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Influence of measurement error on Maxwell’s demon
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In any general cycle of measurement, feedback, and erasure, the measurement will reduce the entropy of
the system when information about the state is obtained, while erasure, according to Landauer’s principle, is
accompanied by a corresponding increase in entropy due to the compression of logical and physical phase space.
The total process can in principle be fully reversible. A measurement error reduces the information obtained and
the entropy decrease in the system. The erasure still gives the same increase in entropy, and the total process is
irreversible. Another consequence of measurement error is that a bad feedback is applied, which further increases
the entropy production if the proper protocol adapted to the expected error rate is not applied. We consider the
effect of measurement error on a realistic single-electron box Szilard engine, and we find the optimal protocol
for the cycle as a function of the desired power P and error ε.
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I. INTRODUCTION

Maxwell’s demon was introduced as a thought experiment
to illustrate the statistical nature of the second law of thermody-
namics [1]. The demon has very sharp powers of observation,
so it can detect the motion of individual molecules. In addition,
it can rapidly act on the basis of its observations and thereby
sort fast and slow molecules. This makes heat flow from the
cold to the hot side, apparently without the need for any work,
in contradiction to the second law of thermodynamics. For
some time it was thought that the act of observation necessarily
required some amount of work [2,3]. The present consensus
[4,5] seems to be that the observation, in principle, can be
performed without work. At the same time, the erasure of the
information obtained, being a logically irreversible operation,
also is thermodynamically irreversible and has a necessary
cost in terms of work that is converted to heat. However, there
is still some controversy on this point [6–8].

Modern technology now enables us to be as accurate
in observation and quick in action as the imagined demon.
Recently, several experiments, in which close analogies to the
original thought experiment were realized, have been reported
in a range of physical systems: atoms [9–11], colloidal particles
[12,13], molecules [14], electrons [15–17], and photons [18].
This shift from imagined to real experiments motivates us to
study the impact of measurement errors on the performance of
experimental Maxwell’s demons.

If there is some chance that the measurement result is
wrong, it means that the correlation between the state of the
system and the measurement device is not perfect. That is,
the mutual information between the two is less than the full
information of the logical states of the measurement device.
In [8], Sagawa and Ueda show that the traditional Landauer
bound W � T ln 2 (we use units where the Boltzmann constant
kB = 1) only holds for a symmetric memory, and the total work
expended on measurement and memory erasure has a lower
bound given by the mutual information I between the system
and the measurement device,

Wmeasure + Werase � T I. (1)

The right-hand side is exactly the same as the heat that can
be extracted from a thermal bath using the information about

the system. Although measurement errors will give reduced
mutual information, we argue that it will not be possible to
reach equality in Eq. (1) in this case. To justify this, consider
the extreme case in which the mutual information I is zero,
i.e., there is a 50% chance that the measurement is wrong. In
this case, the measurement can be done reversibly without any
work, but there will still be one bit of information stored in the
memory that has to be erased with a cost of T ln 2 according
to Landauer.

II. ANALYSIS OF A MODEL SYSTEM

To clearly show the difference between a true measurement
error and a process that saturates Eq. (1), we will analyze a
simple model. Consider a total system (memory + system)
with a phase space P . We divide its phase space in subspaces
Pi , each of which corresponds to a specific logical state. With
the probability distribution of the total phase space denoted
P (x), the probability distribution of the logical states is

PL(i) =
∑
x∈Pi

P (x) (2)

and the conditional probability of the microstate x given the
logical state i is

P (x|i) = P (x)/PL(i). (3)

The total entropy S, logical entropy (information) H , and
conditional entropy S(Pi |i) are then given by

S = −
∑

x

P (x) ln P (x), H = −
∑

i

PL(i) ln PL(i),

S(Pi |i) = −
∑
x∈Pi

P (x|i) ln P (x|i). (4)

The conditional entropy can be thought of as the internal
physical entropy of the distribution P (x|i) on Pi for each
of the logical states i. The average conditional entropy is
Sin = ∑

i PL(i)S(Pi |i), which we call the internal entropy. It
follows that we can write the total entropy as a sum,

S = H + Sin. (5)
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FIG. 1. Schematic of reversible and irreversible measurement in a
two-bit total system (system + memory). The four logical subspaces
are 00/01/10/11.

With this formalism, we can analyze the model system
shown in Fig. 1. The system is a standard Szilard engine,
with a single molecule in a box with a dividing wall
that can be inserted, removed, and used as a piston. The
memory is represented by an equivalent single-molecule box.
Consequently, we have four logical states. The phase space of
each molecule is reduced to one dimension by only considering
the movement of the molecule in the direction in which
the volume of the compartments expands and contracts, and
ignoring the momentum, as all processes will be isothermal
and therefore the momentum distribution is independent of
the protocol. The relevant part of the total phase space is
then two-dimensional, and we represent the position of the
molecule in the system on the horizontal axis, and in the
memory on the vertical axis. To calculate the total entropy,
we use Eq. (5) and the fact that the conditional entropy of a
system uniformly distributed in a given region of phase space
is given by the logarithm of the phase-space volume, which
we show in the following subsection.

A. Conditional entropy

The free-energy of an ideal gas in a three-dimensional box
is

F (T ,V,N ) = −NT ln

[
V e

N

(
mT

2πh̄2

)3/2
]
, (6)

which we use to calculate the entropy,

S = −
(

∂F

∂T

)
V,N

= N

{
3

2
+ ln

[
eV

√
2

4N

(
mT

πh̄2

)3/2
]}

= N

[
3

2
+ ln

(
V

NVq

)]
,

1

Vq(T )
≡ e

√
2

4

(
mT

πh̄2

)3/2

. (7)

Here Vq is of the order of the de Broglie wavelength. To keep
the classical limit, we have to assume that V � NVq . Further,
we will deal with one particle. Therefore,

S = 3

2
+ ln

(
V

Vq

)
. (8)

Our system consists of two volumes (system and memory) with
one particle in each, and we need to calculate the conditional
entropy for the configurations A and D of Fig. 1 (hereafter
denoted 1A and 1D). In each of the four logical states,
i = 00,01,10,11, the internal states of the system and memory

are uncorrelated, and the conditional entropy is the sum of
two contributions of the type shown in Eq. (8). Denoting
the position of the dividing wall in the system as xS and
in the memory xM and the length of the box with the gas L,
the conditional entropy in the logical state i can be specified
as

S(Pi |i) = S0 + ln
(xSxM

L2

)
,

S0 ≡ 3 + 2 ln

(
V

Vq

)
� 1. (9)

In the following, we omit the constant S0, which means that
the entropy of the reference state where the dividing walls are
removed is zero, and all given entropies are entropy changes
from this reference state.

B. Irreversible measurement

We perform a measurement on the system and store it
in the memory. Throughout the paper, we assume that the
measurement is classical and does not affect the state of the
system. If there is a probability ε that the measurement gives
the wrong result, we have a transition from A to D in Fig. 1.
For configuration 1A, we have two states with probabilities 1

2
each, giving

HA = −
∑

i

PL(i) ln PL(i) = −2 × 1

2
ln

1

2
= ln 2. (10)

Using Eq. (9) with xS = xM = L/2 and omitting S0, we get
for the conditional entropy S(P00|00) = S(P10|10) = ln 1

4 and
the internal entropy

SA
in =

∑
i

PL(i)S(Pi |i) = 2 × 1

2
ln

1

4
= −2 ln 2. (11)

Consequently, the total entropy of configuration 1A is

SA = HA + SA
in = − ln 2. (12)

For configuration 1D, we obtain in a similar way

HD = −2 × ε

2
ln

ε

2
− 2 × 1 − ε

2
ln

1 − ε

2
= ln 2 + Sε, (13)

SD
in = 2 × ε

2
ln

1

4
+ 2 × 1 − ε

2
ln

1

4
= −2 ln 2, (14)

SD = HD + SD
in = − ln 2 + Sε, (15)

where Sε ≡ −ε ln ε − (1 − ε) ln(1 − ε). The negative-valued
entropies are due to the omitted constant S0. We see that the
total entropy in the transition from 1A to 1D is irreversibly
increased by an amount SD − SA = Sε. Since both the system
and the memory have equal probabilities of being in their
two logical states, the logical information in each is HD

system =
HD

memory = ln 2. The mutual information between the system
and memory is

ID = HD
system + HD

memory − HD = ln 2 − Sε.
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C. Reversible measurement

The transition from configuration 1A to 1D can also be
achieved reversibly while extracting work if we consider the
following steps (this process is also considered in [19]):

1A → 1B. In the transition from 1A to 1B we isothermally
expand the state 0 of the memory. This allows the particle to
expand into the full volume of the memory. In this process,
work W is performed by the system, and heat Q = W is taken
from the reservoir. The entropy change is

�S = W/T = ln 2

with a corresponding entropy decrease in the reservoir.
1B → 1C. We then perform a measurement on the system,

and we reinsert the partition wall in the memory according to
the result obtained. There is no error in this measurement, and
the correlation between the position of the dividing wall of the
memory and the position (left or right) of the gas molecule of
the system is perfect. Here ε is just a parameter that describes
where we insert the divider in the memory. There is no entropy
change.

1C → 1D. We then compress the divider of the memory
isothermally back to the central position. In this process, we
have to perform work on the system, but an amount less than
the work performed by it in the transition from 1A to 1B. The
entropy change is

�S = W/T = Sε − ln 2.

In our view, this process does not represent a real measure-
ment error, which is irreversible and has an associated entropy
production Sε due to Gibbs or environmental course-graining.
The final state of this process (1D) is the same as the one
obtained when there was a measurement error, but the whole
process is thermodynamically reversible, and the reduction of
the environmental entropy is exactly the same as the increase
of the system entropy. In the process, we have extracted the net
work from the thermal bath, so that the work of measurement
that enters Eq. (1) is Wmeasure = −T Sε, which is negative.
Erasing the memory requires Werase = T ln 2 according to the
usual Landauer’s principle, which gives

Wmeasure + Werase = T ln 2 − T Sε = T ID,

which saturates the inequality (1).

D. Origin of the irreversible measurement entropy

To get a deeper understanding of the irreversible nature
of a measurement with error, consider Fig. 2. In Fig. 2, step
A (hereafter 2A), we have the same initial state as before.
Figure 2, step B (hereafter 2B) shows the state just after the
measurement was performed. Most of the initial states in the
phase space are mapped to the correct final region, but a small

FIG. 2. How a system evolves from step A to D in Fig. 1 after a
measurement error.

fraction gets mapped to a different region. This corresponds
to the cases in which the result of the measurement does
not agree with the actual position of the system molecule. If
the system and the measurement device constitute an isolated
system during the operation, and no other degrees of freedom
are involved, the mapping from 2A to 2B would be described
by a deterministic Hamiltonian evolution in time. Liouville’s
theorem then guarantees that the entropy of the final state is
the same as that in the initial state. If the evolution is affected
by other microscopic degrees of freedom in the device or
the environment, which is certainly realistic in most cases,
the mapping would be stochastic, and it depends on these
additional degrees of freedom. We assume that after 2B, the
phase points will never again cross the lines separating the
different logical states. The physical meaning of this is that
the barriers between the states are infinite. In a short time, the
phase-space region where the system can be found will develop
into some complicated shape 2C, but for a closed system
the entropy will still be the same. Now we have to appeal
to some coarse-graining procedure. For a closed system, we
refer to the phase-space coarse-graining introduced by Gibbs
(see Ref. [20] for a recent discussion). In the presence of
some interaction with an environment, coarse-graining occurs
over dynamical evolution [21,22]. In this way, the complex
structure of the accessible phase space in 2C is rendered
indistinguishable and is replaced by the uniform distribution
in 2A. This step is irreversible and increases the total entropy
of the system by Sε without any decrease in entropy anywhere.

III. MODEL FOR A SZILARD ENGINE
WITH MEASUREMENT ERRORS

To study the effects of this measurement error, we will
now analyze a model of an experimentally realized Szilard
engine [15]. This model is comprised of a single-electron box
consisting of two metallic islands connected by a tunnel
junction. The existence of an additional electron on one of the
two islands can be measured by the charge configuration of the
box, and its state can be controlled by gate voltages applied
to the islands, giving a time-dependent potential difference
V (t) between the two islands. Work can be extracted from the
system via the following procedure:

(i) Perform a measurement, and quickly set the potential of
the occupied island to zero while raising the potential of the
empty island to some value V0 ≡ V (0+).

(ii) Reduce the potential of the raised island according to
some protocol V (t) until time t = τ , at which point we start
over from step (i).

There is a probability that the electron will tunnel between
the two islands, and whenever the electron occupies the island
where the potential is being decreased, heat is extracted from
the environment and converted to work. We imagine that we are
continuously repeating steps (i) and (ii) above, and we want
to minimize the total entropy production rate when varying
the driving protocol V (t) and the time τ . In the experimental
protocol in [15], the potential difference was always reduced
back to zero before the next measurement. In our optimal
protocol, it does not need to be zero since the energy gained
from tunneling decreases with the potential difference, and
longer τ gives smaller power.
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FIG. 3. Level diagram after the first measurement and raising the
potential of the empty island that does not cost any work.

Details of the protocol

We have a set of two islands—left (L) and right (R)—
divided by a tunnel barrier. The islands are gated, so their
potentials can be manipulated independently. The pair of
islands contains only one excess electron, so each island may
contain either zero or one excess electron; the occupancy of
each island can be measured, say, by single electron transistor.
A similar setup was used in the experiment [15]. Let us start the
protocol from the state where we have measured an electron
on the right island. Then we quickly raise the potential of
the empty island to the value V0. After this procedure, we
arrive at the level diagram shown in Fig. 3. Then we decrease
the potential of the raised island according to some protocol
V (t) in the time t = [0,τ ], as shown in Fig. 4 (left panel). At
time t = τ , we reach the situation shown in the right panel of
Fig. 4, where the electron can be found on the left island with
probability pτ and on the right island with probability (1 − pτ ).
If we measure the system at that moment, we can arrive at the
level diagram shown in Fig. 5(a) (with probability pτ ), or at
the diagram shown in Fig. 5(b) [with probability (1 − pτ )]. In
the first case, we quickly decrease the energy of the left island
extracting the work Vτ , and we raise the energy of the left
island to the value V0 (with no cost). The average extracted
work is then 〈W 〉 = pτVτ . Then we arrive at the diagram
shown in Fig. 5(c), which is a mirror of Fig. 3. It is therefore
thermodynamically equivalent and we have a completed cycle.
In the case shown in Fig. 5(b), we quickly move the left
level up to V0 (with no cost) arriving at the situation shown
in Fig. 3, again completing the cycle. There exists another
protocol leading to the same consequences. Namely, at the time
instance t = τ one can quickly decrease the potential of the left
island to zero (before the measurement). The extracted work
is Vτ while the probability that the left island was occupied is
pτ , so the average work is 〈W 〉 = pτVτ . Then we measure the
position of the electron and raise the level of the empty island
up to the value V0. Again, the cycle is closed.

IV. DERIVING THE OPTIMAL PROTOCOL

A thermodynamically equivalent turnstile version of this
model was previously analyzed [23] when there were no errors
in the measurements, and the consequences of reduced mutual

FIG. 4. Left: Example protocol during time 0 < t < τ . Right:
Level diagram at t = τ .

FIG. 5. Completing the cycle.

information were discussed [24]. If there is an error in the
measurement, we have an additional entropy production term
Sε to the total entropy production, and the feedback operation
V (t) will have to be adapted to the expected error to minimize
the entropy �S that is produced during feedback operation.
The total entropy produced in a cycle is then given by

�Stot = Sε︸︷︷︸
measurement

+ �S − Q/T︸ ︷︷ ︸
operation

, (16)

where Q is the heat exchanged between the system and the
environment. Extending the analysis from [23] to finite error
is principally not difficult. We minimize the total entropy
production rate,

Ṡtot = �Stot

τ
= Sε

τ
+ �H

τ
− P, (17)

using the Euler-Lagrange formalism, which leads to a non-
linear differential equation that has to be solved numerically.
Here �S = �H since we assume there are no excitations from
the ground state of the islands, therefore the internal entropy
change is �Sin = 0. P = Q/(T τ ) is the rate of heat exchange
between the system and the environment.

A. Thermodynamic properties

Let p1(t) and p2(t) be the probabilities to find the system in
state 1 (the right island) and 2 (the left island), respectively. The
transitions between these two states are described by the rates
�12 and �21, which satisfy the detailed balance �21/�12 =
e�E/T , where �E is the difference in energy of the two states
(note that since �E is a function of time, the rates will also be
time-dependent). The master equations are thus

ṗ1 = −�12p1 + �21p2 = −�p1 + �21,

ṗ2 = �12p1 − �21p2 = −�p2 + �12, (18)

where �(t) ≡ �12(t) + �21(t). As in Refs. [23,25], for the sake
of simplicity we choose � to be independent of time, and we
set � = 1. The energy of state i is denoted Ei(t), and in the
protocol described above we have E1(t) = 0 and E2(t) = V (t).
The total work extracted during the period τ is

Wex = −
2∑

i=1

∫ τ

0
dt piĖi, (19)
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the change in internal energy of the system is

�U =
2∑

i=1

[pi(τ )Ei(τ ) − pi(0)Ei(0)], (20)

and the transferred heat from the environment to the system is

Q = �U + Wex =
2∑

i=1

∫ τ

0
dt ṗiEi(t). (21)

The information entropy associated with the measurement is
H = −∑2

i=1 pi ln pi , and the change in information entropy
can be written as an integral,

�H = Hτ − H0

= −
2∑

i=1

[pi(τ ) ln pi(τ ) − pi(0) ln pi(0)]

= −
2∑

i=1

∫ τ

0
dt ṗi(t) ln pi(t). (22)

Since p1(t) = 1 − p2(t), we can relabel p2(t) ≡ p, and we
write the entropy produced per cycle as

�H

τ
= − 1

τ

∫ τ

0
dt ṗ ln

(
p

1 − p

)
. (23)

From the master equation (18), we get

ṗ = −p + 1

eV + 1
, (24)

where from now on we relabel V (t) ≡ V , and we measure time
in units of � and energy in units of T . From this equation, we
can express

V = ln

(
1

p + ṗ
− 1

)
.

The power is defined as the average heat extracted from the
reservoir per cycle τ , P = Q/(T τ ), and it can be written as

P = 1

τ

∫ τ

0
dt ṗV = 1

τ

∫ τ

0
dt ṗ ln

(
1

p + ṗ
− 1

)
. (25)

We are interested in the optimal protocol for the measurement
and erasure cycle. In this system, the optimal protocol means
finding the protocol V (t) and the total time τ , which minimize
the entropy production rate at a given measurement error ε.
We also set the value of the power P , given by Eq. (25), to
see how the solutions depend on the power we want to extract.
The initial condition is set by p(t = 0) = ε. That is, there is a
chance, ε, that the electron was on the opposite island of what
we measured.

B. Minimizing the entropy production rate

Since we want to minimize the entropy production rate
while keeping the power at a finite value P , we have to
introduce the Lagrange multiplier λ to obtain the functional

J = Sε

τ
+ �H

τ
+ λP = Sε

τ
+ 1

τ

∫ τ

0
dt L(p,ṗ,λ), (26)

with the Lagrangian

L(p,ṗ,λ) =
[
− ln

(
p

1 − p

)
+ λ ln

(
1

ṗ + p
− 1

)]
ṗ. (27)

Using the Euler-Lagrange equation

∂L

∂p
= d

dt

∂L

∂ṗ
, (28)

we obtain the following second-order nonlinear ordinary
differential equation:

p̈ = ṗ2(ṗ + p − 1/2)

p(ṗ + p − 1) + ṗ/2
. (29)

To solve this equation, we need to impose a set of constraints
to the solutions we want. The first constraint is that the power
has to be a finite fixed value P , given by Eq. (25):

G(τ,p,ṗ) ≡ P − 1

τ

∫ τ

0
dt ṗ ln

(
1

p + ṗ
− 1

)
= 0. (30)

The second constraint comes from a consideration of the
end-point values of p(t). The initial condition of p(t) is
given by p(0) = ε, but since the value of p(t) is not fixed
at the end point p(τ ) = pτ , we have a second constraint,
(∂L/∂ṗ)t=τ = 0, which can be written as

F1(λ,τ,p)

≡ λ

[
ln

(
1

pτ + ṗτ

− 1

)
+ ṗτ

(ṗτ + pτ − 1)(ṗτ + pτ )

]

− ln

(
pτ

1 − pτ

)
= 0. (31)

The third and final constraint is due to the fact that variation
of Eq. (17) with respect to the period τ should be zero. It is
given by

∂J

∂τ
= λ

∂P

∂τ
+ ∂

∂τ

�H

τ
− Sε

τ 2
= 0, (32)

where

∂P

∂τ
= ∂

∂τ

[
1

τ

∫ τ

0
dt ṗ ln

(
1

p + ṗ
− 1

)]

= ṗτ

τ
ln

(
1

pτ + ṗτ

− 1

)
− P

τ
(33)

and

∂

∂τ

�H

τ
= ∂

∂τ

[
− 1

τ

∫ τ

0
dt ṗ ln

(
p

1 − p

)]

= − 1

τ
ṗτ ln

(
pτ

1 − pτ

)
− �H

τ 2
. (34)

The full equation for the third constraint is thus

F2(λ,τ,p) ≡
[

ln

(
1 − pτ

pτ

)
+ λṗτ ln

(
1

pτ + ṗτ

− 1

)]

−λP − 1

τ
[�H + Sε] = 0. (35)

This constraint can be combined with the free-end-
point constraint by eliminating the Lagrange multiplier λ
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to obtain

F (τ,pτ ,ṗτ )

≡ ln

(
pτ

1 − pτ

)[
P (ṗτ + pτ )(pτ + ṗτ − 1) + ṗ2

τ

]
−Sτ

τ

[
ṗτ + ln

(
1

pτ + ṗτ

− 1

)

×(ṗτ + pτ )(pτ + ṗτ − 1)

]
= 0, (36)

where Sτ = �H + Sε = −pτ ln pτ − (1 − pτ ) ln(1 − pτ ) is
the entropy of the system at time t = τ . Euler’s method is
then used to solve the second-order differential equation in
Eq. (29). Since it is a second-order equation, we have two
constants that need to be fixed (τ and V0). We find these values
as the roots of the two constraints in Eqs. (30) and (36) by
using Newton’s method.

V. RESULTS

We now present the main results of this analysis. The model
has a parameter � that determines the tunneling rate between
the two islands, and we measure time in units of �−1 and
energy in units of temperature T . In Fig. 6 we plot the optimal
period τ as a function of the power P for selected values of
the error ε.

A. High power limit

We find that there is a maximal amount of power one can
extract, P max(ε). As this value is reached, τ approaches zero
linearly, and the entropy production rate diverges to infinity.
To leading order we have

τ ∝ P max − P, (37)

Ṡtot ∝ 1

P max − P
. (38)
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10-1

100
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103
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τ 
( Γ

-1
)

P (kBT Γ)

ε = 0.49

ε = 0.01

τ 
( Γ

-1
)

P/Pmax

FIG. 6. The main figure shows τ as a function of P for different
ε (in steps of 0.02). The inset gives the scaled form of the same data,
with τ as a function of P/P max.

If τ is plotted as a function of P/P max, the scaled graphs are
close to collapsing over the whole range of powers, as shown
in the inset of Fig. 6. We can always find the value of P max

numerically, but we can also derive a single transcendental
equation that determines P max, and in the case of error-free
measurements we can also solve it analytically. By taking the
limit as τ → 0 in Eq. (25), we find that

P max = V0ṗ0 = V0

(
1

eV0 + 1
− ε

)
, (39)

which expresses P max in terms of V0. Consider Eq. (36) when
τ → 0. Since the other terms are finite, the only way to avoid
a divergence of the last term is for the expression in the large
square brackets to be zero. For τ = 0 we have pτ = ε, and
with Eq. (24) we find that V0 satisfies the equation

1 + (1 − V0)eV0 − ε(eV0 + 1)2 = 0. (40)

For ε = 0 we find that the maximum power is given by the
Lambert W function,

P max = W (e−1) = 0.278 46 . . . (41)

with the initial value of the potential V0 = 1 + W (e−1). This
analytical result is in perfect agreement with our numerical
result.

B. Low power limit

When P = 0, we can assume that the system is always in
equilibrium at the given value of V , which means that p =
pa = (eV + 1)

−1
. We assume for small P that we have p =

pa + O(P ), and that τ = A/P . Inserting into Eq. (25) and
expanding in P , we find that it becomes

1 = 1

A

∫ ∞

0
dt V ṗa + O(P ). (42)

In the limit τ → ∞, corresponding to quasistatic operation,
the entropy production will vanish if

(eV0 + 1)−1 = p0 = ε → V0 = ln

(
1

ε
− 1

)
, (43)

as shown in [24]. It is reasonable, and confirmed by the
numerical solution, that at small P and long time τ the
potential difference will be brought all the way back to zero,
V (τ → ∞) = 0. With these two boundary values, we get

A =
∫ ∞

0
dt V ṗa = −

∫ V0

0
V dV

dpa

dV
= ln 2 − Sε. (44)

The end result is that in the limit of low power, P → 0, the
optimal period τ diverges as

τ = (ln 2 − Sε)P −1, (45)

in agreement with our numerical result. In the polynomial
expansion as P → 0 of the total entropy production, �Stot =
c0 + c1P , we know that for perfect measurements c0 has to be
zero since there is no entropy production during reversible
operation. We have τ = (ln 2 − Sε)P −1 for small P , and
therefore we get Ṡtot = �Stot/τ ∝ P −2, in agreement with
[23]. If errors are present, the measurement entropy Sε exists

062129-6



INFLUENCE OF MEASUREMENT ERROR ON MAXWELL’s DEMON PHYSICAL REVIEW E 95, 062129 (2017)

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

V
(k
B
T)

P = 1.7 10-4

P = 1.7 10-2

P = 0.0509
P = 0.0848
P = 0.119
P = 0.153

t ( Γ−1 )

ln(1/ε-1)

×
×

FIG. 7. V (t) for ε = 0.1 and several values of P .

even for reversible operation so that c0 = Sε, and we obtain an
additional linear behavior of the entropy production rate

Ṡtot = Sε(ln 2 − Sε)−1P + c∗
1P

2, (46)

which we confirm numerically in Appendix 2.

C. The optimal protocol

Examples of optimal protocols for ε = 0.1 and several
values of P are shown in Fig. 7. We observe that the
time τ before the protocol should be repeated decreases
with increasing P , and the initial value V0 increases with
decreasing P . The quasistatic limit (τ → ∞/P → 0) found
in Eq. (43) was V0 = ln ( 1

ε
− 1), which is marked in the plot.

See Appendix 1 for more details on the behavior of V (t) and
p(t) at time τ .

To extract maximum power, one has to balance the
following: the amount of energy gained per tunneling event,
the probability that tunneling occurs, and the probability of
back-tunneling while reducing the potential difference. These
results tell us that the maximum power is reached with rapid
measurements, favoring low probability high-energy tunneling
events, and a steeply sloped V (t). However, this comes at the
cost of divergence in the entropy production rate. This result
is obtained assuming a constant total tunneling rate �, and it
may change for systems in which � depends on the potential
difference between the two islands.

D. Effect of the measurement error

To clearly see the effect of the measurement error on the
total entropy production, we plot in Fig. 8 the ratio Sε/Stot for
various values of ε. For P → 0 we approach reversible oper-
ation (�S = 0), and all of the total entropy production is due
to the measurement error. When P → P max, the measurement
entropy dominates again since there is no time for heat transfer
from the environment when τ → 0. For vanishingly small
errors, its effect is only noticeable at the boundary values of P ,
but even for relatively minor measurement errors a significant
portion of the entropy production is due to the measurement
error for all P .
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S ε
 / 
S

P (kBT Γ)

ε=0.1

FIG. 8. The fraction of the total entropy production Stot that is
due to the measurement error Sε as a function of power for various
values of ε.

VI. SUMMARY

If we make an error in a measurement, there is an associated
net entropy production. This applies to measurements of
any type and with an arbitrary number of outcomes. For a
symmetric binary measurement where the probability of error
is ε, the entropy increases by the amount Sε. This entropy
increase can be understood from a coarse-graining of either the
phase space (for a closed system) or the dynamical evolutions
(for an open system). We have investigated the consequences
of a finite error on the optimal performance of a realistic
Szilard engine at finite (given) power. We found the existence
of a maximal power P max, which also exists for error-free
measurements, and which decreases with increasing error.
The entropy production rate diverges as the maximal power
is approached. For small power, the entropy production rate is
quadratic in P in the absence of errors, but it becomes linear
when errors are present.
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FIG. 9. Vτ as function of P for different ε. The inset shows
enlarged what happens for small errors and powers.
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FIG. 10. pτ as a function of P for different ε.
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APPENDIX: ADDITIONAL RESULTS

Here we present some additional results on the optimal
protocol.

1. V (t) and p(t) at time τ

Figure 9 shows V (τ ) = Vτ as a function of P for different
ε. While it seems that for any finite ε we find Vτ → 0 as
P → 0, we see that for small ε one has to go to very small
powers to see this, and for most powers Vτ is between 1 and
1.5. This indicates a singular behavior of the function Vτ (P,ε)
at P = 0 and ε = 0, and the limiting value will depend on how
this point is approached. In Ref. [23] we found that Vτ = 1.33
for ε = 0 and small P . From Fig. 9 (inset) we can see that
this agrees well with what we would expect if we first took the
limit ε → 0 and then P → 0. The same singularity is reflected
in the probability pτ to find the electron on the opposite island
at time τ from the one it was measured at time 0 as shown

0 0.01 0.02 0.03 0.04 0.05
P

0

2

4

6

8

10

Ṡ
/P

0.01
0.05
0.09
0.13

0.17

0.21

0.25

0.29

0 0.2 0.4
ε

0

5

10

15

20

25
d1

d2

d1 from Eq (A2)

FIG. 11. Ṡ/P as a function of P with labels on the curves giving
ε. For each curve, the value at P = 0 and the slope of the tangent at
that point will give the coefficients c1 and c2 of Eq. (A1). These are
shown as functions of ε in the inset, together with c1 from Eq. (A2).

in Fig. 10. For all finite ε we have limP→0 pτ = 0.5, but for
small ε this only happens at very small P .

2. Polynomial expansion of Ṡ

In Ref. [23] it was found that for ε = 0 and small P , Ṡ is
proportional to P 2. We find that this is not true for finite ε. We
expand to second order,

Ṡ = d1P + d2P
2, (A1)

where d1 and d2 are functions of ε. Plotting Ṡ/P as a function
of P (Fig. 11), we get d1 and d2 as the intercept and slope
of the tangent at P → 0 (Fig. 11, inset). From the analytical
results in Eq. (46), we know that d1 = Sε(ln 2 − Sε)−1,

Ṡ = d1P with d1 = Sε(ln 2 − Sε)−1, (A2)

which, as shown in Fig. 11 (inset), agrees perfectly with the
numerical solution.
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