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Abstract. Robert Stalnaker has recently advocated propositional contingentism, the claim that
it is contingent what propositions there are. He has proposed a philosophical theory of contingency
in what propositions there are and sketched a possible worlds model theory for it. In this paper,
such models are used to interpret two propositional modal languages: one containing an existential
propositional quantifier, and one containing an existential propositional operator. It is shown that the
resulting logic containing an existential quantifier is not recursively axiomatizable, as it is recursively
isomorphic to second-order logic, and a natural candidate axiomatization for the resulting logic
containing an existential operator is shown to be incomplete.

§1. Introduction. Many philosophers hold that it is contingent what there is, on the
basis of examples such as myself: many of them think that had I not been born, there would
have been no such thing as me. Had there been no such thing as me, would there have been
propositions about myself, such as the proposition that I am human? Many philosophers
who have considered it have also given a negative answer to this question, and so advocated
propositional contingentism, the view that it is contingent what propositions there are;
see Fritz (2016, p. 123) for references. Taking this kind of aboutness of propositions
seriously might motivate one to adopt a finer-grained understanding of propositions than
the one assumed in possible world semantics, where necessarily equivalent propositions
are taken to be identical. Assuming such a more fine-grained approach, Fine (1980) inves-
tigates propositional contingentism in the form of a number of first-order modal theories of
propositions. But propositional contingentism is also compatible with more coarse-grained
conceptions of propositions; such versions of propositional contingentism are discussed in
Stalnaker (2012) and Williamson (2013, chap. 6).

Stalnaker (2012, Appendix A) develops models for propositional contingentism along
familiar lines of possible world semantics, identifying propositions with sets of worlds.
These models are developed further in Fritz (2016), where they are called equivalence
systems. They dispense with an accessibility relation, understanding necessity simply as
truth in all worlds. They further assume that for each world, the propositions there are
at this world form a complete atomic Boolean algebra. Consequently, the propositional
domain at each world can be specified using an equivalence relation on the set of worlds;
the propositions in the propositional domain of a world are the members of the algebra
of propositions generated by the equivalence classes of the equivalence relation associ-
ated with the world. This is the set of unions of such equivalence classes, so, for every
equivalence relation ∼ on a set W , let A(∼) = {⋃ X : X ⊆ W/∼}. Note that for all
P ⊆ W , P ∈ A(∼) just in case for all w, v ∈ W , w ∼ v only if w ∈ P iff v ∈ P .
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204 PETER FRITZ

For reasons discussed in Fritz (2016), the equivalence relation associated with a world w
can be understood as a relation of indistinguishability among worlds (from the perspective
of w). Formally, Stalnaker’s models can be defined as follows:

DEFINITION 1.1. Let W be a set.

(i) An equivalence system on W is a function ≈ mapping every w ∈ W to an equiva-
lence relation ≈w on W .

(ii) For every equivalence system ≈ on W , the domain function of ≈ is the function
D≈
w : W → P(P(W )) such that for all w ∈ W , D≈

w = A(≈w).

Stalnaker imposes further constraints on equivalence systems, which are refined and
motivated in Fritz (2016). To define the resulting condition, let an automorphism of an
equivalence system ≈ on a set W be a permutation f of W such that v ≈w u iff f (v) ≈ f (w)

f (u) for all w, v, u ∈ W . For w ∈ W , let aut(≈) be the set of automorphisms of ≈ and
aut(≈)w the subset of members of aut(≈) mapping w to itself (the first forms a group, and
the second is sometimes called the stabilizer subgroup of w). When convenient, functions
and binary relations will be understood as sets of pairs.

DEFINITION 1.2. An equivalence system ≈ on a set W coheres if for all w, v, u ∈ W such
that v ≈w u, there is an f ∈ aut(≈)w such that f (v) = u and f ⊆ ≈w.

It is straightforward to interpret a propositional modal language with an existential
propositional quantifier ∃ on equivalence systems, interpreting � as truth in all worlds,
and using the propositional domain function as derived above to interpret propositional
quantifiers. Alternatively, the existential propositional quantifier may be replaced by an
existential propositional operator E , with Eϕ interpreted as expressing that the proposition
expressed by ϕ exists. Investigating the validities in such languages on classes of equiva-
lence systems is a way of investigating the commitments of the theories of propositional
contingency encoded in these classes.

§2 investigates the propositionally quantified logic of the class of all equivalence sys-
tems and shows that it is not recursively axiomatizable, by showing it to be recursively
isomorphic to full second-order logic. This result is extended to the logic of the class of
coherent equivalence systems, and the condition of coherence is compared to the condition
of validating a comprehension principle stating that every proposition definable using
existing parameters exists. §3 investigates logics with an existential operator, providing
an axiomatization of the logic of all equivalence system, and showing that the extension
of this axiomatization by a version of the comprehension principle just mentioned does
not completely axiomatize the logic of coherent equivalence systems. The concluding
§4 mentions some further applications and open questions. An appendix systematically
develops several notions of congruences and reductions of equivalence systems, which are
used in establishing the results of the main text.

§2. Existential quantifiers. The formal language used in this section adds proposi-
tional quantifiers to a standard propositional modal language:

DEFINITION 2.1. Let L∃ be the set of formulas built up from a countably infinite set of
proposition letters � using Boolean operators ¬ and ∧, a unary modal operator � and an
existential quantifier ∃ binding proposition letters. Other Boolean operators, � and ∀ will
be used as abbreviations as usual.

The domain functions derived from equivalence systems above lead to the following
straightforward way of interpreting L∃ on equivalence systems:
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LOGICS FOR PROPOSITIONAL CONTINGENTISM 205

DEFINITION 2.2. An L∃-formula being true relative to an equivalence system ≈ on a set W ,
a world w ∈ W , and an assignment function a : � → P(W ) is defined by the following
clauses:

≈, w, a � p iff w ∈ a(p)
≈, w, a � ¬ϕ iff not ≈, w, a � ϕ
≈, w, a � ϕ ∧ ψ iff ≈, w, a � ϕ and ≈, w, a � ψ
≈, w, a � �ϕ iff ≈, v, a � ϕ for all v ∈ W
≈, w, a � ∃pϕ iff there is a P ∈ D≈

w such that ≈, w, a[P/p] � ϕ.

As usual, a[P/p] is the assignment function which maps p to P and every other proposi-
tion letter q to a(q).

Dropping one or both of the parameters w and a in ≈, w, a � ϕ indicates that ϕ is true
relative to all worlds and/or assignment functions; e.g., ≈, w � ϕ if ≈, w, a � ϕ for all
assignment functions a.

An L∃-formula ϕ is valid on an equivalence system ≈ (a class C of equivalence systems)
if ≈ � ϕ (for every equivalence system ≈ in C). An L∃-formula ϕ is satisfiable on an
equivalence system (a class of equivalence systems) if its negation is not valid on it. The
L∃-logic of a class of equivalence systems is the set of L∃-formulas valid on it.

Interpreting a propositionally quantified language on variable domain structures seems
not to have been investigated in the literature, apart from some brief remarks by Fine
(1970, pp. 344–345). As shown by Fine (1970) and Kaplan (1970), L∃ interpreted over
sets of worlds, with � interpreted as above and ∃ as ranging over all subsets, is recursively
axiomatizable, and even decidable. Once accessibility relations are added, the situation
changes fundamentally, in many cases leading to a logic recursively isomorphic to full
second-order logic; see Kaminski & Tiomkin (1996) for details. It will now be shown that
the same sharp increase in complexity occurs when variable domains are introduced as
constrained by equivalence systems: the L∃-logic of (the class of all) equivalence systems
is also recursively isomorphic to second-order logic.

2.1. Incompleteness. It turns out that for present purposes, second-order logic can be
restricted to binary second-order variables, interpreting second-order quantifiers as
restricted to symmetric binary relations. To fix notation, define this as follows:

DEFINITION 2.3. Let L2 be a language based on a countably infinite set of first-order vari-
ables x, y, z . . . and a countably infinite set of binary second-order variables X, Y, Z . . . ,
whose formulas are constructed from atomic formulas of the form X yz using
Boolean operators ¬ and ∧ and first- and second-order quantifiers of the form ∃x
and ∃X.

Define truth of such a formula relative to a set D and an assignment function a mapping
each first-order variable to a member of D and each binary second-order variable X to a
symmetric binary relation on D, using the following clauses:

D, a � X yz iff 〈a(y), a(z)〉 ∈ a(X)
D, a � ∃x A iff there is a d ∈ D such that D, a[d/x] � A
D, a � ∃X A iff there is a symmetric binary relation R ⊆ D2

such that D, a[R/X ] � A

and the usual Boolean clauses, with a[d/x] and a[D/X ] defined as above.
Let an L2-formula be true in a set D, written D � A, if D, a � A for all assignment

functions a, and let SB be the set of L2-sentences (closed formulas) true in all sets.
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206 PETER FRITZ

Note that D in Definition 2.3 may be empty, as often in model theory; see, e.g., Hodges
(1997, p. 2). For present purposes, this is of little significance, since SB is easily seen to be
recursively isomorphic to the logic obtained by excluding the empty set in the definition
of SB. Although SB is in several ways more restrictive than full second-order logic as it is
usually defined, these differences can also be ignored for present purposes:

FACT 2.4. There is a recursive embedding of full second-order logic in SB.

This follows directly from a result due to Scott and Rabin, which shows that binary
second-order quantifiers may even be restricted to symmetric irreflexive relations (although
this is not required here); see the presentation of their proof by Nerode & Shore (1980) or
the variant construction of Kremer (1997, Appendix). By routine considerations, construct-
ing a recursive embedding of SB in the L∃-logic of equivalence systems thus suffices to
establish that the latter is recursively isomorphic to full second-order logic.

The basic idea of the construction of such an embedding is the following: Consider
an equivalence system in which each world contains its singleton proposition and in which
some world contains every proposition, and assume that there is a set P of worlds such that
for any P-worlds v and u, there is a worldw such that the only singletons of P-worlds inw
are those of v and u; thus w represents, or codes, the set {v, u}. We simulate L2 evaluated
on P . First-order quantification is simulated by modalized propositional quantification over
singletons of P-worlds. To simulate second-order quantifiers over P restricted to binary
symmetric relations, note that symmetric binary relations on P correspond to sets of sets of
the form {v, u} ⊆ P . Thus such second-order quantifiers can be simulated as propositional
quantification at the world containing all propositions: a set of worlds Q represents the
binary symmetric relation which relates P-worlds v and u just in case there is a w ∈ W
which codes {v, u}. The remainder of this section makes this way of simulating second-
order quantification over symmetric binary relations precise and shows how to turn it into
a recursive embedding of SB in the L∃-logic of equivalence systems.

The simulation will first be carried for equivalence systems in which every world con-
tains its singleton; it will later be shown how to eliminate this assumption. Adapting
terminology from Fine (1977) and Fritz & Goodman (2016), define:

DEFINITION 2.5. An equivalence system ≈ on a set W is world-selective if {w} ∈ D≈
w for

all w ∈ W .

Given a fixed set P of worlds, the following makes the definition of a world w coding a
set {u, v} of P-worlds precise, and adds corresponding definitions of a singleton proposi-
tion coding its member and a proposition coding a symmetric binary relation on P .

DEFINITION 2.6. Let ≈ be an equivalence system on a set W and P ⊆ W .

(i) Q ⊆ W codesP w ∈ P iff Q = {w}.
(ii) w ∈ W codesP {v, u} ⊆ P iff for all s ∈ P, {s} ∈ D≈

w iff s ∈ {v, u}. Q ⊆ W
codesP a symmetric binary relation R ⊆ P2 iff R is the set of pairs 〈w, v〉 ∈ P2

such that some element of Q codesP {w, v}.
Apart from world-selectiveness, the simulation to be given relies – for a given set P

of worlds – on there being a world w codingP any given P-worlds v, u and there being
a world containing every proposition. An equivalence system satisfying these constraints
will be called codingP :

DEFINITION 2.7. Let ≈ be an equivalence system on a set W , and P ⊆ W . ≈ is codingP

if the following conditions are satisfied:
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LOGICS FOR PROPOSITIONAL CONTINGENTISM 207

(C0P) ≈ is world-selective.
(C1P) For each {v, u} ⊆ P, there is a w ∈ W such that w codesP {v, u}.
(C2P) There is a w ∈ W such that D≈

w = P(W ).

≈ being codingP will also be phrased as P being coded by ≈.

To introduce a number of syntactic abbreviations, fix an injective function which maps
each variable ξ of L2 (first- or second-order) to a proposition letter pξ of L∃, and a
proposition letter p0 not in the image of this function. Define:

ϕ = ψ := �(ϕ ↔ ψ)
Eϕ := ∃r(r = ϕ)
atom(ϕ) := Eϕ ∧ �ϕ ∧ ∀r(�(ϕ → r) ∨ �(ϕ → ¬r))
↓ qϕ := ∀q((q ∧ atom(q)) → ϕ)
@qϕ := �(q → ϕ)
�qϕ := ↓ r�(p0 →↓ q@rϕ)
�qϕ := ¬�q¬ϕ
D(q, s) := �r(Er ↔ (r = q ∨ r = s)).

In these definitions, r is assumed to be an arbitrary proposition letter distinct from any
proposition letter occurring on the left hand side. = is intended to express identity, E exis-
tence and atom being an atom of the algebra of propositions of the world of evaluation. The
defined operator ↓ q is intended to bind the true atom (of the algebra of propositions of the
world of evaluation) to q, and, assuming the proposition bound to q is the singleton of some
world, @q is intended to evaluate the complement clause at this world. Assuming a world-
selective equivalence system, � and � are intended to express quantification, respectively
universal and existential, over singletons of worlds in the proposition expressed by p0; p0
thus serves the purpose of expressing the set of worlds second-order quantification over
which is to be simulated. Assuming that q and s express singleton propositions of worlds
v and u, D(q, s) is intended to express that the world of evaluation codes {v, u}. The
following lemma notes more formally that these definitions express the desired conditions:

LEMMA 2.8. Let ≈ be an equivalence system on a set W , P ⊆ W , and a an assignment
function such that a(p0) = P.

(i) ≈, w, a � ϕ = ψ iff {v ∈ W : ≈, v, a � ϕ} = {v ∈ W : ≈, v, a � ψ}
(ii) ≈, w, a � Eϕ iff {v ∈ W : ≈, v, a � ϕ} ∈ D≈

w

(iii) ≈, w, a � atom(ϕ) iff {v ∈ W : ≈, v, a � ϕ} ∈ W/≈w

(iv) ≈, w, a �↓ qϕ iff ≈, w, a[[w]≈w/q] � ϕ
(v) If a(q) = {v}, then ≈, w, a � @qϕ iff ≈, v, a � ϕ.

For the following, assume further that ≈ is world-selective.

(vi) ≈, w, a � �qϕ iff for all v ∈ P, ≈, w, a[{v}/q] � ϕ
(vii) ≈, w, a � �qϕ iff for some v ∈ P, ≈, w, a[{v}/q] � ϕ

(viii) If a(q) = {v}, a(s) = {u} and v, u ∈ P, then ≈, w, a � D(q, s) iff w codesP

{v, u}
Proof. Routine. �
The simulation of L2 in L∃ can now be introduced formally as a function mapping each

L2-formula A to an L∃-formula A∗. Define such a function using the following recursive
clauses:
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208 PETER FRITZ

(X yz)∗ := �(pX ∧ D(py, pz))
(¬A)∗ := ¬A∗
(A ∧ B)∗ := A∗ ∧ B∗
(∃x A)∗ := �px A∗
(∃X A)∗ := �∃pX A∗.

In order to show that this has the intended effect, it suffices to consider assignment func-
tions for L∃ which map p0 to a given set of worlds P , and px , for a first-order variable
x , to a singleton of a P-world; each such assignment function naturally determines a
corresponding assignment function for L2 on P .

DEFINITION 2.9. Let ≈ be an equivalence system on a set W and P ⊆ W . An assignment
function a : � → P(W ) is codingP if a(p0) = P and for every first-order variable x,
a(px ) codesP a member of P.

For an assignment function a : � → P(W )which is codingP , define an assignment func-
tion a∗ for L2, mapping each first-order variable x to the element of P codedP by a(px ),
and each second-order variable X to the symmetric binary relation on P codedP by a(pX ).

The next lemma shows that the mapping ·∗ functions as intended:

LEMMA 2.10. If ≈ is an equivalence system on a set W and a is an assignment function
such that ≈ and a are codingP for some P ⊆ W , then for every L2-formula A,

P, a∗ � A iff ≈, a � A∗.

Proof. By induction of the complexity of A. The Boolean cases are trivial, leaving the
following three:

P, a∗ � X yz iff 〈a∗(y), a∗(z)〉 ∈ a∗(X) (by semantics)
iff a∗(y) and a∗(z) are related by the symmetric binary relation on P codedP by
a(pX ) (by definition of ·∗)
iff some element of a(pX ) codesP {a∗(y), a∗(z)} (by definition of codingP )
iff some element of a(pX ) codesP a(py) ∪ a(pz) (by definition of ·∗ and codingP )
iff ≈, w, a � D(py, pz) for some w ∈ a(pX ) (by Lemma 2.8(viii))
iff ≈, a � �(pX ∧ D(py, pz)) (by semantics)
iff ≈, a � (X yz)∗ (by definition of ·∗)

P, a∗ � ∃x A iff there is a w ∈ P such that P, a∗[w/x] � A (by semantics)
iff there is a w ∈ P such that P, (a[{w}/px ])∗ � A (by definition of ·∗ and codingP )
iff there is a w ∈ P such that ≈, a[{w}/px ] � A∗ (by IH)
iff ≈, a � �px A∗ (by Lemma 2.8(vii))
iff ≈, a � (∃x A)∗ (by definition of ·∗)

P, a∗ � ∃X A iff there is a symmetric binary relation R on P such that P, a∗[R/X ] � A
(by semantics)
iff there is a Q ⊆ W such that P, a∗[R/X ] � A, where R is the symmetric binary
relation coded by Q (by C1P and the definition of codingP )
iff there is a Q ⊆ W such that P, (a[Q/pX ])∗ � A (by definition of ·∗)
iff there is a Q ⊆ W such that ≈, a[Q/pX ] � A∗ (by IH)
iff ≈, a � �∃pX A∗ (by C2P and semantics)
iff ≈, a � (∃X A)∗ (by definition of ·∗) �

The next task is to formulate the model-theoretic condition of being codingP in L∃.
Assuming a world-selective equivalence system, C1P and C2P can be expressed as T 1
and T 2, respectively:
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LOGICS FOR PROPOSITIONAL CONTINGENTISM 209

T 1 := �q�r�D(q, r)
T 2 := � ↓ q� ↓ r@q Er
T := T1 ∧ T2

LEMMA 2.11. Let ≈ be a world-selective equivalence system on a set W , P ⊆ W , and
a an assignment function for ≈ such that a(p0) = P.

(i) ≈, a � T 1 iff ≈ satisfies C1P .

(ii) ≈, a � T 2 iff ≈ satisfies C2P .

(iii) ≈, a � T iff ≈ is codingP .

Proof. (i) is routine using Lemma 2.8, and (iii) follows from (i) and (ii). For (ii), note
that since ≈ is world-selective, ≈, w, a �↓ q� ↓ r@q Er iff D≈

w contains all singletons
of worlds, which is the case iff D≈

w = P(W ). �
The free variable p0 in A∗ can now be eliminated by binding it with a necessitated

universal quantifier, restricted to T ; this provides a way of simulating the evaluation of
an L2-sentence on the sets coded by an equivalence system using L∃, interpreted on this
system. Note that for any L2-sentence A, the only proposition letter free in A∗ is p0, and
that formulas like A∗, T and �∀p0(T → A∗) are either true in all or no worlds of an
equivalence system.

LEMMA 2.12. If ≈ is a world-selective equivalence system on a set W and A an
L2-sentence, then

≈ � �∀p0(T → A∗) iff A is true in all sets coded by ≈ .
Proof. If there is no P ⊆ W coded by ≈, then by Lemma 2.11(iii), ≈ � ¬T , and so

≈ � �∀p0(T → A∗). So assume ≈ codes some P ⊆ W . Then there is a w ∈ W such that
D≈
w = P(W ). Using Lemma 2.11(iii) again, it follows that ≈ � �∀p0(T → A∗) iff for all

P ⊆ W coded by ≈ and assignment functions a, ≈, a[P/p0] � A∗, which by Lemma 2.10
is the case iff P, (a[P/p0])∗ � A. Since A is closed, ≈ � �∀p0(T → A∗) iff P � A for
all P ⊆ W such that ≈ is codingP , as required. �

The next step is to eliminate the restriction to world-selective equivalence systems. This
will be done by defining a weaker condition of being atom-selective: if w can’t distinguish
itself from v , then w and v must be interchangeable as far as any indistinguishability
relation is concerned. On the one hand, this weaker condition can be expressed by an
L∃-formula, and on the other hand, an L∃-sentence is satisfiable on an atom-selective
equivalence system if and only if it is satisfiable on a world-selective equivalence system.

DEFINITION 2.13. Let an equivalence system ≈ on a set W be atom-selective if for all
w ∈ W and v ∈ [w]≈w ,

(i) w ≈u v for all u ∈ W , and

(ii) ≈w = ≈v .

An L∃-sentence expressing atom-selectivity can be formulated as follows:

S := � ↓ p�∀q((�(p → q) ∨ �(p → ¬q)) ∧ (�(p → Eq) ∨ �(p → ¬Eq))).

LEMMA 2.14. An equivalence system ≈ is atom-selective iff ≈ � S.

Proof. We show that the two conditions of atom-selectivity correspond to the two
conjuncts in S in the following way:
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210 PETER FRITZ

≈, a[[w]≈w/p] � �∀q(�(p → q) ∨ �(p → ¬q))
iff for all u ∈ W and Q ∈ D≈

u , [w]≈w ⊆ Q or [w]≈w ⊆ W\Q
iff for all u ∈ W and v ∈ [w]≈w , w ≈u v .

≈, a[[w]≈w/p] � �∀q(�(p → Eq) ∨ �(p → ¬Eq))
iff for all u ∈ W and Q ∈ D≈

u , either Q ∈ D≈
v for all v ∈ [w]≈w or Q /∈ D≈

v for all
v ∈ [w]≈w

iff for all v ∈ [w]≈w , ≈w = ≈v .

The claim follows with Lemma 2.8(iv). �
So define a second function mapping each L2-sentence A to an L∃-sentence A† as

follows:

A† := S → �∀p0(T → A∗).
The following construction provides a way of simplifying equivalence systems, roughly

reducing clusters of duplicate worlds to a single world, which on the one hand preserves
truth of L∃-sentences, and on the other hand turns every atom-selective equivalence system
into a world-selective one:

DEFINITION 2.15. For any equivalence system ≈ on a set W , let ∼≈ be the equivalence
relation on W such that

w ∼≈ v iff w ≈u v for all u ∈ W and ≈w = ≈v .

Let the simplification of ≈, written ≈s , be the equivalence system on W/∼≈ such that
[v]∼≈ ≈s

[w]∼≈ [u]∼≈ iff v ≈w u.

Simplification is developed in more detail in the appendix as a special case of a general
notion of congruences of equivalence systems. Lemmas 5.17 and 5.18 and Proposition 5.20
in the appendix establish the following useful facts:

FACT 2.16. Let ≈ be an equivalence system on a set W .

(i) ≈ is atom-selective iff ≈s is world-selective.

(ii) If ≈ is world-selective, then ≈ is isomorphic to ≈s .

(iii) For every L∃-sentence ϕ, ≈ � ϕ iff ≈s � ϕ.

Simplification permits dropping the restriction to world-selective equivalence systems
in Lemma 2.12 in the following way:

LEMMA 2.17. If ≈ is an equivalence system and A an L2-sentence, then

≈ � A† iff A is true in all sets coded by ≈s.

Proof. Assume first that ≈ is not atom-selective. Then by Lemma 2.14, ≈ � ¬S. By
Fact 2.16(i), ≈s is not world-selective, so there is no set coded by ≈. Thus both sides of
the claimed biconditional are trivially true. If ≈ is atom-selective, then by Lemma 2.14 and
Fact 2.16(i), ≈ � S and ≈s is world-selective. So by Fact 2.16(iii), ≈ � A† iff ≈s �
�∀p0(T → A∗), which by Lemma 2.12 is the case iff A is true in all sets coded
by ≈s . �

With this lemma, a general form of the embedding result can be established, from which
the embedding of SB in the L E -logic of equivalence systems is an easy corollary.

THEOREM 2.18. Let C be a class of equivalence systems such that for every cardinality κ ,
there is an equivalence system ≈ in C such that ≈s codes some set of cardinality κ . The
L∃-logic of C is recursively isomorphic to full second-order logic.
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Proof. We first show that ·† embeds SB in the L∃-logic of C , in the sense that A ∈ SB
iff A† is valid on C . If A ∈ SB, then A is true in all sets, and so by Lemma 2.17, A† is
valid on all equivalence systems, and thus in particular on C . If A /∈ SB, then there is a set
of cardinality κ in which it is false. By assumption, C contains an equivalence system ≈
such that ≈s codes a set P of cardinality κ . Thus A is false in P , and so by Lemma 2.17,
≈s � A†, and hence with Fact 2.16(iii), ≈ � A†. So A† is not valid on C , as required.

·† is evidently recursive, so it follows with Fact 2.4 that there is a recursive embedding
of full second-order logic in the L∃-logic of C . It is routine to derive from this that the two
logics are recursively isomorphic (see Kremer (1993) for details). �

COROLLARY 2.19. The L∃-logic of the class of all equivalence systems is recursively
isomorphic to full second-order logic.

Proof. It is not hard to see that for every cardinality κ , there is an equivalence system
whose simplification codes a set of cardinality κ . A detailed construction satisfying further
constraints will be given in the proof of Theorem 2.20. �

2.2. Coherence and comprehension. The result just established for the class of all
equivalence systems extends to the class of coherent equivalence systems, introduced
above. To define the witnesses for this claim, extend any permutation f of a set W to a
permutation on P(W ), letting f.P = { f (w) : w ∈ P} for all P ⊆ W .

THEOREM 2.20. The L∃-logic of the class of coherent equivalence systems is recursively
isomorphic to full second-order logic.

Proof. To show that the class of coherent equivalence systems satisfies the conditions
stated in Theorem 2.18, let κ be a cardinality and D an infinite set of cardinality ≥ κ .
Define W = P(D), and ≈ to be the equivalence system on W such that for allw, v, u ∈ W ,
v ≈w u iff there is a permutation f of D such that f.v = u and f (d) = d for all d ∈ w.

To show that ≈ is coherent, assume v ≈w u. Then there is a permutation f of D such
that f.v = u and f (d) = d for all d ∈ w; we show that f (extended to W ) is the
required automorphism. To show that it is an automorphism, assume y ≈x z, witnessed
by a permutation g. It is routine to show that f g f −1 is a permutation which witnesses
f.y ≈ f.x f.z, as required. The remaining conditions are immediate by construction.

Since ≈ is world-selective, it follows from Fact 2.16(ii), that ≈ and ≈s are isomorphic.
It thus suffices to show that ≈ codes a set of cardinality κ . Let P ⊆ D of cardinality κ;
we show that ≈ codes P ′ = {{d} : d ∈ P}. C0P ′ : As already noted, ≈ is world-selective.
C1P ′ : Each {{d}, {e}} ⊆ P ′ is codedP ′ by {d, e}. C2P ′ : D≈

D = P(W ). �
One way of motivating coherence is as a structural criterion guaranteeing that at every

world, the existing propositions are not only closed under Boolean operations – which is
guaranteed in all equivalence systems by the fact that propositional domains form (com-
plete atomic) Boolean algebras – but also under definability using arbitrary L∃-formulas.
In L∃, this can be expressed as the requirement of validating the following schema, where
pl(ϕ) is the set of proposition letters free in ϕ, and ϕ is any L∃-formula:

(C∃)
(∧

p∈pl(ϕ) Ep
) → Eϕ.

For further discussion and motivation of this principle, see Williamson (2013, sec. 6.2) and
Fritz & Goodman (2016, sec. 5.1). This comprehension principle supports coherence in the
following way:

PROPOSITION 2.21. C∃ is valid on the class of coherent equivalence systems, but not
on the class of all equivalence systems.
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Proof. The validity claim will follow from Proposition 2.25; the invalidity claim can be
seen by considering the following system ≈ (notation explained below):

Note that ≈, 1 � ¬E∀p�Ep. �
In this proof and in the following, the conventions for drawing equivalence systems of

Fritz (2016) are adopted. Roughly, an equivalence system ≈ based on {1, . . . , n} is drawn
using n circles of n points, themselves arranged in a circle, with lines connecting the points
of the i th circle according to ≈i ; labeling of worlds is omitted by adopting the convention
of arranging them clockwise with 1 on top. So the equivalence system used in the above
proof is based on {1, 2}, with ≈1 but not ≈2 relating 1 and 2.

Given this result, one might wonder whether all clauses in the condition of coherence
are necessary to validate comprehension. This is not so; the condition that the relevant
automorphism (see Definition 1.2) maps w to itself is not needed.

DEFINITION 2.22. Let an equivalence system ≈ on a set W be quasicoherent if for every
w, v, u ∈ W such that v ≈w u, there is an f ∈ aut(≈) such that f (v) = u and f ⊆ ≈w.

This is a weaker condition than coherence, as can be demonstrated using a two-world
equivalence system:

Note also that from the proof of Theorem 2.20, the following is immediate:

COROLLARY 2.23. The L∃-logic of the class of quasicoherent equivalence systems is
recursively isomorphic to full second-order logic.

Returning to the matter of comprehension, quasicoherence suffices for the validity of
C∃. To prove it, the next lemma shows that truth in equivalence systems is invariant under
automorphisms. For any automorphism f of an equivalence system ≈ and assignment
function a, let f.a be the assignment function mapping each p ∈ � to f.(a(p)).

LEMMA 2.24. Let ≈ be an equivalence system on a set W , w ∈ W , and f an automor-
phism of ≈.

(i) For any P ⊆ W , P ∈ D≈
w iff f.P ∈ D≈

f (w).

(ii) For any assignment function a and ϕ ∈ L∃, ≈, w, a � ϕ iff ≈, f (w), f.a � ϕ.

Proof. (i) P /∈ D≈
w iff there are v, u ∈ W such that v ∈ P , u /∈ P and v ≈w u. v ∈ P

iff f (v) ∈ f.P; u /∈ P iff f (u) /∈ f.P; and v ≈w u iff f (v) ≈ f (w) f (u). So P ∈ D≈
w

iff there are v, u ∈ W such that f (v) ∈ f.P , f (u) /∈ f.P and f (v) ≈ f (w) f (u); since f
is a permutation, this is the case iff there are v, u ∈ W such that v ∈ f.P , u /∈ f.P and
v ≈ f (w) u, i.e., iff f.P /∈ D≈

f (w).
(ii) By induction on the structure of ϕ. Only the case of ∃ is of interest:

≈, w, a � ∃pϕ iff ≈, w, a[P/p] � ϕ for some P ∈ D≈
w (by semantics)

iff ≈, f (w), f.(a[P/p]) � ϕ for some P ∈ D≈
w (by IH)

iff ≈, f (w), ( f.a)[ f.P/p] � ϕ for some P ⊆ W such that f.P ∈ D≈
f (w) (by (i))

iff ≈, f (w), f.a � ∃pϕ (by semantics) �
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PROPOSITION 2.25. C∃ is valid on the class of quasicoherent equivalence systems.

Proof. Consider any quasicoherent equivalence system ≈ on a set W , w ∈ W and
ϕ ∈ L∃. It suffices to show that for every assignment function a : � → D≈

w , ≈, w, a � Eϕ,
which is the case iff for all v, u ∈ W such that v ≈w u, ≈, v, a � ϕ iff ≈, u, a � ϕ.
If v ≈w u, then by quasicoherence, there is an f ∈ aut(≈) such that f (v) = u and
f ⊆ ≈w. Since a : � → D≈

w , a = f.a, and so with Lemma 2.24(ii), ≈, v, a � ϕ iff
≈, u, a � ϕ, as required. �

Although the structural differences between coherence and quasicoherence are not re-
flected in matters concerning the validity of C∃, they are reflected in matters concerning
the validity of L∃-sentences. The following proposition gives a concrete example:

PROPOSITION 2.26. Coherent systems are world-selective; quasicoherent systems need
not be atom-selective. Thus, S (defined above) is valid on the class of coherent equivalence
systems, but not on the class of quasicoherent equivalence systems.

Proof. That coherence entails world-selectivity is immediate. That quasicoherence does
not entail atom-selectivity can be seen using the following system:

The conclusions concerning S follow by Lemma 2.14. �
Are all the components of quasicoherence required to ensure the validity of C∃? It is

clear that dropping the requirement for f to map v to u is indispensable, as doing so
leads to a condition satisfied by all equivalence systems ( f may always be the identity
permutation). The only remaining natural candidate is the weakening of quasicoherence
which drops the requirement that f ⊆ ≈w. More cautiously, one might wonder whether
replacing it by f (w) = w leads to a class of systems which validates C∃. The following
shows that f ⊆ ≈w is necessary, and cannot be replaced by f (w) = w.

PROPOSITION 2.27. There is an equivalence system ≈ such that:

(i) If v ≈w u then there is an f ∈ aut(≈)w such that f (v) = u.

(ii) ≈ does not validate C∃.

Proof. Let ≈ be the following system:

For 7 ≈1 2, note that (72)(63)(54) is an automorphism as required, and for the other two
cases, the obvious transpositions witness that ≈ satisfies the constraint. But C∃ is not valid,
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since {3} ∈ D≈
1 and {2} /∈ D≈

1 , even though {2} is definable at 1 using ¬Ep, assigning {3}
to p. �

Among a natural range of candidates, quasicoherence is therefore a minimal condition
sufficient to guarantee the validity of C∃. This cannot be strengthened to arbitrary condi-
tions, as C∃ does not define quasicoherence: there are equivalence systems which validate
C∃ without being quasicoherent. The existence of such equivalence systems follows from
results established in Fritz (unpublished). Indeed, the results established there entail that it
is even impossible to define quasicoherence in an infinitary higher-order extension of L∃.
The counterexamples derived from these results are infinite, but concerning the question
whether C∃ defines quasicoherence, there are even finite counterexamples:

PROPOSITION 2.28. There is an equivalence system ≈ on a finite set which validates
C∃ without being quasicoherent.

Proof. Let ≈ be the following equivalence system:

This is not quasicoherent, as no automorphism maps 2 to 4, as required by 2 ≈1 4. But the
simplification of ≈ is the following equivalence system:

Since this is coherent, it validates C∃; by Fact 2.16(iii), so does ≈ (note that the antecedent
of C∃ may be replaced by a string of universal quantifiers). �

Given the counterexample of this proof, it is natural to wonder whether a finite equiva-
lence system validates C∃ just in case its simplification is quasicoherent; this question will
be left open here.

§3. Existential operators. Since the L∃-logics considered above turn out to be too
complex to be recursively axiomatizable, it is natural to consider more restricted languages
which still capture some characteristic features of propositional contingentism. One candi-
date is the language which results from replacing the existential propositional quantifier of
L∃ by an existential propositional operator.

DEFINITION 3.1. Let L E be the set of formulas built up from� using ¬, ∧, � and a unary
existential operator E.

Note that E is now a primitive operator, rather than a syntactic abbreviation as above.
Nevertheless, L E can naturally be understood as a syntactic restriction of L∃, namely as
the set of L∃-formulas in which ∃ occurs only in subformulas of the form ∃p�(p ↔ ϕ),
with p not free in ϕ.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020317000028
Downloaded from https:/www.cambridge.org/core. Universitetsbiblioteket i Oslo, on 19 Jun 2017 at 09:25:01, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020317000028
https:/www.cambridge.org/core


LOGICS FOR PROPOSITIONAL CONTINGENTISM 215

DEFINITION 3.2. Truth of an L E -formula relative to an equivalence system ≈ on a set
W , a world w ∈ W , and an assignment function a : � → P(W ) is defined like truth of
L∃-formulas, except for the following new clause:

≈, w, a � Eϕ iff {v ∈ W : ≈, v, a � ϕ} ∈ D≈
w.

Validity and other metalogical notions are defined analogous to Definition 2.2.

Note that ≈, w, a � Eϕ iff for all v, u ∈ W , if v ≈w u then ≈, v, a � ϕ iff ≈, u, a � ϕ.

3.1. Completeness. The first main result to be established shows that the logic S5E,
axiomatized in the following definition, is the L E -logic of (the class of all) equivalence
systems.

DEFINITION 3.3. Let an existential modal logic be a set of L E -formulas containing all
truth-functional tautologies and the following axioms:

K� : �(p → q) → (�p → �q) C� : E�
T� : �p → p C¬ : Ep → E¬p
5� : ¬�p → �¬�p C∧ : (Ep ∧ Eq) → E(p ∧ q)
�E : �(p ↔ q) → (Ep ↔ Eq)

and closed under the following schematic rules:

MP : From ϕ and ϕ → ψ, derive ψ
US : From ϕ, derive any substitution instance of ϕ
Nec : From ϕ, derive �ϕ

For every set 	 ⊆ L E , let S5E	, the existential modal logic axiomatized by (the members
of) 	, be the smallest existential modal logic which includes 	; let S5E = S5E∅.

S5E	 is well-defined for arbitrary 	 ⊆ L E , as existential modal logics ordered by
inclusion form a complete lattice, which is routine to verify. As the next proposition notes,
this lattice can also be understood as a sublattice of the lattice of classical or congruential
bimodal logics, the sets of L E -formulas containing all tautologies and closed under MP,
US and the congruence rules ϕ ↔ ψ/�ϕ ↔ �ψ and ϕ ↔ ψ/Eϕ ↔ Eψ (see Segerberg
(1971) and Chellas (1980) for more on such logics).

PROPOSITION 3.4. For every 	 ⊆ L E , S5E	 is the classical modal logic axiomatized
by K� – C∧ (the seven axioms of Definition 3.3) and 	.

Proof. It suffices to show that the congruence rules are derivable in S5E	 and that
Nec is derivable in the classical modal logic axiomatized by K�–C∧ and 	. The first
claim is routine using Nec, K�, and �E . For the second claim, note that Chellas (1980,
Theorem 8.15) shows �� to be derivable using T� and 5�, from which Nec follows with
the congruence rule for �. �

The usual syntactic notions in propositional modal logic will be applied to existential
modal logics: For a given existential modal logic 
, 	 ⊆ L E and ϕ ∈ L E , �
 ϕ will
be used for ϕ ∈ 
 (ϕ being a theorem of 
), and 	 �
 ϕ for �
 ∧

	0 → ϕ for some
finite 	0 ⊆ 	 (ϕ being a consequence of 	 in 
). 	/ϕ will be called 
-inconsistent if
	/{ϕ} �
 ⊥ and 
-consistent otherwise. A set of L E -formulas will be understood to be

 maximal consistent if it is 
-consistent and not a proper subset of any 
-consistent set.

Instead of a more traditional canonical model construction, the proof of the complete-
ness of S5E with respect to equivalence system given below proceeds by an analog of
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the representation theorem of Jónsson & Tarski (1951). (However, it is routine to derive
canonical models from the constructions involved in this representation theorem; cf. Black-
burn, de Rijke, & Venema (2001, p. 288).) Consequently, algebraic analogs of equivalence
systems are now introduced. They are based on Boolean algebras; the top and bottom
elements of such algebras will customarily be called 1 and 0, and the usual entailment
order will be called ≤. As with equivalence systems, the interpretation of � is fixed by the
semantics, rather than the specific structure. E is interpreted by a function ε, which can
be understood as mapping every proposition to the proposition that it exists. This mapping
will be required to satisfy the constraint that for every proposition, the propositions whose
existence it entails contain 1 and are closed under negation and conjunction; i.e., such
propositions must form a Boolean algebra.

DEFINITION 3.5. Let an existential algebra be a structure 〈A,−,�, ε〉 such that 〈A,−,�〉
is a Boolean algebra and ε : A → A is such that for all a ∈ A, ε−(a) = {b ∈ A : a ≤ εb}
is a Boolean subalgebra of A.

For an existential algebra A = 〈A,−,�, ε〉, let an assignment function be a function
a : � → A. Implicitly extend such functions to L E using the following clauses:

a(¬ϕ) = −a(ϕ)
a(ϕ ∧ ψ) = a(ϕ) � a(ψ)

a(�ϕ) =
{

1 if a(ϕ) = 1,

0 otherwise.
a(Eϕ) = εa(ϕ)

An L E -formula is valid on an existential algebra if it is mapped to the top element by every
assignment function; it is valid on a class of existential algebras if it is valid on all of them.
The L E -logic of a class of existential algebras is the set of L E -formulas valid on it.

The fixed interpretation of � in existential algebras is adapted from algebraic models for
S5 described in Lewis & Langford (1932, p. 492), where the construction is attributed to
Paul Henle. Just like existential modal logics could be generalized by dropping some of the
axioms governing �, and equivalence systems could be generalized by adding accessibility
relations or neighborhood functions to interpret �, existential algebras could be general-
ized by adding a function to interpret �. Such generalizations won’t be considered here.
The class of existential algebras is adequate for existential modal logics in the following
sense:

THEOREM 3.6. The L E -logic of every class of existential algebras is an existential modal
logic, and every L E -logic is the logic of a class of existential algebras.

Proof. The first claim is routine to verify. For the second, consider any L E -logic 
. For
every 	 ⊆ L E , let �−(	) = {γ : �γ ∈ 	} and �(	) = {�γ : γ ∈ 	}.

Let γ be an L E -formula not in 
. We construct an existential algebra validating 

but not γ ; this suffices to show that 
 is the L E -logic of the class of existential algebras
validating 
. As usual, a version of Lindenbaum’s lemma establishes that ¬γ is contained
in some 
 maximal consistent set 	. Define a property � of L E -formulas by letting � ϕ
if ��−(	) �
 ϕ, and a binary relation ∼ on L E -formulas by letting ϕ ∼ ψ if � ϕ ↔ ψ .

We establish the following two claims:

(i) For all ϕ ∈ L E , if � ϕ then � �ϕ.

(ii) ∼ is a congruence of the term algebra, i.e., an equivalence relation on L E such that
ϕ ∼ ψ entails ¬ϕ ∼ ¬ψ and analogously for ∧, � and E .
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For (i), assume � ϕ, so �
 ∧
i<n �χi → ϕ for some χi ∈ 	 (i < n). Thus by a routine

derivation, �
 ∧
i<n ��χi → �ϕ and so, by �S5E �p → ��p, �
 ∧

i<n �χi → �ϕ,
whence � �ϕ. The Boolean cases of (ii) are immediate, and the cases of � and E follow
by (i) and �S5E �(ϕ ↔ ψ) → (�ϕ ↔ �ψ) and �E , respectively.

Let A = 〈A,−,�, ε〉 be the Lindenbaum–Tarski algebra determined by ∼, i.e., the
algebra based on the equivalence classes of ∼, with − such that −[ϕ]∼ = [¬ϕ]∼, and
similarly for the other operators; this is well-defined as ∼ is a congruence. We show that A
is an existential algebra. That it is based on a Boolean algebra follows from the fact that 

includes all tautologies; the constraint on ε follows from C�, C¬ and C∧. So consider �:

If [ϕ]∼ = 1, then � ϕ ↔ �, so � �ϕ ↔ ��, hence �ϕ ∼ �, and thus [�ϕ]∼ = 1.

If [ϕ]∼ �= 1 then � ϕ ↔ �, so (by T� and maximality) ¬�ϕ ∈ 	, and thus (by 5�)
�¬�ϕ ∈ 	. Therefore ¬�ϕ ∼ �, and so [�ϕ]∼ = 0.

A is the required existential algebra: It is immediate by construction that it validates 
. To
see that it does not validate γ , consider the canonical assignment function mapping each
p ∈ � to [p]∼; this maps each formula to its equivalence class. Since 	 is consistent,
not ¬γ ∼ ⊥, i.e., [γ ]∼ �= 1 as required. (Indeed, the image of 	 under the canonical
assignment function forms an ultrafilter.) �

Every equivalence system can straightforwardly be turned into an existential algebra:

DEFINITION 3.7. Let ≈ be an equivalence system on a set W . Define the complex
existential algebra of ≈, written A≈, to be the existential algebra 〈A,−,�, ε≈〉 such that
〈A,−,�〉 is the powerset algebra on W and

ε≈(a) = {w ∈ W : a ∈ D≈
w }.

This preserves truth of L E -formulas in the following sense:

LEMMA 3.8. If ≈ is an equivalence system on W , w ∈ W , a an assignment function
and ϕ ∈ L E , then ≈, w, a � ϕ iff w ∈ a(ϕ) (where on the right hand side, a serves as an
assignment function for A≈).

Proof. By induction on the structure of ϕ. Consider the case of E : ≈, w, a � Eϕ iff
{v ∈ W : ≈, v, a � ϕ} ∈ D≈

w iff a(ϕ) ∈ D≈
w (by IH) iff w ∈ ε≈(a(ϕ)) (by construction of

ε≈) iff w ∈ a(Eϕ). �
As in Jónsson and Tarski’s theorem, an existential algebra can be represented using an

equivalence system whose worlds are the ultrafilters of the underlying Boolean algebra.
The crucial clause of the equivalence relation associated with an ultrafilter is based on the
idea that a world w is unable to distinguish worlds v and u just in case every proposition
which exists in w is true in v iff it is true in u.

DEFINITION 3.9. Let A = 〈A,−,�, ε〉 be an existential algebra. Define the ultrafilter
equivalence system of A, written ≈A, to be the equivalence system on the set Uf (A) of
ultrafilters of 〈A,−,�〉 such that for all ultrafilters w, v, u,

v ≈A
w u iff for all a ∈ A such that εa ∈ w, a ∈ v iff a ∈ u.

An analog of the Jónsson–Tarski theorem can be established using the following result
of Makinson (1969); see also Givant & Halmos (2009, chap. 20, Exercise 15).

FACT 3.10. Let A be a Boolean algebra and B a Boolean subalgebra of A. For
any a ∈ A not in B, there are ultrafilters U and V of A such that a ∈ U, a /∈ V and
U ∩ B = V ∩ B.
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THEOREM 3.11. Let A = 〈A,−,�, ε〉 be an existential algebra, and r : A → P(Uf (A))
the function such that for all a ∈ A,

r(a) = {w ∈ Uf (A) : a ∈ w}.
r embeds A in A(≈A).

Proof. By Stone’s theorem, it suffices to prove, for arbitrary a ∈ A, that r(εa) =
ε(≈A)r(a). Since r(εa) = {w ∈ Uf (A) : εa ∈ w} and ε(≈A)r(a) = {w ∈ Uf (A) : r(a) ∈
D(≈A)
w }, this can be done by showing, for any w ∈ Uf (A), that εa ∈ w iff r(a) ∈ D(≈A)

w .

By definition, r(a) ∈ D(≈A)
w iff for all u, v ∈ Uf (A), if for all b ∈ A such that εb ∈ w,

b ∈ v iff b ∈ u, then a ∈ v iff a ∈ u.
Assume that εa ∈ w, and consider any u, v ∈ Uf (A) such that for all b ∈ A such that

εb ∈ w, b ∈ v iff b ∈ u. Since εa ∈ w, a ∈ v iff a ∈ u as required.
Assume that εa /∈ w. By Fact 3.10, there are u, v ∈ Uf (A) such that for all b ∈ A such

that εb ∈ w, b ∈ v iff b ∈ u, but a ∈ v and a /∈ u as required. �
It is now easily to derive the completeness of S5E with respect to equivalence systems:

THEOREM 3.12. S5E is the L E -logic of the class of all equivalence systems.

Proof. Soundness is routine. So consider any set 	 ⊆ L E maximal consistent in
S5E. Let A be the Lindenbaum–Tarski algebra of S5E and 	 as defined in the proof of
Theorem 3.6, which by Theorem 3.11 can be embedded in A(≈A). Let u be the ultrafilter to
which 	 is mapped by the canonical assignment function. Extend this canonical assignment
function via the embedding to an assignment function a for the embedding algebra A(≈A).
Then u ∈ a(γ ) for all γ ∈ 	. By Lemma 3.8, ≈, u, a � γ for all γ ∈ 	. �

Note that the proof of this result establishes a strong completeness result: for every
S5E-consistent set of L E -formulas, there is a world of some equivalence system and
assignment function relative to which all of them are true.

3.2. Existential modal logics and equivalence systems. As the results of the previous
section demonstrate, existential modal logics relate to equivalence systems in much the
same ways as normal modal logics relate to relational frames, with existential algebras
corresponding to (normal) Boolean algebras with operators. This section expands this
observation, showing that many of the complexities in the study of normal modal logics
also occur in the study of existential modal logics. First, a close connection between certain
existential modal logics and certain normal bimodal logics will be established, with which a
number of results concerning normal modal logics can be transferred to existential modal
logics, in particular the existence of a continuum of logics and the existence of logics
incomplete with respect to the possible world semantics. The required normal bimodal
logics are the following:

DEFINITION 3.13. Let LU be like L E but with U instead of E, i.e., a propositional bimodal
language on � with modal operators � and U. For any 	 ⊆ LU , define UKT	 to be the
normal modal logic in LU axiomatized by the members of 	 and the following axioms:

TU : U p → p U� : U p → �p
5U : ¬U p → U¬U p T� : �p → p.

The required existential modal logics are those containing the following axiom:

(Z) (Ep ∧ p ∧ �(p → q)) → Eq.
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The idea behind singling out these two sets of logics is to enable U of LU and � of L E

to play corresponding roles, and likewise for � of LU and E of L E . The correspondence
between the former two is immediate, as both of them play the role of universal modalities.
In the case of the latter two, the intended correspondence is for the worlds �-accessible
from a given world w to correspond to those indistinguishable by w from itself. Since
indistinguishability is a reflexive relation, T� is included in UKT	. In order for � to be
able to mimic E , the existential facts must be completely determined by which worlds
a given world is unable to distinguish from itself; this is guaranteed by the validity of
Z , enforcing that two worlds are only indistinguishable from a given world if it can’t
distinguish them from itself. On these assumptions, L E and LU are intertranslateable using
the following mappings:

DEFINITION 3.14. Let τ : LU → L E be the recursive map whose non-trivial clauses are:

τ (�ϕ) = Eτ (ϕ) ∧ τ (ϕ)
τ (Uϕ) = �τ (ϕ)

Let σ : L E → LU be the recursive map whose non-trivial clauses are:

σ(Eϕ) = �σ(ϕ) ∨ �¬σ(ϕ)
σ (�ϕ) = Uσ(ϕ).

Implicitly extend such maps to sets of formulas.

The following results establish that the two syntactic mappings are mutual inverses,
modulo equivalence in UKT/S5EZ , and preserve and anti-preserve derivability from
axioms in the two logics:

LEMMA 3.15. Let ϕ ∈ LU and ψ ∈ L E .

(i) �UKT ϕ ↔ στ(ϕ)

(ii) �S5EZ ψ ↔ τσ (ψ)

Proof. By an induction on the structure of ϕ and ψ . Only the cases of � for LU and E
for L E are of interest:

(i) στ(�ϕ) = (�στ(ϕ) ∨ �¬στ(ϕ)) ∧ στ(ϕ). By IH, it therefore suffices to prove
�UKT �p ↔ ((�p ∨ �¬p) ∧ p), which is routine using T�.

(ii) τσ (Eψ) = (Eτσ (ψ)∧τσ (ψ))∨(E¬τσ (ψ)∧¬τσ (ψ)). By IH, it therefore suffices
to prove �S5EZ Ep ↔ ((Ep ∧ p) ∨ (E¬p ∧ ¬p)), which is routine using C¬. �

LEMMA 3.16. Let ϕ ∈ LU , 	 ⊆ LU , ψ ∈ L E , and � ⊆ L E .

(i) If �UKT	 ϕ then �S5EZτ(	) τ (ϕ).

(ii) If �S5EZ� ψ then �UKTσ(�) σ (ψ).

Proof. By a routine induction on the length of proofs. �
PROPOSITION 3.17. Let ϕ ∈ LU , 	 ⊆ LU , ψ ∈ L E , and � ⊆ L E .

(i) �UKT	 ϕ iff �S5EZτ(	) τ (ϕ).

(ii) �S5EZ� ψ iff �UKTσ(�) σ (ψ).

Proof. By the previous two lemmas. �
This shows that existential modal logics containing Z correspond uniquely to normal

extensions of UKT:
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COROLLARY 3.18. The lattices {UKT	 : 	 ⊆ LU } and {S5EZ� : � ⊆ L E } (ordered
by ⊆) are isomorphic.

Proof. Let f be the function mapping each 
 ∈ {UKT	 : 	 ⊆ LU } to S5EZτ (
);
we show f to be the required isomorphism.

For surjectivity, consider any � ⊆ L E . We show that f (UKTσ(�)) = S5EZ�.
Let ϕ ∈ L E . Then:

�S5EZ� ϕ iff �UKTσ(�) σ (ϕ) (by Lemma 3.17(ii))
iff �UKT(UKTσ(�)) σ (ϕ)
iff �S5EZτ(UKTσ(�)) τσ (ϕ) (by Lemma 3.17(i))
iff �S5EZτ(UKTσ(�)) ϕ (by Lemma 3.15(ii))
iff � f (UKTσ(�)) ϕ

Let
,
′ ∈ {UKT	 : 	 ⊆ LU }. Clearly, if
 ⊆ 
′, then f (
) ⊆ f (
′). So, assuming

 � 
′, we show f (
) � f (
′); this also proves that f is injective. Let ϕ ∈ 
 such that
ϕ /∈ 
′. Then τ (ϕ) ∈ f (
), but since �UKT
′ ϕ, by Lemma 3.17(i), �S5EZτ(
′) τ (ϕ) and
so τ (ϕ) /∈ f (
′). �

With the following observation, made in Goranko & Passy (1992, p. 16), many known
properties of normal unimodal logics containing the axiom T� can be transferred to normal
extensions of UKT, and so with the results just established to existential modal logics
containing Z . Here, let L be a standard unimodal propositional language based on � with
the single modality �; let K T	 be the smallest normal modal logic in L containing the T�
axiom and those in 	 ⊆ L .

FACT 3.19. For each 	 ⊆ L, UKT	 is a conservative extension of K T	.

An example for a result about normal modal logics which can now easily be established
for existential modal logics is the existence of a continuum of logics:

COROLLARY 3.20. There are �1 existential modal logics.

Proof. By Corollary 3.18, Fact 3.19 and the fact that there are �1 normal extensions of
K T (which follows, e.g., from the results established in Fine (1974a)). �

In order for results on the relation the between normal modal logics and relational frames
to be transferred to existential modal logics and equivalence systems, a connection has to
be established between relational frames and equivalence systems. First, it is noted that Z
has the intended semantic effect:

LEMMA 3.21. Z is valid on an equivalence system ≈ on a set W iff for all w, v, u ∈ W ,
v ≈w u iff v = u or v, u ∈ [w]≈w .

Proof. Consider any w ∈ W . ≈, w � Z iff for all P ∈ D≈
w containing w and Q ⊇ P ,

Q ∈ D≈
w . This is the case iff Q ∈ D≈

w for all Q ⊇ [w]≈w , which is the case iff for all
v, u ∈ W , v ≈w u only if v = u or v, u ∈ [w]≈w . The claim follows, as the right-to-left
direction of the required biconditional holds for all equivalence systems. �

Each equivalence system validating Z determines a relational frame, by counting a
world as accessible from another world if the second cannot distinguish itself from the
first. Although this generality will not be needed, this mapping is well-defined for all
equivalence systems:

DEFINITION 3.22. For any equivalence system ≈ on a set W , define a relational frame
F≈ = 〈W, R〉 with Rwv iff v ∈ [w]≈w .
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As the next lemma notes, this mapping matches the syntactic mapping τ from LU to L E ,
in the sense that truth of an LU -formula in the relational frame determined by an equiva-
lence system is equivalent to truth of its image in the equivalence system (interpreting U
as truth in all worlds, like � of L E ):

LEMMA 3.23. For any equivalence system ≈ on a set W validating Z, w ∈ W ,
assignment function a and ϕ ∈ LU ,

F≈, w, a � ϕ iff ≈, w, a � τ (ϕ).

Proof. By induction on the structure of ϕ; only the case of � is of interest:

≈, w, a � τ (�ϕ) iff ≈, w, a � Eτ (ϕ) ∧ τ (ϕ) (by definition of τ )
iff ≈, w, a � τ (ϕ) and for all v, u ∈ W such that v ≈w u, ≈, v, a � τ (ϕ) iff
≈, u, a � τ (ϕ) (by semantics)
iff ≈, w, a � τ (ϕ) and for all v, u ∈ [w]≈w , ≈, v, a � τ (ϕ) iff ≈, u, a � τ (ϕ) (by
the validity of Z and Lemma 3.21)
iff ≈, v, a � τ (ϕ) for all v ∈ [w]≈w (since w ∈ [w]≈w )
iff F≈, v, a � ϕ for all v ∈ [w]≈w (by IH)
iff F≈, v, a � ϕ for all v ∈ W such that Rwv (by construction of F≈)
iff F≈, w, a � �ϕ (by semantics). �

With this lemma, and the earlier connections between existential modal logics and
extensions of K T , the fact that some extensions of K T are not the logic of any class
of relational frames can be used to show that some existential modal logics are not the
logic of any class of equivalence systems:

THEOREM 3.24. There is an existential modal logic which is not the logic of any class of
equivalence systems.

Proof. As shown by Fine (1974b) and Thomason (1974), there are sets 	 ⊆ L such that
K T	 is not the logic of any class of relational frames. By Fact 3.19, UKT	 is not the logic
of any class of relational frames: there is a ϕ ∈ L such that ϕ is valid on relational frames
validating K T	 but not derivable in UKT	. Thus with Proposition 3.17(i), �S5EZτ(	)

τ (ϕ). It suffices to show that τ (ϕ) is valid on any equivalence system ≈ validating Z
and τ (	). So let ≈ be such a system; by Lemma 3.23, F≈ validates 	 and so ϕ; hence ≈
validates τ (ϕ), as required. �

The remainder of this section establishes a few further results on existential modal log-
ics more directly, although mostly following well-known developments in normal modal
logics. The first is an analog to a result due to Makinson (1971); to state it, let S5ETriv be
the existential modal logic axiomatized by p → �p.

PROPOSITION 3.25. Every consistent existential modal logic is included in S5ETriv.

Proof. For every existential algebra 〈A,−,�, ε〉, ε0 = ε1 = 1. Thus there is a unique
two-element existential algebra, and for every existential algebra a homomorphism from
the former to the latter. Thus every L E -formula not valid on the two-element existential
algebra is not valid on any existential algebra. With Theorem 3.6, it follows that every
consistent existential modal logic is included in the logic of the two-element existential
algebra. As p → �p is valid on the two-element existential algebra and no other exis-
tential algebra, it follows from Theorem 3.6 that S5ETriv is the logic of the two-element
existential algebra. �
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Analogous to the case of normal unimodal logics (but not normal multi-modal logics,
as shown in Thomason (1972)) and relational frames, this proof also shows that every
existential modal logic is valid on some equivalence system.

The next result shows that each sequence of E operators is a distinct modality in S5E;
indeed, this result is shown to extend to the stronger L E -logic of coherent equivalence
systems (discussed in more detail below). For the statement and proof of this result, the
notation xn will be used to denote the sequence of n xs.

PROPOSITION 3.26. There are no m < n < ω such that En p → Em p is valid on the
class of coherent equivalence systems.

Proof. Let ≈ be the equivalence system on the set W = {0, 1}<ω of finite sequences
of 0s and 1s such that v ≈w u iff v and u are of equal length and share w as their initial
subsequence. For each x ∈ W , let x̂ be the permutation of W which maps any element of
W of which x is a proper initial subsequence to the result of switching the first element
following x (replacing 0 by 1, and vice versa), and every other element of W to itself. Note
that each such permutation is an automorphism of ≈. Further, if v ≈w u, then there are
x1 . . . xn ∈ W all of which have w as an initial subsequence such that x̂1 . . . x̂n(v) = u.
x̂1 . . . x̂n also maps w to itself, and each element of W to one ≈w-related to it. Thus ≈ is
coherent.

For each n < ω, let Pn = W\{0m : m < n}. Letting ε≈ be the existence function
on P(W ) as defined in the construction of complex existential algebras (Definition 3.7),
note that ε≈(Pn) = Pn−1 for all n > 0. Given 0 < n < ω, let a(p) = Pn . Then for all
m ≤ n, {≈, w, a � Em p} = Pn−m . For any m < n, Pn−m � W = Pn−n , so there is some
w ∈ Pn−n\Pn−m , and for any such element, ≈, w, a � En p → Em p. �

Finally, the decidability of S5E can be established by showing it to be the logic of finite
equivalence systems, using a standard filtration argument.

PROPOSITION 3.27. S5E is the logic of finite equivalence systems, and so decidable.

Proof. It suffices to show that every L E -formula satisfiable on an equivalence system is
satisfiable on a finite equivalence system; as usual, this can be done by filtrating any given
structure through an arbitrary set of formulas, closed under subformulas. So let ≈ be an
equivalence system on a set W , a an assignment function and 	 a subformula closed set
of L E -formulas. Let ∼ be the equivalence relation on W of verifying, with a, the same
members of 	. Let ≈′ be the equivalence system on W/∼ given by the following clause:

[v]∼ ≈′
[w]∼ [u]∼ iff for all Eϕ ∈ 	, if ≈, w, a � Eϕ then ≈, v, a � ϕ iff ≈, u, a � ϕ.

Let a′ be an assignment function which maps each p ∈ 	 to {[w]∼ : ≈, w, a � p}.
An induction on the structure of ϕ ∈ 	 shows that ≈, w, a � ϕ iff ≈′, [w]∼, a′ � ϕ for all
w ∈ W . The only case of interest is E :

If ≈, w, a � Eϕ, then there are v, u ∈ W such that v ≈w u, ≈, v, a � ϕ and ≈, u, a � ϕ.
By IH, ≈′, [v]∼, a′ � ϕ and ≈′, [u]∼, a′ � ϕ. By construction of ≈′, v ≈w u entails
[v]∼ ≈′

[w]∼ [u]∼, so ≈′, [w]∼, a′ � Eϕ.
If ≈′, [w]∼, a′ � Eϕ, then there are v, u ∈ W such that [v]∼ ≈′

[w]∼ [u]∼, ≈′, [v]∼,
a′ � ϕ and ≈′, [u]∼, a′ � ϕ, and so by IH ≈, v, a � ϕ and ≈, u, a � ϕ. By construction of
≈′, ≈, w, a � Eϕ.

Filtrating a given equivalence system witnessing ϕ /∈ S5E, guaranteed to exist by
Theorem 3.12, through the subformulas of ϕ therefore shows ϕ to be falsifiable on a finite
equivalence system, as required. �
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3.3. Coherence and comprehension. This section considers the L E -logic of coherent
and quasicoherent equivalence systems, and proves a natural candidate axiomatization to
be incomplete with respect to both classes.

Coherent equivalence systems validate all instances of the following schematic compre-
hension principle, the quantified version of which was discussed above:

(CE )
(∧

p∈pl(ϕ) Ep
) → Eϕ.

Here, ϕ is an L E -formula and pl(ϕ) is the set of proposition letters occurring in ϕ. A com-
plete axiomatization of the L E -logic of coherent equivalence systems has to prove all
instances of this principle. However, it turns out that to be able to derive all of them,
it suffices to add as an axiom one instance:

DEFINITION 3.28. Let S5EC be the existential modal logic axiomatized by the axiom (C E)
Ep → E Ep.

PROPOSITION 3.29. Each instance of CE is derivable in S5EC.

Proof. It is routine to derive E�p in S5E, from which trivially �S5E Ep → E�p. With
this, a straightforward induction shows that all instances of CE are derivable, using C¬,
C∧ and C E . �

Coherence and quasicoherence are motivated by considerations closely related to the
comprehension idea expressed in CE . S5EC is therefore a natural candidate axiomatization
for the logics of coherent and quasicoherent equivalence systems. As will now be shown,
S5EC turns out to be too weak. Model-theoretically, it is helpful to consider first the
structural differences between equivalence systems validating C E and (quasi)coherent
equivalence systems. The first class can be singled out as follows:

DEFINITION 3.30. An equivalence system ≈ on a set W is existentially closed if for all
w ∈ W and P ∈ D≈

w , ε≈(P) ∈ D≈
w .

The next results show that existential closure is a non-trivial condition, but one that
is weaker than being quasicoherent (which was noted above to be weaker than being
coherent):

PROPOSITION 3.31. There are equivalence systems which are not existentially closed
(and so �S5E C E).

Proof. Consider the following equivalence system:

{1} ∈ D≈
1 , but ε≈({1}) = {1, 3} /∈ D≈

w . �

LEMMA 3.32. Every quasicoherent equivalence system is existentially closed, but not
vice versa.

Proof. See Proposition 2.25 for the first claim. The second claim is witnessed by the
following example:

�
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It will now be shown that S5EC is not complete with respect to quasicoherent equiva-
lence systems, and so also not complete with respect to coherent equivalence systems: there
are L E -formulas valid on all quasicoherent equivalence systems which are not theorems of
S5EC . The proof strategy is the following: A notion of a canonical description of a finite
equivalence system is developed, using a proposition letter for each world. A notion of
an equivalence system being an expansion of another is defined, and it is shown that the
canonical description of a finite equivalence system is satisfiable on an equivalence system
only if the latter is an expansion of the former. Finally, a finite equivalence system ≈ is
constructed which is shown to be existentially closed, but which cannot be expanded to
a quasicoherent equivalent equivalence system. It follows that the canonical description
of ≈ is not satisfiable on quasicoherent equivalence systems, so its negation is in the
logic of quasicoherent equivalence systems. But since CE is valid on existentially closed
equivalence systems, so is S5EC , and thus any formula satisfiable on existentially closed
equivalence systems is not derivable in S5EC . Since the canonical description of ≈ is satis-
fiable on ≈, its negation is therefore not derivable in S5EC , and so constitutes the required
counterexample to the completeness of S5EC with respect to quasicoherent equivalence
systems.

The next definition introduces the notion of a canonical description of a finite equiv-
alence system ≈, for simplicity assumed to be based on a set W = {1, . . . , n}. This
description uses a proposition letter pi for each i ∈ W ; the description states that neces-
sarily, exactly one of pi , for i ∈ W , is true, and that each of them is possible. Furthermore,
each is stated to strictly entail a description πi (≈) of the existence facts at i . These latter
descriptions are formulated as conjunctions of an existential claim or a negation of an
existential claim for each proposition (subset of W ), using a disjunction of letters pi to
express each proposition.

DEFINITION 3.33. For every finite equivalence system ≈ on W = {1, . . . , n}, define the
canonical description of ≈, written γ (≈), as follows:

γ (≈) := �
∨

i≤n pi ∧ ∧
i< j≤n �(¬pi ∨ ¬p j ) ∧ ∧

i≤n �pi ∧ ∧
i≤n �(pi → πi (≈))

where

πi (≈) := ∧
X∈D≈

i
E

∨
i∈X pi ∧ ∧

X∈P(W )\D≈
i

¬E
∨

i∈X pi .

Each canonical description is satisfiable on its equivalence system, and so the negation
of every canonical description of a finite existentially closed equivalence system is under-
ivable in S5EC :

LEMMA 3.34. For each finite equivalence system ≈ on {1, . . . , n}, ≈ � ¬γ (≈).
Proof. Let a be an assignment function such that a(pi ) = {i} for all i ≤ n; then

≈, a � γ (≈). �

COROLLARY 3.35. For each finite existentially closed equivalence system ≈ on
{1, . . . , n}, �S5EC ¬γ (≈).

Proof. By Lemma 3.34 and the validity of C E on existentially closed equivalence
systems. �

The required notion of expansions of equivalence system is developed more systemati-
cally in the appendix. To state the definition, let, for each function f : A → B and B ′ ⊆ B,
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f−1(B ′) be the preimage of B ′ under f , i.e., the set {a ∈ A : f (a) ∈ B ′}; for b ∈ B, let
f−1(b) = f−1({b}).

DEFINITION 3.36. Let ≈,≈′ be equivalence systems on sets W,W ′. A reduction from ≈′
to ≈ is a surjective total function f : W ′ → W such that for all P ⊆ W and w ∈ W ′,

P ∈ D≈
f (w) iff f−1(P) ∈ D≈′

w .

f being a reduction from ≈′ to ≈ is written f : ≈′ � ≈. In this case, ≈′ is called an
expansion of ≈, written ≈ � ≈′.

Satisfiability of a canonical description entails being an expansion of the described
equivalence system:

LEMMA 3.37. For any finite equivalence system ≈ on {1, . . . , n} and equivalence
system ≈′, if γ (≈) is satisfiable on ≈′, then ≈ � ≈′.

Proof. Assume thatγ (≈) is satisfiable on an equivalence system ≈′ on a set W ′, witnessed
by an assignment function a. Let f be the function mapping eachw ∈ W ′ to the unique i ≤ n
such thatw ∈ a(pi ); the first three conjuncts of γ (≈) guarantee that this is well-defined and
surjective on {1, . . . , n}. To show that f : ≈′ � ≈, let P ⊆ {1, . . . , n}. Note that f−1(P) =⋃

i∈P a(pi ). So for any j ≤ n and w ∈ a(p j ), f−1(P) ∈ D≈′
w iff

⋃
i∈P a(pi ) ∈ D≈′

w .
By π j (≈), this is the case iff P ∈ D≈

j , i.e., P ∈ D≈
f (w), as required. �

Consider the equivalence system ≈ on W = {1, . . . , 11} mapping each i > 3 to the
identity relation, and 1, 2, 3 to the equivalence relations corresponding to the following
partitions:

≈1 : {{1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}}
≈2 : {{1}, {2}, {3}, {4}, {10}, {5, 7}, {6, 8}, {9, 11}}
≈3 : {{1}, {2}, {3}, {4}, {10}, {5, 9}, {6, 8}, {7, 11}}
To illustrate this, consider the following arrangement of the elements:

10 11

8 9

6 7

4 5

2 3

1

Adapting the conventions for drawing equivalence systems mentioned above to this non-
circular arrangement, the non-trivial elements of ≈ can be illustrated as follows:
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PROPOSITION 3.38. ≈ is existentially closed.

Proof. Consider any i ∈ W and P ∈ D≈
i .

If i > 3, since D≈
i = P(W ), trivially ε≈(P) ∈ D≈

i .
If i = 1, we distinguish two cases: If there are no w, v ∈ {4, . . . , 11} such that w ∈ P

and v /∈ P , then ε≈(P) = W ∈ D≈
1 . If there are such w, v , then P /∈ D≈

2 and P /∈ D≈
3 ,

so, ε≈(P) = {1, 4, . . . , 11} ∈ D≈
1 .

If i ∈ {2, 3}, then for all w, v ∈ {4, . . . , 11}, P ∈ D≈
w iff P ∈ D≈

v , and therefore ε≈(P)
is a member of both D≈

2 and D≈
3 . �

The next proposition shows that ≈ cannot be extended to any quasicoherent equivalence
system, drawing on the following facts, established in the appendix as Proposition 5.8:

FACT 3.39. Let ≈′ and ≈′′ be equivalence systems, respectively, and f : ≈′′ � ≈′.

(i) If y ≈′′
x z then f (y) ≈′

f (x) f (z).

(ii) If {v, u} ∈ D≈′
f (x) and {v} /∈ D≈′

f (x), then there are y ∈ f−1(v) and z ∈ f−1(u) such
that y ≈′′

x z.

PROPOSITION 3.40. There is no quasicoherent equivalence system ≈′ such that
≈ � ≈′.

Proof. Assume for contradiction that there is a quasicoherent equivalence system ≈′
on a set W ′ and a function f : ≈′ � ≈. Let w ∈ f−1(1). By Fact 3.39(ii), there are
v ∈ f−1(2) and u ∈ f−1(3) such that v ≈′

w u. By the same result, there are x ∈ f−1(5) and
y ∈ f−1(7) such that x ≈′

v y. By quasicoherence, there is an automorphism g of ≈′ such
that g(v) = u and g ⊆ ≈′

w. So x ≈′
w g(x) and y ≈′

w g(y). Since g is an automorphism,
g(x) ≈′

u g(y). By Fact 3.39(i), f g(x) ≈ f (u) f g(y), as well as f (x) ≈ f (w) f g(x) and
f (y) ≈ f (w) f g(y); hence f g(x) ≈3 f g(y), as well as 5 ≈1 f g(x) and 7 ≈1 f g(y).
By the latter two, f g(x) ∈ {4, 5} and f g(y) ∈ {6, 7}. �, as there are no z ∈ {4, 5} and
z′ ∈ {6, 7} such that z ≈3 z′. �

The main result can now be proven: S5EC is not complete with respect to quasicoher-
ent equivalence systems, and so also not complete with respect to coherent equivalence
systems.

THEOREM 3.41. There is an L E -formula which is valid on the class of quasicoherent
equivalence systems but not a theorem of S5EC.

Proof. Proposition 3.40 notes that there is no quasicoherent equivalence system ≈′ such
that ≈ � ≈′. (Recall that ≈ is the 11-world system constructed above.) It follows with
Lemma 3.37 that γ (≈) is not satisfiable on any quasicoherent system, and so ¬γ (≈) is
valid on quasicoherent systems. But by Proposition 3.38, ≈ is existentially closed, and so
with Corollary 3.35, �S5EC ¬γ (≈). �

Although coherence is partly motivated by the idea that propositions definable using
existing propositions exist as well, the corresponding comprehension principle CE does not
suffice to axiomatize the L E -logic of coherent equivalence systems. The counterexample
presented here—the negation of the canonical description of the 11-world equivalence
system ≈—does not suggest any systematic strengthening of the axioms of S5EC which
would lead to a recursive axiomatization of coherent or quasicoherent equivalence systems.
It will therefore be left open whether the L E -logics of these classes are recursively axiom-
atizable, and if so, what natural axiomatizations look like, as well as the question whether
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the two classes of equivalence systems have the same L E -logic. In fact, it is also left open
here whether S5EC is complete with respect to the class of existentially closed equivalence
systems—as shown in Theorem 3.24, there are existential modal logics which are not the
logic of the class of equivalence systems on which they are valid.

§4. Conclusion. Equivalence systems naturally serve as models of contingency in
what propositions there are. On this interpretation, the present results describe the resulting
logics for propositional contingentism: The logics of propositional quantifiers and neces-
sity arising from the class of all equivalence systems and the class of coherent equivalence
systems are both recursively isomorphic to full second-order logic, and so not recursively
axiomatizable. In the case of logics of an existential operator and a necessity operator, the
class of all equivalence systems leads to a decidable logic, axiomatized in Definition 3.3,
while the class of coherent equivalence systems leads to a logic which goes beyond the
addition of a natural comprehension principle for propositions. The main issue left open
here concerns the recursive axiomatizability of the latter logic.

Although equivalence systems are natural models for propositional contingentism, the
idea of mapping worlds to equivalence relations on worlds is general enough to admit
of useful alternative applications. One such application, tentatively suggested in Fritz &
Lederman (2015), concerns the logic of awareness. There, worlds of equivalence systems
also represent cognitive states, and the operator E of §3 is read as expressing an agent’s
awareness of a proposition. Another route to equivalence systems is via the idea of using
equivalence relations to model subject matters; this route is already taken in Humberstone
(2002),1 building on work by von Kutschera (1994) and Lewis (1988a,b).

In the present terminology, Humberstone works with the class of all equivalence sys-
tems, and the fragment of the language L E which excludes the operator �. He proves that
the resulting logic is the classical (or “congruential”) modal logic axiomatized by C�,
C¬ and C∧. Since the classical modal logic axiomatized by K�, T�, and 5� is S5 (see
the proof of Proposition 3.4), which is easily seen to be the E-free fragment of S5E, this
shows that the axiomatization of S5E given above is nicely modular: for both � and E ,
the axioms only containing the relevant modality axiomatize the relevant fragment, and an
axiomatization of the full logic is obtained by adding a single interaction axiom, �E .

Humberstone’s result suggests a number of further questions: One concerns the proof
methods used to obtain completeness results. Whereas the completeness proof in §3.1
proceeds by a representation theorem for an algebraic analog of equivalence systems,
Humberstone’s completeness result proceeds more directly via a relatively standard canon-
ical model construction. It would be interesting to see whether the latter proof method
could be extended to cover the former result. In any case, the former construction is of
independent interest, as the algebras involved in it will appeal to those sympathetic to the
idea that (possible) propositions form a Boolean algebra but skeptical of their satisfying
the conditions of completeness and atomicity, as required for equivalence systems.

Another interesting question suggested by Humberstone’s result concerns the �-free
fragment of the logic of coherent equivalence systems. Despite the negative result of §3.3
concerning the logic of the full language L E on coherent equivalence systems, it is an
open question whether adding the comprehension axiom (C E) (i.e., Ep → E Ep) to
Humberstone’s axiom system in the �-free fragment suffices to yield a system which is
complete with respect to coherent equivalence systems.

1Thanks to a reviewer for bringing this reference to my attention.
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§5. Appendix A: Congruences and reductions. This appendix investigates various
ways of turning one equivalence system into another by identifying worlds. Such opera-
tions will be presented in two guises, on the one hand as an equivalence relation on the
set of worlds W of an equivalence system, which gives rise to an equivalence system
based on the quotient set of W , and on the other hand as surjective functions mapping
the worlds of one equivalence system to the worlds of another. These two guises will
first be shown to be equivalent in a general setting, and corresponding further constraints
will be imposed on both of them. Concerning the formal languages investigated above, it
will be shown that all of these operations preserve validity of L E -formulas in one direc-
tion, and that the analogous claim can only be established for L∃ by imposing additional
restrictions.

5.1. Existential congruences. The first notion of congruences to be investigated
imposes the minimal constraint that two worlds may only be identified if they agree on
the existence facts concerning all propositions which don’t distinguish between worlds
that are being identified:

DEFINITION 5.1. For any equivalence system ≈ on W , let an equivalence relation ∼ on W
be an existential congruence of ≈ just in case for all w, v ∈ W and P ∈ A(∼), if w ∼ v
then P ∈ D≈

w iff P ∈ D≈
v .

It will be helpful to provide a variant characterization of existential congruences. To
state it, note that the equivalence relations on a given set form a complete lattice under the
subset order (understanding relations as sets of pairs), in which the least upper bound of
equivalence relations E1 and E2, written E1 ∨ E2, relates elements x and y iff there is a
finite sequence z0 . . . zn such that z0 = x , zn = y and for all i < n, if i is even then
zi E1zi+1 and if i is odd then zi E2zi+1 (cf. Davey & Priestley (2002, p. 139)). With the fol-
lowing lemma, the variant characterization of existential congruences is easily established:

LEMMA 5.2. Let ≈ be an equivalence system on a set W , ∼ an equivalence relation
on W , P ∈ A(∼) and w ∈ W . There are v ∈ P and u ∈ W\P such that v (≈w ∨ ∼) u iff
there are v ∈ P and u ∈ W\P such that v ≈w u.

Proof. If v ≈w u then v (≈w ∨ ∼) u, so the right to left direction is trivial. Assume
therefore that there are v ∈ P and u ∈ W\P such that v (≈w ∨ ∼) u. As noted, there
is then a finite sequence z0 . . . zn such that z0 = v , zn = u and for all i < n, if i is even
then zi ≈w zi+1 and if i is odd then zi ∼ zi+1. Since P ∈ A(∼), for all odd i , if zi ∈ P
then zi+1 ∈ P . So there must be an even i such that zi ∈ P and zi+1 /∈ P; since then
zi ≈w zi+1, zi and zi+1 are the required elements. �

PROPOSITION 5.3. An equivalence relation ∼ on a set W is an existential congruence
of an equivalence system ≈ on W iff for all w, v ∈ W such that w ∼ v ,

(≈w ∨ ∼) = (≈v ∨ ∼).
Proof. Consider any w, v ∈ W such that w ∼ v ; we show that (≈w ∨ ∼) = (≈v ∨ ∼)

just in case P ∈ D≈
w iff P ∈ D≈

v for all P ∈ A(∼).
Assume first (≈w ∨∼) = (≈v ∨∼) and let P ∈ A(∼). If P /∈ D≈

w then there are x ∈ P
and y ∈ W\P such that x ≈w y. So x (≈w ∨ ∼) y and therefore x (≈v ∨ ∼) y. By
Lemma 5.2, there are s ∈ P , t ∈ W\P such that s ≈v t . So P /∈ D≈

v . The other direction
follows by symmetry, and so P ∈ D≈

w iff P ∈ D≈
v for all P ∈ A(∼).

Assume now (≈w ∨ ∼) �= (≈v ∨ ∼); by symmetry, we can assume more specifically
that there are x, y ∈ W such that x (≈w ∨ ∼) y and not x (≈v ∨ ∼) y. Then [x]≈v∨∼ is a

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020317000028
Downloaded from https:/www.cambridge.org/core. Universitetsbiblioteket i Oslo, on 19 Jun 2017 at 09:25:01, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020317000028
https:/www.cambridge.org/core


LOGICS FOR PROPOSITIONAL CONTINGENTISM 229

member of D≈
v but not a member of D≈

w . Since [x]≈v∨∼ ∈ A(∼), this is a P ∈ A(∼) such
that P ∈ D≈

v but not P ∈ D≈
w . �

This variant characterization shows that the following natural way of quotienting equiv-
alence systems by their existential congruences is well-defined:

DEFINITION 5.4. If ∼ is an existential congruence of an equivalence system ≈ on a set
W , let ≈/∼ be the equivalence system on W/∼ such that for all w, v, u ∈ W ,

[v]∼(≈/∼)[w]∼ [u]∼ iff v (≈w ∨ ∼) u.

For P ∈ A(∼), let P/∼ = {[w]∼ : w ∈ P}. For any assignment function a : � → A(∼),
let a/∼ : � → P(W/∼) such that a/∼(p) = a(p)/∼.

Using the next lemma, the following proposition shows that validity of L E -formulas is
preserved under taking quotients:

LEMMA 5.5. Let ≈ be an equivalence system on a set W and ∼ an existential congru-
ence of ≈. If X ⊆ W/∼ and w ∈ W then

⋃
X ∈ D≈

w iff X ∈ D≈/∼
[w]∼ .

Proof.
⋃

X /∈ D≈
w iff there are v ∈ ⋃

X and u ∈ W\ ⋃
X such that v ≈w u. By

Lemma 5.2, this is the case iff there are v ∈ ⋃
X and u ∈ W\ ⋃

X such that v (≈w∨∼) u.
v ∈ ⋃

X iff [v]∼ ∈ X ; u ∈ W\ ⋃
X iff [u]∼ ∈ (W/∼)\X ; and by construction of

≈/∼, v (≈w ∨ ∼) u iff [v]∼(≈/∼)[w]∼ [u]∼. Thus
⋃

X /∈ D≈
w iff there are v, u ∈ W

such that [v]∼ ∈ X , [u]∼ ∈ (W/∼)\X and [v]∼(≈/∼)[w]∼ [u]∼, which is the case iff
X /∈ D≈/∼

[w]∼ . �

PROPOSITION 5.6. For any existential congruence ∼ of an equivalence system ≈ on a
set W , w ∈ W , assignment function a : � → A(∼) and ϕ ∈ L E ,

≈, w, a � ϕ iff ≈/∼, [w]∼, a/∼ � ϕ.
Therefore, if ≈ � ϕ then ≈/∼ � ϕ.

Proof. By induction on the structure of ϕ; only the case of E is of interest.

≈, w, a � Eϕ iff {v ∈ W : ≈, v, a � ϕ} ∈ D≈
w

iff {v ∈ W : ≈/∼, [v]∼, a/∼ � ϕ} ∈ D≈
w (by IH)

iff
⋃{x ∈ W/∼ : ≈/∼, x, a/∼ � ϕ} ∈ D≈

w

iff {x ∈ W/∼ : ≈/∼, x, a/∼ � ϕ} ∈ D≈/∼
[w]∼ (by Lemma 5.5)

iff ≈/∼, [w]∼, a/∼ � Eϕ.

That ≈ � ϕ entails ≈/∼ � ϕ follows by the fact that each assignment function for
≈/∼ is identical to a/∼ for some assignment function a for ≈: If ≈/∼ � ϕ, then
≈/∼, [w]∼, a/∼ � ϕ for some w and a, and so ≈, w, a � ϕ, whence ≈ � ϕ. �

This lemma can’t be strengthened to L∃-formulas: For every equivalence system, the
universal relation is an existential congruence, and the resulting quotient system is the
unique (up to isomorphism) one-element system. The one-element system validates L∃-
sentences whose negations are valid on some equivalence systems, such as ∀p(p → �p).

5.2. Reductions. Recall Definition 3.36 of reductions and expansions: A reduction
from an equivalence system ≈′ on a set W ′ to an equivalence system ≈ on a set W is a
surjective total function f : W ′ → W such that for all P ⊆ W and w ∈ W ′,

P ∈ D≈
f (w) iff f−1(P) ∈ D≈′

w .
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In this case, ≈′ is called an expansion of ≈, symbolized ≈ � ≈′, and f : ≈′ � ≈ is used to
indicate that f is a reduction from ≈′ to ≈.

For a function f : A → B, let ∼ f be the equivalence relation on A which relates x and
y just in case f (x) = f (y); for A′ ⊆ A, let f (A′) = { f (a) : a ∈ A′}. As with existential
congruences, it is useful to give a secondary characterization of reductions:

PROPOSITION 5.7. Let ≈ and ≈′ be equivalence systems on sets W and W ′, respec-
tively, and f : W ′ → W a surjective function. Then f : ≈′ � ≈ iff for all w, v, u ∈ W ′,
f (v) ≈ f (w) f (u) iff v (≈′

w ∨ ∼ f ) u.

Proof. (i) Assume first that f : ≈′ � ≈, and consider w, v, u ∈ W ′.
(ia) Assume that not f (v) ≈ f (w) f (u). Then f (u) /∈ [ f (v)]≈ f (w) . Let

X = f−1([ f (v)]≈ f (w) ). Since f : ≈′ � ≈, X ∈ D≈′
w . So there are no x ∈ X and y ∈ W ′\X

such that x ≈′
w y. As X ∈ A(∼ f ), v ∈ X and u /∈ X , it follows with Lemma 5.2 that not

v (≈′
w ∨ ∼ f ) u.

(ib) Assume not v (≈′
w ∨ ∼ f ) u. Let X = [v]≈′

w∨∼ f . Then X ∈ D≈′
w , v ∈ X and

u /∈ X . Since X ∈ A(∼ f ), X = f−1( f (X)), and so f (X) ∈ D≈
f (w). f (v) ∈ f (X) and

f (u) /∈ f (X), so not f (v) ≈ f (w) f (u).
(ii) Assume now that for all w, v, u ∈ W ′, f (v) ≈ f (w) f (u) iff v (≈′

w ∨ ∼ f ) u, and
consider any P ⊆ W and w ∈ W ′.

(iia) Assume that P /∈ D≈
f (w). By surjectivity of f , there are v ∈ f−1(P) and u ∈

W ′\ f−1(P) such that f (v) ≈ f (w) f (u). By assumption v (≈′
w ∨ ∼ f ) u. Since f−1(P) ∈

A(∼ f ), it follows with Lemma 5.2 that there are x, y ∈ W ′ such that x ≈′
w y,w ∈ f−1(P)

and y /∈ f−1(P). So f−1(P) /∈ D≈′
w .

(iib) Assume that f−1(P) /∈ D≈′
w . So there are v ∈ f−1(P) and u ∈ W ′\ f−1(P)

such that v ≈′
w u. By assumption f (v) ≈ f (w) f (u). Since f (v) ∈ P and f (u) /∈ P ,

P /∈ D≈
f (w). �

The following proposition draws two useful consequences from this result, appealed to
in §3.3:

PROPOSITION 5.8. Let ≈ and ≈′ be equivalence systems on W and W ′, respectively,
and f : ≈′ � ≈.

(i) If y ≈′
x z then f (y) ≈ f (x) f (z).

(ii) If {v, u} ∈ D≈
f (x) and {v} /∈ D≈

f (x), then there are y ∈ f−1(v) and z ∈ f−1(u) such
that y ≈′

x z.

Proof. (i) is immediate with Proposition 5.7. For (ii), assume {v, u} ∈ D≈
f (x) and {v} /∈

D≈
f (x). Then v ≈ f (x) u. By surjectivity of f , there are y ∈ f−1(v) and z ∈ f−1(u); by

Proposition 5.7, y (≈′
x ∨ ∼ f ) z. So there is a finite sequence of elements from y to z

alternatingly connected by ≈′
x and ∼ f . By (i), s ≈′

x t entails f (s) ≈ f (x) f (t). So f maps
all elements of this sequence to one of v and u. So there are s, t such that s ∈ f−1(v),
t ∈ f−1(u) and s ≈′

x t . �
With Proposition 5.7, it can also be shown that existential congruences and reductions

are interchangeable in the sense that for every existential congruence, the function mapping
each world to its equivalence class is a reduction of the equivalence system to its quotient,
and that for every reduction, the equivalence relation of being mapped to the same ele-
ment by the reduction is an existential congruence quotienting by which gives rise to an
equivalence system which is isomorphic to the image of the reduction:
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PROPOSITION 5.9. Let ≈ and ≈′ be equivalence systems on sets W and W ′,
respectively.

(i) For any existential congruence ∼ of ≈, [·]∼ : ≈ � ≈/∼.

(ii) For any f : ≈′ � ≈, ∼ f is an existential congruence of ≈′ and ≈ ∼= ≈′/∼ f .

Proof. (i) Let ∼ be an existential congruence of ≈. By construction, for allw, v, u ∈ W ,
[v]∼(≈/∼)[w]∼ [u]∼ iff v (≈w ∨ ∼) u, so with Proposition 5.7, [·]∼ : ≈ � ≈/∼.

(ii) Assume f : ≈′ � ≈. To show that ∼ f is an existential congruence, we use Propo-
sition 5.3. Consider any w, v ∈ W ′ such that w ∼ f v and x, y ∈ W ′ such that x (≈′

w ∨
∼ f ) y. Then by Proposition 5.7, f (x) ≈ f (w) f (y). Since f (w) = f (v), f (x) ≈ f (v)

f (y), and so by Proposition 5.7 again x (≈′
v ∨ ∼ f ) y. It follows by symmetry that ∼ f is

an existential congruence.
Define f ′ : W ′/∼ f → W such that f ′([w]∼ f ) = f (w) for all w ∈ W ′. Since f

is surjective, f ′ is bijective. To show that f ′ is an isomorphism, consider any w, v, u ∈
W ′. By definition of ≈′/∼ f , [v]∼ f (≈′/∼ f )[w]∼ f

[u]∼ f iff v (≈′
w ∨ ∼ f ) u. By Proposi-

tion 5.7, this is the case iff f (v) ≈ f (w) f (u), which by definition of f ′ is the case iff
f ′([v]∼ f ) ≈ f ′([w]∼ f )

f ′([u]∼ f ), as required. �

Existential congruences and expansions can therefore be seen as different ways of pre-
senting the same structural connection between equivalence systems. On finite equivalence
systems, this structural connection turns out to correspond exactly to the condition of
preserving validity of L E -formulas:

THEOREM 5.10. For any finite equivalence system ≈ and equivalence system ≈′,

≈ � ≈′ iff for all ϕ ∈ L E , if ≈′ � ϕ then ≈ � ϕ.
Proof. If ≈ � ≈′, witnessed by a reduction f : ≈′ � ≈, then by Proposition 5.9(ii),

≈ ∼= ≈′/∼ f . By Proposition 5.6, if ≈′ � ϕ then ≈′/∼ f � ϕ, and so ≈ � ϕ by isomorphy.
So assume that for all ϕ ∈ L E , if ≈′ � ϕ then ≈ � ϕ. Since by Lemma 3.34 γ (≈)

is satisfiable on ≈ (where γ (≈) is the canonical description of ≈, see Definition 3.33), it
follows that γ (≈) is satisfiable on ≈′. So by Lemma 3.37, ≈ � ≈′. �

Given the finitary nature of L E , it is unsurprising that this result cannot be strengthened
to arbitrary equivalence systems. Indeed, infinite counterexamples can even be found which
validate the same L∃-formulas:

PROPOSITION 5.11. There are equivalence systems ≈ and ≈′ such that for all ϕ ∈ L∃,
≈′ � ϕ iff ≈ � ϕ, but not ≈ � ≈′.

Proof. Let ≈ be an equivalence system on an uncountable set W and ≈′ an equivalence
system on a countably infinite set W ′ which both map each world to the identity relation.
Since there is no surjective function f : W ′ → W , there is no f : ≈′ � ≈. But it follows
from Fritz (2013, Lemmas 24 and 25) that for all ϕ ∈ L∃, ≈′ � ϕ iff ≈ � ϕ. �

5.3. Strict congruences. As noted above, the preservation of validity of L E -formulas
guaranteed by existential congruences and reductions does not extend to L∃-formulas. This
motivates introducing a more restricted notion of congruences; this is the purpose of this
section. The relevant notion is based on the idea that two worlds may only be identified if
they are exactly alike as far as the facts concerning indistinguishability are concerned:

DEFINITION 5.12. For any equivalence system ≈ on W , let an equivalence relation ∼
on W be a strict congruence of ≈ just in case for all w,w′, v, v ′, u, u′ ∈ W ,
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if w ∼ w′, v ∼ v ′ and u ∼ u′, then v ≈w u iff v ′ ≈w′ u′.
The next lemma establishes some elementary but useful facts about strict congruences:

LEMMA 5.13. Let ∼ be a strict congruence of an equivalence system ≈ on a set W , and
w, v, u ∈ W .

(i) ∼ ⊆ ≈w.

(ii) If w ∼ v then ≈w = ≈v .

(iii) [v]∼(≈/∼)[w]∼ [u]∼ iff v ≈w u.

Proof. (i): If v ∼ u, then as ∼ is a strict congruence, v ≈w v iff v ≈w u, so v ≈w u.
(ii): If w ∼ v , then as ∼ is a strict congruence, u ≈w u′ iff u ≈v u′.

(iii): Note that if w ∼ v , then by (ii), ≈w = ≈v , so D≈
w = D≈

v . Thus ∼ is an existential
congruence, and so ≈/∼ is well-defined. By construction, [v]∼(≈/∼)[w]∼ [u]∼ iff v (≈w∨
∼) u. By (i), (≈w ∨ ∼) = ≈w, so v (≈w ∨ ∼) u iff v ≈w u, as required. �

With these observations, it is easy to see that the condition of strictness is a genuine
restriction of existential congruences:

PROPOSITION 5.14. A strict congruence is an existential congruence, but not necessar-
ily vice versa.

Proof. The first claim was noted in the proof of Lemma 5.13. For the second claim,
consider the universal relation on the following equivalence system:

This is an existential congruence, but by Lemma 5.13(i) not a strict congruence. �
A useful alternative characterization of the strict congruences of an equivalence system

≈ on a set W can be given using the equivalence relation ∼≈, specified in Definition 2.15:
for all w, v ∈ W , w ∼≈ v iff w ≈u v for all u ∈ W and ≈w = ≈v . This turns out to be the
coarsest equivalence relation which is a strict congruence, with all of its refinements being
strict congruences as well:

PROPOSITION 5.15. For any equivalence system ≈ on a set W , an equivalence relation
∼ on W is a strict congruence of ≈ iff ∼ ⊆ ∼≈.

Proof. If ∼ is a strict congruence, then ∼ ⊆ ∼≈ by Lemma 5.19(i) and (ii). So assume
∼ ⊆ ∼≈, w ∼ w′, v ∼ v ′, u ∼ u′ and v ≈w u; we show that v ′ ≈w′ u′. Since ∼ ⊆ ∼≈,
w ∼ w′ entails that ≈w = ≈w′ , and so v ≈w′ u, and v ∼ v ′ and u ∼ u′ entail that v ≈w′ v ′
and u ≈w′ u′. It follows that v ′ ≈w′ u′, as required. �

Adapting terminology of Gallin (1975), Definition 2.15 also specifies ≈s , the simpli-
fication of ≈, to be the equivalence system on W/∼≈ such that [v]∼≈ ≈s

[w]∼≈ [u]∼≈ iff
v ≈w u. This is simply the quotient of ≈ by ∼≈:

PROPOSITION 5.16. For any equivalence system ≈, ≈s = ≈/∼≈.

Proof. Immediate by Lemma 5.13(iii). �
The next two lemmas establish the connections between simplifications, atom-selectivity

and world-selectivity used in §2.1:

LEMMA 5.17. An equivalence system is atom-selective iff its simplification is world-
selective.
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Proof. Assume ≈ is atom-selective, and consider any w, v ∈ W . If [w]∼≈ ≈s
[w]∼≈

[v]∼≈ , then w ≈w v . So by atom-selectivity, w ≈u v for all worlds u and ≈w = ≈v , so
w ∼≈ v . Hence [w]∼≈ = [v]∼≈ . So ≈s is world-selective.

Assume ≈s is world-selective, and letw ≈w v . Then [w]∼≈ ≈s
[w]∼≈ [v]∼≈ . So by world-

selectivity, w ∼≈ v . Hence it follows by the definition of ∼≈ that ≈ satisfies conditions (i)
and (ii) of being atom-selective. �

LEMMA 5.18. If ≈ is world-selective, then ≈ is isomorphic to ≈s .

Proof. Assume ≈ is world-selective. If w ∼≈ v , then by Lemma 5.13(i), w ≈w v , so
w = v . Hence ∼≈ is the identity relation, which means that [·]∼≈ is an isomorphism from
≈ to ≈s . �

With the next lemma, the following proposition shows, analogous to Proposition 5.6,
that strict congruences preserve satisfiability of L∃-formulas:

LEMMA 5.19. Let ∼ be a strict congruence of an equivalence system ≈ on a set W , and
w, v ∈ W .

(i) If P ∈ A(∼), then w ∈ P iff [w]∼ ∈ P/∼.

(ii) D≈/∼
[w]∼ = {P/∼ : P ∈ D≈

w }.
Proof. (i): Let P ∈ A(∼). If w ∈ P then [w]∼ ∈ P/∼ by definition. If [w]∼ ∈ P/∼,

then there is a v ∈ [w]∼ such that v ∈ P . Then w ∼ v , and as P ∈ A(∼), w ∈ P .
(ii): If P ∈ D≈

w , then by Lemma 5.13(i), P ∈ A(∼), so P/∼ is well-defined. If
[v]∼(≈/∼)[w]∼ [u]∼, then v ≈w u, so v ∈ P iff u ∈ P , and therefore [v]∼ ∈ P/∼ iff

[u]∼ ∈ P/∼ by (i). So P/∼ ∈ D≈/∼
[w]∼ .

If P ∈ D≈/∼
[w]∼ , let P ′ = {v ∈ w : [v]∼ ∈ P}. If v ≈w u, then [v]∼ ≈[w]∼ [u]∼,

so [v]∼ ∈ P iff [u]∼ ∈ P , and so by (i), v ∈ P ′ iff u ∈ P ′; hence P ′ ∈ D≈
w . And

P ′/∼ = {[v]∼ ∈ W/∼ : v ∈ P ′} = P . �
PROPOSITION 5.20. For any strict congruence ∼ of an equivalence system ≈ on a set

W , w ∈ W , assignment function a : � → A(∼) and ϕ ∈ L∃,

≈, w, a � ϕ iff ≈/∼, [w]∼, a/∼ � ϕ.

Therefore, if ≈ � ϕ then ≈/∼ � ϕ.

Proof. By induction on the structure of ϕ; only the case of the quantifier is of interest.
Note that by Lemma 5.13(i), D≈

w ⊆ A(∼) for all w ∈ W .

≈, w, a � ∃pϕ iff there is a P ∈ D≈
w such that ≈, w, a[P/p] � ϕ

iff there is a P ∈ D≈
w such that ≈/∼, [w]∼, (a[P/p])/∼ � ϕ (by IH)

iff there is a P ∈ D≈
w such that ≈/∼, [w]∼, a/∼[(P/∼)/p] � ϕ

iff there is a P ∈ D≈/∼
[w]∼ such that ≈/∼, [w]∼, a/∼[P/p] � ϕ (by Lemma 5.19(ii))

iff ≈/∼, [w]∼, a/∼ � ∃pϕ. �
Note that for L∃-sentences, it immediately follows that ≈ � ϕ iff ≈/∼ � ϕ.

5.4. Strict reductions. The notion of reductions corresponding to strict congruences is
given by the next definition.

DEFINITION 5.21. Let f : ≈′ �s ≈ if f : W ′ → W is surjective and such that for all
x, y, z ∈ W ′, y ≈′

x z iff f (y) ≈ f (x) f (z). In this case f is called a strict reduction, and
≈′ a strict expansion of ≈, in symbols ≈ �s ≈′.
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That strict congruences do in fact correspond to strict reductions is shown by an exten-
sion of Proposition 5.9:

PROPOSITION 5.22. Let ≈ and ≈′ be equivalence systems on sets W and W ′,
respectively.

(i) For any strict congruence ∼ of ≈, [·]∼ : ≈ �s ≈/∼.

(ii) For any f : ≈′ �s ≈, ∼ f is a strict congruence of ≈′.
Proof. (i): Immediate by Lemma 5.13(iii). (ii): Assumew ∼ f w

′, v ∼ f v
′ and u ∼ f u′.

If v ≈′
w u, then as f is a strict reduction, f (v) ≈ f (w) f (u), and so v ′ ≈′

w′ u′. The converse
direction is similar. �

Analogous to Theorem 5.10, it will now be shown that for finite equivalence systems,
being a strict expansion can be characterized in terms of preservation of L∃-validities. This
requires a strengthened notion of a canonical description of a finite equivalence system,
making use of the additional expressive power of propositional quantifiers. The following
definition treats L E -formulas as L∃-formulas, using the definition of E in terms of ∃
introduced in §2.1.

DEFINITION 5.23. For every finite equivalence system ≈ on W = {1, . . . , n}, define the
strict canonical description of ≈, written σ(≈), as follows:

σ(≈) := γ (≈) ∧ �∀q�
∨

X⊆W �(q ↔ ∨
i∈X pi ).

LEMMA 5.24. For each finite equivalence system ≈ on {1, . . . , n}, ≈ � ¬σ(≈).
Proof. Let a be an assignment function such that a(pi ) = {i} for all i ≤ n; then

≈, a � σ(≈). �
That the strict expansions of a finite equivalence system can be characterized in terms of

the satisfiability of its strict canonical description will be show using the following variant
characterization of strict reductions:

LEMMA 5.25. For any equivalence systems ≈,≈′ on sets W,W ′, respectively, a reduc-
tion f : ≈′ � ≈ is strict iff for all w ∈ W ′ and P ∈ D≈′

w , there is a Q ⊆ W such that
P = f−1(Q).

Proof. Assume first that f is strict, and consider any w ∈ W ′ and P ∈ D≈′
w . We show

that P = f−1( f (P)). Since clearly P ⊆ f−1( f (P)), consider any v ∈ f−1( f (P)). Then
f (v) ∈ f (P), so there is a u ∈ P such that f (v) = f (u). So f (v) ≈ f (w) f (u), and thus
by the strictness of f , v ≈′

w u. Since u ∈ P and P ∈ D≈′
w , v ∈ P . Hence f−1( f (P)) ⊆ P .

Assume now that for allw ∈ W ′ and P ∈ D≈′
w , there is a Q ⊆ W such that P = f−1(Q).

Consider any x, y, z ∈ W ′. Since f is a reduction, y ≈′
x z only if f (y) ≈ f (x) f (z)

by Proposition 5.8(i). So assume f (y) ≈ f (x) f (z). Then there is a Q ⊆ W such that
[y]≈′

x
= f−1(Q). Since y ∈ [y]≈′

x
, f (y) ∈ Q. As f is a reduction, Q ∈ D≈

f (x). So
f (z) ∈ Q, and therefore z ∈ f−1(Q). Thus z ∈ [y]≈′

x
and so y ≈′

x z. �

LEMMA 5.26. For any finite equivalence system ≈ on {1, . . . , n} and equivalence
system ≈′, if σ(≈) is satisfiable on ≈′, then ≈ �s ≈′.

Proof. By Lemma 3.37, the mapping f defined in the proof of this lemma is a reduction;
with Lemma 5.25, it follows that it is strict. �

THEOREM 5.27. For any equivalence system ≈ on a finite set W and equivalence system
≈′ on a set W ′,
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≈ �s ≈′ iff for all ϕ ∈ L∃, if ≈′ � ϕ then ≈ � ϕ.

Proof. If ≈�s ≈′, witnessed by a strict reduction f : ≈′ �s ≈, then by Propositions 5.22
and 5.9, ∼ f is a strict congruence of ≈′ such that ≈ ∼= ≈′/∼ f . By Proposition 5.20, if
≈′ � ϕ then ≈′/∼ f � ϕ, and so ≈ � ϕ by isomorphy.

So assume that for all ϕ ∈ L∃, if ≈′ � ϕ then ≈ � ϕ. Since by Lemma 5.24 σ(≈) is
satisfiable on ≈, it follows that σ(≈) is satisfiable on ≈′. So by Lemma 5.26, ≈ �s ≈′. �

That this can’t be strengthened to infinite equivalence systems is immediate from Propo-
sition 5.11.
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