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Summary

The efforts by the international genome sequenc-

ing projects have resulted in huge and expo-

nentially growing databases of public DNA 

and protein sequence information. The complete 

genome sequence of many organisms has already 

been published, and even the human genome 

passed the phase of sequencing as of writing.

However, a detailed analysis of these genomes, 

genes, and gene products is necessary  in order 

to reach a better understanding of their function 

in the cells of the organism. The major part of 

the analysis requires experimental biology and 

biochemistry, however, much information can be 

obtained by sequence analysis using computa-

tional methods.

Fundamental tasks in this analysis are the 

comparison of two sequences and the searching of 

databases of amino acid and nucleotide sequences 

for a similar sequence. This will often reveal val-

uable information about the possible structure 

and function of the protein. Several programs 

exist for performing such searches with varying 

sensitivity and speed. Accurate database searches 

may require large computational resources. As 

the databases are getting larger, longer time is 

required to search them. In addition, more sen-

sitive tools are required in order to identify less 

obvious relationships between protein. The aim 

of this work was hence to develop novel algo-

rithms for database searching with increased sen-

sitivity and speed.

This work presents three new methods for 

performing both sensitive and rapid database 

searches. Two of the methods gain speed by 

taking advantage of 8-way parallel processing 

technology now available in common computers. 

By the use of some of these tools, a new family 

of proteins have also been identifi ed.

Paper I
Rognes T. and Seeberg E.

SALSA: improved protein database searching by 
a new algorithm for assembly of sequence frag-
ments into gapped alignments.
Bioinformatics (1998) 14, 839-45.

Paper II
Rognes T. and Seeberg E. 

Six-fold speed-up of Smith-Waterman sequence 
database searches with parallel processing on 
common microprocessors.
Bioinformatics (2000)

Paper III
Rognes T.

ParAlign: a parallel sequence alignment algo-
rithm for rapid and sensitive database searches
(submitted for publication)

Paper IV
Luna L., Rognes T., Eikså A.C., Otterlei M. and 

Seeberg E.

Identifi cation of a human member of a new family 
of DNA repair proteins with homology to E. coli 

Exonuclease III
(manuscript in prep.)

List of papers
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Computer tools for comparison of sequences and 

database searches are essential in the analysis and 

understanding of genetic sequences. Using these 

powerful methods, the evolutionary relationships 

between sequences can often be revealed and 

may give important clues to the structure and 

function of the molecules in the cells.

This chapter will start with a short and sim-

plifi ed introduction to some of the basics in 

molecular biology, followed by some informa-

tion about sequence databases. Various methods 

for sequence comparison and database search-

ing will then be presented, followed by a discus-

sion on how these methods can be implemented 

on computer hardware with parallel processing 

capability. Finally, some results from compari-

sons of the different methods will be described.

Introduction to and reviews of methods for 

genetic sequence analysis are available in sev-

eral papers (Altschul et al. 1994; Vingron and 

Waterman 1994; Argos 1994; Argos et al. 1991) 

and books (Sankoff and Kruskal 1983; Doolittle 

1986, 1990, 1996; Waterman 1995; Gusfi eld 

1997).

1.1 Molecular biology basics
With the intent that this thesis should be read-

able by a larger audience with background in 

either molecular biology or informatics, a short 

and simplifi ed introduction to some of the basics 

in molecular biology is given below.

1.1.1 DNA
DNA (deoxyribonucleic acid) is the primary 

medium for permanent storage of genetic infor-

mation in a biological system, and is responsible 

for transfering genetic information from parent 

to progeny. DNA is a linear polymer made up 

of repeating units of deoxyribonucleotides. Each 

unit is composed of the sugar 2-deoxyribose, 

phosphate and a purine (C, T) or pyrimidine (A, 

G) base. The nucleotides are connected through 

phophodiester bonds between the phosphate and 

sugar of consecutive nucleotides. The genetic 

information is encoded in the sequence of the 

four possible bases in each nucleotide: adenine 

(A), cytosine (C), guanine (G) and thymine (T). 

See table 1 for an overview of the bases and 

their symbols, including some ambiguous sym-

bols used. The nuclear DNA of complete organ-

isms is found in the form of duplex DNA, which 

is a pair of two complementary antiparallel DNA 

strands arranged in a right-handed double helix 

1 Introduction

with hydrogen bonds between complementary 

bases (base pairs) on opposite strands. The region 

of DNA that is the basis for a specifi c molecular 

cell product, e.g. a protein, including regulatory 

regions, is called a gene. The entire genetic infor-

mation encoded in the DNA sequence of an 

organism is called a genome.

1.1.2 RNA
Using specifi c regions of the DNA as template, 

the RNA polymerase enzymes synthesise RNA 

(ribonucleic acid) molecules in a process called 

transcription. RNA is very similar to DNA, but 

RNA sequence

DNA sequence

amino acid sequence

protein tertiary structure

protein function

transcription

translation

folding

interaction with
other molecules

Figure 1: The fl ow of genetic information
The genetic information is encoded in the DNA sequence 
and transfered to an RNA sequence during transcription 
and then into an amino acid sequence during transla-
tion. The amino acid sequence determines the folding of 
the protein into a specifi c structure, which in turn defi nes 
the protein function through interaction with other mol-
ecules in the cell.
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has the deoxyribose sugars replaced by ribose 

and the thymine (T) bases replaced by uracil (U), 

as shown in fi gure 1 and table 1. RNA is a tem-

porary medium of genetic information, but may 

also have important enzymatic or other functions 

by itself.

1.1.3 Protein sequence
The blueprint of DNA termed mRNA (messen-

ger RNA) is used as a template for protein syn-

thesis. The ribosomes synthesise the proteins by 

translating codons consisting of three consecu-

tive bases in the RNA into a sequence of amino 

acids as shown in fi gure 1. Table 2 shows the 

20 different amino acids that can be encoded in 

DNA. Codons are translated into amino acids by 

the almost universal genetic code shown in table 

3.

The 20 encoded amino acids have different 

chemical and structural properties, which may 

be important for the structure and function of 

the protein. However, some of the amino acids 

have quite similar properties, like e.g. the small 

hydrophobic amino acids leucine, isoleucine and 

valine.

The amino acids are linked by peptide bonds. 

The simple linear sequence of amino acids in a 

protein is called the primary structure of a pro-

tein.

1.1.4 Protein structure
As the protein is synthesised it folds into a com-

plete three-dimensional structure called the ter-

Table 3: The universal genetic code
Codons of triplets from RNA sequences are translated into 
amino acid sequences by this almost universal code.

 1st nt 2nd nt    3rd nt
   U C A G
 U U Phe Phe Leu Leu
 U C Ser Ser Ser Ser
 U A Tyr Tyr Stp¶ Stp¶

 U G Cys Cys Stp¶* Trp
 C U Leu Leu Leu Leu
 C C Pro Pro Pro Pro
 C A His His Gln Gln
 C G Arg Arg Arg Arg
 A U Ile Ile Ile Met§

 A C Thr Thr Thr Thr
 A A Asn Asn Lys Lys
 A G Ser Ser Arg Arg
 G U Val Val Val Val§

 G C Ala Ala Ala Ala
 G A Asp Asp Glu Glu
 G G Gly Gly Gly Gly
¶ Stp indicates the end of the protein coding sequence and is 
not a real amino acid.
* UGA may also code for selenocysteine (Sec).
§ Both AUG and GUG may serve as initiation codons.

Table 1: Nucleotide symbols
The nucleotides and bases in DNA and RNA are usually 
represented by the symbols shown according to the 
IUPAC-IUBMB standard. Symbols for representing ambig-
ous positions are also shown. The two rightmost columns 
show possible encodings of the symbols for computer 
use.

Nucleotide Symbol Code1 Code2
None (gap) – 0 0
Adenine A 1 1
Cytosine C 2 2
Guanine G 3 4
Thymine / Uracil † T / U 4 8
A or C M 5 3
A or G R 6 5
A or T W 7 9
C or G S 8 6
C or T Y 9 10
G or T K 10 12
A, C or G V 11 7
A, C or T H 12 11
A, G or T D 13 13
C, G or T B 14 14
A, C, G or T N 15 15
† In RNA sequences, thymine is replaced by uracil.

Table 2: Amino acid symbols
The amino acids in proteins are usually represented by 
the three-letter or one-letter symbols shown, according 
to the IUPAC-IUBMB standard. Some ambigous and other 
special symbols are also included. A possible encoding for 
computer use is indicated in the rightmost column.

Amino Acid 3-Symbol 1-Symbol Code
None (gap) ––– – 0
Alanine Ala A 1
Arginine Arg R 2
Asparginine Asn N 3
Aspartic acid Asp D 4
Cysteine Cys C 5
Glutamine Gln Q 6
Glutamic acid Glu E 7
Glycine Gly G 8
Histidine His H 9
Isoleucine Ile I 10
Leucine Leu L 11
Lysine Lys K 12
Methionine Met M 13
Phenylalanine Phe F 14
Proline Pro P 15
Serine Ser S 16
Threonine Thr T 17
Tryptophan Trp W 18
Tyrosine Tyr Y 19
Valine Val V 20
Aspartic acid or Aspargine Asx B 21
Glutamic acid or Glutamine Glx Z 22
Undetermined amino acid Xxx X 23
Stop End† * 24
Selenocysteine Sec U 25
† Stop is not an amino acid but the symbols and code represent the stop 
codon during translation.
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tiary structure as indicated in fi gure 1. Short 

stretches of amino acids in a protein may form 

simple and specifi c secondary structure elements, 

i.e. α-helices or β-sheets. The protein structure 

is almost completely determined from the pri-

mary sequence of the protein (Anfi nsen 1973). 

In general, a given sequence folds into one spe-

cifi c structure, however, in some cases, e.g. with 

prions, stable alternate structures are also possi-

ble. Occasionally, just a single amino acid change 

at an important position in the protein, may have 

a substantial effect on the structure and function 

of the protein. Other changes may have no effect. 

The structure of a protein is usually stable, but 

it may be slightly changed by the interaction 

with other molecules. It is possible to predict the 

structure of small peptides from their amino acid 

sequence by computational methods with reason-

able accuracy, however, prediction of the struc-

ture of normally sized proteins is still exceedingly 

diffi cult (Moult 1999). The protein folding prob-

lem is perhaps the most challenging problem 

within bioinformatics today.

1.1.5 Protein function
The function of a protein is determined by the 

structure and its interactions with other mole-

cules in the cell. Some proteins have catalytic 

activity and are called enzymes. Other proteins 

form structural elements in the cells or act as sig-

nalling molecules.

1.1.6 Evolution
Even though DNA is a relatively stable molecule, 

it may be damaged by normal cellular metabo-

lism or by environmental agents like radiation 

and various chemicals (Lindahl and Wood 1999). 

Replication errors and recombination may also 

lead to changes in the DNA sequence. Unless 

being repaired, DNA damage may lead to muta-

tions, which are permanent changes of the DNA 

sequence. Mutations take the form of base substi-

tutions, deletions or insertions. Due to the redun-

dancy of the genetic code, some mutations in 

DNA that encode a protein sequence do not lead 

to changes in the amino acid sequence. Such 

mutations are called silent mutations. However, a 

Figure 2: Two proteins with very similar three-dimensional structure, yet limited sequence similarity
The structures of two repair proteins in the helix-hairpin-helix superfamily, both complexed with DNA (gray ribbons), 
are shown.
Left: E. coli AlkA (3-methyladenine repair glycosylase) (Hollis et al. 2000; PDB: 1DIZ).
Right: Human hOGG1 (8-oxoguanine repair glycosylase) (Bruner et al. 2000; PDB: 1EBM).
Red ribbons: α-helices. Yellow arrows: β-sheets. Created with Rasmol (Sayle 1992, Bernstein 1998).

E.c. AlkA  72 VKTYIKTIGLYNSKAENIIKTCRILLEQHNG----------EVPEDRAALEALPGVGRKT    121
     |+ +++ +||   +|  +  + | +||+  |             |   ||  ||||| | 
H.s. hOGH1 192 VEAHLRKLGL-GYRARYVSASARAILEEQGGLAWLQQLRESSYEEAHKALCILPGVGTKV    250

E.c. AlkA 122 ANVVLNTAFGWP-TIAVDTHIFRVCNR                                     147
     |+ +   |   |  + || |++ +  |
H.s. hOGH1 251 ADCICLMALDKPQAVPVDVHMWHIAQR                                     277

Figure 3: Sequence alignment of the proteins above
The E. coli AlkA protein (SWISS-PROT acc.no. P04395; Evensen and Seeberg 1982; Nakabeppu et al. 1984) and the human 
hOGG1 protein (EMBL acc.no. Y11838; Bjoras et al. 1997) are optimally aligned using the BLOSUM62 amino acid substitu-
tion matrix and affi ne gap penalties (10, 1). Identical amino acids are indicated by a bar (|), while similar amino acids are 
indicated by a plus sign (+). Gaps in the sequences are indicated by a dash (–).
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mutant protein will result if the protein sequence 

is changed.

Due to mutations and recombination, mutant 

protein forms that have superior properties rel-

ative to the original protein may appear. How-

ever, in most cases the mutant protein will not 

be useful for the organism and may have a det-

rimental effect on the cellular metabolism. The 

best variants will be selected during evolution. In 

the course of time many mutations may appear 

and the protein and DNA sequences will gradu-

ally diverge from the originals. The structure and 

function of the mutant and original protein may 

still be quite similar.

Later, the mutant and original DNA sequences 

will have diverged so much that there is no obvi-

ous sequence similarity left, however it might still 

be possible to see sequence similarities between 

the mutant and original protein sequences, and 

the protein structures and functions may be quite 

similar (fi gures 2 and 3).

After even more mutations, no signifi cant 

sequence similarity between the mutant and orig-

inal protein is detectable, even though both struc-

ture and function might still be similar.

It is possible that similar protein structures or 

functions have appeared independently. In this 

case, the DNA and protein sequences of the pro-

teins are usually completely different.

Two related proteins are said to be ous if 

they have evolved from a common ancestor. If 

two protein sequences are similar, the proteins 

are usually homologous, however absence of 

sequence similarity does not mean that the pro-

teins are nonhomologous.

1.1.7 Use of sequence alignments and 
database searches
Since the structure and function of a protein 

is predominantly determined by the amino acid 

sequence of the protein, there are many important 

practical uses of the results of sequence align-

ments and database searches.

Identifi cation of functionally important residues
A pairwise alignment of two proteins (or pref-

erably a multiple sequence alignment of many 

proteins) will indicate which residues are identi-

cal, which are conserved and which are not con-

served between the sequences. This alignment 

may indicate the position of important function-

ally active residues, because important residues 

often are unchanged or conserved. Conservation 

of residues in these sites will usually indicate 

that the functional aspects associated with these 

sites are conserved between the proteins.

Prediction of function from sequence
If, for instance, a bacterial protein has been well 

characterised and a mammalian homologue is 

identifi ed in the sequence databases, the mamma-

lian protein might have a similar function as the 

bacterial protein. This concept has been exten-

sively used, and has often lead to a rapid identi-

fi cation of many important human genes.

Homology modelling of protein structure
It is generally impossible to predict the structure 

of entire proteins computationally ab initio from 

the sequence alone, but other approaches have 

been more successful. If a homologous protein 

with known tertiary structure exists, it may be 

used as a model. A partial or entire protein may 

be modelled on the basis of another protein. It 

has been estimated that the number of essentially 

different protein structures is limited to about one 

thousand (Chotia 1992). As the number of pro-

teins with known structure increases, it will be 

increasingly easier to fi nd another protein with 

similar sequence and known structure.

Multiple alignment and phylogenetic analysis
A pairwise alignment between all pairs of 

sequences is often an initial step in methods 

for multiple sequence alignment and phyloge-

netic analysis. Of particular importance is the 

sequence alignment score which may be used as 

a measure of sequence divergence or phyloge-

netic distance.

Prediction of protein coding regions in DNA
If a given DNA sequence is translated in all six 

possible reading frames and the resulting amino 

acid sequences are used as query sequences in 

a search through protein databases, signifi cant 

matches may indicate that the region in the given 

reading frame codes for a protein (Gish and 

States 1993).

1.2 Sequence databases
Genetic sequence information is collected in 

a plethora of databases with interconnections. 

Some basic information about the largest and 

most important databases with nucleotide and 

protein sequence information will be presented.

1.2.1 Nucleotide sequence databases
When the nucleotide sequence of a gene or an 

entire genome has been determined it is often 

deposited in a public sequence database. Many 

journals require that sequences are submitted 

to these databases before manuscripts will be 

accepted for publication.
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Nucleotide sequences are sent to one of the 

three international public nucleotide databases: 

GenBank, EMBL and DDBJ. GenBank is hand-

led by the National Centre for Biotechnology 

Information (NCBI) in the United States (Benson 

et al. 2000). The EMBL nucleotide sequence 

database (Baker et al. 2000) is handled by the 

European Bioinfomatics Institute (EBI), an out-

station of the European Molecular Biology Labo-

oratories (EMBL). The DDBJ database (Tateno 

et al. 2000) is handled by the DNA Data Bank of 

Japan (DDBJ). These three institutions collabo-

rate and exchange information with each other, 

making the contents of the three databases essen-

tially identical. The information in these data-

bases is continously updated and is available free 

over the Internet.

The sequence entries are placed in different 

divisions of the nucleotide databases, which are 

distributed as several fi les. Below is a descrip-

tion of the divisions in GenBank. The other two 

databases have similar divisions.

The main nine divisions are based on the clas-

sifi cation of the source organism of the sequences: 

primate (PRI), rodent (ROD), other mammalian 

(MAM), other vertebrates (VRT), invertebrates 

(INV), plant including fungi and algae (PLN), 

bacterial (BCT), viral (VRL), and phage (PHG). 

Sequences in these sections are usually of high 

quality.

Other divisions include the EST division, 

which contains sequences from Expressed 

Sequence Tags (ESTs). These are short (usually 

300-500bp) single reads of cDNA sequences gen-

erated from expressed mRNA sequences from 

various cells or tissues, most of which are of 

human and mouse origin. These sequences are a 

valuable resource in the identifi cation of novel 

mammalian homologues of proteins previously 

characterised in other organisms.

The HTG division contains High-Througput 

Genomic Sequences which are more or less 

unfi nished genomic sequences , mainly of human 

origin, from various high-throughput sequencing 

centers. When the sequences are fi nished they 

are moved to another relevant division.

The STS division contains Sequence Tagged 

Sites (STSs), which are short (usually 200-500bp) 

sequences used as landmarks in a genome. These 

sequences are unique within their genome and are 

hence useful in the physical mapping of genes.

The GSS section contains Genome Survey 

Sequences (GSS), which are similar to EST 

sequences, but are from genomic DNA, and not 

mRNA.

In addition, there are divisions for patent 

(PAT), synthetic (SYN) and unannotated (UNA) 

sequences.

By July 2000, the public nucleotide databases 

contain more than 8 000 million nucleotides 

divided into over 6 millon sequence entries. The 

databases are growing exponentially, or even 

faster. Figure 4 shows a graph of the growth 

of Genbank from December 1982 to February 

2000. There has been a few noticable shifts in 

the growth rate, as indicated by the trend lines 

100 000

1 000 000

10 000 000

100 000 000

1 000 000 000

10 000 000 000

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

Release date

T
o

ta
l n

u
m

b
er

 o
f 

n
u

cl
eo

ti
d

es

Figure 4: The growth of the GenBank nucleotide database
The total number of nucleotides in the database is plotted on a logarithmic scale versus the release date. The trend lines 
indicate the average growth rate in three different periods, where the red line corresponds to an approximate doubling 
time of 22 months, the green line to 15 months and the blue line to 7 months.
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in the fi gure. The size of GenBank was doubling 

approximately every 22 months in the period 

from August 1987 to February 1995, and every 

15 months in the period from April 1995 to 

August 1999. However, in the period from Octo-

ber 1999 to February 2000, the growth repre-

sented a doubling time of less than 7 months. 

The fi rst shift probably refl ects the publication 

of several complete bacterial genomes and huge 

amounts of EST sequences. The most recent shift 

in growth rate probably refl ects the huge amounts 

of data from the D. melanogaster and the human 

genome sequencing projects.

In addition to the public sequence databases,  

several commercial and confi dential databases 

exist, which are used by companies in the phar-

maceutical and genomics industry.

1.2.2 Genome sequencing projects
Since the publication of the entire genome of 

the bacteria Haemophilus infl uenzae Rd by Fleis-

chmann et al. in 1995 (fi gure 5), more than 31 

other genomes from archaea, bacteria and even 

eukaryotes have been completely sequenced and 

published, including the large genomes of baker’s 

yeast (Saccharomyces cerevisiae), a roundworm 

(Caenorhabditis elegans), and the fruit fl y (Dro-
sophila melanogaster). An overview of all pub-

lished complete genomes of archaea, eubacteria 

and eukaryotes with references appears in table 

4. Many smaller complete genome sequences 

of plasmids, phage, viruses and eukaryotic 

organelles have been published previously.

The Human Genome Project (HGP) lead 

by the Human Genome Organization (HUGO) 

intends to fi nish the entire human genome of 

about 3Gbp in 2003 (Collins et al. 1998), and 

the complete sequence of human chromosome 

21 and 22 has already been published (Hattori et 
al. 2000; Dunham et al. 1999).

On 26 June 2000, the completion of the initial 

sequencing of the human genome was announced 

jointly by HUGO and Celera Genomics. The 

completed sequence, along with initial annota-

tion will be published later in 2000.

Many other genome sequencing projects are 

also underway, both in public and private labora-

tories.

1.2.3 Protein databases
Potential protein coding regions in the DNA 

sequences are translated and collected in protein 

databases also including proteins indentifi ed by 

other methods. Some of the proteins are charac-

terised experimentally in great detail, others are 

given putative functions based on sequence simi-

larity to other proteins, while some are not anno-

tated at all.

SWISS-PROT (Bairoch and Apweiler, 2000) 

is a protein database containing a subset of these 

proteins with high quality annotations. SWISS-

PROT is curated by the Swiss Institute of Bio-

informatics (SIB) and the EBI. Release 38 from 

July 1999 contained 80 000 sequences with a 

total of 28 085 965 amino acid residues.

PIR-International (Protein Identifi cation 

Resource) (Barker et al. 2000) is another curated 

protein database. Release 64 from 31 March 2000 

contained a total of 61 827 019 amino acid resi-

dues divided into 177 674 sequence entries.

PDB (Protein Data Bank) (Berman et al. 
2000) is a database of three-dimensional mole-

cular structure information, mainly of proteins, 

but also of nucleic acids and carbohydrates. The 

structures have primarily been determined by 

X-ray crystallography and NMR (Nuclear Mag-

netic Resonance). By 4 April 2000, PDB con-

tained the structures of 10 703 proteins and 1 369 

other molecules.

1.2.4 File formats
All sequence databases are distributed in the 

form of fl at ascii text fi les. Each record in the 

database contains the sequence and additional 

information, including source organism, acces-

sion numbers, gene or protein name, potential 

protein coding regions, transcribed regions, reg-

ulatory regions, sequence motifs and more. A 

sample entry from the EMBL database is shown 

in fi gure 6. However, the shorter FASTA format 

where only one line of information in addition 

to the sequence is included, is often used when a 

Figure 5: The circular genome of Haemophilus infl uen-
zae Rd, the fi rst bacteria to be completely sequenced
From Fleischmann et al. (1995).
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more compact form is required.

In order to avoid wasting unnecessary time 

on disk reading and to perform effective data-

base searches, the database text fi les should be 

parsed and stored in a more effi cient format prior 

to searching. Additionally, nucleotide data con-

tain special codes in cases where the sequenc-

ing has not been able to identify unambigously 

the correct nucleotide in a given position. A total 

of 15 different symbols representing all possi-

bilities is used according to the IUPAC-IUBMB 

standard, as shown in table 1.

Usually, nucleotide data is compressed to 2 

bits per nucleotide by randomly replacing the 

ambigous symbols by one of the possible sym-

bols. Four nucleotide positions can hence be rep-

resented in a byte. This means that the entire 

8Gbp of nucleotide data available at present can 

be stored in about 2GB of memory. The informa-

tion about the ambigous positions can be stored 

separately, if necessary.

NCBI has defi ned two standard database fi le 

formats that are used by BLAST version 1 and 

2 (Altschul et al. 1990; 1997), respectively. In 

this format, all sequence data is stored in one 

fi le, while additional information about each 

sequence, e.g. organism, accession numbers, gene 

or protein name etc, is stored in a second fi le. A 

third fi le contains indicies into the fi rst two fi les 

with the positions of each sequence and addi-

tional information. Summary information (size, 

name, date etc) about the database is also stored 

in the third fi le.

1.3 Protein sequence comparison and 
database searches
To assess the amount of similarity or differences 

between sequences, various sequence compari-

son methods are employed. The amount of sim-

ilarity is expressed by a score or a statistical 

parameter. In addition, a form of visualisation of 

the similarity is often given.

The degree of similarity can be defi ned in 

different ways, however it is usually based on 

an alignment of the two sequences. Alternative 

measures of protein similarity can be based 

on amino acid composition or oligopeptide fre-

quency (Solovyev and Makarova 1993) or in 

Table 4: Overview of completed genomes of archaea, eubacteria and eukaryotes
Information about the completely sequenced genomes of 6 archaea (A), 23 eubacteria (B) and 3 eukaryotes (E) is sum-
marised. Based on data from The Institute of Genomic Research (TIGR), EBI and NCBI.

 No Organism Genome Size Acccession Group Reference
 1 Haemophilus infl uenzae Rd, KW20 1.83 Mbp L42023 B Fleischmann et al. (1995)
 2 Mycoplasma genitalium, G-37 0.58 Mbp L43967 B Fraser et al. (1995)
 3 Methanococcus jannaschii, DSM 2661 1.66 Mbp L77117 A Bult et al. (1996)
 4 Synechocystis sp., PCC 6803 3.57 Mbp AB001339 B Kaneko et al. (1996)
 5 Mycoplasma pneumoniae, M129 0.81 Mbp U00089 B Himmelreich et al. (1996)
 6 Saccharomyces cerevisiae, S288C 13       Mbp  E Goffeau et al. (1996)
 7 Helicobacter pylori, 26695 1.66 Mbp AE000511 B Tomb et al. (1997)
 8 Escherichia coli, K-12 4.60 Mbp U00096 B Blattner et al. (1997)
 9 Methanobacterium thermoautotrophicum, delta H 1.75 Mbp AE000666 A Smith et al. (1997)
 10 Bacillus subtilis, 168 4.20 Mbp AL009126 B Kunst et al. (1997)
 11 Archaeoglobus fulgidus, DSM4304 2.18 Mbp AE000782 A Klenk et al. (1997)
 12 Borrelia burgdorferi, B31 1.44 Mbp AE000783 B Fraser et al. (1997)
      and Casjens et al. (2000)
 13 Aquifex aeolicus, VF5 1.50 Mbp AE000657 B Deckert et al. (1998)
 14 Pyrococcus horikoshii, OT3 1.80 Mbp BA000001 A Kawarabayasi et al. (1998)
 15 Mycobacterium tuberculosis, H37Rv 4.40 Mbp AL123456 B Cole et al. (1998)
 16 Treponema pallidum, Nichols 1.14 Mbp AE000520 B Fraser et al. (1998)
 17 Chlamydia trachomatis, serovar D (D/UW-3/Cx) 1.05 Mbp AE001273 B Stephens et al. (1998)
 18 Rickettsia prowazekii, Madrid E 1.10 Mbp AJ235269 B Andersson et al. (1998)
 19 Caenorhabditis elegans * 97       Mbp  E The C. elegans Sequencing Consortium (1998)
 20 Helicobacter pylori, J99 1.64 Mbp AE001439 B Alm et al. (1999)
 21 Chlamydia pneumoniae, CWL029 1.23 Mbp AE001363 B Kalman et al. (1999)
 22 Aeropyrum pernix, K1 1.67 Mbp BA000002 A Kawarabayasi et al. (1999)
 23 Thermotoga maritima, MSB8 1.80 Mbp AE000512 B Nelson et al. (1999)
 24 Deinococcus radiodurans, R1 3.28 Mbp AE000513 B White et al. (1999)
    AE001825
 25 Campylobacter jejuni, NCTC 11168 1.64 Mbp AL111168 B Parkhill et al. (2000a)
 26 Neisseria meningitidis, MC58, serogroup B 2.27 Mbp AE002098 B Tettelin et al. (2000)
 27 Chlamydia muridarum, MoPn 1.07 Mbp AE002160 B Read et al. (2000)
 28 Chlamydophila pneumoniae, AR39 1.23 Mbp AE002161 B Read et al. (2000)
 29 Drosophila melanogaster * 180       Mbp  E Adams et al. (2000)
 30 Neisseria meningitidis, Z2491, serogroup A 2.18 Mbp AL157959 B Parkhill et al. (2000b)
 31 Pyrococcus abyssi 1.77 Mbp AL096836 A Heilig et al. (unpublished)

 32 Ureaplasma urealyticum, serovar 3 0.75 Mbp AF222894 B Glass et al. (unpublished)
* At the time of publication, these genome sequences still contained a few gaps, but were otherwise essentially complete.
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ID   HSA011311  standard; RNA; HUM; 1956 BP.
XX
AC   AJ011311;
XX
SV   AJ011311.1
XX
DT   15-JUN-1999 (Rel. 60, Created)
DT   15-JUN-1999 (Rel. 60, Last updated, Version 1)
XX
DE   Homo sapiens mRNA for AP endonuclease XTH2, putative
XX
KW   AP endonuclease XTH2; XTH2 gene.
XX
OS   Homo sapiens (human)
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Teleostomi;
OC   Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
XX
RN   [1]
RP   1-1956
RA   Rognes T.;
RT   ;
RL   Submitted (16-SEP-1998) to the EMBL/GenBank/DDBJ databases.
RL   Rognes T., Institute of Medical Microbiology, University of Oslo, The
RL   National Hospital, N-0027, NORWAY.
XX
RN   [2]
RA   Luna L., Rognes T., Henriksen A.C., Bjoras M., Seeberg E.;
RT   ”Putative human AP endonuclease XTH2”;
RL   Unpublished.
XX
CC   Related sequences: AL020991, Z83821, AF068624, AA554484, C01178,
CC   N59497,
CC   AL020991, N59092, N59517
XX
FH   Key             Location/Qualifi ers
FH
FT   source          1..1956
FT                   /chromosome=”X”
FT                   /db_xref=”taxon:9606”
FT                   /organism=”Homo sapiens”
FT                   /tissue_type=”lung tumor”
FT                   /map=”Xp11.21”
FT                   /clone=”IMAGE:978889”
FT   5’UTR           <1..66
FT                   /gene=”XTH2”
FT   CDS             67..1623
FT                   /gene=”XTH2”
FT                   /product=”AP endonuclease XTH2, putative”
FT                   /protein_id=”CAB45242.1”
FT                   /translation=”MLRVVSWNINGIRRPLQGVANQEPSNCAAVAVGRILDELDADIVC
FT                   LQETKVTRDALTEPLAIVEGYNSYFSFSRNRSGYSGVATFCKDNATPVAAEEGLSGLFA
FT                   TQNGDVGCYGNMDEFTQEELRALDSEGRALLTQHKIRTWEGKEKTLTLINVYCPHADPG
FT                   RPERLVFKMRFYRLLQIRAEALLAAGSHVIILGDLNTAHRPIDHWDAVNLECFEEDPGR
FT                   KWMDSLLSNLGCQSASHVGPFIDSYRCFQPKQEGAFTCWSAVTGARHLNYGSRLDYVLG
FT                   DRTLVIDTFQASFLLPEVMGSDHCPVGAVLSVSSVPAKQCPPLCTRFLPEFAGTQLKIL
FT                   RFLVPLEQSPVLEQSTLQHNNQTRVQTCQNKAQVRSTRPQPSQVGSSRGQKNLKSYFQP
FT                   SPSCPQASPDIELPSLPLMSALMTPKTPEEKAVAKVVKGQAKTSEAKDEKELRTSFWKS
FT                   VLAGPLRTPLCGGHREPCVMRTVKKPGPNLGRRFYMCARPRGPPTDPSSRCNFFLWSRP
FT                   S”
FT   3’UTR           1624..1956
FT                   /gene=”XTH2”
FT   polyA_signal    1936..1941
FT                   /gene=”XTH2”
XX
SQ   Sequence 1956 BP; 409 A; 582 C; 522 G; 443 T; 0 other;
     ctgaacagga agcagttcgc tcgcgcctag gttggcgcgg gctgggaggt gttccagccc        60
     tttaagatgt tgcgcgtggt gagctggaac atcaatggga ttcggagacc cctgcaaggg       120
     gtggcaaatc aggaacccag caactgtgcc gccgtggccg tggggcgcat tttggacgag       180
     ctggatgcgg atatcgtctg tctccaggaa accaaagtga ccagggatgc actgacagag       240
     cccctggcta tcgttgaggg ttataactcc tatttcagct tcagccgcaa ccgtagcggc       300
     tattctggtg tagccacctt ctgtaaggac aatgctaccc cagtggctgc tgaagaaggc       360
     ctgagtggcc tgtttgccac ccagaatggg gatgttggtt gctatggaaa catggatgag       420
     tttacccaag aggaactccg ggctctggat agtgagggca gggccctcct cacacagcat       480
     aagatccgca catgggaagg taaggagaag accttgaccc taatcaacgt gtactgcccc       540
     catgcggacc ctgggaggcc tgagcggcta gtctttaaga tgcgcttcta tcgtttgctg       600
     caaatccgag cagaagccct cctggcggca ggcagccatg tgatcattct gggtgacctg       660
     aatacagccc accgccccat tgaccactgg gatgcagtca acctggaatg ctttgaagag       720
     gacccagggc gcaagtggat ggacagcttg ctcagtaact tggggtgcca gtctgcctct       780
     catgtagggc ccttcatcga tagctaccgc tgcttccaac caaagcagga gggggccttc       840
     acctgctggt cagcagtcac tggcgcccgc catctcaact atggctcccg gcttgactat       900
     gtgctggggg acaggaccct ggtcatagac acctttcagg cctctttcct gctgcctgag       960
     gtgatgggct ctgaccactg ccctgtgggt gcagtcttga gtgtgtcctc tgtgcctgca      1020
     aaacagtgcc cacctctgtg cacccgcttc ctccctgagt ttgcaggcac ccagctcaag      1080
     atccttcgct tcctagttcc tctcgaacaa agtcctgtgt tggagcagtc gacgctgcag      1140
     cacaacaatc aaacccgggt acagacatgc caaaacaaag cccaagtgcg ctcaaccagg      1200
     cctcagccca gtcaggttgg ctctagcaga ggccagaaaa acctgaagag ctactttcag      1260
     ccctccccta gctgtcccca agcctctcct gacatagagc tgcctagcct accactgatg      1320
     agcgccctca tgaccccgaa gactccagaa gagaaggcag tggccaaagt ggtgaagggg      1380
     caggccaaga cttcagaagc caaagatgag aaggagttac ggacctcatt ctggaagtct      1440
     gtgctggcgg ggcccttgcg cacacccctc tgtgggggcc acagggagcc atgtgtgatg      1500
     cgtactgtga agaagccagg acccaacttg ggccgccgct tctacatgtg tgccaggccc      1560
     cggggtcctc ccactgaccc ctcctcccgg tgcaacttct tcctctggag caggcccagc      1620
     tgaaccaatg gaggcctggg gacatctggc atggtcaccc ctgcacatga tctgaggcca      1680
     gctccccttc cctgagctgc ctcctgcttc tccctcaaag tctcctaccc ttctcttcct      1740
     cttttaagcc ctctcttcct cgctttcctt cctacctagc tccttgttgg tgagcttctt      1800
     gtgccttaat cctgtgaccc agccccttac accactttcc accttcctgt ccgaagtaca      1860
     cggacactag ctgccccagg aagttgtgtg attttaaatc acttctgtct ttgctggaaa      1920
     gtgtatttgt gcataaataa agtctgtgta tttgtt                                1956
//

Figure 6: Sample EMBL sequence database entry
The sequence shown is that of the novel human hXTH gene described in paper IV. 



 17

molecular weight and isoelectric point (Hobohm 

and Sander 1995).

One of the fi rst ways to compare sequences 

was using a dot matrix plot (Gibbs and McIntyre 

1970; Maizel and Lenk 1981). However, they 

required visual inspection to evaluate the amount 

of similarity. Sequence alignments as shown in 

fi gure 3 was quickly adopted and gave an align-

ment score that could be evaluated computation-

ally.

Pairwise sequence alignment involves only 

two sequences, while multiple sequence align-

ment may be considered as a generalisation of a 

pairwise alignment to three or more sequences. 

However, a number of additional factors com-

plicate multiple alignments, both theoretically 

and computationally. Multiple alignments are 

useful for examining the evolutionary relation-

ships within a group of sequences, and are often 

constructed in connection with phylogenetic 

trees. Many multiple sequence methods involve 

the initial computation of the alignments of all 

pairs. Different programs for multiple sequence 

alignment have recently been reviewed (Thomp-

son et al. 1999).

Sequence database searches can be performed 

to fi nd the sequences most similar to a given 

query sequence. The query sequence is then com-

pared to every sequence in the database and a 

similarity score is computed which is used to 

rank the database sequences. Some widely used 

database search programs are listed in table 5.

The most accurate sequence alignment algo-

rithms are based on brute-force dynamic pro-

gramming, which is very time consuming  in 

general. Hence, heuristic alignment algorithms 

are often used in database searches, where the 

query sequence shall be aligned to thousands or 

millons of database sequences within reasonable 

computation time.

This thesis deals primarily with pairwise pro-

tein sequence alignments and how they can be 

effi ciently implemented in database searches.

1.3.1 Dynamic programming alignment 
algorithms
Sequence alignment is a form of sequence 

comparison where the differences between two 

sequences are expressed by three basic opera-

tions, namely replacement, deletion or insertion 

of symbols. Pairwise alignments can be visual-

ised as in fi gure 3. When sequence alignments 

are visualised, deletions and insertions are repre-

sented by gaps (‘–‘) in the sequences. Based on 

the alignment, a measure of sequence similarity 

or difference can be calculated and expressed as 

a score or cost. An excellent review of methods 

for sequence alignment based on dynamic pro-

gramming has been published by Pearson and 

Miller (1990).

As a basis for the following discussion of 

sequence alignments, consider a query sequence 

A of length m with symbols a
1
, a

2
, ..., a

i
, ..., 

a
m-1

, a
m
 and a database sequence B of length n 

with symbols b
1
, b

2
, ..., b

j
, ..., b

n-1
, b

n
. A so-called 

edit distance is associated with a sequence align-

ment. The edit distance is computed by a proc-

ess where the fi rst sequence (A) is transformed 

into the second sequence (B) in a series of steps, 

where each step is one of three simple opera-

tions. The three operations are (1) replacement 

of one symbol by another, (2) deletion of one or 

more symbols from sequence A, or (3) insertion 

of one or more score symbols from sequence B. 

There is a certain cost associated with each of 

these operations, and the total cost is calculated 

by adding these costs together. When alignments 

are used to look at similarities, instead of differ-

ences, equal symbols in the two sequences are 

given a high score. The optimal alignment of two 

sequences is the alignment that has the lowest 

cost or highest score.

When the entire lengths of the sequences are 

aligned, it is called a global sequence align-
ment. When only a subsequence from each of the 

sequences is aligned, it is called a local sequence 
alignment. Only the most similar subsequence 

of the sequences is included in the optimal local 

alignment.

When comparing two quite similar sequences 

in their entire length and looking for the dif-

ferences between them, a global alignment is 

computed and an alignment cost or distance is 

calculated. However, when comparing two rather 

different sequences and focusing on their simi-

larities, a local alignment and a similarity score 

is computed. The latter is usually the most appro-

riate for database searches.

Table 5: The most widely used sequence similarity 
database search programs
The program name, latest available version and literature 
reference for the programs are shown. There are major 
differences between version 1 and 2 of NCBI BLAST, and 
the versions are hence listed seperately.

Program Version Reference
FASTA 3.3.t05 Pearson and Lipman (1988) †
SSEARCH 3.3.t05 Pearson (1991) *
NCBI BLAST 1.4.9 Altschul et al. (1990)
NCBI BLAST 2.0.11 Altschul et al. (1997)
WU-BLAST 2.0a19 Gish (1996)
† FASTA runs in two major modes, with the ktup parameters set to 1 or 2.

* SSEARCH is based on the algorithm of Smith and Waterman (1981) and 
Gotoh (1982).
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For each of the possible amino acid replace-

ments, an amino acid substitution score is 

retrieved from a matrix. A positive score is 

assigned to similar amino acids, and a negative 

score is assigned to dissimilar amino acids. These 

amino acid substituition matrices are discussed 

in detail in section 1.3.3.

Deletion of symbols from the fi rst sequence 

or insertion of symbols from the second sequence 

is usually represented by gaps in the opposite 

sequence. Such gaps are introduced at the expense 

of  a gap penalty, usually dependent on the length 

of the gap. Various gap penalty schemes are 

described in detail in section 1.3.4.

In some cases, as in database searches, the 

alignment score is of primary interest. In other 

cases the explicit alignment is needed. It is com-

putationally easier to compute just the score. 

There are different methods for these two tasks, 

but they have much in common.

Global sequence alignment
The fi rst dynamic programming algorithm for 

global sequence alignment was described by 

Needleman and Wunsch (1970). It was a method 

for maximising the amount of similarity between 

two sequences. Sellers (1974) described another 

global alignment method which minimised the 

differences between the sequences and computed 

a distance measure. This method was generalised 

for gaps of any size by Waterman et al. (1976). 

There is a duality between these two methods to 

approach essentially the same problem. Smith et 
al. (1981) proved that these two methods were 

equivalent with appropriate substitution scores 

and gap penalties.

Goad and Kanehisa (1982) also made some 

refi nements to the Needleman-Wunsch algo-

rithm.

Local sequence alignment
When looking for similarities between subse-

quences of two sequences, as is usually the goal 

in the methods used to fi nd homologues by data-

base searches, a local alignment method is more 

appropriate than a global. The simple dynamic 

programming algorithm described by Smith and 

Waterman (1981) is the basis for this type of 

alignments. This algorithm can be used both to 

compute the optimal alignment score and for cre-

ating the actual alignment. It uses memory space 

proportional to the product of the lengths of the 

two sequences, mn, and computing time propor-

tional to mn(m+n). The recursion relations used 

in the original Smith-Waterman algorithm are the 

following:

 e
i,j 

= max
0<k<i

 { h
i-k,j

 - g(k) }

 f
i,j 

= max
0<l<j

 { h
i,j-l

 - g(l) }

 h
i,j
 = max { h

i-1,j-1
 + Z[a

i 
, b

j
] , e

i,j 
, f

i,j 
, 0 }

Here, h
i,j
 is the score of the optimal align-

ment ending at position (i,j) in the matrix, while 

e
i,j
 and f

i,j
 are the scores of optimal alignments 

that ends at the same position but with a gap in 

sequence A or B, respectively. Z is the amino 

acid substitution score matrix, while g(k) is the 

gap penalty function. The computations should 

be started with e
i,j 

= f
i,j 

= h
i,j 

= 0 for all i = 0 

or j = 0, and proceeded with i going from 1 to 

m and j going from 1 to n. The order of com-

putation is strict, because the value of h in any 

cell in the alignment matrix cannot be computed 

before all cells to the left or above it has been 

computed.The overall optimal alignment score is 

equal to the maximum value of h
i,j
.

Gotoh (1982) reduced the time needed by the 

algorithm to be proportional to mn when affi ne 

gap penalties of the form g(k)=q+kr are used, 

where q is the gap opening penalty and r is the 

gap extension penalty. When only the actual opti-

mal local alignment score is required, the space 

requirements were reduced to be proportional to 

the smallest of m and n. The new recursion rela-

tions for e
i,j
 and f

i,j
 are as follows:

 e
i,j 

= max { e
i,j-1

 , h
i-1,j

 - q } - r

 f
i,j
 = max { f

i-1,j
 , h

i,j-1
 - q } - r

This local sequence algorithm has been imple-

mented in the SSEARCH program (Pearson 

1991).

In the SWAT program (Green 1993), further 

improvements to the algorithm were introduced 

with an improvement in computing time of a 

factor of about two (dependent on the computer 

architecture). These so-called SWAT-optimisa-

tions are based on the fact that most of the values 

of e and f in the matrix are zero and hence do not 

contribute to h. Only when h is larger than the 

penalty of a single symbol gap (q+r) will e and 

f get a positive value. Along a row or column, e 

and f will remain zero until such a large value of 

h is encountered. This observation saves a lot of 

computation and has also been incorporated in 

the most recent versions of SSEARCH.

Alignment in linear space
When the explicit alignment is required and not 
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just the optimal score, the methods of Smith and 

Waterman (1981) and Gotoh (1982) still require 

space proportional to mn(m+n). This is because 

a matrix of size mn must be held in memory in 

order to be able to do a traceback to fi nd the opti-

mal alignment. Several authors have reduced the 

space requirements by constant factors (Altschul 

and Erickson 1986; Gotoh 1987).

However, Hirschberg (1975) described a linear 

space algorithm for computing maximal common 

subsequences. This recursive divide-and-conquer 

algorithm was adapted by Myers and Miller 

(1988) for local sequence alignment with affi ne 

gap penalties.

Suboptimal alignments
In addition to the optimal alignment, there are 

usually many suboptimal alignments that might 

be of interest. Most of these are variations of 

the optimal alignment providing additional sup-

port for the possible homology. Completely inde-

pendent suboptimal alignments, defi ned as those 

that do not involve the same pairs of amino acids, 

are also important. Waterman and Eggert (1987) 

presented an algorithm to fi nd the k best non-

intersecting similar subsequences with a mini-

mum score. Their method used time proportional 

to kmn and space proportional to mn. Huang et 
al. (1990) improved this algorithm to require 

only linear space. Huang and Miller (1991) fur-

ther improved the time usage of this algorithm. 

Barton (1993) also described an algorithm for 

locating suboptimal alignments.

Constrained alignments
Chao et al. (1992) presented an algorithm for 

computing an optimal sequence alignment 

restricted to a diagonal band of width w in the 

matrix using time proportional to nw and space 

proportional to n. This method was utilized in the 

FASTA programs (Pearson and Lipman 1988) 

for computing the fi nal ‘optimized’ scores.

A generalisation of this algorithm where 

the alignment was constrained to an arbitrarily 

bounded region with area X was later described 

by Chao et al. (1993). It used time proportional 

to X and space proportional to (m+n).

Zhang et al. (1998) presented another 

restricted alignment algorithm which was used in 

BLAST 2.0.x (Altschul et al. 1997). This method 

fi nds alignments without low-scoring regions, 

but poses no apriori bounds on the alignment 

region. It uses time proportional to the area of the 

region examined. It works by extending an align-

ment from a starting point (seed) until a score 

is reached that is a certain level below the maxi-

mum score found.

1.3.2 Heuristic alignment algorithms
When alignments are computed in the context 

of database searching, the brute-force dynamic 

programming algorithms described by Smith and 

Waterman (1981) and Gotoh (1982) are in gen-

eral too time-consuming to be practical. Hence, 

several heuristic methods have been employed to 

obtain faster searches at the expense of reduced 

sensitivity.

FASTA and related programs
Wilbur and Lipman (1983; 1984) described an 

algorithm called NUCALN for fast identifi cation 

of similarities between sequences based on an 

initial identifi cation of tuples of k nucleotides (or 

amino acid residues) that are identical in the two 

sequences (see fi gure 7). These tuples are also 

called k-tuples or just ktups. Based on a precom-

puted table of the query sequence positions of all 

the 4k (for nucleotides) or 20k (for amino acids) 

possible tuples, it could rapidly fi nd the position 

of all the k-tuples while scanning the database 

sequences. This table-lookup method was ini-

tially described by Dumas and Ninio (1982). Sub-

sequently, the program identifi ed the diagonals 

in the alignment matrix that contained a signifi -

cantly higher number of k-tuples than expected 

by chance with random sequences. A diagonal 

d is defi ned as the cells in the alignment matrix 

having a position (i,j) where j-i=d. The assem-

bly of bands of width w surrounding each of the 

signifi cant diagonals was termed window space, 

and a Needleman-Wunsch type of alignment was 

perfomed within this space.

Lipman and Pearson (1985) developed these 

ideas further in the FASTP program for protein 

sequence database searches. When the fi ve most 

interesting diagonals have been identifi ed as 

database sequence

q
u

er
y 

se
q

u
en

ce

Figure 7: Graphical illustration of sequence align-
ment
K-tuples (black slabs), high-scoring ungapped alignment 
regions (dotted lines), gapped alignments (yellow and red 
lines), which are involved in different stages of heuristic 
alignments methods.
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described in the previous paragraph, these regions 

are rescored using an amino acid substitution 

matrix, and the highest score of these regions is 

called the initial score, which is used to rank the 

matching sequences. In addition, an optimised 

score for the highest ranking sequences is per-

formed by a Needleman-Wunsch type of optimal 

alignment.

The FASTA program (Pearson and Lipman 

1988) was an improved version of the FASTP pro-

gram generalised for both nucleotide (FASTN) 

and protein (FASTP) sequences. The most 

detailed description of the FASTA algorithm, 

including several examples of its use, is given by 

Pearson (1990). The FASTA program proceeds 

in fi ve steps:

1) First, the most interesting diagonal regions 

are found based on the number of k-tuples identi-

fi ed on the diagonal and their distance along the 

diagonal using a simple scoring formula. The ten 

best diagonal regions are processed further. This 

step fi nds ungapped alignments based on identi-

cal residues.

2) These regions are then rescored using a 

amino acid substitution score matrix, which also 

take conservative substitutions into account and 

not just identities. The regions are trimmed, and 

the initial subregion with the highest score is 

recorded for each of the ten regions. These are 

partial ungapped sequence alignments. Only ini-

tial regions with a score above a cutoff value are 

considered further. The highest of these scores 

is called the init1 score. This step also fi nds 

ungapped alignments, but does consider conserv-

ative substitutions.

3) FASTA subsequently calculates an esti-

mated gapped alignment score by joining together 

a combination of the compatible initial regions 

using a joining penalty. The resulting score, 

called the initn score, is reported and is used to 

rank the sequences. This step fi nds approximate 

gapped alignments.

4) FASTA also computes an optimal local 

alignment (Smith and Waterman 1981) con-

strained to a band (32 cells wide) centered around 

the highest scoring initial region, as described 

later by Chao et al. (1992). The score, opt, of 

this optimal alignment is also reported. This step 

results in an optimal gapped alignment.

5) Finally, some statistical computations are 

performed. FASTA plots a histogram of the dis-

tribution of scores and determines the standard 

deviation of the distribution of initial scores.

BLAST and related programs
The fi rst version of the NCBI BLAST programs 

was described by Altschul et al. (1990). The 

algorithm proceeds in much the same way as the 

FASTA algorithm, but there are some important 

differences.

In the fi rst step, BLAST uses words of length 

w instead of k-tuples. These words include also 

conservative substitutions. A similar scheme was 

also suggested by Brutlag et al. (1990). The words 

used in BLAST contain all w-tuples that receive 

a score, T, above a certain level when compared 

using the amino acid substitution matrix. By 

default, BLAST uses w=3 and T=11. A given tri-

plet in the query sequence will then match the 

triplets in the database sequence that has a score 

of 11 or more when the three pairs of amino 

acids are compared. This change gives increased 

sensitivity compared to FASTA.

In the second step, BLAST extends the ini-

tial words into so-called High-scoring Segment 

Pairs (HSPs) using the amino acid substitution 

matrix.This extension is performed in both direc-

tions along the diagonal from the initial word and 

is stopped when the potential score falls a level 

X below the currently found maximum score of 

the HSP.

The fi rst version of BLAST does not consider 

gapped alignments at all, but computes a statisti-

cal measure of signifi cance based on the highest 

scoring HSPs using sum-statistics (Karlin and 

Altschul 1990).

Later, WU-BLAST 2, which is a variant of 

NCBI BLAST that also takes gapped alignments 

into account was made available by Gish (1996), 

but this algorithm has never been published and 

the source code is not available, hence the algo-

rithm cannot be analysed. The statistics used 

in WU-BLAST and a possible precursor called 

BLASTGP is mentioned by Altschul and Gish 

(1996). Comparison of the results of different 

methods have shown that WU-BLAST is quite 

sensitive.

Altschul et al. (1997) describe version 2 of 

NCBI BLAST which includes a few improve-

ments that increases both the speed and the sen-

sitivity of the program.

In the fi rst step, BLAST 2 requires two 

matching words within a distance of about 40 

on the same diagonal. This double-hit method 

reduces the number of hits substantially, but also 

reduces sensitivity relative to the fi rst version of 

BLAST.

The extension of HSPs in the second step is 

performed in the same manner as with the previ-

ous version although with far fewer HSPs, and 

hence much faster.

Using midpoints on the HSPs as seeds, 
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BLAST 2 performs an accurate gapped align-

ment constrained not to contain any low-scor-

ing regions, as described by Zhang et al. (1998). 

This gapped alignment leads to much increased 

sensitivity over the original BLAST program. 

The alignments take a lot of time and is hence 

only performed for the HSPs scoring above about 

40, representing only about 2% of the database 

sequences.

Finally, NCBI BLAST 2 uses the new statis-

tics for gapped alignments described by Altschul 

and Gish (1996) to compute an E-value express-

ing the expected number of random matches in 

the database having a given score.

Other heuristic alignment algorithms
Chao and Miller (1995) and Chao et al. (1995) 

have described algorithms for gapped local align-

ments of very long DNA sequences built on 

identifi ed fragments of k-tuples with similarity 

between the sequences.

1.3.3 Substitution score matrices
All alignment methods involve the use of an 

amino acid substitution score matrix that indi-

cates the score associated with replacing one 

amino acid with another. An example of such a 

matrix is shown in table 6.

Replacing an amino acid with an identical 

amino acid always gives a high score, but it 

varies according to the amino acid. Tryptophanes 

and cysteins give the highest score because of the 

low abundance. Substitutions with similar amino 

acid, e.g leucine by valine or isoleucine, gives a 

small positive score. Neutral substitutions give  

a zero score, and dissimilar amino acids give a 

negative score.

The scores in the matrices are based on the so-

called log odds score (lods), which is by conven-

tion defi ned as the logarithm of the ratio between 

the probability that the amino acids are aligned in 

related sequences, and the probability that they 

are aligned by chance. This logarithm is usually 

multiplied by a scale factor and rounded to the 

nearest integer.

The fi rst matrices in general use were the 

PAM (point accepted mutations per 100 residues, 

also known as percent accepted mutations) series 

of matrices compiled by Dayhoff et al. (1978). 

This series of matrices was based on estimated 

mutation rates in closely related (at least 85% 

identical) sequences. Matrices for less similar 

proteins were estimated by extrapolation. Differ-

ent matrices were compiled and should be used 

dependent on the evolutionary distance between 

the proteins compared. Accordingly, a series of 

matrices were presented. A matrix designed for 

evolutionary distances of about 100 pam is called 

PAM100, while a matrix for 250 pam is called 

PAM250.

Table 6: The BLOSUM62 amino acid substitution score matrix
The table shows the log-odds score associated with the replacement of one amino acid with another.
From Henikoff and Henikoff (1992).

  A R N D C Q E G H I L K M F P S T W Y V B Z X *
 A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4
 R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4
 N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
 D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
 C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
 Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
 E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
 G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
 H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4
 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4
 K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4
 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
 F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4
 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4
 S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4
 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4
 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4
 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4
 V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
 B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4
 Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
 X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4
 * -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1
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Several other matrices based on similarity 

in genetic code or chemical properties of the 

amino acids have been proposed. Gonnet et al. 
(1992) proposed a matrix based on their exhaus-

tive matching of the entire protein database.

The most widely used modern matrices are 

the BLOSUM series (Henikoff and Henikoff 

1992). These matrices are based on a database of 

blocks of aligned protein fragments. The blocks 

are grouped according to a minimum percentage 

of identical amino acids between the sequences.  

The BLOSUM62 matrix shown in table 6 is the 

default matrix in many alignment and database 

search programs. Recently, Henikoff et al. (1999) 

computed an updated version of the BLOSUM62 

matrix based on updated protein sequence data, 

but it did not show signifi cant increase in per-

formance over the original.

Modern versions of the PAM matrices have 

been described by Jones et al. (1992), and a 

matrix based on structural alignments of homol-

ogous proteins have been described by Johnson 

and Overington (1993).

In alignments and database searches, the query 

sequence and amino acid substituition matrix can 

be replaced by a position-specifi c scoring profi le 

(Gribskov et al. 1987; Thompson et al. 1994). 

The sequence  profi le is created from a multiple 

alignment of closely related protein sequences, 

and gives a score for each possible amino acid in 

each position of the query profi le. Profi les can be 

used in sensitive database searches for identifi ca-

tion of sequences that are distantly related to a 

protein family. Profi les can be considered as an 

alternative to motifs.

1.3.4 Gap penalty functions
There is limited theoretical and empirical back-

ground for the treatment of gaps in alignments. 

However, it is common practice to deduct a 

gap penalty from the alignment score for each 

gap. The gap penalty is usually a function g(k) 

dependent on the length of the gap, k. Figure 8 

illustrates six different types of gap penalty func-

tions.

To be biologically meaningful and intuitive 

the function should preferably adhere to the fol-

lowing rules: (1) It must be defi ned for all posi-

itive integers of k. (2) It must be positive for 

all values of k. (3) There should be a large pen-

alty for opening a gap at all because gaps are 

relatively rare compared to simple substitutions. 

(4) The penalty for two or more gaps with total 

length k should be larger than one gap of length 

k. (5) The penalty should increase with the length 

of the gap (monotonic). (6) The increase in pen-

alty from k to k+1 should be smaller than from 

k-1 to k (concave).

The simplest gap penalty function is just a 

constant penalty for each gap independent of 

its length where g(k)=a as shown in fi gure 8A. 

Because of its simplicity of calculation, this 

scheme was used in some of the early alignment 

algorithms, and also in some hardware imple-

mentations. However, not taking the gap length 

into account seems oversimplifi ed and makes 

alignments less accurate.

Another simple scheme is to deduct a gap pen-

alty that is directly proportional to the length, k, 

of the gap, using a gap penalty function g(k)=bk 

as in fi gure 8B. It is also simple to calculate, but 

not very accurate. It has also been used in early 

algorithms and in hardware implementations.

The most widely used scheme is the affi ne  
gap penalty function of the form g(k)=a+bk 

shown in fi gure 8C, where a is the gap opening 

penalty and b is the gap extension penalty. This 

form of gap penalty was used in some of the early 

alignment methods, e.g. by Gotoh (1982). It is 

relatively easy to implement and has produced  

good alignment results. Note that in some con-

texts the gap open penalty is understood as the 

total gap penalty of a single residue gap (a+b). 

A gap opening penalty of 11 and a gap extension 

penalty of 1 is commonly used in combination 

with the BLOSUM62 matrix.

A logarithmic gap penalty function as illus-

trated in fi gure 8D of the form g(k)=a+blog(k) 

was suggested by Gonnet et al. (1992), and 

Benner et al. (1993) based on experiments with 

empirical data. The logarithmic gap penalty func-

tion seems to be the function best founded by 

experimental data, but is unfortunately much 

more complicated to calculate and implement in 

alignment programs than an affi ne function.

The concave (also known as convex) gap pen-

gap length
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Figure 8: Examples of gap penalty functions
Graphs of constant (A), proportional (B), affi ne (C), loga-
rithmic (D), concave (E) and monotonic (F) gap penalty 
functions are shown.
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alty functions shown in fi gure 8E are a class of 

general functions where g(k) - g(k-1) ≥ g(k+1) - 

g(k). It includes the affi ne and logarithmic forms 

described above, but is not monotonic (described 

below) in general. Concave functions are also 

harder to calculate and more complicated to 

implement in a rapid program than affi ne func-

tions. Algorithms for optimal sequence align-

ment with concave gap penalty functions have 

been described by Waterman (1984) and Miller 

and Myers (1988).

The monotonic gap penalty functions 

depicted in fi gure 8F where g(k) ≥ g(k-1) are a 

general class of gap penalty functions that include 

the affi ne and logarithmic schemes described 

above, but are different from the concave fun-

tions. Mott (1999) proposed an algorithm for 

optimal sequence alignment based on these gap 

functions.

The actual choice of constants in the functions 

should be based on empirical data or experiments 

and is dependent on the evolutionary distance 

between the sequences compared, and should 

be  adapted to the choice of substitution score 

matrix.

Altschul (1998) suggested the use of gener-
alised affi ne gap penalties of the form g(k,l) = a 

+ bk + cl, where k is the gap length and l is the 

number of unaligned residues included. Based 

on multiple alignments and structural data, it 

was observed that the similarity between pro-

teins is concentrated in segments of aligned resi-

dues separated by regions of unaligned residues 

and gaps. Instead of forcing a meaningless align-

ment on all residues, it seems better to penalise 

these unaligned residues in combination with a 

gap by a constant l per residue. Alignments using 

this scheme were shown to be better than alig-

ments based on an affi ne scheme, but the align-

ments took longer to compute.

1.3.5 Locally biased sequence composition
The existence of regions of locally biased 

sequence composition is a common source of 

mistaken homology between sequences (Lipman 

et al. 1984; Wootton and Federhen 1996). If the 

two sequences compared both contain regions 

where the frequency of certain amino acids 

or nucleotides is higher than normal, the two 

sequences might seem more similar than they 

really are. Several protein families, especially 

structural proteins, contain long regions domi-

nated by e.g. alanine, glycine and serine. Some 

regions of DNA sequences may be dominated by 

very CG-rich or AT-rich regions. These similari-

ties often represent statistically insignifi cant sim-

ilarities. A common technique to avoid some of 

the problems, is to remove or mask these regions 

from the query sequence before a search is per-

formed. A number of tools exist for masking 

these regions, e.g. XNU (Claverie and States 

1993) and SEG (Wootton and Federhen 1993).

1.3.6 Signifi cance of alignments
When is a sequence alignment signifi cant? What 

alignment score is needed to assume that two 

sequences are related? Even an alignment of two 

random or unrelated sequences may reach a high 

score, and it can often be hard to draw the line 

in this twilight zone between the signifi cant and 

insignifi cant alignments on a list of matches. A 

review on this subject have been published by 

Altschul and Gish (1996).

Simple metrics for assessing the signifi cance 

of an alignment are based on the the percentage 

of identical or similar amino acid residues, pos-

sibly combined with the length of the align-

ment. However, a statistical measure based on 

the alignment score is usually required to assess 

the similarity between sequences.

Based on experiments with real DNA 

sequences, Smith et al. (1985) found that the 

optimal local sequence alignment score was pro-

portional to the logarithm of the product of the 

sequence lengths. Collins et al. (1988) made a 

similar observation with unrelated or randomly 

shuffl ed protein sequences.

An idea of the signifi cance of a real align-

ment can be obtained by comparing the raw 

score from a Smith-Waterman alignment of two 

real sequences with the expected score for an 

alignment of two random sequences of the same 

length. In addition to the alignment score and 

the length of the sequences compared, the amino 

acid composition in the sequences and the exist-

ence of locally biased regions should also be 

taken into account. The choice of substitution 

score matrix and gap penalties are of course also 

important.

The FASTA program (Pearson and Lipman 

1988) displays a histogram of the score distri-

bution, that visualises how the signifi cant simi-

larities stand out from the rest of insignifi cant 

alignments. In addition to the raw score, various 

values (Z-scores, ln()-scaled scores and P-val-

ues) have been used to measure the signifi cance 

of an alignment.

Rigourous statistical treatment of the subject 

has resulted in a good quantitative measurement 

of the signifi cance of alignments. The distri-

bution of optimal alignment scores for random 

sequences was found to follow an extreme value 
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distribution. Karlin and Altschul (1990) and 

Karlin and Brendel (1992) described the theory 

for the distribution of ungapped alignment scores, 

while the so-called sum-statistics for the score 

of multiple HSPs used in BLAST version 1.4 

(Altschul et al. 1990) was described by Karlin 

and Altschul (1993). It was later shown that the 

theory for ungapped alignments could be gen-

eralised to gapped alignments by applying an 

edge-correcting factor (Mott 1992; Arratia and 

Waterman 1994; Waterman and Vingron 1994a, 

1994b; Altschul and Gish 1996; Mott and Tribe 

1999).

The fi nal conclusion of the statistical theory 

is that the expected number, E, of alignments of 

random sequences with an optimal score equal 

to or above S is expressed by the following for-

mula:

E = Kmn e-λS

Here, m and n are the lengths of the query and 

database sequences, respectively. In the context 

of a database search, the total length of all data-

base sequences should be used for n. K and λ are 

parameters that depend on the scoring scheme 

used. A length-correcting factor z must be sub-

tracted from the sequence lengths for the above 

formula to be precise in the case of gapped align-

ments.

z = ln(Kmn) / H

Appropriate values of the Karlin-Altschul 

parameters K, λ and H for a range of com-

monly used substitution score matrices and affi ne 

gap penalties have been estimated by large scale 

numerical simulations with random sequences 

(Altschul and Gish 1996).

1.3.7 Alignment with translated DNA 
sequences
A protein sequence can be compared to a DNA 

sequence even if the positions of potential pro-

tein coding regions are unknown. This is useful 

for searching the EST databases or other unan-

notated nucleotide sequence databases. This kind 

of searches may also be used to identify protein 

coding regions (Gish and States 1993). The 

DNA sequence can be translated into six dif-

ferent amino acid sequences using the universal 

genetic code shown in table 3 starting at the three 

fi rst positions on each strand. The query protein 

sequence can then be aligned to each of these six 

amino acid sequences.

A procedure similar to the one indicated above 

was fi rst implemented in the program “Trans-

lated Search” (Peltola et al. 1986) using a Smith-

Waterman alignment, and later in the BLASTX, 

TBLASTX and TBLASTN programs using the 

heuristic BLAST algorithm (Altschul et al. 1990; 

Gish and States 1993) and in the TFASTA pro-

gram using the heuristic FASTA algorithm (Pear-

son and Lipman 1988).

The early methods did not take into account 

the abundance of sequencing errors in the DNA 

sequences and other sources of so-called frame-

shifts that results in distribution of the similarity 

on more than one frame of translation. The EST 

and GSS databases have relative high rates of 

sequencing errors as they are based on single 

sequencing reads.

More recent programs like GenAl (Hein 

and Støvlbæk 1994; 1996), LAP (Huang and 

Zhang 1996), Grail (Guan and Uberbacher 1996), 

FASTX, FASTY, TFASTX, TFASTY (Zhang et 
al. 1997; Pearson et al. 1997) and FrameSearch 

Plus (Halperin et al. 1999) model frameshifts (and 

some also in trons) in great detail. When a single 

nucleotide is deleted or inserted a frameshift 

penality is usually applied.

The programs with names ending with an 

X or Y usually translate the given query nucle-

otide sequence and compare it to the sequences 

in the database, while the programs with names 

starting with a T usually translate the nucleotide 

sequences in the database before comparing 

them to the query. A combination where both 

sequences are translated is also applied.

1.4 Database searching on parallel 
computer architectures
The algorithms for database searching can be 

implemented to run effi ciently on various types 

of hardware with the ability to perform several 

operations simultaneously. There is a wide range 

of different hardware available on which the 

algorithms can be implemented. Hughey (1996) 

has reviewed various types of hardware that can 

be used and their performance. The hardware 

can be divided into a group of general-purpose 

computers which can be used for many different 

kinds of computations, and a group of hardware 

specifi cally designed for performing sequence 

alignments and database searches.

1.4.1 General-purpose parallel computers
General purpose computers with parallel process-

ing capabilities usually contain a number of 

connected processors, ranging from dual-CPU 

workstations to supercomputers. The well-known 

dynamic programming or heuristic algorithms 
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must be rewritten to run on such computers. 

The algorithms can be parallelised on different 

scales, from a simple coarse-grained parallelisa-

tion where e.g. the database sequences are divided 

on two or more processors each comparing the 

database sequence to the query sequence, to a 

complicated fi ne-grained parallelisation where 

the comparison of the query sequence against 

one database sequence is parallelised. The speed 

gained varies according to the type of algorithm 

and computer architecture.

The degree of connection between the pro-

cessors in a parallel computer is a very important 

factor. A cluster of workstations connected by an 

Ethernet network is an example of loosely con-

nected processors, while a workstation based on 

multiple CPUs with symmetric multiprocessing 

(SMP) is an example of tightly connected pro-

cessors. Clusters are generally the least expen-

sive, because of the advanced technology required 

for connecting CPUs together with high com-

munication capacity. The degree of connection 

required depends on the type of computation that 

is performed. Clusters are very interesting for 

sequence database searches, because of the inde-

pendence between the different sequences in the 

database.

Parallel computers are classifi ed into SIMD 

(Single-Instruction, Multiple-Data) and MIMD 

(Multiple-Instruction, Multiple-Data) types 

according to whether the processing units per-

form the same or different operations on their 

data. The MasPar computer is an example of the 

former, while Paragon and SMP workstations are 

examples of the latter. Database searches with the 

dynamic programming algorithms involve many 

repetitions of the same simple operations, and a 

SIMD computer is hence well suited to this task. 

The Smith-Waterman algorithm has been imple-

mented on the MasPar computer in the MPsrch 

(Sturrock and Collins 1993) and BLAZE (Brutlag 

et al. 1993) programs. The heuristic algorithms 

generally perform more complex computations 

and are hence probably not so easy to implement 

effi ciently on SIMD computers.

The SSEARCH (Pearson 1991), FASTA 

(Pearson and Lipman 1988) and BLAST (Alts-

chul et al. 1990; 1997) programs have all been  

implemented for SMP computers using indi-

vidual threads that handle different database 

sequences. Other parallelisations of alignment 

and database search algorithms for various com-

puter architectures include Deshpande (1991), 

Miller et al. (1991), Huang et al. 1992), Vogt and 

Argos (1992) and Julich (1995).

Microparallelism is an interesting form of 

SIMD, where a wide (e.g. 64 bits) integer reg-

ister of a CPU is divided into many (e.g. eight) 

smaller units (e.g. 8 bits), and where the same 

arithmetic or logical operation can be performed 

simultaneously and independently on the data in 

each of the individual units. This technique can 

be performed on ordinary CPUs using normal 

instructions combined with a technique involving 

masking of the high order bits in each unit. How-

ever, it has become much easier recently with the 

introduction of MMX (Intel 1999) and related 

technology. Alpern et al. (1995) and Wozniak 

(1997) have presented implementations of the 

Smith-Waterman algorithm and database search 

programs using this type of parallelism.

1.4.2 Special-purpose parallel hardware
A number of different designs for special-purpose 

hardware for performing sequence alignments 

and database searching have been proposed and 

implemented. Their advantage over general-pur-

pose computers is that they can be tailored spe-

cifi cally to perform sequence comparisons at a 

high speed, while the disadvantage is high cost.

Special-purpose hardware is usually built 

using either Xilinx FPGA (Field-Programmable 

Gate Arrays) or custom VLSI (Very Large Scale 

Integration) technology. The advantage of FPGA 

is that they are reprogrammable and can be built 

to work in a given function, and hence can be 

changed to remove bugs or to work with differ-

ent algorithms, while VLSI is customly designed 

to a very specifi c purpose and cannot be changed. 

The advantage of VLSI is a lower cost per unit 

(at least in large volumes) and a higher process-

ing speed. However, the design and initial costs 

for VLSI systems are higher than for FPGA.

Timelogic’s DeCypher (TimeLogic Inc. 2000) 

and Compugen’s Bioccelerator and BioXL (Com-

pugen Inc. 2000) are commercial systems based 

on FPGA, while Paracel’s Fast Data Finder 

and GeneMatcher systems (Paracel Inc. 2000) 

are based on VLSI. These commercial systems 

have been quite successful and are installed in 

many research centers around the world. All 

of these systems perform Smith-Waterman and 

other searches at high speed. BioScan (Singh et 
al. 1996) is another VLSI-based system  that uses 

a simplifi ed approach similar to NCBI BLAST 

version 1.4.

1.5 Comparison of methods for protein 
sequence similarity searches
The sensitivity, speed and cost of the various 

methods for sequence database comparisons have 

been evaluated and compared by several authors. 
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The performance of various score matrices, gap 

penalty schemes and statistical evaluation meth-

ods have also been assessed. See table 5 for an 

overview of many of the programs compared and 

references.

Pearson (1991) compared the sensitivity and 

selectivity of the Smith-Waterman algorithm to 

the FASTA program. He extracted 67 protein 

superfamilies from a superset of the PIR data-

base (Barker et al. 1996; 2000), and examined 

the ability of the programs to identify distantly 

related sequences belonging to the classifi ed 

superfamilies. The conclusion was that Smith-

Waterman performed best in general, followed 

closely by FASTA with ktup=1, while FASTA 

with ktup=2 had the worst performance.

Pearson (1995) compared the Smith-Water-

man algorithm to FASTA and NCBI BLAST ver-

sion 1 using various matrices, gap penalties and 

score scaling. He used the same data set as ear-

lier (Pearson 1991), and also introduced a cri-

terion for performance called the equivalence 

number (EN). He found that the BLOSUM62 

matrix was better than the PAM250 matrix. Using 

the BLOSUM62 matrix, FASTA with optimized 

score ranking and ktup=2 was only slightly better 

than BLAST, but FASTA with ktup=1 was sig-

nifi cantly better than BLAST. The best per-

former was Smith-Waterman with ln()-scaling of 

scores.

Shpaer et al. (1996) compared implementa-

tions of the Smith-Waterman algorithm in soft-

ware (SSEARCH) and on the Fast Data Finder 

(FDF) hardware (Paracel, 2000) to FASTA (ktup 

1) and NCBI BLAST 1. They used a database and 

a performance measure (EN) similar to Pearson 

(1995). They found that SSEARCH performed 

equal to the Smith-Waterman implementation on 

the FDF, with some variations dependent on the 

choice of matrix and gap penalties, followed by 

FASTA and fi nally BLAST. They also found that 

a structural amino acid substitution matrix (John-

son and Overington 1993) performed slightly 

better than the BLOSUM matrices, and that 

ln()-scaling of scores performed better than raw 

scores or Karlin-Altschul statistics.

Thanaraj and Flores (1997) compared the fast 

implementations of the Smith-Waterman algo-

rithm on the FDF (Paracel Inc. 2000), Bioccelera-

tor (Compugen Inc. 2000) and MasPar (Sturrock 

and Collins 1993), and evaluated their sensitiv-

ity, speed and cost. Even though the gap penalty 

schemes used in these implementations varied, 

the ranking of the database sequences were found 

to be remarkably similar, and the sensitivity to 

be essentially equal. In the confi gurations tested, 

the FDF was fastest followed by Bioccelerator 

and MasPar. The FDF was also found to be the 

most cost-effective when taking the cost of the 

hardware into account, however the MasPar is a 

more general computer than the other architec-

tures and may also be used for other purposes.

Agarwal and States (1998) compared 

SSEARCH, NCBI BLAST 1, WU-BLAST 2, 

FASTA with ktup=2 and PSW (Probabilistic 

Smith-Waterman) (Bucher and Hoffman 1996) 

using the same data set as Pearson (1991). 

They found that PSW performed best in general 

with full-length sequences closely followed by 

SSEARCH. When partial sequences were used 

WU-BLAST 2 and NCBI BLAST 1 performed 

best followed by SSEARCH.

In order for the comparison of the methods 

to be objective it is important to have a good def-

inition of which proteins should be considered 

homologues. The classifi cation of superfamilies 

in PIR may be biased in this respect as noted by 

Brenner et al. (1998) who instead used informa-

tion from the SCOP database (Structural classi-

fi cation of proteins; Murzin et al. 1995). They 

assessed the performance of NCBI BLAST ver-

sion 1, WU-BLAST version 2, FASTA and 

SSEARCH. They found that SSEARCH, FASTA 

with ktup=1 and WU-BLAST 2 performed best, 

followed by BLAST and FASTA with ktup=2. 

Interestingly, even the best programs were only 

able to identify about 18% of the structurally 

homologous protein pairs in their database.
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The general, overall goal of the study was to 

develop new computational methods for extract-

ing as much as possible of biochemical and 

biological know ledge from available genomic 

sequence information. Because database search-

ing based on sequence similarity is one of the 

most fundamental and computationally demand-

ing tasks in the analysis of genomic sequence 

information, and because we had some back-

ground in this fi eld, we aimed at developing 

better tools for performing such searches.

The software tools should be designed to take 

into account four major criteria for optimized 

performance and usability.

Sensitivity: In order for researchers to be 

able to discover new biological relationships in 

the sequence data using the tools, they should 

be suffi ciently sensitive to detect even remote 

homologues in the database.

Rapidity: It is also important that these tools 

are rapid to enable database searches to be com-

pleted within a reasonable amount of time. Quick 

searches will also enable researchers to be more 

productive as they can perform several searches 

in rapid succession in order to explore relation-

ships, instead of waiting for overnight searches.

Affordability: The tools should preferably 

use standard hardware technology available at 

low cost, in order to be available to researchers 

in general.

Availability: The tools should be readily avail-

able potential users, both in the sense that they 

should be easily distributed to where the users 

are working, and also be easy to use. It was 

hence one of our goals to make the tools devel-

oped available through a well-designed Internet 

service.

The criteria are to some extent mutually con-

fl icting, but a reasonable balance should be 

achieved.

2 Aims of the study
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Papers I, II and III present three new methods  

for sequence alignment and database searching. 

The algorithms in both paper II and III are based 

on the use of parallel processing technology that 

has recently been introduced in modern general-

purpose microprocessors. The method described 

in paper II is used in the fi nal stage of the algo-

rithm presented in paper III.

Services for performing online searches in a 

wide range of public nucleotide and protein data-

bases using the tools described in papers I-III 

have been established at http://dna.uio.no/salsa/ 

and http://dna.uio.no/search/ on the Internet.

Paper IV presents an example of the use of 

various computer tools, including some of those 

presented in the fi rst three papers, to identify 

a novel DNA repair gene from “raw” sequence 

data in the databases. The computer predictions 

have been confi rmed by experimental approaches 

using techniques of molecular biology.

3.1 Paper I - SALSA: improved protein 
database searching by a new algorithm 
for assembly of sequence fragments into 
gapped alignments
This paper describes a new heuristic algorithm for 

creating gapped sequence alignments by assem-

bling a set of initially identifi ed fragments of simi-

ilarity. The algorithm was implemented as part 

of a protein sequence database search tool, and 

the sensitivity was shown to be better than both 

FASTA (ktup=2) (Pearson and Lipman 1988) and 

BLAST (Altschul et al. 1990, 1997), and compa-

rable to the unpublished WU-BLAST  algorithm 

(Gish 1996). The speed was similar to FASTA 

and WU-BLAST.

SALSA initially identifi es a set of fragments 

of ungapped sequence alignments, much in the 

same way as the BLAST 1.4 program (Altschul 

et al. 1990) does. However, SALSA subsequently 

performs an accurate assembly of these frag-

ments to construct a complete gapped alignment. 

It examines which fragments are compatible and 

can be joined by inserting gaps after trimming or 

extension of the fragments. An accurate estimate 

of an optimal gapped alignment score is calcu-

lated by summing substitution scores and penal-

ising for gaps.

The estimated score is often equal to or near 

the optimal alignment score, and is used for decid-

ing which database sequences should be consid-

ered in detail by a brute-force Smith-Waterman 

alignment (1981). Making this decision using an 

estimated score instead of the raw score of the 

highest-scoring initial fragment, is probably the 

reason for the increased sensitivity in SALSA 

relative to BLAST.

SALSA has also been implemented to run 

effi ciently on an SMP computer with multiple 

microprocessors.

3.2 Paper II - Six-fold speed-up of Smith-
Waterman sequence database searches 
with parallel processing on common 
microprocessors
The Smith-Waterman algorithm (1981) is gener-

ally considered to be one of the most sensitive 

algorithms for performing sequence comparisons. 

However, it is very slow on ordinary computers. 

Special-purpose hardware has been designed to 

increase the speed, but is available only at a high 

cost (Hughey 1996).

We present an implementation of the Smith-

Waterman algorithm using the parallel process-

ing capabilities of the MMX/SSE technology in 

the Intel Pentium MMX, II and III microproces-

sors (Intel 1999) which are used in ordinary PCs 

and are available at low cost. Similar technology 

is embedded in most modern microprocessors. A 

sixfold increase in speed was obtained relative to 

the SSEARCH (Pearson 1991) program which 

is a fast non-parallel Smith-Waterman (1981) 

implementation. A speed of more than 150 mil-

lion cell updates per second was obtained on 

an Intel Pentium III microprocessor running at 

500MHz, which probably makes this implemen-

tation of the algorithm the fastest described to 

date.

The MMX/SSE technology enables eight inde-

pendent arithmetic or logical operations on byte 

values to be performed simultaneously. The imple-

mentation was based on vectors corresponding to 

eight cells in the alignment matrix. In contrast to 

previous attempts at making a parallel version of 

the Smith-Waterman algorithm, we used vectors 

parallel to the query sequence, rather than vectors 

parallel to the minor diagonal in the matrix. The 

advantage of this arrangement is the simplifi ed 

loading of values from memory, while the disad-

vantage is the loss of independence between the 

eight elements of the vector in the calculations. 

However, due to the relatively rare occurence of 

gaps in optimal alignments, and an optimized 

implementation, the loss of independence does 

not have a major impact on speed.

3 Summary of results
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3.3 Paper III - ParAlign: a rapid and 
sensitive sequence database search 
algorithm using parallel processing on 
modern microprocessors
This paper describes a sequence alignment and 

database searching algorithm called ParAlign 

that is specifi cally designed to take advantage of 

the features of the Intel MMX technology (Intel 

1999) . The algorithm is shown to be very close 

to the Smith-Waterman algorithm (Smith and 

Waterman 1981) in terms of sensitivity and close 

to the NCBI BLAST 2 algorithm (Altschul et al. 
1997) in terms of speed.

Initially, the algorithm calculates the exact 

optimal ungapped alignment score for each diag-

onal in the alignment matrix. These maximum 

partial sums of substitution scores are computed 

very effi ciently by the MMX-based implemen-

tation. Secondly, using a novel approach, the 

algorithm estimates the gapped alignment score 

by combining the scores of several neighbour-

ing diagonals. Finally, the fraction of database 

sequences with the highest estimated score is 

subject to an optimal alignment with the query 

sequence performed by the procedure described 

in paper II.

The sensitivity and speed of ParAlign was 

evaluated using a set of 11 query sequences and 

compared to several other programs. Of the total 

2 578 database sequences found to be statisti-

cally signifi cant matches by the Smith-Waterman 

algorithm, ParAlign missed only 2 (0.1%). WU-

BLAST (Gish 1996) was found to be the most 

sensitive of the other programs and missed 1.1%, 

but was 1.7 times slower than ParAlign. Only the 

NCBI BLAST 2 program was found to be faster 

than ParAlign, by a factor of 1.6, but missed 

2.4%.

3.4 Paper IV - Identifi cation of a human 
member of a new family of DNA repair 
proteins with homology to E. coli 
Exonuclease III
We have identifi ed a novel familiy of proteins 

in H. sapiens, M. musculus, A. thaliana, S. pombe 

and S. cerevisiae with signifi cant sequence simi-

larity to DNA endonucleases. In this family, the 

S.cere visiae APN2 protein has been experimen-

tally suggested to be involved in the repair of 

abasic sites in DNA and to confer resistance to 

methyl methanesulfonate (MMS) in complemen-

tation experiments (Johnson et al. 1998; Bennett 

1999; Morland, Seeberg and Bjørås, in prep.).
We identifi ed the human gene in genomic 

(acc.no. Z83821) and EST sequence databases 

by similarity to the APN2 gene (Johnson et al. 

1998) using sequence similarity search database 

tools (paper I; Altschul et al. 1990; 1997). The 

human genomic sequence was located at posi-

tion Xp11.21. The gene structure was predicted 

to consist of 6 exons encoding a 518aa 57.4kDa 

protein using the tools Gene Mark (Borodovsky 

and McIninch 1993), Grail (Uberbacher and 

Mural 1991) and FEXH (Solovyev et al. 1994) 

and by taking into account information from 

the genomic and EST sequences and similari-

ties to homologous proteins. The 300aa N-ter-

minal region of the protein shows extensive 

sequence similarity to members of the AP endo-

nuclease family (Gorman et al. 1997) and to L1 

endonuclease (Feng et al. 1996), but the 200aa 

C-terminal region does not show any signifi cant 

resemblance to any protein, except for a poten-

tial Zn2+-binding motif also found in eukaryotic 

topoisomerase III enzymes (Hanai et al. 1996). 

The sequence was submitted to the EMBL data-

base (acc.no. AJ011311).

An IMAGE clone (Auffray et al. 1995; 

Lennon et al. 1996) containing a full-length 

cDNA sequence was obtained and the predicted 

sequence was confi rmed. By northern blot hybridi-

isation analysis the protein was shown to be 

ubiquitously expressed in normal human tissues, 

with elevated levels in heart, kidney, liver and 

placenta. Constructs of green fl uorescent protein 

(GFP) fused to either end of the protein were 

expressed, and the protein was shown to be trans-

ported to the cell nucleus, even though no known 

nuclear localisation signals (NLS) were found in 

the protein sequence by the PSORT II program 

(Nakai and Kanehisa 1992).
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4.1 General discussion
The SALSA program presented in paper I, 

employs a dynamic-programming algorithm for 

assembling a set of ungapped alignments (frag-

ments) into fully gapped alignments. It is based 

on an initial identifi cation of words and exten-

sion of these into HSPs in a manner similar to 

BLAST (Altschul et al. 1990). The sensitivity 

and speed of the program was shown to be com-

parable to the unpublised WU-BLAST algorithm 

(Gish 1996).

In Paper II we presented a database search pro-

gram implementing the Smith-Waterman algo-

rithm using microparallelism. It seems to be the 

currently most rapid implementation of Smith-

Waterman-based searches on ordinary hardware. 

It works on the least expensive and most com-

monly available hardware, and it attains a speed up 

of 6 over the best previously known implemen-

tation on the same hardware and a speed of over 

150 million cell updates per second on an Intel 

Pentium III 500 MHz microprocessor. It should 

be easy to extend the algorithm to run on a SMP 

computer or a cluster, to perform high-perform-

ance Smith-Waterman alignments in the most 

cost-effective way. This solution should be com-

petetive with the special-purpose hardware 

designed to perform Smith-Waterman searches.

In paper III, the ParAlign algorithm for data-

base searches was presented. This algorithm also 

exploited microparallelism on common hard-

ware. In the case of ungapped alignments, this 

algorithm computes exactly the same score as the 

algorithm of Smith and Waterman (1981) using 

affi ne gap penalties (Gotoh 1982). For gapped 

alignments the algorithm makes use of a heu-

ristic that nevertheless results in a sensitivity 

that is very close to the optimal. In the standard 

tests, it misses only 0.1% of the signifi cant align-

ments, compared to 1.1% for WU-BLAST 2 

(Gish 1996), which is the second most sensitive 

heuristic algorithm, and 2.4% for NCBI BLAST 

2 (Altschul et al. 1997). ParAlign is faster than 

all other heuristic programs, except for NCBI 

BLAST 2.0, which is 1.6 times faster. WU-

BLAST is 1.7 times slower than ParAlign.

ParAlign provides an optimal combination of 

speed and sensitivity, and is better than NCBI 

BLAST 2 with respect to sensitivity. Even when 

compared to the Smith-Waterman implementa-

tion presented in paper II, ParAlign is a good 

alternative, since the small difference in sensitiv-

ity may be negligible and ParAlign runs much 

faster. It should also be easy to implement the 

ParAlign algorithm on other computer architec-

tures.

We have previously used the tools presented 

to identify several enzymes involved in oxidative 

DNA repair (Luna et al. 1999), e.g. the human 

hOGH1 enzyme (Bjørås et al. 1997), the yeast 

NTG1 and NTG2 enzymes (Alseth et al. 1999) 

and the human hNTH enzyme (Luna et al. 2000). 

In paper IV, we have shown that the presented 

algorithms are useful for identifying a new family 

of proteins that share similarity with various 

DNA endonucleases. However, we have so far 

not been able to determine the exact enymatic 

activity of the human protein. Perhaps it only 

works in concert with yet another factor, or we 

have not determined the precise substrate for the 

enzyme.

4. 2 Improvements of the algorithms 
developed
The sensitivity of the algorithms presented have 

been compared with the Smith-Waterman algo-

rithm as a reference. However, a more extensive 

assessment of the algorithms’ ability to recog-

nise structural homologous proteins, as described 

by Brenner et al. (1998) would be of great inter-

est. This type of assesment should probably be 

included in the evaluation of new algorithms for 

sequence database searches.

The algorithms presented in the paper I is 

already designed to run on SMP computers using 

threads. The algorithms presented in papers II 

and III can easily be adapted to run on such com-

puters. All three algorithms can also easily be 

modifi ed to take a sequence profi le as the query.

The tools described currently report only 

the highest-scoring alignment for each database 

sequence. They should be extended to report 

all signifi cant non-overlapping suboptimal align-

ments using some of the existing techniques 

(Waterman and Eggert 1987; Huang et al. 1990; 

Huang and Miller 1991).

The implementations of the three algorithms 

are able to search a DNA database by trans-

lating each sequence into the six possible read-

ing frames and comparing each of them to a 

protein query sequence. However, this does not 

take possible frameshifts into account. An obvi-

ous improvement would be to also accept DNA 

query sequences and implement one of the more 

advanced models described in section 1.3.7.

An extension of the algorithm to direct DNA  

4 Discussion and conclusion
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sequence comparisons should also be considered, 

although it is dubious whether the high sensitiv-

ity of these algorithms is necessary in this type 

of comparisons. A faster and possibly less sensi-

tive algorithm should rather be designed specifi -

cally to exploit microparallelism.

Searches with the tools are available on 

the Internet, and the results are presented with 

alignments and links to the sequence database 

entries. However, there are many possibilities for 

improvements in the presentation of the results, 

for instance with multiple alignments of match-

ing sequences.

4.3 Issues for further studies
Future research will hopefully result in increased 

sensitivity and speed of sequence comparison 

and database searching methods. There are many 

different possibilities for improvement over the 

current techniques.

Improving sensitivity
Even the best of the current sequence alignment 

methods are only able to identify a fraction (less 

than half) of the homologous proteins in the 

structural databases (Brenner et al. 1998; Rost 

1999). They quickly run into problems when 

the fraction of identical amino acids falls below 

25%. It would be interesting to know how far 

it is theoretically possible to reach with tech-

niques based solely on the primary amino acid 

sequence.

Improvements of the current algorithms or 

variations of these may be achieved by enhanced 

amino acid substitution score matrices, sequence 

profi les, or other ways to better model the changes 

in amino acids sequences between homologous 

proteins. Some kind of k-peptide substitution 

matrix or scoring schemes that better model the 

changes in proteins in more than single a amino 

acid position may lead to progress in this area. 

Hidden Markov model (HMM) methods (Krogh 

et al. 1994) have received increasing attention 

recently and are able to identify many structural 

relationships (Eddy 1998). HMMs may be con-

sidered as a position-dependent score profi le 

where substitutions, insertions and deletions are 

modelled in detail with different probabilities at 

each position.

The gap penalty scheme of the classical align-

ment model may also be improved. Altschul 

(1998) showed how the use of generalised affi ne 

gap penalties could improve the sensitivity of 

alignments of proteins in several families. Mott 

(1999) described how the use of a logarithmic 

gap penalty function increases the sensitivity for 

detecting alignments with long gaps. Both of 

these methods unfortunately increase the compu-

tation time compared to alignments with ordinary 

affi ne gap penalties, but they might be worth-

while in many cases. Other treatments of gaps 

may also lead to increased sensitivity.

Alternative alignment algorithms may also 

lead to better results. The probabilistic Smith-

Waterman (PSW) algorithm (Bucher and Hoff-

man 1996), which uses a HMM and also takes 

into account the importance of suboptimal align-

ments in addition to just the optimal alignment, 

was shown to be better than other algorithms in 

many cases (Agarwal and States 1998).

If a protein A is homologous to protein B, and 

B is homologous to protein C, then A must also 

be homologous to C. This transitivity property 

of homology (Pearson 1996) can be exploited in 

various ways. PSI-BLAST (Altschul et al. 1997; 

Altschul and Koonin 1998) uses this to gradually 

build up a sequence profi le by iterative searches. 

However, this concept requires that the query 

protein has at least one homologous protein with 

signifi cant sequence similarity in the database. 

Park et al. (1997; 1998) showed that sequence 

database searches using intermediate sequences 

could detect two to three times the number of 

homologues in the SCOP database as ordinary 

pairwise sequence alignments. Salamov et al. 
(1999) used a multiple intermediate sequence 

search (MISS) to detect many homologues in 

the CATH (Orengo et al. 1997) structural data-

base that were not detected by simple pairwise 

sequence alignments. Karplus et al. (1999) used 

an iterative HMM method to construct protein 

family profi les and predict protein structures.

Improving speed
The amount of computing power available for a 

constant cost has been increasing exponentially 

for many years, and is now doubling approxi-

mately every 18 months, according to Moore’s 

law (Intel 2000). However, if the rate of growth 

in GenBank over the last months continue, it is 

clear that increasingly longer time or increas-

ingly more expensive computers will be needed 

in the future to search the entire database of 

DNA.

There has been numerous attempts at building 

special-purpose hardware solutions to the speed 

problem (Hughey 1996). However, because of 

the rapid increase in speed of general-purpose 

computers, such solutions are often advantageous 

over software implementations only over a short 

time period. The use of general-purpose comput-

ers is also favored by shifts in the algorithms 
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used. However, parallel computers in the form of 

clusters or in the form of SIMD microparallelism 

seem to be a general concept that is not likely 

to become outdated in the near future. Rather, 

the use of such parallelism will probably be 

increasingly widespread in many fi elds of com-

puting. Further advances in the SIMD technol-

ogy and other new advances in hardware will 

probably improve the speed of the algorithms in 

the future.

However, to exploit microparallelism effi -

ciently, new implementations of classical algo-

rithms are needed and often require considerable 

effort. It is probably worthwhile in many cases, 

as shown in paper II. SIMD implementations of 

HMM algorithms, as briefl y mentioned by Eddy 

(1998), or other advanced algorithms will prob-

ably be attempted in the near future.

Novel algorithms designed specifi cally to 

exploit the advantages of the parallel architec-

ture at hand, is perhaps a better way to go. For 

instance, a new heuristic algorithm using micro-

parallelism for protein database searches that is 

much faster than NCBI BLAST 2 would be very 

useful, even if some sensitivity would have to be 

sacrifi ced.

Improved evaluation of methods
Standardised and objective measures of struc-

tural similarity should be used for evaluating the 

performance of sequence similarity methods. The 

use of structural databases like SCOP (Murzin et 
al. 1995), CATH (Orengo et al. 1997) or FSSP 

(Holm and Sander 1996) for evaluation of the 

sensitivity of the methods available is clearly an 

advance over the evaluation methods based on 

the possibly subjective superfamily classifi cation 

in PIR (Brenner et al. 1998; Barker et al. 1996; 

2000).

4.4 Other future problems
The enormous size and growth of the databases 

may be a problem for some fi le systems that 

are limited to fi les of size less than 2GB, due 

to the use of signed 32-bit integers. Also some 

computers and operating systems have problems 

with memory sizes of this order. Additionally, the 

indices in the NCBI database formats are lim-

ited to 32 bits, and cannot be used for nucleotide 

databases in a single fi le above 4GB, correspond-

ing to 16Gbp. With the present rate of growth of 

the databases, this limit will be reached by the 

end of 2000. A new database format should be 

designed with this in mind.

The huge size of the databases also limits 

the ability for individual users to have the entire 

databases available on their local harddisk. The 

use of centralised Internet servers with the data-

bases and search services will hence probably 

become even more widespread than today.

4.5 Conclusion
Novel algorithms for sequence database search-

ing has been described that are superior to the 

existing software with respect to a combination of 

sensitivity and speed. The programs take advan-

tage of the parallel processing technology avail-

able in common microprocessors and include 

novel approaches to the computation of gapped 

alignment scores. The algorithms developed can 

be developed further and it will be of major inter-

est to a establish a computing cluster that can 

fully exploit the capability of the programs.
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