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ABSTRACT

We propose that the mass-temperature relation of galaxy clusters is a prime candidate for testing gravity theories beyond Einstein’s
general relativity, for modified gravity models with universal coupling between matter and the scalar field. For non-universally coupled
models, we discover that the impact of modified gravity can remain hidden from the mass-temperature relation. Using non-radiative
hydrodynamic cosmological simulations, we find that in modified gravity the hydrostatic mass-temperature relation varies signifi-
cantly from the standard gravity relation of M ∝ T 1.73. To be specific, for symmetron models with a coupling factor of β = 1 we
find a lower limit to the power law as M ∝ T 1.6; and for f (R) gravity we compute predictions based on the model parameters. We
show that the mass-temperature relation, for screened modified gravities, is significantly different from that of standard gravity for
the less massive and colder galaxy clusters, while being indistinguishable from Einstein’s gravity for massive, hot galaxy clusters. We
further investigate the mass-temperature relation for other mass estimates than the hydrostatic mass estimate and discover that the gas
mass-temperature results show even more significant deviations from Einstein’s gravity than the hydrostatic mass-temperature.
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1. Introduction

Ever since the discovery that the Universe is undergoing a late-
time accelerated expansion (Riess et al. 1998) the biggest chal-
lenge within the field has been to argue why this is happen-
ing. The two main hypothesis are that the expansion is driven
by some unknown exotic component known as dark energy
(Frieman et al. 2008), or that the accelerated expansion is the
sign that general relativity needs to be modified at large scales
(Clifton et al. 2012; Brans & Dicke 1961).

The biggest challenge of modified gravity theories is to alter
the behaviour of gravity on large scales, where the accelerated
expansion is observed, while leaving the gravity interaction on
smaller scales unchanged, and where general relativity has been
tested with high precision (Hoyle et al. 2004; Dimopoulos et al.
2007; Bertotti et al. 2003; Everitt et al. 2011). To accomplish
this, several screening mechanisms have been proposed (Khoury
2010; Brax et al. 2012). In this paper, we study two specific
cases, the chameleon f (R)-gravity (Hu & Sawicki 2007) and the
symmetron scalar tensor theory (Hinterbichler & Khoury 2010).
We note however that our results are valid for a general class of
theories of modified gravity.

Modifying general relativity at cosmological scales affects
structure formation. In the case of theories with a screen-
ing mechanism, the main signatures occur in the non-linear
regime and at galaxy cluster scales. Performing dark-matter
only N-body simulations within these modified gravity theories
is therefore a promising way of probing their effects (Oyaizu
2008; Llinares et al. 2008; Li et al. 2011, 2012, 2013; Zhao et al.
2011; Llinares et al. 2014; Brax et al. 2013; Llinares & Mota
2014; Gronke et al. 2014; Winther et al. 2012). However, there
is a major pitfall in this type of approach: to test these theories

against observations, we need to compute real observables, such
as X-ray observables. These cannot be directly calculated from
dark-matter-only simulations, since experiments only measure
photons which are, in fact, emitted from the baryonic matter.

This raises a major question: what observables from the
simulations would be best suited to compare with observa-
tions, to put stronger constraints on modified gravity theo-
ries and test Einstein’s general relativity? To tackle this cru-
cial problem, N-body simulations for modified gravity theories
have started to include hydrodynamics to simulate the behaviour
and observables associated with baryons (Hammami et al. 2015;
Hammami & Mota 2015; Puchwein et al. 2013; Arnold et al.
2014). Cluster properties such as halo profiles and probability
distribution functions have been computed and, lately, the gas-
fraction of the galaxy clusters and power-spectra have been sug-
gested as viable candidates (Hammami & Mota 2015; Li et al.
2016).

In this paper, we propose using the mass-temperature rela-
tion of a galaxy cluster as a new and quite unique observable for
testing gravity theories. We show that it can be used to set strong
constraints on modified gravity theories and to test general rela-
tivity in a new region of the parameter space.

We also show that the mass-temperature relation is a very
promising probe, in part due to the vast amount of new, high res-
olution X-ray data from XMM-Newton and Chandra, and also
because of the quite specific signatures that different models pre-
dict. Therefore, allowing us to probe the nature of gravity at clus-
ter scales.

In Sect. 2, we briefly introduce the theoretical framework for
our chosen modified gravity theories and the mass-temperature
relation. In Sect. 3, we discuss which observations to use and the
various assumptions used in the literature. In Sect. 4, we describe
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our simulations and how we calculate the mass-temperature re-
lation. In Sect. 5, we show the results from our simulations and
compare them to the observations from Sect. 3. We summarize
and give our final thoughts in Sect. 6.

2. Theory

2.1. Modified gravity

The symmetron model and f (R)-gravity are both scalar-tensor
theories of gravity that can be defined by the same general action

S =

∫
d4x
√
−g

[
R
2

Mpl −
1
2
∂iϕ∂iϕ − V(ϕ)

]
+ S m(g̃µν, ϕi), (1)

where R is the Ricci scalar, Mpl is the Planck mass, ϕ is the scalar
field, V(ϕ) is the potential, ψ are the matter fields, g is the deter-
minant of the metric tensor gµν. The scalar field is conformally
coupled to matter by the conformal factor g̃µν = A(ϕ)2gµν, which
results in an extra, fifth, force of the form

Fϕ = −
A′(ϕ)
A(ϕ)

∇ϕ. (2)

2.1.1. Symmetron

The symmetron model (Hinterbichler & Khoury 2010) pos-
sesses a screening mechanism that is sensitive to the local den-
sity. If the density is high, the scalar degree of freedom decouples
from matter, and the fifth force becomes negligible. In regions
of low density, the coupling between matter and the extra field
is strong, and the fifth force reaches its maximum value. This
mechanism is ensured by having a symmetric coupling function
and potential, around the value ϕ = 0,

A(ϕ) = 1 +
1
2

(
ϕ

M

)2
(3)

and

V(ϕ) = V0 −
1
2
µ2ϕ2 +

1
4
λϕ4, (4)

where M and µ are mass scales and λ is a dimensionless param-
eter. These free parameters can be recast to parameters with a
more intuitive physical interpretation

β =
Mplϕ0

M2 , (5)

a3
SSB =

3H2
0ΩmMpl

M2µ2 , (6)

λ2
0 =

1
2µ2 , (7)

where ϕ0 is the scalar field minimum, which vanishes in regions
of high density, H0 is the Hubble constant and Ωm is the mat-
ter density parameter of the Universe. These parameters now
represent

– β – the strength of the scalar field, and therefore the ampli-
tude of the fifth force;

– aSSB – the expansion factor of the Universe at the time of
symmetry breaking. Prior to this the density of the Universe
had the fifth force permanently screened;

– λ0 – the range of the fifth force, in units of Mpc h−1.

With the symmetron coupling function, the fifth force becomes

Fϕ = −
ϕ

M2∇ϕ = 6ΩmH2
0

β2λ2
0

a3
SSB

ϕ̃∇ϕ̃. (8)

In the last step a switch to super-comoving coordinates has been
made, as detailed in Hammami et al. (2015), Hammami & Mota
(2015).

2.1.2. f (R)-gravity

The f (R)-gravity models are a set of extended gravity theories
where the Einstein-Hilbert Lagrangian density LEH = R is re-
placed by a more general function of the Ricci scalar f (R).

The action describing the f (R)-gravity theories,

S =

∫
√
−g

[
R + f (R)

16πG
+Lm

]
d4x, (9)

can be transformed to the form of the general action for scalar-
tensor theories Eq. (1) using the conformal transformation

A(ϕ) = exp
(
−
βϕ

Mpl

)
, (10)

where the coupling factor is constant β =
√

1/6.
These theories possess a so-called chameleon screening

mechanism, where the mass of the scalar field is dependent on
the local density, which in turn decides the interaction range
of the scalar field (Khoury & Weltman 2004). If the density is
high, the scalar degree of freedom becomes very short ranged
while, in low density, the range is large and deviations from gen-
eral relativity reach their maximum value.

For this paper we will be working with the Hu-Sawicki f (R)
model (Hu & Sawicki 2007)

f (R) = −m2(1−n) c1Rn

1 + c2(R/m2)n , (11)

where m2 = H2
0Ωm0 and n, c1 and c2 are free parameters. We

can reduce the number of free parameters to be n and fR0 by the
relations

c1 = 6c2
ΩΛ

Ωm
, (12)

and

fR0 = −n
c1

c2
2

(
ΩΛ

3(Ωm + 4ΩΛ)

)n+1

· (13)

The range of the scalar degree of freedom is dependent on these
parameters as λ0 ∝

√
1/ fR0.

With the Hu-Sawicki f (R)-gravity formalism, the fifth force
becomes

Fϕ = −
a2β

Mpl
∇ϕ. (14)

Further details can be found in our previous work
(Hammami et al. 2015) or in the review by de Felice &
Tsujikawa (2010).
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2.2. Mass-temperature relation

The virial theorem that relates the kinetic energy T to the gravi-
tational potential U,

2T + U = 0, (15)

can be used to find a simple theoretical mass-temperature
relation

M ∝ T 3/2, (16)

valid at the virial radius rvir ≈ r200c
1. The full expression is very

complicated (Lilje 1992), consisting of cosmological parameters
and the density profile.

Furthermore, some studies have shown (Del Popolo 2002)
that the relation grows steeper for the low mass-temperature
range, and that two separate power laws can describe the low
mass-temperature and high mass-temperature range respectively.
This claim is, however, in dispute with newer studies that show
no evidence of this type of double slope (Stanek et al. 2010;
Planelles et al. 2014).

Observational investigations of the mass-temperature rela-
tion have been performed to test this theoretical relation. How-
ever no consensus has been reached with results ranging from
substantially lower and higher than 3/2. In this paper, we aim to
investigate how this relation changes within modified gravity.

To test this relation, the hydrostatic mass must be constructed
using our simulation gas output, which currently consists of
pressure p, density ρ, and velocity v.

To compute the hydrostatic mass, one assumes that a galaxy
cluster has reached hydrostatic equilibrium expressed as

dP
dr

= −
GM(r)ρ(r)

r2 , (17)

where G is Newton’s gravitational constant and M(r) is the mass
within radius r. Using the ideal gas relation between pressure
and temperature Pthermal = kBngasTgas with ρgas = µmpngas, we
get the mass within radius r to be

M(r) = −
kBr2Tgas(r)
µmpG

(
dln ρgas

dln r
+

dln Tgas

dln r

)
, (18)

where µ = 0.59 is the mean molecular weight of the gas and kB
is the Boltzmann constant.

Experimentally, we can calculate the hydrostatic mass by
measuring the temperature and density profiles via X-ray
temperature, Sunyaev-Zel’dovich effect and surface-brightness
observations (Terukina et al. 2014; Wilcox et al. 2015). Theoret-
ically, one computes the hydrostatic mass in the same way: tem-
perature and density profiles can be directly obtained from our
hydrodynamic and N-body simulations for the different modified
gravity models.

2.3. The YX mass indicator proxy

An alternative to studying the mass-temperature relation exists
in the form of the YX proxy introduced by Kravtsov et al. (2006).
The proxy is defined as the product of the spectral temperature
and the mass of the gas in a galaxy cluster,

YX = TspecMgas. (19)

1 r200c is defined as the radius where the density of a galaxy cluster is
200 times the critical density of the Universe and is generally thought
to be the point where the halo is fully virialized and at hydrostatic
equilibrium.

Studies (Kravtsov et al. 2006) show that the YX proxy has a low
scatter at high and low redshifts independent of whether the
cluster is relaxed or not. In short, the YX might prove a better
probe for modified gravity theories, particularly since it is not as
sensitive to astrophysical uncertainties as the mass temperature
relation.

YX is a function of the spectral temperature, while the simu-
lations contain a gas mass weighted temperature. Vikhlinin et al.
(2006) find that it is possible to relate these temperatures to one
another by a simple factor of

Tspec = 0.9Tgas, (20)

based on observations of 12 galaxy clusters. However a more
accurate prescription can be found in Mazzotta et al. (2004)

Tsl =

∫
T 1/4

gas dV∫
T−3/4

gas dV
, (21)

which constructs a spectral-like temperature Tsl by using the gas
temperature T within the volume V . This is the temperature we
use when constructing the mass indicator proxy YX . Further-
more, we excise the core regions of our clusters by excluding
the region within r < 0.10R200c, to reduce the scatter contribu-
tion from the central cluster regions.

3. Observations

The observations found in the literature can be categorized as
either having well-defined spatial or spectral resolution. Histor-
ically there have been very few observations with high spatial
resolution (Horner et al. 1999) where the profiles can be directly
observed. The majority of the observations need to construct the
profiles using analytical and numerical models, with the most
common being the isothermal β-model.

There are a large range of studies of the mass-temperature re-
lation (Neumann & Arnaud 1999; Ettori & Fabian 1999; Horner
1999; Nevalainen et al. 2000; Finoguenov et al. 2001; Xu et al.
2001; Shimizu et al. 2003; Vikhlinin et al. 2006; Dai et al. 2007;
Vikhlinin et al. 2009; Andersson et al. 2011; Lieu et al. 2016) in
the literature, however, not all of these are readily useful. We
want to use observations from the last decade, capitalizing on
the increased resolution of surveys such as Chandra and XMM.
Furthermore the observed quantities have been measured in a
wide range of critical densities, with the most common choice
being at r500c. We therefore exclude any observations measured
at other critical density radii2. Finally, we use only the sources
that provide the data in tables, rather than extracting data from
figures.

In the end, we chose to work with the data from Vikhlinin
et al. (2006, 2009), Andersson et al. (2011), Eckmiller et al.
(2011), Lovisari et al. (2015), including observations from both
Chandra and XMM-Newton.

4. Simulations

Our code is a modification of the ISIS code (Llinares et al.
2014), which in turn is a modification of the cosmological, hy-
drodynamic N-body code RAMSES (Teyssier 2002). ISIS im-
plemented the f (R)-gravity and symmetron models to the dark

2 Methods exist for converting one set of r∆c to any other value
(Shimizu et al. 2003), however it requires having a model for the density
profile, a restriction we would prefer not to impose on our comparisons.
For our analysis we used the approximation R500c ∼ 0.63R200c.
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Table 1. Overview of the model parameters for the symmetron and f (R)
models.

Symmetron models β aSSB λϕ
Sym A 1.0 0.5 1.0
Sym B 1.0 0.33 1.0
Sym C 2.0 0.5 1.0
Sym D 1.0 0.25 1.0
f (R) models fR0 n
FofR04 10−4 1
FofR05 10−5 1
FofR06 10−6 1

matter component of RAMSES, while the current code extended
the modified gravity to also work on the hydrodynamic part of
RAMSES.

We run two sets of simulations; one for the symmetron
models and one for the f (R)-gravity models. For the sake
of consistency with previous work (Hammami et al. 2015;
Hammami & Mota 2015), the background cosmology and box
size differ in these two sets. Both sets contain 2563 dark matter
particles.

For the f (R)-gravity set we have a box size of 200 Mpc/h0,
with h0 = 0.7, ΩΛ = 0.727, ΩCDM = 0.227 and Ωb = 0.045.
The resulting dark matter particle mass is 3 × 1010 M�/h. The
simulations were run using the adaptive mash of RAMSES, with
eight levels of refinements.

For the symmetron set, we have a box size of 256 Mpc/h0,
with h0 = 0.65, ΩΛ = 0.65, ΩCDM = 0.3 and Ωb = 0.05. The
resulting dark matter particle mass is 8.32 × 1010 M�/h. The
simulations were run using the adaptive mash of RAMSES, with
six levels of refinements.

The two different cases of the Λ cold dark matter (ΛCDM)
model need to be distinguishable in the text. We denote the back-
ground ΛCDM model using the symmetron box size and back-
ground as ΛCDMS and the one using the f (R)-gravity box size
and background as ΛCDMf(R). An overview of the model param-
eters employed is found in Table 1.

The hydrodynamic gas component of the simulations is
treated as a simple ideal fluid, not including cooling, star for-
mation, feedback processes etc.

5. Results

Using the Amiga Halo Finder (Knollmann & Knebe 2009), we
obtain the location of all the galaxy clusters and their respec-
tive r200c. We keep all galaxy clusters that contain at least 1000
dark matter particles to ensure that all clusters we study are well
above the resolution limit of our simulations. Generally, this
leaves somewhere between 2000 to 3000 clusters per model.

All mass quantities are scaled by the dimensionless Hubble
parameter and presented in units of M� h−1

0 and the temperature
is scaled by the Boltzmann constant kB and presented in units
of keV.

Figure 1 shows the raw mass-temperature plot for all the
identified galaxy clusters in the ΛCDMS model, the same plot
for ΛCDMf(R) is very similar and is not shown.

The hydrostatic mass and temperature generally follows a
near-linear relation in the log-log plot, with a small amount
of outliers. The outliers consist of low-mass clusters with very
large temperatures and represent galaxy clusters that are highly

0.5 1 3 10
kBT (keV )

1013

1014

1015

M
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y
d

ro
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�h
−1 0

)

ΛCDM

Fig. 1. Raw mass-temperature data for ΛCDMS, containing all
2379 identified galaxy clusters.
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Fig. 2. Mass-temperature relation for ΛCDMS and the symmetron mod-
els for the stacked galaxy clusters.

unrelaxed. An analytical fit to this result would be highly skewed
owing to the outliers.

However, the mass-temperature relation using stacked3

masses and temperatures shows no signs of any outliers, which
have been suppressed by the stacking process. For the remain-
der of the paper we discuss the mass-temperature relation con-
structed from stacked quantities.

In Figs. 2 and 3 we present the mass-temperature relation
for the symmetron- and f (R)-gravity models, respectively. The
broadening of the lines in the figures represents the standard de-
viation that is due to the stacking.

The massive, hot galaxy clusters, found at the top-right cor-
ner of the figures, show that all the models are indistinguishable
from one another. However, the smaller, less hot clusters, show
that the differences between the models get more pronounced
the smaller and colder a cluster is. The differences between the
models can clearly be distinguished when studying the smallest
and coldest galaxy clusters.

The fifth force makes a galaxy cluster collapse and increase
its mass at a faster rate than in standard gravity while, at the
same time, increasing the temperature of the galaxy clusters
(Hammami & Mota 2015). This might lead to wondering why
the modified gravity models show a lower mass at a given

3 We stack the quantities in mass bins and then calculate the average.
The bins are chosen so that the largest bin has a minimum of 15 clusters,
the remaining bins contain hundreds of clusters
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Fig. 3. Mass-temperature relation for ΛCDMf(R) and the f (R)-gravity
models for the stacked galaxy clusters.

temperature than the ΛCDM models. This is in fact a direct ef-
fect of demanding hydrostatic equilibrium.

The equilibrium equation, Eq. (17), describes how the pres-
sure gradient, directly proportional to the temperature, is in equi-
librium with the gravity of the mass. In the presence of a fifth
force, the gravitational constant will be replaced by a gravita-
tional constant of the form Geff = GGR + Gfifth, which amplifies
the gravitational effect of the mass.

If we now look at the equilibrium equation for a given tem-
perature, then the pressure gradient will remain constant, the
gravitational constant will be replaced by a stronger effective
gravitational constant, and the mass of the galaxy cluster needs
to decrease for the equilibrium to be upheld. Thus, even though
the modified gravity theories increase the mass of galaxy clus-
ters, the mass in the hydrostatic mass-temperature relation will
be lower than that of standard gravity.

A consequence of the minimum limit of dark matter par-
ticles described earlier is apparent when comparing the modi-
fied gravity models to the ΛCDM models. The smallest clusters
in the modified gravity models are noticeably larger and hotter
than the smallest clusters in the ΛCDM models. In the modi-
fied gravity models, the temperature is larger than in ΛCDM
(Hammami et al. 2015; Hammami & Mota 2015), resulting in
the hydrostatic mass being noticeably larger in modified gravity
models than in standard gravity. A comparison of how modified
gravity theories affect the various masses (kinetic, lensing and
hydrostatic) can be found in Gronke et al. (2016).

Figure 2 shows that the symmetron models deviate from
ΛCDM in the order of Sym D > Sym B > Sym C > Sym A, for
the medium-to-low mass range. This demonstrates that the mass-
temperature relation is more sensitive to the symmetry-breaking
criteria aSSB than the strength of the coupling β, similar to
what was found in Hammami et al. (2015), Hammami & Mota
(2015).

The f (R) models show that the higher the coupling, the larger
the deviations, with FofR04 > FofR05 > FofR06. However, un-
like the symmetrons, we have a model that is permanently devi-
ating from the ΛCDM value even for the largest clusters, namely
that of FofR04. This is, however, not surprising since FofR04 has
long been ruled out as a viable candidate. Owing to the smaller
box size employed in the f (R) simulations, the largest masses in
this set of simulations are smaller than in the symmetron simu-
lation set.

In Figs. 4 and 5 we present observations from the litera-
ture as points over-plotted on the previous two figures, for the
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Fig. 4. Mass-temperature data for ΛCDMS and the symmetron models,
for the stacked galaxy clusters, including observational data points from
Vikhlinin et al. (2009; yellow and magenta) and Vikhlinin et al. (2006;
blue).
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Fig. 5. Mass-temperature data for ΛCDMf(R) and the f (R)-gravity mod-
els, for the stacked galaxy clusters, including observational data points
from Vikhlinin et al. (2009; yellow and magenta) and Vikhlinin et al.
(2006; blue).

symmetron and f (R)-gravity models, respectively. The yellow
and magenta data points represent the high and low redshift data
from Vikhlinin et al. (2009), respectively, while the blue data
points are from Vikhlinin et al. (2006).

The observational data points clearly have a wide spread that
encompasses all of our models at the largest masses. At the very
lowest masses the observations have a higher value than any of
our simulated models, however the number of data points in this
region is also low.

Figure 4 shows that all models are consistent with observa-
tions at the large mass range, however at the medium-to-low end,
we note that the data is only consistent with standard gravity and
Sym A. Sym B, Sym C, and Sym D all fall substantially far be-
low the observed data point, a clue that the mass-temperature re-
lation could be a prime candidate for excluding modified gravity
models.

Figure 5 show the same behaviour, but here all models re-
main consistent with observations for a wider mass-range than
the symmetrons. First, at temperatures below 1 keV, we can
point to FofR04 and FofR05 no longer being consistent with the
observations.

In Figs. 6 and 7 we present the proxy mass indicator relation
M-YX for the symmetron- and f (R)-gravity models respectively,
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Fig. 6. Mass-YX data for ΛCDMS and the symmetron models for
the stacked galaxy clusters, including observational data points from
Eckmiller et al. (2011; yellow) and Lovisar et al. (2015; magenta).
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Fig. 7. M-YX data for ΛCDM f (R) and the f (R)-gravity models for
the stacked galaxy clusters, including observational data points from
Eckmiller et al. (2011; yellow) and Lovisar et al. (2015; magenta).

while also including the observations from the literature. The
yellow circles represent the data from Eckmiller et al. (2011) and
the magenta triangles are data from Lovisari et al. (2015).

Studying the mass-YX relation gives us no additional insight
in our search for signatures of modified gravity, compared to
studying the hydrostatic mass-temperature relation. Models that
are easily distinguishable in the mass-YX figures were already
distinguishable in the hydrostatic mass-temperature figures, in
fact certain models, such as Sym C, is no longer easily distin-
guishable from ΛCDM. The mass-YX is still, however, an in-
teresting quantity to study owing to the observations being less
sensitive to systematics. We note that the modified gravity mod-
els for the colder galaxy clusters, T < 3 keV, show a larger value
compared to that of ΛCDM in the mass-YX figures where, for
the hydrostatic mass-temperature figures, the modified gravity
models had a lower value.

The compelling reason for using the mass proxy is that it
is easier to observe the mass of the gas than it is to resolve the
observables needed to construct the hydrostatic mass, as detailed
above. We therefore perform the analysis once more for the mass
of the gas. In Figs. 8 and 9 we present the mass-temperature
relation for the gas mass instead of the hydrostatic mass, with
observations from the same sources as for the mass proxy, as
well as from Andersson et al. (2011) as blue data points.
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Symmetron B
Symmetron C
Symmetron D

Fig. 8. Gas mass-temperature data for ΛCDMS and the symmetron
models for the stacked galaxy clusters, including observational data
points from Eckmiller et al. (2011; yellow), Lovisar et al. (2015; ma-
genta) and Anderson et al. (2011; blue).
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Fig. 9. Gas mass-temperature data for ΛCDM f (R) and the f (R)-gravity
models for the stacked galaxy clusters, including observational data
points from Eckmiller et al. (2011; yellow), Lovisar et al. (2015; ma-
genta) and Anderson et al. (2011; blue).

The gas mass-temperature relation shows much larger vari-
ations between the models than the two previous relations did.
For the least massive clusters, we note as much as an order of
magnitude difference between ΛCDMS and Sym D. Other than
the magnitude of the deviations, the models deviate in the same
order as before.

The gas mass-temperature relation seems to be much more
sensitive to the effects of the modified gravity theories than the
hydrostatic mass-temperature and the mass-proxy relations. This
is due to the fact that the mass of the gas is less affected by
the fifth force than the total mass and the temperature of galaxy
clusters, owing to an environmental screening (Hammami et al.
2015; Hammami & Mota 2015).

The fifth force will cause the dark matter and gas of a galaxy
cluster to cluster at a faster rate than in standard gravity, how-
ever, owing to the collisionless nature of dark matter; the dark
matter collapses at a much faster rate than the gas. This in turn
means that the screening mechanism, which is dependent on
the total density environment, is activated so that not as much
additional gas was added to a galaxy cluster, compared to the
amount of additional dark matter. While the fifth force increases
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Table 2. Result from fitting a power law to our simulated mass-
temperature relation.

Models a b
ΛCDMS 0.360 ± 0.014 1.742 ± 0.014
ΛCDMf(R) 0.405 ± 0.025 1.720 ± 0.025
Sym A 0.347 ± 0.010 1.760 ± 0.014
Sym B 0.270 ± 0.021 1.843 ± 0.038
Sym C 0.323 ± 0.016 1.794 ± 0.026
Sym D 0.213 ± 0.015 1.933 ± 0.035
FofR04 0.325 ± 0.016 1.718 ± 0.027
FofR05 0.347 ± 0.019 1.806 ± 0.036
FofR06 0.421 ± 0.016 1.717 ± 0.028

the temperature of the galaxies, the same for the total hydro-
static mass-temperature relation and the gas mass-temperature
relation, the amount of additional mass is much lower in the gas
mass than in the hydrostatic mass.

5.1. Analytical fit

Theory predicts that the hydrostatic mass and temperature
should follow a power-law function of the form of Eq. (16). It
is therefore interesting to see if we can fit a power-law relation
between the mass and temperature to our simulation results.

We perform a non-linear least squares fit, using the
Levenberg-Marquardt algorithm (Levenberg 1944), through the
SciPy Python package (Jones et al. 2001) to fit the data with a
power law function

M = aT b. (22)

The fit analysis is run on the mass-temperature relation using the
stacked galaxy clusters, to avoid skewing the results with the out-
liers. The results for b and its corresponding standard deviations
are presented in Table 2.

We note that our ΛCDM slopes are steeper than the predicted
slope of 3/2, however this behaviour is known from previous
N-body simulations (Fabjan et al. 2011).

The largest deviations from the ΛCDM fits are found in the
models Sym D and FofR05, while only FofR04 and FofR06 are
consistent with ΛCDM f (R).

The symmetron best fits follow a pattern of an increasing
exponent and decreasing amplitude for a decreasing symmetry
breaking criteria. With only one model with a coupling other
than unity, as of now, we cannot discern the effect the strength
of the coupling has on the best fit. We can estimate a mass-
temperature relation correlated with the symmetry breaking cri-
teria aSSBf as

MSymmetron = 0.600a0.681
SSB × T 1.600a−0.134

SSB . (23)

This relation assumes that β = 1. The relation proves to have
a 2.4% accuracy in the amplitude and a 0.3% accuracy in the
exponent. Inserting aSSB = a0 = 1 into the relation above, we
find that the lower limit power law for the symmetron model is
T 1.6 for models where λ0 = 1 and β = 1.

We are unable to find a direct correlation between the power
and value of fR0, however the amplitude increases with a de-
creasing fR0. For both FofR04 and FofR06, the exponent is con-
sistent with ΛCDM f (R), with FofR05 having a greater power. By
assuming that the power of FofR05 is an anomoly and that the

Table 3. Various couplings based on the Sym B model.

Configuration βDM βgas

DM1G1 1.0 1.0
10G10 10 10

DM0.1G0.1 0.1 0.1
DM10G1 10 1.0
DM1G10 1.0 10
DM0.1G1 0.1 1.0
DM1G0.1 1.0 0.1

power of the f (R) mass-temperature relation is the same as in
ΛCDM f (R), we can construct a relation between fR0 and the am-
plitude as

M f (R) = 0.184 f −0.582
R0 × T ΛCDM, (24)

with 5% accuracy.

5.2. Universal and non-universal coupling

In our previous work (Hammami & Mota 2015), we studied
the effect of having two different couplings to matter; one for
baryons βgas and one for dark matter βDM. We repeat part of the
analysis above for the Sym B model, but with a wide range of
various coupling combinations now, as shown in Table 3.

Our hope is to find some signature that can distinguish mod-
els with universal coupling from models with non-universal cou-
pling. If it was possible to find traces of a non-universal coupling
in observations, this would essentially be a breaking of the equiv-
alence principle.

In Fig. 10, we present the hydrostatic mass-temperature re-
lation, the mass-YX relation, and gas mass-temperature relation
for both the universal and non-universal models.

Once again, we see that we have a hard time distinguishing
the models when studying the mass-YX relation, a better time
distinguishing models for the hydrostatic mass-temperature re-
lation, and a very easy time distinguishing models in the gas
mass-temperature relation.

Models where the gas is minimally coupled to the scalar
field show very little deviations from the standard gravity mass-
temperature relation. This effect is seen in all three types of
mass-temperature relations. This finding is in agreement with
results in Hammami & Mota (2015), where we noted that de-
viations in the temperature profiles were not noticeably different
from standard gravity for a minimally coupled gas. Since all the
mass estimates above use either the gas or the temperature to es-
timate the mass, a minimally coupled gas results in a mass that is
also indistinguishable from the mass in standard gravity. No sig-
natures that can identify universal coupling from non-universal
coupling can be found.

6. Conclusions

In this paper we have shown, by using non-radiative hydrody-
namic cosmological simulations, that the mass-temperature re-
lation can be a prime candidate for testing modified gravity the-
ories against observations, with the mass of the gas, rather than
the total hydrostatic mass, being the mass quantity that shows
strongest signatures of modified gravity theories.

The strength of studying the mass-temperature relation lies
in the fact that the modified gravity models can easily be dis-
tinguished from the ΛCDM reference values, masses below
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Fig. 10. Top panels: hydrostatic mass-temperature ratio, middle panels: mass-YX relation, and bottom panels: gas mass-temperature relation for
universally and non-universally coupled models, respectively. The obervational data points in the top row are taken from Vikhlinin et al. (2009;
yellow and magenta) and Vikhlinin et al. (2006; blue), while the data points in the middle and bottom row are taken from Eckmiller et al. (2011;
yellow), Lovisar et al. (2015; magenta) and Anderson et al. (2011; blue).

M = 5 × 1014 M� h−1, and temperatures below kBT = 1 keV,
the best-fit analysis returns a power law very unlike the theoreti-
cal M ∝ T 3/2. A framework for observing the mass-temperature
relation already exists and large quantities of data are available.

Unfortunately the amount of observations available in this
mass-temperature range is sparse, with the majority of the obser-
vations being for massive, hot galaxy clusters where all models
are indistinguishable from one another. However with major sur-
veys, such as Chandra and XMM-Newton, the data is available,
and only needs to be assembled.

Alternatives to the standard hydrostatic mass-temperature re-
lation were explored by using the mass proxy YX , as well as
the mass of the gas directly. Both of these suffer less observa-
tional systematics than the hydrostatic mass observations since
the gas can be directly observed. The mass proxy, unfortunately,
diminished the deviations that would have allowed us to easily
distinguish the models. With the gas mass-temperature relation,
however, the models could be distinguished to an even greater

degree. We therefore propose that the gas mass-temperature re-
lation can be an even stronger candidate than the standard hy-
drostatic mass-temperature relation.

We have shown that, for the symmetron models, the hy-
drostatic mass-temperature relation is strongly sensitive to the
symmetry-breaking criteria aSSB with a smaller dependency on
the strength of the coupling to the scalar field. The analytical
fit for the symmetron models also showed a high sensitivity
to the symmetry-breaking criteria, and we constructed a mass-
temperature relation with aSSB as an input parameter for all sym-
metron models with a coupling factor β = 1. While the power of
the f (R) hydrostatic mass-temperature relations did not appear
to follow any relation to the choice of fR0, we are able to present
a relation for the amplitude of the hydrostatic mass-temperature
relation and the input parameter fR0.

Numerous pitfalls still exist for using the hydrostatic mass-
temperature relation as a primer on modified gravity theories,
such as the assumption that galaxy clusters are in hydrostatic
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equilibrium, the number of assumptions related to observational
astronomy, and numerical uncertainties. However, equipped with
the information presented in this paper, a renewed focus on
studying and understanding the mass-temperature relation in fu-
ture studies seems warranted, particularly with a focus on the gas
mass-temperature relation that does not require an assumption of
hydrostatic equilibrium.

Furthermore, if the gas is minimally coupled to the scalar
field then the temperature of the gas is unchanged and, therefore,
the mass shows no deviations from general relativity. This means
that, even if the dark matter is coupled to the scalar field, the
mass-temperature relation may still be indistinguishable from
standard gravity. The mass-temperature relation is thus a poor
probe of gravity for models where the baryons are minimally
coupled to the scalar field.
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