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Early Cretaceous synrift uplift and tectonic inversion in the Loppa
High area, southwestern Barents Sea, Norwegian shelfQ1

¶

Kjetil Indrevær*, Roy H. Gabrielsen & Jan Inge Faleide
Research Centre for Arctic Petroleum Exploration (ARCEx), Department of Geosciences, University of Oslo, Sem Sælands vei
1, 0371 Oslo, Norway
*Correspondence: kjetil.indrevar@geo.uio.no

Abstract: Tectonic inversion of rift basins is most commonly reported in the literature to occur after rifting has ceased. In
contrast, we present evidence for synrift, localized tectonic inversion from the Loppa High area, southwestern Barents Sea and
present a model for the formation of inversion structures as a result of differential uplift. The structures are of early Barremian to
mid-Albian age (c. 131 – 105 Ma) and are focused in or near pre-existing extensional boundary faults along the margins of the
Loppa High. Inversion is interpreted to be the result of uplift of the high along its inclined boundary faults, leading to space
accommodation problems as uplift was not properly compensated by extension in the region. Themodel constrains the initiation
of uplift of the Loppa High to the early Barremian and shows that the asymmetric margin configuration of the high may have led
to a bulk clockwise rotation of the high around a vertical axis during uplift. The cause of uplift is not fully understood, but is
suggested to be linked to contemporaneous extreme lithospheric thinning in neighbouring basins to the west. Processes
involved may include isostatic flexure, thermal heating, lithological phase changes and/or far-field stresses, although these
aspects need to be further tested.

Received 6 June 2016; revised 2 September 2016; accepted 7 September 2016

The present-day Barents Sea forms an epicontinental sea located in
the northwestern corner of the Eurasian tectonic plate. It overlies a
tectonically extended shelf that is composed of a range of basins,
highs and fault complexes (see Gabrielsen et al. 1990) and formed
through multiple events of extension since the collapse of the
Caledonian orogen (e.g. Faleide et al. 1984, 1993Q2

¶
, 2008; Gabrielsen

et al. 1990; Gudlaugsson et al. 1998; Mosar et al. 2002; Glørstad-
Clark et al. 2010). Post-Caledonian (Devonian) orogenic collapse
was followed by several rift events throughout the Carboniferous to
Eocene, terminating with the opening of the North Atlantic and
Arctic oceans. The southwestern Barents Sea played an important
role during the final stages of rifting, which was characterized by the
transition from a simple rift system in the south to a dextral
transform connecting the North Atlantic rift to the Arctic rift system
in the NW (Faleide et al. 2008).

Despite the southwestern Barents Sea being subject to more than
300 myr of extension, several researchers have reported late
Palaeozoic–Cenozoic events of tectonic inversion in the region
(Ziegler 1978; Rønnevik et al. 1982; Berglund et al. 1986; Riis et al.
1986; Sund et al. 1986; Brekke & Riis 1987; Gabrielsen & Færseth
1989;Wood et al. 1989; Gabrielsen et al. 1990, 1997, 2011; Vågnes
et al. 1998; Grogan et al. 1999; Glørstad-Clark et al. 2011;
Henriksen et al. 2011; Faleide et al. 2015). The most prominent
examples of this are found around the Loppa High (Fig. 1), where
uplift of a late Triassic–mid-Jurassic depocentre in the early
Cretaceous caused the high to form an island (Wood et al. 1989;
Gabrielsen et al. 1990; Faleide et al. 1993a; Glørstad-Clark et al.
2011). The uplift was contemporaneous with transpression along
the Bjørnøyrenna Fault Complex (Gabrielsen et al. 1997) and
wrench-related tectonic inversion in the region (Rønnevik et al.
1982; Gabrielsen 1984; Berglund et al. 1986; Riis et al. 1986; Sund
et al. 1986; Brekke & Riis 1987; Gabrielsen & Færseth 1988).
Tectonic inversion also occurred in the region in the late
Cretaceous–Paleocene owing to head-on (fault-perpendicular)
contraction along the Bjørnøyrenna Fault Complex (Gabrielsen

et al. 1997) and along the margins of the Veslemøy High and the
Senja Ridge (Fig. 1; Riis et al. 1986; Brekke & Riis 1987; Breivik
et al. 1998). Other events of inversion include latest Paleocene–
Eocene transpression along the transform Senja Shear Zone margin
in the west (Grogan et al. 1999; Faleide et al. 2008, 2015) and a
Miocene SE-directed contraction (present coordinates) that is
probably related to ridge push affiliated with the development of
the mid-ocean Knipovich Ridge in the NW (Gabrielsen & Færseth
1989; Pascal et al. 2005; Engen et al. 2008; Faleide et al. 2015; Gac
et al. 2016).

This paper focuses solely on the early Cretaceous phase of the
tectonic inversion event. Although this phase of inversion has long
been recognized, its exact timing and driving mechanism(s) are not
yet fully constrained. We therefore describe the tectonic inversion
structures that are associated with this event, and aim at constraining
its timing and mechanism of initiation and development. The
observations are set in a regional context and a tectonic model for
the early Cretaceous tectonic development is presented.

Geological setting

Areas involved in the early Cretaceous phase of inversion include
(1) the LoppaHigh and the Polhem Subplatform (2) the Hammerfest
Basin and (3) the Bjørnøya and Tromsø basins (Fig. 1). Based on
hitherto published information, these structural elements are
described below.

The Loppa High is bordered by the Bjarmeland Platform in the
east and is separated from the Polhem Subplatform to thewest by the
Jason Fault Complex (Fig. 1; Glørstad-Clark et al. 2011). The
Polhem Subplatform, which was part of the greater Loppa High
throughout much of its history, is bordered by the Ringvassøy–
Loppa Fault Complex to its SW and the Bjørnøyrenna Fault
Complex to its NW. The northeastern segment of the latter fault
complex also defines the boundary between the Loppa High and the
Bjørnøya Basin (Fig. 1).

© 2016 The Author(s). Published by The Geological Society of London. All rights reserved. For permissions: http://www.geolsoc.org.uk/permissions.
Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

Research article Journal of the Geological Society

Published Online First doi:10.1144/jgs2016-066

mailto:kjetil.indrevar@geo.uio.no
http://www.geolsoc.org.uk/permissions
http://www.geolsoc.org.uk/pub_ethics
kjetilin
Highlight
Sentence shoud read:"This paper focuses solely on tectonic inversion in the early Cretaceous."

kjetilin
Highlight

kjetilin
Highlight
All "Glørstad-Clark et al. 2011" should be changed to "Glørstad-Clark 2011" throughout the paper.

They are marked in yellow in the continued text.

kjetilin
Highlight

kjetilin
Highlight



133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

Fig. 1. Overview of the study area showing the main structural elements. The extent of the Loppa High is marked in light grey. Location of wells and key
seismic lines used in the paper is given, in addition to the location of important structures discussed in the text (see legend for more details) (a) Detailed
structural map of the Polhem Subplatform. (b) Detailed structural map of the Asterias Fault Complex and associated structures. (c) Detailed structural map
of the Goliat hydrocarbon field area. Structural element map modified from Norwegian Petroleum Directorate (npd.no). FC, fault complex.
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The Loppa High developed through several events of subsidence
and uplift. Its predecessor, the Selis Ridge (also known as the
‘palaeo-Loppa High’; see Sund et al. 1986; Fig. 1) is now expressed
as an easterly tilted high buried within the Loppa High. It formed by
uplift of the footwall of the westerly dipping Ringvassøy–Loppa
and Bjørnøyrenna fault complexes in late Carboniferous, early
Permian, late Permian and early to middle Triassic (Riis et al. 1986;
Wood et al. 1989; Gudlaugsson et al. 1998; Glørstad-Clark et al.
2010, 2011). The Polhem Subplatform formed as a downfaulted
portion of the Selis Ridge in the early to mid-Triassic (Gabrielsen
et al. 1990). By the mid-Triassic the Selis Ridge became expressed
as a pronounced north–south-striking, elongated structural high
acting as a barrier to sediments (Gudlaugsson et al. 1998; Glørstad-
Clark et al. 2010). Subsequently, the Selis Ridge subsided and a
major sediment depocentre was established atop the ridge by late
Triassic times. In the late Jurassic or earliest Cretaceous, a wider
platform around (and including) the Selis Ridge and Polhem
Subplatform again became uplifted, causing the late Triassic–mid-
Jurassic depocentre to form a subaerially exposed Loppa High
(Fig. 1; Wood et al. 1989; Gabrielsen et al. 1990; Faleide et al.
1993a; Glørstad-Clark et al. 2011). The uplift is estimated to have
been of the order of 300 m (see diagrams given by Clark et al.
2014). Erosion of the high and deposition of sediments along its
flanks suggest gradual erosion and subsidence of the Loppa High in
the early Cretaceous, bringing the Loppa High to the same level asQ3

¶ the wider Barents Sea shelf by the onset of the Late Cretaceous
(Glørstad-Clark et al. 2011).

The Hammerfest Basin is situated to the south of the Loppa High
and is separated from the high by the southerly dipping Asterias
Fault Complex (Fig. 1). This basin is delimited by the Ringvassøy–
Loppa Fault Complex in the west, marking the down-stepping array
of normal faults to the deeper Tromsø Basin further west
(Gabrielsen 1984). To the east, the Hammerfest Basin gradually
shallows and flexes to become the Bjarmeland Platform, and its
southern boundary is defined by the north- to NW-dipping Troms–
Finnmark Fault Complex (Gabrielsen et al. 1990).

The Hammerfest Basin was subject to extension throughout the
Carboniferous–Eocene and its interior is characterized by a system
of late Jurassic–early Cretaceous east–west-striking faults that have
resulted inQ4

¶
a range of minor horsts, grabens and half-grabens. On a

larger scale, these define an east–west-striking arch that is oriented
parallel to the basin axis. All these structures are most conveniently
defined at the base of the Cretaceous sequence. The general basin
configuration and the central arching of the basin axis have been
ascribed to interaction between first-, second- and third-order
normal faults (Gabrielsen 1984). Furthermore, it has been suggested
that the deformational style indicates that the margins of the
Hammerfest Basin were partly influenced by strike-slip reactivation
in the late Jurassic to early Cretaceous (Berglund et al. 1986; Riis
et al. 1986; Sund et al. 1986; Gabrielsen & Færseth 1988) as a part
of regional wrench tectonics (Ziegler 1978; Rønnevik et al. 1982;
Riis et al. 1986) probably caused by the oblique reactivation of pre-
existing faults owing to changes in regional stress. This was
assumed to result in inversion occurring along the western segment
of the Asterias Fault Complex as fault-perpendicular contraction by
Riis et al. (1986) and Gabrielsen & Færseth (1988). Alternatively,
the inversion may have been affiliated with strike-slip forming a
Hauterivian–Aptian positive half-flower-like structure as suggested
by Gabrielsen et al. (2011). Transtension in the Swaen Graben as
suggested by the presence of master faults steepening with depth,
thus forming assumed positive and negative flower structures
(Gabrielsen et al. 1993), occurred contemporaneously with
inversion in the Hammerfest Basin and is therefore possibly
genetically linked.

The Bjørnøya and Tromsø basins (Fig. 1) formed through rifting
in the Carboniferous and Permian–early Triassic as is characterized

by Permo-Carboniferous evaporite diapirs in both basins. Late
Jurassic–earliest Cretaceous extension was followed by accelerating
subsidence and accumulation of very thick sediment sequences of
early Cretaceous age as demonstrated by the downfaulting of
Jurassic sediments to c. 13 km depth in the Bjørnøya Basin across
the Ringvassøy–Loppa and Bjørnøyrenna fault complexes
(Rønnevik et al. 1982; Gabrielsen et al. 1990; Faleide et al.
1993b, 2008; Clark et al. 2014).

In summary, previous literature suggests an early Cretaceous
period of composite tectonism in the southwestern Barents Sea,
with distinct enhanced subsidence in the Tromsø and Bjørnøya
basins, uplift of the Loppa High, and tectonic inversion that is
probably related to regional wrenching.

Database

This study utilizes 2D reflection seismic data that are partly public
data from the DISKOS database and partly non-public data made
available by TGS and ENI Norge. Seismostratigraphic markers were
picked using available public well data and are time-correlated in the
Hammerfest Basin using biostratigraphic data from wells 7120/9-1
and 7121/7-1 and lithostratigraphy and chronostratigraphy from
NORLEX (Figs 1 and 2;Worsley et al. 1988; Gradstein et al. 2010).
On the Polhem Subplatform and in the Bjørnøya and Tromsø basins,
the seismic markers were time-correlated using biostratigraphic data
from wells 7220/5-1, 6-1 and 7-1 (Figs 1 and 2 and chronostratig-
raphy according to NORLEX). Depth conversion of regional grids
has been done using the HiQbe™ velocity model (courtesy of First
Geo AS and TGS-NOPEC Geophysical Company ASA) to obtain
the geometry of the described structures.

Inversion structures

Several fault complexes and other structural elements in the
southwestern Barents Sea display geometrical characteristics that
are indicative of tectonic inversion. Some of these structures have
previously been described in the literature, whereas others have not.
Terminology and concepts used in this paper are given below and
are followed by the description of early Cretaceous tectonic
inversion structures in the southwestern Barents Sea and discussion
of their genesis.

Terminology and concepts

Tectonic inversion is defined as the reverse reactivation of normal
faults as a result of a change in the regional stress, resulting in uplift
that predominantly affects the hanging wall relative to a selected
regional reference stratigraphic level (Cooper et al. 1989). Tectonic
inversion is commonly separated into localized (focused) and
regional (distributed) inversion based on the significance of
inversion within a rift (MacGregor 1995; see also Cooper &
Williams 1989; Buchanan & Buchanan 1995). Whereas regional
inversion commonly refers to the inversion of entire basins,
localized inversion is often manifested as inversion structures
with a local significance forming along reactivated normal faults.

A diagnostic criterion for recognizing and quantifying localized
tectonic inversion is the identification of the ‘null point’ on inverted
extensional faults (Fig. 3a; see Cooper &Williams 1989; Buchanan
& Buchanan 1995; Turner & Williams 2004). The null point refers
to a point along an inverted extensional fault that separates strata
with normal fault displacement below and reverse fault displace-
ment above. Because of the long rift history in the southwestern
Barents Sea, however, the extension to shortening ratios seem too
high for any null points to be detectable, rendering the use of the
null-point criterion less relevant in the region. Alternative criteria
for identifying reverse reactivation of normal faults are therefore

Early Cretaceous tectonic inversion in the Loppa High area
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needed and include recognition of the following features: (1)
inverted depocentre–growth wedges (without formation of null
points); (2) contracted fault blocks and deformed fault planes; (3)
forced folds with or without the development of hanging-wall
reverse faults; (4) structures related to secondary contractional
deformation of rift basins including the formation of folds and
‘snake-head structures’ (Allmendinger 1998) formed by reverse
reactivation of faults (Fig. 3a–d). The timing of tectonic inversion is
constrained by identifying pre-, syn- and post-rift sediments and
their association with syn- and post-inversion sedimentary
sequences (Fig. 3a; see also Turner & Williams 2004).

The Loppa High

The interior of the Loppa High constitutes an asymmetric high of
sub-Carboniferous rocks that shallows westwards to include the
Selis Ridge (Figs 1 and 4; see alsoWood et al. 1989; Glørstad-Clark
et al. 2011). The Selis Ridge formed during the Carboniferous and
Permian events of uplift and defines a north–south-trending palaeo-
high so that its eastern flank is onlapped by Carboniferous and
Permian sedimentary units. The ridge is unconformly overlain by
upper Triassic–mid-Jurassic sedimentary sequences that were
uplifted during the early Cretaceous to form the Loppa High.

These sequences show a distinct thickening from the Bjarmeland
Platform and westward onto the present-day Loppa High (Fig. 4),
where the zone of thickening of these units is characterized by a
concentric shape in map view and also marks the eastern boundary
of the inverted late Triassic–mid-Jurassic depocentre (Fig. 1). The
concentric shape of the zone of thickening indicates that the lateral
extent of the depocentre that controlled Q5

¶
the extent of what later

became uplifted, although the eastern boundary locally seems to be
related to a fault present in the deeper strata (Fig. 4).

The Jurassic and younger sedimentary sequences are in general
missing on top of the Loppa High owing to erosion. However, lower
Cretaceous sediments are locally present in a system of interacting
NNE–SSW- and NE–SW-oriented c. 5 kmwide grabens defined by
the downfaulted upper Jurassic sequence (Figs 1 and 4). The system
of grabens links up with the Swaen Graben in the east. The graben-
bounding faults converge at depth and die out in Permian evaporites
(Fig. 4).

Genesis.

The present-day Loppa High represents a regionally uplifted
Triassic–Jurassic depocentre, as demonstrated by the distinct
thickening of the upper Triassic–mid-Jurassic sediment sequence

Fig. 2. Stratigraphic framework for the
Hammerfest Basin and the Polhem
Subplatform used in this paper. It should
be noted that the lithostratigraphy is valid
only for the Hammerfest Basin.
Lithostratigraphy and chronostratigraphy
from NORLEX (Worsley et al. 1988;
Gradstein et al. 2010).
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Fig. 3. Schematic overview of criteria
used for identification of tectonic
inversion in this paper. (a) Typical
inversion geometry in an inverted half-
graben showing the relationship between
rift-related strata being modified by
inversion. Black dot shows the position of
the null point, which marks the divide
between normal displacement below and
reverse displacement above. Modified
after Turner & Williams (2004). (b)
Sketch of characteristic shapes of
deformed fault blocks and deformed fault
planes owing to horizontal shortening. (c)
Folding through buckling owing to the
localizing of inversion along a pre-
existing normal fault. Reverse faults may
or may not develop in the sub-strata. (d)
Development of contractional structures
such as snake-head folds and footwall cut-
offs in synrift or post-rift sediments owing
to reverse reactivation along an underlying
normal fault.

K. Indrevær et al.
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from the Bjarmeland Platform and westward onto the high (Fig. 4;
see also Wood et al. 1989; Glørstad-Clark et al. 2011). Detailed
mapping shows that the Swaen Graben links up with the narrow
grabens within the interior of the Loppa High (Fig. 1) and they thus
seem to be genetically linked. The role of these basins during early
Cretaceous tectonic inversion will be further discussed when
presenting a tectonic model later in the text.

The Polhem Subplatform

The Polhem Subplatform is composed of several north–south-
striking rotated fault blocks, which are delineated by an array of
down-to-the-west normal faults that are most easily identified at the
base Cretaceous stratigraphic level (Fig. 5). Sedimentary wedges in
the hanging walls indicate that the synsedimentary stage of faulting
began in the late Jurassic and that subsidence accelerated from the
early Barremian onwards. The sedimentary units that are located in

the immediate vicinity of the Jason Fault Complex are characterized
by the development of a series of densely spaced fault blocks
comprising at least four anticlines arranged in a left-stepping, en
echelon pattern with their fold axes at an angle of c. 15° clockwise to
the Jason Fault Complex master fault (Fig. 1a). Seen in cross-
section, the folds show the characteristics of positive flower
structures (Fig. 5a–c). Together they make up a north–south-
striking structural high that can be traced for c. 40 km within the
hanging wall of the northern segment of the Jason Fault Complex
(Fig. 1a). The crests of the anticlines are locally truncated by a
pronounced erosional surface (Fig. 5b). Fault blocks located further
west on the Polhem Subplatform are also commonly internally
folded, however, so that strata dominantly dip steeply to the east
(Fig. 5a and b). Local growth wedges of Ryazanian–late Barremian
agewithin rotated fault blocks locally display evidence for localized
inversion by reverse reactivation of graben-bounding faults and/or
internal folding (Fig. 5c). The outer crests of the contracted fault

Fig. 4. Uninterpreted and interpreted seismic line running from the Bjarmeland Platform in the SE, across the Loppa High, Jason Fault Complex and the
Polhem Subplatform in the NW. Names of seismic reflections are given along the left margin of the figure. (See Fig. 1 for location.)
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blocks are locally eroded and the erosional unconformity probably
correlates in time with the erosional surface that truncates the inner,

en echelon anticlines and demonstrates that contractional deform-
ation predated or was contemporaneous with the erosion event. The

Fig. 5. (a) Uninterpreted and interpreted seismic line running across the Loppa High, Jason Fault Complex, Polhem Subplatform and into the Bjørnøya
Basin. (b, c) Details from the same area. Small arrows indicate onlap. (See Fig. 1 for location.) Colour scheme as in Figure 4 Q21
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upper Barremian sequence within the growth wedges onlaps the
folded lower Barremian sequence (Fig. 5b). The upper Barremian
unit is characterized by later minor modification by continued
folding and is onlapped by the upper Barremian–middle Albian
sedimentary sequence. Based on the onlap geometry within the
inverted growth wedges, the timing of inversion on the Polhem
Subplatform is constrained to the time interval between early
Barremian and middle Albian.

Genesis.

The left-stepping, en echelon anticlines of the Polhem Subplatform
with their fold axes oriented at c. 15° clockwise to the Jason Fault
Complex indicate that the folds formed mainly as a result of east–
west-oriented head-on contraction modified by sinistral shear in
early Barremian to middle Albian time. This is in accordance with
the internal characteristics of the inner anticlines that locally
resemble positive flower structures (Fig. 5). The deformed fault
blocks, faults and inverted growth wedges (Figs 1 and 5) most
probably formed by the same contraction event, which caused
internal buckle-folding and inversion of normal faults as illustrated
in Figure 3b.

Gabrielsen et al. (1997) also suggested an early Cretaceous phase
of transpression along the Bjørnøyrenna Fault Complex. They,
however, suggested a dextral sense of shear for this event, but stated
that determination of fold geometry and fold orientation was
constrained by wide spacing of available seismic lines.

Notably, evidence for early Cretaceous inversion is not observed
along the northern segment of the Bjørnøyrenna Fault Complex.
The northern part of the Bjørnøyrenna Fault Complex was,
however, affected by late Cretaceous–Paleocene head-on contrac-
tion (Gabrielsen et al. 1997). Present data also document the
presence of salt diapirism in this area (Fig. 1). Analysis of the late
Cretaceous–Paleocene inversion and salt diapirism are, however,
beyond the scope of this paper and will not be addressed below.

The Hammerfest Basin

Several structures within and along some the marginal segments of
the Hammerfest Basin display possible inversion structures.

Anticline parallel to the Asterias Fault Complex.

The Asterias Fault Complex partly detaches at the level of Permian
evaporites (Fig. 6). The detachment is affected by north-dipping
internal reflections offsetting the top of the Jurassic sequence, here
interpreted as reverse faults (Fig. 6). A distinct east–west-striking
anticline is located within its hanging wall (Fig. 1b). The anticline is
best defined at the base of the Cretaceous level (Fig. 6) and its axis
can be followed for c. 27 km, striking parallel to master faults of the
fault complex. Its full wavelength, as measured between syncline
minima bounding its flanks, is c. 8.3 km and its amplitude, as
measured from a non-horizontal baseline connecting the syncline
minima bounding its flanks, is c. 0.9 km.

The lower Barremian seismic marker represents the uppermost
stratigraphic level that is influenced by the anticline. It is onlapped
by an upper Barremian sequence. This sequence was modified by
continued reverse fault activity (Fig. 6) and is onlapped by upper
Barremian–lower Aptian sediments, which show no evidence for
later structuring related to the anticline. The onlap relationships thus
indicate that the anticline developed its major relief from early
Barremian to early Aptian.

Genesis.

Based on the presence of reverse faults in its interior, the anticline
within the hanging wall of the Asterias Fault Complex was most

probably formed by north–south-directed contraction, overprinting
earlier normal faults as a part of localized inversion. Horizontal
shortening and the development of reverse faults led to the
formation of the anticline as illustrated in Figure 3c. This is in
accordance with interpretations of Riis et al. (1986) and Gabrielsen
& Færseth (1988). Although it is difficult to exclude the possibility
that inversion was the result of strike-slip movements along the
Asterias Fault Complex as suggested by Gabrielsen et al. (2011), we
conclude that the structure may satisfactorily be explained by head-
on contraction alone.

Anticline associated with the Goliat hydrocarbon field.

This anticline encompasses the Goliat hydrocarbon field, which is
located close to the intersection between east–west- and NE–SW-
striking major segments of the Troms–Finnmark Fault Complex in
the southeastern part of the Hammerfest Basin (Fig. 1; Mulrooney
et al. in preparation Q6

¶
). The anticline is most obvious at the base

Cretaceous and deeper levels (Figs 1 and 7). Its axis can be traced
for c. 30 km along-strike, within the hanging wall of the NE–SW-
striking segment of the Troms–Finnmark Fault Complex (Fig. 1). Its
full wavelength, as measured between syncline minima bounding its
flanks, is c. 16 km and its amplitude, as measured from a baseline
connecting the syncline minima bounding its flanks, is c. 0.9 km. It
is onlapped by lower Barremian to lower Aptian strata in the NW,
indicating that the anticline acted as an intrabasinal marginal high
during that time. The crest of the anticline is characterized by minor
faults that truncate the base Cretaceous reflection and show
evidence for reverse reactivation as they terminate upwards within
the cores of minor anticlines in above-lying Ryazanian–lower
Barremian sediments (Fig. 7). The axes of the minor anticlines can
be traced NE–SW, paralleling the strike of underlying faults for
several kilometres. The minor anticlines accordingly strike parallel
to the axis of the major anticline. Their wavelengths, as measured
between the syncline minima bounding their flanks, are on average
c. 0.5 kmwith an amplitude of c. 50 m, as measured from a baseline
connecting the synclineminima. They are onlapped by lower Aptian
sediments. Accordingly, the age of both the major anticline and the
minor folds at its crest is constrained to the early Barremian to early
Aptian.

Genesis.

The major anticline (Fig. 7) is probably the result of extension
through the interaction of fault segments forming a fault-bound
basement terrace with depth (Mulrooney et al. in preparation). It
may thus be explained as an extensional feature. The minor folds
affecting the lower Barremian reflection (Fig. 7), however, are
interpreted to have formed owing to secondary contractional
deformation and development of mild snake-head geometries
caused by partial reverse reactivation of underlying faults as
illustrated in Figure 3d. Locally, minor footwall cut-offs have
developed owing to horizontal contraction (Fig. 7, inset). The
amount of reverse reactivation is minor and consistent with NW–
SE-oriented contraction causing localized inversion.

Farther west along the Troms–Finnmark Fault Complex, the Alke
structure (Fig. 1; see also fig. 9 of Stewart et al. (1995) for profile)
provides an additional example of possible tectonic inversion of
similar age in the Hammerfest Basin. The Alke structure is affected
by a local ramp–flat–ramp geometry of the Troms–Finnmark Fault
Complex, but we suggest that the pronounced geometry of the
structure indicates later contractional modification.

Central arch of the Hammerfest Basin.

A central arch strikes east–west within the interior of the
Hammerfest Basin, parallel to the basin axis (Figs 1 and 6;
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Gabrielsen 1984; Berglund et al. 1986). It is most clearly observed
at the base of the Cretaceous sequence and the arch axis can be
followed for c. 80 km. The arch has a wavelength of c. 65 km, as
measured between syncline minima bounding its flanks, and has an
amplitude of c. 2.2 km (measured from a non-horizontal baseline
connecting the syncline minima bounding its flanks). The arch is
abruptly truncated by the Ringvassøy–Loppa Fault Complex in the
west and gradually flattens towards the east. Internally, the arch is
truncated by a north-dipping fault array with a combined
displacement of c. 1 km (Fig. 6). The fault array divides the
Hammerfest Basin into a southern and northern segment that
together constitute two, partly rotated, large-scale fault blocks of
opposite vergence (Fig. 6). The hinge line of the central arch

coincides with the upward-rotated northern rim of the southern fault
block, thus defining the main body of the central arch. The arch is
onlapped by Ryazanian–upper Barremian seismic sequences from
both north and south, demonstrating that the central arch (and thus
the basin axis) acted as a structural high during the Ryazanian–late
Barremian.

Genesis.

The central arch was an intrabasinal, southerly tilted high during the
Ryazanian–Hauterivian to late Barremian as illustrated by its onlap
configurations. The genesis of the central arch has previously been
discussed in the literature, and has been ascribed either to the

Fig. 6. Uninterpreted and interpreted seismic line running across the Hammerfest Basin, from Loppa High in the north to the Finnmark Platform in the
south, crossing the Asterias and Troms–Finnmark fault complexes. Small arrows indicate onlap. (See Fig. 1 for location.)
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interaction between first-, second- and third-order normal listric
faults (Gabrielsen 1984), or to north–south-oriented shortening
owing to strike-slip movements along the east–west-striking internal
faults of the Hammerfest Basin (Berglund et al. 1986; Sund et al.
1986). The new generation seismic data reveal that the apex of the

central arch coincides with the outer rim of the large-scale southern
rotated fault block of the Hammerfest Basin and may hence explain
the central arch as a product of extension. Further, the formation of
the arch in the Ryazanian–Hauterivian indicates that the arch
formed as a response to extension in the Hammerfest Basin rather

Fig. 7. Uninterpreted and interpreted seismic line showing the major anticline associated with the Goliat hydrocarbon field. The minor folds on the crest of
the anticline and the onlap geometry (inset) should be noted. Small arrows indicate onlap. Names of seismic reflections are given along the left margin of
the figure (see Fig. 3 Q22

¶
). (See Fig. 1 for location.)
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than early Barremian inversion. The above favours the interpretation
of Gabrielsen (1984), suggesting that the arch is the result of the
interaction between first-, second- and third-order normal faults.
Thus, in the present work, the central arch is not considered to be
caused by tectonic inversion, although it still remains open whether
the arch was later modified by horizontal shortening related to the
early Barremian–early Aptian inversion along the Asterias Fault
Complex, in the Goliat hydrocarbon field area and potentially also
the Alke structure.

In summary, the Polhem Subplatform itself, the structures along
its western margin (the Jason Fault Complex), the Asterias Fault
Complex and minor folds associated with the Goliat hydrocarbon
field area show characteristics consistent with early Cretaceous
localized tectonic inversion that focused along parts of pre-existing
major normal faults. Inversion structures associated with the
Polhem Subplatform show evidence of being modified by sinistral
strike-slip (Figs 1a, 3b and 5), whereas inversion in the Hammerfest
Basin is consistent with north–south- and NE–SW-oriented head-on
contraction (Figs 1b, c, 3c, d, 6 and 7). The inversion structures are
associated with marginal intrabasinal highs that were subject to
erosion, no sedimentation or low sedimentation rates during
formation and are constrained to the early Barremian–early
Aptian or early Barremian–middle Albian. It is important to stress
that the inversion structures are clearly subordinate in relation to the
rift activity occurring contemporaneously.

Tectonic model

According to our dating, the tectonic inversion of the Polhem
Subplatform and in the Hammerfest Basin occurred contemporan-
eously (Fig. 8) and therefore it is logical to ascribe these events to
one single tectonic event that began in the early Barremian. The
inversion is, however, restricted only to parts of major fault
complexes and shows inversion structures of diverse orientation
(ENE–WSW, NE–SW and north–south; Fig. 1). Previous studies
have suggested mechanisms involving regional wrenching events
(Ziegler 1978; Rønnevik et al. 1982; Riis et al. 1986; Gabrielsen &
Færseth 1988) causing oblique reactivation and strike-slip move-
ments along already existing faults in an effort to explain the
varying nature of shortening. Accordingly, Gabrielsen & Færseth
(1988) suggested that a slight clockwise rotation of the Hammerfest
Basin could explain inversion along the Asterias Fault Complex and
east in the Hammerfest Basin. The driving force(s) behind such
wrenching or rotation, however, has not yet been analysed in full,
but may be attributed to a regional stress field or alternatively to
stress of local significance caused by local tectonic adjustments.
The present work shows that the timing of inversion is closely
linked to the uplift of the Loppa High and that areas subject to
inversion are located close to the high. We therefore suggest that
there is a close link between the early Cretaceous uplift of the Loppa
High, wrenching and the formation of the above-described
inversion structures. We propose that inversion was a direct
response to the uplift of the Loppa High and present the following
model for the early Cretaceous tectonic inversion in the south-
western Barents Sea (Fig. 9).

The uplift of the Loppa High relative to its surroundings was
probably accommodated by normal slip along its delimiting fault
complexes; that is, the Bjørnøyrenna, Ringvassøy–Loppa and
Asterias fault complexes, which all dip basinward. The geometrical
relationship dictates that such uplift would lead to space
accommodation problems along the flanks of the high owing to
its widening with depth, assuming that the high and flanking basins
are laterally confined (Fig. 9a). Upward-directed movement of the
high is thus likely to have been converted into horizontal
compressive stress along the flanks of the high. Stress generated
by this mechanism would form perpendicular to the flank being

utilized for uplift (Fig. 9a). This model is fundamentally different
from the development of a ‘classic’ horst, where the widening of the
horst with depth is compensated for by extension. Because separate
flanks with contrasting orientations were utilized during uplift of the
Loppa High, several local stress configurations may have devel-
oped, each dominated by σ1 oriented perpendicular to the uplifted
flank. The amount of shortening induced as a result of uplift may
depend on (but is not restricted to) (1) the amount of vertical uplift
and the dip of the fault being utilized to accommodate uplift, (2) the
ability of sediments involved to compact and (3) the amount of
extension occurring contemporaneously along the same fault
(compensating for the widening of the high with depth).

By assuming a constant volume and fixed flanking basins
(negligible compaction and extension) along a 2D section running
perpendicular to, and across a fault utilized to accommodate uplift,
the ratio between uplift and horizontal shortening may be given by
the shortening ratio, sr = 1/tan(α), where α is the dip of fault on
which uplift is accommodated (Fig. 9a and b). As no compaction of
sediments and a 100% effective lateral confinement are highly
unlikely assumptions, the shortening ratio must be considered a
maximum estimate of shortening being generated by the discussed
mechanism.

The geometrical relationship between the Asterias Fault Complex
and the associated anticline caused by inversion (Fig. 6) can be used
to test the applicability of the shortening ratio. The master fault
segment of the western part of the Asterias Fault Complex dips 62°
at the stratigraphic depth at which the anticline is located. The
amount of horizontal shortening observed by the formation of the
anticline (as measured between the syncline minima bounding the
anticline) is calculated to be c. 1.2%, corresponding to c. 180 m.
Using the shortening ratio (Fig. 9b), the amount of vertical uplift
corresponding to the observed horizontal shortening is calculated to
be c. 340 m. This value fits well with first-order estimates of the
early Cretaceous uplift of the Loppa High of Clark et al. (2014, see
diagrams within that paper), giving values of the order of 300 m.

Further, at least three mechanisms generating laterally varying
stress configurations may exist. First, the Loppa High shows an
asymmetric uplift along its east–west axis, increasing westwards
(Fig. 4). Hence, the western flanks of the high may have been subject
to greater amounts of fault throw and hence larger space
accommodation problems than flanks along the eastern part of the
high.As an example, inversion along only thewestern part of the east–
west-striking Asterias Fault Complex supports this (Figs 1 and 6).

Second, variations in sediment compaction and/or amount of
lateral confinement of flanking basins are likely and would
significantly affect the amount of observable shortening being
generated by uplift. This may be the reason why no inversion
structures of early Cretaceous age are observed along the northern
part of the Bjørnøyrenna Fault Complex, as extension and
subsidence in this part of the Bjørnøya Basin may have been
greater than shortening generated by uplift at the time.

Third, the asymmetric shape of the Loppa High would lead to an
unbalanced local horizontal stress field being generated, assuming
all flanks are utilized for uplift. In addition, shortening occurring
within the Tromsø and Bjørnøya basins was probably less confined
than in the Hammerfest Basin owing to continuing extension.

The model thus implies that stress generated by uplift varies in
strength and orientation, leading to an unbalanced regional stress
pattern. Rotation as a response to unbalanced local horizontal stress-
fields being generated by uplift may thus be a source for a
component of wrenching, as has been suggested in the region by
several researchers (Ziegler 1978; Rønnevik et al. 1982; Berglund
et al. 1986; Riis et al. 1986; Sund et al. 1986; Gabrielsen & Færseth
1988, 1989; Gabrielsen et al. 1997). In the case of the Loppa High,
the resulting stress configuration could potentially have led to
clockwise bulk rotation of the high around a vertical axis (Fig. 9c).
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Such rotation would explain both sinistral movements on the
Polhem Subplatform generating the observed en echelon folds and
also transtension in the Swaen Graben and the associated narrow
grabens in the interior of the Loppa High (Fig. 9c). However, it is
not unlikely that far-field horizontal stresses contributed to strike-
slip movements along the margins of the Loppa High in the early
Cretaceous.

The inversion close to the Goliat hydrocarbon field (and
potentially the Alke structure and partially the central arch of the
Hammerfest Basin) is probably affiliated with horizontal stresses
propagating from the Loppa High margins through basement units
of the Hammerfest Basin. Numerical modelling has shown that
stress is unlikely to propagate through relatively soft sedimentary

cover units, but may propagate through crystalline basement for
hundreds of kilometres and be expressed as passive folding of the
above-lying sedimentary cover along basement-seated fault zones
and or areas of high basement relief (e.g. Pascal & Gabrielsen 2001;
Pascal et al. 2005, 2006, 2010; Buiter & Torsvik 2007; Cloething &
Burov 2011 Q7

¶
; Doré et al. 2008). However, it cannot be excluded that

the inversion structures located along the Troms–Finnmark Fault
Complex are the result of far-field horizontal stresses.

The model constrains the initiation of uplift of the Loppa High to
the early Barremian. It is noted that the uplift coincided with a major
switch in rift activity in the region, where moderate, distributed
extension in the late Jurassic or earliest Cretaceous in the
southwestern Barents Sea was followed by major extension along

Fig. 8. Table summarizing Cretaceous rift
activity in the region together with the
constrained time interval for which the
described tectonic inversion structures
formed. Chronostratigraphy from
Gradstein et al. (2010).
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the Bjørnøyrenna and Ringvassøy–Loppa fault complexes by the
early Barremian (Fig. 8; e.g. Gabrielsen et al. 1990; Faleide et al.
1993a,b, 2008). A focus of rift activity is recognized in the entire
North Atlantic region and in the Barents Sea in this period (Faleide
et al. 1993b), which in the southwestern Barents Sea led to extreme
lithospheric thinning in the Tromsø and Bjørnøya basins. The axis
defined by the Ringvassøy–Loppa and Bjørnøyrenna fault
complexes marks the position of a major basement-seated
Caledonian zone of weakness (Rønnevik et al. 1982; Gabrielsen
et al. 1990; Faleide et al. 1993a,b, 2008; Ritzmann & Faleide 2007)
and may explain why extension became focused in this zone.

The cause for uplift of the Loppa High has been previously
discussed in the literature. Wood et al. (1989) suggested that uplift
was associated with fault block rotation and footwall uplift along the
Ringvassøy–Loppa and Bjørnøyrenna fault complexes. Such a
mechanism is, however, commonly associated with uplift wave-
lengths from 0.1 to 15 km (Roberts & Yielding 1991; Gabrielsen
et al. 2005) and thus fails to explain the uplift of the wider Loppa
High area (wavelength >90 km). Uplift as a part of rift flank uplift
owing to isostatic flexure has also been proposed (Glørstad-Clark
et al. 2011; Clark et al. 2014). Although we agree that isostatic
flexure most probably was involved in the uplift of the Loppa High,
such uplift would affect the entire eastern flank of the Tromsø and
Bjørnøya basins and thus cannot fully explain the uplift of the
Loppa High relative to, for example, the neighbouring Hammerfest
Basin situated along the same rift flank.

We therefore conclude that one or more additional process(es)
must have contributed to the uplift of the Loppa High. Such
mechanisms could include far-field stresses but also uplift
mechanisms related to the deeper structuring of the high and
thermomechanical processes, including P–T-related mineral transi-
tions. It is particularly noted that the high is underlain by a distinct
block of thicker crust (Ebbing & Olesen 2010), which is
characterized by anomalously high densities and magnetic
susceptibilities at its base interpreted to represent the presence of
mafic rocks (Ritzmann & Faleide 2007; Clark et al. 2014). An
increase in heat flux owing to lithospheric thinning in the west may

have triggered uplift through thermal heating and/or phase changes
in the lower mafic crust. These are, however, aspects that need to be
tested and will not be further discussed herein.

Conclusions

Evidence for early Cretaceous tectonic inversion is documented on
the Polhem Subplatform and in the Hammerfest Basin, south-
western Barents Sea. The inversion structures show a range of
orientations that are consistent with head-on (fault-perpendicular)
contraction modified by sinistral transpression on the Polhem
Subplatform and head-on contraction along the Asterias Fault
Complex and in the Goliat hydrocarbon field area close to the
Troms–Finnmark Fault Complex. The timing of formation of these
structures is constrained to the early Barremian–early Aptian and
early Barremian–middle Albian.

A tectonic model is presented that links the formation of the
inversion structures to the uplift of the Loppa High owing to space
accommodation problems along the flanks of the high during uplift.
The model constrains the initiation of uplift of the Loppa High to the
early Barremian and explains how differential uplift and/or
changing along-fault boundary conditions may have led to
unbalanced horizontal stresses leading to a clockwise bulk rotation
of the high around a vertical axis (i.e. wrenching), causing
transpression on the Polhem Subplatform and transtension in the
Swaen Graben and the Loppa High interior.

The cause of uplift of the Loppa High is poorly constrained, but it
was contemporaneous with extreme lithospheric thinning in the
Tromsø and Bjørnøya basins in the west. We suggest that isostatic
flexuring, thermal heating and/or phase changes at deeper crustal
levels are processes that may have been involved in driving the
uplift, although these are aspects that need to be further tested.
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