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1 Introduction

1.1 A few words

The concept of confidence distributions (CDs) and confidence curves (ccs) have gain interest as they offer

a means to work out a P (ψ |data) in the frequentist framework. This seems to be of interest in the big

data world. The concept has been conceptually challenging but notable efforts have been made towards

clarification and extensions of definitions. Some of the literature sources include the book by Schweder and

Hjort (2016) and the papers by Singh et al. (2005), Singh et al. (2007), Xie and Singh (2013), DeBlasi and

Schweder (2016), Schweder (2017) and Hjort and Schweder (2017).

Refinements to CDs and ccs have rarely been considered. Only in Schweder and Hjort (2016, ch. 7) and

DeBlasi and Schweder (2016), one can find methods to improve and refine the outcome of a CD or a cc.

With this in mind, a suggestion is made towards this direction in section 3 and some results are proven.

In section 2, a parametric modus of thinking is adopted, whereas in section 3, a nonparametric modus of

thinking drives the discussion. Examples were provided in some occasions.

1.2 Definitions

Let Pθ denote a probability distribution with θ = (ψ, χ) being a p-dimensional parameter belonging to some

p-dimensional parameter space Θ = Ψ × X. It is assumed that ψ, the focus parameter of interest, is one-

dimensional and χ, the nuisance parameter vector, is (p − 1)-dimensional. Let Y = {Y1, . . . , Yn} denote a

random sample from Pθ0 , with θ0 being the true parameter vector. The sample realization, referred to as

the (observed) data, is denoted as y = yobs = {y1, . . . , yn} and the sample space is denoted as Y.

Definition 1.1, which was formulated in Schweder and Hjort (2002) and utilised, for example, in Singh

et al. (2005), Singh et al. (2007) and Xie and Singh (2013), formalises the two requirements that constitute

the term confidence distribution. Schweder and Hjort (2016, ch. 4) extend the definition to accommodate ‘less

straightforward situations’, such as, for example, cases where the range of the focus parameter is bounded

or cases of multimodal likelihoods.

Definition 1.1 (Confidence Distribution). A confidence distribution (CD) for the focus parameter ψ is a

nondecreasing, right-continuous and data-dependent function C(ψ, y) : Ψ × Y → [0, 1] with (ψ, y) 7→ α,

where α denotes a confidence level, such that

(i) for any given data yobs ∈ Y, C(ψ, yobs) is a cumulative distribution function on Ψ, and

(ii) at the true parameter value ψ0, C(ψ0, Y ) has the uniform U(0, 1) distribution.

In an explanatory effort, point (i) of Definition 1.1 views the CD as a function of the focus parameter ψ and

requires the CD to be a distribution function on the parameter space Ψ. It shares many of the attractions

of the posterior of the Bayesian paradigm, but it is not a posterior as such. Point (ii) of Definition 1.1 views

the CD as a function of the random sample Y and requires the CD to follow the uniform distribution at the

true value of the focus parameter, ψ0. In essence, the requirement in point (ii) of Definition 1.1 renders a

CD to have the correct coverage probability. Its importance in the construction of a CD is emphasised in

Proposition 1.1 which offers a proof that, indeed, a CD has coverage accuracy.

Proposition 1.1. Let C−1 denote the inverse function of a CD defined in Definition 1.1. Let, also, α1

and α2 denote confidence levels such that ψα1
= C−1(α1) and ψα2

= C−1(α2), where C−1(αi) = inf{ψ :

C(ψ, Y ) > αi}, for i = 1, 2. Then, a two-sided confidence interval [ψα1
, ψα2

] has coverage probability α2−α1.

1 of 60



Proof. It is, first, recognised that a CD is a procedure for constructing random intervals. Then, by letting

I = [ψα1
, ψα2

] denote such an interval, the probability that the random I will contain or cover the true

parameter value, ψ0, is

Pθ{ψ0 ∈ I} = Pθ{ψα1 ≤ ψ0 ≤ ψα2}

= Pθ{C(ψα1 , Y ) ≤ C(ψ0, Y ) ≤ C(ψα2 , Y )} (1.1)

= Pθ{α1 ≤ C(ψ0, Y ) ≤ α2} (1.2)

= Pθ{C(ψ0, Y ) ≤ α2} − Pθ{C(ψ0, Y ) ≤ α1}

= P{U ≤ α2} − P{U ≤ α1} (1.3)

= α2 − α1,

where U denotes a random variable from U(0, 1) which is independent of θ. It is noticed that equations (1.1)

and (1.2) follow from the properties described in Definition 1.1, i.e. that the CD is nondecreasing, right-

continuous and data-dependent function that maps a tuple of the form (ψ, y) to a corresponding confidence

level. Since C(ψ0, Y ) is a random variable, equation (1.3) follows from point (ii) of Definition 1.1. It is

clarified that θ = (ψ, χ). The nuisance parameter vector χ is considered fixed but random. The proof is

completed.

Corollaries 1.1 and 1.2 deal with one-sided intervals.

Corollary 1.1. Let α denote a confidence levels such that ψα = C−1(α) = inf{ψ : C(ψ, Y ) > α}, where

C−1 denote the inverse function of a CD defined in Definition 1.1. Then, a one-sided confidence interval of

the form (−∞, ψα] has coverage probability α.

Proof. See Schweder and Hjort (2016, p. 59).

Corollary 1.2. Let α denote a confidence levels such that ψα = C−1(α) = inf{ψ : C(ψ, Y ) > α}, where

C−1 denote the inverse function of a CD defined in Definition 1.1. Then, a one-sided confidence interval of

the form [ψα,∞) has coverage probability 1− α.

Proof. The arguments are, essentially, the same as in the proof of Proposition 1.1 and summarised in

Pθ{ψ0 ≥ ψα} = 1− Pθ{ψ0 < ψα} (1.4)

= 1− Pθ{C(ψ0, Y ) < C(ψα, Y )}

= 1− Pθ{C(ψ0, Y ) < α}

= 1− Pθ{U < α}

= 1− P{U ≤ α}

= 1− α,

where U denotes a random variable from U(0, 1) which is independent of θ. It is noticed that equation (1.4)

follows from basic and standard properties of probability distributions. The proof is completed.

Definition 1.2 handles the situation when point (ii) of Definition 1.1 applies only at the limit. Definition

1.2 formalises the discussion in Singh et al. (2005, p. 160) or Singh et al. (2007, p. 133) and extends Definition

3.1 of Schweder and Hjort (2016, p. 58).

Definition 1.2 (Asymptotic Confidence Distribution). An asymptotic confidence distribution (aCD) for the

focus parameter ψ is a nondecreasing and data-dependent function C(ψ, y) : Ψ×Y → [0, 1] with (ψ, y) 7→ α,

where α denotes a confidence level, such that
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(i) for any given data yobs ∈ Y, C(ψ, yobs) is a cumulative distribution function on Ψ, and

(ii) at the true parameter value ψ0, C(ψ0, Y1:n) −→d U(0, 1) as n→∞.

The dependence of C(ψ0, Y ) on the sample size n is noticed by writing Y1:n for the sample Y .

Definition 1.3 is given in Schweder and Hjort (2016, p. 33) and repeated here for completeness and

coherence of presentation.

Definition 1.3 (Pivot). A function piv(Y, ψ) of the data Y and the (unknown) focus parameter ψ is a pivot

if its distribution function is independent of the full underlying parameter θ.

There are, though, cases where the distribution of a pivotal quantity is only independent of the underlying

parameter at the limit. Definition 1.4 is relevant.

Definition 1.4 (Approximate Pivot). A function piv(Y, ψ) of the data Y and the (unknown) focus parameter

ψ is an approximate pivot if its limiting distribution function is independent of the full underlying parameter

θ. That is, piv(Y, ψ) is independent of θ only asymptotically.

A more formal definition of what is called here an approximate pivot is given in Hall (1992b, p. 14) as

follows: ‘A function piv(Y, ψ) is asymptotically pivotal if, for sequences of known constants {an} and {bn},
an piv(Y, ψ) + bn has a proper nondegenerate limiting distribution not depending on unknowns’.

Another definition needed for subsequent discussion is the one referring to the term confidence curve.

The definition is given in Schweder and Hjort (2016, p. 115) as Definition 4.3 and is presented, here, for

completeness.

Definition 1.5 (Confidence Curve). A confidence curve cc(ψ, y) : Ψ → [0, 1] has as its level sets a nested

family of confidence regions Rα(Y ) = {ψ : cc(ψ) ≤ α} in Ψ, with α ∈ [0, 1] being the confidence level. The

confidence curve has these properties: (i) min
ψ

cc(ψ, y) = cc(ψ̂(y), y) = 0 for all outcomes of the data y, where

ψ̂(y) is a point estimate, (ii) cc(ψ0, Y ) has a uniform distribution on the unit interval, when ψ0 is the true

value of the parameter.

A cc is always available, since it can be derived by using the probability integral transform. On the contrary,

a CD is not always available. See, for example, the Fieller interval example (or Example 4.7) in Schweder

and Hjort (2016, p. 118). But when a CD is available, a cc can be constructed as

cc(ψ, y) = |1− 2C(ψ, y)| =

1− 2C(ψ, y) if ψ ≤ ψ̂.50
2C(ψ, y)− 1 if ψ ≥ ψ̂.50,

(1.5)

where ψ̂.50 = C−1( 1
2 ) is the median of the confidence distribution. For a chosen confidence level, α, the two

solutions of equation cc(ψ, yobs) = α, namely, ψlow(α) and ψup(α), are such that

confidence of [ψlow(α) , ψup(α)] = α,

where ψlow(α) is located to the left of ψ̂.50 and ψup(α) is located to the right of ψ̂.50. By (1.5),

C(ψlow(α), yobs) = 1
2 (1− α) and C(ψup(α), yobs) = 1

2 (1 + α).
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2 Methods for good CD and cc approximation

This section reviews some of the techniques presented in Schweder and Hjort (2016) regarding (i) first-order

large sample likelihood methods and (ii) improved approximations for confidence distributions. It draws,

mainly, from chapters 2 and 7 of the book and the STK4180 course at UiO. Some examples are presented

to clarify concepts and ideas and a few comments are given regarding each method, where appropriate. In

the literature, no other, known, source deals with this aspect of confidence distributions.

2.1 Using distribution approximations for the maximum likelihood estimator

A confidence distribution and a confidence curve is sought to be constructed by using distribution approxi-

mations for the maximum likelihood estimators. But, first, a preliminary discussion is deemed necessary.

Let Y = {Y1, . . . , Yn} be a random sample from a parametric model with possible covariates x1, . . . , xn

and unknown parameter vector θ = (θ1, . . . , θp)
t, belonging to the parametric space Θ ∈ Rp. Then, in the

case of an independently and identically distributed (i.i.d.) random sample, the simultaneous density for

the full data set Y is given by fjoint(y, θ) and in the case, when covariate information is incorporated, the

conditional density of Yi|xi is given by fjoint(yi|xi, θ).

The likelihood function, L(θ), is defined to be the joint density when Y = yobs. That is, for observed

data, yobs, the likelihood is viewed as a function of the parameter, θ. The log-likelihood function is defined

as `(θ) = logL(θ). The maximum likelihood estimator, θ̂, is the value of θ that maximises the likelihood

function or, equivalently, the log-likelihood function. An important property of the maximum likelihood

principle is the invariance with respect to, both, data transformation and parameter transformation. Under

mild regularity conditions the surface of the log-likelihood is approximately quadratic.

Theorem 2.2 in Schweder and Hjort (2016, p. 27) gives distribution approximations for the maximum

likelihood estimator, in the i.i.d. situation, and constitutes the basis for the simplest approximation to

the distribution of a given focus parameter, ψ. The theorem is restated as Theorem 2.1, for coherence of

presentation and the reader is referred to the book for further details.

Theorem 2.1 (Schweder and Hjort (2016)). In the i.i.d. situation, let θ̂ = θ̂n be the maximum likelihood

estimator based on the first n observations. If the model holds, with θ0 the true parameter, being an inner

point of the parameter space, and with variance matrix at θ0, J(θ0), being of full rank, then under mild

further regularity assumptions, as sample size n tends to infinity,

√
n(θ̂ − θ0)→d J

−1U ∼ Np(0, J
−1),

Dn(θ0) = 2{`n(θ̂)− `n(θ0)} →d U
tJ−1U ∼ X 2

p ,
(2.1)

where U ∼ Np(0, J).

The result at (2.1) still holds in a regression context, where, for each i = 1, . . . , n, the random variable Yi has

density f(y|xi, θ) for some covariate vector xi. In practice, a consistent estimator of the limit distribution

variance matrix is needed. Using Slutsky’s theorem, the result at (2.1) remains true if J(θ0) is replaced by a

consistent estimator of choice. See, Schweder and Hjort (2016, p. 29), for two such estimators and discussion

regarding the use of the observed rather that the expected Fisher information matrix.

For a sample of large or moderately large size, the following notes regarding the maximum likelihood

estimator, θ̂, are in order.
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1. It is approximately unbiased.

2. Its distribution is approximately multinormal. Thus, by the properties of the normal distribution, the

single components, θ̂j , and linear combinations of them are approximately normal. Also, any desired

confidence procedures, such as confidence intervals and confidence distributions or curves, can, thus,

be constructed easily with coverage and significance levels close to any values intended.

3. Its variance matrix achieves the Cramér-Rao lower bound for unbiased estimators, and is approximately

equal to J−1(θ0)/n. Thus, asymptotically, this is the best estimation strategy and no other alternatives

perform better.

4. Its precision and associated confidence regions can, easily, be read off using the fact that, for any given

or predetermined α, the set {θ : Dn(θ) ≤ Γ−1p (α)}, where the inverse Γ−1p denotes the quantile function

of the X 2
p distribution, covers the true θ0 with probability tending to α. Thus, it is not necessary to

know or compute the variance matrix.

A note of warning is in order too. Firstly, in situations with many parameters, (i) the convergence towards

the limit distribution may be slow and (ii) the implied approximation to the variance matrix of θ̂, i.e. J(θ0)/n,

may need modification and improvements. And, secondly, for a sample of small or moderately small size,

there might be cases when the behaviour of θ̂ is not to be trusted. Example ?? is such a case. Note, that

the purpose of this example is to (i) demonstrate the construction of confidence distributions and confidence

curves and (ii) compare the methods employed to achieve this aim. Section 3, offers a way to overcome the

deficiency of θ̂ in small or moderately sample size samples.

In 1.2, it is required that the focus parameter be one-dimensional. Thus, let ψ = a(θ) = a(θ1, . . . , θp) be

the focus parameter. From the invariance property of maximum likelihood (ML) estimators,

ψ̂ML = a(θ̂ML). (2.2)

The so-called delta method gives, for a(θ0) having smooth first-order derivatives in the p-parameters at θ0,

√
n ( a(θ̂)− a(θ0) )→d w

tZ =

p∑
j=1

wjZj ,

where w = ∂a(θ0)/∂θ, i.e. wj = ∂a(θ0)/∂θj , for j = 1, . . . , p and Z ∼ Np(0, J
−1(θ0)). Concisely,

√
n ( ψ̂ − ψ )→d w

tZ ∼ N(0, κ2) where κ2 = wtJ−1(θ0)w. (2.3)

Thus, for any focus parameter ψ = a(θ), (2.3) constitutes a convenient and general large-sample recipe for

constructing confidence procedures, such as confidence intervals and confidence curves and performing one-

or two-sided hypothesis tests. By rearranging (2.3), write

Vn =
√
n ( ψ̂ − ψ )/κ̂→d N(0, 1) (2.4)

and note that κ̂ is any consistent estimator of κ, such as κ̂ = ŵtĴ−1ŵ, with Ĵ the Hessian matrix

−n−1∂2`n(θ̂)/∂θ∂θt as output from the log-likelihood maximisation operation. Note that, ŵ = w(θ̂) which

may be computed numerically if that is required. Asymptotically, Vn is a pivot, a property that makes this

recipe even more attractive. That is, Vn = Vn(Y, ψ) with a limiting distribution independent of ψ.
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It is noticed that Vn at (2.4) is decreasing in ψ. By the theory developed in either Singh et al. (2007, p. 134)

or Schweder and Hjort (2016, pp. 58–59), an asymptotic confidence distribution can be constructed as

Cn(ψ) = 1− Φ(Vn(Y, ψ))

= 1− Φ(Vn), (2.5)

where Φ is the cumulative distribution function of a Standard Normal. By the probability integral transform,

Φ(Vn) is uniformly distributed and, thus, 1 − Φ(Vn) is uniformly distributed too. By Definition ??, the

Cn(ψ) at (2.5) is the cumulative distribution function of a confidence distribution for ψ. Alternatively, the

asymptotic confidence distribution at (2.5), is written as

Cn,alt(ψ) = Φ

(√
n (ψ − ψ̂ )

κ̂

)
, (2.6)

indicating that the asymptotic confidence distribution, Cn,alt(ψ), is, simply, normally distributed with mean

at the maximum likelihood estimator, ψ̂, and standard deviation κ̂/
√
n. Remark 3.3 in Schweder and Hjort

(2016, p. 70), clarifies why it is preferable to work in terms of ‘estimand minus estimator’, thus, writing

down confidence distributions in the form given at (2.6).

Theorem 2.1, enables the availability of a confidence distribution under the specified conditions. Thus,

using (1.5), a confidence curve can also be constructed as

ccn(ψ) = |1− 2Cn(ψ)|.

2.2 Chi-squared approximation for the deviance

The ψ̂ estimator at (2.2) maximises, also, the profile log-likelihood given in

`n,prof(ψ) = max{`n(θ) : a(θ) = ψ}.

Of course, ψ̂ maximises the profile likelihood, Ln,prof(ψ) = max{Ln(θ) : a(θ) = ψ}, but it is preferred that

the subsequent discussion be unfolded under the log-profile likelihood.

The profile deviance for a focus parameter ψ under consideration is defined to be

Dn(ψ) = 2{`n,prof(ψ̂)− `n,prof(ψ)}.

It is noticed that, Dn(ψ) may be viewed as, both, (i) a curve computed from the observed data and (ii) a

random variable for a given ψ value. Also, Dn is the twice log-likelihood-ratio statistic for testing H0 : ψ = ψ0

against H1 : ψ 6= ψ0, in that

Dn(ψ0) = 2 log
maxall θ Ln(θ)

maxall θ : a(θ)=ψ0
Ln(θ)

(2.7)

Note that, under the null hypothesis the parameter dimension is p− 1 and under the alternative hypothesis

the parameter dimension is p. The deviance at (2.7) is a scale factor away from what is typically introduced

in the literature about the deviance. See Schweder and Hjort (2016, p. 35), for further comments.

Theorem 2.4 in Schweder and Hjort (2016, p. 35) gives a chi-squared approximation for the profile de-

viance, in the i.i.d. situation, and provides another recipe to construct an asymptotic confidence distribution.
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The theorem is restated as Theorem 2.2, for coherence of presentation and the reader is referred to the book

for further details.

Theorem 2.2 (Schweder and Hjort (2016)). Under conditions of the model and those described for Theorem

2.1, and under the true parameter θ0 (so that the true value of the one-dimensional parameter ψ is ψ0 =

a(θ0)), assumed to be an inner point in the parameter space,

Dn(ψ0) = 2{`n,prof(ψ̂)− `n,prof(ψ0)} →d X 2
1 . (2.8)

Alternatively, the result at (2.8) is referred to as ‘Wilks theorem’.

Asymptotically, Dn(ψ) is a pivot. That is, Dn(ψ) = Dn(Y, ψ). Note that, it is a nonmonotone pivot. The

statement at (2.8) depicts that, under the true parameter value θ0, the distribution function of Dn(ψ0) =

Dn(a(θ0)), say Kn, converges to the distribution of a X 2
1 .

It is, now, shown how to derive an asymptotic confidence distribution. Essentially, the required confidence

distribution is derived from the equitailed confidence intervals {ψ : Dn(ψ) ≤ K−1n (α)}, where α denotes a

given or predefined probability level, by solving Dn(ψ) = K−1n (α). In the class of all well-behaved cases, the

solution has two roots. Thus, define the signed deviance squared root by

rn(ψ) = sgn(ψ − ψ̂)D1/2
n (ψ)

and note that it is monotone in ψ. Then, by letting Hn denote the distribution function of rn(ψ), construct

the asymptotic confidence distribution as

Cn(ψ) = Hn(sgn(ψ − ψ̂)D1/2
n (ψ)).

It is emphasised that the signed deviance squared root is close to being a pivot and, as such, Hn does not

depend on the parameter θ. Taking into account that the first-order asymptotic approximation regarding

Hn corresponds to Hn → Φ, a simpler confidence distribution is derived as

Cn,smp(ψ) = Φ(sgn(ψ − ψ̂)D1/2
n (ψ)).

A confidence curve is given by the X 2
1 probability scaling as in

ccn(ψ) = Γ1(Dn(ψ)), (2.9)

where Γ1 denotes the X 2
1 distribution function. The method at (2.9), often, has better precision that the

one described in section 2.1. See, Schweder and Hjort (2016, p. 70) for further details.

2.3 Bartlett corrections for the deviance

Sections 2.1 and 2.2, reviewed two general likelihood based methods for constructing confidence distribu-

tions and confidence curves. Their common denominator is that both results rely on large-sample theory

and that, in practice, the sample size need be at least moderately large. Here, an improvement to the finite

sample behaviour of the deviance statistic is sought. The so-called ‘Bartlett correction’ offers a way and its

underlying idea is, thus, described and applied. A Bartlett corrected deviance confidence curve (Schweder

and Hjort, 2016, p. 211) is, then, derived.

7 of 60



In Bartlett (1937, 1954) an improved likelihood ratio (LR) statistic with expected value closer to the ex-

pected value of a X 2
q distribution, where q is the difference between the dimensions of the parameter spaces

under the alternative and null hypotheses, was suggested. Finding the exact distribution of the likelihood

ratio statistic or at least a good approximation to it, when the null hypothesis is true, is challenging. The

expected value of the improved likelihood ratio statistic, though, is closer to the expected value of the X 2
q

distribution, whereas the likelihood ratio statistic’s, itself, is not. Specifically, let the expected value of the

likelihood ratio statistic, under the null hypothesis, be E(LR) = q {1 + c/n+O(n−2)}, where c is some con-

stant that can be consistently estimated under the null hypothesis and n is, as usual, the sample size. Then,

define the new likelihood statistics, LR∗, as LR∗ = LR/ (1 + c/n) and notice that E(LR∗) = q + O(n−2).

This, ‘diving by the right constant to get the mean right’ (Schweder and Hjort, 2016, p. 211) type of modifica-

tion is called the Bartlett correction. A generalisation of this idea is found in Lawley (1956). Also, Cordeiro

and Cribari-Neto (2014) offer an introduction to the various aspects of Bartlett and Bartlett type corrections.

In the context of confidence curves, let a parametric model indexed by θ be considered. The focus

parameter is ψ = a(θ). In section 2.2 a confidence curve for ψ was constructed via the X 2
1 approximation to

the distribution of the deviance. In Schweder and Hjort (2016, p. 210), it is noted that the accuracy of the

cc(ψ) = Γ1(Dn(ψ)) method, where Γ1 denotes the X 2
1 distribution function, depends on how effective the

implied approximation Pθ{cc(ψ) ≤ α} = Pθ{Dn(ψ) ≤ Γ−1(α)} .= α, where α denotes a given or predefined

probability level, is. The effectiveness of the implied approximation might depend on (i) the sample size n,

(ii) the position of θ in the parameter space and the probability level α. Section 7.2 of Schweder and Hjort

(2016) develops second-order theory for the deviance Dn(ψ), in which, for a suitable c(θ),

EθDn(ψ) = 1 + c(θ)/n+O(n−2).

By letting D∗n(ψ) = Dn(ψ)/(1 + ε) be the new modified deviance and noting that 1 + ε is the mean of

Dn(ψ), a new confidence curve termed Bartlett corrected deviance confidence curve is defined as

cc∗(ψ) = Γ1

(
Dn(ψ)

EθDn(ψ)

)
= Γ1

(
Dn(ψ)

1 + ε

)
. (2.10)

Note that the mean of Dn(ψ), i.e. 1 + ε, can be computed by simulation. Since the ε may depend on θ,

the replicates of Dn(ψ) should be computed at the required position θ in the parametric space. Implicitly,

in (2.10) is that the distribution function of Dn(ψ) is better approximated by Γ1(x/(1 + ε)) than by Γ1(x),

itself. For large n, theory secures that ε→ 0 and that n {EθDn(ψ)− 1} converges to c(θ).

2.4 Examples

In this section some examples are provided to demonstrate the machinery and properties of confidence

distributions and confidence curves. The examples are exercises retrieved from the STK4180 course website

(http://www.uio.no/studier/emner/matnat/math/STK4180/). While this project was written, no solutions

to these exercises were made available on the website. The R code accompanying the examples is given in

the Appendix, see I.1 for Example 2.1, I.2 for Example 2.2, I.3 for Example 2.3 and I.4 for Examples 2.4

and 2.5.

Example 2.1 (A skewed distribution on the unit interval). Let θ be a positive and unknown parameter. Con-

sider a model with density f(y, θ) = θ yθ−1 for data on [0, 1]. The aim is to construct confidence distributions.
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The log-likelihood function is given by

`n(θ) = logLn(θ) = n log θ + (θ − 1)

n∑
i=1

log yi

and, by differentiation with respect to θ, the maximum likelihood estimator is given by

θ̂n = −n

(
n∑
i=1

log Yi

)−1
.

A further differentiation of the log-likelihood function with respect to θ, gives the variance matrix as

Jn(θ) = −Eθ
∂2`(θ)

∂θ2
=

n

θ2
.

By letting θ be the one-dimensional focus parameter, Theorem 2.1 depicts that
√
n(θ̂ − θ0) →d N(0, J−1),

where θ0 is the true parameter and J−1 needs to be consistently estimated. Note that, under the notation

used presently, J = Jn/n. Let κ̂2 = J−1(θ̂) be the required consistent estimator. Then, by Definition 1.1,

an asymptotic confidence distribution is constructed as in

C1(θ) = 1− Φ

(
θ̂ − θ
κ̂/
√
n

)
.

Theorem 2.1, also, depicts that Dn(θ0) = 2{`n(θ̂)− `n(θ0)} →d X 2
1 , where θ0 is the true parameter. Hence,

a second asymptotic confidence distribution is constructed as in

C2(θ) = 1− Φ(sgn(θ̂ − θ)D1/2
n (θ)).

For this model, the exact confidence distribution C(θ) = Pθ{θ̂ ≥ θ̂obs} can be computed using (i) exact

probability calculus and (ii) simulations.

(i) Exact probability calculus

C3(θ) = Pθ{θ̂ ≥ θ̂obs}

= 1− Pθ

−n
(

n∑
i=1

log Yi

)−1
≤ θ̂obs


= Pθ

{
n∑
i=1

(− log Yi) ≤
n

θ̂obs

}

Let X = − log Y , generically. Then,

F (x) = P{X ≤ x} = P{− log Y ≤ x} = P{log Y ≥ −x} = P{Y ≥ e−x} = 1− P{Y ≤ e−x} = 1− e−θx,

which is the cumulative distribution function of an exponential with parameter θ. That is, X follows an

Expo(θ) ≡ Gamma(1, θ).

Thus,

n∑
i=1

(− log Yi) follows a Gamma(n, θ).
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(ii) Simulations

The probability integral transform is used. From the density of the model we have that F (y, θ) = yθ. Let U

be a random variable from the uniform U(0, 1) distribution. Then, F (Y ) = U and Y = U1/θ. The confidence

distribution is constructed as in

C4(θ) =
1

B

B∑
j=1

I{θ̂sim,j ≥ θ̂obs},

where B is a suitably large number and θ̂obs = −n

(
n∑
i=1

log yi

)−1
.

All the above confidence distributions need to be evaluated for a grid of θ values. Given the data in appendix

II.1, the four confidence distributions are plotted in Figure 2.1.
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Figure 2.1: Confidence distributions for the data set given in II.1.
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Example 2.2 (Light thinks it travels faster than anything). Let

F0(x) =
exp(x)

1 + exp(x)
and f0(x) =

exp(x)

{1 + exp(x)}2
.

Using maximum likelihood, the model with cumulative distribution function

F (y, ξ, τ) = F0

(
y − ξ
τ

)
is fitted to the data given in appendix II.2. The aim is to construct confidence curves for p = Pξ,τ (Y ≤ y0),

with y0 = 30.5.

Fitting the data

The cumulative function F0(x) and the density f0(x) correspond to the cumulative function and density of

the logistic distribution with parameters (0, 1), which resembles the standard normal distribution but it has

heavier tails.

The cumulative distribution function F (y, ξ, τ) = F0

(
y−ξ
τ

)
corresponds to the general logistic distribution

with parameter (ξ, τ) and is written as

F (y, ξ, τ) = F0

(
y − ξ
τ

)
=

exp(y−ξτ )

1 + exp(y−ξτ )

with density

f(y, ξ, τ) =
∂F (y, ξ, τ)

∂y

=

[
1

τ
exp

(
y − ξ
τ

){
1 + exp

(
y − ξ
τ

)}
− 1

τ
exp

(
y − ξ
τ

)
exp

(
y − ξ
τ

)]/{
1 + exp

(
y − ξ
τ

)}2

=
1

τ

exp
(
y−ξ
τ

)
{

1 + exp
(
y−ξ
τ

)}2

=
1

τ
f0

(
y − ξ
τ

)
.

The likelihood function is

L(ξ, τ) =

n∏
i=1

f(yi; ξ, τ)

=

n∏
i=1

1

τ

exp
(
yi−ξ
τ

)
{

1 + exp
(
yi−ξ
τ

)}2

=

(
1

τ

)n n∏
i=1

exp
(
yi−ξ
τ

)
{

1 + exp
(
yi−ξ
τ

)}2 .
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and the log-likelihood function is

`(ξ, τ) = logL(ξ, τ)

= −n log(τ) +
1

τ

n∑
i=1

(yi − ξ)− 2

n∑
i=1

log

{
1 + exp

(
yi − ξ
τ

)}
.

The model is fitted to the data using maximum likelihood. The negative log-likelihood function, −`(ξ, τ),

is minimized using numerical optimization. The maximum likelihood estimates are found to be (ξ̂, τ̂) =

(27.61808, 2.838543). The associated standard deviation estimated for (ξ̂, τ̂) are found by inverting the Hes-

sian matrix and applying the square root to the diagonal elements. These are 0.6157995 for ξ̂ and 0.2971452

for τ̂ .

Constructing confidence curves for p = Prξ,τ {Y ≤ y0}, with y0 = 30.5

(i) The delta method is described in Schweder and Hjort (2016, p. 33). For a confidence distribution and

a subsequent confidence curve based on the delta method, it is necessary to find

w1 =
∂F (y, ξ, τ)

∂ξ
and w2 =

∂F (y, ξ, τ)

∂τ
.

These are

w1 =
∂F (y, ξ, τ)

∂ξ
=

∂

∂ξ

exp
(
y−ξ
τ

)
1 + exp

(
y−ξ
τ

) = −1

τ

exp
(
y−ξ
τ

)
{

1 + exp
(
y−ξ
τ

)}2 = −1

τ
f0

(
y − ξ
τ

)
= −f(y, ξ, τ)

and

w1 =
∂F (y, ξ, τ)

∂τ
=

∂

∂τ

exp
(
y−ξ
τ

)
1 + exp

(
y−ξ
τ

) = −y − ξ
τ2

exp
(
y−ξ
τ

)
{

1 + exp
(
y−ξ
τ

)}2 = −y − ξ
τ2

f0

(
y − ξ
τ

)

= −y − ξ
τ

1

τ
f0(y, ξ, τ) = −y − ξ

τ
f(y, ξ, τ)

Now, let w = (w1, w2)t. Then, the confidence distribution is evaluated at a grid of p values as

Cnrm(p) = Φ

(
p− p̂
k̂

)
,

where p̂ = F0

(
y0 − ξ̂
τ̂

)
, k̂ = ŵtĴ−1ŵ, with Ĵ the Hessian matrix as given in R, and

ŵ =

(
−f(y, ξ̂, τ̂) , −y − ξ̂

τ̂
f(y, ξ̂, τ̂)

)t
.

The corresponding confidence curve is ccnrm(p) = |1−2Cnrm(p)|, evaluated at the same grid of p values.

Figure 2.2 displays the confidence curve.

(ii) The deviance method is described in Schweder and Hjort (2016, p. 35). For a confidence distribution and

a subsequent confidence curve based on the deviance function D(p) for p, it is necessary to consider the
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Figure 2.2: Confidence curve using the delta method.

profile log-likelihood modified in such a way so that it takes into account the constraint F (y0, ξ, τ) = p.

This constrain is written as

F (y0, ξ, τ) = p⇐⇒ F0

(
y0 − ξ
τ

)
= p

exp
(
y0−ξ
τ

)
1 + exp

(
y0−ξ
τ

) = p⇐⇒ (1− p) exp

(
y0 − ξ
τ

)
= p

exp

(
y0 − ξ
τ

)
=

p

1− p
⇐⇒ y0 − ξ

τ
= log

(
p

1− p

)
y0 = ξ + τ log

(
p

1− p

)
ξ = y0 − τ log

(
p

1− p

)
.

Thus, the profile log-likelihood is given as

`n,prof(p) = max {`n(ξ, τ) : F (y0, ξ, τ) = p}

= max

{
`n(ξ, τ) : ξ = y0 − τ log

(
p

1− p

)}
,

which indicates that the ξ parameter is written as a linear combination of the τ parameter before

optimization. Optimization is repeated for each p.

The deviance function D(p) is given as

D(p) = 2 {`n,prof(p̂)− `n,prof(p)} .
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The confidence curve is evaluated at a grid of p values as ccd(p) = Γ1(D(p)), where Γ1(·) is the

cumulative distribution function of the X 2
1 . Figure 2.3 displays the confidence curve. This curve is not

symmetric as the one obtained by the delta method, but is tighter. In R, care in taken so that the grid

of p values spans (0.0001, 0.9999) to avoid infinity problems with log.
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Figure 2.3: Confidence curve based on the deviance function.

(iii) Bartlett correction for the deviance is used. This method is described in Schweder and Hjort (2016,

pp. 210–211). For a fine-tuned confidence curve based on the modified deviance function
D(p)

1 + ε
, where

1+ε is the mean of D(p), it is necessary to simulate a high number of replicates of D(p) at the required

position (ξ̂, τ̂). For a large number of datapoints, n, ε will be close to zero. The deviance function is

computed for a high number of simulated data sets of size 64, while p is kept fixed at p̂. The confidence

curve is

ccmd(p) = Γ1

(
D(p)

E(ξ,τ)D(p)

)
,

where Γ1(·) is the cumulative distribution function of the X 2
1 . Figure 2.4 displays the modified confi-

dence curve and figure 2.5 compares ccd(p) with ccmd(p).

It is noted that all methods estimate p̂ the same, as can be seen from the various plots.
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Figure 2.4: Confidence curve using Bartlett correction for the deviance.
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Figure 2.5: Comparison of ccd(p) with ccmd(p). The difference is small as ε = 0.032724 and the mean of
the deviance function at the required position is 1.032724. The sample size is 64.
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Example 2.3 (Light thinks it travels faster than anything, continued). Let

F0(x) =
exp(x)

1 + exp(x)
and f0(x) =

exp(x)

{1 + exp(x)}2
.

Using maximum likelihood, the model with cumulative distribution function

F (y, ξ, τ, γ) =

{
F0

(
y − ξ
τ

)}γ
=

[
exp{(y − ξ)/τ}

1 + exp{(y − ξ)/τ}

]γ
is fitted to the data given in appendix II.2. The aim is to construct a confidence curve for γ and check if the

data support the model with γ = 1.

The cumulative distribution function is recognized to be the Type I: Skew-Logistic distribution. For details

regarding this distribution, see, for example, Johnson et al. (1994) and Shao (2002). Its density is

f(y, ξ, τ, γ) =
∂F (y, ξ, τ, γ)

∂y

=
γ

τ

exp
(
γ y−ξ

τ

)
{

1 + exp
(
y−ξ
τ

)}γ+1 .

For γ = 1, it is the density of the general logistic distribution, as in part (a).

The likelihood function is

L(ξ, τ, γ) =

n∏
i=1

f(yi; ξ, τ, γ)

=

n∏
i=1

γ

τ

exp
(
γ yi−ξ

τ

)
{

1 + exp
(
yi−ξ
τ

)}γ+1

=
(γ
τ

)n n∏
i=1

exp
(
γ yi−ξ

τ

)
{

1 + exp
(
yi−ξ
τ

)}γ+1 .

and the log-likelihood function is

`(ξ, τ, γ) = logL(ξ, τ, γ)

= n log(γ)− n log(τ) +
γ

τ

n∑
i=1

(yi − ξ)− (γ + 1)

n∑
i=1

log

{
1 + exp

(
yi − ξ
τ

)}
.

The maximum likelihood estimates are (ξ̂, τ̂ , γ̂) = (26.05397, 3.151787, 1.423737). The values reported are

the ones output from glogisfit. The values output from the programmed function differ as in

c(xi.hat, tau.hat, gam.hat) - c(xihat, tauhat, gamhat)

location scale shape

6.630162e-04 -7.863028e-06 -4.151751e-05
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The confidence curve is obtain through the profile log-likelihood for γ. That is,

`prof(γ) = max
all (ξ,τ)

`(ξ, τ, γ) = `(ξ̂(γ), τ̂(γ), γ),

where (ξ̂(γ), τ̂(γ)) is the maximizer of `(ξ, τ, γ) for given γ and is displayed in figure 2.6.
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Figure 2.6: Confidence curve for γ. Confidence intervals above the level of 53.32% include the value of
γ = 1.

A 90% confidence interval for Ho = γ = 1 is [0.6711, 4.3621] and a 95% confidence interval is [0.5891, 6.1911].

Example 2.4 (Parametric confidence for quantiles). Let Y1, . . . , Yn be i.i.d. from N(µ, σ2). Let, also, the

p-quantile be ψp = µ+ zpσ, with zp = Φ−1(p). The aim is to show that, as n increases,

√
n(ψ̂p − ψp)→d N(0, (1 + 1

2z
2
p)σ).

Let Y be a random variable from the normal distribution with mean µ and variance σ2, that is Y ∼ N(µ, σ2).

Then, Z =
Y − µ
σ

is also normal, as a linear combination of a normally distributed random variable, with

mean E

(
Y − µ
σ

)
=

1

σ
{E(Y )− µ} =

1

σ
{µ− µ} = 0 and variance Var

(
Y − µ
σ

)
=

1

σ2
Var(Y ) =

1

σ2
σ2 = 1.

That is, Z follows a standard normal distribution, N(0, 1). Also, let F denote the cumulative distribution

function of the general normal distribution, N(µ, σ2), and, as usual, Φ be the cumulative distribution function

of the standard normal distribution, N(0, 1). Then,

FY (y) = Pr{Y ≤ y} = Pr{Y − µ ≤ y − µ} = Pr

{
Y − µ
σ

≤ y − µ
σ

}
= Pr

{
Z ≤ y − µ

σ

}
= Φ

(
y − µ
σ

)
.

Now, let ψp denote the p-quantile of a N(µ, σ2). Then, by definition, p = F (ψp). As F (ψp) = Φ

(
ψp − µ
σ

)
,

p = Φ

(
ψp − µ
σ

)
. Φ is a cumulative distribution function, and as such is invertible at every point on the

real line. Thus, Φ−1(p) =
ψp − µ
σ

. Rearranging ψp = µ + σΦ−1(p). By setting zp = Φ−1(p), ψp is, thus,
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expressed as ψp = µ+ zp σ.

Let µ̂ =
1

n

n∑
i=1

Yi. Then,

µ̂ =
1

n

n∑
i=1

Yi =
1

n

n∑
i=1

(µ+ σ Zi) =
1

n

n∑
i=1

µ+
1

n
σ

n∑
i=1

Zi =
1

n
nµ+ σZ̄ = µ+ σ

1√
n
N1,

where Zi are i.i.d. N(0, 1) and, thus,

n∑
i=1

Zi ∼ N(0, n) or Z̄ =
1

n

n∑
i=1

Zi ∼ N

(
0,

1

n

)
≡ 1√

n
N(0, 1). Equiva-

lently, Z̄ =
1√
n
N1 with N1 ∼ N(0, 1).

Also,
σ̂2

σ2
∼ X

2
ν

ν
, where ν = n− 1. Thus, σ̂2 ∼ σ2 X 2

ν

ν
and σ̂ ∼ σ

(
X 2
ν

ν

)1/2

.

Thus,

ψ̂p = µ̂+ zp σ̂

= µ+

(
σ√
n

)
N1 + zp σ

(
X 2
ν

ν

)1/2

,

and N1 is independent of X 2
ν . Also, ψp = µ+ zp σ.

Now,

ψ̂p − ψp = µ+

(
σ√
n

)
N1 + zp σ

(
X 2
ν

ν

)1/2

− µ− zp σ

=

(
σ√
n

)
N1 +

{(
X 2
ν

ν

)1/2

− 1

}
zp σ

=
σ√
n

[
N1 +

√
n

{(
X 2
ν

ν

)1/2

− 1

}
zp

]
,

or
√
n(ψ̂p − ψp) = σ

[
N1 +

√
n

{(
X 2
ν

ν

)1/2

− 1

}
zp

]
.

An n increases, n− 1 ≈ n and
X 2
n−1

n− 1

.
=
X 2
n

n
.

By the properties of X 2 distribution, a X 2
n is the sum of n independent X 2

1 . That is, X 2
n =

n∑
i=1

X 2
1,i, where

X 2
1,1, . . . ,X 2

1,n are independent of each other. Also, since ∀ i = 1, . . . , n, E
(
X 2

1,i

)
= 1 and Var

(
X 2

1,i

)
= 2,

E

(
1

n
X 2
n

)
=

1

n
E
(
X 2
n

)
=

1

n
E

(
n∑
i=1

X 2
1,i

)
=

1

n

n∑
i=1

E
(
X 2

1,i

)
=

1

n
n = 1,

by the linearity of expectation.

18 of 60



By the Central Limit Theorem,

√
n

{(
X 2
n

n

)
− 1

}
=
√
n

(
1

n
X 2
n − 1

)
=
√
n

(
1

n

n∑
i=1

X 2
1,i − E

(
X 2

1,i

))
−→ N(0,Var

(
X 2

1,i

)
) ≡ N(0, 2) ≡

√
2N(0, 1),

By the delta method,
√
n

{
h

(
X 2
n

n

)
− h(1)

}
−→d h

′(1)
√

2N(0, 1),

where h(x) =
√
x and h′(x) =

∂h(x)

∂x
=

1

2
√
x

. h is defined on [0,∞) for which
X 2
n

n
falls with probability

1 and has derivative in an interval around 1 that is continuous at that point (Schweder and Hjort, 2016,

p. 451). Thus,

√
n

{(
X 2
n

n

)1/2

− 1

}
−→d

1

2

√
2N(0, 1) ≡ 1√

2
N(0, 1) ≡ N

(
0,

1

2

)
≡ 1√

2
N2,

with N2 ∼ N(0, 1) and

√
n
(
ψ̂p − ψp

)
−→d σ

[
N1 +

1√
2
N2 zp

]
≡ σ

[
N(0, 1) + zpN

(
0,

1

2

)]
≡ σN

(
0, 1 +

1

2
z2p

)
≡ N

(
0,

(
1 +

1

2
z2p

)
σ2

)
.

Equivalently,
√
n
(
ψ̂p − ψp

)
(
1 + 1

2 z
2
p

)1/2
σ
−→d N(0, 1),

or √
n
(
ψp − ψ̂p

)
(
1 + 1

2 z
2
p

)1/2
σ
−→d N(0, 1),

as A ∼ N(0, 1) has the same distribution as −A ∼ N(0, 1).

Now, let, Wn =

√
n
(
ψp − ψ̂p

)
(
1 + 1

2 z
2
p

)1/2
σ

and ψp be the focus parameter. By construction, ψp is a function of the

two normal parameters, µ and σ2. Wn is a ‘large-sample pivot’ as (1) is a function of the data, Y, (through

ψ̂p) and the focus parameter, ψp, and (2) has a limiting distribution independent of the parameters µ and

σ2. Because Wn is increasing in ψp, by the theory developed in Schweder and Hjort (2016), the approximate

confidence distribution for ψp is

Cn(ψp) = Φ (Wn) = Φ

 √n
(
ψp − ψ̂p

)
(
1 + 1

2 z
2
p

)1/2
σ


and the associated confidence curve is ccn(ψp) = |1− 2Cn(ψp)|.

The corresponding confidence curve is plotted in Figure 2.7.
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Figure 2.7: Approximate confidence curve for ψp. The tag indicates the sample quantile from quantile
in R.

Example 2.5 (Nonparametric confidence for quantiles). Let Y1, . . . , Yn be independent from a continuous

and strictly increasing cumulative distribution function F (y) on [0,∞] and let the p-quantile denoted by

ψp = F−1(p). The aim is to construct nonparametric confidence distributions and demonstrate them using

the data given in appendix II.3.

Note: This example is not directly related to the methods reviewed in section 2. It is added to demonstrate

that, indeed, nonparametric confidence distributions can be constructed and to show how, following the

instructions of the relevant exercise retrieved from the STK4180 website.

Let Y1, . . . , Yn be independent observations from a continuous and strictly increasing cumulative distribution

function F on the half line [0,∞) and Y(1), . . . , Y(n) be the corresponding ordered observations. Also, let

ψp = F−1(p), for p ∈ [0, 1]. Then,

Pr
{
ψp ≤ Y(j)

}
= Pr

{
F−1(p) ≤ Y(j)

}
(2.11)

= Pr
{
F−1(p) ≤ F−1

(
U(j)

)}
(2.12)

= Pr
{
p ≤ F

(
F−1

(
U(j)

))}
(2.13)

= Pr {p ≤ Uj} (2.14)

Equation (2.11) is because ψp = F−1(p). Equation (2.12) is by the probability integral transform applied to

the order statistics, see for example Reiss (1989, Theorem 1.2.5, pp. 17–18). Equations (2.13) and (2.14) is

due to F being continuous and strictly increasing.

Let Y1, . . . , Yn be independent from a continuous and strictly increasing cumulative distribution function F .

Then, from part (c), Pr
{
ψp ≤ Y(j)

}
= Pr {p ≤ Uj}. Following example 4.4 of Schweder and Hjort (2016,

p. 106), for p fixed, say pfix, Pr
{
ψpfix ≤ Y(j)

}
= Pr {pfix ≤ Uj} = Bn(j − 1, pfix), where Bn(j − 1, pfix) is the

distribution for the binomial (n, pfix) variable X that counts the number of uniform data points below pfix.
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This defines a nonparametric confidence distribution function C(Y(j)) as

C(Y(j)) = Pr {X ≤ j − 1} = Pr {X < j} = 1− Pr {X ≥ j} .

But the event {X ≥ j} is equivalent to the event {Uj ≤ pfix}, as there are at least j of the ordered Uj in the

interval [0, pfix] if and only if their jth smallest is in that interval. Thus,

C(Y(j)) = 1− Pr {X ≥ j} = 1− Pr {Uj ≤ pfix}

and the rest follow from the fact that the Uj has a beta distribution, with parameters (j, n+ 1− j).

Figure 2.8, displays confidence curves for 0.10, 0.50, 0.90 quantiles in the same diagram. For the nonpara-

metric quantiles the method described in Schweder and Hjort (2016, pp. 320–321) is implemented.
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Figure 2.8: Confidence curves for 0.10, 0.50, 0.90 quantiles.
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3 The t-bootstrap method

This section presents some contributions to the t-bootstrap method. It constitutes the main effort of this

project and, thus, motivation, explanations and remarks are presented to help the reader understand the

main points of the story and, perhaps, make suggestions for improvement. It is theoretical in nature, as

results, had to be established in a rigorous manner, but a couple of examples are presented.

3.1 Derivation of the Confidence Distribution

Let the data, y = {y1, . . . , yn}, be independent and identically distributed (i.i.d.) observations stemming

from an unknown probability distribution Pθ of a univariate population. The focus is turned to a scalar

parameter of interest, ψ = a(θ), where a is a function that maps the full, p-dimensional, parameter θ to

some chosen predefined scalar parameter for which inference needs to be made. In particular, the focus is

concentrated to a Studentised version of ψ, namely,

t =
ψ − ψ̂n
τ̂

, (3.1)

where ψ̂n is an estimate of ψ and τ̂ is a scale estimate, which forms the so called t-statistic. The term

‘Studentised’ hints at W. S. Gosset’s approach, published under the pseudonym Student, of dividing a scalar

centred quantity of the form γ − γ̂n by the estimated standard error of γ̂n, ŝe(γ̂n), i.e. the scale estimate.

That is, the form given at (3.1) reflects the fact that a statistic is centred and scaled so that its mean and

variance are 0 and 1, respectively. The choice of writing ‘estimand minus estimator’ and not ‘estimator

minus estimand’, as has, traditionally, been the practise in the frequentist world, is intentional so as to have

(i) the focus parameter in direct sight and (ii) a readily available increasing function in the focus parameter.

See, Remark 3.3 in Schweder and Hjort (2016, p. 70) for further comments on this. For the present, what is

interesting is to emphasise that pivotal character of t at 3.1, which renders it to have a distribution function

independent of the underlying parameter. The statement that this distribution happens to tends to the

Standard Normal distribution will be used at a later point.

Efron’s bootstrap resampling scheme, originated in Efron (1979), is employed to provide an estimate to

the true distribution of the t-statistic at (3.1), denoted as R. This scheme is particularly successful when

the distribution of t at (3.1) is the same or asymptotically the same for each value of ψ, making t a pivot

or an approximate pivot according to Definitions 1.3 and 1.4, respectively (Hall, 1992b, p. 83). Briefly, the

resampling scheme requires, firstly, a suitably large number, say B, of bootstrap samples y∗b = {y∗b1, . . . , y∗bn},
where b = 1, . . . , B, to be generated from Pθ̂, an estimate of the unknown Pθ, and, secondly, the quantity

t∗(b) =
ψ̂n − ψ̂∗(b)
τ̂∗(b)

, where ψ̂∗(b) and τ̂∗(b) are the corresponding ψ̂n and τ̂ values under the b bootstrap

sample, to be computed for each of the y∗1 , . . . , y
∗
B samples. The distribution of t∗(b), denoted as R̂, is then

used to estimate unbiasedly and consistently R. For a discussion on the number of bootstrap samples, B,

required, see Hall (1986, 1989), although there is not a generally accepted recipe on how ‘suitably large’ the

size of B should be, apart, perhaps, from the vague notion of ‘the larger the better’.

Now, let the generated bootstrap samples be summarised as y∗ = {y∗1 , . . . , y∗B}. Whether R̂ is independent

of the underlying parameter ψ or not, a confidence distribution or an asymptotic confidence distribution is
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easily constructed. Define, as in Schweder and Hjort (2016, p. 217),

Ctboot(ψ, y
∗) = R̂

(
ψ − ψ̂n
τ̂

)
(3.2)

and examine if either Definition 1.1 or 1.2 is satisfied. By construction, R̂ defines a cumulative distribution

function (c.d.f.) on Ψ, the parameter space for ψ. At the true value of the parameter, ψ0, though, the

behavior of R̂ needs to be examined slightly more carefully since, by construction, the outcome of any

bootstrap resampling scheme is a discrete distribution. The construction at (3.2) is seen as a function of

y∗, a view that renders the construction a random character. When t at (3.1) is a perfect pivot, R̂ is exact,

thus R̂ ≡ R, and, for any 0 < α < 1, P{Ctboot(ψ0, y
∗) ≤ α} = α, by the generalised form of the probability

integral transform given in Bol’shev (1965). When t at (3.1) is an approximate pivot, R̂→d R, as B →∞,

and, for any 0 < α < 1, P{Ctboot(ψ0, y
∗) ≤ α} .

= α, by applying the generalised form of the probability

integral transform of Bol’shev (1965) to the limiting distribution. In the case of a perfect pivot, (3.2) is

defined to be a CD as in Definition 1.1 and in the case of an approximate pivot, (3.2) is defined to be an aCD

as in Definition 1.2. Operationally, Ctboot(ψ, y
∗) is obtained by the empirical distribution of t∗(1), . . . , t∗(B),

that is,

Ctboot(ψ, y
∗) =

1

B

B∑
b=1

I{t∗(b) ≤ tobs}, (3.3)

where I denotes the indicator function and tobs =
ψ − ψ̂n
τ̂

. For each ψ on a grid of ψ values in Ψ, the steps

involved in the operation described by (3.3) are summarised, algorithmically, in three steps: (i) Compute tobs.

(ii) Identify which values of the bootstrap sample, {t∗(b), b = 1, . . . , B}, satisfy the relationship t∗(b) ≤ tobs.
(iii) Compute the proportion of bootstrap samples less than or equal to tobs. Note that, ideally, the entire Ψ

should be covered, but for practical reasons, e.g. when plotting a CD or an aCD, Ψ is truncated to values

close to ψ̂n. Efron and Hastie (2016, ch. 11) demonstrate in a somewhat pedagogical manner the details of

the operation at (3.3) by two examples (see, pp. 187, 191).

3.2 Introduction to the problem and summary of results

The t-bootstrap procedure is described, for example, in Efron and Tibshirani (1993, p. 160) and Davison

and Hinkley (1997, p. 194) and is briefly discussed here as it provides a means of constructing confidence

distributions. Depending on whether the t-statistic involved is a perfect pivot or an approximate one, the

distribution of the t-statistic defines either a confidence distribution in the sense of Definition 1.1, or an

asymptotic confidence distribution in the sense of Definition 1.2. The aim, here, is to suggest a transformed

Studentised statistic that corrects for bias and skewness in the resulting confidence distributions. The sugges-

tion is based on the discussion given in Kakizawa (1996) and the working framework is the ‘smooth function

model ’ of Hall (1992b, p. 52), for which Edgeworth’s expansions are valid as demonstrated in the seminal

work of Bhattacharya and Ghosh (1978, 1980).

First, a description is given, in generic terms, on how and why the bootstrap gives a confidence distri-

bution. Then, a brief discussion is given on the motivation behind the use of a monotone and invertible

transformation such as the one discussed in Kakizawa (1996). Two Theorems, 3.1 and 3.2, are stated, in

their most generality, to formalise the main results in Kakizawa (1996), as (i) such an effort has not been

attempted before (at least, it is not know to have been) and (ii) the transformations form the basis for
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further results. The first of these results concerns the accuracy of approximation of a confidence curve as

this is described by Theorem 3.3. Then, a very brief description of the ‘smooth function model ’ is given,

which constitutes the present working framework and restricts attention to pivotal statistics of certain form,

say Sn. A brief discussion on the Edgeworth expansion is also given, as further results will be stated with

its help. Another Theorem, 3.4, formalises the ‘minimum moment conditions’, so that the Edgeworth ex-

pansion of a transformed Sn is still valid. Since the polynomials appearing in the Edgeworth expansion of

Sn, depend on the characteristics of the underlying sampling distribution, these need to be estimated. A

further Theorem, 3.5, formalises that under consistent estimators the resulting Edgeworth expansion of the

transformed Sn still holds. Theorem 3.6 states that when the bootstrap procedure is used to approximate

the distribution of either Sn or its transformed versions, cf. (3.6), then the order of the incurred error is

either oP (n−1) or oP (n−(j+ν)/2), for suitably specified values of j and ν. Theorem 3.7 establishes that the

same order of incurred error as described by the previous theorem applies to the corresponding confidence

distributions. It is noticed that one application of the considered monotone and invertible transformation

applied to Sn results in a bias free confidence distribution that is unaffected from the main effect of skewness.

3.3 Monotone transformations

From a distributional point of view, a Studentised or pivotal statistic of the form at (3.1) follows the Stan-

dard Normal distribution, asymptotically. That is, when the size of the data is large inference can be made

based on the Standard Normal distribution, which is symmetric, as a consequence of the Central Limit

Theorem. The confidence intervals constructed then, have coverage error O(n−1). The bootstrapped confi-

dence intervals, though, which are based on the resampled t∗ values, have coverage error O(n−3/2) and this

is considered to be a major advantage of the bootstrap procedure. See, e.g., Hall (1992b, pp. 13–16, 83),

Efron and Tibshirani (1993, p. 174) and Barndorff-Nielsen and Cox (1994, pp. 298–301) on how pivotal

quantities improve the performance of the bootstrap. But, it is not always the case that the size of the

data is large as their might be lots of practical reasons behind the unavailability of data. When the size of

the data is small, the bootstrap distribution of a Studentised or pivotal statistic is asymmetric, i.e. skewed,

and ways for correcting the asymmetry in the distribution are sought. A consequence of the asymmetry in

the distribution of a statistic is that any constructed confidence intervals would have higher coverage error

that constructed confidence intervals based on a statistic with a symmetric distribution. The well studied

Edgeworth expansions, which have proven to a be a powerful tool, give the theoretical insight into this as

the first term, of size n−1/2, in an expansion gives a description of the error in the usual Standard Normal

approximation. This error is entirely due to skewness and, in particular, its main effect. An effective way

to eliminate or remove the main effect of skewness from the distribution of a pivotal statistic is to apply a

transformation to the current statistic so that the resulting, new, statistic has a more symmetric distribution.

This will be reflected to the bootstrap distribution when a bootstrap scheme is employed. In this way, the

high coverage accuracy obtained by applying confidence procedures to a symmetric distribution is retained.

See, Hall (1992a, p. 221) who suggested to use monotone and invertible transformations to assist with this

task. It is kept in mind that confidence distributions provide confidence intervals for any chosen level of confi-

dence and methods for constructing them should be safeguarded against the undesirable effects of asymmetry.

Kakizawa (1996) provides a method for finding a transformation that is monotone and invertible over

the whole real line. The method is general enough to be applicable to a variety of statistics and, thus, not

constrained to the case of Studentised or pivotal statistics, which, by the way, is the case under consideration

here. The idea that drives the suggested method is described, briefly and in very general terms, as follows.

Let S = Sn denote a statistic of order Op(1). Also, assume that S admits an Edgeworth expansion of the
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form P (S ≤ x) = Φ(x) + n−k/2 h(x) + O(n−(k+1)/2), where k ≥ 1 is integer and h(·) is some polynomial

dependent on φ, the density of the Standard Normal. A function, fS,n, that depends on the S statistic and

the sample size n, is sought such that the transformed statistic T (S) = S + fS,n is monotone with respect

to S and fS,n = OP (n−k/2). The OP -notation is defined in Hall (1992b, pp. xii–xiii) and, simply, denotes

a random variable that is, in probability, of the specified order. By setting fS,n = n−k/2H(S), where H(·)
is some polynomial to be specified, this perturbation leads to the distribution of the transformed statistic

T (S) having

P (T (S) ≤ x) = P (S ≤ T−1(x))
.
= P (S ≤ x− n−k/2H(x))
.
= Φ(x)− n−k/2H(x)φ(x) + n−k/2 h(x), (3.4)

where H(x) = h(x)/φ(x) reduces the error of approximation. Hence, the necessity of requiring that fS =

OP (n−k/2) and the transformed statistic be monotone. It would have been extremely interesting to see the

proofs regarding these results in Kakizawa (1996), but they are not offered. The paper gives a discussion on

the existence of such transformations using a chi-squared limiting distribution and provides some numerical

studies. Here, the task of going over the details of a proof is undertaken in Theorems 3.1 and 3.2. First, the

monotonicity of such a transformation is shown and then the idea depicted at (3.4) is presented in a more

formal way. Both results are given in generality. Remarks follow the statement of the results for clarification.

Theorem 3.1. Let ν be some fixed integer greater that or equal to 1, πj(x) be, for every j = 1, . . . , ν, a

polynomial on the real line and c be a constant such that c ≥ 1
4 . Define the indefinite integral

∫ {
d

dy
πk(y)

}2

dy = Πk(y) + const.,

where const. is some arbitrary constant. Then, the transformation Tj◦0(x) = (Tj ◦ . . . ◦ T0)(x) with

Tk◦0(x) = T(k−1)◦0(x) + n−k/2 πk(T(k−1)◦0(x)) + c n−(k+1)/2 Πk(T(k−1)◦0(x)),

for some k ∈ {1, . . . , j} and T0(x) = x, is strictly monotone increasing for every j = 1, . . . , ν.

Proof. By mathematical induction on j. The derivative argument is used in Hall (1992b, pp. 123–124).

Without loss of generality, let c = 1
4 . If, though, c > 1

4 , it sufficient to complete the square as in ca2 +a+1 ={√
ca+ 1

2
√
c

}2

− 1
4c + 1, for a suitably chosen a.

Let j = 1. Then, T1(x) = x+ n−1/2 π1(x) + 1
4 n
−1 Π1(x). Differentiation of T1(x) with respect to x, obtains

d

dx
T1(x) = 1 + n−1/2

d

dx
π1(x) + 1

4 n
−1 d

dx
Π1(x)

= 1 + n−1/2
d

dx
π1(x) + 1

4 n
−1
{

d

dx
π1(x)

}2

,

by elementary calculations and an employment of the fundamental theorem of calculus. Observing that

1 + n−1/2
d

dx
π1(x) + 1

4 n
−1
{

d

dx
π1(x)

}2

=

{
1
2 n
−1/2 d

dx
π1(x) + 1

}2

,

which is always positive, it follows immediately that
d

dx
T1(x) > 0, for every x on the real line and thus,

T1(x) is strictly monotone increasing for j = 1.

Assuming now that, for some j > 1, Tj◦0(x) is strictly monotone increasing for every x on the real line, the
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aim is to show that for j + 1, T(j+1)◦0(x) is strictly monotone increasing for every x on the real line. The

transformation T(j+1)◦0(x) is written as

T(j+1)◦0(x) = (Tj+1 ◦ . . . ◦ T0)(x) = Tj+1(Tj◦0(x)).

Thus,

Tj+1(Tj◦0(x)) = Tj◦0(x) + n−(j+1)/2 πj+1(Tj◦0(x)) + 1
4 n
−(j+2)/2 Πj+1(Tj◦0(x)).

Differentiation of T(j+1)◦0(x) with respect to x obtains

d

dx
Tj+1(Tj◦0(x)) =

d

dx
Tj◦0(x) + n−(j+1)/2 d

dx
πj+1(Tj◦0(x))

d

dx
Tj◦0(x)

+ 1
4 n
−(j+2)/2 d

dx
Πj+1(Tj◦0(x))

d

dx
Tj◦0(x)

=

[
1 + n−(j+1)/2 d

dx
πj+1(Tj◦0(x)) + 1

4 n
−(j+2)/2

{
d

dx
πj+1(Tj◦0(x))

}2
]

d

dx
Tj◦0(x),

by elementary calculations, the chain rule and the fundamental theorem of calculus. Observing that

1 + n−(j+1)/2 d

dx
πj+1(Tj◦0(x)) + 1

4 n
−(j+2)/2

{
d

dx
πj+1(Tj◦0(x))

}2

, >

1 + n−(j+1)/2 d

dx
πj+1(Tj◦0(x)) + 1

4 n
−(j+1)/2

{
d

dx
πj+1(Tj◦0(x))

}2

, >

since −j + 2

2
= −(j + 1) +

1

2
> −(j + 1), and that

1 + n−(j+1)/2 d

dx
πj+1(Tj◦0(x)) + 1

4 n
−(j+1)

{
d

dx
πj+1(Tj◦0(x))

}2

=

{
1
2 n
−(j+1)/2 d

dx
πj+1(Tj◦0(x)) + 1

}2

,

which is always positive, by the induction hypothesis that
d

dx
Tj◦0(x) > 0, it follows immediately that

d

dx
T(j+1)◦0(x) > 0, for every x on the real line and thus, T(j+1)◦0(x) is strictly monotone increasing.

The proof is completed as the requirements of mathematical induction are fulfilled.

Corollary 3.1. Let ν be some fixed integer greater that or equal to 1, πj(x) be, for every j = 1, . . . , ν, a

polynomial on the real line and c be a constant such that c ≥ 1
4 . Define the indefinite integral

∫ {
d

dy
πk(y)

}2

dy = Πk(y) + const.,

where const. is some arbitrary constant. Then, the transformation Tj◦0(x) = (Tj ◦ . . . ◦ T0)(x) with

Tk◦0(x) = T(k−1)◦0(x) + n−k/2 πk(T(k−1)◦0(x)) + c n−(k+1)/2 Πk(T(k−1)◦0(x)),

for some k ∈ {1, . . . , j} and T0(x) = x, is one-to-one for every j = 1, . . . , ν.

Proof. By definition as follows. The transformation Tj◦0(x) is strictly monotone increasing on the real line

for every j = 1, . . . , ν, by Theorem 3.1. Take arbitrary j and any two distinct x1, x2 ∈ R such that x1 < x2.

Then, Tj◦0(x1) < Tj◦0(x2) by the monotonicity of the transformation. Thus, Tj◦0(x1) 6= Tj◦0(x2) and,

by definition, Tj◦0(x) is one-to-one. Since j is arbitrary, Tj◦0(x) is one-to-one on the real line for every
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j = 1, . . . , ν. The proof is completed.

Theorem 3.2. Let ν be some fixed integer greater that or equal to 1. Also, let the cumulative distribution

function of a statistic Sn admit, uniformly in x on the whole real line, an asymptotic expansion of the form

F (x) ≡ P (Sn ≤ x)

= Ξ(x) +

ν∑
`=1

n−`/2 π0,`(x) ξ(x) +O(n−(ν+1)/2) (3.5)

as n→∞, where π0,`(x) is, for every ` = 1, . . . , ν, a polynomial on the real line depended on the character-

istics of the underlying distribution of the sample values but not depended on n, Ξ is the limiting cumulative

distribution function and ξ is the corresponding probability density function. Define the indefinite integral∫ {
d

dy
π(k−1),k(y)

}2

dy = Π(k−1),k(y) + const.,

where const. is some arbitrary constant. Then, the transformed statistic Tj◦0(Sn) = (Tj ◦ . . . ◦ T0)(Sn) with

Tk◦0(Sn) = T(k−1)◦0(Sn) + n−k/2 π(k−1),k(T(k−1)◦0(Sn)) + c n−(k+1)/2 Π(k−1),k(T(k−1)◦0(Sn)), (3.6)

for some k ∈ {1, . . . , j}, T0(Sn) = Sn and c ≥ 1
4 , obtains

Gj(x) ≡ P (Tj◦0(Sn) ≤ x)

= Ξ(x) +O(n−(j+1)/2), (3.7)

for every j = 1, . . . , ν.

Remark 3.1. The following notes are in order.

1. Subscript of π(k−1),k(·): The first integer, i.e. k − 1, indicates that the polynomial associated with the

expansion of the T(k−1)◦0(·) statistic is used for the current statistic Tk◦0(·) and the second integer, i.e.

k, indicates the order, see n−k/2, which it corresponds to.

2. Limiting distribution at (3.5) and (3.7): Theorem 3.2 is stated in general terms in an attempt to show

that the transformation applies, for any fixed ε > 0, to ‘any statistic S = Sε of order OP (1) whose

distribution is pr(S ≤ x) = Ξ(x)+εk ξ(x)+O(εk+1) for some k > 0, where Ξ is the limiting distribution

of S = Sε’ (Kakizawa, 1996, pp. 923–924). This include statistics whose limiting distribution is the

Standard Normal and statistics whose limiting distribution is the chi-square. Note that, here, ψ(·) is

such that ξ(x) = πk(x)
d

dx
Ξ(x), where πk(·) is some polynomial.

Proof. By mathematical induction on j and a repeated Taylor’s series expansion argument. For brevity,

the arguments are demonstrated first and then the induction’s steps are described with reference to the

arguments.

Arguments: Let k be some positive integer. The transformed statistic Tk◦0(Sn) is written, conveniently, as

Tk◦0(Sn) = Tk(T(k−1)◦0(Sn)), using properties of composite functions. Thus,

Tk(T(k−1)◦0(Sn)) = T(k−1)◦0(Sn) + n−k/2 π(k−1),k(T(k−1)◦0(Sn)) + c n−(k+1)/2 Π(k−1),k(T(k−1)◦0(Sn)) (3.8)
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and

Gk(x) ≡ P (Tk◦0(Sn) ≤ x)

= P (Tk(T(k−1)◦0(Sn)) ≤ x)

= P (T(k−1)◦0(Sn) ≤ T−1k (x)), (3.9)

where x is some known value on the real line. As such, x is considered fixed.

Firstly, a Taylor’s series expansion of T−1k (x) is computed and written in the convenient form of T−1k (x) =

x − n−k/2 π(k−1),k(x) + O(n−(k+1)/2) following the motivation driving (3.4). The same line of arguments

can be found, also, in Yanagihara and Yuan (2005, pp. 234–235), though, here, they are treated in a more

general context. Secondly, the expansion for Gk(x) is derived, assuming that the expansion for Gk−1(x) is

available.

By equation (3.8), write

Tk(x) = x+ n−k/2 π(k−1),k(x) + c n−(k+1)/2 Π(k−1),k(x). (3.10)

By Theorem 3.1, Tk is strictly monotone increasing and, as a polynomial, Tk is continuous over the whole

real line. Thus, Tk is invertible and let T−1k denote its inverse. It follows, then, from equation (3.10), that

x = T−1k (x+ n−k/2 π(k−1),k(x) + c n−(k+1)/2 Π(k−1),k(x)),

where the n−k/2 π(k−1),k(x) + c n−(k+1)/2 Π(k−1),k(x) part, which is fixed as x is fixed, is regarded as some

departure away from x. A Taylor’s series expansion (see, e.g., formula (8.1) in Bhattacharya and Rao (2010,

p. 57) gives

x = T−1k (x) +
{
n−k/2 π(k−1),k(x) + c n−(k+1)/2 Π(k−1),k(x)

} d

dx
T−1k (x) +O(n−(k+1)/2)

and by gathering terms of the same order,

x = T−1k (x) + n−k/2 π(k−1),k(x)
d

dx
T−1k (x) +O(n−(k+1)/2). (3.11)

The derivative of T−1k (x) with respect to x needs to be computed. The inverse function theorem gives,

d

dx
T−1k (x) =

{
d

dw
Tk(w)

∣∣∣∣
w=T−1

k (x)

}−1
,

where an evaluation of the derivative of Tk(w) with respect to w at T−1k (x) results in

d

dx
T−1k (x) =

{
1 + n−k/2

d

dw
π(k−1),k(w)

∣∣∣∣
w=T−1

k (x)

+O(n−(k+1)/2)

}−1
. (3.12)

The derivative of π(k−1),k(w) with respect to w evaluated at T−1k (x) is computed next. A Taylor’s series

expansion is used again. It is convenient to write, for the moment, that T−1k (x) = x + O(n−k/2), after an

elementary rearrangement of equation (3.11), so that w = T−1k (x) = x+O(n−k/2). Recall that π(k−1),k is a
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polynomial. Hence,

d

dw
π(k−1),k(w)

∣∣∣∣
w=T−1

k (x)

=
d

dw
π(k−1),k(w)

∣∣∣∣
w=x+O(n−k/2)

=
d

dw
π(k−1),k(w)

∣∣∣∣
w=x

+O(n−k/2),

Therefore, equation (3.12) reduces to

d

dx
T−1k (x) =

{
1 + n−k/2

d

dw
π(k−1),k(w)

∣∣∣∣
w=x

+O(n−(k+1)/2)

}−1
. (3.13)

By letting zx = n−k/2
d

dw
π(k−1),k(w)

∣∣∣∣
w=x

+O(n−(k+1)/2) notice that zx depends on x but it is fixed as x is

fixed. Using the well known expansion formula for (1 + zx)−1, equation (3.13) is written as

d

dx
T−1k (x) = 1− n−k/2 d

dw
π(k−1),k(w)

∣∣∣∣
w=x

+O(n−(k+1)/2). (3.14)

Equations (3.11) and (3.14), combined together, give

x = T−1k (x) + n−k/2 π(k−1),k(x) +O(n−(k+1)/2),

from which, by an elementary rearrangement,

T−1k (x) = x− n−k/2 π(k−1),k(x) +O(n−(k+1)/2). (3.15)

Now, for some ω on the real line, let

Gk−1(ω) ≡ P (T(k−1)◦0(Sn) ≤ ω)

= Ξ(ω) +

ν∑
`=k

n−`/2 π(k−1),`(ω) ξ(ω) +O(n−(ν+1)/2), (3.16)

with G0(ω) ≡ F (ω), for k = 1, and T0(Sn) = S. Then, equation (3.9) is expanded as in

Gk(x) ≡ P (T(k−1)◦0(Sn) ≤ T−1k (x))

= Ξ(T−1k (x)) +

ν∑
`=k

n−`/2 π(k−1),`(T
−1
k (x)) ξ(T−1k (x)) +O(n−(ν+1)/2). (3.17)

Regarding the −n−k/2 π(k−1),k(x) + O(n−(k+1)/2) part of equation (3.15) as some departure away from x,

which is considered fixed, a Taylor’s series expansion argument is employed to Ξ(T−1k (x)), π(k−1),`(T
−1
k (x))

and ξ(T−1k (x)), respectively, in

Ξ(T−1k (x)) = Ξ(x) +
{
−n−k/2 π(k−1),k(x) +O(n−(k+1)/2)

} d

dx
Ξ(x) +O(n−(k+1)/2)

= Ξ(x)− n−k/2 π(k−1),k(x) ξ(x) +O(n−(k+1)/2), (3.18)

π(k−1),`(T
−1
k (x)) = π(k−1),`(x) +

{
−n−k/2 π(k−1),k(x) +O(n−(k+1)/2)

} d

dx
π(k−1),`(x) +O(n−(k+1)/2),

= π(k−1),`(x) +O(n−k/2), for all ` = k, . . . , ν (3.19)
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and

ξ(T−1k (x)) = ξ(x) +
{
−n−k/2 π(k−1),k(x) +O(n−(k+1)/2)

} d

dx
ξ(x) +O(n−(k+1)/2)

= ξ(x) +O(n−k/2). (3.20)

Attention is drawn, firstly, on the middle term of equation (3.17), which by substitution of equations (3.19)

and (3.20) into equation (3.17) and use of properties of the O-notation, is simplified as in

ν∑
`=k

n−`/2 π(k−1),`(T
−1
k (x)) ξ(T−1k (x)) =

ν∑
`=k

n−`/2
{
π(k−1),`(x) +O(n−k/2)

} {
ξ(x) +O(n−k/2)

}
=

ν∑
`=k

n−`/2 π(k−1),`(x) ξ(x) +O(n−k)

= n−k/2 π(k−1),k(x) ξ(x) +O(n−(k+1)/2). (3.21)

Then, equations (3.18) and (3.21) are substituted into equation (3.17) to give

Gk(x) ≡ P (Tk◦0(Sn) ≤ x)

= P (T(k−1)◦0(Sn) ≤ T−1k (x))

= Ξ(x) +O(n−(k+1)/2), (3.22)

after some elementary algebraic calculations, where same terms are cancelled out. As shown next, induction

concludes the proof.

Induction on j: Let k be j in the Arguments. Then, for j = 1, equation (3.16) is, for ω = x, identical to

equation (3.5) and equation (3.22) gives

G1(x) ≡ P (T1(Sn) ≤ x)

= Ξ(x) +O(n−1). (3.23)

Thus, equation (3.23) verifies the claim in equation (3.7) for j = 1. Assume now that, for some positive

integer j > 1,

Gj(x) ≡ P (Tj◦0(Sn) ≤ x)

= Ξ(x) +O(n−(j+1)/2). (3.24)

The aim is to show that for the next positive integer, i.e. j + 1,

Gj+1(x) ≡ P (T(j+1)◦0(Sn) ≤ x)

= Ξ(x) +O(n−(j+2)/2). (3.25)

Let k be j + 1 in the Arguments. Then, for k = j + 1, equation (3.16) becomes, for ω = x, the induction

hypothesis, which is written concisely in equation (3.24). Equation (3.17), for k = j + 1, follows, then, and

finally equation (3.22) gives, for k = j + 1,

Gj+1(x) ≡ P (T(j+1)◦0(Sn) ≤ x)

= P (Tj◦0(Sn) ≤ T−1j+1(x))

= Ξ(x) +O(n−(j+2)/2). (3.26)
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Equation (3.26) verifies the claim in equation (3.25). Thus, equation (3.7) applies for every j = 1, . . . , ν.

The proof is completed as the requirements of mathematical induction are fulfilled.

3.4 A corrected confidence curve

The following result gives the order of correction to a confidence curve when transformations are taken into

account.

Theorem 3.3. Let ν be some fixed integer greater than or equal to 1 and Sn = Sn(ψ) be a pivotal statistic

whose asymptotic expansion is given at (3.5) with limiting cumulative distribution function Ξ. Define the

asymptotic confidence curve, cc(ψ) = Ξ(Sn(ψ)). Also, for each j = 1, . . . , ν, define the asymptotic confidence

curve, cctr,j(ψ) = Ξ(Tj◦0(Sn(ψ))). Then,

cctr,j(ψ) = cc(ψ) +OP (n−(j+1)/2).

Remark 3.2. For notational convenience, the dependence on y has been dropped from, both, the statistic

and the defined confidence curves.

Proof. By Definition 1.5 and Theorem (3.2), the proof is completed.

3.5 Smooth function model

The following discussion will be unfolded under the ‘smooth function model ’ of Hall (1992b, pp. 52, 238),

which encompasses, for example, problems where the parameter to be estimated, ψ at (3.1), is either a mean,

or a variance, or a ratio of means or variances, or a difference of means or variances, or a correlation coefficient

and view things in the nonparametric modus of thinking. The seminal paper by Bhattacharya and Ghosh

(1978), with correction in Bhattacharya and Ghosh (1980), establishes the validity of the formal Edgeworth

expansion under this model. In addition, the model allows for ‘approximate moments’ of the asymptotic

distribution of a pivotal type statistic, which is written as a function of sample averages (see below), to

be computed by the use of the so-called delta method discussed in, e.g., Bhattacharya and Ghosh (1978,

pp. 435, 438), Hall (1992b, pp. 72, 76) and Small (2010, pp. 99–111), thus, overcoming possible existence of

moments problems and permitting considerations of, both, theoretical and practical interest to be benefited.

Formulae regarding cumulants can be expanded as a power series of the form

κj,n = n−(j−2)/2(kj,1 + n−1 kj,2 + n−2 kj,3 + . . .), (3.27)

where j ≥ 1 and the constants kj,· depend, among other things, on the moments of the underlying sampling

distribution. It is noted that, since for a statistic that is centred and scaled its limiting mean, κ1,n, is 0 and

limiting variance, κ2,n, is 1, it follows that k1,1 = 0 and k2,1 = 1. It is noted, also, that thorough discussions

on cumulant expansions may be found in James (1955, 1958) and James and Mayne (1962), for example.

Further, Hall (1992b, p. 83) explains properties of bootstrap methods for estimating distributions, among

other things, by giving an Edgeworth view of the bootstrap under the framework of this model. Hence, a

brief description of the ‘smooth function model ’ is given. For the current presentation, attention is restricted

to data stemming from a univariate population.

Let {Y1, Y2, . . . , Yn} be independent and identically distributed random variables from a sufficiently

smooth probability distribution, Pθ. Each Yi, i = 1, . . . , n is one-dimensional. The ‘smooth function model ’

consists of expressing the parameter of interest as a smooth function of population means. To this end,

let the d-dimensional, independent and identically distributed, random vectors Xi = (Yi, Y
2
i , . . . , Y

d
i )t, be
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defined for each i = 1, . . . , n. The value of the dimension d, depends on which is the targeting or focus

parameter, ψ, to be estimated. Table 3.1 reports the dimension, d, for four cases of frequent interest. See,

discussion in Hall (1992b, p. 52–53).

ψ d
mean 2

variance 4
variance ratio 4

correlation coefficient 5

Table 3.1: Value of dimension d for some cases of focus parameter ψ.

Let h be a smooth function such that h : Rd → R. Also, let µ denote, for each i = 1, . . . , n, the mean

of Xi such that µ = E(Xi) =
(
E(Yi) , E(Y 2

i ) , . . . , E(Y di )
)t

. The focus parameter, ψ, is, then, expressed

as a function of µ by writing ψ = h(µ) and ψ̂n is expressed as a function of sample averages by writing

ψ̂n = h(X̄), where

X̄ =

(
n−1

n∑
i=1

Yi , n
−1

n∑
i=1

Y 2
i , . . . , n

−1
n∑
i=1

Y di

)t
.

It is assumed that ψ̂n has asymptotic variance n−1g2(µ), where g : Rd → R is a known smooth function.

That is, g2(µ) = lim
n→∞

var(n1/2ψ̂n). An estimate of g(µ) is given by g(X̄). In this context, the pivotal

t-statistic at (3.1) takes the form

Sn =
n1/2 (h(µ)− h(X̄) )

g(X̄)
, (3.28)

where the dependence on the sample size, n, is emphasised and notational convenience permits the change

from t to Sn. Although, it would have been easier to consider cases where the population variance is known

and, thus, g(µ) is known, it is hardly ever the case, in practice, to have a known variance and the t-statistic is

presented in the form at (3.28). Essentially, the statistic is seen as a function, say, A, such that A : Rd → R
with z 7→ n1/2 (h(µ) − h(z̄) )/g(z̄) and A(µ) = 0, although, this might obscure, a bit, its pivotal character,

cf. Definitions 1.3 and 1.4, but still it is recognised as a pivotal quantity of some form.

3.6 Edgeworth Expansions

Now that the working framework has been, briefly, described, a short introduction to the main aspects of the

well known Edgeworth expansion is given, as further results are based on the assumption of such expansions.

Let Sn denote a statistic whose limiting distribution is Standard Normal. Then, an Edgeworth expansion of

the statistic’s distribution function, P (Sn ≤ x), is an expression in powers of n−1/2 of the form

P (Sn ≤ x) = Φ(x) + n−1/2 p1(x)φ(x) + n−1 p2(x)φ(x) + . . .+ n−ν/2 pν(x)φ(x) + . . .

= Φ(x) +

∞∑
`=1

n−`/2 p`(x)φ(x), (3.29)

where the pν ’s denote polynomials of degree 3ν − 1, for integer ν ≥ 1. It is easily seen that, odd indexed

polynomials have even degree, constituting even functions and, correspondingly, even indexed polynomials

have odd degree, constituting odd functions. It is important to note that, the polynomial functions need

to obey this property, since otherwise, the coverage error of a confidence procedure for a focus parameter
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at hand, ψ, based on the Normal approximation to the distribution of a Studentised statistic of the form

at (3.1) would be of a larger size and there is no remedy guarantee when bootstrap is called to action.

See, e.g., Hall (1992b, pp. 33, 49, 320–321) for further comments and an example on this. Here, confidence

procedures include, of course, confidence distributions or confidence curves. The pν polynomial functions

have coefficients that depends on the cumulants. As in Hall (1992b, p. 47), the first polynomial, i.e. p1, shall

be called a ‘skewness correction’ and the second polynomial, i.e. p2, shall be called a ‘correction for kurtosis

and for the secondary effect of skewness’. Note that, the product pν(x)φ(x) tends to 0 as x tends to either

−∞ or ∞, for integer ν ≥ 1.

In the majority of cases, though, expansions of the form at (3.29) are divergent as infinite series and only

available as asymptotic series or asymptotic expansions. Therefore, the term Edgeworth expansion shall,

henceforth, be used to mean an expression of the form

P (Sn ≤ x) = Φ(x) + n−1/2 p1(x)φ(x) + n−1 p2(x)φ(x) + . . .+ n−ν/2 pν(x)φ(x) + o(n−ν/2)

= Φ(x) +
ν∑
`=1

n−`/2 p`(x)φ(x) + o(n−ν/2). (3.30)

To be more precise, the expression at (3.30) is taken to mean that if the expansion at (3.29) is truncated

after a predetermined or given number of terms, i.e. a fixed ν, then the remainder is o(n−ν/2) and has a

smaller order than the order of the last included term. It does not matter if the order of the last included

term is not stated or specified exactly. Nevertheless, the expansion at (3.30) is valid for fixed ν, as n→∞.

A detailed account on the derivation of expansions such as those described by (3.29) may be found, for

example, in Petrov (1975, ch. VI), Barndorff-Nielsen and Cox (1989, sec. 4.2), Field and Ronchetti (1990,

sec. 2.3.b), Hall (1992b, ch. 2) and Small (2010, sec. 7.10). By skimming the surface of derivation details,

some formulae are, intentionally, presented, here, to enable a brief discussion on a following example. The

notation will mostly follow Hall (1992b), with necessary changes, of course, but the essence of the arguments

can be found in all of the cited references just listed. Their common denominator is that, they all use the

characteristic function to say something about errors in Normal approximations or, expressed differently, to

fine-tune the approximation provided by the Central Limit Theorem with assistance from cumulants. Note

that the characteristic function of a Standard Normal is given by e−t
2/2, for real t.

Let λn denote the characteristic function of a statistic with limiting Standard Normal distribution, say, Sn.

Then,

λn(t) = E{exp(itSn)}

= exp
{
κ1,n it+ 1

2 κ2,n (it)2 + . . .+ 1
j! κj,n (it)j + . . .

}
. (3.31)

It can be seen that, by taking log λn(t), the jth cumulant, κj,n, is defined as the coefficient of 1
j! (it)j in the

resulting power series expansion. Theorem 2.1 in Hall (1992b, p. 53) establishes the validity of the power

series at (3.27) under the ‘smooth function model ’ and, thus, it can be substituted, for each integer j ≥ 1,

into the expression at (3.31). After some lengthly algebraic calculations, the characteristic function is written
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as in

λn(t) = exp
{
− 1

2 t
2 + n−1/2

[
k1,2 it+ 1

3! k3,1 (it)3
]

+ n−1
[

1
2! k2,2 (it)2 + 1

4! k4,1 (it)4
]

+ . . .
}

= exp
{
− 1

2 t
2
}
·

= exp
{
n−1/2

[
k1,2 it+ 1

3! k3,1 (it)3
]

+ n−1
[

1
2! k2,2 (it)2 + 1

4! k4,1 (it)4
]

+ . . .
}
. (3.32)

Using the form of the well known expansion formula for ez, the second exp{. . .} at (3.32) is expanded and,

after some algebraic efforts, the characteristic function is, further, written as in

λn(t) = exp
{
− 1

2 t
2
} (

1 + n−1/2
[
k1,2 it+ 1

6 k3,1 (it)3
]

+

= n−1
[

1
2! k2,2 (it)2 + 1

24 k4,1 (it)4 + 1
2

[
k1,2 it+ 1

6 k3,1 (it)3
]2 ]

+O(n−3/2)

)
. (3.33)

More compactly,

λn(t) = e−t
2/2 + n−1/2 r1(it) e−t

2/2 + n−1 r2(it) e−t
2/2 + . . .+ n−j/2 rj(it) e

−t2/2 + . . . , (3.34)

where the rj ’s denote polynomials of degree no more than 3j, for integer j ≥ 1. It is easily seen that, odd

indexed polynomials are odd and even indexed polynomials are even. By comparing (3.33) and (3.34), the

first two rj polynomials are given in

r1(it) = k1,2 it+ 1
6 k3,1 (it)3

and

r2(it) = 1
2! k2,2 (it)2 + 1

24 k4,1 (it)4 + 1
2

[
k1,2 it+ 1

6 k3,1 (it)3
]2

= 1
2! [ k2,2 + k21,2 ] (it)2 + 1

24 [ k4,1 + 4 k1,2 k3,1 ] (it)4 + 1
72 k

2
3,1 (it)6.

To derive an expression of the form at (3.29), the expansion at (3.34) needs to be inverted. The arguments

for the inversion are initiated by noticing that

λn(t) =

∫ ∞
−∞

eitxdP (Sn ≤ x) and e−t
2/2 =

∫ ∞
−∞

eitxdΦ(x).

Then, by using a Fourier-Stieltjes transform of the form∫ ∞
−∞

eitxd{−HERj−1(x)φ(x)} = (it)j e−t
2/2,

where j ≥ 1, integer, the first two pj polynomials in the expression at (3.29) are given by

p1(x) = −k1,2 HER0(x)− 1
6 k3,1 HER2(x)

= −k1,2 − 1
6 k3,1 (x2 − 1) (3.35)

and

p2(x) = 1
2! [ k2,2 + k21,2 ] HER1(x) + 1

24 [ k4,1 + 4 k1,2 k3,1 ] HER3(x) + 1
72 k

2
3,1 HER5(x)

= −x
{

1
2! [ k2,2 + k21,2 ] + 1

24 [ k4,1 + 4 k1,2 k3,1 ] (x2 − 3) + 1
72 k

2
3,1 (x4 − 10x2 + 15)

}
. (3.36)
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Note that, for some nonnegative integer, `, the function HER`(·) denotes the so-called `th Chebyshev-Hermite

polynomial. Chebyshev-Hermite polynomials are treated in Petrov (1975, p. 137). Details regarding Hermite

functions and their derivation can be found, for example, in Arfken et al. (2013, sec. 18.1). Table 3.2 reports

the first six Hermite polynomials.

` `− 1 HER`−1(x)
1 0 1
2 1 x
3 2 x2 − 1
4 3 x (x2 − 3)
5 4 x4 − 6x2 + 3
6 5 x (x4 − 10x2 + 15)

Table 3.2: The first six Chebyshev-Hermite polynomials.

Without stating, yet, any explicit regularity conditions, although it has been assumed that these hold, let

an Edgeworth expansion such as the one in

P (Sn ≤ x) = Φ(x) + n−1/2 p1(x)φ(x) + n−1 p2(x)φ(x) + . . .+ n−ν/2 pν(x)φ(x) + o(n−ν/2)

be available under the ‘smooth function model ’. For completeness, it remains to provide a basic insight on

how the four constants, k1,2, k2,2, k3,1 and k4,1, in the expression of the first two pj polynomials at (3.35)

and (3.36) are computed. This aims at further unfolding the machinery of the ‘smooth function model ’. The

example 2.1 in Hall (1992b, pp. 71–73) lends some of its details due to (i) its familiarity and (ii) its somewhat

tractability regarding the algebraic computations.

Hence, let the focus parameter ψ be the mean, m, of a univariate population with unknown variance β2 > 0,

from which {Y1, . . . , Yn} are i.i.d. random variables. Table 3.1 reports that in the case when the focus

parameter under study is the mean, d = 2, and, thus, for each i = 1, . . . , n, Xi = (Yi, Y
2
i )t and µ = E(Xi) =

(E(Yi), E(Y 2
i ))t, where E(Yi) = m and E(Y 2

i ) = E2(Yi) + var(Yi) = m2 + β2. Also,

X̄ =

(
n−1

n∑
i=1

Yi , n
−1

n∑
i=1

Y 2
i

)t
=

(
Ȳ , n−1

n∑
i=1

Y 2
i

)t
.

Define, conveniently, the functions h : R2 → R with (z1, z2)t 7→ z1 and g : R2 → R with (z1, z2)t 7→{
z2 − z21

}1/2
. Then, h(µ) = m, h(X̄) = Ȳ and g(X̄) =

{
n−1

n∑
i=1

Y 2
i − Ȳ 2

}1/2

.

Since Sn = A(X̄) =
n1/2 (h(µ)− h(X̄) )

g(X̄)
and β̂2 = n−1

n∑
i=1

(Yi − Ȳ )2 = n−1
n∑
i=1

Y 2
i − Ȳ 2, the statistic at

(3.28) becomes Sn =
n1/2 (m− Ȳ )

β̂
. Notice that the biased estimator for β has been used. For the unbiased

estimator, Sunb

n =
(
1− 1

n

)
Sn. Since, the statistic Sn is invariant under the transformation from Yi to Yi/β,

it is assumed, without loss of generality, that, for each i = 1, . . . , n, E(Yi) = 0 and E2(Yi) = 1. Thus,

var(Yi) = 1 and Sn = −n
1/2 Ȳ

β̂
.

Following Remark 3.3 in Schweder and Hjort (2016, p. 70), the distribution of −Sn is considered further on
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since −Sn =
n1/2 Ȳ

β̂
. An algebraic trick and the well known expansion formula for (1 + zY )−1/2, assist in

breaking down −Sn as in

−Sn =
n1/2 Ȳ

β̂
= n1/2 Ȳ β̂−1 = n1/2 Ȳ

{
n−1

n∑
i=1

Y 2
i − Ȳ 2

}−1/2

= n1/2 Ȳ

{
1 + n−1

n∑
i=1

Y 2
i − n−1 n− Ȳ 2

}−1/2

= n1/2 Ȳ

{
1 + n−1

n∑
i=1

(Y 2
i − 1)− Ȳ 2

}−1/2

= n1/2 Ȳ

[
1− 1

2 n
−1

n∑
i=1

(Y 2
i − 1) + 1

2 Ȳ
2+

= 3
8

{
n−1

n∑
i=1

(Y 2
i − 1)

}2

+OP (n−3/2)

 . (3.37)

It should be noted that, Theorem 2.1 in Hall (1992b, p. 53) requires to take cumulants of a Taylor series

approximant of −Sn rather than of −Sn itself, but to lessen algebraic burden it suffice to work with the

cumulants of −Sn itself for the present case. See, also, footnotes in Hall (1992b, pp. 72, 99). Expressions for

E(−Sn), E({−Sn}2), E({−Sn}3) and E({−Sn}4) are given using the corresponding expressions for Sn in

Hall (1992b, pp.72–73). The latter ones are derived using lengthly algebraic computations that involve the

linearity of expectation, the random variables being i.i.d. and the definitions of skewness, γ, and kurtosis κ.

Thus,

E(−Sn) = −E(Sn) = 1
2 n
−1/2 γ +O(n−3/2),

E({−Sn}2) = E(S2
n) = 1 + n−1 (2γ2 + 3) +O(n−2),

E({−Sn}3) = −E(S3
n) = 7

2 n
−1/2 γ +O(n−3/2),

E({−Sn}4) = E(S4
n) = 3 + n−1 (28γ2 − 2κ+ 24) +O(n−2),

where the linearity of expectation was used. The cumulants are, then, given by

κ1,n = E(−Sn) = 1
2 n
−1/2 γ +O(n−3/2),

κ2,n = E({−Sn}2)− [E(−Sn)]2 = 1 + 1
4 n
−1 (7γ2 + 12) +O(n−2),

κ3,n = E({−Sn}3)− 3E({−Sn}2)E(−Sn) + 2 [E(−Sn)]3 = 2n−1/2 γ +O(n−3/2),

κ4,n = E({−Sn}4)− 4E({−Sn}3)E(−Sn)− 3 [E({−Sn}2)]2 + 12E({−Sn}2) [E(−Sn)]2 − 6 [E(−Sn)]4

κ4,n = n−1 (12γ2 − 2κ+ 6) +O(n−2),

from which, using the expression at (3.27),

k1,2 = 1
2 γ, k2,2 = 1

4 (7γ2 + 12), k3,1 = 2 γ, k4,1 = 12γ2 − 2κ+ 6.

The constants k1,2, k2,2, k3,1 and k4,1, are substituted into (3.35) and (3.36) to give after elementary algebraic

calculations

p1(x) = − 1
6 γ (2x2 + 1)
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and

p2(x) = x
{

1
12 κ (x2 − 3)− 1

18 γ
2 (x4 + 2x2 − 3)− 1

4 (x2 + 3)
}
.

Notice that the sign of k1,2, k3,1 is positive and the sign of p1(x) is negative, whereas, the corresponding

ones in Hall (1992b, pp. 72–73) have the opposite sings. This is a consequence of considering −Sn in place

of Sn. The signs of k2,2, k4,1 and p2(x) remain, as checked, the same.

3.7 Minimum moment conditions

Recall that in the ‘smooth function model ’, the d-dimensional i.i.d. random vectors Xi = (Yi, Y
2
i , . . . , Y

d
i )t,

were defined for each i = 1, . . . , n, where {Y1, Y2, . . . , Yn} denoted i.i.d. random variables from a sufficiently

smooth probability distribution of a univariate population. Theorem 2.2 in Hall (1992b, p. 56) states sufficient

regularity conditions under which an Edgeworth expansion is available uniformly in x on the whole real line.

By letting ν be some fixed integer greater that or equal to 1, Sn be a pivotal statistic of the form given at

(3.28) and the generic X be (Y, Y 2, . . . , Y d)t, write the Edgeworth expansion as in

P (Sn ≤ x) = Φ(x) +

ν∑
`=1

n−`/2 π0,`(x)φ(x) + o(n−ν/2), (3.38)

where, for ` = 1, . . . , ν, the polynomials π0,`(·) are of degree at most 3`− 1, even for odd ` and odd for even

`, with coefficients depending on moments of X up to the (` + 2)th order. Then, these conditions may be

summarised in (i) E(‖X‖ν+2) < ∞ and (ii) the distribution of X is nonsingular. Equivalently, (i) requires

the existence of moments up to the (ν + 2)th order moment and (ii) requires that X has a nondegenerate

absolutely continuous component, i.e. X has a proper density function. As discussed in Hall (1987), the

polynomial terms before the remainder o(n−ν/2) are depended only on the moments up to the (ν + 2)th

order one, hence point (i). Regarding point (ii), Cramér’s continuity condition, i.e. lim sup
‖t‖→∞

‖λ(t)‖ < 1, where

λ(·) denotes the characteristic function, is stated instead, which holds if the distribution of X is nonsingular.

When a monotone transformation of the form given at (3.6) is applied to a pivotal statistic Sn of the

form given at (3.28), stronger conditions need to hold so that the Edgeworth expansion corresponding to the

transformed statistic is available uniformly in x on the whole real line. This is because the transformation,

automatically, eliminates the terms of the `th order, thus, the associated moment effects up to the (`+ 2)th

order moment. The resulting Edgeworth expansion remains valid only if moments up to the ((`+ 1) + 2)th

order, i.e. (` + 3)th moment, exist i.e. are finite. Theorem 3.4 gives a statement of this and is regarded to

give ‘minimal moment conditions’ when monotone and invertible transformations of the form at (3.6) are

considered.

Theorem 3.4. Let ν be some fixed integer greater that or equal to 1. Also, let the cumulative distribution

function of a pivotal statistic Sn of the form given at (3.28) admit, uniformly in x on the whole real line,

the Edgeworth expansion

F (x) ≡ P (Sn ≤ x)

= Φ(x) +
ν∑
`=1

n−`/2 π0,`(x)φ(x) + o(n−ν/2)

as n → ∞, where π0,`(x) is, for every ` = 1, . . . , ν, a polynomial on the real line of degree no more that

3` − 1, even for odd ` and odd for even `, and depended on the characteristics of the underlying sampling

distribution but not on n. Also, the cumulative distribution function Φ and probability density function φ
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correspond to the Standard Normal ones. Define the indefinite integral∫ {
d

dy
π(k−1),k(y)

}2

dy = Π(k−1),k(y) + const.,

where const. is some arbitrary constant. Then, the transformed statistic Tj◦0(Sn) = (Tj ◦ . . . ◦ T0)(Sn) with

Tk◦0(Sn) = T(k−1)◦0(Sn) + n−k/2 π(k−1),k(T(k−1)◦0(Sn)) + c n−(k+1)/2 Π(k−1),k(T(k−1)◦0(Sn)),

for some k ∈ {1, . . . , j}, T0(Sn) = Sn and c ≥ 1
4 , obtains an Edgeworth’s type expansion of the form

Gj(x) ≡ P (Tj◦0(Sn) ≤ x)

= Φ(x) + o(n−(j+1)/2), (3.39)

uniformly in x over the whole real line, for every j = 1, . . . , ν, provided that the underlying sampling distri-

bution (i) has finite absolute moments up to the (ν + 3)th order moment and (ii) is nonsingular.

Remark 3.3. The following notes are in order.

1. The expansion at (3.39) is called Edgeworth’s type expansion, since not all powers of n−1/2 are present.

The term Edgeworth expansion is used for an expression such as the one at (3.30).

2. The conditions may be restated using the generic X = (Y, Y 2, . . . , Y d)t, from the description of the

‘smooth function model ’, as (i) E(‖X‖ν+3) <∞ and (ii) the distribution of X is nonsingular.

Proof. Omitted. The techniques presented in Hall (1987) may be extended to provide a rigorous proof.

3.8 Estimation of unknown polynomials

In practice, the polynomials appearing in the Edgeworth expansion of the pivotal statistic Sn at (3.38) need

to be estimated. Theorem 3.5, states that when consistent estimators are used the results of Theorem 3.4

still hold. When ν is taken to be equal to 1, the stated result, improves upon the result stated as Theorem

1 in Abramovitch and Singh (1985, p. 117) since correction for monotonicity is taken into account. From a

practical point of view, though, i.e. when actual applications are considered, one should pay attention to the

phenomenon of overcorrection which may occur in cases when the size of the data is not sufficiently large.

If the transformation is applied too many times, then too many corrections, in the sense of the idea behind

(3.4) and Theorem 3.2, are incorporated with the undesirable result of having a worse normal approximation

than that initially intended without the correction. See Hall (1983, pp. 569–570), for a further elaboration.

Niki and Konishi (1986) warn, too, against using many terms in an Edgeworth type expansion to safeguard

against spurious oscillations at the tails of the distribution of a transformed statistic that may result in

poor fit to the exact distribution. Thus, the possibility of overcorrection should not be overlooked when the

sample size is not sufficiently large. A simple suggestion would be to use either ν = 1 or ν = 2, depending,

of course, on the application. A further suggestion, which perhaps could shed a more precise light, would be

to produce a plot of values for the νth approximation against the ν values or, even, tabulate them, see, e.g.

Table 1 in Kakizawa (1996, p. 926).

Theorem 3.5. Let ν be some fixed integer greater that or equal to 1. Also, let Sn be either a pivotal

statistic of the form given at (3.28) or a transformed version of it according to the monotone and invertible

transformations described by (3.8). Assume that the cumulative distribution function of a statistic Sn admits,
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uniformly in x on the whole real line, the Edgeworth expansion

F (x) ≡ P (Sn ≤ x)

= Φ(x) + n−ν/2 q0,ν(x)φ(x) + o(n−ν/2), (3.40)

where the degree 3ν−1 polynomial q0,ν depends on the characteristics of the underlying sampling distribution

but does not depend on n. Also, let q̂0,ν,n be an estimator of q0,ν that satisfies

P (|q̂0,ν,n − q0,ν(Sn)| > ε) = o(n−1/2), (3.41)

for every ε > 0 and given ν. Define the indefinite integral∫ {
d

dy
q0,ν(y)

}2

dy = Q0,ν(y) + const.,

where const. is some arbitrary constant. Let Q̂0,ν(Sn) be the corresponding estimator of Q0,ν(y). Then,

the transformed statistic T̃ν(Sn) given as T̃ν(Sn) = Sn + n−ν/2 q̂0,ν(Sn) + c n−(ν+1)/2 Q̂0,ν(Sn), with c ≥ 1
4 ,

obtains

G̃ν(x) ≡ P (T̃ν(Sn) ≤ x)

= Φ(x) + o(n−(ν+1)/2), (3.42)

uniformly in x on the whole real line.

Remark 3.4. Implicitly, it is assumed that all the necessary moments to write down the expansions at (3.41)

and (3.42) exist.

Proof. Let T ν(Sn) = Sn + n−ν/2 q0,ν(Sn) + c n−(ν+1)/2Q0,ν(Sn). Then, by Theorem 3.2, T ν(Sn) obtains

P (T ν(Sn) ≤ x) = Φ(x) + o(n−ν/2). By Theorem 3.5, the (ν + 3)th absolute moment of the underlying

sampling distribution exists, i.e. is finite, and, thus, by Theorem 2 in Bhattacharya and Ghosh (1978,

p. 436), n(ν+1)/2 sup
x
|P (T ν(Sn) ≤ x)−Φ(x)| → 0. Since, condition at (3.41) holds by assumption and since

Q̂0,ν(Sn) is, also, a consistent estimator, the claim at (3.42) follows by Slutsky’s Theorem. The proof is

completed.

3.9 Accuracy of approximation and confidence distributions

The work done so far aimed at establishing a rigorous framework around the use of the monotone and

invertible transformations given by (3.6). Theorem 3.6, establishes the accuracy order of a bootstrap ap-

proximation to the distribution of either a statistic or its transformed versions, cf. (3.6), leading one closer

to the construction of an asymptotic confidence distribution. Essentially, the theorem states that when the

bootstrap procedure is used to approximate the distribution of either a statistic or its transformed versions,

cf. (3.6), then the order of error incurred is either oP (n−1) or oP (n−(j+ν)/2), for suitably specified j and

values. Theorem 3.7 establishes that the same order of incurred error as described by the previous theorem

applies to the corresponding constructed confidence distributions. It is noticed that one application of the

considered monotone and invertible transformation applied to Sn results in a bias free confidence distribution

that is unaffected from the main effect of skewness.

Theorem 3.6. Let Sn be the statistic given at (3.28) and its transformed version Tj◦0(Sn) given by (3.6),

for each j = 1, . . . , ν. Also, let ν is some fixed integer greater than or equal to 2 and denote by F the
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underlying sampling distribution. Assume that the Sn statistic admits, uniformly in x over the whole real

line, the Edgeworth expansion

P (Sn ≤ x) = Φ(x) + φ(x)

ν∑
`=1

n−`/2 p0,`(x,F) + o(n−ν/2), (3.43)

and that, for each j = 1, . . . , ν, its transformed version Tj◦0(Sn) admits, uniformly in x over the whole real

line, the Edgeworth’s type expansion

P (Tj◦0(Sn) ≤ x) = Φ(x) + φ(x)

ν∑
`=j+1

n−`/2 ptr,`(x,F) + o(n−ν/2). (3.44)

For, either, Sn or its transformed version, Tj◦0(Sn), where j = 1, . . . , ν, denote the corresponding cumulative

distribution function by Rn(·, ψ̂n) and the corresponding bootstrapped cumulative distribution function by

R∗n(·, ψ̂n). Then,

R∗n(Sn, ψ̂n) = Rn(Sn, ψn) + oP (n−1) (3.45)

and, for each j = 1, . . . , ν,

R∗n(Tj◦0(Sn), ψ̂n) = Rn(Tj◦0(Sn), ψn) + oP (n−(j+ν)/2). (3.46)

Remark 3.5. For j = 1 and ν = 2, it is noticed that R∗n(T1(Sn), ψ̂n) = Rn(T1(Sn), ψn) + oP (n−3/2), which

is the same order of accuracy as achieved by the prepivoting method of Beran (1987, 1988). Prepivoting

consists of transforming a pivotal statistic by its estimated bootstrapped cumulative distribution function.

Note that, the transformations regarded here are of algebraic nature, whereas in Beran (1987, 1988), the

transformation is of computational nature. Both of these methods, though, have the same order of accuracy

and the choice between them is just a matter of taste and preference.

Proof. Let ν be some fixed integer greater than or equal to 1. Then, by the results presented in Beran (1987,

pp. 467–468) and Beran (1988, pp. 690–692), it is known that the bootstrapped cumulative distribution

function R∗n(·, ψ̂n) can be expanded uniformly in its first argument and locally uniform in its second argument.

Thus, for (3.45),

R∗n(Sn, ψ̂n) = Φ(Sn) + φ(Sn)

ν∑
`=1

n−`/2 p0,`(Sn, F̂n) + oP (n−ν/2)

= Φ(Sn) +

= φ(Sn)

ν∑
`=1

n−`/2 [ p0,`(Sn, F̂n)− p0,`(Sn,F) + p0,`(Sn,F) ] +

= oP (n−ν/2)

= Φ(Sn) + φ(Sn)

ν∑
`=1

n−`/2 p0,`(Sn,F) +

= φ(Sn)

ν∑
`=1

n−`/2 [ p0,`(Sn, F̂n)− p0,`(Sn,F) ] + oP (n−ν/2)

= Rn(Sn, ψ) + oP (n−1),

since p0,`(Sn, F̂n)− p0,`(Sn,F) = oP (n−1/2) and by the properties of the oP -notation. The same arguments
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are repeated for (3.46). Hence,

R∗n(Tj◦0(Sn), ψ̂n) = Φ(Tj◦0(Sn)) + φ(Tj◦0(Sn))

ν∑
`=j+1

n−`/2 ptr,`(Tj◦0(Sn), F̂n) + oP (n−ν/2)

= Φ(Tj◦0(Sn)) +

= φ(Tj◦0(Sn))

ν∑
`=j+1

n−`/2 [ ptr,`(Tj◦0(Sn), F̂n)− p`(Tj◦0(Sn),F) + ptr,`(Tj◦0(Sn),F) ] +

= oP (n−ν/2)

= Φ(Tj◦0(Sn)) + φ(Tj◦0(Sn))

ν∑
`=j+1

n−`/2 ptr,`(Tj◦0(Sn),F) +

= φ(Tj◦0(Sn))

ν∑
`=j+1

n−`/2 [ ptr,`(Tj◦0(Sn), F̂n)− p`(Tj◦0(Sn),F) ] + oP (n−ν/2)

= Rn(Tj◦0(Sn), ψ) + oP (n−max{j+2,ν}/2),

since ptr,`(Tj◦0(Sn), F̂n) − ptr,`(Tj◦0(Sn),F) = oP (n−1/2) and by the properties of the oP -notation. The

proof is completed.

The results regarding more accurate confidence distributions as produced by the use of the suggested trans-

formations, cf. (3.6), are stated as Theorem 3.7 and Corollary 3.2.

Theorem 3.7. Let ν be some fixed integer greater than or equal to 1. Suppose that Sn = Sn(ψ) is a pivotal

statistic which admits, uniformly in x over the whole real line, the asymptotic expansion given at (3.43)

and that its transformed version Tj◦0(Sn), given by (3.6) for each j = 1, . . . , ν, admits, uniformly in x over

the whole real line, the asymptotic expansion given at (3.44). For, either, Sn or its transformed version,

Tj◦0(Sn), where j = 1, . . . , ν, denote the corresponding cumulative distribution function by Rn(·, ψ̂n) and the

corresponding bootstrapped cumulative distribution function by R∗n(·, ψ̂n). Define the confidence distributions

C(ψ) = Rn(Sn, ψn) and Ctr,j(ψ) = Rn(Tj◦0(Sn), ψn), for each j = 1, . . . , ν. Also, define the asymptotic

confidence distributions Cboot(ψ) = R∗n(Sn, ψn) and Cboot,tr,j(ψ) = R∗n(Tj◦0(Sn), ψn), for each j = 1, . . . , ν.

Then,

Cboot(ψ) = C(ψ) + oP (n−1)

and

Cboot,tr,j(ψ) = Ctr,j(ψ) + oP (n−max{j+2,ν}/2).

Remark 3.6. For notational convenience, the dependence on y has been dropped from, both, the statistics

and the defined confidence distributions.

Proof. By substitution and Theorem (3.6), the proof is completed.

Corollary 3.2. For j = 1 and ν = 2,

Cboot,tr,1(ψ) = Ctr,1(ψ) + oP (n−3/2).

Remark 3.7. The derived aCD has, thus, been corrected for the main effect of skewness.

Proof. Immediate.
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4 Limitations and Extensions

In this section a brief discussion on the limitations and extensions regarding this project are discussed. Of

course, some of the topics discussed here could easily be regarded as future research, see section 5. Future

research is regarded in its broader sense, not necessarily limited or confined to methods related to the ones

discussed in this project.

In section 2, a review of three methods was given and a few examples explained and demonstrated various

aspect of the discussed methods in some detail. The list could have been added the abc-bootstrap method,

see Schweder and Hjort (2016, p. 217), the saddlepoint approximations and the magic formula, see Schweder

and Hjort (2016, p. 218) and the median-bias correction, see Schweder and Hjort (2016, p. 214) and DeBlasi

and Schweder (2016), along with further examples to demonstrate the underlying techniques and machinery.

In section 3, the discussion evolved around the i.i.d. case without mentioning any possible extensions

to the regression context. From the perspective of applications, perhaps, it would have been more inter-

esting. From a theoretical perspective, the same effort needs to be undertaken to show how the suggested

transformations fit in the regression framework. Section 3 lacks of examples that show the machinery in

action. The concentration was, mainly, to establish the theoretical results presented. Some simple examples

to demonstrate the techniques have been prepared but due to time constraints they were not included. The

two-sample problem should and must be in the list of examples to apply the suggested methods. As a

further step, comparisons need to be made with currently available methods. In particular, in the class of

exponential models, where it is known that an optimality theorem exists, cf. Theorem 5.11 in Schweder

and Hjort (2016, p. 173), it is desirable to see how well the currently presented methods and the optimality

theorem compete with each other. Nuisance parameter have not been included in the discussion presented

in this project, but the paper by Zheng et al. (2017) may provide some guidelines for further work.
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5 Further Research

In this section an attempt is made to suggest possible routes of further exploration regarding the world of

confidence distributions (CDs) and confidence curves (ccs). Theoretical results and interesting applications

can be suggested once things are turned around. Before continuing, though, it is worth mentioning some

notable sources as a starting point or an introduction to the concepts and ideas behind CDs and ccs. These

include, the book by Schweder and Hjort (2016), which supplements concepts and ideas with a plethora

of examples and the papers by Singh et al. (2005), Singh et al. (2007), Xie and Singh (2013), DeBlasi and

Schweder (2016), Schweder (2017) and Hjort and Schweder (2017). A further note would be that CDs and ccs

should be regarded as another tool in the statisticians’ bag and, as such, should be utilised to complement

the inference task and provide insightful solutions when applied. Possible paths or directions for future

research may include the following:

1. CDs and ccs under model misspecification:

Viraswami and Reid (1996, 1998) develop higher-order asymptotic results under model misspecification.

In Viraswami and Reid (1996), robust versions of the score statistic and Wald statistic are treated,

whereas in Viraswami and Reid (1998), the likelihood-ratio statistic and the adjusted likelihood-ratio

statistic are treated. From the perspective of CDs and ccs, perhaps, more interesting is their work

regarding the likelihood-ratio statistic. They notice that under model misspecification, Bartlett correc-

tion cannot be utilised to improve the X 2
1 approximation to the distribution of the statistic. They solve

the problem, though, by utilising the polynomial approach of Cordeiro and Ferrari (1991) and they

obtain an improved version of the uncorrected likelihood ratio having a X 2
1 to third order. They work

similarly for the adjusted likelihood-ratio statistic. In the literature, an extension to the polynomial

approach of Cordeiro and Ferrari (1991) is given by Kakizawa (1997). A suggestion, therefore, would

be to implement this extension and, then, form the necessary theoretical background to construct an

asymptotic cc.

2. Optimal confidence for exponential families:

In Schweder and Hjort (2016, sec. 5.5) a theorem that constructs uniformly most powerful CDs in the

exponential class of models is presented. The examples given in sections 5.5 and 8.2 of the book suggest

that the computation of the conditional probability needed for the CD is challenging in the not so easy

class of models. Saddlepoint approximations have been suggested in the literature to approximate

conditional distributions, see e.g., Kolassa (1996), Skovgaard (1987), Butler (2007) and Butler et al.

(2008), for theoretical and practical considerations. The paper by Theodosopoulos (2007) is concerned

with general random variables and constructs a lower bound for the tails of their distribution using,

only, knowledge of their moment generating function. The procedure shares numerous methodological

similarities with the development of saddlepoint approximation. For example, it uses titling to centre

the power series expansion at the desired tail of the distribution. The difference, though, is that the

titling procedure is seen as a nonlinear optimisation problem and the added degrees of freedom enables

it to produce tighter and more broadly applicable lower bounds than existing tail approximations. It

is suggested that the methodology described in Theodosopoulos (2007) be adopted in the optimal CDs

framework to provide a method, perhaps in the form of an algorithm, to approximate the conditional

distribution in the non so easy cases.

3. An alternative to the bootstrap:

Efron’s bootstrap has been one of the most valuable tools in a practitioner’s tool of bag and is so famous

that needs not any introductions. Recently, a paper was publishes that in the small sample cases offers

an alternative to the bootstrap. In particular, the methodology developed in Jayadeva and Soumy
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(In Press) is concentrated in augmenting small data sets so that the original underlying distribution

is least distorted. It is a non-iterative technique that uses principal components and least-squares to

add extra samples in the eigenspace of the original small size data set. It is suggested that in the CDs

framework, their technique be used to over improved approximations as bootstrap is used and the two

methods be compared.

4. Empirical likelihood:

In Schweder and Hjort (2016, sec. 11.5) a brief discussion is given on the empirical likelihood and

some theoretical results in the i.i.d. and regression cases are delivered. The paper by Jing et al. (2017)

offers a simple transformation of the empirical likelihood with the aim to alleviate the under-coverage

of confidence regions. In the spirit of producing more accurate CDs and ccs it is suggested that

the methodology in Jing et al. (2017) in be adopted. Their transformation is capable of providing

‘substantially more accurate condence regions without adding theoretical or computational complexity ’,

as they mention. The necessary criteria concerning accuracy and consistency for good transformations

are laid down and a transformed empirical likelihood meeting these criteria is arrived at. Their effort

produces an attractive and accurate empirical likelihood that is easy to use and ‘surprisingly accurate

even in small sample and in multidimensional situations’, as the mention. It is suggested that their

criteria be adopted in the CDs and ccs framework to produced more accurate CDs and ccs.
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Appendix

I R codes

I.1 Example 2.1

y.obs <-

c(0.013, 0.054, 0.234, 0.286, 0.332, 0.507, 0.703, 0.763, 0.772, 0.920)

y.obs

n.y.obs <- length(y.obs) ; n.y.obs

theta.hat <- - n.y.obs / sum(log(y.obs)) ; theta.hat

theta.vals <- seq(0.2, 1.6, by=0.01) ; theta.vals ; length(theta.vals)

conf.lev <- 0.90 ; conf.lev

n.sims <- 5*10ˆ3 ; n.sims

C.sims <- 0*(1:n.sims) ; C.sims

C.sim <- 0*theta.vals ; C.sim

for (j in 1:length(theta.vals)) {

theta <- theta.vals[j]

for (ss in 1:n.sims) {

ysim <- runif(n.y.obs)ˆ(1/theta)

C.sims[ss] <- 1/mean(-log(ysim)) }

C.sim[j] <- mean(1*(C.sims>=theta.hat)) }

q.N <- ( theta.hat - theta.vals ) / ( theta.hat / sqrt(n.y.obs) ) ; q.N

deviance.f <-

-2 * ( ( n.y.obs * log(theta.vals) + theta.vals * sum(log(y.obs)) ) -

( n.y.obs * log(theta.hat) + theta.hat * sum(log(y.obs)) ) ) ; deviance.f

plot(theta.vals, pnorm(q.N, 0, 1, lower.tail=F), type="l",

bty="l", main="", xlab=expression(theta), ylab="confidence", col=2, lwd=1.8)

lines(theta.vals, pnorm(sqrt(deviance.f)*sign(theta.vals-theta.hat), 0, 1),

col=4, lwd=1.8)

lines(theta.vals, pgamma(n.y.obs / theta.hat, n.y.obs, theta.vals),

col=3, lwd=1.8)

lines(theta.vals, C.sim, lty=2, col=1, lwd=1.8)

#cc.theta <- pchisq(deviance.f,1) ; cc.theta

#med.theta <- theta.vals[which(cc.theta==min(cc.theta))] ; med.theta

#C.theta <- 0.5 * c(1-cc.theta[theta.vals<med.theta],

#1+cc.theta[theta.vals>=med.theta])
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#lines(theta.vals, C.theta, col=6)

segments(min(theta.vals), (1-conf.lev)/2, max(theta.vals),

(1-conf.lev)/2, lty=2, col=’grey’)

segments(min(theta.vals), 1/2, max(theta.vals), 1/2, lty=2, col=’grey’)

segments(min(theta.vals), (1+conf.lev)/2, max(theta.vals),

(1+conf.lev)/2, lty=2, col=’grey’)

segments(min(theta.vals), c(0,1), max(theta.vals), c(0,1),

lty=3, col=’grey’)

legend(1.2, 0.3,

legend=c("Normal approx", "chi-sq approx (dev)", "exact prob", "simulation"),

lty=c(1,1,1,2), col=c(2,4,3,1), bty="n", lwd=1.8)

I.2 Example 2.2

# read data

yy.dat <- scan("speed_of_light.txt", skip=1) ; yy.dat

# get number of datapoints

nn <- length(yy.dat) ; nn

# require stats package

# for logistic density

library(stats)

# define log-likelihood function

loglik.f <- function(prms) {

sum(dlogis(yy.dat, location=prms[1], scale=prms[2], log=T))

}

# define minus log-likelihood

# the function to be minimized

mloglik.f <- function(prms) {

-loglik.f(prms)

}

# use optim to perform minimization

# starting values by trial and error

optim.results <- optim(c(3,2), mloglik.f, hessian=T)

# view results

optim.results

# check convergence

optim.results$conv == 0 # TRUE #

# get maximum likelihood estimates
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xi.hat <- optim.results$par[1] ; xi.hat # 27.61808 #

tau.hat <- optim.results$par[2] ; tau.hat # 2.838543 #

# get Hessian matrix

J.tot <- optim.results$hessian ; J.tot

# get standard deviation estimates

sd.xi <- sqrt(diag(solve(J.tot)))[1] ; sd.xi # 0.6157995 #

sd.tau <- sqrt(diag(solve(J.tot)))[2] ; sd.tau # 0.2971452 #

################################################################################

# estimate p

y0 <- 30.5 ; y0

p.hat <- plogis(y0, location=xi.hat, scale=tau.hat) ; p.hat # 0.7340526 #

# check p estimate

qq.pnt <- (y0-xi.hat)/tau.hat ; qq.pnt

p.hat.chk <- exp(qq.pnt) / (1+exp(qq.pnt)) ; p.hat.chk

p.hat.chk == p.hat

# estimate vector of derivatives, ww

w1.hat <- -dlogis(y0, location=xi.hat, scale=tau.hat) ; w1.hat

w2.hat <- -(y0-xi.hat)/tau.hat *
dlogis(y0, location=xi.hat, scale=tau.hat) ; w2.hat

ww.hat <- c(w1.hat, w2.hat) ; ww.hat

# check ww components estimates

chk1 <- -exp(qq.pnt) / ( tau.hat * (1+exp(qq.pnt))ˆ2 ) ; chk1

chk1 == w1.hat

chk2 <- qq.pnt * w1 ; chk2

chk2 == w2.hat

# define k hat

k.hat <- t(ww.hat) %*% J.tot %*% ww.hat ; k.hat

# delta method #

# define a grid of p values

p.seq <- seq(0, 1, by=0.0001) ; p.seq

# get confidence distribution

qq.C <- (p.seq - p.hat) / k.hat ; qq.C

C.p <- pnorm(qq.C) ; C.p

# get confidence curve
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cc.p <- abs(1-2*C.p) ; cc.p

# plot confidence curve (using delta method)

plot(p.seq, cc.p, bty="l", type="l", lty=1,

xlab=expression(italic(p)), ylab="confidence curve (using delta method)")

axis(1, at=round(p.hat,3), label=T, las=1)

matlines(p.seq, 0+0*p.seq, lty=3, col="grey")

#matlines(p.seq, 1+0*p.seq, lty=3, col="grey")

# deviance #

# define a grid of p values

# take care as p/(1-p) \in (0,1)

p.val <- seq(0.0001, 0.9999, by=0.0001) ; p.val

# compute profile log-likelihood

loglik.prof.val <- 0*p.val ; loglik.prof.val

for (pp in 1:length(p.val)) {

mloglik.f.cc <- function(prm2) {

prm1 <- y0 - prm2 * log( p.val[pp]/(1-p.val[pp]) )

-sum(dlogis(yy.dat, location=prm1, scale=prm2, log=T))

}

loglik.prof.val[pp] <- -optimize(mloglik.f.cc, c(0.000001,10ˆ10))$objective

}

# check

loglik.f(c(xi.hat, tau.hat))

max(loglik.prof.val)

p.val[which.max(loglik.prof.val)]

# compute deviance

dev.f <- 2*(max(loglik.prof.val) - loglik.prof.val) ; dev.f

# check

p.val[which(dev.f == min(dev.f))]

# or #

p.val[which.max(-dev.f)]

# get confidence curve

cc.d.p <- pchisq(dev.f, 1) ; cc.d.p

# check

p.val[which(cc.d.p == 0)]

# or #

p.val[which.max(-cc.d.p)]
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# plot confidence curve (based on deviance)

plot(p.val, cc.d.p, bty="l", type="l", lty=1, xaxt="n",

xlab=expression(italic(p)), ylab="confidence curve (based on deviance)")

axis(1, at=seq(0.2,0.8,by=0.2), label=T)

axis(1, at=0.0001, label=T)

axis(1, at=0.9999, label=T)

axis(1, at=p.val[which.max(-cc.d.p)], label=T, las=1)

matlines(p.val, 0+0*p.val, lty=3, col="grey")

#matlines(p.val, 1+0*p.val, lty=3, col="grey")

#abline(v=p.val[which.max(-cc.d.p)], lty=3, col="tomato")

# Bartlett correction for the deviance #

# via simulation #

# define deviance function

dev.val <- function(yydat, yy0) {

m.loglik <- function(prm.2) {

prm.1 <- yy0 - prm.2 * log( p.hat/(1-p.hat) )

-sum(dlogis(yydat, location=prm.1, scale=prm.2, log=T))

}

tau.aux <- optimize(m.loglik, c(0.000001,10ˆ10))$min

xi.aux <- yy0 - tau.aux * log( p.hat/(1-p.hat) )

2*(loglik.f(c(xi.hat, tau.hat)) - loglik.f(c(xi.aux, tau.aux)))

} # end dev.val

# check

loglik.f(c(xi.hat, tau.hat))

dev.val(yy.dat, y0)

# find mean of deviance statistic

n.sim <- 10ˆ4 ; n.sim

Dn.p <- 0*(1:n.sim)

for (ss in 1:n.sim) {

yy.sim <- rlogis(nn, location=xi.hat, scale=tau.hat)

Dn.p[ss] <- dev.val(yy.sim, y0)

}

mean.dev.stat <- mean(Dn.p) ; mean.dev.stat # 1.032724 #

# get modified confidence curve

mod.dev <- dev.f/mean.dev.stat ; mod.dev

cc.d.p.m <- pchisq(mod.dev, 1) ; cc.d.p.m

# check

p.val[which(cc.d.p.m == 0)]

p.val[which(cc.d.p == 0)]
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# plot modified confidence curve

plot(p.val, cc.d.p.m, bty="l", type="l", lty=1, xaxt="n",

xlab=expression(italic(p)),

ylab="modified confidence curve (using Bartlett correction)")

axis(1, at=seq(0.2,0.8,by=0.2), label=T)

axis(1, at=0.0001, label=T)

axis(1, at=0.9999, label=T)

axis(1, at=p.val[which.max(-cc.d.p.m)], label=T, las=1)

matlines(p.val, 0+0*p.val, lty=3, col="grey")

#matlines(p.val, 1+0*p.val, lty=3, col="grey")

#abline(v=p.val[which.max(-cc.d.p.m)], lty=3, col="tomato")

# plot confidence curves together

# cc(p) and modified cc(p)

matplot(p.val, cbind(cc.d.p, cc.d.p.m), bty="l",

type="l", lty=1:2, col=1:2, xaxt="n",

xlab=expression(italic(p)), ylab="confidence curves")

axis(1, at=seq(0.2,0.8,by=0.2), label=T)

axis(1, at=0.0001, label=T)

axis(1, at=0.9999, label=T)

axis(1, at=p.val[which.max(-cc.d.p.m)], label=T, las=1)

matlines(p.val, 0+0*p.val, lty=3, col="grey")

legend(0.01, 0.18,

legend=c(expression(italic(cc(p))),

expression(paste(italic(cc(p))," modified"))),

lty=1:2, col=1:2, bty="n")

I.3 Example 2.3

# read data

yy.d <- scan("speed_of_light.txt", skip=1) ; yy.d

# get number of datapoints

nn <- length(yy.d) ; nn

# require glogis package

# for generalized logistic density

# Type I: Skew-Logitic

library(glogis)

# define log-likelihood function

loglik.f <- function(prms) {

sum(dglogis(yy.d, location=prms[1], scale=prms[2], shape=prms[3], log=T))

}

# define minus log-likelihood

# the function to be minimized
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mloglik.f <- function(prms) {

-loglik.f(prms)

}

# use optim to perform minimization

# starting values by trial and error

optim.results <- optim(c(2,2.5,3), mloglik.f, hessian=T)

# view results

optim.results

# check convergence

optim.results$conv == 0 # TRUE #

# get maximum likelihood estimates

xi.hat <- optim.results$par[1] ; xi.hat # 26.04327 #

tau.hat <- optim.results$par[2] ; tau.hat # 3.153894 #

gam.hat <- optim.results$par[3] ; gam.hat # 1.426836 #

# compare with

glogisfit(yy.d)

# continue with

xihat <- glogisfit(yy.d)$param[1] ; xihat # 26.05397 #

tauhat <- glogisfit(yy.d)$param[2] ; tauhat # 3.151787 #

gamhat <- glogisfit(yy.d)$param[3] ; gamhat # 1.423737 #

# as output from glogisfit

# though

# difference is small

# as seen in

c(xi.hat, tau.hat, gam.hat) - c(xihat, tauhat, gamhat)

# define profile log-likelihood for gamma

prf.ll.g.aux <- function(gam.v) {

aux.f <- function(prms) {

-sum(dglogis(yy.d, location=prms[1], scale=prms[2], shape=gam.v, log=T))

}

-optim(c(xihat,tauhat), aux.f)$val

} # end prf.ll.g

# define a grid of gamma values

gam.val <- seq(0.0001, 7.001, by=0.001) ; gam.val

# compute profile log-likelihood at gam.val

prf.ll.g <- 0*gam.val ; prf.ll.g

for (gg in 1:length(gam.val)) {
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prf.ll.g[gg] <- prf.ll.g.aux(gam.val[gg])

}

# compute deviance

prf.Dn.g <- 2*(max(prf.ll.g) - prf.ll.g) ; prf.Dn.g

# check

max(prf.ll.g)

loglik.f(c(xihat, tauhat, gamhat))

# check

gam.val[which.max(-prf.Dn.g)]

gamhat

# get confidence curve

cc.d.g <- pchisq(prf.Dn.g,1) ; cc.d.g

# compute level, g1.lev

# for which confidence intervals above g1.lev

# include the value of \gamma = 1

aux.lev <- 2*(max(prf.ll.g) - prf.ll.g.aux(1)) ; aux.lev

g1.lev <- pchisq(aux.lev, 1) ; g1.lev

g1.lev*100

cc.aux.lev <- gam.val[cc.d.g<=g1.lev] ; cc.aux.lev

# find confidence intervals

ci.l <- 0.95 ; ci.l

ci.aux <- gam.val[cc.d.g <= ci.l] ; ci.aux

ci.lv <- c(min(ci.aux), max(ci.aux)) ; ci.lv

# plot confidence curve

plot(gam.val, cc.d.g, bty="l", type="l", lty=1, xaxt="n",

xlab=expression(italic(gamma)), ylab="confidence curve")

axis(1, at=seq(1,7,by=1), label=T)

axis(1, at=min(gam.val), label=T)

axis(1, at=gam.val[which.max(-cc.d.g)], label=T, las=1)

axis(1, at=1, label=T)

axis(2, at=round(g1.lev,4), label=T, cex.axis=0.7, las=2)

matlines(gam.val, 0+0*gam.val, lty=3, col="grey")

matlines(gam.val, 1+0*gam.val, lty=3, col="grey")

matlines(cc.aux.lev, g1.lev+0*cc.aux.lev, lty=2, col="darkgrey")

#matlines(ci.aux, ci.l+0*ci.aux, lty=2, col="darkgrey")

matlines(1+0*seq(0,1,by=0.001), seq(0,1,by=0.001), lty=2, col="tomato")

I.4 Examples 2.4 and 2.5

# read data
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sb.d <- scan("smallbabies_data.txt", skip=3) ; sb.d

# arrange in matrix form

dat.mat <- matrix(sb.d, ncol=11, byrow=T) ; dat.mat

# get hold of mothers’ weight

wgt <- dat.mat[,4] ; wgt

# convert mothers’ weight from pounds to kilograms

# 1 pound = 0.45359237 kg

wgt.kg <- wgt / 2.204623 ; wgt.kg

# define function to compute cc

# normal approximation of (a)

cc.norm.appr <- function(yy.dat, p.qntl, psi.val) {

# get number of observations

n.yy <- length(yy.dat)

# compute p-quantile of N(0,1)

z.p <- qnorm(p.qntl)

# estimate mean and sd for yy.dat

mu.hat <- mean(yy.dat)

sd.hat <- sd(yy.dat)

# estimate p-quantile

psi.hat <- mu.hat + z.p * sd.hat

# define pivot

sd.piv <- sqrt((1 + 0.5 * z.pˆ2)) * sd.hat

t.piv <- sqrt(n.yy) * (psi.hat - psi.val) / sd.piv

# compute CD

CC.norm.appr <- pnorm(t.piv)

# compute cc

abs(1-2*CC.norm.appr)

} # end cc.norm.appr

# define auxiliary function to compute cc

# eq.(11.3) of CLP book, p.321

levels.f <- function(n.obs, p.qntl, aa, bb) {
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# set number of observations

nn <- n.obs

# define integrand

integrand <- function(u) {

( 1 - pbeta((p.qntl-u)/(1-u), bb-aa, nn-bb+1) ) * dbeta(u, aa, nn-aa+1)

}

# integrate

integrate(integrand, lower=0, upper=p.qntl)$value

} # end levels.f

# define function to compute cc

# nonparametrically

# eq.(11.3) of CLP book, p.321

cc.nprm <- function(yy.dat, p.qntl) {

# order observations

yy.sort <- sort(yy.dat)

# get number of observations

nn <- length(yy.dat)

# define [nn*p.qntl]

upp <- min(ceiling(nn*p.qntl)-1, nn-ceiling(nn*p.qntl))

# keep cc values

cc.mat <- 0*(1:(2*upp+1))%*%t(1:2)

# compute cc

for (jj in 0:upp) {

aa <- ceiling(nn*p.qntl) - jj

bb <- ceiling(nn*p.qntl) + jj

cc.mat[c(upp+1-jj, upp+1+jj), 1] <- yy.sort[c(aa,bb)]

cc.mat[c(upp+1-jj, upp+1+jj), 2] <- levels.f(nn, p.qntl, aa, bb)

}

# output cc values and upp

list(cc.mat=cc.mat, upp=upp)

} # end cc.nprm

# define a grid of \psi values
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psi.vals <- seq(min(wgt.kg), max(wgt.kg), by=0.0001)

# compute cc based on

# normal approximation of (a)

# apply cc.norm.appr function

cc.1 <- cc.norm.appr(wgt.kg, 0.90, psi.vals)

# check

mean(wgt.kg) + qnorm(0.90) * sd(wgt.kg)

psi.vals[which.max(-cc.1)]

# compare with 90% sample quantile

quantile(wgt.kg, 0.90)

quantile(wgt.kg, 0.90) - psi.vals[which.max(-cc.1)]

# and plot cc based on

# normal approximation of (a)

plot(psi.vals, cc.1, bty="l", type="l", lty=1, xaxt="n",

ylab="confidence curve ( normal approximation of (a) )",

xlab="mothers’ weight")

axis(1, at=round(seq(min(wgt.kg), max(wgt.kg), len=6),3), labels=T)

axis(1, at=round(psi.vals[which.max(-cc.1)],3), labels=T)

matlines(psi.vals, 0+0*psi.vals, lty=2, col="grey")

aux1 <- seq(-1, 1, length=10)

matlines(quantile(wgt.kg, 0.90)+0*aux1, 0.02*aux1, lty=1, col=2)

# compute cc

# nonparametrically

# apply cc.nprm function

cc.3 <- cc.nprm(wgt.kg, 0.90)$cc.mat

# check

min(cc.3[,2])

# check

quantile(wgt.kg, 0.90)

cc.3[,1][which.min(cc.3[,2])]

# and plot cc

# nonparametrically

matplot(cc.3[,1], cc.3[,2], bty="l", type="l", lty=1,

ylab="confidence curve ( nonparametrically )", xlab="mothers’ weight")

axis(1, at=round(cc.3[,1][which.min(cc.3[,2])],3), labels=T)

matlines(cc.3[,1], 0+0*cc.3[,1], lty=3, col="grey")
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# display confidence intervals

cc.3.upp <- cc.nprm(wgt.kg, 0.90)$upp

for (ll in 0:cc.3.upp) {

matlines(cc.3[(cc.3.upp+1-ll):(cc.3.upp+1+ll),1],

0*cc.3[(cc.3.upp+1-ll):(cc.3.upp+1+ll),1] + cc.3[(cc.3.upp+1-ll),2],

lty=2, col="grey")

}

# require MASS package

# for truehist

library(MASS)

# explore data

truehist(wgt.kg, bty="l", xlab="mothers’ weight", col="lightgrey")

# display ccs for 0.10, 0.50, 0.90 quantiles

# in the same diagram

cc.010 <- cc.nprm(wgt.kg, 0.10)$cc.mat

cc.050 <- cc.nprm(wgt.kg, 0.50)$cc.mat

cc.090 <- cc.3

# check

quantile(wgt.kg, 0.10) # 45.17779 #

cc.010[,1][which.min(cc.010[,2])] # 44.45204 #

quantile(wgt.kg, 0.50) # 54.88467 #

cc.050[,1][which.min(cc.050[,2])] # 54.88467 #

quantile(wgt.kg, 0.90) # 77.11069 #

cc.090[,1][which.min(cc.090[,2])] # 77.11069 #

cc010.upp <- cc.nprm(wgt.kg, 0.10)$upp

cc050.upp <- cc.nprm(wgt.kg, 0.50)$upp

cc090.upp <- cc.3.upp

plt.xlim <- c(min(cc.010[,1], cc.050[,1], cc.090[,1]),

max(cc.010[,1], cc.050[,1], cc.090[,1])) ; plt.xlim

plot(sort(wgt.kg), xlim=plt.xlim, ylim=c(0,1), bty="l", type="n",

xaxt="n", ylab="cc for 0.10, 0.50, 0.90", xlab="mothers’ weight")

axis(1, at=round(seq(min(wgt.kg), max(wgt.kg), len=6),3), label=T)

axis(1, at=round(cc.010[,1][which.min(cc.010[,2])],3), labels=F)

axis(1, at=round(cc.050[,1][which.min(cc.050[,2])],3), labels=F)

axis(1, at=round(cc.090[,1][which.min(cc.090[,2])],3), labels=F)

matlines(sort(wgt.kg), 0+0*sort(wgt.kg), lty=3, col="grey")
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matlines(cc.010[,1], cc.010[,2], type="l", lty=1)

for (ll in 0:cc010.upp) {

matlines(cc.010[(cc010.upp+1-ll):(cc010.upp+1+ll),1],

0*cc.010[(cc010.upp+1-ll):(cc010.upp+1+ll),1] + cc.010[(cc010.upp+1-ll),2],

lty=2, col="grey")

}

matlines(cc.050[,1], cc.050[,2], type="l", lty=1)

for (ll in 0:cc050.upp) {

matlines(cc.050[(cc050.upp+1-ll):(cc050.upp+1+ll),1],

0*cc.050[(cc050.upp+1-ll):(cc050.upp+1+ll),1] + cc.050[(cc050.upp+1-ll),2],

lty=2, col="grey")

}

matlines(cc.090[,1], cc.090[,2], type="l", lty=1)

for (ll in 0:cc090.upp) {

matlines(cc.090[(cc090.upp+1-ll):(cc090.upp+1+ll),1],

0*cc.090[(cc090.upp+1-ll):(cc090.upp+1+ll),1] + cc.090[(cc090.upp+1-ll),2],

lty=2, col="grey")

}

II Data sets

II.1 Example 2.1

0.013, 0.054, 0.234, 0.286, 0.332, 0.507, 0.703, 0.763, 0.772, 0.920

II.2 Example 2.2

28, 22, 36, 26, 28, 28, 26, 24, 32, 30, 27, 24, 33, 21, 36, 32,

31, 25, 24, 25, 28, 36, 27, 32, 34, 30, 25, 26, 26, 25, 23, 21,

30, 33, 29, 27, 29, 28, 22, 26, 27, 16, 31, 29, 36, 32, 28, 40,

19, 37, 23, 32, 29, 24, 25, 27, 24, 16, 29, 20, 28, 27, 39, 23

II.3 Examples 2.4 and 2.5

low birthweights data from

https://feb.kuleuven.be/public/u0043181/modelselection/index.html
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