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Introduction

In this thesis we build a mathematical model for the risk involved when a person makes a binding
fixed-price offer to buy or sell something that fluctuates in value. This situation often arises in
financial markets, where such an offer is called a quote. Quotes involve a risk for the person
giving them, and an opportunity for the person receiving them. This is best seen through an
example: say trader A offers trader B to buy 100 shares in company X for 10 kroner per share,
and the offer is binding for the next 5 seconds. If the market price of the share drops to 6 kroner
after 3 seconds, trader B can profit from accepting the offer. If she does, she is said to be picking
off the quote.

We investigate two different versions of quotes: offers that cannot be canceled before a certain
time has passed ("minimum resting times”), and quotes that are automatically canceled if the
price moves past a specified barrier ("last look”).

Our model of financial quotes is in many respects similar to option pricing models. Quotes with
minimum resting times are in a certain sense similar to American options, and quotes with last
look are similar to American barrier options. There are also differences however, for example are
the time scales of financial quotes orders of magnitude shorter than the time scales of traditional
options. These differences lead us to use different modeling approaches than what is used for
traditional option pricing models, in particular we investigate the class of integer-valued Levy
processes.

This thesis is applied work. Therefore, the emphasis of the work has been to formulate the
situation into a tractable mathematical model, and then solving the resulting problems using
the appropriate mathematical tools. It is my belief that applications are important for math-
ematics; they can motivate new questions and give us interesting representations of problems
that could otherwise seems dry and uninteresting. We therefore weave the application and the
mathematics tightly together in this thesis.

The work use various concepts and results from stochastic analysis and stochastic optimization.
It is assumed throughout that the reader is familiar with basic probability theory. Many basic
concepts are used without definition. Some key concepts that we use repeatedly are defined in
Appendix B for the reader’s convenience. Here we also state many standard results without
proof.

Structure
In chapter 1 we first describe the problem in words, and then proceed to write down a formal
mathematical model.

In chapter 2 we give several results of a general character. We do not pursue proves of these
results for the most general settings possible, but rather aim to find a level of abstraction that
covers the specific stochastic models we use in chapters 3-5.



In chapter 3 we use a Brownian motion to model randomness. We derive results that are sim-
ilar to well-known results from the theory of option pricing. The similarities can be gauged by
comparing chapter 3 with the option pricing literature review in Appendix A.1.

In chapter 4 we extend our results to a Skellam process; perhaps the simplest possible point
process applicable to our situation. The main contribution of this chapter is the derivation of
a reflection principle for the Skellam process, which we then use to provide analytical results.
In particular the density of the stopped Skellam process (Proposition 18) is to the best of our
knowledge a new result.

In chapter 5 we go a step further and model randomness with a general integer-valued Levy
process (chapter 1 explains why this situation is of relevance to our application). The rele-
vant literature available on this topic is scarce, and available sources are cited the text. Useful
background material for this chapter is Appendix A.2, where we clarify the connection between
integer-valued Levy processes and the compound Poisson process. We show how our problem
can be reduced to a discrete-time problem in the special case of an infinite time-horizon, and
then apply theory from the study of Markov decision processes to attain an analytical solution.
The most challenging version of our problem is in section 5.3.3. Here we turn to discrete ap-
proximation and use standard results from the theory of dynamic programming. We develop an
algorithm documented in Appendix C in order to apply the dynamic programming-approach.

Starting point and contribution

The major work and contribution of this thesis is the development of a mathematical model
suited for analyzing a particular decision problem, and then solving the problems posed by the
model using the appropriate mathematical tools.

I have not taken any courses on the mathematics of American options nor optimal stopping-
problems before or during my work with this thesis. The exposition of the material related to
these subjects is therefore a product of my own literature review. Relevant academic papers are
cited where appropriate. In addition, I have used several books as a general reference to the
subject matter. The most important of these books are Jeanblanc et al. (2009); Oksendal and
Sulem (2005); Oksendal (2013); Bjork (2004); Lamberton and Lapeyre (2011).

Some of the results and proofs in this thesis are original, while others have been adapted from
books and papers. The symbol 3¢ is used to mark sections and proofs that is original, while
the symbol < is used to mark sections and proofs where significant independent work has been
done. Many standard results are stated without proof in Appendix B.



Chapter 1

Financial quotes

1.1 What is a financial quote?

A financial quote is an offer one market participant provides to another, to buy or sell a specified
number of a given security for a specified price. For example, trader A makes an offer to trader
B to buy 10 shares in company Z for a price for 100 kroner per share. In many modern elec-
tronic marketplaces participants can solicit quotes from those willing to provide them through
a mechanism called "request for quote”.

Quotes can be divided into two general categories: ”indicative” and ”firm”. An indicative quote
is an offer that is not binding to the trader who provided it, she is merely indicating to potential
trading partners which price she is interested in trading at. Someone interested in trading at the
indicated price can contact the supplier of the quote, for instance by phone or electronic chat,
and enter into bilateral negotiation over terms.

We will not concern ourselves with indicative quotes in this thesis. Rather we are interested only
in firm quotes. These are offers that are binding to the one who makes it, for a specified period
of time. The receiver of this quote has the right, but not the obligation, to enter into a trade at
the specified price, at any time up to the quote expires. He who supplies a quote is exposed to
the risk that the fair value of whatever is being quoted changes before the quote expires. This
risk is sometimes referred to as the risk of being picked off.

Consider our earlier example, where trader A made an offer to buy from trader B. Trader A now
has the obligation to buy at the specified price at any time until the quote expires, even if the
fair value of shares moves to A’s disfavor. If now the fair value of shares in company Z falls to
90 kroner before the quote has expired, trader B can earn 10 kroner from selling to A for the
quoted price of 100 kroner.

The position of someone who has supplied a quote is in fact very much like that of someone
who is short an American option, an observation first made by Copeland and Galai (1983). The
quoted price takes the role as the strike price of the option, and the validity time of the quote
is the expiry time of the option. The receiver of the quote is in a position as if he were long an
American option. If the quote was an offer to buy, the receiver is long an American put; if the
quote was an offer to sell, the receiver is long an American call.

In the classical framework of option pricing introduced by Black and Scholes (1973), the price of
a traded option is found using hedging and the principle of no arbitrage. In this model the price
is unique, since the options (and all financial claims) are perfectly replicable. The fundamental



building block of this theory is the replicating portfolio: a portfolio of assets that exactly repli-
cates the payoff from the option. The market model is called complete. The no arbitrage pricing
principle provides an interval for prices also when the market model is incomplete, that is when
financial claims are not always perfectly replicable. It is however not clear how we should apply
the idea of no arbitrage pricing and replicating portfolios in the current setting: this portfolio
would normally involve a position in the underlying asset, but the process of acquiring such a
position is exactly what we are modeling in the first place.

Non arbitrage prices can also be found using a so-called risk-neutral evaluation. That is, the
fair price is given by the expected discounted payoff under a risk-neutral probability measure.
If the market is complete, the measure is unique and it correspondingly provides the unique
non-arbitrage price. If the market model is not complete, the interval of arbitrage prices cor-
responds to all the risk-neutral measures of the incomplete model. Therefore, one method of
finding arbitrage free option prices is via risk neutral valuation (see for example Karatzas and
Shreve (1998). In short, the idea is that if the market is complete and there exists a (unique)
risk neutral probability measure, the arbitrage free price of any traded payoff is the (unique)
expectation of the discounted payoff under the risk-neutral probability measure (Jeanblanc et
al., 2009).

We will apply the idea of risk neutral pricing to evaluate the risk of posting firm quotes, although
it will not lead us to a no arbitrage-price of the option embedded in the quote: We will ask for
the expectation of the discounted payoff of the quote, under a given martingale measure. This
expectation represents a monetary measure of the risk involved in supplying a firm quote.

To see why the expectation under a risk neutral measure can be a useful benchmark, imagine
a hypothetical complete market where one is able to continuously trade in the quoted asset.
In this market the quote can be replicated by an American option, and the initial value of the
hedging portfolio of the American option can be found via its risk-neutral expectation.

1.1.1 Minimum resting times

A minimum resting time refers to an arrangement wherein a quote has to be active for a
minimum period of time before it can be canceled.

The attention surrounding minimum resting times has increased, as regulators and market par-
ticipants have become increasingly concerned about the rise of algorithmic trading. Algorithmic
trading can cause a phenomenon known as “phantom liquidity”, in which quotes are submitted
and subsequently canceled within a very short time frame (Blocher et al., 2016). There is an
ongoing debate on whether this and related phenomena is detrimental to the quality of markets,
see for example Hendershott et al. (2011); Budish et al. (2015); Foucault et al. (2016). Sev-
eral regulatory responses have been proposed, among them a rule requiring all quotes to have
a minimum resting time (Jorgensen et al., 2016). It is therefore of interest to regulators how
the introduction of a minimum resting time will affect trading costs (Furse et al., 2011). It
seems intuitive that a minimum resting time entails a larger risk of being picked off, because the
supplier of the quote can not adjust the quoted prices in reaction to new information until the
minimum resting time has expired.

We aim to develop a model that can help regulators evaluate the effect of minimum resting times,
as well as to provide precise theoretical predictions to empirical researchers. We will model the
minimum resting time as the expiry time 7" of the firm quote. We will see that the picking-off
risk faced by the supplier of a quote increases if regulators impose a longer resting time 7'. In



competitive markets it is likely that this increased risk will somehow be transfered to the trading
costs of the market participants. We will therefore study how the picking off-risk varies with the
expiry time T, and how the relationship is affected by other parameters in the model.

1.1.2 Last look

A last look-quote is one where the supplier of the quote retains the right to not enter into the
trade if there has been a sufficiently adverse movement in the spot price.

There are various ways in which this last look feature can be implemented in practice (Oomen,
2016). In this thesis we model last look as a constant threshold B € R such that the quote be-
comes invalid if and when the fair value hits this threshold. We shall see that the mathematical
structure of evaluating the picking off-risk in a last look-quote is very similar to the pricing of
American barrier options.

There is a current controversy concerning the last look-feature in foreign exchange markets,
which makes a mathematical model of last look-quotes of particular practical and regulatory
interest .

1.2 Stylized facts of high-frequency financial prices

The randomness in our model will stem from the fair price of an asset being quoted. In order
to construct a suitable model we shall start by considering some stylized facts about financial
prices relevant for time frames of seconds or less.

Prices take values on a discrete set
Financial prices take values on a discrete set of points called ticks, see Angel (1997); Werner et
al. (2015) for more details on the tick grid.

In mathematical finance it is common practice to model prices as random processes with values
on the real line, in contrast to this fact. This incoherence is not very important for models whose
domain are time spans of days, months and weeks, but matters when the model is to be applied
for time spans of seconds or milliseconds.

Prices change value in continuous time

Most trading systems treat time as continuous, in the sense that orders are processed continu-
ously on a first come-first served basis and recorded in chronological order (Budish et al., 2015).
An accurate model for financial prices should therefore have a time index which takes values on
the real line.

Note that trading systems give recorded trades a digital time-stamp. This means that although
trading takes place in continuous time?, transaction data have discrete-valued time indices. For
the applications in this thesis it is the actual events that are important, not how they are stored
in digital systems.

1See for example ”Currency Trading’s Last Look’ Rules Are Changing, BOE Says”, Bloomberg news, 28th
July 2016.
2To the extent that physical time is continuous
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Table 1.1: Comparison of random processes used in thesis

Stylized fact Brownian motion | Skellam | ANB Levy
Continuous time v v v
Discrete state-space
More than one tick
Time-clustering

v v
X v
X X

x| x| X

Prices sometimes change by more than one tick

Price changes of several ticks in one increment are commonly seen in practice. The frequency
distribution of the increment size is however rapidly decreasing - Barndorff-Nielsen et al. (2012)
analyze a particular data set and show that price increments of more than five ticks are very rare.

Figure 1.1 illustrates how the granularity of the price grid becomes apparent at very short time
intervals.

Price changes are clustered in time
Price changes are clustered in time in two different manners.

First, prices change more frequently at certain times of the day. The frequency of price changes
is lower during night time, and higher around the release of important information such as com-
pany reports and macroeconomic announcements. If one is modeling prices over the length of a
day this form of clustering is important. It is not important when we are modeling time spans
of seconds or less however; we are either dealing with a daytime-second or a nighttime-second,
and we are either dealing with a second when important information is released or we are not.
We can therefore disregard the time-of-day clustering effect during the time intervals we are
modeling.

There is however a second clustering effect, present also in very short time intervals: we a more
likely to see price change in the next few seconds if another price change has just occurred. A
variety of modeling approaches has been suggested for dealing with this effect, see Bauwens and
Hautsch (2009) for more details. The economic mechanisms behind this clustering effect is still
being debated, possible explanations include heterogeneous information arrivals (Andersen and
Bollerslev, 1997), investor learning (Banerjee and Green, 2015) and behavioral models (Cont,
2007).

In this thesis we consider three different random processes for the price. The three processes
give three different trade-offs between mathematical tractability and realism. In table 1.1 we
summarize the stylized facts of high-frequency prices, and how the four different random pro-
cesses match up against these facts. A review of some key facts concerning Levy processes can
be found in the Appendix, section A.2.

None of the price processes considered in this thesis matches the stylized fact that price changes
are clustered in time - this extension is left for future work.

1.3 Discounting
We have argued that financial quotes are in some respects very much like American options.

Unlike common option pricing models however, we will abstract from the concept of discount-
ing. There are three reasons for this choice.

11
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Figure 1.1: EURUSD exchange rate over different time intervals.
See Appendix C for data description.
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First, the time scales involved in modeling financial quotes are very different from those of tradi-
tional option pricing models. The expiration time of a quote in modern markets will typically be
measured in seconds or milliseconds, while American stock options have expiry dates measured
in months or years. Cash flows occurring months or years into the future are significantly affected
by discounting, and we therefore cannot abstract it away without fundamentally changing the
structure of decision problems. For cash flows that are seconds or milliseconds into the future
things are different. The empirical literature on intraday interest rates finds evidence of rates in
the range of 0.1 to 0.9 basis points per hour (Furfine, 2001; Kraenzlin and Nellen, 2010; Jurgilas
and Zikes, 2014). These numbers implies per-second interest rates in the range of 2.8 x 107 to
2.5 % 1077 per cent. On the other hand, a volatility coefficient of 20% per year, commonly found
for stocks indices, translates into a per-second volatility of m ~ 7 x 107°, several
orders of magnitude larger than any realistic discount rate. We see that discounting is simply
not of any real significance over very short time horizons.

Secondly, it is not clear that per-second or per-millisecond discount rates are even meaningful
economic concepts. The hourly discount rates mentioned earlier are thought to be due to struc-
tural properties of payment systems. It is not clear that discounting over much shorter time
intervals makes any economic sense.

Thirdly, modeling financial quotes using discounting leads to the same problem formulations as
when pricing American options. These are problems that are already thoroughly studied in the
literature, and usually one has to resort to numerics for their solution. A review can be found

in Appendix A.1. We will on the other hand be able to attain several analytical results because
we exclude discounting.

1.4 Mathematical formulation

In this section we formulate the discussion of sections 1.1 and 1.3 into a mathematical model.
We assume a probability space (€2, P, F), and an adapted random process (S;) called the price

process, taking values in the space E. The price process represents the ”fair value” of the asset
being quoted 3. We will look at different cases for £, both E =R and E = Z

1.4.1 Quotes with a minimum resting time

Definition 1. A quote given at time 0 is a pair (K,T) € E x R,
The quote is a sell quote if Sy < K.

The quote is a buy quote if K < Sy.

Note that the lack of discounting in this model shows up in the fact that we are comparing S
with K directly, rather than e " K.

3Exactly what should be understood by the word ”fair” depends on the particular context. In the stock
market-example discussed earlier, one could take ”fair value” to mean the net present value of expected future
dividend payments discounted at the relevant risk-adjusted discount rate. In general, (S;) represents the current
value of the asset, against which all quotes are compared. We assume that (S;) is common knowledge to all
participants in the market.

13



The value K should be interpreted as the price at which the supplier of the quote commits to
buying or selling one unit of a given asset to the receiver of the quote, and T is the time at
which the offers expires.

We shall not consider quotes where K = .5;.

We shall in many places write K when discussing the sell quote and K when discussing the buy
quote.

We say that a quote is executed when and if the receiver of a quote decides to trade. A sell

quote executed at time 7 € [0, T] gives payoff (S, — K) to receiver of the quote. Similarly, the

supplier loses —(S; — K). We will assume that the receiver only executes the quote if he does

not lose relative to the fair value, and so we write the payoff of the receiver as (S; — K)4, and
of the supplier as —(S; — K).

Definition 2. The payoff to the receiver from a quote executed at time T is denoted 1(S;).
If the quote is a sell quote, we have Vs = (S, — K)4

If the quote is a buy quote, we have Yy, = (K — S;)+

For both buys and sells, v is a non-negative convex function. This fact will be used repeatedly.
Many of the arguments that follows will in fact only require these properties, and not the func-
tional form itself.

The expected payoff to the receiver and the supplier of the financial quote depends on the value
of the underlying price process at the time of execution. In order to evaluate the risk associated
with financial quotes, we will ask for the largest possible expected payoff that can be attained.

Definition 3. Let T be the collection of stopping times taking values in [0, T].
We refer to Appendix B for definition and basic properties of stopping times.

Definition 4. Take as given a quote (K,T). We denote the picking off-risk from supplying
the quote by V (K, T):

Vsezz([_(, T) =supE [wsell<sﬂ')]
T€T

(1.1)

Vbuy(KJ T) = Slel?E [wbuy(s‘r)]

Definition 5. Any stopping time that attains the supremum in (1.1) is called an optimal
stopping time.

An optimal stopping time may not be unique. In such cases we will be particularly interested
in the first optimal stopping time:

Definition 6. Let 7" € T be an optimal stopping time. We say 7* is the first optimal
stopping time if, for any optimal stopping time oc* € T, we have

Pirm<o") =1

14



1.4.2 Quotes with last look

The last look quote is associated with a boundary B € E such that the quote becomes invalid
("knocked out”) if the fair price ever crosses B.

Definition 7. A quote with last look is a triplet (K, T,B) € E xR, X E
The quote is a sell quote if Sy < K < B.

The quote is a buy quote if B < K < Sy.

We shall use the notation (K, T, B) for a sell quote and (K, T, B) for a buy quote.

Definition 8. Take as given a stochastic process (Sy). For a constant B € E we define the first
hitting time as
T :=inf{t >0|S; = B}

Note that our definition of hitting time is the time when the process (S;) takes the value B.
Many books on stochastic calculus use a similar notation to denote the first time the process is
greater than or equal to B, a time we will here refer to as Ty

Ty =inf{t >0|S, > B}

The two random times T and T4 are equal almost surely if the process (S;) has continuous
paths. If the process has jumps, however, these two times can differ. The distinction between
Ty and T} is in fact crucial for many of the problems and arguments in this thesis.

Definition 9. Take as given a stochastic process (S;). For a constant B € E we define the
knockout time T} as

Ti(B) = inf{t >0 S, > B} if B>5S
P27 inf{t >0 S, < B} if B<S,

Definition 10. We define the running maximum (M,;) as

M, := sup S,

u€e[0,¢]

We define the running minimum (m;) as

Definition 11. The payoff to the receiver from a last look sell quote cxecuted at time T is

11, <ByYse(Sr)

The payoff to the receiver from a last look buy quote executed at time 7 is

1> By Ybuy (S7)

One could make a definition equivalent to Definition 11 using the random times Tz or T} rather
than the running maximum and minimum. The reason for the definition made here is that we
shall in later chapters attain the joint law of a process and its running maximum /minimum.

We note that the payoff functions from last look-quotes are the same as American barrier op-

tions; up-and-out calls in the case of sell quotes, down-and-out puts in the case of buy quotes
(see Appendix A.1).
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Definition 12. We define the risk from supplying a last look-quote by
Viu(K, T, B) = SUFI?E (101, <3y Wsen(S-)]
TE

(1.2)

Vbuy(Ka T7 E) = SUE]E [l{m‘rZQ}way(ST)}
TE

Figure 1.2 illustrates the problem.

Figure 1.2: Illustration of the problem

16



Chapter 2

General results

In this section we give several results that does not depend on the choice of price process. In
later chapters we apply these results to various special cases.

We take as given the probability space (€2, F, P) and a random process (S;) taking values in
the measurable space (E,£). When nothing else is said we shall always work with the natural
filtration of (S;), denoted by F. We make the following important assumptions:

i) The probability space satisfies the usual conditions (see Appendix B).
ii) The process (S;) is a Levy process (see Appendix A.2)
iii) The process (S;) is a martingale.

We also suppose that the integrability condition E[|¢(S;)|] < oo holds for all ¢ € [0,T].

Proposition 1 (Optimal stopping with a minimum resting time). %
The stopping time T =T is optimal for (1.1).

The idea behind Proposition 1 is that if we regard the payoff from the quote as a stochastic
process, (1(S;),t > 0), it is a submartingale since it is a convex function of a martingale. And
since a submartingale is increasing in expectations, it is clearly optimal to stop it at the latest
possible time. Here is a formal proof:

Proof. We must show that E [¢(S7)] = sup,cr E [¢(S;)]. Take any 7 € T. Note that 7 < T by
the definition of 7, and therefore F,. C Fr. We can therefore apply Doob’s optional sampling
theorem (Appendix Theorem 57) to the martingale (S;) and the bounded stopping times 7 and
T. Moreover we can apply Jensen’s inequality for conditional expectations to the convex function
1. We therefore have

E[(S:)] = E[Y(E[Sr | F-])]
<E[E[y(5r) | F]
=E[¢(57)]
The proposition now follows from observing that 7" € T. O

Proposition 2 (Optimal stopping of last look). ¥
Define the stopping time
T =T ANTg

17



Assume that

P(M,->B)=0 ifSy<B
P(mT*<B):0 ’lfS()>B

Then the stopping time 7 =T A Tg is the first optimal stopping time for (1.2).

Proposition 2 says that the receiver of a last look quote can expect to do no better than to
wait until either the quote expires, or the price process hits the boundary B. The reason is
the following: either the sample space realization is such that the quote is going to be killed by
the last look-feature, in which case one cannot expect to do better than wait until the process
(S;) hits the boundary B. Or, the quote is not going to be killed, in which case one cannot
expect to do better than wait until the quote expires at time T'. In either case, stopping before
T AT gives a lower expected payoff than continuing. The key assumption we have to make for
this argument to hold essentially amounts that the underlying process never ”jumps past” the
barrier (P(M,~ > B) = 0), meaning that it is safe to wait until the exact moment when S; = B.
We now give the formal proof:

Proof. We prove the case Sy < B (the sell quote). Take any stopping time 7 € 7. We shall first
show that

E[(S:) 1, <y < ERp(Sr+)1qm,.<By]
Let A := {CU € Q) | MT/\TB S B}

We have that

(. /

O(S) L, <8y = P(S)Lar, <yl ir<razpy Lay + 0 (50) Linr <y Lrorarsy Lay +9(S7) Lar, <y Lacy

I II II1

We consider the terms I and II separately. We shall see that term III vanish in expectations,
since A° is a null set.

First consider term I. On the set {7 < TATg} we have F; C Frar,, and hence we can use Doob’s
optional sampling theorem on the martingale (S;). Furthermore we apply Jensen’s inequality
for conditional expectations, and write

V(S ) Y, <Bylir<rarsyliay =V (E[Stary | Fr))1ar, <ByLir<raTsyliay
< E[(Stary) | Frllar, <Bylir<ratsiliay
= E[(Stats) | Frllatrar, <51 1r<ratsyliay

The last equality use that on the set {r < T ATp} N A we have 1, <py = Laspar,<ny = 1.

The above inequality also show that it is never optimal to stop before T'A Tz. Hence, if T'ATp
is indeed optimal, it must also be the first optimal stopping time.

Now consider term II. By the definition of Tz and since 1 is monotonically increasing we have

¥(Sty,) = Y(B) > ¢(x) for all x < B. The assumption 7 € T means that 7 < 7. Therefore
on the set {r > T"ATg} N A it must be the case that T < T. On the set A we also have
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1{MTB§B} = 12> 1y, <py. Therefore,
Loty L <8y (S2)1ay < rorgy Lo, <3y (S15) 14y
< Lrompy Yatr, <8y ¥ (S15) 114y
= Lirompary Lty vr<ByY (STpAT) 1A}
= 1o1unry L gy ir <8y O (E[STpaT | Fr]) 1)

The last line use that Frar, C F; for {w € Q| 7 > T ATg}, and thus Syyar is Fr-measurable.

Combining our considerations for term I and term II, we get
Y(S7)liar<py <
E[Y(Stary) | FrlListr iy, <ByLir<rarsy liay+
ElW(Stats) | Frllstrnr, <51 1{r>mams Lay+
V(S )L, <pyLiacy
= E[(Stars) | Frllnapar, <Byliay + 0(57) Lar <5y {acy

We shall apply the expectation operator on the preceding inequality. Note that on {A} we
have 1(arp,r,3 = 1. Moreover since P(A) = 1 by assumption we have P(A°) = 0 and hence
E[Y1¢4y] = 0 for any random variable Y by the properties of the Lebesgue integral. Therefore,
by the Tower property of conditional expectations,

E [¢(S:)1i.<5y) <E |:E[77Z}(ST/\TB) | J:Tll{MTATBSB}l{A}}
= E[E[Y(Srary) | F+]]
= E[¢(Srar)]
= E [U(S1n1,) Lovtgy <]

Since T'ATg € T and T was arbitrary, we have proved that T'A T is the first optimal stopping
time. The case Sy > B (the buy quote) follows the same steps. ]

Proposition 3 (Symmetry of buy and sell quotes). ¥
Suppose we have the sell and buy quotes (K, T, B) and (K, T, B) satisfying

K=-K
B=-B
and the price process satisfies
Sp=0

If the price process is symmetric, meaning that we have the equality of law
St l%u —St all t Z 0
Then,
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V;’ell([_(a T) = ‘/I)uy(Ka T)

i)
Ve K, T, B) = Vi (K, T, B)

Proof. We first prove i). Note that K — S, faw S, — K for any t > 0 and constants K, K.
Since the law of S; is symmetric, we have that for any continuous and bounded function f,
E[f(S;)] = E[f(—S;)] (see Appendix B). Therefore, for any ¢ € [0,T] we have that
E[t)sen(Sr)] = E[max(0, S; — K))]
= E[max(0, K — S})]
B[ty (5t)]

Using that the stopping time 7' € T is optimal (Proposition 1), we have

Vsen(f_(, T) = sup E[@Dseu(ST)]
TET

= sup E[¢puy (7))
TET

- ‘/buy (Ka T)

We now prove ii), for the last look-quotes (K, T, B) and (K, T, B). First note that, for any
t € [0,T], we have

P(S; > B) = P(S; > —B)
= P(S; < B)
Which implies that
Ty(B) :=inf{t >0 S, > B}
"Winf{t >0 S, < B}
=:T1(B)

Also note that for any 7 € T, - ~
{M; < B} ={r <T}(B)}

and
{m; = B} = {7 <T}(B)}

Therefore we have that

Using the above we get that

E [teen(S:) 1. <y] = Elmax(0, S, — K) | 7 < Ty(B)] P(7 < Ty(B))
— Efmax(0, (K — 5,)) | < T4(B)] P(r < T}(B))

= E[Ybuy (57)1m. >B)]
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By assumption we have that B
Sr,=B=-B=-5g,

B
and since S; is symmetric we have Tz o Tp. This means that
P(ST/\TB SJZ):P(ST§£E|T<TB)+P(STB §$|TZTB)
:P(—STSI’T<T§)+P(ST§§$‘TZT§>
P(=Srpry < )

Showing that the we have symmetry of distribution also for the random variables (Stary, StaTy)-
Using that T' A Tp is optimal (Proposition 2) , we have that

‘Zell(KaTu B) = SU;QE Wseu(ST)l{MTgBﬂ
TE

= Sup E[’l/}buy(ST)l{WTZE}]
TeT

= ‘A/i)uy (K? T7 E)
And the proof is complete. O

Because of Proposition 3 we shall mostly describe sell quotes in the remainder of this thesis.
Chapter 3 is an exception, as we there give several results explicitly also for the buy quote to
illustrate the symmetry between buys and sells. Moreover, we shall omit the bar in K and B,
and simply refer to sell quotes as (K,T') and (K, T, B), keeping in mind that these quotes satisfy

S()<K<B

The put-call parity is a well-known result from option pricing theory. In the current context we
have a similar result, stated in Proposition 4.

Proposition 4 (Quote "put-call” parity). Let (K,T) € E x R, and Sy € E be given. The
following relation ("put-call” parity) holds:

Vieul _%uy - SO_K

Proof. Observe that
(0 K) = (2~ K)s — (K — ),

Therefore, for any stopping time 7,
(Sr = K) = (S; = K)4 — (K — 57)4

Taking expectations, and exploiting the fact that by our martingality assumption and Doob’s
optional sampling theorem we have E[S,] = Sy for any stopping time 7, we get

So— K = E[(S, — K).] ~E[(K — S,);]
Now take the supremum over stopping times in 7T,

supE[(S; — K)4] —supE[(K — S;)4+] = S) — K
T€T T€T

Which completes the proof. O
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Chapter 3

Picking-off risk under the Brownian
motion

In this chapter we retain the assumptions of Chapter 2, apart from the following restrictions:

Let (W) be the standard Brownian motion with continuous paths, and let IF be the P-augmented
natural filtration associated with (W;). Furthermore let x and o be two given positive real
numbers. The price process is given by

St = O'Wt + X (31)

We shall in several cases provide results for both the buy and the sell quote.

3.1 Minimum resting time

Recall that our modeling considerations around minimum resting times and picking off-risk led
us to equation (1.1):

sup E [1)(S5;)]
TET

where ¢ is (S; — K)4 and (K — S;) for the sell and buy quote respectively.

Proposition 5. Under the assumptions of this chapter, the optimal stopping time of (1.1) is
Tr=T.

Proof. We will show that (S;) is a F-martingale. The claim then follows from Proposition 1.

The Brownian motion (W;) is clearly measurable with regards to its own natural filtration F.
Since the function f(x) = ax + b is continuous and hence Borel measurable, the process (S;) is

also F-measurable.
12T
EHStH =0 ?‘FIO < 0

The process (S;) has the martingale property:

:Su

The process is (S;) is in L':

Hence the process (.5;) is an F-martingale. The claim therefore follows from Proposition 1. [J
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We can manipulate the normal distribution to compute the expected value from following the
optimal strategy explicitly.

Proposition 6. %
Let ® (-) be the standard normal CDF, and n be +1 for the sell quote and —1 for the buy quote:

n:{ +1 i (y) = (y = K)y
-1 ife(y) = (K —y)+

Under the assumptions of this chapter, the value of (1.1) is given by:

Y (u) (g 0 (2249)

Proof. We know from Proposition 5 that the largest expected value is attained by stopping at
the final time 7. Hence, our task is to evaluate E [¢)(S7)]. We start with the sell quote:

sup {E [¢(57)]} = n

(3.2)
TET

Note that St o zo + oVTZ, where Z is standard normal. Let f denote the standard normal
pdf. We have

E[(Sr — K)4] = E[(z0 + 0VTZ — K)4]

zﬂmzo(xo—i—aﬁz—f()f(z)dz
oVT
_Oﬁ/lj\/”%o 2f(z)dz — (xg — K)P <Z2 [i_;f)>

— T / °°x0 2f(2)dz = (w0 — K)® (JTK )

oVT

We continue working on the first integral, using the substitution y = _722:
/OO z2f(z)dz = ! /OO ze 7 2dz
1 oo
=—— e’dy

Thereby we get
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For the buy quote we follow the same steps:

E[(K - S7):] =E[K — Sr | S < K| P(Sy < K)+0

= —E[Y |Y <K —z]P(Y < K —x0) + (K — 20)P(Sp < K)

[T e K
= oy e (xg — K)P (_xo )
2T O’\/T

The formula in Proposition 6 is of course closely related to the famous Black-Scholes formula
from option pricing theory (see Appendix A.1).

O

Figure 3.1: Picking-off risk as function of minimum resting time ( The buy quote has been reflected
on the z-axis for illustrative purpose).
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3.2 Last look
Our considerations around the last look quote led us to equations (1.2):

Vien = sup 2 (L, <5y (Sr = K]
TE

VbUY = SugE [l{mTZB}(K - ST)+}
TE

Proposition 7. Under the assumptions of this chapter, the optimal stopping time for (1.2) is
TF=Tg NT
Proof. Since the Brownian motion has continuous sample paths, we have that
P(Mrpr, > B) =10

The claim now follows from Proposition 2. O
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We want to find an explicit formula for the expected value E [¢)(Sr,a7)] attained by following
the optimal rule. For this we will need the density of the absorbed process Spar.

Lemma 8. Let (S;) and Tg be as defined above, and let ®(-) be the standard normal density.
The density f of the stopped process Star, s given by

U — T u—+ xg — 23)
u) = _— — e —
=0 (" 72) - ("
Proof. The proof is a consequence of the reflection principle for the Brownian motion (see Ap-
pendix B. Let (W;) be the standard Brownian motion, and let here (Y;) be the running supremum

(Y1) := (sup Wy, ¢ > 0)

u<t

Take first the joint probability law of the terminal value Wr of the Brownian motion and the
running supremum over [0, 77:

PWr <z, Yr<y)=PWr<z)—PWr <z Yr>y)

:q)(%> — P(Wr <Y >y)
—@(%> — P(Wp <z —2y)
()< ()

Where the first line use the law of total probability and the second-to-last line use the reflection
principle. Set & = *=* and § = ¥-*, and note that by (3.1) and the properties for the Normal
distribution we have

P(Spr<xz)=P(Wr<z) and P(supSt >y> :P<suth >3))

t<T t<T
Hence, if we let F'(z,y) denote the joint distribution of (St,sup,, St), we get
F(z,y) == P(Sr < z,5up St < y)
=P(Wr <2,Yr <79)
:(I)(x—x0> _®<x+x0—2y)
oT oVT
Or, equivalently in terms of the joint density function,
U — xo U+ T — Qy)
u,y) = —p| ————
rwn=o(572) -0 (07

The lemma now follows from setting y = B. O

We are now ready to compute the expected value from following the optimal stopping rule. It
turns out that this value can be expressed as a linear combination of quotes without the last
look feature. These we know how to compute from Proposition 5. This result has an analogy in
the pricing of European barrier options, see Appendix A.1 for more details on this.
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Proposition 9. <
Let (St) and Ty be as defined above, and let E,.[f(S;)] denote the expectation of f(S;) when one
changes the starting point of (S;) from zo to r. We have

EIEIEE;UO [I{MTSB}w(ST)} = Ewo [¢<ST)] - ]E2B—w0 [¢<ST>]

Proof. From Proposition 7 we know the optimal stopping time to be 7* = Tg AT, so we must
evaluate E,, [¢(Stza7)]. This is straightforward when we use the density of the stopped process

from Lemma 8 :
u+x9— 28
U(u ( ) du
)= [t (V2

Ev, [¢(Stpnr)] / e (

The first integral is the expectation of ¥ (Sr) when the process (S;) starts in xy. The second
integral can also been seen as the expectation of 1(S7), but now the starting point of the process
(S:) has been shifted to 2B — x. O

The result of Proposition 9 has an analogy in the theory of pricing Barrier options, shown in
Appendix A.1.
We can also compute the probability that the last look-feature is activated:

Proposition 10. <
Let (S;) and Tg be as defined above. Then,

i) The hitting time Ty has the scaled inverse chi-square distribution,

law (B - xO)Q

Tp'™ S 2~ N0

ii) The probability of the last look-feature coming into effect is given by

P(TBST):Q—Q(I)(i:/;O)

Proof. We first prove i) for the sell quote, meaning that B > Sy. From (3.1) we have
My = sup S
te[0,7

W —
t€[0,T] g

Define
B — i)
o
We apply the following corollary to the reflection principle for the Brownian motion (see Ap-
pendix B):

Y=

P(Mr < B) = P(|Wr| < B)

Hence, we have

P(Ty <T) = P(B < My)
=Py <Yr)
= P(y < [Wr)
= P(y <|Z|VT)

Yy
=P (p=T)



Which implies that the hitting time T has the scaled inverse chi-square law,

law (B - 1,0)2
s = =g

To prove ii), we could use the CDF of the scaled inverse chi-square distribution, properties of
the incomplete gamma function and it’s relation to the normal CDF. However, the claim can
also be derived using only the reflection principle and the symmetry of the normal distribution:

P(Ts < T) = P(My > B)
= P(Yr >y)
=1-P(Yr <y)
=1-(PWr <y)—P(Wr < —y))
=1-PWr<y)+1—-PWpr>—y)
=2—-P(Wr <y)— P(-Wr <y)
=2—-P(Wr <y)—P(Wr <y)

1o (3)
()

This completes the proof. n
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Chapter 4

Picking-off risk under the Skellam
process

4.1 Construction and general properties

The Skellam process is in a certain precise way a discrete counterpart to the Brownian motion.
It is therefore a natural starting point when we want to go from the Brownian motion to a
process that takes values in a countable set.

Let (Q, FN F, P) be a complete filtered probability space, let (IN;7) and (N, ) be two F-adapted
independent Poisson processes with rates AT and A~. Definition and basic properties of the
Poisson process are collected in Appendix A.2.

Let 2o € N be given. The Skellam process evolves as the the difference between the two Poisson

processes:
Sy = N;" — N; + xg (4.1)

We shall for simplicity set 2o = 0 in the remainder of this chapter.
Proposition 11. The Skellam process is an F-martingale if and only if \T = X\~
Proof. Integrability follows from observing that for any given t, we have
E[|S] <E[N] +E[N/]
=M\ + A )t <0
The process is adapted since both (N;7) and (N;) are F-adapted.

The martingale property follows from
E[S; | Fu] = E[N," | Fu] - E[N, | F]
= (AT =)t
We see that the martingale property holds if and only if AT = \~. m

The Skellam process is particularly tractable in our application because a double-jump is a zero
probability event, a property inherited from the constituent Poisson processes. This is a nice
property because the process can only reach a given m € N if it has already taken every integer
value 1,2,...,m — 1 for a positive amount of time, which implies that the stopped maximum
process (almost surely) never exceeds B, P(Mrar, > B) = 0. If, on the other hand, there was
a positive probability of a double-jump occurring, we could not be sure that the process didn’t
jump from say B — 1 directly to B 4+ 1. We shall come back to the issue of double-jumps in the
next chapter.
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Figure 4.1: Skellam process with AT = A\~ viewed at different time scales. The process is a
discrete-valued countpart to the Brownian motion, and the random variable Y;//t converges to

a N(0,1).
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Lemma 12. Under the assumptions of this chapter, the following equality holds:
P(MT/\TB > B) =0

Proof. We prove only the case where 0 < B. The proof of the case B < 0 follows the same
arguments.

Define the set N and note from the definition of the hitting time 75 and knockout time 7} that
we have

N = {MT/\TB > B}
= {1} <Ts}
={S, # B, all k <T}N{S, > B, some k < T}

Hence there must be a "double jump” for at least some k < T,
N C{Ur — Up- > 2}

But by the properties of the Poisson process {Uy — Uy~ > 2, t > 0} is a null set, hence P(N) =
0. [l

Lemma 13. The Skellam process is a Levy process.

Proof. We can write the Skellam process as the sum of two independent compound Poisson
processes:

Nt N
Sp=> 1+ (-1)
n=1 n=1

The compound Poisson process is a Levy process, and the sum of two independent Levy processes
is again a Levy process (Cont and Tankov, 2004, Theorem 4.1). O]

Lemma 14. Fix t > 0 and suppose Sy = 0. The probability mass function for the random
variable Sy is given by

(k) = et A7) (E)W I (Qt\/ﬁ)
p =€ \— |%|

Where Ii(x) is the modified Bessel function of the first kind

Ii(z) = (%”“) i nIl ((l}f?;r 1)

n=0

Proof. See Barndorff-Nielsen et al. (2012). O

We shall for the remainder for this chapter assume that our Skellam process is a martingale,
meaning that AT = A~ (cf. Proposition 11). Associated with our Skellam martingale we define
the ”joint intensity” A\ by

1 1
A= AT = oA
2 2

We note that the Skellam process is also known as a simple birth and death-process (Grim-
mett and Stirzaker, 2001, pg. 270)
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4.2 Minimum resting time

Take as given a quote (K,T) € N x Ry, and let (S;) be a Skellam martingale (meaning that
AT =),

Proposition 15. The optimal stopping time for the quote with a minimum resting time (problem
1.1)ist =T.
Proof. The claim follows from Propositions 1 and 11 and Lemma 12. O

Proposition 16. The value of the quote, problem (1.1), is given by:

sup {E [¢( e Z k)1 (AT)] (4.2)
TeT keZ
Proof. The claim follows by inserting A* = A~ and A := A" in Lemma 14. O

Figure 4.2: Picking-off risk as function of minimum resting time (Skellam process). (The buy
quote has been reflected on the x-axis for illustration purpose)
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4.3 Last look

Take as given a last-look sell quote (K, T, B) € NxR, xN, and let (S;) be a Skellam martingale

Proposition 17. The optimal stopping time for the quote with a last look-feature (problem 1.2)
s =T NTpg.

Proof. The claim follows from Propositions 2 and 11 and Lemma 12. O]

Proposition 18. 3¢
The probability mass function of the stopped process Star, s given by

0 ife > B
P(Spz, =) = { P(Np = B) fr=B
P(Sp=2)—P(Sr=2B—1z) ifz<B
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Proof. The case x > B follows from noting that P(Mr, > B) = 0 (Lemma 12). Therefore
P(ST/\TB > B) = 0.

For the case x < B we first note that

P<ST/\TB :QJ) :P<ST:;U,MT<B)
:P(ST:ZL’)—P(ST:I',MTZB)

Where the second equality follows from the law of total probability.

We shall derive an adapation of the reflection principle to the Skellam process in order to turn
the expression P(Sr = x, My > B) into one not involving M.

Since P(Mr, > B) = 0 we can conclude that Sy, = B almost surely. Recall that the Skellam
process is a Levy process. Moreover, the assumption A™ = A~ implies that the process is
symmetric, meaning that for any ¢,

S, =5,
Using these properties we deduce that

P(Spr=xz,Mr>B)=P(Sr=2,Tp <T)
(Sp=a | Ty < T)P(Ty < T)

(St —Sr, =2 —B| T <T)P(Tp <T)
(Sr-1, =2 =B |Tp <T)P(Tp <T)
(=S, =2 — B | Ty < TYP(Tjs < T)
(Spzy = B—1 | Ty < T)P(Ty < T
(
(
(
(

~—

Sp—Sp, =B —x|Ts <T)P(Ts <T)
Sr=2B—a| Ty <T)P(Ty <T)
Sr=2B —x,Mr > B)

Sy =2B —x)

I
“U’“U"U“U"U“U“U"U“U

The last equality use that since < B we have 2B — x > B, and thus on the set {S; > 2B — =}
we have M; > B almost surely. Hence, we have

P(Stary =) = P(Sy =) — P(Sr = 2B — 1)
For the case x = B we first note that
P(Star, =) = P(Mr = B)
We shall now use another adaptation of the reflection principle to prove that

Mt Nt, any t > 0
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Following the same steps as in the previous case, we have that

P(Mr < B) = P(Sr < B,Mr < B)
:P(STSB)—P(STSB,MT>B)

|
S

(Sy < B) — P(Sy > 2B — z, My > B)
— P(Sy < B) — P(Sy > 2B — )
= P(Sr < B)— P(S; > 2B — B)
= P(Sr < B) — P(Sr > B)
= P(5r < B) — P(=5r = B)
= P(Sr < B) = P(5r < —B)
= P(|Sr] < B)
= P(|Ur + Dr| < B)
= P(Ny < B)

Equality of laws implies that P(Mr = B) = P(Nyr = B).
O

Proposition 19. Let I(z) be the modified Bessel function of the first kind. The value of (1.2)
18 given by

B!
z<B

supE (Lo <o (Sr)] = e <Z¢ [1/0T) - I|2Bx|(>\T)}+ZZJ(B)(>\T)B>

Proof. We know from Proposition 17 that the optimal stopping time is T' A Tz. Hence, we get

SlelgE [1{MT§B}¢(ST)} =K [¢(STATB))}

= Z Y(x)P(Stary = )
TEZ
The claim now follows from applying the density of the stopped process (Lemma 18). O

We can also compute the probability that the last look comes into effect, as for the case when
the price follows a Brownian motion.

Proposition 20. The probability of the last look coming into effect, P(Tg < T), is given by

P(Ty<T)=1—-P(Ny <B—1)

B-1
AT
=1— —\T E (
’ n=0 n'
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Proof. We have

And the proof is complete.

= P(Myr > B)
=1-P(My <
—1—P(Ny <
B-1
=1—e?7T
n=0
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Chapter 5

Picking-off risk under an integer-valued
Levy process

5.1 Construction and general properties

The Skellam process is unrealistic in that it can only change by one tick in each increment. We
remedy this shortcoming here, as we construct a class of integer-valued Levy processes better
suited to our purpose. We show that the Skellam process is a special case of this class. As
an example of an integer-valued Levy process we shall use the ANB Levy process proposed by
Barndorff-Nielsen et al. (2012).

Let (Q, F,F, P) be a filtered probability space, and let (N,") and (N; ) be two independent F-
adapted Poisson processes with intensities AT and A™. Let (uy,)nen and (d,)nen) be two sequences
of iid random variables taking values in N, with (u,), (d,), (N;") and (N;") all independent from
each other. We also require that w, and d, are Fr, -measurable for all n, and assume that
E[u1] < 0o and E[d;] < o0,

Define the up and down processes as

U, .= Zun (5.1)

Dy:=> d, (5.2)

We define the integer-valued Levy price process (S;) as
St = Ut — Dt (53)

The Skellam process is clearly the particular instance of the general process in (5.3) attained
with u, = d, = 1 for all n. The Skellam process was shown to be a a martingale when the
intensities of the up- and down-tick processes were the same (Proposition 11). There was an
overlap between the notion of being a martingale and symmetry of distribution. The general
class of integer-valued Levy process allows for other situations as well; one can for example
have an asymmetric martingale price process which exhibits frequent small downward jumps
and rare large upward jumps, in which the relative frequency of the two jumps adjust to ensure
martingality (see Figure 5.1 for an example).

35



Proposition 21. ¢

The process (S;) is an F-martingale if and only if
At Eldy]
A Eluy

Proof. Integrability follows from applying Wald’s equation (see Proposition 48 in the Appendix):

E[|S:|] = E[U:] + E[D]
= (A\TE[us] + A\"E[d4])t < oo

The process (S;) is F-adapted because (N;"), (N;), (u,) and (d,,) are all assumed F-adapted.

For the martingale property, observe that

E[S; | ;] = E[U; — D, | F]
=U; + (t — ))ANE[wy] — D; — (t — j)N"E[d,]
=S5+ (t— ) ANE[w] — N E[d4])

We see that the martingale property holds if and only if
MNE[u] — A E[dy] =0

Which is equivalent to the stated claim.
m

Example. Barndorff-Nielsen et al. (2012) propose a model that they call the A NB Levy
process. This process is a special case of our general class of integer-valued Levy processes.

The process A NB is constructed by setting u; and d; to be logarithmically distributed random
variables. Recall that a random variable X has the logarithmic distribution with parameter
q € (0,1) if X has a discrete distribution on Ny with probability density function f given by

n

1 q
f(n) = —In(l—¢q) n
n=0,1,2,...

We shall later use this process for our numerical applications.

5.2 Minimum resting time
Proposition 1 applies in the case when (S;) is an integer-valued Levy martingale.
If we specify a particular process, we may or may not be able to write down an expression for

the picking off-risk E[¢)(S7)], depending on whether the distribution of the random variable Sr
is known. The ANB Levy process in our earlier example is one such case.
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Figure 5.1: ANB, an integer valued Levy process with multi-tick increments. Parameters p =~
0.2125,¢q%7 = .9,¢~ = .1. These parameter values result in an asymmetric martingale.

5.3 Last look

Throughout this section we take as given a last-look sell quote, meaning a triplet (K, 7T, B) €
N x R, x N satisfying
S() <K <B

The optimal stopping of a last look-quote becomes a much more subtle affair under a general
integer-valued Levy jump process than in the other cases we have studied in this thesis. The
reason is that now we have a positive probability of the price jumping past the barrier, in other

words we have
P(Myppr, > B) >0

The problem of finding the optimal stopping time is in general a finite horizon, continuous time
stopping problem in a countable state space. When the underlying stochastic process is a Levy
type, it is possible to show that the optimal stopping rule takes the form of a stopping boundary,
meaning that one should stop at the first time the process cross the boundary and enters into
the stopping set (Oksendal, 2013). In general the stopping set will depend on time, meaning
whether a point x in the sample space is in the stopping set depends on the amount of time
remaining (7" —t). If, however, the quote never expires (1" = 00), it turns out that the stopping
region is time-invariant, greatly simplifying the problem.! For this reason we shall investigate
the infinite horizon-case to get better acquainted with our problem. We shall thereafter use the
ideas from the infinite-horizon solution to develop an approximation for the finite-horizon case.

5.3.1 Extending the state space

To attain computational results we shall use techniques that exploits the markovianity of Levy
processes. General properties and definitions regarding Markov processes are collected in Ap-
pendix A.2.6. We note that the techniques used in this section could equally well be used for

! The situation is analogous to the optimal execution boundary of American put options. The explicit form
of the boundary is not known in a continuous-time finite-horizon framework, while it is constant and relatively
easy to obtain in an infinite horizon framework.
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the Brownian motion and the Skellam process

Recall that we are working with a filtered probability space (2, F,F, P) and an integer-valued
Levy price process (S;) adapted to the filtration F.

We now face the issue that the payoff from the last look-quote (Definition 11) is path-dependent,
which means that the process (11a,<py¥(St), t > 0) is non-markovian. We solve this issue by
introducing the graveyard state {{}.

First we define the measurable space (F,€) b
E:=7U{t}, £:=2%
We modify the payoff function to reflect the enlarged state space,

v({t}) =0

We define the process (S;) taking values in E by

S, S; 1ft<73r
{T} lft > TT

We see that {1t} is an absorbing state for ().

Lemma 22. The process (S;) is F-adapted.

Proof. (%) We need to show that the random variable S; : @ — F is a (F;, £)-measurable
function for all ¢ > 0. Take any ¢ > 0. The random variable S, is said to be (F, €)-measurable if
for all A € &, we have S;1(A) € F,. Since (S;) is adapted to F we know that S, is F;-measurable,
and so we only have to check the isolated point {f}. But clearly

ST ({tY) ={we Q| M, > B} C F,
We conclude that S; is Fy-measurable for any arbitrary ¢ > 0, and hence adapted to the filtration
F. m
Proposition 23. The process (S;) has the Markov property.

Proof. (¥¢) We shall prove that for all 0 < s < t and any bounded Borel-measurable function
f: E— R, we have ) o

E[f(st) | fu} = E[f(5t> | SU]
Where the notation E[- | X] is understood to mean E[- | o(X)]. Note that the expectations
involved are well-defined by our standing assumptions from chapter 2. We have that

E[f(5) | Ful = EIf(S)Lis, ) | Ful +EU ()15, | Fi)
) (+%)

For the term (x) we have

ELF(S) 15, | F) = (ELF (S0 | Ful + ELF (S0 500y | Ful) Lonn
= (B[ oup, o 551 | FlF (1) + ELF S Lo, 28y | Fal) Tpasacy
= (B[ foupyep 5,55 | SulF(H) +ELF(S) )
= (Bl oun, 5551 | S +ELFS) Lsun,cing 5,0 | ) Lansmy
= (B up, oy 5581 | Sl f (D) +ELF(S) )
= E[f(5) 5,211 | 54

1{Stue[u,t] SjSB} | Su]

[f t 1{Stue[u,t] S;<B} | SU]
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For the term (xx) we have

]E[f(ﬁt)l{gu:ﬂ | Fu] = f(T)E[l{S*u:T} | Ful
f(T)E[l{Su:T} | gu]
E[f(gt)l{gu:” | Su]

Combining (%) and (*x*) gives

E[f(S0) | Ful = BIF(S) Vs, 4y | Sl + ELF(S) (s, | Su]
=E[f(S5)) | 5]

And the proof is complete. n

j

5.3.2 Infinite horizon

In this section we will see that the stopping boundary is constant when T = oo. The case of
infinite horizon is not the most meaningful in light of our application, but we shall use the ideas
from this section to construct an approximation procedure to the finite-horizon case.

The assumption that 7" = oo will allow us to concentrate only on the jump times of the process,
essentially transforming our continuous-time problem into one in discrete-time. Discrete-time
stopping problems are in some regards much easier to handle, and we derive a recursive solution
that allows an iterative computational algorithm.

We denote by 7,° the collection of stopping times taking values in [t, s), and by 7; the collection
of stopping times larger than ¢ but finite almost surely. For consistency with our earlier notation
we write 7 for the collection 7.

Suppressing the fixed quote (K, T, B) from our notation, we define the conditional value
function v : £ — R as

v(z) = sup |P(S;) | Sy =«
TET

We regain the (unconditional) value function V' defined in (1.2) from v(0) = V.

Since (5,) is a (strong) Markov process we can express the expected continuation value at time
t through the conditional value function:

sup E[y(S;) | Fi] = sup E[(S,) | S, = «]

TET: TET:

= supE[Y(S,) | So = ]
TeT

=v(x)

If 7* is an optimal stopping time, in the sense that it attains the supremum of (1.2), it must at
time 7* be better to stop than to continue,

¢(§T*) > Se%'p E[w<§7) ‘ -FT*]
= v(S;-)

Hence we define the infinite horizon stopping region as

Dy = {(w,1) € E xRy | 9(5;) > 0(5:)}
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An important feature of the infinite-horizon problem is that the stopping region is time-invariant;
if it is optimal to stop at the time-space pair (¢, x) then it is also optimal to stop at the time-
space pair (s, z):

Lemma 24. ¢
The stopping region is constant:
Dt - Du

for any t,u > 0.

Proof. Because the increments of a Levy process are stationary, we have

sup E[1(S,) | S; = 2] = sup E[¢)(S,) | S, = ]

TET: TE€Tu

From the definition of the stopping region,

D, ={x € Z| ¢(x) > sup E[y(S;) | S, = a]}

TET:

= {z e Z|Y(x) > sup E[p(S;) | S, = ]}

T€Tu

=D,

Definition 13. We say that n > 0 is a jump time of the process (S;) if
|Sp — Sp=| >0
We denote the set of jump times by 7,
J={n>0:|S,—S,-|>0}

Since (.5;) is a Levy process, the set of jump times is a countable set. For notational convenience
we relabel the jump times of (S;) as 1,2,3,.... We shall in this section only use the subscript n
when referring to a jump time.

Define the process X, : N x 2 — E by
X, = 5n, neJ

The process (S, )neys is called the discrete-time Markov chain embedded in (S;). Similarly, (X5,)
is the discrete-time Markov chain embedded in (S;). We shall therefore use a notation standard
in the study of such chains,

px,y) =PXpp1=y| X, =2)

The next proposition tells us that we only have to consider the jump times when looking for the
first optimal stopping time.

Proposition 25. 5
Under the assumptions of this section, assume there exists a stopping time for (1.2) that is finite
with probability one. Then, the first optimal stopping time is a jump time of (St).
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Proof. Assume 7 is optimal for (1.2) and finite with probability one. For any given w € 2 there
exists a jump time n < 7 such that S, = S,. Since the value of S, is in the stopping region, so
is the value of S, by Lemma 24. Hence n is also an optimal stopping time. Since n < 7 and 7
was an arbitrary optimal stopping time, the first optimal stopping time is a jump time. O]

Proposition 26. For any measurable function f : Z — R define the functional f — Uf by

= p(z,9)f(y)

YEZ
= B, [f (X))
Under the assumptions of this section the following holds:

i) The conditional value function v(x) is the least superharmonic majorant of the payoff
function ¢ (cf. Definition (34) in the appendiz)

ii) v = max{y, Uv}
ii1) v = lim vy, where
k—o00

Vo Z:w

Ugs1 = max(vg, Uvg), k>0

Proof. We adapt the proof of Geiger (n.d.).
i) We clearly have v > 1. To show that v is superharmonic let 7; be a sequence of finite stopping
times such that for every x € Z

E.[¢(X)] Tv(z) asj— oo

We condition on the first transition, use the strong Markov property and the monotone conver-
gence theorem to get

U(iL‘) 2 Ex[w(XlJrTj)]

= Z p(l’, y)Ey [¢<XTJ )]

YEL

— Y _plz,y)o(y) asj— oo
YEL

= (Uv)(2)

To show that v is the least superharmonic majorant, suppose that another function h satisfy
h > and h > Uh. Then, for every x € Z and every finite stopping time 7,

Where the first inequality follows from the stopping theorem for supermartingales, c¢f. Lemma
58 in the appendix. We take the supremum over all stopping times that are almost surely finite
to get h > v.

41



i11) To show that the sequence vy converge to v we first define

v := lim v
k—o0

We will show that ¢ is the least superharmonic majorant of v, and so iii) will follow from 7).

By the monotone convergence theorem and the definition of v we have

Uv = lim Uy, < lim vy =0
k—o0 n—oo

Now suppose that another function h has the properties that h > ¢ and h > Uh. We will use
induction to show that
h Z Vg, k Z 0

For k = 0 the claim follows directly from the definition of v,. Now suppose the claim holds for
k. Then,

which implies
Vg1 := max{vg, Uvg} < h

ii1) We will show by induction that
Dhar = max(sp, )

From 4i) we then know that the claim holds when we let k& go to infinity.

By definition we have that

vy := max{vy, Uvp}

= max{y, Uvy}
Suppose the claim holds for k. Then,

Vi1 = max{vk, ka}
= max{¢, U’Uk_l, U”Uk}
= max{¢, Uvy}

Which completes the proof. O]

Proposition 26 has the intuitive interpretation that we stop whenever the payoft from stopping
equals the conditional expected value from continuing. Under a suitable regularity condition,
that stopping time turns out to be the smallest optimal stopping time, justifying our earlier
definition of the stopping region.

Corollary 27. Under the assumptions of this section, the stopping time
T i=inf{t >0|v=1}
is the smallest optimal stopping time for (1.2).

We note that for the class of integer-valued Levy processes considered in this chapter we can
readily compute E,[1)(X7)] by conditioning on the direction of the first jump:

E.[p(X0)] = pE[Y(z + u)] + (1 = p)E[Y(z —dy)], =< B

This expression is useful for numerical implementation of our solution algorithm.

42



5.3.3 Finite horizon

We solved the optimal stopping with an infinite time horizon by restricting our attention only to
the jump times of the price process. We used arguments where the discrete-time Markov chain
were allowed to take an unlimited number of transitions before reaching the stopping region.
With a finite time horizon these arguments no longer work.

Instead we will settle for an approximation; we discretize the time span [0, 7] into a finite num-
ber of intervals, and solve for the optimal stopping time provided that the decision maker only
considers stopping at the endpoint of each interval. This discrete-time decision problem can be
solved via backward induction.

Let G be a set of N equally spaced points that partitions [0, 77,
T T T
1—,2— ,N—
¢= {0 N "N N }
We define the discrete-time process X,, : G x Q — F as

=S 1, n=012...N

2

Note that the subscript n now refers to the deterministic points in our discretization grid G, not
the random jump times it did in the previous section.

Intuitively, as long as the price process (S;) has not crossed the boundary B, the process (X,,)
takes the same value as (S;) at the points n € G. When (S;) has crossed the boundary for the
first time, the process (X,,) enters the absorbing graveyard state.

Lemma 28. The process (X,,) is a discrete-time Markov process

Proof. Since (5}) is a Markov process, and U(Sl%, 52%, ..., S7) C F, we have
P(Xn€A|Xn,1):P(Sn%€A|S %)

P
P

(X €A|Xn 1,...,X0)
Which concludes the proof. O

Let M be the collection of stopping times almost surely finite taking values in G.

Define the discrete time finite-horizon optimal stopping problem as

sup K[ (Xo)] (5.4)
oceEM

We note that in (5.4) the indicator function 1y, <py is absent, reason of course being that the
knockout boundary is now baked into the definition of (X,).

Define the Bellman equations as
un () = () (5.5)

Up () := max{y(x pryvnH y)}, n=01,...,N—1 (5.6)

yeE
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Lemma 29. The process

18 a supermartingale.

Proof. We have

E[Zn-H | Fn] = E[Zn-i-l | Xn]
= E[Un+1(Xn+1> ’ Xn]
< v (Xn)
=7,

Which proves the claim. O]
Proposition 30. Under the assumptions of this section the stopping time

o =T Ninf{n € G | Y(X,) =v,}
s optimal for 5.4.

Proof. Let the process (Z,,) be as defined in Lemma 24. From that result and from the optional
stopping-theorem for supermartingales, we have that, for any stopping time o € M,

E[Z,] < E[Zy] = vo(x)
We use this and the definition of v,, to conclude that for any n and any stopping time o € M,
vo(x) = E[Z,] > E[¢(Xo)]
We shall show that inequality holds with equality for ¢*, which then proves our claim.

For this purpose we consider, for n = 0,1,..., N — 1, the stopping time ¢* A (n 4+ 1) and
the stopped process Zy«s(n41). Note that the random variables 1;,<,y and 1gs>,) are both
F,-measurable. We can therefore write

E[Zcr*/\(nJrl) ’ Xn] = ]E[l{cr*gn}za* + 1{o*>n}Z0'* ‘ Xn]
= ]-{o*gn}Za* + E[1{0*>n}Za* ‘ Xn]
= ]-{o*gn}Za* + E[1{0*>n}vn ‘ Xn]

= ]-{o*gn}Za* + 1{0*>n}vn

= Zo*pn
Therefore,
v0(Xo) = E[Zy] = E[Zs:no|E[Zgip1] = ... = E[Zssan]| = E[Z,+]
= E[vox (Xon)]
= E[p(X7)]
Which concludes the proof. O]
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Example. (%) We illustrate the application of the Bellman equations with a numerical
algorithm and a numerical solution.

To use the Bellman equations we have to specify transition probabilities between discrete time
points. Recall that the probability that the Poisson process jumps twice in any time interval
vanish as the length of the interval goes to zero (see Appendix A.2). Moreover, the probability
of a Levy process making a double jump is also zero (Cont and Tankov, 2004, Proposition
5.3), which means that the constituent Poisson processes of (S;) almost surely does not jump
simultaneously. Therefore we approximate the transition probabilities for (X,,) by:

Pluy=y—z)£XT ify>u
PXpp=y|Xp=2)=q Pldi=2—y)gA~ ify<az
1—(AT+A)% ify=uxa

Where as before A and A\~ are the intensities of the respective Poisson processes for up- and
downticks, u; and d; are random variables signifying the size of upward and downward jumps
respectively, and % is the length of the time intervals in our discretization grid.

To illustrate an actual execution boundary we take u; and d; to be logarithmically distributed
random variables, implying that (S;) is the ANB Levy process described in our earlier example.
Moreover we set the parameter values such that (S;) is a martingale, as prescribed by Proposition
21. The details of the computational algorithm and the numerical parameter values are in
Appendix C. Figure 5.2 shows the resulting execution boundary,

D, :={(z,n) € Ex G| ¢¥(x) = v,(x)]}

It is interesting to note that the boundary is decreasing as we near the expiry time 7.

—— Knockout boundary
=== Quoted price
109 4 —— Execution boundary

108 1
107 1
106 1

105 A |—
104
103
102
101

100 f === === === m e
99 T T T T T T

110

Monetary units

Time

Figure 5.2: Example of an optimal execution boundary.
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Chapter 6

Conclusions and future work

In this thesis we build a mathematical model suited for analysis of an important practical de-
cision problem. We study our model and its solution under increasingly complex and realistic
random dynamics.

We start out by looking at the case where randomness comes from a Brownian motion. The
Brownian motion is a continuous process and therefore does not fit very well with the stylized
fact we're trying to model, but it is nonetheless an important benchmark case. The Brownian
case approximates the results we get when we use a very simple ”tick-valued” random process,
the Skellam process. This is not surprising, since the Skellam process in a sense is a discrete
counterpart to the Brownian motion. In both cases we solve our two optimal stopping prob-
lems using elementary arguments, with martingality, convexity and the properties of conditional
expectations as our fundamental building blocks. We consider the explicit, intuitive and con-
structive solutions to be a great advantage of these simpler models.

When we have a general integer-valued Levy process in our model, the possibility of large jumps
fundamentally change the nature of our problem and its solution. We resort the method of
dynamic programming to tackle the problem. This is a general method that could equally well
be applied to the Brownian and Skellam cases, but the method does require an approximation
procedure and does not yield explicit results.

There is an alternative approach to solving continuous-time optimal stopping problems, namely
by the so-called wvariational approach and the associated free boundary-problem. 1 include a
heuristic account of this approach and how it will look in the context of an integer-valued Levy
process as an afterword.

6.0.1 Afterword: The variational inequalities

In this thesis we have used iterative procedures based on the general theory of dynamic program-
ming to solve the last look-problem under a general integer-valued Levy process. An alternative
approach is to use the variational inequalities for optimal stopping problems, which we describe
here. This section is largely heuristic, and the work is included in anticipation of future research.
The exposition is by no means meant to be complete or rigorous.

We first state the free-boundary problem in its general form, based on Peskir and Shiryaev

(2006). Assume (X;) is a strong Markov process taking values in the measurable space E.
Given a measurable function G : E — R satisfying certain regularity conditions, called the
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reward function, the general optimal stopping problem has the form

V(@) = sup E,[G (X))

Where the supremum is taken over all stopping times (belonging to a set of admissable stopping
times), and Xy =  with « € E. It can be shown that the optimal stopping problem is equivalent
to finding the smallest superharmonic function V : E — R which dominates the reward function
on E (see Appendix A.1 for more details). Moreover, when we utilize the optimal stopping
time 7%, the stopped value process (V(Xia+),t > 0) is a martingale (Peskir and Shiryaev,
2006, Theorem 2.4). The first entry time into the stopping set D = {\7 = (G} is optimal, and
C = {V > G} is the continuation set. From this one can deduce that V and C solve the
free-boundary problem,

A

IN

0
0

< <5
Y

Where A is the infinitesimal generator of (X;) (cf. Appendix B Definition B.1). After invoking
certain sufficient conditions (see Peskir and Shiryaev (2006, chapter 1) for details) and identifying
V =V one can deduce that

AV =0 inC
(6.1)
Vip =Gl|p

It should be noted that a solution to this system consists of both a function V' and an unknown
stopping region D.

A heuristic argument for the variational formulation above goes as follows. If we are in the
continuation region (V' > @), then the stopped value process (V(Xinr+),t > 0) is a martingale.
Combining this fact with Dynkin’s formula (Appendix B Theorem B.3) we get that AV =0. A
very loose interpretation of this condition is that since (X;) is a Markov process, it has a transi-
tion operator satisfying the semigroup property (Appendix A.2.6). The infinitesimal generator
can be understood loosely as a ”derivative” of this transition operator, and hence the condition
AV =0 is similar to a first-order optimality condition. The second condition, V|p= G|p, comes
from observing that in the stopping region the optimal value is just the payoff from stopping.

Our class of integer-valued Levy processes are based on the compound Poisson process. For any
smooth function f with compact support, the infinitesimal generator of a compound Poisson
process is given by (Applebaum, 2009, Example 3.3.7)

(Af)(x) = / F@ty) — f@)v(dy)

Where v is the Levy measure (Appendix A.2) of the process, and by convention v({0}) = 0. In
the case where F is a countable set, the generator reduce to

(Af)(@) = A [anf (@ +n) — f(2)]

nek

In the finite-horizon case the free-boundary problem (6.1) would contain a time derivative term
0/0t. In the infinite horizon case this term is not present however, simplifying matters further
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Figure 6.1: Candidate value functions V for different possible boundaries g. The quote has
B =100, K = 80, and Levy measure v with support on {—3, —2 —1,+1,42,+3}. More details
in Appendix C.

(mirroring the fact that the stopping set is time-invariant, cf. Lemma 24). If we set ¢ := inf{D},
the free-boundary problem (6.1) in the infinite-horizon case becomes a linear homogeneous dif-
ference equation with undetermined boundary conditions 1 (n):

(6.2)
Vi = ZakVnJrk n <q
keE

Where ap = 0. Based on our (heuristic) treatment we conjecture that a solution to the opti-
mal stopping problem (1.2) under an integer-levy price process and an infinite time-horizon is
a boundary ¢ € F and a sequence (V},),ep solving (6.2). Figure 6.1 shows an example where
candidate value functions (V)@ has been computed for different possible values of the boundary
g. The computational algorithm use a fixed-point iteration procedure to compute (V)(i), details
of which are documented in Appendix C.

The variational approach taken here differs from iterative approach of subsection 5.3.2 in that
for the latter we iterated in (discrete) time using the transition probabilities of the process. In
the variational approach, on the other hand, we sum infinitesimal transition probabilities over
points in the (discrete) state space.
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Appendix A

Literature Review

A.1 American and European Barrier Options

In this section we review several important results on American options, and in particular the
optimal execution boundary. The interested reader can thereby see how our results on financial
quotes relates to earlier literature on American options. We shall also review results on Barrier
options, which relates to last look-quotes. We only review European Barrier options here.

We take as given a filtered probability space (€2, F,F, Q) satisfying the usual conditions and a
random process (S;). The filtration F is the natural filtration associated with (S;). When we
later write E(X) for some random variable X, it should be understood that the expectation
operator works under the probability measure Q. We assume a complete financial market in
the sense of Black and Scholes (1973). For brevity we omit the details of the market model, see
Karatzas and Shreve (1998) for more on this.

Let the risk-free rate be constant and equal to r. Let the dynamics of the fair price S; under
the measure QQ be given by

dSt = St('r'dt + Uth) (Al)

S0:$ER+

Let T be the collection of stopping times taking values in [0, 7], and let 1) be a non-negative
convex deterministic function. Define the function V(T K') by

V(T, K; Sy, r) =supEle ""(r, S,)] (A.2)
TET
The function V is referred to as the value of an American option with payoff ¢» and expiry T'. It
can be shown that (A.2) is the no-arbitrage price of the American option in a complete market,
hence the use of the word value (see Pascucci (2011) for details).

A stopping time 7* that attains the supremum in (A.2) is called an optimal execution strategy.
What can be said about the function V' and the optimal strategy 7* when S; has the dynamics
described by (A.1)? To answer this question we will need to introduce some general results on
optimal stopping.
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A.1.1 Elements of optimal stopping

Two approaches to solving optimal stopping problems have been developed. The first is Snell’s
envelope (Snell, 1952), and the second is Dynkin’s superharmonic characterization of the value
function (Dynkin, 1963). We will base our discussion on Dynkin’s characterization, as laid out
in Oksendal (2013), but will also clarify the connection to Snell’s envelope.

The general problem (A.2) is called inhomogeneous in time, because time enters as an argument
in the reward function ¢. We will however first examine the time homogeneous problem, and
later see that the inhomogeneous one can be reduced to this simpler case.

A basic concept in the solution of (A.2) is superharmonic functions:

Definition 14. A lower semicontinuous measurable function f : R"™ — [0,00] is said to be
superharmonic wrt. X, if

f(x) =2 E, [f(X7)]

Let A be the characteristic operator of f (Appendix B). It follows from Dynkin’s formula (Ap-
pendix B) that if f € C2(R") then f is superharmonic wrt. X; if and only if

Af <0

There is a relation between superharmonic functions and supermartingales (indeed, this relation
is where the name supermartingale comes from):

Lemma 31. If X, is a Markov process and f is a superharmonic function, the process f(X;) is
a supermartingale wrt. the o-algebras generated by X;.

Proof. For t > s we have

E.[f(X: | Fs] = Ex.[f(Xi—s)] (the Markov property)

< f(Xs)

Since f is a measurable function the process & := f(X;) is measurable wrt. to the o-algebra
generated by X;. O]

Definition 15. Let h be a real measurable function on R™, and f be a superharmonic function.
If f > h we say that f is a superharmonic majorant of h.

Let F}, be the collection of all superharmonic majorants of h. The function

h(z) = inf f(x)

fEF
is called the least superharmonic majorant of h.

The function A is in fact superharmonic, see Oksendal (2013, lemma 10.1.3 ¢) ).

We are now ready to state Dynkin’s superharmonic characterization of the value function G(x):

Theorem 32. Let

G(x) = sup E® [4(S,)]

where (S;) is a strong Markov process.
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Define the continuation region C

C={z|Gx) >y(x)}

the stopping region D
D=cC"

and the stopping time Tp as the first passage time into the stopping region
mp =inf{t > 0| S; € D}
Suppose that the stopping time 7 is optimal. Then,
i) The value function G is the least superharmonic magjorant for the reward function 1.
ii) Tp < 7 Q%-almost surely
iii) The stopping time Tp is optimal.

iv) The process V(Siarp,) is a martingale.

The time-inhomogeneous case

When the time-horizon is infinite and there is no discounting, the optimal stopping-problem is
homogeneous in time. When there is a fixed time horizon T this is no longer the case. One
can however reduce this time-inhomogeneous case to the homogeneous one by increasing the
dimensionality of the problem.

Let (X;) be the random process to be stopped, and let [0, 7] be the time available. One can
introduce the two-dimensional process (X;, T — t) and proceed with the same arguments as for
the time-homogeneous case. More details and a worked example can be found in Oksendal
(2013) chapter 10.

A.1.2 Application of optimal stopping to American Options

Proposition 33. Let f(x) denote the payoff of the American option, meaning f(x) = (r — K)4
and f(z) = (K — x)y for the call and put respectively, and let T be the set of all stopping times
taking values in [0,T]. The optimal value function V; is given by

Vi = (1, S) (A.3)
(A4
— supE (e—r(T—t)f(xe(r—UQ/2)(T—t)+a'(WT—Wt)> (A.5)
TET
Proof. (Lamberton and Lapeyre, 2011, chapter 4.4) ]

Proposition 34. The process
t
e Jo r(s,Xs)dsq)(t7 X't)

is the smallest martingale (Snell envelope) that dominates the process f(X;) at all times.
Proof. Lamberton and Lapeyre (2011, chapter 5.3) ]

There is a connection between optimal stopping and a set of variational inequalities. For the
American option-problem this connection is the following.
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Theorem 35. Assume that u is a reqular solution of the following system of partial differential
inequalities:

%—i—fhu—rugo foru>f
ou

(E—i—Atu—ru) (f —u) =

uw(T,z) = f(x)
Then . )

u(t, ) = O(t, x) = supE (e~ K 7eX px1))
TET

Proof. See for example Lamberton and Lapeyre (2011, chapter 5.4), Pascucci (2011) and Ok-
sendal (2013). O

A.1.3 Explicit formulae for American options

We have seen that the general optimal stopping problem can be rewritten in terms of a set of
variational inequalities, for which there exists numerical solution methods.

In this section, however, we will use other arguments to find explicit formulae for put and call
options.

The call option

Recall that the payoff to the holder of an American call option executed at time 7 with strike
K is (S; — K),. We are interested in the largest expected discounted payoff,

Vean(z) = supE, (e_TT(ST — K)+)
TET

Let Cg(So, T; K, o,7) be the Black-Scholes price of a European call option written at time zero
with maturity 7', strike K, volatility ¢ and risk-free rate r:

So . So
OE(S(),T, K, 0'7T) = S()N |:d1 <W,T):| — K@ TN [dQ <W,T):|

where

1 1
In(y) + =V o2u
Nz=rhad

dl(yau) = 9

da(y,u) = di(y, u) = Vou

and N denotes the standard Gaussian cumulative distribution:

N(z) = \/% /_x e Pdu

In what follows we hold the arguments (T, o, K, r) fixed, and so we suppress them in the notation
and write simply Cg(Sp).
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The following theorem tells us that the Black-Scholes price of a European call option in fact also
describes value of the American call.

Theorem 36. The value V,y; of the American call option is given by
Vcall(x) - CE(x)

Proof. (%)
We first observe that from risk-neutral pricing in the Black-Scholes market, we have

Cp(z) =E, (e ""(Sr — K)4)
Since T is the set of stopping times taking values in [0, 7], the following inequality is clear:

Vien(z) = supE, (e‘”(ST — [_()+)
TET

Z E:v (G_TT(ST - K)+)
= Cg(x)
The idea is now to show the reverse inequality using the martingale property of discounted

prices, the convexity of the max function and Jensen’s inequality. Consider the payoff from any
stopping time 7 bounded by T

We take expectations in the preceding inequality, to get
E(e(S, — K),) <E (e (Sr—K),)

and note that since the relation holds for any stopping time 7, it holds in particular for the
stopping time attaining the supremum:

Veen(z) = supE, (e7"7(S; — K)4)
TET

< Cp(z)
O

From the proof we also note that late stopping (7 = T) is always optimal for the call option
under the assumptions of this section *.

'If we introduce stock dividends or some other payoff from holding the option, late stopping would no longer
be optimal in general
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The put option

We recall that the payoff to the holder of an American put executed at time 7 is (K — S;).
We have seen that the American call option in the Black-Scholes model is worth the same as
the European call option. For the American put things are not this simple. However, in the
special case when the interest rate is zero, we will see that there is an equivalence between the
American and European put option.

Recall that we want to evaluate the function

Vout(z) = supE (e (K — S;)4)
T€T

Recall also that the Put-Call parity implicitly gives us the no arbitrage price Pgr(z) of the
European put option in terms of the European call option, the spot price and the strike:

Py(z) =2 — Cp(r) —e 'K

Theorem 37. Assume the risk-free rate is zero (r = 0). Then, the value of the American put
15 given by the no arbitrage price of an European put option,

Vout(z) = Pr(x)

Proof. (%)
The proof follows the same structure as for the call option. We consider the payoff from stopping
at some time 7 < T

(K_ST)+:(K_E(ST|‘FT))+
:(E(K_ST|FT))+
SE((K_ST)—f—‘fT)

Taking expectations, we get
E((K - 5.),) <E((K - $y).)

Since the relation holds for any stopping time 7 bounded by 7', it must hold for the supremum,
and hence
Vouy () < Pp(x)

The inequality Viuy(x) > Pg(x) follows from the following observation:

Viuy () = E‘QEE (K —S7)4)

> E((K = 57)4)

[]

Treating the risk-free as zero will be a very good approximation when the time to maturity is

very short. For example, if the continuously compounded yearly rate is 5%, the interest rate for
: : 005  _ -8

a minute 18 g555e= = 1.9 % 107°.

But can we still say something about the value of an American put if the risk-free rate is not

zero? The next theorem shows that we get an additional term stemming from the risk-free rate.
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Theorem 38. Write P4(x,t) for the no arbitrage price of an American put option at time t on
a stock with initial price x and time to maturity T, and Pg(x,0) for the corresponding European
option. Define the exercise boundary D, as the critical stock price below which the American
put should be exercised:

if St < Dy, then Py(z,t) = max[0, K — S;]

Zf St > Dt, then PA(I’,t) > maX[O, K - St]

We can decompose the American put price as follows:

Pa(z,0) = Pg(z,0) + rK /OT e "N (ln(Dt/x) ;\Z(l - T/2)> dt

Proof. See Carr et al. (1992) O

The equation in Theorem 38 is intuitive: the price of the American put is the price of the
European put, plus a premium for being able to exercise early. The early exercise premium is
the present value of the strike price times the probability that the put has been exercised at a
particular time, summed of all times (Chung et al., 2011).

Unfortunately, Theorem 38 does not provide us with an explicit formula, since the unknown
price P4 enters into the exercise boundary B;. The issue remains to determine this boundary.

If the time to maturity T is very short, Barles et al. (1995) provides an approximation of the
exercise boundary.

Proposition 39. If the time maturity is very short, a good approximation to the default boundary
18

Br-i~ K(1—o\/(T = )|In(T - t)])

Substituting the approximation of Br_; into Theorem 38 yields an explicit formula for the price
of the American put.

A.1.4 European barrier options

The no-arbitrage price of an European barrier option in a complete market is characterized by
the expected payoff (under the martingale measure)

Usell(x) = ]E:t [eiTsl{TBZT}(ST - K>+} (AG)

and
Ubuy(x) =E, [e_rsl{ngT} (K — ST)+] (A.7)

Where T denotes the first time the process (S;) hits the barrier B. The continuity of the
Brownian motion means that we know the value of the price process when it hits the barrier B:

This nice property allows many explicit results on hitting times, which we shall see plays an
important role in this section.

We will approach the problem by abstracting away from the specific form of the payoff function,
and look for ways to evaluate functionals of the general form

F(ZL‘, Ba ’QZ)) = G_TTEJU [1{TB>T}¢(ST)} (A8)
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Hence, in our application 1 (z) equals (z— K for the call option and (K —z), for the put option.

When the initial point Sj is above the barrier B, that is Sy > B, the problem is called a ”down-
and-out problem”, because the payoff is "knocked out” if the process goes down to B. We
will first consider down-and-out problem, and thereafter see that the same principles applies to
"up-and-out problems” where Sy < B.

The main idea is to transform the problem of evaluating F' into the evaluation of simpler func-
tionals F

F(z,0) = " E, [(Sr))] (A.9)
Where 19 defines a ”chopped off” payoff function,

_Jvly) y=B
y(y) o {0 y<B

Such a transformation is useful because the functional F' does not feature the hitting time T}p,
and therefore it can be evaluated with simpler methods: in fact we will find explicit formulae.
The mathematics that follows has been adapted from the chapters on barrier options in Bjork
(2004) and Jeanblanc et al. (2009).

The main theorem is the following:

Theorem 40 (Evaluation of down-and-out claims). Let F, F, ¢ and ¥ be as defined above.
Then, the following relation holds:

2

o2

Flo.Boo) = F (n.0) - (2) 7 F (50

Proof.
First we define the process X; as

Xt = 1In St

From Ito’s formula we find that the process X; is a Brownian motion with drift:

1
dXt = (7’ — 50'2) dt + O'th
=)
Xo=Inz

At the hitting time 75 we have already noted that S;, = B by the continuity of Brownian
motion and the exponential function. This implies that at time Tz we also have

Xr, =InB
Therefore, the following two stopping times are equal:
inf{t >0|S; =B} =inf{t > 0| X; =In B}
We use the notation X5 and SZ for the stopped processes:
X7P = Xoag,

B ._
ST L ST/\TB
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The density f of the random variable X* 5 is attained from the reflection principle (see Appendix
B and chapter 3), and equals

_A(lnz—In B)

fu) :¢<u,)\T+lnx,a\/T> —e 2 9 <u,)\T—ln:E+21nB,a\/T>
:¢<U,AT+lnx,aﬁ> — (E)ﬂ¢<u,AT+E,Uﬁ)
x x

Where A = (r — %02) and ¢(u, u, o) denotes the density of the normal distribution with mean
4 and variance o.

Observe that we can write

= [ wlenstudn
= /OO p(e")N (u, AT+ lnx,aﬁ) du
JInB ,,
I
— (§> e W(e")N (u AT + In (B—2> ,a\/T> du
T JnB ™ T .
Iz

We may freely replace the lower integration limit in /; and I, by —oo, because of the chopped-oft
payoff function ¢ is anyway zero in that region. When doing this we note that the density in
I, is that of the random variable X, with the usual starting point Sy = z. The density in the
integral I, would be that of the random variable X if the starting point was Sy = 372. Therefore
we have

F(z,B,¢)=e¢"TE, [Lr,>70(Sr)]

N
>

]

Theorem 40 described down-and-out claims, that is claims where the barrier is below the starting
value of the process (S;). An identical results holds for up-and-out claims, with an almost
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identical proof, except that the chopped-off payoff function ¢ now takes the form

. Jvly) y<B
- ]o y> B

We write down the result as a corollary to Theorem 40, more details can be found in Bjork
(2004, theorem 18.12).

Corollary 41 (Evaluation of an up-and-out claim). Let F, F, % and ¢ be as defined above.
Then, the following relation holds:

2\
. _ B\ o2 _
F(%B7WZF(1’7¢)— (_) F(Bzﬂflﬂﬂ)
x
We will have use of the two following lemmas.

Lemma 42 (Linearity of claim functional). The functional F(x,v) is linear in its function
argument v, meaning that for functions f and g and scalars o and 3, we have

F(z,af + Bg) = aF(x, f) + F(x,9)

Proof. Observing that the functional F' is simply a scaled expectation, the lemma follows directly
from the linearity of the integral. O

Lemma 43. Assume that x, K, B are three fired numbers, and that K < B. Then we have
(= K)ilocp = (@ = K)y — (2 = B)y = (B= K) 155

Proof. The lemma is seen clearly by simply drawing a picture. For a formal proof, consider first
the case when x < B. Then, the equation in the lemma becomes

(r-K)y=(@—-K)y—-0-0

If on the other hand > B, the assumption that B > K implies that we also have x > K. Now
the equation in the lemma becomes

O=2—K—-x+B-B+K

Let us consider the call option. The functional F' is given by

F(z,¢) =e"E, [(Sr — K)41pyo7)
So=r<K<B

The claim is of an up-and-out type. The chopped off payoff function ¢» becomes

L Jw=K), y<B
' 0 y>DB
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Applying Corollary 41 and the two previous lemmas, we get

22

F(z,(Sr — K)y) = F (2,9) — (?) . (B2, )
= F(ZE, (ST - K)+15T<B> - <§> . F (BQZL‘_I, (ST - K)+15T<B>)
= F(z, (57 — K)3 — (St — B)y — (B — K)1s,<B)
~(2)7 P S0 K) (S = B — (B K)Lsycn)

2

= F(2,(Sp — K)4) — F(z,(Sp — B),) — (B — K)F (2,1g,5) — (g) .

|[F (B*x™", (Sr— K)y) — F (B*x™",(Sr — B);) — (B— K)F (B*2™ ", 15,<5)]

>

|

The functional F'(z, (S — K)4) is well-known from the Black-Scholes formula for call options,
a quantity for which we have introduced the short-hand notation Cg(z, K) :

F(x,(Sr— K)4) = e "E[(Sr — K)-]
=: Cg(z, K)

The quantity E, (15,-p) is straightforward to compute using the log-normal cumulative distri-
bution, and we adopt the short-hand notation H(z, B):

F(l‘7 1ST<B) - e_TT]EJ? (1ST<B)

oy [m(%)\/%xr]
—: H(z, B)

Note that H(z, B) is of the same form as the no-arbitrage price of a binary option.

Going back to the evaluation of F(z, (Sp — K),), we have arrived at the following result:

F(x, (Sr — K)4) =

Cg(z, K) — Cp(z, B) — (g) " [Cp(B*s™" K) — Cp(B*z™", B)]
—(B—-K) |H(z,B) — (g) ; H(B*z ', B)

We see that the problem of evaluating the risk-neutral expectation of an European up-and-out
barrier call option has been reduced to the evaluation of a portfolio of calls and binary claims.
The latter are not path-dependent claims; in the formula the hitting time Ty is absent.

To evaluate the down-and-out European put option, we will use the following lemma, which is
the equivalent of the put-call parity for Barrier options:

Lemma 44 (Barrier option put-call parity). Let z, K, B be given real numbers with B < K.
Then,

(K - x)+1x>B = K1x>B —zl,sp+ (I - K)+1w>B
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Proof. 1f x < B, all terms in the lemma are zero, and there is nothing to prove.

If on the other hand x > B, there are three possibilities for the relationship between z and K.
First, say that K > x. Then the equation in the lemma becomes

K—x=K-2+0
Second, say that K < x. The equation then becomes
0=K-z4+2—-K
Third, say that K = z. The equation becomes
0=K—-24+0=0
O

We can now apply Theorem 40 together with lemmas 42 and 44 to evaluate the buy quote. The
relevant payoff functions are

and

From Theorem 40 we get

e B, 11,57 (K — Sr) 4] = F(% Vlr,st)

s (3£ (%)

— e, (K — Sr)1s0p) — (g) F(fj (5 — ST>+1ST>B)

=K- F<x 1ST>B) F(x, ST15T>B) + F(x, (St — K)+1ST>B)

( ) [ (%27]‘ST>B> + F (%27 (St — K)+1ST>B):|

The functionals F' have interpretations in terms of contingent claims: F'(-,1g,~p5) is the pricing
functional of a binary option with barrier B, which can be evaluated using the CDF of the
lognormal distribution. The term F(-, Srlg,~p) prices a down-and-out contract on the under-
lying asset (no option involved), which in turn can be decomposed into a binary option and a
call option. The term F'(-, (S — K),) is the pricing functional of a down-and-out call option,
which can be evaluated by another application of Theorem 40, as for evaluation of the put option.

N
M>/

A.2 Integer-valued random processes

In this thesis we are interested in continuous-time random processes that take values in a count-
able set. This countable set is called the tick grid in our application. Recalling that a set E is
countable if there exists an injective function from F to the natural numbers N, we might as well
simplify our notation and treat the tick grid as a subset of Z, hence our interest in integer-valued
processes.
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A.2.1 Poisson process

A fundamental building block of Levy jump processes are the Poisson process. We recall that

the Poisson process is a counting process that
i) Starts at zero

ii) Has independent increments

iii) The number of increments in any interval of length ¢ is a Poisson random variable with

parameter At

There is an alternative definition of the Poisson process that is often used.This definition states
that a counting process N, is a Poisson process with rate \ if

1) It starts at zero

111

)
ii) Has stationary independent increments
)
iv)

P
P(N, = 2) = o(h)

fh) _

Where the small-o notation f(h) = o(h) means lim =~ =

h—o N

The property iv) says that the probability of two events counted by the Poisson process happens
at the same time is zero. Or, in other words, a double-jump is a zero-probability event. This

property is used repeatedly in this thesis.

Although not immediately clear, the two definitions given are in fact equivalent. More details

can be found in Ross (2014).

Proposition 45 (Thinning property). Let (N;) be a Poisson process with intensity X\, and let
(11, Ty, ...) be the sequence of arrival times. Let (Y,) be an iid sequence of Bernoulli trials with
parameter p, independent from (N;). Then, the processes

U = Z Ty<ry 1y,—1y
n=0

and

Dy := Z <ty 1y, =0}

n=0

are two independent Poisson processes.

Proof. See Ross (2014).

]

Proposition 46 (Superposition property). Let (U;) and (Dy) be two independent Poisson pro-
cesses with intensities A\y and A\p respectively. Then, the process

Nt = Ut‘i‘Dt

is a Poisson process with intensity Ay + Ap.
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Proof. See Ross (2014).
[l

Definition 16. The arrival times of the Poisson process are the times that the counting process
N; jumps, meaning the times {t > 0 | Ny > N;-}.

The next proposition is useful for simulating the Poisson process and related processes, and it
is applied in the algorithms of Appendix C.

Proposition 47. Given that N; = k, the k arrival times are uniformly distributed on the interval
[0, ¢].

A proof can be found in Ross (2014).

A.2.2 Compound Poisson

Let (IV;) be a a Poisson process with rate A, and (U;) be an iid sequence of random variables
independent from (N;). The compound Poisson process has the form

ZUJ, Uj ~iid., NIU

We use a result known as Wald’s equatzon in order to compute the expectation of the compound
Poisson.

Proposition 48 (Wald’s equation). Let (X,,) be a sequence of real-valued, iid random variables,
and let N be a nonnegative integer-valued random variable that is independent of the sequence
(Xn). Suppose that N and X,, have finite expectations. Then,

E[X) + X5 + ... + Xy] = E[N|E[X]

Corollary 49. The expectation of the compound Poisson process is given by

E[Y)] = ME[U/]
Proof.

E[Y,] = E[E[Y; [ Ni]]
= E[VE[U:]]
= E[V]E[U1]
= ME[U;]

A.2.3 Levy processes

Levy processes are frequently applied as models of financial prices (Cont and Tankov, 2004),
and are therefore a natural starting point for this review. Recall that a random process (L;) is
a Levy process if

i) It starts at zero (a.s.)

ii) It has independent and stationary increments
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iii) It is stochastically continuous , meaning that for all @ > 0 and all s > 0,

lim P (| — Ly| > a) =0

t—s

The stochastic continuity of Levy processes allows for discontinuous sample paths; informally
what we require is that the probability of encountering a discontinuity (”jump”) vanishes as the
time increments goes to zero, see Applebaum (2009) for more details.

It is clear from the definition that Levy processes are homogeneous Markov processes. In fact
the stronger statement that they are strong Markov processes also holds.

Another crucial fact about Levy processes is that every Levy process has a cadlag modification
that is itself a Levy process (Applebaum, 2009, Theorem 2.1.8).

If we replace the condition iii) in the definition of a Levy process with the much stronger require-
ment of continuous sample paths, we get the definition of the Brownian motion. Since continuity
of paths implies stochastic continuity, the Brownian motion is an example of a Levy process.

A.2.4 Poisson random measures

For any Levy process L; we can define the jump process AL; by
ALt - Lt - Ltf
Note that the limit L,- is well-defined because the Levy process has cadlag paths.

The Poisson process is a very simple example of a Levy process, because it only jumps in in-
crements of 1. We can make this observation precise by actually defining the Poisson process
X(t) to be an integer-valued Levy process that is increasing (a.s.) and is such that (AX(t))
takes values in {0, 1} (the third definition of the Poisson process we have seen. There are several
more). Moreover, the converse is also true: the Poisson process is the only Levy process with
those properties (Applebaum, 2009, Theorem 2.2.13).

We can express the Poisson process by counting the number of jumps:
Xy =#{0<s<t, AX; =1}
The intensity of the process can be expressed as A = E[X]].

To study more general Levy processes we generalize the above idea by counting jumps of a
particular size. Specifically, for a Levy process L, and any A € B(R — {0}), define the random
Poisson measure as

N({t,A):=#{0<s <t|AL; € A}
We define the intensity measure u as
u(A) = E[N(L, A)]

The reason for the name ”Poisson measure” is the following. Let A € R be bounded from
below, meaning that {0} ¢ A. Then, when we vary ¢, we find that N (¢, A) is a Poisson pro-
cess with intensity u(A). Note that it now follows that p(A) < oo whenever A is bounded below.

64



We can integrate functions against the Poisson measure as follows. Let A be bounded from
below, and let f be a Borel measurable real-valued deterministic function. For each ¢ > 0 and
w € ) we define the Poisson integral of f as

/Af(:v) (t,do)(w) == 3 F@N(E, {r}) ()

T€EA

Note that the sum ) _, is well-defined because L(t) can only have finitely many jumps in A.
The assumption that A is bounded from below is essential here, see Applebaum (2009) for more
details. As we vary ¢ the Poisson integral becomes a cadlag random process, in fact it turns out
that it is a compound Poisson process.

For a set A bounded from below and f € L' we also define the compensated Poisson integral
with respect to the compensated Poisson random measure N:

/f tdx /f td:z:—t/f

A.2.5 Levy-Ito decomposition and integer-valued processes

The Levy—Ito&ecomposition allows us to express any Levy process L; as a combination of a
deterministic drift, a Brownian part, a compensated Poisson integral handling the small jumps,
and a regular Poisson integral handling the large jumps. More formally, for real-valued numbers
b and o and the Brownian motion W;, we have

lz|<1

N (t,dx) +/ zN(t,dz)
|z|>1

Note that certain technicalities are necessary to define the integral over small jumps, see Apple-
baum (2009, pg. 122). We do not have to use 1 as the threshold between small and large jumps:

we could accommodate any constant R in the Poisson integral flz\ <R N (t,dx) by changing the

constant b accordingly.

()

In this thesis we are interested in Levy processes that take values on the integers. For such a
process the Levy-Ito decomposition makes it clear that there can be no drift, no Brownian part,
no small jumps and in fact no jumps of non-integer size:

b=0
oc=0
pu(A) =0 for all A where ANZ =)

Thus, our integer-valued process Y; is a Poisson integral (or, equivalently a compound Poisson
process):

Y, = / yN(t,dy)
ly|>1

= Zl’N(t, {n})

neL
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Now, for any A bounded from below we know that N (¢, A) is a Poisson process with intensity
1(A) as we vary t. Hence N(t,{n;}) is a Poisson process with intensity A\; € R.

Let {ni1,n2,...} be the integers contained in A, meaning {ni,ns,...} = ANZ. Since p(A)
only has mass at these integers, we have N(t, A) = N(t,{ny,ns,...}). Furthermore, pu(A) =
E[N(1,{ni,nq,...})]. Since N(t,{n;}) and N(¢,{n;}) are independent for n # k (this is a
general property of Levy processes), we have pu({n;,ny}) = A\, + A;. Now, by the thinning
property of the Poisson process, we conclude that any integer-valued Levy process must have a
Poisson random measure of the form

N(t,A)= > N

JEANZ

Where (Nt(j )) are independent Poisson processes with intensities {\}.

In other words, any integer-valued Levy process can be expressed as a superposition of indepen-
dent Poisson processes, where each process corresponds to a jump of a certain integer increment:

L= kN®
keZ

We have seen that every integer-valued Levy process can be written as a Poisson integral,
L, = / xN(t,dr)
|z[>1

It is also a fact that ([, f()N(t,dz),t > 0) is a compound Poisson process, see Applebaum
(2009, Theorem 2.3.9), which means that any integer-valued Levy process can be written as a
compound Poisson process.

Skellam process

An integer-valued Levy process where the intensity measure only has mass at the points {—1, 1}
is known as a Skellam process, and according to the preceding discussion it can be written as
the difference between two Poisson processes:

Y, =X} - X,

The process is thus named because it is linked to the Skellam distribution, introduced by Irwin
(1937). The Skellam distribution comes about as the difference between two independent Poisson
distributions, with parameters A~ and A*. For a fixed ¢, the distribution of L; is given by

Y; ~ Sk(tAT, A7)
and
Y, =Y, ~Sk((t —s)A\T, (t —s)A7), t>s
If we set AT = A\~ =1/2, Y} is a martingale with unit variance per unit of time, and as ¢ — oo

we have Y;/v/t — N(0,1), see Barndorff-Nielsen et al. (2012). Therefore we can think of the
Skellam process as a discrete-value analogy of the Brownian motion.

We can express the ”upticks” and the ”downticks” of the Skellam process as compound Poissons
by setting the sequence of random variables (U;) equal to plus/minus one:

XS = X; =3 )+ Y



A.2.6 Markov processes

In section A.2 we were concerned with processes that have independent and stationary incre-
ments with paths satisfying a certain stochastic continuity criterion. In this section we explore
another concept that will be crucial to the arguments in this thesis, namely markovianity.

We take as given a probability space (€2, F, P) and a compact separable metric space E called
the state space. We denote by £ the Borel o-algebra on E. Let (X;) be a random process.

Let F;* be the filtration generated by (X;), and assume that FX C F; for all ¢ > 0, in other
words we have that (X;) is adapted to F;. Moreover, define the sigma-algebra of future events

as
F):=0{X,u>t}

Definition 17. We say that (X;) is a Markov process (with respect to F;) if for any t > 0
and B € F,
P(B | Fs) = P(B|X,)

Definition 18. The collection {Ps(-,-) | 0 < s <t < oo} is a Markov transition function
on (E,&) if, for all s <t < u we have

i) for every x € E, the map B — P(x, B) is a probability measure on (E, &),
ii) for every B € &, the map x — P(x, B) is E-measurable.

iii) for every x € E and every A € £ we have
Paa. ) = [ Pusla,dy) Pafy A)
E

The condition in i77) is called the Chapman-Kolmogorov equation, and is a manifestation of the
Markov property. One should interpret the transition function as

P (x,A)=P(X; € A| X, =)
Note that we have allowed for the situation where
Ps,t (.73, E) S 1

Such a transition function is called submarkovian. When the inequality holds with equality,
the transition function is called strictly Markovian. One can convert the submarkovian case into
the strictly markovian one by extending the state space. For this, we introduce a new point
T # E, and set

We now define a new transition function P;, as follows, for A € &:
Psl,t(:c7 A

Ps,,t(I’ {T}
P;,t(Tv E

Py (1. {1}

One can verify that P, is a Markov transition function. Moreover it is strictly Markovian. The
state {1} is an absorbing state.

Ps,t(x A)

) =
)—1— Po(z, E), x # 1
) =
) =
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Definition 19. A Markov process is said to be time homogeneous if for any v € E;, A € &
and s <'t,
Ps,t(x7 A) = Ptfs<x7 A)

We can introduce a class of operators related to the transition function.

Definition 20. Let Pi(x, B) be a transition function on the measurable space (E, &), and let f
be a nonnegative measurable function on E. Define the transition operator P by

Pf = / f(y)P(, dy)

The operator P is a bounded linear operator on the space of bounded, measurable functions on
E. Using this notation, we can restate the Chapman-Kolmogorov equation as

Pt—l—s:PtPs

Which means that the family (P;) forms a semigroup? of operators on the space of bounded,
measurable functions on E.

The strong Markov property is essentially about Markov at random times. We now state a
theorem about the markovian properties of Levy processes that is essential for many arguments
used in this thesis.

Theorem 50. If (X,;) is a Levy process and T is a stopping time, then on {T < oo},
i) The process (X,4y — X, t > 0) is a Levy process that is independent of (F;)
ii) For each t >0, (X,1y — X;,t > 0) has the same law as X,
iii) The process (X, — X, t > 0) has cadlag paths and is F.,-adapted.

Proof. See Applebaum (2009, Theorem 2.2.11) O

2A semigroup is a set together with an associate binary operation.
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Appendix B

Referenced theorems and definitions

Definition 21. Let (2, F, P) be a probability space, and (E,E) be a measurable space. A ran-
dom variable on () is a measurable function X : Q — F.

Definition 22. Let (2, F, P) be a probability space and X : Q — R be a random variable.

a) For every Borel subset of the real line (B € B(R)), define Px(B) = P(X € B).
b) The resulting function Px : B — [0, 1] is called the probability law of X

Lemma 51. Let (2, F, P) be a probability space and X : Q@ — R be a random variable. Then,
the law Px of X is a measure on (R, B(R)).

Definition 23. Let (2, F, P) be a probability space, and let X and Y be two random variables
with laws Px and Py . If
Px(B) = Py(B) for all B € B(R)

Then we say that X and Y are equal in law and write
X'y

Proposition 52. Let E be a measure space, and X, Y be two random variables taking values

in B. If X2V, then
[ garc= [ gan,
E E

for all continuous and bounded functions f on E.

Definition 24. Let (Q,F, P) be a probability space. A filtration on (0, F, P) is a family of
o-algebras (Fy, t > 0) such that Fy C F; whenever s < t.

Definition 25. A filtration F is called right-continuous if F; = Fi+, where

For =) Frre

>0

Definition 26. A filtered probability space (2, F,F, P) is said to satisfy the usual conditions
if the following three conditions hold:

i) F is P-complete, meaning that if B C A€ F and P(A) =0 then B € F.
ii) Fo contains all zero-probability sets.

ii1) The filtration F is right-continuous
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Definition 27. The natural filtration generated by the process (S;) is denoted F* and defined

by
FS = {fts = O'(Su,u S t}tzo

Definition 28. A random process (S;) is F-adapted if for allt > 0 the random variable S; is
Fi-measurable.

In particular, a random process is always adapted to its own filtration.

Definition 29. Let (2, F,F, P) be a filtered probability space. A random process (M;) is said
to be a martingale with respect to F (and P) if

i) My is Fy for allt
i) E[|M;]] < oo for allt
iii) E[M, | F,) = M, for allt > u.

Lemma 53. Let (S;) be a cadlag Levy process. The natural filtration generated by (S;) is right-
continuous.

Definition 30. Given a filtered probability space (2, F,F, P), a random variable T is said to be
a F-stopping time if
{r<t}eF, foralt>0

Definition 31. Let B be a set and (S;) a random process. We define the first entry time of
(S¢) into B as
7p :=inf{t > 0| S; € B}

Lemma 54. Let B be a closed set and (S;) a random process. The first entry time of (S;) into
B, 1 , is a stopping time (with respect to the natural filtration of (S).

Lemma 55. Let B be an open set and (S;) a random process. Assume that the filtration F is
right-continuous. Then, the first entry time of (S;) into B, 7p is an F-stopping time.

Definition 32. Let 7 be an F-stopping time. We define the stopped sigma-algebra as
Fr={AeF| foreacht >0, AN{r <t} e F}

The stopped sigma-algebra represents the sigma-algebra of events occurring up to the random
time 7.

Lemma 56. Assume that (S;) is an adapted process. Let (S;) be a random process and T a
stopping time. We refer to Siar as the stopped process. The stopped process is a random variable
with respect to the sigma-algebra F;.

Theorem 57 (Doob’ optional sampling). Let o < 7 be bounded stopping times. For any cadlag
martingale (X),

i) The random variables X,, X, are integrable.

ii) We have
X, = E[X,|F]

Definition 33. A lower semicontinuous measurable function f : R"™ — [0,00] is said to be
superharmonic wrt. X, if

f(x) =2 E, [f(X5)]
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There is a relation between superharmonic functions and supermartingales (indeed, this relation
is where the name supermartingale comes from):

Lemma 58. If X, is a Markov process and f is a superharmonic function, the process f(X;) is
a supermartingale wrt. the o-algebras generated by X;.

Proof. For t > s we have
E.[f(X: | Fs] = Ex.[f(Xi—s)] (the Markov property)

< f(Xs)

Since f is a measurable function the process & := f(X;) is measurable wrt. to the o-algebra
generated by X;. O

Definition 34. Let h be a real measurable function on R™, and f be a superharmonic function.
If f > h we say that f is a superharmonic majorant of h.

Let Fj, be the collection of all superharmonic majorants of h. The function
h(z) = inf
() = inf f(a)
is called the least superharmonic majorant of h.

The function A is in fact superharmonic, see Oksendal (2013, lemma 10.1.3 ¢) ).

Definition 35.
Let (X;) be a time-homogeneous Markov process taking values in R™. The infinitesimal gen-
erator A of X, is defined by

EY (X)) - f(x)

Af(z) = ltlfgl ; (B.1)
Definition 36.
Let (X;) be an Ité diffusion. The characteristic operator A of X, is defined by
B f(X -

Ulx E=[ry]

Where the U’s are open sets decreasing to the point {z}, and 7y = inf{t >0 : X, # U} is the
first exit time of X; from U.

The characteristic operator and the generator are closely related: it turns out that Af = Af for
all f where the limit in B.1 exists, see Oksendal (2013, page 129) and Dynkin (1965).

Theorem 59 (Dynkin’s formula).
Let f € CZ(R™). Suppose T is a stopping time and that E*[1] < co. Then,

E* [£(X,)] = f(2) + B { | Af(Xst} (B.3)

0

Proposition 60 (Reflection principle for Brownian motion). Let W; be a standard Brownian
motion. Let x and y be given real numbers satisfying y > 0 and x < y. Let (M) be the running
supremum of the (W), meaning that My = sup,¢jo g Wau. The following holds:

PWy <z, My >y)=P(W; > 2y —x)
Corollary 61. For a fized t, we have the equality of law
M, "2 W
Proof. See Jeanblanc et al. (2009, Chapter 3) O
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Appendix C

Computer code and algorithms

C.1 Data description for Figure 1.1

The data shown in the figure is from Thomson Reuters Matching, a leading trading platform for
foreign exchange. The plot shows the exchange rate for Euro versus US Dollars, over the time
periods stated in the caption of the figures.

C.2 R code for Figure 3.1

#Parameter values:

sigma = .2
x = 100
k = 100.01

# Main function :
risk = function (mty,buy) {
if (buy =T) {n=1}
else {n=-1}
v=n#*sigma * sqrt(mty/(2*pi))*exp(—((k—x)"2)/(2*sigma " 2xmty)) +
n#* (x—k ) *pnorm (nx* (x—k) /(sigma*xsqrt (mty)))
return(v)

}

# Call main function:
x.values = seq(from=.01,t0o=20,length.out = 100)
z = sapply(x.values ,risk ,T)

#Make plots and save output
C.3 R code for Figure 4.2

#Parameter values
delta =1
K= 2

# Probability mass function of the Skellam r.v.
point .prob = function(k, delta, mty) {
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res = exp(—mty*2xdelta)xbessell (2«mtyxdelta , abs(k))
return(res)

}

# Payoff functions:

call .option = function (x,K) {
return (max(0,x—K))

}

put.option = function(x,K) {
return (max(0,K—x))
}

# Main function

risk = function (mty, delta ,K, FUN=call.option) {
k = seq(from = =50, to = 50, by = 1)
res = sapply(k, function(x) call.option(x,K)*point.prob(x, delta, mty))
return (sum(res))

Call main function

.values = seq(from=.01,to=20,length.out = 100)
= sapply(x.values, risk, delta, K, call.option)
= sapply(x.values, risk, delta, K, put.option)

N R YR

# Make plots and save output
C.4 R code for Figure 4.1

#This code simulates a Skellam process

import numpy as np
import numpy.random as rnd

#Paramaeter values:
T=10 #Points in timegrid
lam = 4

n = 10%x%4

# Draw number of up and down jumps
N1 = rnd. poisson (T*lam)
N2 = rnd. poisson (Txlam)

X = np.zeros ((n))
Y = np.zeros ((n))

# Draw position of jumps
for i in range(N1):
pos = rnd.randint (0,n)
X[pos] +=1

73



for j in range(N2):
pos = rnd.randint (0,n)
Y[pos| +=1

# Make cumulative process (S0 = 100)
Z = np.cumsum(X=Y)+100

# Make plots and save output
C.5 R code for Figure 5.1

#2017—06—60
#Simulate DeltaNB Levy process

library (extraDistr)

#parameters :
#up

r.u =0.5
p.u=.5
#down

r.d = 0.5
p.d=.5

T=100

set .seed (1)

#draw random variables:

#number of jumps:

n.u = rpois(1,T*r.uxabs(log(l—p.u)))
n.d = rpois(1,T*r.dxabs(log(l—p.d)))

#timing of up jumps
t.u = runif(n.u,0,T)

t.u = sort(t.u)
t.d = runif(n.d,0,T)
t.d = sort(t.d)

#jump Sizes
u=rlgser (n.u,p.u)
d=rlgser(n.d,p.d)

#combine jumps sizes and timings in single table
jumps.u = cbind(t.u,u)

jumps.d = cbind(t.d,—d)

jumps = rbind (jumps.u,jumps.d)

#for plotting , need many points on r—azis (no—jump points)
grid = seq(from=0,to=T,by=.01/T)
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x.axis = cbind(grid,rep(0,length(grid)))

#combine jumps and no—jump time points

tab = rbind (jumps,x.axis)

tab = as.data.frame(tab)

colnames(tab) = c(”time” ,”jump” )

tab.order = tab[with(tab 6 order(time)), | #chronological ordering along time d

tab.order$value = cumsum(tab.order$jump) #value of process is cumsum of jumps

# Make plot and save output

C.6 Python code for Figure 5.2

#!/usr/bin/env python3
# —x— coding: utf—8 —x—

200

Created on Tue Sep 26 11:52:47 2017

@author: jo

»n»

import numpy as np

T=1
n = 50

#Truncation point decides width of window used for transition probabilities:
trunc_point = 20

K = 100 #Quoted price (7 Strike price”)
B = 110 #Knockout boundary

pricegrid = np.arange (0,2xB,1)
timegrid = np.linspace (0,T,n)
timestep = timegrid[l] —timegrid [0]

def payoff(x,K=100,B=120):
pi = np.maximum (x—K,0)
pi[x>B] =0
return pi

def transprob(n=20,q.u = .4, q.d = 0.4, p=.5, lam=6.0, h=.1):
### Compute transition probabilities for the integer Levy process,
### for jump sizes of —m to +n.
y = np.arange(1l,n+1,1)
p-up = lam*h*p*(—1/np.math.log(l—q_u))*(q-u*xy.astype(float))
/y.astype(float)
p-down = lams*h*(1—p)*(—1/np.math.log(l—q-d))*(q-d*x*xy.astype(float))
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/y.astype(float)
p-unch = 1 — lamxh
z = np.arange(—n,+n+1,1)
p = 0.0xz
p[z>0] = p-up
plz<0] = np. flip (p-down , axis=0)
p|lz==0] = p_unch
return p

#value matrix:
V = np.zeros ((len(pricegrid),len(timegrid)))
V[:,—1] = payoff(pricegrid ,K,B)

#execution boundary:
boundary = 0.0xtimegrid

#Loop from time T—1 and backwards toward 0:
for i in range(—2,—len(timegrid)—1,—1):
#Loop over each price in the grid:
for price,pos in enumerate(pricegrid):
#skip lower and upper part of pricegrid (due to truncation of

#transition probabilities. This step implies that the pricegrid must
#be set wide enough that its length doesnt matter for the end result)

#Also skip prices where the quote is knocked out

valid = 1
if pos <= trunc_point:
valid = 0
if price > B:
valid = 0
if pos >= len(pricegrid)—trunc_point:
valid = 0
if valid = 1:
probs = transprob (n=trunc_point ,h=timestep)
cont_value = np.inner (probs,V[(pos—trunc_point ):( pos+

trunc_point+1),i+1])
stop_value = V[pos,—1]

V]pos,i] = np.maximum(cont_value ,stop_value)
if cont_value > stop_value:
boundary[i] = price + 1
boundary|[—1] = np.nan

#Make plot and save output

C.7 R code for Figure 6.1

# Levy measure parameters

# The process is a the sum of three Skellam processes, with jump size 1, 2 an

lam = ¢(10,25,50,50,25,10)/100
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K
B

=sum (lam)

= 80 # 7 Strike”
= 100 #Barrier

# Truncated the state space for computational purposes:
upper = 120
lower = 0

E
f

1

= seq(from=upper, to = lower, by =— 1)
rep (0, length(E))
length (E)

# Payoff function
psi = function(x) {

}

if (x <= B) { return(max(0,xXK))
} else {
return (0)

}

V = function(q) {

}

nrounds = 1:1000
# Iterate over the sequence (fized—point iteration)
for (n in nrounds) {
for (e in E[1:(1-3)]) {
idx = which(E = e)
if (e >=q) {
flidx] = psi(e)
} else {
flidx] = (f[idx — 3]xlam[1] + f[idx—2]*lam[2] 4+ f[idx—1]*lam [3] +
flidx+1]*lam [4] + f[idx+2]*lam[5] + f[idx+3]*lam[6]) /L

}

}

f[1-2] = (f [l — 3]*lam[1] + f[l—=2]xlam[2] + f[l—1]*lam[3] +
f[1+1]*lam [4] + f[1+2]*lam [5]) /L

f[1-1] = (f[1 — 3]*lam[1] + f[l—=2]xlam[2] + f[l—1]*lam[3] +
f[1]*lam[4]) /L

f[1] = (f[l — 3]*1am[1] + f[l—-2]%lam[2] + f[l—1]*lam[3]) /L

flis.na(f)] =

}

return ()

# Compute candidate value functions V for different boundaries q

g:

lapply (90:100,V)

stop.payoff = sapply(E, psi)

# Make plots
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