Short Communication

Magnetic Properties of YBaCuCoO₅

P. Karen and A. Kjekshus*

Department of Chemistry, University of Oslo, Blindern, N-0315 Oslo, Norway

Karen, P. and Kjekshus, A. 1993. Magnetic Properties of YBaCuCoO₅. – Acta Chem. Scand. 47: 1041–1042.

The present authors have earlier, as a part of a larger collaboration, ' reported a powder neutron diffraction (PND) study of the nuclear and magnetic structures of the oxygen-deficient, ordered perovskite YBaCuCoO₅. The work forms a part of a program on the substitution of a transition metal for Cu in the YBa₂Cu₃O₇ family (cf. the survey in Ref. 2). In the continued³ examination of the magnetic properties of another member of the YBa₂Cu₃O₇ family, YBa₂Fe₃O₈, we have (much to our surprise) found that the antiferromagnetism⁴ is no longer observed when the sample is cooled after having been brought above the Néel temperature ($T_N = 650 \pm 2 \text{ K}$). The present magnetic susceptibility study of YBaCuCoO₅ was undertaken in order to check whether the latter compound also exhibits a similar phenomenon.

Samples were prepared and characterized as described in Ref. 1. Magnetic susceptibilities were measured between 80 and 1000 K by the Faraday method (maximum field 8 kOe, samples of 10–20 mg). Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) measurements were made between 20 and 600°C (1000°C for DTA) with a Mettler TA 3000 and a Netzsch 404 EP system, respectively, using 50 mg specimens and a heating/cooling rate of 5°C min⁻¹.

The inverse magnetic susceptibility versus temperature characteristic of YBaCuCoO₅ (Fig. 1) is fully reproducible and reversible with respect to heating/cooling. The $\chi^{-1}(T)$ relationship in Fig. 1 is quite typical for an antiferromagnet which transforms to paramagnetism at higher temperatures, and the present value of 540 ± 10 K for $T_{\rm N}$ is in complete agreement with $T_{\rm N} = 536 \pm 3$ K obtained by PND in Ref. 1. The fact that $\Theta = -1700 \pm 100$ K differs appreciably from the molecular field relation, $\Theta = -T_{\rm N}$, for a simple antiferromagnet, is not alarming, and places YBaCuCoO₅ in a good company with similar magnetic materials. According to the behaviour above $T_{\rm N}$, the paramagnetic

This leaves us with at least three strange aspects of the magnetism of YBaCuCoO₅ which demand explanation:

- (i) The exchange mechanism which carries the message from one (Co/CuO₂)(BaO)(Co/CuO₂) antiferromagnetic 'double-layer' to the next (cf. Ref. 1). As for YBa₂Cu₃O₆ and YBa₂Fe₃O₈, the Y atoms must be involved, but the question is how.
- (ii) The negligible magnetic specific heat anomaly as compared with the expected $\sim 20 \text{ J mol}^{-1}$ according to the molecular field approximation.
- (iii) The appreciably different number of unpaired electrons observed by magnetic susceptibility and neutron diffraction measurements. The actual numbers make it tempting to wonder whether a low- to high-spin conversion takes place in YBaCuCoO₅. In the low-spin case, the three unpaired electrons per YBaCuCoO₅ formula unit seen by neutron diffraction would be compatible with the expected electron configurations for, say, Cu²⁺ and Co³⁺ in their actual square-pyramidal coordination in the structure. A schematic illustration of the evolution in the d-orbital energy splitting from the situation for an unperturbed atom/ion to square-planar coordination is

moment $\mu_P = 4.2 \pm 0.2 \,\mu_B$ per 0.5 Cu + 0.5 Co corresponds (spin-only approximation) to 3.3 ± 0.2 unpaired electrons per transition metal ion. Remarkably, the moment derived from least-squares fitting of observed (room temperature) and calculated PND intensity data indicates only 1.49 ± 0.02 unpaired, antiferromagnetically ordered electrons per transition metal ion. Such, and even larger, discrepancies are sometimes observed between magnetic susceptibility and neutron diffraction measurements (our results have, e.g., revealed that YBa₂Fe₃O₈ is in a similar situation). However, to complete the 'tales of the unexpected', we also record that, only with good faith and knowing where to look, T_N could be located as a rather indistinct peak on DSC/DTA curves of YBaCuCoO₅. (A similar observation has been made for the YBa₂Fe₃O₈ phase.)

^{*} To whom correspondence should be addressed.

SHORT COMMUNICATION

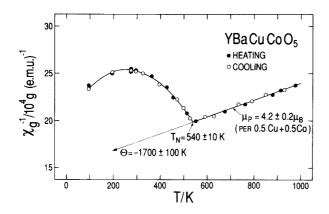


Fig. 1. Inverse magnetic susceptibility as function of temperature for YBaCuCoO $_5$.

provided in Fig. 2. The filling of nine and six d-electrons for, say, Cu²⁺ and Co³⁺, respectively, into the energy scheme appropriate to the pyramidal coordination in Fig. 2 would lead to just three unpaired electrons per YBaCuCoO₅ formula unit. In the high-spin case, distribution of the overall 15 d-electrons of Cu and Co per YBaCuCoO₅ formula unit gives five unpaired electrons. To comply with the paramagnetic moment, there would accordingly have to be an orbital contribution.

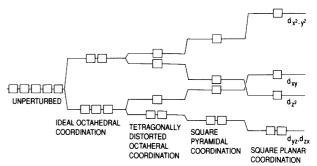


Fig. 2. Schematic illustration of d-orbital energy splittings in octahedral, square-pyramidal and square-planar coordinations. (Note that the scale of the energy splittings is left unspecified.)

References

- Huang, Q., Karen, P., Karen, V. L., Kjekshus, A., Lynn, J. W., Mighell, A. D., Natali-Sora, I., Rosov, N. and Santoro, A. J. Solid State Chem. (1993). In press.
- Karen, P., Braaten, O. and Kjekshus, A. Acta Chem. Scand. 46 (1992) 805.
- Huang, Q., Karen, P., Karen, V. L., Kjekshus, A., Lynn, J. W., Mighell, A. D., Natali-Sora, I., Rosov, N. and Santoro, A. To be published.
- Huang, Q., Karen, P., Karen, V. L., Kjekshus, A., Lynn, J. W., Mighell, A. D., Rosov, N. and Santoro, A. Phys. Rev. B 45 (1992) 9611.

Received February 24, 1993.