to execute system-calls on behalf of the SCONE container.
The container runs the SGX enclave (blue) that contains the application.
The enclave also contains the I/O shields, a thread scheduler, a minimal C
library and a system-call dispatcher. [3]

To protect the enclave code from a malicious operating system, the
system call interface does various checks on the system call parameters and
responses, like checking if pointers and buffers resides inside or outside
the enclave. The authors of [3] describe three different shield modules to
protect I/O operations: the file-system shield, network shield and console shield.
The file-system shield protects the confidentiality and integrity of files by
transparently encrypting files used by the containers overlay file-system,
which resides outside the secure enclave. The network shield encrypts the
container’s network interface transparently using TLS. The console shield
encrypts the unidirectional console stream from the application using
symmetric-key encryption; enabeling the operator to decrypt the console
stream from a trusted environment. The shield modules are extendible,
in case the containerized application has additional interfaces that require
protection.

To create the secure containers for SCONE, the applications must
be built as a SCONE executable by statically compiling them with the
application-specific libraries, and the SCONE libraries. There is also need
for some additional configurations in order to enable and configure the
different shield modules. When complete, the secure Docker image can be
published using the standard Docker Store. The secret information needed
by the enclave to encrypt the file-system and console stream is provided by

75

a special configuration file called the startup configuration file (SCF). The SCF
is not included in the image, but is sent to the enclave over the TLS secured
channel after SGX has verified the integrity and identity of the enclave.

Side-channel attacks on SGX enclaves was discussed in section 4.4.1 ,
and the threat models of neither SCONE or Haven considers side-channel
attacks. We discussed how these type of attacks could be performed by the
privileged software on the host platform, and research [65] has shown that
these types of attacks can extract complete text documents and outline of
images processed by a legacy application running inside a Haven container.

5.3.4 Other approaches: SecureKeeper and Graphene libOS

Implementing native SGX support for the Signal server will require some
additional code to invoke the special system calls used to create and enter
the enclave. One approach is to identify the critical sections in the server
that handles the metadata and routing of messages, and implement them
using SGX. SecureKeeper used this approach to implement Apache ZooKeeper
using SGX [9]. In SecureKeeper, an SGX enclave is used as a secure entry
point for TLS encrypted requests to the server. The requests are decrypted
inside the enclave, then the payload and path field of the requests are
encrypted again before passing the request out of the enclave to the normal
ZooKeeper code. The re-encryption of the payload and path is transparent
to the ZooKeeper cluster, and is basically working like a disk-encryption
scheme for the cluster. For SecureKeeper this approach worked well,
and with little overhead, as measured by the authors. However, this
may require more detailed programming knowledge of the system to be
secured, as well as a re-implementation.

Scone provides a very small TCB by only including a common C library
inside their secure container, but it should also be possible to run the Signal
server inside a full library OS (also called unikernels). The Graphene
library OS [62] supports multi-process applications, and have recently
added support for running unmodified binaries inside SGX Enclaves11.
Graphene claims to be able to run Java applications on top of OpenJDK
inside a enclave with minimal development efforts.

5.3.5 Signal protocol

Signal is an instant messaging protocol devised with similar goals as the
off-the-record protocol, i.e.,

end-to-end security or confidentiality, where only the intended conversa-
tion partners are able to read a message; in particular, the message
should not be available to a third party like an intermediary server
(offering some infrastructure support);

11https://github.com/oscarlab/graphene/wiki/Introduction-to-Intel-SGX-Support

76

https://github.com/oscarlab/graphene/wiki/Introduction-to-Intel-SGX-Support

deniability which, given a sequence of messages and the relevant keys,
ensures that there is no way for a judge to prove that a certain
message was authored by a certain user;

forward secrecy which ensures that previously encrypted messages can-
not be decrypted upon obtaining current and/or future keys;

future secrecy which ensures that a message cannot be decrypted even if
keys from previous sessions are being compromised.

The Signal protocol goes over several phases, and a third trusted
server is also involved, besides the two honest parties participating in the
conversation. By honest parties it is only assumed that their long-term
cryptographic material is not compromised.

The registration phase involves the Trusted Server, as well as Google
Cloud Messaging system (GCM). The trusted server needs the phone
number of the participant to which a verification token is sent to
check the ownership of the phone; the exchange of messages is done
through HTTP and uses basic authentication. Various cryptographic
material will be stored on the server for this user, some used to
encrypt messages sent to GCM, others, the pre-keys, are used in
encrypting messages.

A key comparing phase can be done by the human parties, similar to
what is done in OTR. In this stage the Signal App can compute a QR
code, to make the comparison automatic.

Sending message phase involves the trusted server to provide the
stored pre-keys to be used in a complex key derivation algorithm
called Axolot-ratcheting. This this conversation with the server,
more information than just the message is being sent. In particular,
identities of the participants.

Sending subsequent messages, or sending reply messages within the
same session, does not involve the trusted server.

5.3.6 Signal server

In [3] the authors built and benchmarked secure Docker images of Redis,
NGINX, and Memcached. These applications are implemented in C, and can
run natively inside the secure container. The Signal server, however, is a
Java application, and needs to run on top of a Java Virtual Machine (JVM).
A lightweight JVM like JamVM12 could be statically compiled to use the
SCONE libraries and system call interface and included inside the enclave.

The Signal server has at least three security critical-parts. When sending
a message to some user using Signal, the message is end-to-end encrypted

12http://jamvm.sourceforge.net

77

http://jamvm.sourceforge.net

using the recipients public-key, but the message header also contains the
phone number of the recipient [50]. The network shield of SCONE will
protect this data since the traffic is only decrypted inside the enclave. Both
the SecureKeeper and the SCONE approach would be able to secure this
information since both will protect the communication end-points. The
server already tries to protect the user-data on the server by only storing
a hash of the phone numbers. To look up the contact information would
require hashing the phone number and searching the database. Both the
computations and the database should be hidden to the host, and the
approach used by SCONE should accomplish this by running all of the
application inside the enclave and using the file-system shield of SCONE
to protect the database.

To facilitate asynchronous first-time communications between users,
the Signal server also stores a number of precomputed Diffie-Hellman
public-keys from the users. These pre-keys are used to generate a shared
secret between the users. Since pre-keys are tied to a user, this information
should also be protected, and the same mechanism as above could be used
to protect this information.

SCONE have not yet implemented support for SGX remote attestation,
but using this feature is quite important if deploying the server to the cloud;
remote attestation will confirm that the server is protected by a genuine
SGX implementation and that the application code has not been modified.

5.4 Summary

In this chapter we proposed some approaches to secure legacy applications
using technologies like secure containers, or by rewriting the security-
critical parts of the application. We used the Signal server as an example,
and observed that it would be possible to secure it using technologies like
SCONE, Haven or other library operating systems running inside a SGX
enclave. However, we are forced to consider side-channel attacks against
the enclave from privileged software as practical and able to break the
confidentiality of the operations performed inside the enclave.

In late 2017 the developers of the Signal Messenger have started to
implement a secure module for their server to provide private contact
discovery using SGX. The module is not a security improvement on the
Signal protocol, but used to improve the privacy for the users on their
platform [38].

78

Chapter 6

Conclusion

This thesis has given a theoretical and practical hands-on tutorial to Intel’s
Software Guards Extensions (SGX) technology. Based on the work of
Costan and Devadas [13] and the Intel documentation, we have covered
the theoretical background of the technology and tried to explain how it
works, and how it can provide the claimed security guarantees. Using the
theoretic background and Intel’s own development reference [29] we have
covered the practical parts of developing applications using SGX, and we
have shown how we can use SGX to develop secure applications that can be
deployed to cloud infrastructure with close to the same security guarantees
as when running the application locally.

The second contribution of the thesis is the development of a novel
protocol that enforces accountability to parties wanting to decrypt user
data. The protocol depends on a trusted decryption device that was
implemented using the SGX hardware-enabled protection features. These
protection features allowed us to generate, store and use the secret
decryption keys on the remote host, without the host being able to observe
them.

Using the software attestation features provided by SGX we can be
assured that the application has not been tampered with by the remote
host, and allows us to authenticate the public encryption keys we received
from the deployed application. We have discussed the security of the
protection features and discovered that there are some caveats to the use of
SGX to secure applications running on a remote host, and especially side-
channel attacks, which can be very difficult to discover and protect against.
We also discussed how the protocol could be broken by implementation
details, and how we can protect against the proposed roll-backs attack by
providing freshness guarantees on the device’s state.

The third contribution of this thesis is a proposal for running the central
server of the Signal instant messaging service inside an SGX enclave. While
the Signal server was used as an example, the approach of using the
SCONE containers [3] or by running the application on top of a full library
operating systems like Haven [7] inside SGX enclaves can be generalized
and applied any existing server application deployed to a remote host. We

79

also discussed some security issues with the proposed solution.

6.1 Critical Reflections

While a working prototype of the device used by the Accountable Decryption
(AD) protocol was finished, we did not finish developing all the function-
alities using the SGX technology. There was not enough time to complete
implementation of the proof verification using SGX, and therefore we have
not made performance evaluations of the device either. The results from
such tests could tell something about the viability and scalability of the
proposed system.

Regarding the AD protocol, throughout the thesis we have assumed the
protocol itself to be secure. We have not tried to analyse or formally verify
the security of the protocol. The result of such an analysis could help us
improve the security of the proposed protocol, or it could possibly prove
the protocol to be insecure.

Chapter 5 discusses the possibility of securing the Signal server using
the SGX technology; this work was the preliminary work of this thesis. The
Signal server runs on top of the Java Virtual Machine (JVM), and because
of the technical difficulties of running a full JVM inside an SGX enclave, the
work was postponed.

6.2 Further Work

A new survey could provide some numbers on how well SGX applications
perform; we could evaluate the performance of the verification and
decryption routines from the Accountable Decryption protocol, both
inside, and outside an SGX enclave. The survey could tell us about the
economy of running this type of decryption service.

In our discussion on the AD we mostly assumed one enclave per user,
but this is not necessary; in a shared enclave implementation, where all
the users used the same public log and device, there would be a lot
of attestation/public-key request to the same enclave, and it would be
interesting to evaluate the performance of the remote attestation request
against a single enclave.

The security discussions on the AD protocol went to some length into
the issues of side-channel attacks against SGX enclaves 4.4.1. Surveying if
the device is vulnerable, and if, how to fix such vulnerabilities could lead
to interesting results.

Distributing the AD protocol could be the next step in scaling the
performance, along with the additional security guarantees that could be
provided by for example the ROTE system [39].

Another interesting avenue of further research would be to do formal
verification of the Accountable Decryption protocol.

80

Bibliography

[1] Ittai Anati et al. “Innovative technology for CPU based attestation
and sealing.” In: 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy. HASP ’13. ACM, 2013. URL:
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-

based-attestation-and-sealing.

[2] ARM. Building a Secure System using TrustZone® Technology. URL: http:
//infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/

PRD29-GENC-009492C_trustzone_security_whitepaper.pdf (visited
on 11/12/2017).

[3] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel
SGX.” In: 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). GA: USENIX Association, 2016, pp. 689–
703. ISBN: 978-1-931971-33-1. URL: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/arnautov.

[4] W. Arthur, D. Challener, and K. Goldman. A Practical Guide to TPM
2.0. APress, 2015. DOI: 10.1007/978-1-4302-6584-9.

[5] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A Survey
of Attacks on Ethereum Smart Contracts (SoK).” In: Principles of
Security and Trust: 6th International Conference, POST 2017, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by
Matteo Maffei and Mark Ryan. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 164–186. ISBN: 978-3-662-54455-6. DOI: 10.1007/
978-3-662-54455-6_8. URL: https://doi.org/10.1007/978-3-662-54455-
6_8.

[6] Elaine Barker and Quynh Dang. NIST Special Publication 800–57 Part
1, Revision 4. 2016. DOI: 10.6028/NIST.SP.800-57pt1r4.

[7] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding
Applications from an Untrusted Cloud with Haven.” In: ACM Trans.
Comput. Syst. 33.3 (Aug. 2015), 8:1–8:26. ISSN: 0734-2071. DOI: 10 .
1145/2799647.

81

https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
http://dx.doi.org/10.1007/978-1-4302-6584-9
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
http://dx.doi.org/10.1145/2799647
http://dx.doi.org/10.1145/2799647

[8] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-record
Communication, or, Why Not to Use PGP.” In: Proceedings of the
2004 ACM Workshop on Privacy in the Electronic Society. WPES ’04.
Washington DC, USA: ACM, 2004, pp. 77–84. ISBN: 1-58113-968-3.
DOI: 10.1145/1029179.1029200.

[9] Stefan Brenner et al. “SecureKeeper: Confidential ZooKeeper Using
Intel SGX.” In: Proceedings of the 17th International Middleware Confer-
ence. Middleware ’16. New York, NY, USA: ACM, 2016, 14:1–14:13.
ISBN: 978-1-4503-4300-8. DOI: 10.1145/2988336.2988350.

[10] Konstantinos Christidis and Michael Devetsikiotis. “Blockchains and
smart contracts for the internet of things.” In: IEEE Access 4 (2016),
pp. 2292–2303.

[11] Katriel Cohn-Gordon et al. “A formal security analysis of the Signal
messaging protocol.” In: 2nd IEEE European Symposium on Security
and Privacy. IEEE, 2017. URL: https://eprint.iacr.org/2016/1013.

[12] Intel Corporation. Intel® Software Guard Extensions Programming
Reference. 2014. URL: https ://software . intel . com/sites/default/�les/

managed/48/88/329298-002.pdf.

[13] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: IACR
Cryptology ePrint Archive 2016 (2016), p. 86.

[14] Joan Daemen and Vincent Rijmen. “AES proposal: Rijndael.” In:
(1999).

[15] S. Delaune et al. “Formal analysis of protocols based on TPM state
registers.” In: Proceedings of the 24th IEEE Computer Security Founda-
tions Symposium (CSF’11). Cernay-la-Ville, France: IEEE Computer
Society Press, June 2011, pp. 66–82. DOI: 10.1109/CSF.2011.12.

[16] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Secure
Off-the-record Messaging.” In: Proceedings of the 2005 ACM Workshop
on Privacy in the Electronic Society. WPES ’05. Alexandria, VA, USA:
ACM, 2005, pp. 81–89. ISBN: 1-59593-228-3. DOI: 10 .1145/1102199 .
1102216.

[17] Yu Ding et al. “POSTER: Rust SGX SDK: Towards Memory Safety
in Intel SGX Enclave.” In: ACM Conference on Computer and
Communications Security. Dallas, USA, 2017. URL: https ://github .
com/baidu/rust-sgx-sdk/blob/master/documents/ccsp17.pdf.

[18] Gordana Dodig-Crnkovic. “Scientific methods in computer science.”
In: Proceedings of the Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, Suecia.
2002, pp. 126–130.

82

http://dx.doi.org/10.1145/1029179.1029200
http://dx.doi.org/10.1145/2988336.2988350
https://eprint.iacr.org/2016/1013
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://dx.doi.org/10.1109/CSF.2011.12
http://dx.doi.org/10.1145/1102199.1102216
http://dx.doi.org/10.1145/1102199.1102216
https://github.com/baidu/rust-sgx-sdk/blob/master/documents/ccsp17.pdf
https://github.com/baidu/rust-sgx-sdk/blob/master/documents/ccsp17.pdf

[19] Benjamin Dowling et al. “Secure Logging Schemes and Certificate
Transparency.” In: Computer Security – ESORICS 2016: 21st European
Symposium on Research in Computer Security, Heraklion, Greece, Septem-
ber 26-30, 2016, Proceedings, Part II. Ed. by Ioannis Askoxylakis et al.
Cham: Springer International Publishing, 2016, pp. 140–158. ISBN:
978-3-319-45741-3. DOI: 10.1007/978-3-319-45741-3_8. URL: https:
//doi.org/10.1007/978-3-319-45741-3_8.

[20] T. Frosch et al. “How Secure is TextSecure?” In: 2016 IEEE European
Symposium on Security and Privacy (EuroS P). Mar. 2016, pp. 457–472.
DOI: 10.1109/EuroSP.2016.41.

[21] Dieter Gollmann. Computer security. John Wiley & Sons, Inc., 2010.
DOI: 10.1002/wics.106.

[22] Johannes Götzfried et al. “Cache Attacks on Intel SGX.” In: Proceed-
ings of the 10th European Workshop on Systems Security. EuroSec’17.
Belgrade, Serbia: ACM, 2017, 2:1–2:6. ISBN: 978-1-4503-4935-2. DOI:
10.1145/3065913.3065915. URL: http://doi.acm.org/10.1145/3065913.

3065915.

[23] David Grawrock. Dynamics of a Trusted Platform: A Building Block
Approach. Intel Press, 2009.

[24] Berk Gülmezoğlu et al. “A Faster and More Realistic Flush+Reload
Attack on AES.” In: Revised Selected Papers of the 6th International
Workshop on Constructive Side-Channel Analysis and Secure Design -
Volume 9064. COSADE 2015. Berlin, Germany: Springer-Verlag New
York, Inc., 2015, pp. 111–126. ISBN: 978-3-319-21475-7. DOI: 10.1007/
978-3-319-21476-4_8. URL: http://dx.doi.org/10.1007/978-3-319-
21476-4_8.

[25] Mehmet Sinan Inci et al. Seriously, get off my cloud! Cross-VM RSA
Key Recovery in a Public Cloud. Cryptology ePrint Archive, Report
2015/898. http://eprint.iacr.org/2015/898. 2015.

[26] Intel® 64 and IA-32 Architectures Software Developer Manuals. URL: http:
/ / www . intel . com / content / www / us / en / processors / architectures -

software-developer-manuals.html (visited on 10/27/2017).

[27] Intel® Digital Random Number Generator (DRNG) Software Implemen-
tation Guide | Intel® Software. URL: https : // software . intel . com/en -

us / articles / intel - digital - random - number - generator - drng - software -

implementation-guide (visited on 10/28/2017).

[28] Intel® SGX Trusted Platform Service Functions. URL: https://software.
intel.com/en-us/node/709050 (visited on 10/18/2017).

[29] Intel® Software Guard Extensions SDK. Aug. 21, 2017. URL: https ://
software.intel.com/en-us/documentation/sgx- sdk-developer- reference

(visited on 10/21/2017).

83

http://dx.doi.org/10.1007/978-3-319-45741-3_8
https://doi.org/10.1007/978-3-319-45741-3_8
https://doi.org/10.1007/978-3-319-45741-3_8
http://dx.doi.org/10.1109/EuroSP.2016.41
http://dx.doi.org/10.1002/wics.106
http://dx.doi.org/10.1145/3065913.3065915
http://doi.acm.org/10.1145/3065913.3065915
http://doi.acm.org/10.1145/3065913.3065915
http://dx.doi.org/10.1007/978-3-319-21476-4_8
http://dx.doi.org/10.1007/978-3-319-21476-4_8
http://dx.doi.org/10.1007/978-3-319-21476-4_8
http://dx.doi.org/10.1007/978-3-319-21476-4_8
http://eprint.iacr.org/2015/898
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/node/709050
https://software.intel.com/en-us/node/709050
https://software.intel.com/en-us/documentation/sgx-sdk-developer-reference
https://software.intel.com/en-us/documentation/sgx-sdk-developer-reference

[30] intel-sgx-ssl: Intel® Software Guard Extensions SSL. original-date: 2017-
04-26T22:09:28Z. Sept. 25, 2017. URL: https://github.com/01org/intel-

sgx-ssl (visited on 10/21/2017).

[31] Simon Johnson et al. Intel SGX: EPID Provisioning and Attestation
Services. 2013. URL: https ://software . intel . com/en - us/blogs/2016/

03/09/intel- sgx-epid-provisioning-and-attestation- services (visited on
11/09/2017).

[32] N. Kobeissi, K. Bhargavan, and B. Blanchet. “Automated Verifica-
tion for Secure Messaging Protocols and their Implementations: A
Symbolic and Computational Approach.” In: IEEE European Sym-
posium on Security and Privacy (EuroS&P). to appear. 2017. URL:
http : / / prosecco . gforge . inria . fr / personal / bblanche / publications /

KobeissiBhargavanBlanchetEuroSP17.pdf.

[33] Donald C Latham. “Department of defense trusted computer system
evaluation criteria.” In: Department of Defense (1986).

[34] Ben Laurie et al. Certificate Transparency Version 2.0. Internet-Draft
draft-ietf-trans-rfc6962-bis-26. Work in Progress. Internet Engineer-
ing Task Force, July 2017. 54 pp. URL: https://datatracker.ietf.org/doc/
html/draft-ietf-trans-rfc6962-bis-26.

[35] Matt Lepinski and S Kent. “RFC 5114-Additional Diffie-Hellman
Groups for Use with IETF Standards.” In: See Section 2.1. 1024-bit
MODP Group with 160-bit Prime Order Subgroup (2008).

[36] linux-sgx: Intel SGX for Linux*. original-date: 2016-02-23T23:41:25Z.
Oct. 13, 2017. URL: https ://github.com/01org/ linux- sgx (visited on
10/18/2017).

[37] Anil Madhavapeddy et al. “Unikernels: Library Operating Systems
for the Cloud.” In: Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’13. Houston, Texas, USA: ACM, 2013, pp. 461–472.
ISBN: 978-1-4503-1870-9. DOI: 10.1145/2451116.2451167.

[38] Moxie Marlinspike. Technology preview: Private contact discovery for
Signal. Signal. Sept. 26, 2017. URL: https ://signal .org/blog/private -
contact-discovery/ (visited on 10/21/2017).

[39] Sinisa Matetic et al. “ROTE: Rollback Protection for Trusted Execu-
tion.” In: IACR Cryptology ePrint Archive 2017 (2017), p. 48. URL: https:
//eprint.iacr.org/2017/048.

[40] Jonathan Mayer, Patrick Mutchler, and John C. Mitchell. “Evaluating
the privacy properties of telephone metadata.” In: Proceedings of the
National Academy of Sciences 113.20 (May 17, 2016), pp. 5536–5541.
ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.1508081113.

84

https://github.com/01org/intel-sgx-ssl
https://github.com/01org/intel-sgx-ssl
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
http://prosecco.gforge.inria.fr/personal/bblanche/publications/KobeissiBhargavanBlanchetEuroSP17.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/KobeissiBhargavanBlanchetEuroSP17.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-26
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-26
https://github.com/01org/linux-sgx
http://dx.doi.org/10.1145/2451116.2451167
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://eprint.iacr.org/2017/048
https://eprint.iacr.org/2017/048
http://dx.doi.org/10.1073/pnas.1508081113

[41] Frank McKeen et al. “Innovative Instructions and Software Model for
Isolated Execution.” In: Proceedings of the 2Nd International Workshop
on Hardware and Architectural Support for Security and Privacy. HASP
’13. Tel-Aviv, Israel: ACM, 2013, 10:1–10:1. ISBN: 978-1-4503-2118-1.
DOI: 10.1145/2487726.2488368.

[42] Frank McKeen et al. “Innovative instructions and software model
for isolated execution.” In: HASP@ ISCA. 2013, p. 10. URL: http ://
css . csail . mit . edu / 6 . 858 / 2015 / readings / intel - sgx . pdf (visited on
01/30/2017).

[43] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent
Development and Deployment.” In: Linux J. 2014.239 (Mar. 2014).
ISSN: 1075-3583. URL: http://dl .acm.org/citation.cfm?id=2600239.

2600241.

[44] Ralph C. Merkle. “A Certified Digital Signature.” In: Advances in
Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard. New
York, NY: Springer New York, 1990, pp. 218–238. ISBN: 978-0-387-
34805-6. DOI: 10 . 1007/0 - 387 - 34805 - 0_21. URL: https : //doi . org/
10.1007/0-387-34805-0_21.

[45] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

[46] Erica Portnoy and Peter Eckersley. Intel’s Management Engine is a
security hazard, and users need a way to disable it | Electronic Frontier
Foundation. May 8, 2017. URL: https://www.e�.org/deeplinks/2017/05/
intels-management-engine-security-hazard-and-users-need-way-disable-it

(visited on 10/18/2017).

[47] Protection from Side-Channel Attacks | Intel® Software. URL: https ://
software.intel.com/en-us/node/703016 (visited on 11/06/2017).

[48] O. Purdila, L. A. Grijincu, and N. Tapus. “LKL: The Linux kernel
library.” In: 9th RoEduNet IEEE International Conference. June 2010,
pp. 328–333. URL: http://ieeexplore.ieee.org/document/5541547/.

[49] Kaveh Razavi et al. “Flip Feng Shui: Hammering a Needle in
the Software Stack.” In: 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp. 1–18. ISBN:
978-1-931971-32-4. URL: https : / / www . usenix . org / conference /

usenixsecurity16/technical-sessions/presentation/razavi.

[50] Christoph Rottermanner et al. “Privacy and data protection in
smartphone messengers.” In: Proceedings of the 17th International
Conference on Information Integration and Web-based Applications &
Services. ACM, 2015, p. 83. DOI: 10.1145/2837185.2837202.

[51] Mark D Ryan. “Making Decryption Accountable.” In: Security Princi-
ples and Trust Hotspot 2017 (2017).

85

http://dx.doi.org/10.1145/2487726.2488368
http://css.csail.mit.edu/6.858/2015/readings/intel-sgx.pdf
http://css.csail.mit.edu/6.858/2015/readings/intel-sgx.pdf
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dx.doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://software.intel.com/en-us/node/703016
https://software.intel.com/en-us/node/703016
http://ieeexplore.ieee.org/document/5541547/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
http://dx.doi.org/10.1145/2837185.2837202

[52] Mark Dermot Ryan. “Enhanced Certificate Transparency and End-to-
End Encrypted Mail.” In: 21st Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2014. URL: http : / /www .

internetsociety. org / doc / enhanced - certi�cate - transparency - and - end -

end-encrypted-mail.

[53] Felix Schuster et al. “VC3: Trustworthy data analytics in the cloud
using SGX.” In: Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE. 2015, pp. 38–54.

[54] Michael Schwarz et al. “Malware Guard Extension: Using SGX to
Conceal Cache Attacks.” In: CoRR abs/1702.08719 (2017). arXiv: 1702.
08719. URL: http://arxiv.org/abs/1702.08719.

[55] Kristoffer Severinsen. sgx-decryption-service: Client server interaction
using gRPC. original-date: 2017-07-06T16:25:53Z. Nov. 12, 2017. URL:
https : / / github . com / sewelol / sgx - decryption - service (visited on
11/12/2017).

[56] Kristoffer Severinsen, Christian Johansen, and Sergiu Bursuc. “Secur-
ing the End-points of the Signal Protocol using Intel SGX based Con-
tainers.” In: Security Principles and Trust Hotspot 2017 (2017), p. 1.

[57] Ryan Stedman, Kayo Yoshida, and Ian Goldberg. “A User Study
of Off-the-record Messaging.” In: Proceedings of the 4th Symposium
on Usable Privacy and Security. SOUPS ’08. Pittsburgh, Pennsylvania,
USA: ACM, 2008, pp. 95–104. ISBN: 978-1-60558-276-4. DOI: 10.1145/
1408664.1408678.

[58] Marc Stevens et al. “The first collision for full SHA-1.” In: IACR
Cryptology ePrint Archive 2017 (2017), p. 190.

[59] Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly
Media, Inc.", 2015.

[60] Jakub Szefer et al. “Eliminating the hypervisor attack surface for
a more secure cloud.” In: Proceedings of the 18th ACM conference on
Computer and Communications Security. ACM. 2011, pp. 401–412. DOI:
10.1145/2046707.2046754.

[61] Tor Shared Random Subsystem Specification. URL: https : / / gitweb .

torproject.org/torspec.git/tree/srv-spec.txt (visited on 11/06/2017).

[62] Chia-Che Tsai et al. “Cooperation and Security Isolation of Library
OSes for Multi-process Applications.” In: Proceedings of the Ninth
European Conference on Computer Systems. EuroSys ’14. Amsterdam,
The Netherlands: ACM, 2014, 9:1–9:14. ISBN: 978-1-4503-2704-6. DOI:
10.1145/2592798.2592812.

[63] N. Unger et al. “SoK: Secure Messaging.” In: 2015 IEEE Symposium on
Security and Privacy. 2015 IEEE Symposium on Security and Privacy.
May 2015, pp. 232–249. DOI: 10.1109/SP.2015.22.

86

http://www.internetsociety.org/doc/enhanced-certificate-transparency-and-end-end-encrypted-mail
http://www.internetsociety.org/doc/enhanced-certificate-transparency-and-end-end-encrypted-mail
http://www.internetsociety.org/doc/enhanced-certificate-transparency-and-end-end-encrypted-mail
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
https://github.com/sewelol/sgx-decryption-service
http://dx.doi.org/10.1145/1408664.1408678
http://dx.doi.org/10.1145/1408664.1408678
http://dx.doi.org/10.1145/2046707.2046754
https://gitweb.torproject.org/torspec.git/tree/srv-spec.txt
https://gitweb.torproject.org/torspec.git/tree/srv-spec.txt
http://dx.doi.org/10.1145/2592798.2592812
http://dx.doi.org/10.1109/SP.2015.22

[64] Alma Whitten and J. D. Tygar. “Why Johnny Can’T Encrypt: A
Usability Evaluation of PGP 5.0.” In: Proceedings of the 8th Conference
on USENIX Security Symposium - Volume 8. SSYM’99. Washington,
D.C.: USENIX Association, 1999, pp. 14–14. URL: http://dl.acm.org/

citation.cfm?id=1251421.1251435.

[65] Y. Xu, W. Cui, and M. Peinado. “Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems.” In:
2015 IEEE Symposium on Security and Privacy. May 2015, pp. 640–656.
DOI: 10.1109/SP.2015.45.

[66] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-
channel attacks: Deterministic side channels for untrusted operating
systems.” In: IEEE Symposium on Security and Privacy. IEEE. 2015,
pp. 640–656.

[67] Guy Zyskind, Oz Nathan, et al. “Decentralizing privacy: Using
blockchain to protect personal data.” In: Security and Privacy Work-
shops (SPW), 2015 IEEE. IEEE. 2015, pp. 180–184.

87

http://dl.acm.org/citation.cfm?id=1251421.1251435
http://dl.acm.org/citation.cfm?id=1251421.1251435
http://dx.doi.org/10.1109/SP.2015.45

	Introduction
	Outline
	Background and Motivation
	Problem Statement
	Research Methodology
	Related Work
	Main Contributions

	Technical Background
	Security Concepts
	Confidentiality
	Integrity
	Availability
	Authentication
	Freshness
	Trusted Computing Base

	Cryptographic Primitives
	Symmetric-key Cryptography
	Hash Functions
	Merkle Trees
	Asymmetric-key Cryptography

	Hardware Security
	Software Attestation
	TPM
	ARM TrustZone

	SGX Tutorial
	Background on Intel SGX
	SGX Memory Management
	Life Cycle of an Enclave
	Enclave Thread Mechanisms
	Enclave Measurement
	Enclave Identity
	SGX Software Attestation

	Hardware environment
	Software environment
	SGX Platform Software
	SGX Software Development Kit

	Hands-on Tutorial
	Enclave Communication
	Enclave Build Tools

	Accountable decryption using Intel SGX
	Introduction
	Motivation
	Problem Statement

	Protocol Design
	Protocol Description
	Cryptographic Building Blocks
	Security Assumptions
	Proof Structure
	Encryption and Decryption protocols
	Inspection of the Log
	Currency protocol

	Protocol Implementation
	Defining the Enclave
	Enclave Initialization
	Verification of Proofs
	Decryption
	Main Application
	Prototype and Future Work
	Configuration and Take in use
	Protocol Operation

	Discussion
	Security Aspects
	Other Applications and Configurations

	Summary

	Securing the Signal server using SGX
	Introduction
	Motivation
	Technical Details
	Intel SGX
	Linux Containers
	Approach: SCONE secure containers
	Other approaches: SecureKeeper and Graphene libOS
	Signal protocol
	Signal server

	Summary

	Conclusion
	Critical Reflections
	Further Work

