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Fluid-structure interaction; what and
why?

The interaction between fluid and solids can be observed all around us in nature
and has shown crucial in engineering. Examples in nature include swimming fish,
flying birds, or trees bending in the wind. Man has learned from nature and has
traditionally relied upon laboratory experiments to design windmills, aircrafts, and
bridges. The importance of understanding fluid-structure (or solids) interaction
(FSI) cannot be overstated, as the lack of such has demonstrated to be disastrous
in the design of everything from bridges to airplanes. Let alone to emphasize our
incapability to replicate the performance of nature; we’re far away from designing
a drone capable of flying like a hummingbird. One can study FSI experimentally,
however laboratory experiments are inherently noisy, expensive, and results can be
difficult to reproduce. A much cheaper and indeed smarter approach to studying
FSI is using computers, or more specifically numerical simulations to gain funda-
mental insight to the interaction between fluids and solids. The latter has on the
other hand shown to be difficult to realize, for a number of reasons related to both
mathematical and computational reasons. Therefore, the goal of this thesis is to de-
velop an open-source framework using standard techniques for solving FSI problems
that can be used as a point of reference for future benchmarking of FEniCS-based
FSI solvers.

The main goal of this thesis is to create a verified and validated monolithic fluid-
structure interaction solver in FEniCS, which can handle large deformations. To
achieve this, I have defined four subgoals:

• Formulate a weak variation for a monolithic arbitrary Lagrangian Eulerian
fluid-structure interaction problem.

• Construct a finite element solver for the fluid-structure interaction problem.

• Verify and validate a finite element solver for the fluid-structure interaction
problem.

• Compare the impact of discretization and mesh lifting operators on the final
solution.

• Improve computational efficiency of the implementation.
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CONTENTS

Each of the following subgoals will be addressed in separate chapters organized as
follows: In chapter 1, balance of linear momentum for both solids and fluids are
first introduced together with conservation of mass. In chapter 2, the Eulerian,
Lagrangian, and the arbitrary Lagrangian-Eulerian (ALE) frames of reference are
briefly introduced to express the governing equations, before the equations describ-
ing FSI are derived. Chapter 3 investigates the numerical implementation by veri-
fication, using the most rigorous convergence tests, before validation is performed
against state-of-the-art benchmarks. Finally, computational speed-up is addressed
in chapter 4, together with long-term numerical stability of the coupled problem,
and methods to overcome these challenges.
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Governing equations of solids and
fluids

Fluid-structure interaction (FSI) combines two classical fields of mechanics, com-
putational fluid mechanics (CFD), and computational structural mechanics (CSM).
To complete FSI there is also the coupling, or interaction between these two. A sep-
arate understanding of the fluid and structure is therefore necessary to understand
the full problem. This chapter presents the governing equations of the individ-
ual fluid and structure problem, together with auxiliary kinematic, dynamic, and
material relations.

1.1 Continuum Mechanics

In our effort to understand and describe physical phenomenon in nature, we describe
our observations and theories by creating mathematical models. The mathematical
models makes scientist and engineers not only able to understand physical phenom-
ena, but also predict them. All matter is built up by a sequence of atoms, meaning
on a microscopic level, an observer will locate discontinuities and space within the
material. Evaluating each atom, or material point, is not impossible from a math-
ematical point of view. However, for mathematical modeling and applications, the
evaluation of each material point remains unpractical. In continuum mechanics,
first formulated by Augustin-Louis Cauchy [18], the microscopic structure of ma-
terials are ignored, assuming the material of interest is continuously distributed in
space, referred to as a continuum.

In context of this thesis I define a continuum as a continuous body V (t) ⊂ Rd d ∈
(1, 2, 3), continuously distributed throughout its own extension. The continuum
is assumed to be infinitely divisible, meaning one can divide some region of the
continuum a indefinitely number of times. A continuum is also assumed to be locally
homogeneous, meaning if a continuum is subdivided into infinitesimal regions, they
would all have the same properties such as mass density. These two properties
forms the baseline for deriving conservation laws and constitute equations, which are
essential for formulating mathematical models for both CFD and CSM. However,
a continuum remains a mathematical idealization, and may not be a reasonable
model for certain applications. In general, continuum mechanics have proven to
be applicable provided that δ

l
<< 1 where δ is a characteristic length scale of the
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2. The Lagrangian and Eulerian description of motion

material micro-structure, and l is a length scale of the problem of interest [15].

1.2 The Lagrangian and Eulerian description of
motion

In continuum mechanics, one makes use of two classical description of motion, the
Lagrangian and Eulerian description. Both concepts are related to an observers
view of motion, visually explained by the concepts of material and spatial points.
A material points represents a particle within the material, moving with the material
as it move and deform. A spatial point, refers to some reference at which the path
of the material points are measured from.

Lagrangian

In the Lagrangian description of motion, the material and spatial points coincide,
meaning the reference point of which motion is measured, follows the material as
it diverts from its initial position. The initial position of all material points in a
continuum extend a region, called the reference configuration V̂ . From now on, all
identities in the reference configuration will be denoted with the notation "∧". If
a continuum deviates from its reference configuration, a material point x̂(x, y, z, t)
may no longer be at its initial position, but moved to a new position x(x, y, z, t)
at time t. The new positions of all material points extend a new region, called the
current configuration V (t).

Figure 1.1: A visual representation of the Lagrangian description of motion.
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Governing equations of solids and fluids

To measure the displacement of a material point x ∈ V (t) for time t, from its initial
point x̂ ∈ V̂ , one defines a deformation vector field

û(x̂, t) = x(x̂, t)− x̂ = T̂(x̂, t) (1.1)

Mathematically, deformation is a 1:1 mapping T̂(x̂, t), transforming material points
from the reference configuration V̂ , to the current configuration V (t). Visually,
the deformation resembles the shape of continuum for some time t. To describe the
continuums motion, one defines the velocity vector field given by the time derivative
of the deformation field,

v̂(x̂, t) = dtx(x̂, t) = dtû(x̂, t) =
∂T̂(x̂, t)
∂t

(1.2)

The Lagrangian description of motion is the natural choice when tracking particles
and surfaces are of main interest. Therefore, it is mainly used within structure
mechanics.

Eulerian

In the Eulerian description of motion, the material and spatial points are separated.
Instead of tracking material points x̂(t) ∈ V (t), the attention brought to a fixed
view-point V . In contrary with the Lagrangian description, the current configura-
tion is chosen as the reference configuration, not the initial position of all material
particles. The location or velocity of any material particle is not of interest, but
rather the properties of a material particle happening to be at x(t) for some t.

Figure 1.2: A visual representation of the Eulerian description of motion. For a
view-point V fixed in time, a spatial coordinate x measures properties of a material
particle x̂ from the moving continuum V (t).
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2. The Lagrangian and Eulerian description of motion

We can describe the particles occupying the current configuration V (t) for some
time t ≥ t0

x = x̂ + û(x̂, t)

Since our domain is fixed we can define the deformation for a particle occupying
position x = x(x̂, t) as

u(x, t) = û(x̂, t) = x− x̂

and its velocity

v(x̂, t) = ∂tu(x̂, t) = ∂tû(x̂, t) = v̂(x̂, t)

The Eulerian description falls naturally for describing fluid flow, due to local kine-
matic properties are of higher interest rather than the shape of fluid domain. Using
a Lagrangian description for fluid flow would also be tedious, due to the large num-
ber of material particles appearing for longer simulations of fluid flow. A comparison
of the two previous mentioned description is shown of In Figure 1.3.

Figure 1.3: Comparison of the Lagrangian and Eulerian description of motion.
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Governing equations of solids and fluids

1.3 The Solid equations

The solid governing equations is given by,

Equation 1.3.1. Solid equations

ρs
∂v̂s
∂t

= ∇ · (ĴσsF̂−T ) + ρsfs in Ω̂s (1.3)

∂v̂s
∂t

= ûs in Ω̂s (1.4)

defined in a Lagrangian coordinate system, with respect to an initial reference
configuration Ω̂s. The structure configuration is given by the displacement ûs, with
the relation ∂v̂

∂t
= ûs to the solid velocity. The density of the structure is given

by ρs, and f̂s express any exterior body forces acting. Finally, F̂ = I +∇ûs is the
deformation gradient, and Ĵ is the determinant of F̂ 1.
Material models express the dependency between strain tensors and stress. The
validity of material models is often limited by their ability to handle deformation
and strain to some extent, before it breaks down or yields nonphysical observations
of the material. In this thesis, a linear relation between stress and strain is assumed,
where the elasticity of the material is expressed by the Poisson ratio νs, Young
modulus E, or Lamés coefficients λs and µs. Their relation is given by,

Ey =
µs(λs + 2µs)

(λs + µs)
νs =

λs
2(λs + µs)

λs =
νEy

(1 + νs)(1− 2νs)
µs =

Ey
2(1 + νs)

Hooke’s law is a linear relation applicable for small-scale deformations,

Definition 1.1. Let û be a differential deformation field in the reference configu-
ration, I be the Identity matrix, and the gradient ∇̂ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

). Hooke’s law is
then given by,

σs =
1

Ĵ
F̂(λs(Tr(ε)I + 2µε)F̂

Ŝs = λs(Tr(ε)I + 2µε

ε =
1

2
(∇̂û + (∇̂û)T )

However, as Hooke’s law is limited to a small-deformation, it is not valid for large
deformations encountered in this thesis. A valid model for larger deformations is
the hyper-elastic St. Vernant-Kirchhoff model(STVK), extending Hooke’s law into
a non-linear regime.

Definition 1.2. Let û be a differential deformation field in the reference con-
figuration, I be the Identity matrix and the gradient ∇̂ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

). The St.

1See Appendix A for further detail
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3. The Solid equations

Vernant-Kirchhoff model is then given by the relation,

σs =
1

Ĵ
F̂(λs(Tr(Ê)I + 2µÊ)F̂−T

Ŝs = λs(Tr(Ê)I + 2µÊ

Ê =
1

2
(Ĉ− I) Ĉ = F̂F̂−T

where Ĉ is the right Cauchy-Green strain tensor and Ê is the Green Lagrangian
strain tensor.

Though STVK can handle large deformations, it is not valid for large strain [22].
However since the strain considered in this thesis are small, it will remain our
primary choice of strain-stress relation. In addition, initial condition and boundary
condition is supplemented for the problem to be well posed. The first type of of
boundary conditions are Dirichlet boundary conditions,

vs = vDs on ΓDs ⊂ ∂Ωs (1.5)
ds = dDs on ΓDs ⊂ ∂Ωs (1.6)

(1.7)

The second type of boundary condition are Neumann boundary conditions

σs · n = g on ΓNs ⊂ ∂Ωs (1.8)
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Governing equations of solids and fluids

1.4 The Fluid equations

The fluid is assumed to be express by the incompressible Navier-Stokes equations,

Equation 1.4.1. Navier-Stokes equation

ρ
∂vf
∂t

+ ρvf · ∇vf = ∇ · σ + ρff in Ωf (1.9)

∇ · vf = 0 in Ωf (1.10)

defined in an Eulerian description of motion. The fluid density as ρf and fluid
viscosity νf are assumed to be constant in time, and fs represents any body force.
The fluid is assumed Newtonian, where Cauchy stress sensor follows Hooke’s law

σ = −pfI + µf (∇vf + (∇vf )T

As for the solid equations, boundary conditions are supplemented considering Dirich-
let boundary conditions,

vf = vDf on ΓDv ⊂ ∂Ωf (1.11)

pf = pDf on ΓDp ⊂ ∂Ωf (1.12)

The second type of boundary condition are Neumann boundary conditions

σf · n = g on ΓNf ⊂ ∂Ωf (1.13)
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4. The Fluid equations
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Fluid Structure Interaction

The multi-disciplinary nature of computational fluid-structure interaction, involves
addressing issues regarding computational fluid dynamics and computational struc-
ture dynamics. In general, CFD and CSM are individually well-studied in terms of
numerical solution strategies. FSI adds another layer of complexity to the solution
process by the coupling of the fluid and solid equations, and the tracking of interface
separating the fluid and solid domains. The coupling pose two new conditions at
the interface absent from the original fluid and solid conditions, which is continuity
of velocity and continuity of stress at the interface.

vf = vs (2.1)
σf · n = σs · n (2.2)

The tracking of the interface is a issue, due to the different description of motion
used in the fluid and solid problem. If the natural coordinate system are used for the
fluid problem and solid problem, namely the Eulerian and Lagrangian description of
motion, the domains doesn’t match and the interface. Tracking the interface is also
essential for fulfilling the interface boundary conditions. As such only one of the
domains can be described in its natural coordinate system, while the other domain
needs to be defined in some transformed coordinate system. Fluid-structure interac-
tion problems are formally divided into the monolithic and partitioned frameworks.
In the monolithic framework, the fluid and solid equations together with interface
conditions are solved simultaneously. The monolithic approach is strongly coupled,
meaning the kinematic (1.1) and dynamic(1.2) interface conditions are met with
high accuracy. However, the complexity of solving all the equations simultaneously
and the strong coupling contributes to a stronger nonlinear behavior of the whole
system [42]. The complexity also makes monolithic implementations ad hoc and less
modular, and the nonlinearity makes solution time slow. In the partitioned frame-
work one solves the equations of fluid and structure subsequently. Solving the fluid
and solid problems individually is beneficial, in terms of the wide range of optimized
solvers and solution strategies developed for each sub-problem. In fact, solving the
fluid and solid separately was used in the initial efforts in FSI, due to existing solvers
for one or both problems [10]. Therefore, computational efficiency and code reuse is
one of the main reasons for choosing the partitioned approach. A major drawback
is the methods ability to enforce the kinematic (1.1) and dynamic(1.2) conditions
at each timestep. Therefore partitioned solution strategies are defined as weakly
coupled. However, by sub-iterations between each sub-problem at each timestep,
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(1.1) and (1.2) can be enforced with high accuracy, at the cost of increased compu-
tational time. Regardless of framework, FSI has to cope with a numerical artifact
called the "added-mass effect" [5], [4], [8]. The term is not to be confused with
added mass found in fluid mechanics, were virtual mass is added to a system due
to an accelerating or de-accelerating body moving through a surrounding fluid [20].
Instead, the term is used to describe the numerical instabilities occurring for weakly
coupled schemes, in conjunction with in compressible fluids and slender structures
[8], or where the density of the incompressible fluid is close to the structure. For par-
titioned solvers, sub-iterations are needed when the "added-mass effect" is strong,
but for incompressible flow the restrictions can lead to unconditional instabilities
[10]. The strong coupled monolithic schemes have proven overcome "added-mass
effect" preserving energy balance, at the prize of a highly non-linear system to be
solved at each time step [5]. Capturing the interface is matter of its own, regardless
of the the monolithic and partitioned frameworks. The scope of interface methods
are divided into interface-tracking and interface-capturing methods, visualized in
figure 2.1.

Figure 2.1: Comparison of interface-tracking and interface-capturing for an elastic
beam undergoing deformation

In the Interface-tracking method, the mesh moves to accommodate for the move-
ment of the structure as it deforms the spatial domain occupied by the fluid. As
such, the mesh itself "tracks" the fluid-structure interface as the domain undergoes
deformation. Interface-capturing yields better control of mesh resolution near the
interface, which in turn yields better control of this critical area in terms of en-
forcing the interface conditions. However, moving the mesh-nodes pose potential
problems for mesh-entanglements, restricting the possible extent of deformations.
In interface-capturing methods one distinguish the fluid and solid domains by some
phase variable over a fixed mesh, not resolved by the mesh itself. This approach
is in general not limited in terms of deformations, but suffers from reduced accu-
racy at the interface. Among the multiple approaches within FSI, the arbitrary
Lagrangian-Eulerian method is chosen for this thesis.

14



Fluid Structure Interaction

2.1 Arbitrary Lagrangian Eulerian formulation

The arbitrary Lagrangian-Eulerian formulation is the most popular approach within
Interface-tracking [24, 9]. In this approach the structure is given in its natural
Lagrangian coordinate system, while the fluid problem is formulated in an artificial
coordinate system similar to the Lagrangian coordinate system, by an artificial fluid
domain map from the undeformed reference configuration T̂f (t) : V̂f (t) → Vf (t).
The methods consistency is to a large extent dependent on the regularity of the
artificial fluid domain map. Loss of regularity can occur for certain domain motions,
were the structure makes contact with domain boundaries or self-contact with other
structure parts [23]. Since no natural displacement occur in the fluid domain,
the transformation T̂f (t) has no directly physical meaning [24, 3]. Therefore, the
construction of the transformation T̂f (t) is a purely numerical exercise.

2.1.1 ALE formulation of the fluid problem

The original fluid problem, defined by the incompressible Navier-Stokes equations
(Equation 1.5.1). are defined in an Eulerian description of motion Vf (t). By chang-
ing the computational domain to an undeformed reference configuration Vf (t) →
V̂f (t), the original problem no longer comply with the change of coordinate sys-
tem. Therefore, the original Navier-Stokes equations needs to be transformed onto
the reference configuration V̂f . Introducing the basic properties needed for map-
ping between the sub-system V̂f (t) and Vf (t), we will present the ALE time and
space derivative transformations found in [25], with help of a new arbitrary fixed
reference system Ŵ. Let T̂w : Ŵ→ V (t) be an invertible mapping, with the scalar

Figure 2.2: CFD-3, flow visualization of velocity time t = 9s

f̂(x̂W , t) = f(x, t) and vector ŵ(x̂W , t) = w(x, t) counterparts. Further let the defor-
mation gradient F̂w and its determinant Ĵw, be defined in accordance wit definition
1.1 and 1.2 in Chapter 1. Then the following relations between temporal and spatial
derivatives apply, between the two domains Ŵ (t) and V (t),
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1. Arbitrary Lagrangian Eulerian formulation

Lemma 2.1. Local change of volume
Let V(t) be the reference configuration V (t) → Rd, and Ŵ → Rd be the arbitrary
reference configuration. By the determinant of the deformation gradient Ĵw, the the
following relations holds,

|V (t)| =
∫
Ŵ

Ĵwdx̂ (2.3)

Lemma 2.2. Transformation of scalar spatial derivatives
Let f be a scalar function such that f : V (t)→ R, and ∇f be its gradient. Then its
counterpart ∇f̂ , by the scalar function f̂ Ŵ → R is given by the relation.

∇f = F̂−T
W ∇̂f̂ (2.4)

Lemma 2.3. Let w be a vector field such that w : V (t) → Rd, and ∇w be its
gradient. Then its counterpart ∇̂ŵ, by the vector field ŵ : Ŵ → Rd is given by the
relation.

∇w = ∇̂ŵF̂−1
W (2.5)

Lemma 2.4. Transformation of scalar temporal derivatives
Let f be a scalar function such that f : V (t) → R, and ∂f

∂t
be its time derivative.

Then its counterpart ∂f̂
∂t

, by the scalar function f̂ Ŵ → R is given by the relation,

∂f

∂t
=
∂ f̂
∂t
− (F̂−1

W

∂T̂W

∂t
· ∇̂)̂f (2.6)

where ∂T̂W

∂t
the domain velocity of Ŵ

With the necessary preliminaries set, the original fluid problem (Equation 1.1) can
be derived with respect to Ŵ . By Lemma 2.2, 2.3 thematerial derivative ∂v

∂t
+v·∇v

is transformed by,

dv

∂t
=
∂v̂

∂t
− (F̂−1

W

∂T̂W

∂t
· ∇̂)v̂ (2.7)

v · ∇v = ∇vv = ∇̂v̂F̂−1
W v̂ = (F̂−1

W v̂ · ∇̂)v̂ (2.8)

∂v

∂t
+ v · ∇v =

∂v̂

∂t
(x, t)− (F̂−1

W

∂T̂W

∂t
· ∇̂)v̂ + (F̂−1

W v̂ · ∇̂)v̂ (2.9)

=
∂v̂

∂t
+ (F̂−1

W (v̂ − ∂T̂W

∂t
) · ∇̂)v̂ (2.10)

The transformation of temporal derivatives, introduces an additional convection
term (F̂−1

W
∂T̂W

∂t
· ∇̂)̂f, which is accounts for the movement of the domain Ŵ . Moving

on to the right hand side of Equation 1.1, we will consider the transformation of the
divergence of stress onto the reference domain Ŵ . By [25] we have the following
relation,

∇ · σ = ∇ · (ĴW σ̂F̂−T
W ) (2.11)
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Fluid Structure Interaction

Were ĴW σ̂F̂−T
W is the first Piola Kirchhoff stress tensor, relating forces from a

Eulerian description of motion to the reference domain Ŵ . Assuming a Newtonian
fluid, the Cauchy stress tensor takes the form σ = −pI + µf (∇v + (∇v)T . Since
σ 6= σ̂ in Ŵ , the spatial derivatives must be transformed, by using Lemma 2.2

σ = −pI + µf (∇v + (∇v)T

σ̂ = −p̂I + µf (∇̂v̂F̂−1
W + F̂−T

W ∇̂v̂
T )

For the conservation of continuum we apply the Piola Transformation [25], such
that

∇ · v = ∇ · (ĴF̂−1
W v̂) (2.12)

As the central concepts for transforming the fluid problem on an arbitrary reference
domain are introduced, the notation Ŵ will no longer be used, instead replaced with
the fluid domain Ω̂f , inheriting all previous concepts presented in reference with Ŵ .
Let T̂f : Ω̂f → Ωf (t) be an invertible mapping, with the scalar f̂(x̂f , t) = f(x, t) and
v̂f (x̂f , t) = vf (x, t) counterparts. Further let F̂f be the deformation gradient and
Ĵw its determinant.

Equation 2.1.1. ALE fluid problem
Let v̂f be the fluid velocity, ρf the fluid density, and νf the fluid viscosity.

Ĵf
∂v̂

∂t
+ Ĵf (F̂−1

f (v̂ − ∂T̂W

∂t
) · ∇̂)v̂ = ∇ · (ĴW σ̂F̂−T

W ) + ρf Ĵff in Ω̂f (2.13)

∇ · (ĴF̂−1
W v̂) = 0 in Ω̂f (2.14)

where fs represents any exterior body force.

Due to the arbitrary nature of the reference system Ŵ , the physical velocity v̂ and
the velocity of arbitrary domain ∂Ŵw

∂t
doesn’t necessary coincide, as it deals with

three different reference domains [25]. The Lagrangian particle tracking x ∈ Ω̂f ,
the Eulerian tracking x ∈ Ωf , and the arbitrary tracking of the reference domain
x ∈ Ŵ [25]. This concept can be further clarified by the introduction of material
and spatial points.

2.1.2 ALE formulation of the solid problem
With the introduced mapping identities we have the necessary tools to derive a full
fluid-structure interaction problem defined of a fixed domain. Since the structure
already is defined in its natural Lagrangian coordinate system, no further derivations
are needed for defining the total problem.

Equation 2.1.2. ALE solid problem

ρs
∂v̂s
∂t

= ∇ · FS + ρsfs in Ωs (2.15)

(2.16)
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2.1.3 Fluid mesh movement

Let the total domain deformation T̂(x̂, t) be divided into the solid T̂s : Ω̂s → Ωs, and
fluid deformation T̂f : Ω̂f → Ωf . The physical motivated solid domain deformation,
defined as T̂s : x̂s+ ûs were ûs is the structure deformation, is a consistent mapping
from the reference configuration to the current configuration of the solid domain.
As pointed out in section 2.2.2, the deformation of the fluid domain doesn’t inherit
any physical relation between the two configurations. Despite this fact, one still
introduce a fluid deformation variable ûf , letting the fluid domain transformation
be given by

T̂f (x̂, t) = x̂ + ûf (x̂, t)

The construction of T̂f (x̂, t) remains arbitrary, however the interface shared by
both the fluid and solid domain, require an accurate transformation of the interface
points by T̂f [25],

T̂f (x̂, t) = T̂s(x̂, t) ↔ x̂ + ûf (x̂, t) = x̂ + ûs(x̂, t)

Therefore the fluid deformation ûf must have a continuous relation to the struc-
ture deformation ûs, enforced by ûf = ûs on the interface.For the non-moving
boundaries in the fluid domain, tangential deformation are allowed, however nor-
mal deformations in relation the the boundaries are not allowed [24]. The fluid
domain deformation ûf must therefore fulfill the boundary conditions

ûf (x̂) = ûs x̂ ∈ Ω̂f ∪ Ω̂s (2.17)

ûf (x̂) · n̂ = 0 x̂ ∈ ∂Ω̂f 6= Ω̂f ∪ Ω̂s (2.18)

In accordance with conditions 2.17, 2.18, the fluid transformation T̂f (x̂, t) is con-
structed such that ûf is an extension of the solid deformation ûs into the fluid
domain. The extension is constructed by a partial differential equation, called a
mesh lifting operator.

2.1.4 Mesh lifting operators
In the ALE framework one of the most limiting factors is the degeneration of the
mesh due to large deformations. Even the most advanced mesh motion model
reaches a limit when only re-meshing is necessary to avoid mesh entanglement [38].
Consequently, the choice of mesh lifting operator is essential to generate a smooth
evolution of the fluid mesh. Several mesh models have been proposed throughout
the literature, and for an overview the reader is referred to [19], and the reference
therein. In this thesis, the 2nd order Laplacian and pseudo-elasticity mesh model,
together with the 4th order biharmonic mesh model will be considered. The 2nd
order Laplacian and pseudo-elasticity mesh model are beneficial in terms of sim-
plicity and computational efficiency, at the cost of the regularity of the fluid cells
[44]. Hence, the 2nd order models are only capable of handling moderate fluid
mesh deformations. Using geometrical or mesh position dependent parameters, the
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models can be improved to handle a wider range of deformations, by increasing the
stiffness of the cell close to the interface [14].

A limitation of the 2nd order mesh models is that by Dirichlet and Neumann bound-
ary conditions, only mesh position or normal mesh spacing can be specified respect-
fully, but not both [11]. This limitation is overcome by 4th order biharmonic mesh
model, since two boundary conditions can be specified at each boundary of the fluid
domain [11]. The 4th order biharmonic mesh model is superior for handling large
fluid mesh deformations, as the model generates a better evolution of the fluid cells.
A better regularity of the fluid cells also have the potential of less Newton iterations
needed for convergence at each time-step [44], discussed in section 5.5. The model
is however much more computational expensive compared to the 2nd order mesh
models.

Mesh motion by a Laplacian lifting operator

Equation 2.1.3. The Laplace equation model
Let ûf be the fluid domain deformation, ûs be the structure domain deformation,
and let α be diffusion parameter raised to the power of some constant q. The
Laplacian mesh model is given by,

− ∇̂ · (αq∇̂û) = 0 Ω̂f

ûf = ûs on Γ

ûf = 0 on ∂Ω̂f/Γ

The choice of diffusion parameter is often problem specific, as selective treatment
of the fluid cells may vary from different mesh deformation problems. For small
deformations, the diffusion-parameter α can be set to a small constant [45, 24].
To accommodate for larger deformations, a diffusion-parameter dependent of mesh
parameters, such as fluid cell volume [2] or the Jacobian of the deformation gradient
[35] have proven beneficial. In [16], the authors reviewed several options based on
the distance to the closest moving boundary. This approach will be used in this
thesis, using a diffusion-parameter inversely proportional to the magnitude of the
distance x, to the closest moving boundary,

α(x) =
1

xq
q = −1
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Mesh motion by a Linear elastic lifting operator

Equation 2.1.4. The linear elastic model
Let ûf be the fluid domain deformation, ûs be the structure domain deformation,
and let σ be the Cauchy stress tensor. The linear elastic mesh model is given by,

∇ · σ = 0 Ω̂f

ûf = ûs on Γ

ûf = 0 on ∂Ω̂f/Γ

σ = λTr(ε(ûf ))I + 2µε(ûf ) ε(u) =
1

2
(∇u+∇uT )

Where λ, µ are Lamés constants given by Young’s modulus E, and Poisson’s ratio
ν.

λ =
νE

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)

The fluid mesh deformation characteristics are in direct relation which the choice of
the material specific parameters, Young’s modulus E and Poisson’s ratio µ. Young’s
modulus E describes the stiffness of the material, while the Poisson’s ratio relates
how a materials shrinks in the transverse direction, while under extension in the
axial direction. However the choice of these parameters have proven not to be
consistent, and to be dependent of the given problem. In [43] the author proposed
a negative Poisson ratio, which makes the model mimic an auxetic material, which
becomes thinner in the perpendicular direction when submitted to compression.
Another approach is to set ν ∈ [0, 0.5) and let E be inversely proportional to the
cell volume [1], or inverse of the distance of an interior node to the nearest deforming
boundary surface [19]. In this thesis, the latter is chosen merely for the purpose of
code reuse from the Laplace mesh model, defined as,

ν = 0.1 E(x) =
1

xq
q = −1
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Mesh motion by a Biharmonic lifting operator

Equation 2.1.5. The biharmonic mesh model
Let ûf be the fluid domain deformation, ûs be the structure domain deformation.
The biharmonic mesh model is given by,

∇̂4ûf = 0 on Ω̂f

By introducing a second variable on the form ŵ = −∇̂û, we get the following system
defined by

ŵ = −∇̂2û

− ∇̂ŵ = 0

In combination with [43], two types of boundary conditions are proposed. Let ûf
be decomposed by the components ûf = (û(1)

f .û(2)
f ). Then we have

Type 1 û(k)
f =

∂û(k)
f

∂n
= 0 ∂Ω̂f/Γ for k = 1, 2

Type 2 û(1)
f =

∂û(1)
f

∂n
= 0 and ŵ(1)

f =
∂ŵ(1)

f

∂n
= 0 on Ω̂in

f ∪ Ω̂out
f

û(2)
f =

∂û(2)
f

∂n
= 0 and ŵ(2)

f =
∂ŵ(2)

f

∂n
= 0 on Ω̂wall

f

The first type of boundary condition the model can interpreted as the bending of a
thin plate, clamped along its boundaries. In addition to prescribed mesh position as
the Laplacian and linear-elastic model, an additional constraint to the mesh spacing
is prescribed at the fluid domain boundary. The form of this problem has been
known since 1811, and its derivation has been connected with names like French
scientists Lagrange, Sophie Germain, Navier and Poisson [17]. The second type of
boundary condition is advantageous when the reference domain Ω̂f is rectangular,
constraining mesh motion only in the perpendicular direction of the fluid boundary.
This constrain allows mesh movement in the tangential direction of the domain
boundary, further reducing distortion of the fluid cells [43].
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2.2 Discretization of the FSI problem

In this thesis, the finite element method will be used to discretize the coupled fluid-
structure interaction problem. It is beyond of scope of this thesis, to thorough dive
into the analysis of the finite element method regarding fluid-structure interaction
problems. Only the basics of the method, which is necessary in order to define a
foundation for problem solving will be introduced.

2.2.1 Finite Element method

Let the domain Ω(t) ⊂ Rd (d = 1, 2, 3) be a time dependent domain discretized
a by finite number of d-dimensional simplexes. Each simplex is denoted as a fi-
nite element, and the union of these elements forms a mesh. Further, let the do-
main be divided by two time dependent subdomains Ωf and Ωs, with the interface
Γ = ∂Ωf ∩ ∂Ωs. The initial configuration Ω(t), t = 0 is defined as Ω̂, defined in
the same manner as the time-dependent domain. Ω̂ is known as the reference con-
figuration, and hat symbol will refer any property or variable to this domain. The
outer boundary is set by ∂Ω̂ , with ∂Ω̂D and ∂Ω̂N as the Dirichlet and Neumann
boundaries respectively.

The family of Lagrangian finite elements are chosen, with the function space nota-
tion,

V̂Ω := H1(Ω) V̂ 0
Ω := H1

0 (Ω)

where Hn is the Hilbert space of degree n.
Let Problem 2.1 denote the strong formulation. By the introduction of appropriate
trial and test spaces of our variables of interest, the weak formulation can be deduced
by multiplying the strong form with a test function and taking integration by parts
over the domain. The velocity variable is continuous through the solid and fluid
domain

V̂Ω,v̂ := v̂ ∈ H1
0 (Ω), v̂f = v̂s on Γ̂i

V̂Ω,ψ̂ := ψ̂u ∈ H1
0 (Ω), v̂f = v̂s on Γ̂i

For the deformation, and the artificial deformation in the fluid domain let

V̂Ω,v̂ := û ∈ H1
0 (Ω), ûf = ûs on Γ̂i

V̂Ω,ψ̂ := ψ̂v ∈ H1
0 (Ω), ψ̂v

f = ψ̂v
s on Γ̂i

For simplification of notation the inner product is defined as∫
Ω

v̂ ψ̂ dx = (v̂, ψ̂)Ω
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2.2.2 Variational Formulation

With the primaries set, we can finally define the discretization of the monolithic
coupled fluid-structure interaction problem. For full transparency, variation formu-
lation of all previous suggested mesh motion models will be shown. For brevity, the
Laplace and linear elastic model will be shorted such that

σ̂mesh = α∇ûf Laplace
σ̂mesh = λTr(ε(ûf ))I + 2µε(ûf ) Linear Elasticity

Further, only the biharmonic model for the first type of boundary condition will be
introduced as the second boundary condition is on a similar form. By the concepts
of the finite element method, the weak variation problem yields.

Problem 2.1. Coupled fluid structure interaction problem for Laplace and elastic
mesh lifting operator. Find ûs, ûf , v̂s, v̂f , p̂f such that

(
Ĵf
∂v̂f
∂t

, ψ̂u
)

Ω̂f
+
(
Ĵf (F̂−1

f (v̂f −
∂T̂f

∂t
) · ∇̂)v̂f , ψ̂

u
)

Ω̂f
+
(
Ĵf σ̂F̂−T

f n̂f , ψ̂
u
)

Γ̂i

−
(
Ĵf σ̂F̂−T

f , ∇̂ψ̂u
)

Ω̂f
−
(
ρf Ĵf ff , ψ̂u

)
Ω̂f

= 0(
ρs
∂v̂s
∂t

, ψ̂u
)

Ω̂s
+
(
F̂Ŝn̂f , ψ̂

u
)

Γ̂i
−
(
F̂Ŝ, ∇ψ̂u

)
Ω̂s
−
(
ρsf̂s, ψ̂

u
)

Ω̂s
= 0(∂v̂s − ûs

∂t
, ψ̂v

)
Ω̂s

= 0(
∇ · (Ĵf F̂−1

f v̂f ), ψ̂
p
)

Ω̂f
= 0(

σ̂mesh, ∇̂ψ̂u
)

Ω̂f
= 0

Problem 2.2. Coupled fluid structure interaction problem for biharmonic mesh
lifting operator. Find ûs, ûf , v̂s, v̂f , p̂f such that

(
Ĵf
∂v̂f
∂t

, ψ̂u
)

Ω̂f
+
(
Ĵf (F̂−1

f (v̂f −
∂T̂f

∂t
) · ∇̂)v̂f , ψ̂

u
)

Ω̂f
+
(
Ĵf σ̂F̂−T

f n̂f , ψ̂
u
)

Γ̂i

−
(
Ĵf σ̂F̂−T

f , ∇̂ψ̂u
)

Ω̂f
−
(
ρf Ĵf ff , ψ̂u

)
Ω̂f

= 0(
ρs
∂v̂s
∂t

, ψ̂u
)

Ω̂s
+
(
F̂Ŝn̂f , ψ̂

u
)

Γ̂i
−
(
F̂Ŝ, ∇ψ̂u

)
Ω̂s
−
(
ρsf̂s, ψ̂

u
)

Ω̂s
= 0(∂v̂s − ûs

∂t
, ψ̂v

)
Ω̂s

= 0(
∇ · (Ĵf F̂−1

f v̂f ), ψ̂
p
)

Ω̂f
= 0(

∇̂û, ∇̂ψ̂η
)

Ω̂f
−
(
ŵ, ∇̂ψ̂u

)
Ω̂f

= 0(
∇̂ŵ, ∇̂ψ̂v

)
Ω̂f

= 0

for the first type of boundary conditions introduced.
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Coupling conditions

Equation 2.2.1. Interface coupling conditions

vf = vs kinematic boundary condition(
ĴW σ̂F̂−T

W n̂f , ψ̂
u
)

Ω̂f
=
(
F̂Ŝn̂s, ψ̂

u
)

Ω̂s
dynamic boundary condition

By a continuous velocity field on the whole domain, the kinematic condition is
strongly enforced on the interface Γ̂i. The dynamic boundary condition is weakly
imposed by omitting the boundary integral from the variational formulation, be-
coming an implicit condition for the system [42].

2.3 One-step θ scheme

For both the fluid problem and the structure problem, we will base our implemen-
tation on a θ-scheme. A θ-scheme is favorable, making implementation of classical
time-stepping schemes simple. For the structure problem, θ-scheme takes the form

ρs
∂v̂s
∂t
− θ∇ · F̂Ŝ− (1− θ)∇ · F̂Ŝ− θρsf̂s − (1− θ)ρsf̂s = 0

∂v̂s
∂t
− θûs − (1− θ)ûs = 0

For θ ∈ [0, 1] classical time-stepping schemes are obtained such as the first-order
forward-Euler scheme θ = 0, backward-Euler scheme θ = 1, and the second-order
Crank-Nicholson scheme θ = 1

2
. Studying the fluid problem, it is initially simpler

to consider the Navier-Stokes equation in an Eulerian formulation rather the ALE-
formulation Following [33], a general time stepping algorithm for the coupled Navier-
Stokes equation can be written as

1

∆
(un+1 − un) +B(u∗)un+α − ν∇2un+α = −∇p+ un+α

∇ · un+α = 0

Here un+α is an "intermediate" velocity defined by,

un+α = αun+1 + (1− α)un α ∈ [0, 1]

while u∗ is on the form

u∗ = un+ϑ =

{
ϑun+1 + (1− ϑ)un ϑ ≥ 0

ϑun−1 + (1− ϑ)un ϑ ≤ 0

At first glance, defining an additional parameter ϑ for the fluid problem seems
unnecessary. A general mid-point rule by α = ϑ = 1

2
, a second order scheme

in time would easily be achieved. However, in [33] an additional second order
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scheme is obtained by choosing e α = 1
2
, ϑ = −1, where u∗ is approximated with

an Adam-Bashforth linear method. Making the initial fluid problem linear while
maintaining second order convergence is an important result, which have not yet
been investigated thorough in literature of fluid-structure interaction. However, in
the monolithic ALE method presented in this thesis, the fluid problem will still
remain non-linear due to the ALE-mapping of the convective term, but making
the overall problem "more linear" in contrary with a second order Crank-Nicolson
scheme. The idea was initially pursued in this thesis but left aside, as discretization
of the fluid convective term was not intuitive.
By letting α = ϑ α, ϑ ∈ [0, 1] for the fluid problem, and generalizing the concepts
in an ALE context, we derive the one-step θ scheme found in [43].

Problem 2.3. The one-step θ scheme Find ûs, ûf , v̂s, v̂f , p̂f such that

(
Ĵ
n,θ ∂v̂

∂t
, ψ̂u

)
Ω̂f

+

θ
(
ĴF̂−1

W (v̂ · ∇̂)v̂, ψ̂u
)

Ω̂f
+ (1− θ)

(
ĴF̂−1

W (v̂ · ∇̂)v̂, ψ̂u
)

Ω̂f

−
(
Ĵ
∂T̂W

∂t
· ∇̂)v̂, ψ̂u

)
Ω̂f
− θ
(
ĴW σ̂F̂−T

W , ∇̂ψ̂u
)

Ω̂f
−−(1− θ)

(
ĴW σ̂F̂−T

W , ∇̂ψ̂u
)

Ω̂f

−θ
(
ρf Ĵff , ψ̂u

)
Ω̂f
− (1− θ)

(
ρf Ĵff , ψ̂u

)
Ω̂f

= 0(
ρs
∂v̂s
∂t

, ψ̂u
)

Ω̂s
+−θ

(
F̂Ŝ, ∇ψ̂u

)
Ω̂s

+−(1− θ)
(
F̂Ŝ, ∇ψ̂u

)
Ω̂s

−θ
(
ρsf̂s, ψ̂

u
)

Ω̂s
− (1− θ)

(
ρsf̂s, ψ̂

u
)

Ω̂s
= 0(∂v̂s

∂t
− θûs − (1− θ)ûs, ψ̂v

)
Ω̂s

= 0(
∇ · (ĴF̂−1

W v̂), ψ̂p
)

Ω̂f
= 0(

σ̂mesh, ∇̂ψ̂u
)

Ω̂f
= 0
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Verification and Validation

Computer simulations are in many engineering applications a cost-efficient method
of conducting design and optimize performance. However, blindly trusting results
generated from a computer simulations can prove to be naive. It doesn’t take a
lot of coding experience before one realizes many things that can brake down and
produce unwanted or unexpected results. Therefore, credibility of computational
results are essential, meaning the simulation is worthy of belief or confidence [21].
For rigid evaluation of numerical models we use verification and validation (V&V )
[34]. For a in-depth discussion of all aspects surrounding V&V the reader is referred
to [21]. In this thesis, we follow the definitions provided by the American Society of
Mechanical Engineers guide for Verification and Validation in Computational Solid
Mechanics [31]:

Definition 3.1. Verification: The process of determining that a computational
model accurately represents the underlying mathematical model and its solution.

Definition 3.2. Validation: The process of determining the degree to which a
model is an accurate representation of the real world from the perspective of the
intended uses of the model.

Simplified, verification considers if one solves the equations right, while validation
is checking if one solves the right equations for the given problem [28]. Verification
and validation is per definition an ongoing processes, with no clear boundary of
completeness unless additional requirements are specified [28]. The goal of this
chapter is to verify the implementations using the method of manufactured solution
(MMS), and addressing validation in a subsequent chapter.

3.1 Verification of Code

Within scientific computing a mathematical model is often the baseline for simula-
tions of a particular problem of interest. For scientists exploring physical phenom-
ena, the mathematical model is often on the form of systems of partial differential
equations (PDEs). Through verification of code, the ultimate goal is to ensure that
the computer program correctly represents the mathematical model. To accumu-
late sufficient evidence that a mathematical model is solved correctly by a computer
code, it must excel within predefined criteria. If the acceptance criterion is not sat-
isfied, a coding mistake is suspected. Should the code pass the preset criteria, the
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code is considered verified. Of the different classes of test found in [28], order-of-
accuracy is regarded as the most rigorous [30, 28, 36]. The method tests if the
discretization error E is reduced in accordance with the formal order of accuracy
expected from the numerical scheme. The formal order of accuracy is defined to be
the theoretical rate at which the truncation error of a numerical scheme is expected
to reduce. The observed order of accuracy is the actual rate produced by the nu-
merical solution. For order of convergence tests, the code is assumed to be verified
if we recover the theoretical convergence from the discretization error. Monitoring
the discretization error E by spatial and temporal refinements, one assumes the
error E can be expressed as,

E = C∆tp +D∆xl

where C and D are constants, ∆t and ∆x represents the spatial and temporal
resolution, while p and l is the observed order of accuracy of the numerical scheme.
In order to calculate the convergence in space l, the spatial discretization error must
be negligible compared to the temporal discretization error C∆tp. The total error
can then by expressed as E = D∆xl, and we calculate the convergence rate for
subsequent spatial mesh refinement by,

E2

E1

= (
∆x2

∆x1

)l (3.1)

l =
log(E2

E1
)

log(∆x2
∆x1

)
(3.2)

where E2 is computed on a finer mesh compared to E1 on a courser mesh. For
spatial convergence tests, the same procedure applies by choosing a high resolution
temporal discretization, and calculating the error E1,E2 by subsequent smaller time
steps. In order to calculate order of convergence we need to find an exact solution of
the problem. Creating an exact solution is often non-trivial. However, the method
of manufactured solution provides an efficient way of generating exact solutions.

3.1.1 Method of manufactured solution
Solutions to Navier-Stokes is limited and simplifications of the original problem
are often necessary to produce analytical solutions. The method of manufactured
solutions provides a simple yet robust way of creating analytic solutions. Let partial
differential equation of interest be on the form

L(u) = f

Here L is a differential operator, u is variable the of interest, and f is some
sourceterm. Normally, one would find u by solving the system. However, in MMS
one first chooses a suitable u, and insert it into equation 3.3, which produces a
source term f. Thus, when solving the system with the obtained f, we know the
exact solution. Another appealing feature of MMS is that the chosen u does not
have to take into account the physical properties of the problem [27].
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If the MMS is not chosen properly, the test will not work. Therefore, some guidelines
for rigorous verification have been proposed in [36, 30, 27]:

• The manufactured solution should be composed of smooth analytic functions
such as exponential, trigonometric, or polynomials.

• The manufactured solution should should have sufficient number of deriva-
tives, exercising all terms and derivatives of the PDEs.

To properly verify the robustness of the method of manufactured solution, a report
regarding code verification through the method manufactured solution for the time-
dependent Navier-Stokes equation was published by Salari and Knupp [30]. To
prove its robustness, the authors deliberate implemented code errors in a verified
Navier-Stokes solver. In total 21 blind test-cases where implemented, where different
approaches of verification frameworks were tested. Of these, 10 coding mistakes that
reduced the observed order-of-accuracy was implemented. The MMS captured all
coding mistakes, except one. This mistake would, accordingly to Roach [30], been
captured if his guidelines for exact initial conditions had been followed.
In general, computing the source term f can be quite challenging and error prone.
Therefore, symbolic computation of the sourceterm is advantageous to overcome
mistakes which can easily occur when calculating by hand. For construction of the
sourceterm f, the Unified Form Language (UFL) provided in FEniCS Project will
be used.

Comment on verification of the fluid-structure interaction
solver by MMS
Although the MMS does not need to take any physics into account, there are often
mathematical constrictions from the problem it self. From section Section 2.2 we
have:
Let v̂s, v̂f be the structure and fluid velocity, and let σs, σf be the Cauchy stress
tensor for the structure and fluid respectively. Let ni be the normal vector pointing
out of the domain i. We then have the following interface boundary conditions.:

1. Kinematic boundary condition v̂s = v̂f , enforced strongly by a continuous
velocity field in the fluid and solid domain.

2. Dynamic boundary condition σs · ns = σf · nf , enforced weakly by omitting
the boundary integrals from the weak formulation in problem.

The choice of a MMS is therefore not trivial, as it must fulfill condition 1 and 2,
in addition to the divergence-free condition in the fluid, and avoiding cancellation
of the ALE-convective term ∂T̂f

∂t
. The construction of a MMS for a monolithic FSI

problem is therefore out of the scope of this thesis. The struggle is reflected of
the absence of research, regarding MMS for coupled FSI solvers in the literature.
The problem is often circumvented, such as [32], where the verification process is
conducted by the fluid and structure solver separately. Instead, the accuracy of the
coupling is evaluated by the code validation. The approach clearly ease the process,
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assuming verification of each code-block is "sufficient" to declare the code verified.
In this thesis, the approach found in [32] was followed, but it must be stressed that
solving each problem individually is not true verification.
Following the previous mentioned guidelines, we choose a 2D manufactured solution
on a unit square. Trigonometric functions are chosen to accommodate smoothness
and sufficient number of derivatives of the manufactured solution. The error is
computed by comparing the numerical solution to the exact solution with higher
order elements, in order to avoid super convergence. For temporal refinement we
simulate ten time steps, and use the final time step solution to compute the error.
Temporal refinement is computed on a uniform unit square mesh with increasing
equal number of cells in the x,y direction. Fluid and solid material parameters are
equally set to 1, and we choose a backward-Euler (θ = 1) for the one-step theta
scheme ( section 2.3) initially. For the 2D incompressible Naiver-Stokes equation
we choose the manufactured solution:

u = [cos(x)sin(y)cos(t),−sin(x)cos(y)cos(t)]

p = cos(y)sin(x)sin(t)

For the 2D structure equation the manufactured solution is chosen as:

d = [cos(y)sin(x)sin(t), cos(x)sin(y)sin(t)]

u = [cos(y)sin(x)cos(t), cos(x)sin(y)cos(t)]

Figure 3.1 and 3.2 shows order-of-accuracy test for the fluid and solid solver.
The spatial refinement study is in agreement with the expected theoretical con-
vergence rate for both solvers, while temporal refinement fails to achieve satisfying
results. Both solvers went trough rigorous testing and debugging but no error was
found which could explain the poor temporal convergence. An investigation of other
manufactured solutions also proved unsuccessful in order to achieve expected con-
vergence rates. In terms of the acceptance criteria, the code is not verified. As
the expected order of convergence was not achieved for a backward-Euler scheme,
the second order Crank-Nicolson was not pursued. On this basis, moving on to
validation deserves skepticism from the reader, as the previous results indicate that
the code misrepresents the mathematical model. However, the numerical results in
the upcoming chapter with comparison to several sources within the FSI literature,
imply that the mathematical code is implemented correctly.
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∆t N m q Eu ru Ep rp
1 · 10−5 8 2 1 2.17·10−5 - 1.68 ·10−3 -
1 · 10−5 16 2 1 2.72·10−6 2.99 4.15 ·10−4 2.02
1 · 10−5 32 2 1 3.41·10−7 2.99 1.03 ·10−4 2.01
1 · 10−5 64 2 1 4.26·10−8 2.99 2.57 ·10−5 2.00

t N m q Eu ru Ep rp
4 · 10−1 8 2 1 3.98·10−3 - 1.68 ·10−3 -
2 · 10−1 16 2 1 3.95·10−3 0.001 4.44 ·10−2 0.001
1 · 10−1 32 2 1 2.8 ·10−3 0.003 4.33 ·10−2 0.003
5 · 10−2 64 2 1 2.72·10−3 0.003 4.23 ·10−2 0.004

Table 3.1: Order of convergence study for the fluid solver. . ∆t is the time step,
while m and q are the polynomial degree of finite elements for velocity and pressure
respectively. N is the number of elements at each side of a unit square, and ru, rp is
the observed order of accuracy for velocity and pressure. Theoretical convergence is
achieved for spatial refinement, while temporal refinements shows low convergence.

∆t N s p Eu ru Ed rd
1 · 10−5 8 2 2 2.16 ·10−5 - 1.18 ·10−10 -
1 · 10−5 16 2 2 2.72 ·10−6 2.99 1.49 ·10−11 2.02
1 · 10−5 32 2 2 3.40 ·10−7 2.99 1.87 ·10−12 2.01
1 · 10−5 64 2 2 4.27 ·10−8 2.99 2.37 ·10−13 2.00

4 · 10−1 64 1 1 2.54 - 9.05 ·10−1 -
2 · 10−1 64 1 1 1.48 0.77 0.28 ·10−1 0.46
1 · 10−1 64 1 1 1.08 0.46 0.15 ·10−1 0.45
5 · 10−2 64 1 1 7.83 ·10−1 0.45 0.11 ·10−1 0.45

Table 3.2: Order of convergence study for the solid solver. ∆t is the time step, while
s and p are the polynomial degree of finite elements for velocity and deformation
respectively. N is the number of elements at each side of a unit square, and ru,
rp is the observed order of accuracy for velocity and deformation. Theoretical
convergence is achieved for spatial refinement, while temporal refinements shows
low convergence in comparison with theoretical convergence.
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3.2 Validation

Through verification, one can assure that a scientific code evaluate mathematical
model correctly. However, accuracy is unnecessary if the model fails to serve as an
appropriate representation of the physical problem. By definition 3.2, Validation
is the act of demonstrating that a mathematical model is applicable for its intended
use with a certain degree of accuracy. That is, a mathematical model is validated if
it meets some predefined criteria within a specific context. Validation is therefore
not intended to portray the model as an absolute truth, nor the best model available
[29].
In scientific computing, validation is traditionally conducted by comparing numer-
ical results against existing experimental data, considered to be ground truth. The
design of validation experiments vary by the motivation of their creators. Vali-
dated experiments for computational science can be divided into three groups [34]:
(1) To improve fundamental understanding of a physical process, (2) Discovery or
enhancement of mathematical models of well known physical processes, (3) To con-
clude the reliability and performance of systems. Comparing numerical results and
experimental data, makes validation assess a wide range of issues [34]. Is the exper-
iment relevant, and conducted correctly in accordance with prescribed parameters?
What about the measurement uncertainty of reference experimental data? These
issues must be addressed in order to raise sufficient confidence that the mathemat-
ical model is credible for its intended use.

3.2.1 Validation benchmark
The numerical benchmark presented in [13] has been chosen for validation of the
One-step θ scheme from chapter 3. The benchmark has been widely accepted as a
rigid validation benchmark throughout the literature [41, 42, 10]. This is mainly
due to the diversity of tests included, challenging all the main components of a fluid-
structure interaction scheme. The benchmark is based on the a CFD benchmark
[39], where a cylinder is placed off-center in a 2D channel. In [13], an additional
elastic flag is placed behind the cylinder, see Figure 4.1 The benchmark is divided
into three problems, each further divided into three different sub-problems with
increasing complexity. In the first problem, the fluid solver is tested for different
inlet flow profiles. The second problem considers the structure solver, evaluating
the bending of the elastic flag. And the final problem concerns validation of a
full fluid-structure interaction problem with the fluid and the elastic flag. Several
quantities for comparison are presented in [13] for validation purposes:

• The position (x,y) of point A(t) as the elastic flag undergoes deformation.

• Drag and lift forces exerted on of the whole interior geometry in contact with
the fluid, consisting of the rigid circle and the elastic beam.

(FD, FL) =

∫
Γ

σ · ndS
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Figure 3.1: Computational domain of the validation benchmark.

All problems pose both steady state and periodic solutions. For the steady state
solutions, the quantity of interest will be calculated based on a transient simulation,
that has converged towards a steady state solution. For the periodic solutions, the
amplitude and mean values for the time dependent quantity are calculated from the
last period.

mean =
1

2
max + min (3.3)

amplitude =
1

2
max - min (3.4)

In [13], all steady state solutions seems to be calculated by solving a steady state
equation since time-step are only reported for the periodic solutions. In this the-
sis, all problems in [13] are calculated using time integration. The main reason for
solving the problem transiently rather than steady state, is that numerical errors
associated with initial transients are negligible with a sufficiently low time step size,
without laborious changes to the numerical implementation. In the following sec-
tion, an overview of each problem together with numerical results will be presented.
A discussion of the results are given at the end of each simulation problem. For
each table, the relative error of the finest spatial and temporal refinement compared
to the reference solution is reported in [13].
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3.2.2 Validation of fluid solver
The validation test of the fluid solver addresses transient flow for a low Reynolds-
number regime. We can take to different approaches to this problem [13]. The first
one considers the setup as a fluid-structure interaction problem, setting the material
properties to mimic a stiff rod. In the second approach, the flag is excluded from
the computational domain. Thus, any influence from the structure is eliminated.
In this thesis, I choose to use second approach.
Let vf , pf be the fluid velocity and pressure, and let σf be the Cauchy stress tensor,
and ff denote any sourceterm, Find vf , pf such that :

(∂vf
∂t

, ψu
)

Ω̂f
+
(
(vf · ∇)vf , ψ

u
)

Ωf
−
(
σ̂, ∇ψu

)
Ωf
−
(
ρf ff , ψ

u
)

Ωf
= 0(

∇ · vf ), ψp
)

Ωf
= 0

The validation of the fluid solver is divided into three sub-problems; CFD-1, CFD-2,

parameter CFD-1 CFD-2 CFD-3
ρf [103 kg

m3 ] 1 1 1
νf [10−3m2

s
] 1 1 1

U 0.2 1 2
Re 20 100 200

Table 3.3: Parameters for the fluid validation set-up. Note that only the inlet
velocity is changing.

and CFD-3, each with different fluid parameters shown in Table 3.3. While CFD-
1 and CFD-2 are steady state solutions, it is expected that the CFD-3 results is
temporally varying with a von Karman street behind the flag. A parabolic velocity
profile on the form,

vf (0, y) = 1.5U
(H − y)y

(H
2

)2

is set on the left channel inflow. H is the height of the channel, while the parameter
U is set differently to each problem to induce different inlet flow profiles. At the
channel outflow, the pressure is set to p = 0. No-slip boundary conditions for
the fluid are enforced on the channel walls, and on the inner geometry consisting
of the circle and the elastic flag. The validation of the fluid solver is based on
the evaluation of drag and lift forces on the inner geometry, compared against a
reference solution. A spatial and temporal convergence study is conducted on all
sub-problems.
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Results

Table 3.4, 3.5, and 3.6 below shows the numerical solution of each sub-problem,
CFD-1, CFD-2, and CFD-3. Each sub-problem is evaluated on four different mesh
with increasing resolution. For the numerical solution of CFD-3 in Table 4.4, ad-
ditional temporal and spatial refinement studies are conducted. Figure 4.1 shows
the evaluation of lift and drag for the finest spatial and temporal resolution, while
Figure 4.3 shows a visual representation of the fluid flow through the channel. The
numerical solutions of CFD-1 in Figure 4.2 shows convergence against the reference
solution. Choosing P2-P1 elements together with a fully implicit scheme θ = 1,
a relative error of 0.006% for lift, and 0% for drag is attained. For the numeri-
cal solution of CFD-2 presented in Figure 4.3, the same observations apply. The
second order Crank-Nicolson scheme θ = 0.5 was investigated for CFD-1 and CFD-
2, however only improving the results of order 10−6 for both lift and drag. For
the periodic problem CFD-3, the choice of P2-P1 elements with a fully implicit
time-stepping scheme proved insufficient for capturing the expected periodic solu-
tion. Using Crank-Nicolson time-stepping scheme θ = 0.5, the periodic solution
was attained.

∆t = 0.1 θ = 1.0
nel ndof Drag Lift
1438 6881 13.60 1.089
2899 13648 14.05 1.126
7501 34657 14.17 1.109
19365 88520 14.20 1.119

Reference 14.29 1.119
Error 0.006 % 0.00 %

Table 3.4: CFD-1 results, lift and drag evaluated at the inner geometry surface for
increasing spatial refinement. The error is computed as the relative error from the
highest mesh resolution against the reference solution.

∆t = 0.01 θ = 1.0
nel ndof Drag Lift
1438 6881 (P2-P1) 126.0 8.62
2899 13648 (P2-P1) 131.8 10.89
7501 34657 (P2-P1) 135.1 10.48
19365 88520(P2-P1) 135.7 10.55

Reference 136.7 10.53
Error 0.007 % 0.001 %

Table 3.5: CFD-2 results, lift and drag evaluated at the inner geometry surface for
increasing spatial refinement. The error is computed as the relative error from the
highest mesh resolution against the reference solution.
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Figure 3.2: CFD-3, lift and drag forces at time t = [9, 9.6].

Figure 3.3: CFD-3, flow visualization of velocity time t = 9s.

∆t = 0.01 θ = 0.5
nel ndof Drag Lift
1438 6881 (P2-P1) 417.23 ± 0.0217 -249.21 ± 0.32

16474 (P3-P2) 414.86 ± 5.6282 -7.458 ± 444.07
2899 13648 (P2-P1) 408.50 ± 4.3029 -19.731 ± 373.45

32853 (P3-P2) 432.86 ± 5.5025 -9.686 ± 431.28
7501 34657 (P2-P1) 431.57 ± 5.2627 -12.497 ± 429.76

83955 (P3-P2) 438.20 ± 5.5994 -11.595 ± 438.00
19365 88520 (P2-P1) 435.43 ± 5.4133 -11.545 ± 438.89

215219 (P3-P2) 438.80 ± 5.6290 -11.158 ± 439.23
Reference 439.95 ± 5.6183 -11.893 ± 437.81
Error 0.002 % ± 0.001 % 0.061 % ± 0.003%

Discussion

Since the choice of finite-element pair is not reported in the original work, both
P3-P2 and P2-P1 element pairs for fluid and pressure respectively was compared
in combination with spatial mesh refinement. From Table 4.3, a relative error
< 0.08% of the mean and amplitude for lift and drag is attained. The choice P3-P2
element pair is eminent to achieve reasonable results for the first and second mesh
regardless of time step. However, the third and fourth mesh resolution shows close
resemblance with the reference solution, independent of finite-element pair. On
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∆t = 0.005 θ = 0.5
nel ndof Drag Lift
1438 6881 (P2-P1) 417.24 ± 0.0084 -249.386 ± 0.1345
1438 16474 (P3-P2) 414.90 ± 5.7319 -8.467 ± 443.45
1438 13648 (P2-P1) 408.27 ± 4.0192 -18.981 ± 363.84
2899 32853 (P3-P2) 432.90 ± 5.5333 -11.382 ± 430.60
1438 34657 (P2-P1) 431.59 ±5.2979 -13.644 ± 429.68
7501 83955 (P3-P2) 438.23 ± 5.6393 -12.917 ± 437.78
1438 88520 (P2-P1) 435.46 ± 5.4579 -13.190 ± 438.05
19365 215219 (P3-P2) 438.84 ± 5.6576 -12.786 ± 438.36

Reference 439.95 ± 5.6183 -11.893 ± 437.81
Error 0.002 % ± 0.006 % 0.075 % ± 0.001%

Table 3.6: CFD-3 results, lift and drag evaluated at the inner geometry surface.
A spatial refinement study is conducted for increasing mesh resolution and two
different finite element pairs. The relative error is computed from the solution of
the highest mesh resolution, against the reference solution.

basis of the presented results, the fluid solver is validated in accordance with the
proposed benchmark.

3.2.3 Validation of solid solver

The validation of the solid solver is conducted on a rectangular domain, repre-
senting the elastic structure in Figure 3.1. The structure is fixed to a fictional
wall on the left side of the domain, pulled by a gravitational force g = (0, g).
The validation of the solid solver is based on comparison of the deflection of point
A(t) = [Ax(t), Ay(t)], conducted on three refined mesh, where the number of finite
elements are chosen in close resemblance with the original work in [13]. A simple in-
vestigation of different finite-element pairs, suggest that P3-P3 elements where used
for making the reference solution. In this study, lower order finite-element pair was
included, comparing shorter simulation time with solution accuracy. While compu-
tational time is not a major concern for the solid solver, the study is important for
potentially reducing the computational time for the final validation problem.

.

parameter CSM 1 CSM 2 CSM 3
ρs[103 kg

m3 ] 1 1 1
νs 0.4 0.4 0.4
µs[106] 0.5 2.0 0.5
gm
s2

] 2.0 2.0 2.0

Table 3.7: Parameters for the solid validation set-up.
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Results

The numerical results for CSM-1, CSM-2, and CSM-3 are presented in table 3.8,
3.9, 3.10, and 3.11. For the steady state sub-problems CSM-1 and CSM-2, a spatial
convergence study is conducted through mesh refinement with three different finite-
element pairs. For the periodic CSM-3 problem, an additional temporal study was
conducted for two different time steps. In Figure 3.4, a visualization of CSM-3 is
provided for three different time steps. Finally, Figure 3.5 shows the displacement
vector components, comparing all finite-element pairs for the finest mesh resolution.
For CSM-1, the relative error of deformation found in Table 4.6, is 1.41% and 0.8%
for the x and y coordinate respectively. In Table 4.7, a relative error of 1.49%
and 0.88% for the x,y components can be found for CSM-2, proving both steady
state problems coincide with the reference solution. In Table 4.8, the numerical
solutions CSM-3 for time steps ∆t = 0.01 and ∆t = 0.005, are in close resemblance
with the reference solution. The study of lower-order elements proved successful for
all problems, justifying accurate results can be achieved using P2-P2 elements for
deformation and velocity, even for coarse mesh resolution.

∆t = 0.1 θ = 1.0
nel ndof ux of A [x 10−3] uy of A [x 10−3]
319 832 P1-P1 -5.278 -56.6

2936 P2-P2 -7.056 -65.4
6316 P3-P3 -7.064 -65.5

1365 3140 P1-P1 -6.385 -62.2
11736 P2-P2 -7.075 -65.5
25792 P3-P3 -7.083 -65.5

5143 11084 P1-P1 -6.905 -64.7
42736 P2-P2 -7.083 -65.4
94960 P3-P3 -7.085 -65.5

Reference -7.187 -66.1
Error 1.41 % 0.8 %

Table 3.8: CSM-1, deformation components of A(t) for ∆t = 0.1 and increasing
spatial refinement. The error is computed as the relative error from the highest
mesh resolution against the reference solution.
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∆t = 0.05 θ = 1.0
nel ndof ux of A [x 10−3] uy of A [x 10−3]
319 832 P1-P1 -0.3401 -14.43

2936 P2-P2 -0.460 -16.78
6316 P3-P3 -0.461 -16.79

1365 3140 P1-P1 -0.414 -15.93
11736 P2-P2 -0.461 -16.81
25792 P3-P3 -0.461 -16.82

5143 11084 P1-P1 -0.449 -16.60
42736 P2-P2 -0.461 -16.82
94960 P3-P3 -0.462 -16.82

Reference -0.469 -16.97
Error 1.49% 0.88 %

Table 3.9: CSM-2, deformation components of A(t) for ∆t = 0.05 and increasing
spatial refinement. The error is computed as the relative error from the highest
mesh resolution against the reference solution.

∆t = 0.01 θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3]
319 832 P1-P1 -10.835 ± 10.836 -55.197 ± 56.845

2936 P2-P2 -14.390 ± 14.392 -63.303 ± 65.149
6316 P3-P3 -14.432 ± 14.435 -63.397 ± 65.263

1365 3140 P1-P1 -13.053 ± 13.054 -60.367 ± 62.241
11736 P2-P2 -14.428 ± 14.432 -63.388 ± 65.256
25792 P3-P3 -14.444 ± 14.446 -63.432 ± 65.287

5143 11084 P1-P1 -14.082 ± 14.084 -62.656 ± 64.495
42736 P2-P2 -14.444 ± 14.447 -63.435 ± 65.288
94960 P3-P3 -14.449 ± 14.452 -63.449 ± 65.296

Reference -14.305 +- -14.305 -63.607 +- 65.160
Error 1% ± 1% 0.24% ± 0.24%

Table 3.10: CSM-3, deformation components of A(t) for ∆t = 0.01, with increasing
temporal refinement. The error is computed as the relative error from the highest
mesh resolution.
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∆t = 0.005 θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3]
319 832 P1-P1 -10.846 ± 10.848 -56.049 ± 56.053

2936 P2-P2 -14.390 ± 14.391 -63.738 ± 64.703
6316 P3-P3 -14.429 ± 14.430 -63.833 ± 64.810

1365 3140 P1-P1 -13.057 ± 13.057 -60.813 ± 61.826
11736 P2-P2 -14.426 ± 14.427 -63.827 ± 64.801
25792 P3-P3 -14.440 ± 14.441 -63.854 ± 64.845

5143 11084 P1-P1 -14.091 ± 14.091 -63.195 ± 63.981
42736 P2-P2 -14.441 ± 14.441 -63.856 ± 64.847
94960 P3-P3 -14.446 ± 14.446 -63.865 ± 64.860

Reference -14.305 +- -14.305 -63.607 +- 65.160
Error 1% ± 1% 0.4% ± 0.4%

Table 3.11: CSM-3, deformation components of A(t) for ∆t = 0.005, with increasing
temporal refinement. The error is computed as the relative error from the highest
mesh resolution.

(a) t = 0 (b) t = 0.22 (c) t = 0.45

Figure 3.4: CSM-3, visualization of deformation of the elastic flag for three time
steps: (a) initial configuration, (b) half way extension, (c) full extension

Figure 3.5: CSM-3 ∆t = 0.01, deformation components of A(t) with finest mesh
resolution, comparing all finite element pairs for time interval t ∈ [0, 6] and t ∈ [6, 8].
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Discussion

Comparing all finite-element pairs for CSM-3, visualized in figure 4.5, shows P2-P2
and P3-P3 elements hardly can be distinguished from each other. In accordance
with previous mentioned results and observations, the solid solver is validated in
accordance with the validation benchmark.

3.2.4 Validation of fluid structure interaction solver
The validation of the FSI solver consist of three sub-problems which will be referred
to FSI-1, FSI-2 and FSI-3. The FSI-1 problem yields a steady state solution for
the system, inducing small deformations to the elastic flag. The FSI-2 and FSI-
3 problems results in a periodic solution, where the elastic flag oscillates behind
the cylinder. All sub-problems inherit the conditions from the previous validation
branches, with the exception of no gravitational force on the elastic flag. On the
fluid-structure interface Γ, we enforce the kinematic and dynamic boundary condi-
tion

vf = vs (3.5)
σf · n = σs · n (3.6)

Apart from the accuracy of the reported values, the main purpose of the validation
of the solver is twofold. First, it is of great importance to ensure that the overall
coupling of the fluid-structure interaction problem is executed correctly. Second,
a good choice of mesh extrapolation model is essential to avoid divergence of the
numerical solution, due to mesh entanglement. Based on experience in section,
4.2.1-2, the finite element pair P2-P1 for the fluid solver, and P2-P2 for the solid
solver proved successful. Therefore the finite-elements P2-P2-P1 for deformation,
velocity, and pressure are chosen for the numerical experiments. Higher order el-
ements will not be examined, mainly due to long computational time, even for
optimized solver approaches.
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Solid parameters
parameter FSI-1 FSI-2 FSI-3
ρs[103 kg

m3 ] 1 10 1
νs 0.4 0.4 0.4
µs[106 kg

ms2
] 0.5 0.5 2.0

Fluid parameters
ρf [103 kg

m3 ] 1 1 1
νf [10−3m2

s
] 1 1 1

U 0.2 1 2
parameter FSI-1 FSI-2 FSI-3
Re 20 100 200

Table 3.12: Fluid-structure interaction sub-problem parameters

Results

The numerical results for FSI-1, FSI-2, and FSI-3 are shown in Table 4.10-12. For
all sub-problems, a spatial convergence study has been conducted on three different
meshes with increasing resolution, with the relative error of the finest spatial and
temporal resolution. For FSI-1 in Table 4.10, an additional option is proposed, by
omitting mesh lifting operator from the monolithic variational form from section
3.2.2. A comparison of the validation parameters lift, drag, and displacement with
different mesh lifting operators can be found in Figure 4.2-3. Finally, Figure 4.7
and 4.9 visualize the flow field and deformation of the elastic flag for a given time.
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FSI-1

Laplace
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 0.0226 0.8200 14.061 0.7542
7307 63365 0.0227 0.7760 14.111 0.7517
11556 99810 0.0226 0.8220 14.201 0.7609
Reference 0.0227 0.8209 14.295 0.7638
Error < 10−6 % < 10−6 % 0.66 % 0.38 %

Linear Elastic
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 0.0226 0.8198 14.061 0.7541
7307 63365 0.0227 0.7762 14.111 0.751
11556 99810 0.0226 0.8222 14.201 0.7609
Reference 0.0227 0.8209 14.295 0.7638
Error < 10−6 % < 10−6 % 0.66 % 0.38 %

Biharmonic bc1
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 0.0226 0.8200 14.061 0.7541
7307 63365 0.0227 0.7761 14.111 0.7517
11556 99810 0.0227 0.8017 14.205 0.9248
Reference 0.0227 0.8209 14.295 0.7638
Error < 10−6 % < 10−6 % 0.63 % 21.08 %

Biharmonic bc2
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 0.0226 0.8200 14.061 0.7543
7307 63365 0.0227 0.7761 14.111 0.7518
11556 99810 0.0227 0.8020 14.205 0.9249
Reference 0.0227 0.8209 14.295 0.7638
Error < 10−6 % < 10−6 % 0.63 % 21.09 %

No extrapolation
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 0.0224 0.9008 14.064 0.7713
7307 63365 0.0226 0.8221 14.117 0.7660
11556 99810 0.0225 0.8787 14.212 0.7837
Reference 0.0227 0.8209 14.295 0.7638
Error < 10−6 % < 10−5 % 0.58 % 2.61 %

Table 3.13: FSI 1 - Comparison of mesh extrapolation models for three spatial
refinements
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FSI-2

Laplace ∆t = 0.01 θ = 0.51
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -15.27 ± 13.45 1.34 ± 82.4 157.00 ±14.85 -1.09 ±258.47
7307 63365 -14.23 ±13.37 1.31 ± 82.2 159,3 ± 15.43 0.92± 254.53
11556 99810 -14.96 ± 13.24 1.28 ± 81.9 161.07 ± 17.81 0.02 ± 256.04

∆t = 0.001 θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -15.61± 13.21 1.34 ± 83.6 155.38 ± 13.98 -3.00 ± 289.06
7307 63365 -15.31 ± 13.07 1.02 ± 82.8 156.81 ± 14.95 -2.00 ± 276.24
11556 99810 -15.28 ± 13.04 1.28 ± 82.9 158.45 ± 16.09 -2.53 ± 276.13
Reference -14.58 ± 12.44 1.23 ±80.6 208.83 ± 73.75 0.88 ± 234.2
Error (4.8 ± 4.8)10−6 % (4 ± 2.8) 10−6% 24.1 % ± 78.1 % 387.5 % ± 17.9 %

Biharmonic 1 ∆t = 0.01 θ = 0.51
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -15.44 ± 13.24 -1.38 ± 82.3 157.67 ± 15.02 -0.89± 258.87
7307 63365 -15.04 ± 12.96 0.99 ± 81.9 159.83± 16.83 0.98 ± 245.40
11556 99810 -15.29± 13.17 1.29 ± 82.5 161.69 ± 18.73 -1.86 ± 251.30

∆t = 0.001 θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -15.36 ± 13.12 1.35 ± 83.1 155.38 ± 13.74 -2.55 ± 285.19
7307 63365 -15.23 ± 12.97 1.03± 82.4 157.14 ± 15.18 -8.62 ± 263.87
11556 99810 -15.27 ± 12.99 1.31 ± 82.7 157.72 ± 15.58 3.34 ± 258.76
Reference -14.58 ± 12.44 1.23 ±80.6 208.83 ± 73.75 0.88 ± 234.2
Error (4.7 ± 4.4)10−6 % (6.5 ± 2.6)10−6 % 208.83 ± 73.75 0.88 ± 234.2

Biharmonic 2 ∆t = 0.01 θ = 0.51
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -14.93 ± 13.22 1.35 ± 81.5 157.76 ± 15.04 -0.49 ± 254.13
7307 63365 -14.67± 13.05 1.00± 80.9 159.59 ± 16.77 2.22 ± 248.11
11556 99810 1.58 ± 12.86 1.23± 81.5 161.85 ±18.84 -1.64 ± 247.04

∆t = 0.001 θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -15.63 ± 12.7 1.31 ± 82.9 155.55 ± 13.82 -2.45 ± 281.18
7307 63365 -14,99 ± 12.81 0.99± 82.14 156.86 ± 15.05 -1.65 ± 269.84
11556 99810 -15.26 ± 12.91 1.27 ± 81.8 156.86 ± 15.05 -1.65 ± 269.84
Reference -14.58 ± 12.44 1.23 ±80.6 208.83 ± 73.75 0.88 ± 234.2
Error (4.6 ± 3.7)10−6 % (3.2 ± 1.4)10−6 % 24.8 % ± 79.5 % 287.5 % ± 15.2 %

Table 3.14: FSI 1 - Comparison of mesh extrapolation models for ∆t = [0, 01, 0, 001],
for three spatial refinements
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Verification and Validation

Figure 3.6: FSI-2, visualization of fully developed flow with structure deformation
at time t = 9s.

Figure 3.7: FSI-2, visualization of fully developed flow with structure deformation
at time t = 9s.
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FSI-3

Table 3.15: FSI 3 - Comparison of mesh extrapolation models

Laplace ∆t = 0.01θ = 0.51
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -2.41 ± 2.41 1.49 ± 32.21 449.39 ± 14.72 0.55 ± 155.80
7307 63365 -2.32 ± 2.31 1.32 ± 31.80 451.76 ± 16.10 1.04 ± 151.51
11556 99810 -2.34 ± 2.34 1.59 ± 31.91 455.94 ± 17.34 -0.01 ± 151.36

∆t = 0.001θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -2.91 ± 2.74 1.28 ± 35.01 450.90 ± 18.11 2.28 ±161.13
7307 63365 -2.82 ± 2.66 1.24 ± 34.69 453.56 ± 19.80 2.94 ± 158.67
11556 99810 -2.88 ± 2.72 1.49 ± 34.97 458.60 ± 22.12 2.23 ± 158.95
Reference -2.69 ± 2.56 1.48 ± 34.38 457.3 ± 22.66 2.22 ± 149.78
Error (7.0 ± 6.2)10−6 % (6.7 ± 1.7)10−6 % 0.28 % ± 2.38 % 0.45 % ± 6.12 %

Biharmonic 1 ∆t = 0.01θ = 0.51
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -2.40 ± 2.38 1.58 ± 32.07 450.16 ± 15.11 -20.09 ± 148.17
7307 63365 -2.26 ± 2.14 1.70 ± 31.3 457.37 ± 15.24 -51.77 ± 127.28
11556 99810 -2.33 ± 2.32 1.93 ± 31.5 456.40 ± 17.45 0.45 ± 149.68

∆t = 0.001θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -2.18 ± 2.10 3.52 ± 2.90 435.19 ± 9.77 -1.59± 151.45
7307 63365 -2.80 ± 2.64 1.25 ± 3.45 454.38 ± 19.76 17.97 ± 155.08
11556 99810 -2.84 ± 2.68 1.50 ± 3.47 459.12 ± 22.97 -3.12 ± 171.22
Reference -2.69 ± 2.56 1.48 ± 34.38 457.3 ± 22.66 2.22 ±- 149.78
Error (5.5 ± 4.6)10−6 % (1.3 ± 8.9)10−6 % 0.40 % ± 1.37 % 240.5 % ± 14.3 %

Biharmonic 2 ∆t = 0.01θ = 0.51
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -2.33 ± 2.33 1.57 ± 31.6 449.44 ± 14.82 0.80 ±152.03
7307 63365 -2.25 ± 2.23 1.35 ± 31.3 452.63 ±16.29 17.11 ± 146.05
11556 99810 -2.25 ± 2.29 1.59 ± 31.4 457.89 ± 17.26 57.83 ± 141.69

∆t = 0.001θ = 0.5
nel ndof ux of A [x 10−3] uy of A [x 10−3] Drag Lift
2474 21249 -2.83 ± 2.66 1.31 ± 34.5 450.24 ± 18.25 2.57 ± 175.42
7307 63365 -2.77 ± 2.61 0.98± 34.6 453.53 ± 20.01 2.60 ± 159.13
11556 99810 -2.80 ± 2.65 1.37 ± 34.7 458.41 ± 22.23 15.56 ± 157.78
Reference -2.69 ± 2.56 1.48 ± 34.38 457.3 ± 22.66 2.22 ±- 149.78
Error (4.0 ± 3.5)10−6 % (7.4 ± 9.3)10−6 % 0.24 % ± 1.90 % 600.9 % ± 5.34 %
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Verification and Validation

Figure 3.8: Comparison of mesh motion models for FSI-3, in time interval t t ∈
[5.5, 6].

Figure 3.9: FSI-3, visualization of fully developed flow with structure deformation
at time t = 5.1s.
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Discussion

For FSI-1, all models excel well in comparison with the reference solution, even at
coarse mesh resolution. Due to low reynolds number flow the induced deformation
of the elastic flag is very small, FSI-1 proves to be excellent for initial validation
of fluid-structure interaction solvers. However, due the small deformations of the
elastic flag of order 10−5, FSI-1 doesn’t provide a rigorous test case for mesh extrap-
olation models. By omitting mesh extrapolation from the variational formulation
in section 3.3.2, reasonable results are still obtained in Table 4.10. This fact proves
FSI-1 to be misleading in terms of mesh extrapolation model, but remains excellent
for initial validation of fluid-structure interaction solvers and the overall coupling
of the fluid and solid equations.
The FSI-2 problem proved to be one of the most demanding tests, due to the large
deformation of the elastic flag. For large deformations, the chance of fluid mesh en-
tanglement was considerably high, stressing the mesh lifting operator extensively.
The linear elastic model failed for both time sizes, but not due to mesh entan-
glement but early failure of the Newton-solver. This finding is comparable with
the investigation conducted in [26], where early failure of the Newton-solver is in
context with long-term simulation of the implicit Crank-Nicolson scheme. In their
study, a shifted implicit shifted Crank-Nicolson scheme θ = 0.5 + ∆t proved to fur-
ther improve stability for the newton-solver, making the numerical scheme stable
for coarse time-step. Further, numerical investigation in [26] showed that for both
Crank-Nicolson and shifted Crank-Nicolson are stable for ∆t < 0.003 for the same
benchmark. The numerical results in this thesis proved both implicit schemes was
applicable for all mesh lifting operators, except the linear elastic model.
In general, the numerical solution regarding deformation of the elastic flag proved
accurate in accordance with the reference solution for all sub-problems. However,
the evaluation of drag and lift proved challenging for the periodic FSI-2 and FSI-3
problems. For FSI-2, poor accuracy was observed for all mesh resolutions and time
steps, while for FSI-3 the evaluation of drag remained accurate. The same obser-
vations was found in [37], a followup work of the original benchmark [13], where
numerical solutions committed by different research communities was compared.
The diversity of lift and drag values provided by different research communities
was surprising, as differences of order 50% for drag and lift values, and 10% for
displacement was observed. More surprisingly was that the authors of the original
benchmark [13], who also committed their numerical results, didn’t match their
own reference solution with the same solver. Therefore, comparison of lift and drag
forces with the reference solution alone can be misleading, and should not be the
main acceptance criteria for code validation for this benchmark. Given the remarks
in [37], the comparison of deformation is arguably a better main acceptance criteria.
On this basis, the FSI code is validated in accordance with the original benchmark.
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Numerical Experiments

4.1 Comparison of mesh lifting operators

Mesh lifting operators are essential for numerical stability of fluid-structure inter-
action. If the fluid mesh doesn’t conform with the solid deformation, mesh entan-
glement increases with the possibility of numerical instabilities. In general, mesh
models have shown to be either robust concerning mesh entanglements at the cost of
computational time, or computational efficient with less robustness [19]. However,
computational efficiency has proven not only to be dependent of the complexity of
model, but also the regularity of the fluid mesh, reducing Newton iterations needed
per time step [41]. In this section, a comparison of the mesh lifting operators from
section 3.1.4. for the FSI-3 benchmark are presented. The linear elastic model was
found not applicable in section 4.2.3. Therefore, only the Laplace and biharmonic
lifting operators will be considered, comparing vertical displacement of the elastic
flag, regularity of the fluid mesh, and number of Newton iterations per time step.
To evaluate the regularity of the fluid mesh, the minimum value of the Jacobian
of the deformation gradient have been considered in [41]. The Jacobian serves as
a measure of mesh entanglement, meaning if Jf ≥ 0, there are no crossing cells in
the fluid mesh.

Jf = det(F̂f ) = det(I + ∇̂ûf )

where I is the identity matrix and ûf is the fluid mesh deformation.
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1. Comparison of mesh lifting operators

Results
Figure 4.1 shows a comparison the mesh lifting operators at the time interval t =
[0, 5], when a stable periodic solution is obtained. As shown in the middle figure
all models shows a minima of mesh regularity at 3.8s < t < 4.2, which is expected
due to the largest deformation of the elastic flag. A larger number of Newton
iterations for all models shows are needed at each time step, when the elastic flag
starts oscillating for t > 3s. The biharmonic lifting operator is superior in terms of
number of iterations need per time step, and mesh regularity in comparison with the
Laplace model. Further, the biharmonic 2 model shows better mesh regularity than
biharmonic 1, but shows equal behavior in terms of Newton iterations. Recall, the
biharmonic 2 operator allows tangential mesh motion at the boundaries, while the
biharmonic 1 model constraining mesh motion in both perpendicular and tangential
direction. For all models, no distinct difference in deformation of the y-component
is found.

Figure 4.1: Investigation of mesh lifting operators for the FSI3 benchmark in the
time interval t ∈ [0, 5], comparing vertical displacement of elastic flag, mesh regu-
larity, and number of Newton iterations.

Discussion
The numerical results confirms biharmonic models produce a better regularity of
the fluid mesh cells, which in turn reduces the number of Newton iterations needed
per time step. However, better evolution of mesh cells is by no means necessary for
solving the FSI-3 problem. Therefore, the Laplace model remains a good choice, and
its simplicity is preferable in terms of computational time (a topic to be discussed
in section 4.2 4.3 ).
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Numerical Experiments

4.2 Investigation of long term temporal stability

One of the main challenges for constructing time-stepping schemes for ALE-methods,
is the additional non-linearity introduced by the domain-velocity term in the fluid
problem [7]:

Ĵf (F̂−1
f (v̂f −

∂T̂f

∂t
) · ∇̂)v̂f (4.1)

Closer inspection of the convective term reveal spatial and temporal differential op-
erators depending non-linearly on one another. These differential operators often
appear separated, making discretization of a general time-stepping scheme not di-
rectly intuitive. The domain velocity ∂T̂f

∂t
have proven to effect the stability of first

and second-order accurate time stepping schemes on fixed domains, but to what
extent remains unclear [7, 6]. The second order Crank-Nicolson used in this thesis,
have also shown to suffer from temporal stability for long-term simulations of fluid
problems. The unconditionally stable Crank-Nicolson scheme is restricted by the
condition [40]:

k ≤ ch
2
3 (4.2)

Were c is a constant, while k and h are the time-step and a mesh-size parameters.
While for the stability of the time derivative of the ALE-mapping, no accurate
restriction is obtained (although thoroughly explored in [7]). As a result, time step
restriction is necessary to ensure that numerical stability [7]. The temporal stability
for the implicit Crank-Nicolson scheme, for the validation benchmark chosen in
this thesis, was studied in [26]. The criteria for the numerical experiments was to
obtain a stable solution in the time interval of 10 seconds, by temporal and spatial
refinement studies. Following the ideas outlined in [26], a second order scheme
based on the Crank-Nicolson yields two possibilities:

Discretization 4.1. Crank-Nicolson secant method[ Ĵ(ûn)∇̂v̂nF̂−1
W

2
+

Ĵ(ûn−1)∇̂̂vn−1F̂−1
W

2

] ûn − ûn−1

k

Discretization 4.2. Crank-Nicolson midpoint-tangent method[ Ĵ(ûcn)∇̂v̂cnF̂−1
W

2

] ûn − ûn−1

k
ûcn =

ûn + ûn−1

2
v̂cn =

v̂n + v̂n−1

2
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2. Investigation of long term temporal stability

The numerical experiments showed very similar performance for discretization 4.1,
4.2, and significant differences of long-term temporal stability was not found. How-
ever, spatial and temporal refinement showed the implicit Crank-Nicolson suffered
from long-term stability problems for certain time steps. Choosing the time step
k = [0.005, 0.003], the FSI-3 problem (section 3.2.4 ) suffered from numerical in-
stabilities. Interestingly, the instabilities occurred earlier in simulation time for
increasing mesh refinement. A similar experiment in [43], showed reducing the time
step k = 0.001 yield stable long-time simulation for both Discretization 4.1 and
4.2.
To overcomes the numerical instabilities two approaches have been suggested in the
literature, the shifted Crank-Nicolson and the frac-step method [26, 43, 40]. In this
thesis the shifted Crank-Nicolson scheme was considered, introducing stability to
the overall system by shifting the centered scheme by θ = 1

2
+ k. If the shift is

dependent of the time-step k such that 1
2
≤ θ ≤ 1

2
+ k, the scheme will be of second

order [26].

Results
A numerical investigation of long term numerical stability is shown in Figure 4.2,
4.3, where the shifted Crank-Nicolson scheme θ = 1

2
+ ∆t, is compared the orig-

inal Crank-Nicolson θ = 1
2
. The shifted surpasses the original Crank-Nicolson

scheme in terms of temporal stability, for all time steps. In Figure 4.3, the shifted
Crank-Nicholson scheme retain long-time temporal stability for ∆t = 0.01.. While
for the ordinary Crank-Nicholson scheme, numerical experiments showed choosing
∆t = 0.001 was necessarily to ensure stability, confirming the results found in [43].
Figure 4.2 shows choosing ∆t ∈ [0.2, 0.1] results in a steady-state solution, which
can be explained by influence the solid problem. A centered Crank-Nicolson scheme
θ = 1

2
is energy preserving, meaning no energy is dissipated from the system. Since

the shifted Crank-Nicolson scheme is not centered, the amount of dissipated of
energy is related to the time step. If the time step is sufficiently high such as
∆t ∈ [0.2, 0.1], the scheme will dissipate energy at a higher rate. Therefore, no
periodic oscillation of the elastic flag is obtained. The validation of the solid solver
shows the difference of energy dissipation for a centered and backward numerical
scheme. Given the same solid parameters, a steady-state solution is obtained for
CSM-1 (θ = 1.0), while CSM-3 yields a periodic solution CSM-3 (θ = 1

2
), shown in

Figure 4.4 .
For ∆t ∈ [0.05, 0.02], the shifted Crank-Nicolson scheme is close to centered, mean-
ing energy is nearly preserved in the structure. However, the Newton-solver di-
verges before full time interval of 10 seconds is finished. Surprisingly, a finer time
step ∆t = 0.02 fails at an earlier stage than ∆t = 0.05. The numerical divergence
is not due to mesh entanglement of the ALE-mapping, but divergence of Newton
method itself [26]. It is believed the divergence of the Newton solver is linked to
the influence of the domain velocity, by the research found in [7], but no clear time
step restriction is obvious. Hence, several publications indicates choosing time step
for a shifted Crank-Nicolson scheme is based on trial and error [43, 40].

52



Numerical Experiments

Figure 4.2: Investigation of long term numerical stability for the FSI3 benchmark
in the time interval t ∈ [0, 10], comparing the shifted and centered Crank-Nicolson
scheme.

Figure 4.3: Investigation of long term numerical stability for the FSI3 benchmark
in the time interval t ∈ [0, 10], comparing the shifted and centered Crank-Nicolson
scheme.

4.3 Optimization of the Newton solver

Software profiling is a dynamic program analysis, with the purpose of finding soft-
ware sections which can be optimized. In scientific computing, software profiling
often focuses on minimizing memory usage or executing speed, by collecting per-
formance data to identify bottlenecks. A bottleneck is a term used when the total
performance of a complete implementation is limited to small code fragments, ac-
counting for the primary consumption of computer resources. For many applica-
tions, one can often assume the usage of resources follows the The Pareto principle.
Meaning that for different types of events, roughly 80% of the effects come from
20% of the causes. An analogy to computational sciences it that 80% of the compu-
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3. Optimization of the Newton solver

Figure 4.4: A comparison of different choices of θ, for the CSM-3 structure validation
benchmark. Using the same structure parameters, a backward-Euler scheme θ = 1
yields steady-state solution, while a periodic solution is observed for CSM-3 using
a centered scheme θ = 1

2

To the left, centered Crank-Nicolson scheme and backward Euler scheme, using
the structure validation benchmark for the time interval t ∈ [0, 6].

tational demanding operations comes from 20% of the code. In this thesis, software
profiling identified the bottleneck to be the Newton solver, using roughly ∼ 98%
of the total computational time for each individual numerical experiment. For a
full simulation of the FSI-3 problem considered in Chapter 3.2.4, on a course mesh
with time step k = 0.01, the total computation time was initially 68 hours. With
additional spatial and temporal refinement study of four mesh lifting operators, it
became clear that the whole process would be too time consuming. Optimization
of the Newton solver was therefore eminent to complete the initial goals set for this
thesis.
Newtons method can be written as,

∇F(xn)(xn − x0) = −F(xn) (4.3)

where F is the residue of the variational formulation, xn, x0 is vector, and ∇F is
the Jacobian of the residue. The Newton method can be divided into two main
computational demanding operations.

• Jacobian assembly
The construction of the Jacobian matrix ∇F(xn) of the total residue F(xn)

• Direct solver
LU factorization and solving the linear system Ax = b, where A = ∇F(xn)
and b = −F(xn)

The speed-ups methods explored in this thesis are divided into consistent and in-
consistent methods. Consistent methods speeds-up the solution process by efficient
assembly methods of the linear system 4.3. Inconsistent method involves simplifi-
cations of the linear system 4.3, often at the cost of poor convergence of Newtons
method. As a consequence, additional Newton iterations are often necessary for
convergence at each time step.
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Numerical Experiments

4.3.1 Consistent methods

Jacobi buffering

The residue of the FSI problem consists of both linear and non-linear terms, F =
Flin + Fnonlin. For each time step the linear part Flin remains constant, which
only need to be assembled on the first Newton iteration. The linear parts are
then buffered, meaning saved in a separate matrix and added with the assembled
non-linear Fnonlin matrix for each Newton iteration at each time step.

4.3.2 Inconsistent methods

Reuse of Jacobian

Reusing the Jacobian of the residue∇F(xn) have two beneficial consequences. First,
the Jacobian of the residue ∇F(xn) is only assembled once at each time step.
Second, the LU factorization of the linear system 4.3 is only needed at the first
iteration, as the Jacobian remains constant through the whole time step. The first
Newton iteration is therefore solved without simplifications, while the remaining
iterations uses an inexact Jacobian which reduces the convergence of the method.

Quadrature reduce

The assemble time of the Jacobian greatly depends on the degree of polynomials
used in the discretization of the total residual. The use of lower order polynomials
reduces assemble time of the Jacobian at each Newton iteration due decreased size of
the Jacobian matrix. The decreased size of the matrix also reduces the time needed
for LU-factorization of the linear system 4.3. However, the quadrature reduce
method leads to an inexact Jacobian which may results to additional iterations.

Combining quadrature reduce and Jacobian reuse

By using the previous inconsistent methods together, the first assembly of the Jaco-
bian is done with lower order polynomials. This combination reduces assembly time
of the Jacobian matrix at first iteration, and further speeds up LU-factorization of
the linear system 4.3.

4.3.3 Comparison of speedup methods

In Figure 4.5, all speed-up techniques are compared on the time interval t = [0, 5],
for the Laplacian model. Numerical simulations shows how all inconsistent methods
increase the number of iterations needed for convergence at each time step, contrary
to a consistent naive method. However, the inconsistent methods clearly dominate
the time used for a full Newton iteration at each time step, in comparison with
the naive approach. The fastest method proved to be the combined method, using
1.5 hours for solving the full time interval. The naive approach used 17.1 hours,
meaning the combined method resulted in a 91% speedup.
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3. Optimization of the Newton solver

The biharmonic mesh model results in Figure 4.6, shows similar observation com-
pared to the Laplacian model. However, the benefit of a better evolution of mesh
cells is reflected in the reduced number of iterations needed at each times step, for
all methods. The quadrature reduce method even compares to the naive method in
terms of iterations. The naive approach computed the whole time interval in 33.87
hours, while the combined method 3.46 hours, a speedup of 89%.

Laplace
Implementation Naive Buffering Reusejacobi ReducequadratureCombined
Mean time pr
timestep

123.10 159.85 61.31 31.43 11.11

Mean iteration 4.50 7.79 10.22 10.08 10.22
Speedup ratio - 0.12 0.50 0.74 0.91

Figure 4.5: Comparison of speed-up techniques for the Laplace mesh model.
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Biharmonic Type 1
Implementation Naive Buffering Reusejacobi Reducequad Combined
Mean time pr
timestep

243.39 307.67 76.77 51.64 24.87

Mean iteration 4.14 6.21 7.19 4.67 6.81
Speedup ration - -0.26 0.68 0.79 0.90

Figure 4.6: Comparison of speed-up techniques for the biharmonic type 1 mesh
model.

Discussion

Of the speed-up methods considered in this thesis, the combined method proved to
fastest for both mesh models. With a computational time difference of nearly ∼ 2
hours, the Laplace model is superior to the biharmonic model in terms of efficiency.
As long as mesh regularity isn’t critical for the simulation, the Laplacian model is
the preferable lifting operator. It is important to note that the introduced speed-
up methods may not be applicable to other FSI problems, since inexact Jacobian
methods are highly sensitive.
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3. Optimization of the Newton solver
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Conclusion and further research

In this thesis, a monolithic fluid-structure interaction solver in an arbitrary La-
grangian Eulerian description have been presented. This inline with the original
goal of this thesis. However, verification of code was not achieved, however suc-
cessful validation through the benchmark presented in [13] indicates the code still
represents the mathematical model correctly enough. Thus it opens up the possi-
bility that the verification of code test it self might have been erroneous.

An investigation of long term temporal stability of the FSI benchmark showed the
implicit Crank-Nicolson was not applicable for time steps ∆t > 0.001. To overcome
the stability issues, a shifted Crank-Nicolson scheme was introduced, were long time
temporal stability was obtained for ∆t ≤ 0.01. Software profiling motivated run-
time optimizations of the Newton solver, where a combination of Jacobian reuse and
lower-order polynomials to assemble the Jacobian matrix proved most beneficial in
terms of computational efficiency.

In order to further explore all aspects of the FSI problem, I have also compared three
different mesh lifting operators, focusing on mesh regularity and computational ef-
ficiency. The Laplace lifting operator proved to be the most efficient method, while
the biharmonic operator was the most rigorous, however at the cost of computa-
tional cost. The linear elastic model failed for all tests expect the FSI-1 problem,
meaning it was only valid for small deformations.
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Future research
To pursue a successful verification of code is the primary future goal, which is neces-
sary remove any doubt that the mathematical model is solved correctly. In addition,
several extensions are possible. Several publications have showed the linear elas-
tic lifiting operator applicable for a wide range of FSI problems. Therefore, further
investigation is planned to investigate why the operator did not perform in my work.

Hoping to extend into 3D simulations, an implementation of iterative Krylov meth-
ods by block preconditioning are necessary, to overcome the CPU demanding nature
of the monolithic FSI formulation. A substantial amount of time during the work
of this thesis have been put into trying to implement the partitioned algorithm pre-
sented in [5]. In the end, I was not able to finalize this project, but future research
will be spent on finding the last mistakes. A projection method would allow for a
wider variety of fluid schemes, making the whole fluid equation linear. Thus, having
the potential of further speeding up the solution process.
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The deformation gradient

Deformation is a major property of interest when a continuum is influenced by ex-
ternal and internal forces. The deformation results in relative change of position of
material particles, called strain, is the primary property that causes and describe
stress. Strain is purely an observation, not dependent on the material of interest.
However one expects that a material undergoing strain, will apply forces within due
to neighboring material particles interacting with one another. Therefore, material
specific models are derived to describe how a certain material will react to a certain
amount of strain. Strain measures are used to define models for stress, which is
responsible for the deformation in materials [12]. Stress is defined as the internal
forces that particles within a continuous material exert on each other, with dimen-
sion force per unit area.
The equations of continuum mechanics can be derived with respect to either a de-
formed or undeformed configuration. The choice of referring our equations to the
current or reference configuration is indifferent from a theoretical point of view.
Regardless of configuration, the deformation gradient and determinant of the de-
formation gradient are essential measurement in structure mechanics. By [25], both
configurations are considered.

Reference configuration

Definition A.1. Let û be a differential deformation field in the reference config-
uration, I be the Identity matrix and the gradient ∇̂ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

). Then the
deformation gradient is given by,

F̂ = I + ∇̂û (A.1)

expressing the local change of relative position under deformation.

Definition A.2. Let û be a differential deformation field in the reference config-
uration, I be the Identity matrix and the gradient ∇̂ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

). Then the
determinant of the deformation gradient is given by,

J = det(F̂) = det(I + ∇̂û) (A.2)

expressing the local change of volume of the configuration.
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Current configuration

Definition A.3. Let u be a differential deformation field in the reference config-
uration, I be the Identity matrix and the gradient ∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

). Then the
deformation gradient is given by,

F = I −∇u (A.3)

Definition A.4. Let u be a differential deformation field in the reference config-
uration, I be the Identity matrix and the gradient ∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

). Then the
determinant of the deformation gradient is given by,

J = det(F) = det(I −∇u) (A.4)
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